WO2015108292A1 - Method for measuring density of liquid using magnetostriction - Google Patents

Method for measuring density of liquid using magnetostriction Download PDF

Info

Publication number
WO2015108292A1
WO2015108292A1 PCT/KR2014/013053 KR2014013053W WO2015108292A1 WO 2015108292 A1 WO2015108292 A1 WO 2015108292A1 KR 2014013053 W KR2014013053 W KR 2014013053W WO 2015108292 A1 WO2015108292 A1 WO 2015108292A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
liquid
plotter
distance
effective
Prior art date
Application number
PCT/KR2014/013053
Other languages
French (fr)
Korean (ko)
Inventor
최인섭
서무교
Original Assignee
산들정보통신 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산들정보통신 주식회사 filed Critical 산들정보통신 주식회사
Priority to CN201480002492.6A priority Critical patent/CN104969053A/