WO2015109954A1 - 一种岩体声波检测换能器 - Google Patents

一种岩体声波检测换能器 Download PDF

Info

Publication number
WO2015109954A1
WO2015109954A1 PCT/CN2015/070437 CN2015070437W WO2015109954A1 WO 2015109954 A1 WO2015109954 A1 WO 2015109954A1 CN 2015070437 W CN2015070437 W CN 2015070437W WO 2015109954 A1 WO2015109954 A1 WO 2015109954A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
transducer
acoustic wave
hole
rigid
Prior art date
Application number
PCT/CN2015/070437
Other languages
English (en)
French (fr)
Inventor
卢文波
张玉柱
严鹏
陈明
周创兵
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Priority to AU2015208554A priority Critical patent/AU2015208554A1/en
Publication of WO2015109954A1 publication Critical patent/WO2015109954A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/103Number of transducers one emitter, two or more receivers

Definitions

  • the invention relates to the technical field of water conservancy, hydropower and geotechnical engineering, in particular to a rock mass acoustic wave detecting transducer for determining the influence range of rock mass excavation blasting.
  • the bladder is made of a flexible impervious material (such as rubber) wrapped around the transducer, and the water is pressed into the bladder.
  • the expansion is to realize the coupling between the transducer and the rock wall of the hole wall, but there are also disadvantages such as the bag is easy to wear, the pressure is not easy to control, and the coupling condition is inconsistent, which has certain influence on the test implementation process and the test result.
  • the problem of inconsistency in coupling conditions due to the positional shift of the transducer in the detecting hole is improved.
  • the object of the present invention is to provide a rock mass acoustic wave detecting transducer for sound wave detection in the influence range of rock excavation blasting according to the above-mentioned state of the art, to solve the problem of using sound as a coupling agent in sound wave detection.
  • the invention can be applied to both single-hole acoustic wave detection and cross-hole acoustic wave detection.
  • a rock mass acoustic wave detecting transducer includes a transmitting transducer, a receiving transducer, a rigid connecting pipe, a measuring rod, a hydraulic pump and a sound wave collecting device, and the transmitting transducer passes through a rigid connecting tube and a receiving transducer Connected, the top of the transmitting transducer is connected with a measuring rod, and the transmitting transducer is respectively connected to the hydraulic pump and the acoustic wave collecting device through a pipeline; the transmitting transducer and the receiving transducer are built-in piezoelectric ceramics, hydraulic contacts and hydraulic pressure The dry hole transducer of the rigid block; the wall of the rigid connecting pipe is a hollow structure, and when the sound wave passes through the pipe wall, the sound path is 6-7 times of the pipe length.
  • the dry hole transducer further includes a metal casing having a hydraulic pipe connected to the hydraulic pump and a shielded cable for connecting the acoustic wave collecting device at the top end; the hydraulic contact and the hydraulic pressure
  • the spacer is connected by two sets of springs in the metal casing that are symmetric in position, and have the same length and stiffness coefficient.
  • the outer surfaces of the hydraulic contact, the hydraulic rigid block and the acoustic wave detecting hole wall are all curved surfaces, and the curvature radius of the hydraulic contact and the hydraulic rigid block matches the radius of curvature of the hole wall.
  • the outer casing of the metal casing is a sandproof rubber bag, and one end of the sandproof rubber bag is fixed on the metal casing, and the other end is fixed on the hydraulic rigid block, and the length of the sandproof rubber bag matches the walking length of the hydraulic rigid block.
  • a rock mass acoustic wave detecting transducer comprising a transmitting transducer, a receiving transducer, a measuring rod, a hydraulic pump and a sound wave collecting device, the transmitting transducer, and a receiving transducer located in another sound wave detecting hole
  • the top of the device is respectively connected with a measuring rod, and the transmitting transducer and the receiving transducer located in the other sound detecting hole are respectively connected to the hydraulic pump and the sound wave collecting device through a pipeline; the transmitting transducer and the receiving transducer are built in Dry-hole transducers for piezoceramics, hydraulic contacts and hydraulic rigid blocks.
  • the dry hole transducer further includes a metal casing having a hydraulic pipe connected to the hydraulic pump and a shielded cable for connecting the acoustic wave collecting device at the top end; the hydraulic contact and the hydraulic rigid block are made of a metal casing The two sets of springs with the same position, symmetry, length and stiffness coefficient are connected.
  • the outer surfaces of the hydraulic contact, the hydraulic rigid block and the acoustic wave detecting hole wall are all curved surfaces, and the curvature radius of the hydraulic contact and the hydraulic rigid block matches the radius of curvature of the hole wall.
  • the outer casing of the metal casing is a sandproof rubber bag, and one end of the sandproof rubber bag is fixed on the metal casing, and the other end is fixed on the hydraulic rigid block, and the length of the sandproof rubber bag matches the walking length of the hydraulic rigid block.
  • the hydraulic contact 12 of the dry-hole transducers 1, 2 can be in close contact with the hole wall of the sound wave detecting hole 10; the spring 14 is automatically contracted by the pressure reduction of the hydraulic pump 8, The hydraulic contact 12 of the dry hole transducers 1, 2 can be separated from the wall of the sound wave detecting hole 10, and then enter Test at the next point. At the same time, through the control of the pressure gauge, it can be ensured that the coupling conditions are the same when testing at different times.
  • the rock beam acoustic wave detecting transducer of the invention has the advantages of: direct contact between the retractable hydraulic contact and the rock wall of the detecting hole hole, no need to introduce a coupling agent, and the dry hole detection of the acoustic wave test is realized; And the influence of the angle can adapt to various testing conditions on the site; the hydraulic pressure equipment with pressure gauge controls the coupling pressure, that is, the pressure is increased to make the transducer and the inspection hole wall completely in contact, which can ensure the consistency of the coupling conditions.
  • the rock acoustic wave detecting transducer of the present invention is used, and in the acoustic wave test, in addition to the waveform hopping point can be more accurately obtained to obtain the acoustic wave velocity data, the acoustic wave can be obtained. Data on amplitude, spectrum, etc.
  • FIG. 1 is a schematic structural view of single-hole acoustic wave detection according to the present invention.
  • FIG. 2 is a schematic structural view of cross-hole acoustic wave detection according to the present invention.
  • Figure 3 is a schematic view showing the structure of a dry hole transducer.
  • Fig. 4 is a cross-sectional view taken along line A-A of Fig. 3;
  • Figure 5 is a schematic view showing the structure of a rigid connecting pipe.
  • Fig. 6 is a cross-sectional view taken along line B-B of Fig. 5;
  • Fig. 7 is a schematic view showing the relative position of the prior transducer and the dry-hole transducer of the present invention in the detecting hole.
  • 1 is a transmitting transducer
  • 2 is a receiving transducer
  • 3 is a rigid connecting tube
  • 4 is a measuring rod
  • 5 is a hydraulic rigid block
  • 6 is a hydraulic pipe
  • 7 is a shielded cable
  • 8 is a hydraulic pump
  • 9 is a sound wave collecting device
  • 10 is a sound wave detecting hole
  • 11 is a metal casing
  • 12 is a hydraulic contact
  • 13 is a piezoelectric ceramic
  • 14 is a spring
  • 15 is an existing transducer
  • 16 is water
  • 17 is a sandproof capsule.
  • 18 is the connecting bolt.
  • a rock mass acoustic wave detecting transducer includes a transmitting transducer 1, a receiving transducer 2, a rigid connecting pipe 3, The measuring rod 4, the hydraulic pump 8 and the acoustic wave collecting device 9, the transmitting transducer 1 is connected to the receiving transducer 2 through a rigid connecting tube 3, the measuring transducer 4 is connected to the top end of the transducer 1 and the transmitting transducer 1 is The pipeline is connected to the hydraulic pump 8 and the acoustic wave collecting device 9 respectively; the transmitting transducer 1 and the receiving transducer 2 are dry-hole transducers with built-in piezoelectric ceramics 13, hydraulic contacts 12 and hydraulic rigid blocks 5 .
  • the piezoelectric ceramic 13 in the transmitting transducer 1 emits an acoustic wave
  • the piezoelectric ceramic 13 in the receiving transducer 2 receives the acoustic wave.
  • the dry hole transducer comprises a metal casing 11, a hydraulic contact 12, a piezoelectric ceramic 13 and a hydraulic rigid block 5, and a hydraulic pipe 6 for connecting the hydraulic pump 8 is provided at the top end of the metal casing 11 and is used for connection
  • the shielded cable 7 of the acoustic wave collecting device 9; the dry-hole transducer is provided with a threaded interface connected to the rigid connecting pipe 3 or the measuring rod 4 at both ends as needed.
  • the hydraulic contact 12 and the hydraulic rigid block 5 are connected by two sets of springs 14 having a positional symmetry, length and stiffness coefficient within the metal casing 11.
  • the outer surface of the hydraulic contact 12 and the wall of the acoustic wave detecting hole 10 is a curved surface.
  • the outer surface of the hydraulic rigid block 5 and the acoustic wave detecting hole 10 in contact with the hole wall is a curved surface.
  • the metal casing 11 is provided with a sand-proof rubber bladder 17 on one end, and one end of the sand-proof rubber bladder 17 is fixed on the metal casing 11, and the other end is fixed on the hydraulic rigid block 5, the length of the sand-proof rubber bladder 17 and the walking length of the hydraulic rigid block 5.
  • the rigid connecting pipe 3 is made of metal, the pipe diameter is 2-3 cm, the pipe wall thickness is 3-4 mm, and the pipe wall is hollowed out to ensure that the sound path is 6-7 times of the pipe length when the sound wave passes through the pipe wall. Both ends of the rigid connecting pipe 3 are provided with connecting bolts connected to the transmitting transducer 1 or the receiving transducer 2. Length of rigid connecting pipe 3 According to the test needs.
  • the measuring rod 4 is made of a rigid material, and the rod ends are provided with connecting bolts, which can be connected and disassembled.
  • the rod length is 1m, 2m, 5m, etc., and the shaft has a scale with a minimum scale of 10cm.
  • the high slope of a water conservancy and hydropower project uses the above-mentioned new rock mass acoustic wave transducer to detect the influence range of rock mass excavation blasting.
  • a set of three acoustic wave detection holes are drilled at a height of 1.0 m from the plane of the horse track, numbered SB1, SB2, and SB3.
  • the three acoustic wave detection holes are equilateral triangles with a spacing of 1.0 m; the aperture is 110 mm and the hole depth is 10 m.
  • the slope ratio is 1:0.3, and the acoustic wave detection hole is perpendicular to the slope.
  • a single hole sonic test was performed in the SB1 well.
  • Step 1 According to the aperture of the detection hole, select the appropriate type of transducer and hydraulic rigid spacer.
  • the specific requirement is: the transducer width is 80mm, and the radius of curvature of the contact surface between the transducer hydraulic contact and the detection hole wall is 110mm.
  • the utility model comprises a transmitting transducer and two receiving transducers; the contact surface of the hydraulic rigid block and the detecting hole hole wall has a radius of curvature of 110 mm.
  • the transducer is fixed to the rigid connecting tube.
  • the transducer is connected at both ends of the rigid connecting tube, and from top to bottom are a transmitting transducer, a receiving transducer, and a receiving transducer.
  • the length of the rigid connecting tube between the two receiving transducers is 15 cm, and the length of the rigid connecting tube between the transmitting transducer and the receiving transducer is 25 cm.
  • Step 3 Connect the pole. Connect the pole to the top of the transmitting transducer and feed the rigid connecting tube and transducer to the bottom of the sensing hole SB1.
  • the length of each pole is 5m, 2m, 2m, 2m.
  • Step 4 Connect the hydraulic hose and shielded cable.
  • the hydraulic pipe and the shielded cable extending from the three sensors are respectively connected to the corresponding interfaces of the hydraulic pump and the sound wave collecting device, and the device is turned on.
  • Step 5 data collection.
  • the hydraulic pump is slowly boosted.
  • the waveform displayed by the acoustic wave acquisition device is stable, stop the boost, collect the waveform data, and record the pressure gauge.
  • Force again, the hydraulic pump is stepped down, lifting the rod up 20cm.
  • the hydraulic pump is slowly pressurized.
  • the pressure value is tested for the first time, the pressure is stopped and the waveform data is collected.
  • the hydraulic pump is stepped down to raise the rod to the next depth. Repeat the above steps until the test is complete.
  • a rock mass acoustic wave detecting transducer includes a transmitting transducer 1, a receiving transducer 2, a measuring rod 4, a hydraulic pump 8 and Acoustic wave collecting device 9; the transmitting transducer 1, the measuring transducer 2 located in the other acoustic wave detecting hole 10 is respectively connected with a measuring rod 4, and the transmitting transducer 1 is respectively connected to the hydraulic pump 8 and the sound wave through the pipeline
  • the device 9 is connected, and the receiving transducer 2 located in the other acoustic wave detecting hole 10 is connected to the hydraulic pump 8 and the acoustic wave collecting device 9 through a pipeline; the transmitting transducer 1 and the receiving transducer 2 are built-in piezoelectric ceramics.
  • the piezoelectric ceramic 13 in the transmitting transducer 1 emits an acoustic wave
  • the piezoelectric ceramic 13 in the receiving transducer 2 receives the acoustic wave.
  • the dry hole transducer comprises a metal casing 11, a hydraulic contact 12, a piezoelectric ceramic 13 and a hydraulic rigid block 5, and a hydraulic pipe 6 for connecting the hydraulic pump 8 is provided at the top end of the metal casing 11 and is used for connection
  • the shielded cable 7 of the acoustic wave collecting device 9; the dry-hole transducer is provided with a threaded interface connected to the rigid connecting pipe 3 or the measuring rod 4 at both ends as needed.
  • the hydraulic contact 12 and the hydraulic rigid block 5 are connected by two sets of springs 14 having a positional symmetry, length and stiffness coefficient within the metal casing 11.
  • the outer surface of the hydraulic contact 12 and the wall of the acoustic wave detecting hole 10 is a curved surface.
  • the outer surface of the hydraulic rigid block 5 and the acoustic wave detecting hole 10 in contact with the hole wall is a curved surface.
  • the metal casing 11 is provided with a sand-proof rubber bladder 17 on one end, and one end of the sand-proof rubber bladder 17 is fixed on the metal casing 11, and the other end is fixed on the hydraulic rigid block 5, the length of the sand-proof rubber bladder 17 and the walking length of the hydraulic rigid block 5.
  • the measuring rod 4 is made of a rigid material, and the rod ends are provided with connecting bolts, which can be connected and disassembled.
  • the rod length is 1m, 2m, 5m, etc., and the shaft has a scale with a minimum scale of 10cm.
  • the high slope of a water conservancy and hydropower project uses the above-mentioned new rock mass acoustic wave transducer to detect the influence range of rock mass excavation blasting.
  • a set of three acoustic wave detection holes are drilled at a height of 1.0 m from the plane of the horse track, numbered SB1, SB2, and SB3.
  • the three acoustic wave detection holes are equilateral triangles with a spacing of 1.0 m; the aperture is 110 mm and the hole depth is 10 m.
  • the slope ratio is 1:0.3, and the acoustic wave detection hole is perpendicular to the slope.
  • Cross-hole acoustic testing was performed in the SB1, SB2 holes.
  • Step 1 According to the aperture of the detection hole, select the appropriate type of transducer and hydraulic rigid spacer.
  • the specific requirement is: the transducer width is 80mm, and the radius of curvature of the contact surface between the transducer hydraulic contact and the detection hole wall is 110mm.
  • the utility model comprises a transmitting transducer and a receiving transducer; the contact surface of the hydraulic rigid block and the detecting hole hole wall has a radius of curvature of 110 mm.
  • Step 2 connect the pole. Connecting the connecting rod to the top of the transmitting transducer and the receiving transducer respectively, and feeding the rigid connecting tube and the transducer to the bottom of the detecting holes SB1, SB2.
  • the length of each pole is 5m, 2m, 2m, 2m.
  • Step 3 Connect the hydraulic hose and shielded cable.
  • the hydraulic pipe and the shielded cable extending from the two sensors are respectively connected to the corresponding interfaces of the hydraulic pump and the acoustic wave collecting device, and the device is turned on.
  • Step 4 data collection.
  • the hydraulic pump is slowly boosted.
  • the waveform displayed by the acoustic wave acquisition device is stable, stop the boost, collect the waveform data, and record the pressure of the pressure gauge; again, the hydraulic pump steps down and simultaneously put the two probes Both lift up 20cm.
  • the hydraulic pump is slowly pressurized.
  • the pressure value is tested for the first time, the pressure is stopped and the waveform data is collected.
  • the hydraulic pump is stepped down to raise the two rods to the next depth. Repeat the above steps until the test is complete.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种岩体声波检测换能器,包括发射换能器⑴、接收换能器⑵、刚性连接管⑶、测杆⑷、液压泵⑻和声波采集设备⑼,所述发射换能器⑴通过刚性连接管⑶与接收换能器⑵相连,发射换能器⑴顶端连有测杆⑷。其优点是:通过可伸缩液压触头(12)与检测孔孔壁岩体的直接接触,不需要引入耦合剂,实现声波测试的干孔检测;不受施工供水、钻孔方位及角度的影响,能适应现场各种检测条件;通过带压力表的液压设备,控制耦合压力,可以保证耦合条件的一致。由于排除了耦合剂的影响、保证了耦合条件的一致,使用该装置,在声波测试中,除了可以更加精确地判读波形起跳点获得声波波速数据外,还可以获得声波波幅、频谱等方面的数据。

Description

一种岩体声波检测换能器 技术领域
本发明涉及水利水电和岩土工程技术领域,具体的说是一种用于确定岩体开挖爆破影响范围的岩体声波检测换能器。
背景技术
岩体爆破开挖过程中,由于爆炸荷载的作用,在完成岩石爆破破碎的同时,不可避免地对保留岩体产生动力损伤;同时随着新的自由面的形成,保留岩体的物理力学性能发生扰动和劣化,形成所谓的开挖扰动区或开挖损伤区。开挖扰动区或开挖损伤区将对保留岩体及工程建筑的安全造成不利影响。合理准确地判断岩体开挖爆破影响范围,判定开挖扰动区或开挖损伤区,能有效地确保施工安全,减少工程投资。声波测试由于测试方便和成果易判读等优点在水利水电和岩土工程中得到了普遍的应用,常用的方法是引入纵波波速变化率来判定岩体开挖爆破影响范围。
声波测试的传统工艺中,需要引入水作为耦合剂来完成测试,即发射换能器发出声波,波动通过水的耦合传入岩体,再通过水的耦合传入接收换能器。但是,在对岩体开挖爆破影响范围进行评价时,要求测定其天然状态下的性能,由于大部分声波孔是在水面以上,孔中并不存在水,只是为了测试,在检测孔中加入水,这样就改变了岩体含水的自然状态,所测结果与天然状态有差异;同时,水的存在会降低岩体的结构面效应,对波动的传播产生影响;第三,由于波动传播对水耦合的依赖,当岩体比较破碎、声波孔渗水严重时,会对测试的效率和精度产生影响。另外,由于在实际实施过程中,为 方便换能器的移动,换能器的直径总小于检测孔的直径,换能器在检测孔中移动时,其在测试孔中位置的偏移,会导致耦合条件的不一致,改变声波传播的路径,影响测试结果。
目前,也有不需要向钻孔中注水的干孔换能器,基本原理多是在换能器外包裹柔性不透水材料(如橡胶等)制成的囊袋,通过向囊袋中压水使之膨胀,以实现换能器和孔壁岩体的耦合,但也存在囊袋易磨损、压力不易控制而造成耦合条件不一致等缺点,对测试实施过程和测试结果均有一定影响。另外,也未就普通水耦合换能器使用中,由于换能器在检测孔中位置偏移而造成耦合条件的不一致的问题进行改善。
发明内容
本发明的目的就是根据上述现有技术的状况,针对岩体开挖爆破影响范围的声波检测,提出了一种岩体声波检测换能器,以解决声波检测中由于使用水作为耦合剂所带来的问题,同时弥补使用现有的干孔换能器检测方法时产生的缺陷。本发明可同时适用于单孔声波检测和跨孔声波检测。
一种岩体声波检测换能器,包括发射换能器、接收换能器、刚性连接管、测杆、液压泵和声波采集设备,所述发射换能器通过刚性连接管与接收换能器相连,发射换能器顶端连有测杆,发射换能器通过管线分别与液压泵和声波采集设备相连;所述发射换能器、接收换能器为内置压电陶瓷、液压触头和液压刚性垫块的干孔换能器;所述刚性连接管的管壁为镂空构造,当声波通过管壁时,声程是管长的6-7倍。
所述干孔换能器还包括金属外壳,所述金属外壳顶端设有用于连接液压泵的液压管以及用于连接声波采集设备的屏蔽电缆;所述液压触头和液压刚 性垫块由金属外壳内的两组位置对称、长度和劲度系数相同的弹簧相连接。
所述液压触头、液压刚性垫块与声波检测孔孔壁接触的外表面均为弧面,液压触头、液压刚性垫块的曲率半径与孔壁曲率半径相匹配。
所述金属外壳外设防砂橡胶囊,防砂橡胶囊一端固定在金属外壳上,另一端固定在液压刚性垫块上,防砂橡胶囊的长度与液压刚性垫块的行走长度相匹配。
或者一种岩体声波检测换能器,包括发射换能器、接收换能器、测杆、液压泵和声波采集设备,所述发射换能器、位于另一声波检测孔内的接收换能器顶端分别连有测杆,发射换能器、位于另一声波检测孔内的接收换能器通过管线分别与液压泵和声波采集设备相连;所述发射换能器、接收换能器为内置压电陶瓷、液压触头和液压刚性垫块的干孔换能器。
所述干孔换能器还包括金属外壳,所述金属外壳顶端设有用于连接液压泵的液压管以及用于连接声波采集设备的屏蔽电缆;所述液压触头和液压刚性垫块由金属外壳内的两组位置对称、长度和劲度系数相同的弹簧连接。
所述液压触头、液压刚性垫块与声波检测孔孔壁接触的外表面均为弧面,液压触头、液压刚性垫块的曲率半径与孔壁曲率半径相匹配。
所述金属外壳外设防砂橡胶囊,防砂橡胶囊一端固定在金属外壳上,另一端固定在液压刚性垫块上,防砂橡胶囊的长度与液压刚性垫块的行走长度相匹配。
通过带压力表的液压泵8的增压,可以使干孔换能器1、2的液压触头12与声波检测孔10孔壁紧密接触;通过液压泵8的降压,弹簧14自动收缩,可以使干孔换能器1、2的液压触头12与声波检测孔10孔壁分离,进而进入 下一个点的测试。同时,通过压力表的控制,可以保证在不同时刻进行测试时的耦合条件一致。
本发明岩体声波检测换能器的优点是:通过可伸缩液压触头与检测孔孔壁岩体的直接接触,不需要引入耦合剂,实现声波测试的干孔检测;不受施工供水、钻孔方位及角度的影响,能适应现场各种检测条件;通过带压力表的液压设备,控制耦合压力,即增大压力使换能器与检测孔孔壁完好接触,可以保证耦合条件的一致。由于排除了耦合剂的影响、保证了耦合条件的一致,使用本发明岩体声波检测换能器,在声波测试中,除了可以更加精确地判读波形起跳点获得声波波速数据外,还可以获得声波波幅、频谱等方面的数据。
附图说明
图1为本发明进行单孔声波检测的结构示意图。
图2为本发明进行跨孔声波检测的结构示意图。
图3为干孔换能器的结构示意图。
图4为图3的A-A向剖视图。
图5为刚性连接管的结构示意图。
图6为图5的B-B向剖视图。
图7为现有换能器与本发明的干孔换能器在检测孔中的相对位置示意图。
图中,1为发射换能器,2为接收换能器,3为刚性连接管,4为测杆,5为液压刚性垫块,6为液压管,7为屏蔽电缆,8为液压泵,9为声波采集设备,10为声波检测孔,11为金属外壳,12为液压触头,13为压电陶瓷,14为弹簧,15为现有换能器,16为水,17为防砂像胶囊,18为连接螺栓。
具体实施方式
实施例一
下面结合附图,对本发明进行进一步说明:如图1、图3-6所示,一种岩体声波检测换能器,包括发射换能器1、接收换能器2、刚性连接管3、测杆4、液压泵8和声波采集设备9,所述发射换能器1通过刚性连接管3与接收换能器2相连,发射换能器1顶端连有测杆4,发射换能器1通过管线分别与液压泵8和声波采集设备9相连;所述发射换能器1、接收换能器2为内置压电陶瓷13、液压触头12及液压刚性垫块5的干孔换能器。发射换能器1中的压电陶瓷13发射声波,接收换能器2中的压电陶瓷13接收声波。
所述干孔换能器,包括金属外壳11、液压触头12、压电陶瓷13及液压刚性垫块5,所述金属外壳11顶端设有用于连接液压泵8的液压管6以及用于连接声波采集设备9的屏蔽电缆7;所述干孔换能器根据需要在两端设有与刚性连接管3或测杆4相连的螺纹接口。所述液压触头12和液压刚性垫块5由金属外壳11内的两组位置对称、长度和劲度系数相同的弹簧14连接。
所述液压触头12和声波检测孔10孔壁接触的外表面是弧面。所述液压刚性垫块5和声波检测孔10孔壁接触的外表面是弧面。
所述金属外壳11外设防砂橡胶囊17,防砂橡胶囊17一端固定在金属外壳11上,另一端固定在液压刚性垫块5上,防砂橡胶囊17的长度与液压刚性垫块5的行走长度相匹配。
所述刚性连接管3采用金属制成,管径为2-3cm,管壁厚3-4mm,其管壁为镂空构造,确保声波通过管壁时,声程是管长的6-7倍。刚性连接管3两端设有连接螺栓与发射换能器1或接收换能器2相连。刚性连接管3的长度 根据测试需要选用。
所述测杆4为刚性材料制成,杆端设有连接螺栓,可以连接和拆分。杆长有1m、2m、5m等规格,杆身设有最小刻度为10cm的刻度。
某水利水电工程高边坡采用上述新型岩体声波检测换能器检测岩体开挖爆破影响范围。距离马道平面高1.0m处钻设一组共三个声波检测孔,分别编号为SB1、SB2、SB3。三个声波检测孔呈等边三角形分布,各孔间距1.0m;孔径110mm,孔深10m。边坡坡比为1:0.3,声波检测孔垂直于边坡坡面。在SB1孔中进行单孔声波测试。
步骤1,根据检测孔孔径选择合适型号的换能器及液压刚性垫块,具体要求是:换能器宽度为80mm,换能器液压触头与检测孔孔壁的接触面的曲率半径为110mm,包括1个发射换能器和2个接收换能器;液压刚性垫块与检测孔孔孔壁的接触面的曲率半径为110mm。
步骤2,将换能器固定在刚性连接管上。将换能器连接在刚性连接管的两端,从上至下依次是发射换能器、接收换能器、接收换能器。两个接收换能器之间的刚性连接管的长度是15cm,发射换能器和接收换能器之间的刚性连接管的长度是25cm。
步骤3,连接测杆。将测杆连接在发射换能器顶端,并将刚性连接管和换能器送入检测孔SB1底部。每节测杆的长度分别是5m、2m、2m、2m。
步骤4,连接液压管和屏蔽电缆。将三个传感器上伸出的液压管和屏蔽电缆分别连接在液压泵和声波采集设备的相应接口,设备开机。
步骤5,数据采集。首先,记录传感器深度;其次,液压泵缓慢增压,当声波采集设备显示的波形稳定时,停止增压,采集波形数据,记录压力表压 力;再次,液压泵降压,将测杆向上提20cm。液压泵缓慢增压,到首次测试时的压力值时,停止增压,采集波形数据;液压泵降压,将测杆提至下一深度。重复以上步骤,直到检测完成。
实施例二
下面结合附图,对本发明进行进一步说明:如图2-6所示,一种岩体声波检测换能器,包括发射换能器1、接收换能器2、测杆4、液压泵8和声波采集设备9;所述发射换能器1、位于另一声波检测孔10内的接收换能器2顶端分别连有测杆4,发射换能器1通过管线分别与液压泵8和声波采集设备9相连,位于另一声波检测孔10内的接收换能器2通过管线分别与液压泵8和声波采集设备9相连;所述发射换能器1、接收换能器2为内置压电陶瓷13、液压触头12及液压刚性垫块5的干孔换能器。发射换能器1中的压电陶瓷13发射声波,接收换能器2中的压电陶瓷13接收声波。
所述干孔换能器,包括金属外壳11、液压触头12、压电陶瓷13及液压刚性垫块5,所述金属外壳11顶端设有用于连接液压泵8的液压管6以及用于连接声波采集设备9的屏蔽电缆7;所述干孔换能器根据需要在两端设有与刚性连接管3或测杆4相连的螺纹接口。所述液压触头12和液压刚性垫块5由金属外壳11内的两组位置对称、长度和劲度系数相同的弹簧14连接。
所述液压触头12和声波检测孔10孔壁接触的外表面是弧面。所述液压刚性垫块5和声波检测孔10孔壁接触的外表面是弧面。
所述金属外壳11外设防砂橡胶囊17,防砂橡胶囊17一端固定在金属外壳11上,另一端固定在液压刚性垫块5上,防砂橡胶囊17的长度与液压刚性垫块5的行走长度相匹配。
所述测杆4为刚性材料制成,杆端设有连接螺栓,可以连接和拆分。杆长有1m、2m、5m等规格,杆身设有最小刻度为10cm的刻度。
某水利水电工程高边坡采用上述新型岩体声波检测换能器检测岩体开挖爆破影响范围。距离马道平面高1.0m处钻设一组共三个声波检测孔,分别编号为SB1、SB2、SB3。三个声波检测孔呈等边三角形分布,各孔间距1.0m;孔径110mm,孔深10m。边坡坡比为1:0.3,声波检测孔垂直于边坡坡面。在SB1、SB2孔中进行跨孔声波测试。
步骤1,根据检测孔孔径选择合适型号的换能器及液压刚性垫块,具体要求是:换能器宽度为80mm,换能器液压触头与检测孔孔壁的接触面的曲率半径为110mm,包括1个发射换能器和1个接收换能器;液压刚性垫块与检测孔孔孔壁的接触面的曲率半径为110mm。
步骤2,连接测杆。分别将连接杆连接在发射换能器及接收换能器顶端,并将刚性连接管和换能器送入检测孔SB1、SB2底部。每节测杆的长度分别是5m、2m、2m、2m。
步骤3,连接液压管和屏蔽电缆。将两个传感器上伸出的液压管和屏蔽电缆分别连接在液压泵和声波采集设备的相应接口,设备开机。
步骤4,数据采集。首先,记录传感器深度;其次,液压泵缓慢增压,当声波采集设备显示的波形稳定时,停止增压,采集波形数据,记录压力表压力;再次,液压泵降压,同时将两根测杆均向上提20cm。液压泵缓慢增压,到首次测试时的压力值时,停止增压,采集波形数据;液压泵降压,将两根测杆均提至下一深度。重复以上步骤,直到检测完成。

Claims (8)

  1. 一种岩体声波检测换能器,其特征在于:包括发射换能器⑴、接收换能器⑵、刚性连接管⑶、测杆⑷、液压泵⑻和声波采集设备⑼,所述发射换能器⑴通过刚性连接管⑶与接收换能器⑵相连,发射换能器⑴顶端连有测杆⑷,发射换能器⑴通过管线分别与液压泵⑻和声波采集设备⑼相连;所述发射换能器⑴、接收换能器⑵为内置压电陶瓷⒀、液压触头⑿和液压刚性垫块⑸的干孔换能器;所述刚性连接管⑶的管壁为镂空构造,当声波通过管壁时,声程是管长的6-7倍。
  2. 如权利要求1所述的岩体声波检测换能器,其特征在于:所述干孔换能器还包括金属外壳⑾,所述金属外壳⑾顶端设有用于连接液压泵⑻的液压管⑹以及用于连接声波采集设备⑼的屏蔽电缆⑺;所述液压触头⑿和液压刚性垫块⑸由金属外壳⑾内的两组位置对称、长度和劲度系数相同的弹簧⒁相连接。
  3. 如权利要求1所述的岩体声波检测换能器,其特征在于:所述液压触头⑿、液压刚性垫块⑸与声波检测孔⑽孔壁接触的外表面均为弧面,液压触头⑿、液压刚性垫块⑸的曲率半径与孔壁曲率半径相匹配。
  4. 如权利要求1所述的岩体声波检测换能器,其特征在于:所述金属外壳⑾外设防砂橡胶囊⒄,防砂橡胶囊⒄一端固定在金属外壳⑾上,另一端固定在液压刚性垫块⑸上,防砂橡胶囊⒄的长度与液压刚性垫块⑸的行走长度相匹配。
  5. 一种岩体声波检测换能器,其特征在于:包括发射换能器⑴、接收换能器⑵、测杆⑷、液压泵⑻和声波采集设备⑼,所述发射换能器⑴、位于另 一声波检测孔⑽内的接收换能器⑵顶端分别连有测杆⑷,发射换能器⑴、位于另一声波检测孔⑽内的接收换能器⑵通过管线分别与液压泵⑻和声波采集设备⑼相连;所述发射换能器⑴、接收换能器⑵为内置压电陶瓷⒀、液压触头⑿和液压刚性垫块⑸的干孔换能器。
  6. 如权利要求5所述的岩体声波检测换能器,其特征在于:所述干孔换能器还包括金属外壳⑾,所述金属外壳⑾顶端设有用于连接液压泵⑻的液压管⑹以及用于连接声波采集设备⑼的屏蔽电缆⑺;所述液压触头⑿和液压刚性垫块⑸由金属外壳⑾内的两组位置对称、长度和劲度系数相同的弹簧⒁连接。
  7. 如权利要求5所述的岩体声波检测换能器,其特征在于:所述液压触头⑿、液压刚性垫块⑸与声波检测孔⑽孔壁接触的外表面均为弧面,液压触头⑿、液压刚性垫块⑸的曲率半径与孔壁曲率半径相匹配。
  8. 如权利要求5所述的岩体声波检测换能器,其特征在于:所述金属外壳⑾外设防砂橡胶囊⒄,防砂橡胶囊⒄一端固定在金属外壳⑾上,另一端固定在液压刚性垫块⑸上,防砂橡胶囊⒄的长度与液压刚性垫块⑸的行走长度相匹配。
PCT/CN2015/070437 2014-01-22 2015-01-09 一种岩体声波检测换能器 WO2015109954A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015208554A AU2015208554A1 (en) 2014-01-22 2015-01-09 Rock acoustic wave detection transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410031090.0 2014-01-22
CN201410031090.0A CN103698398A (zh) 2014-01-22 2014-01-22 一种岩体声波检测换能器

Publications (1)

Publication Number Publication Date
WO2015109954A1 true WO2015109954A1 (zh) 2015-07-30

Family

ID=50359997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070437 WO2015109954A1 (zh) 2014-01-22 2015-01-09 一种岩体声波检测换能器

Country Status (3)

Country Link
CN (1) CN103698398A (zh)
AU (2) AU2015101608A4 (zh)
WO (1) WO2015109954A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700819A (zh) * 2019-10-12 2020-01-17 重庆市市政设计研究院 一种无水钻孔声波检测与压水试验一体化装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698398A (zh) * 2014-01-22 2014-04-02 武汉大学 一种岩体声波检测换能器
CN104278983B (zh) * 2014-09-30 2017-05-10 中国电建集团西北勘测设计研究院有限公司 一种声波全方位测试干孔探头的耦合装置
CN108802193A (zh) * 2018-03-30 2018-11-13 中国平煤神马能源化工集团有限责任公司 一种巷道围岩松动圈的探测设备及探测方法
CN113899811B (zh) * 2021-09-29 2023-12-05 安徽理工大学 一种煤矿巷道岩体累积性损伤的声波法测试系统
CN114324601A (zh) * 2021-11-04 2022-04-12 武汉长盛工程检测技术开发有限公司 基桩桩孔岩深度与岩石强度检测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103813U (zh) * 1991-10-18 1992-05-06 中国矿业大学 全干式小直径单孔超声探测探头
US5359903A (en) * 1991-03-19 1994-11-01 Exxon Production Research Company Load cell
CN2414417Y (zh) * 2000-01-28 2001-01-10 石建梁 干孔及有水孔双用声波测试探头
CN1702294A (zh) * 2005-06-17 2005-11-30 中国石化集团胜利石油管理局测井公司 数字声波测井仪声系
KR20090010819A (ko) * 2007-07-24 2009-01-30 고려대학교 산학협력단 전단파를 이용한 소일샘플러내 시료의 교란도 측정장치 및측정방법
CN101782554A (zh) * 2010-02-26 2010-07-21 中国水电顾问集团华东勘测设计研究院 全分离式单孔声波测试装置及其调试方法
CN103698398A (zh) * 2014-01-22 2014-04-02 武汉大学 一种岩体声波检测换能器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252210A (en) * 1978-10-25 1981-02-24 Sodich Ernest O Methods of and apparatus for generating seismic waves
CN2085964U (zh) * 1991-01-23 1991-10-02 中国矿业大学 完全干式耦合钻孔探头组件
JP3396596B2 (ja) * 1997-05-21 2003-04-14 飛島建設株式会社 地盤、岩盤、コンクリート構造物等の緩み、亀裂範囲測定方法及び測定装置
CN201628703U (zh) * 2010-02-26 2010-11-10 中国水电顾问集团华东勘测设计研究院 水压耦合式跨孔声波测试装置
JP2012018071A (ja) * 2010-07-08 2012-01-26 Kobe Steel Ltd パイプ内表面検査装置
CN202731903U (zh) * 2012-07-23 2013-02-13 湘潭无线电有限责任公司 声波仪一发双收测井换能器
CN102830171B (zh) * 2012-08-03 2014-10-22 中国科学院地质与地球物理研究所 一种岩体试件超声波测试设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359903A (en) * 1991-03-19 1994-11-01 Exxon Production Research Company Load cell
CN2103813U (zh) * 1991-10-18 1992-05-06 中国矿业大学 全干式小直径单孔超声探测探头
CN2414417Y (zh) * 2000-01-28 2001-01-10 石建梁 干孔及有水孔双用声波测试探头
CN1702294A (zh) * 2005-06-17 2005-11-30 中国石化集团胜利石油管理局测井公司 数字声波测井仪声系
KR20090010819A (ko) * 2007-07-24 2009-01-30 고려대학교 산학협력단 전단파를 이용한 소일샘플러내 시료의 교란도 측정장치 및측정방법
CN101782554A (zh) * 2010-02-26 2010-07-21 中国水电顾问集团华东勘测设计研究院 全分离式单孔声波测试装置及其调试方法
CN103698398A (zh) * 2014-01-22 2014-04-02 武汉大学 一种岩体声波检测换能器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700819A (zh) * 2019-10-12 2020-01-17 重庆市市政设计研究院 一种无水钻孔声波检测与压水试验一体化装置
CN110700819B (zh) * 2019-10-12 2023-08-18 重庆市市政设计研究院 一种无水钻孔声波检测与压水试验一体化装置

Also Published As

Publication number Publication date
AU2015101608A4 (en) 2016-02-04
AU2015208554A1 (en) 2015-11-12
CN103698398A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2015109954A1 (zh) 一种岩体声波检测换能器
CN103513272B (zh) 一种微地震模拟监测方法
CN103255785A (zh) 采用单管纵波法进行基桩质量检测和地质探测的技术
CN103513280B (zh) 一种微地震监测模拟系统
CN112345647B (zh) 一种围岩松动圈测试方法
CN104818735B (zh) 探测钻头以及使用该探测钻头进行桩基检测的方法
CN102817346B (zh) 一种用于场地鉴别的声学静力触探探头
CN101929167A (zh) 一种超声波旁孔检测法检测桩长度的方法
CN108776175B (zh) 一种冻结壁平均抗压强度超声波检测方法
CN108802193A (zh) 一种巷道围岩松动圈的探测设备及探测方法
CN105863626A (zh) 一种钻井液与泥页岩地层理化作用的评价方法
CN102759744B (zh) 洞室钢衬混凝土脱空厚度的检测方法
CN103983754B (zh) 钻进岩石模拟的试验装置及确定试验杆压力和扭矩的方法
CN107422039A (zh) 一种单轴加载煤体超声波速测试系统装置及实验方法
CN209927685U (zh) 二氧化碳爆破冲击动态监测试验装置
Liu et al. Nondestructive testing on cumulative damage of watery fractured rock mass under multiple cycle blasting
CN107991392A (zh) 一种利用声发射检测土质综合体土料特性的无损检测方法
CN103698805A (zh) 一种柱状节理岩体单向微震监测传感器布置方向确定方法
CN114486671A (zh) 一种越岭隧道超深钻孔智能传输栓塞压水试验装置
CN105738215A (zh) 一种通过声发射和差应变联合测试地应力的新方法
CN211291851U (zh) 一种盾构隧道土体地震液化实时监测系统
CN110700819B (zh) 一种无水钻孔声波检测与压水试验一体化装置
CN104897321A (zh) 一种预制开口混凝土管桩桩身内壁剪应力测试装置及方法
CN113899811B (zh) 一种煤矿巷道岩体累积性损伤的声波法测试系统
CN208013149U (zh) 一种单轴加载煤体超声波速测试系统装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015208554

Country of ref document: AU

Date of ref document: 20150109

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740700

Country of ref document: EP

Kind code of ref document: A1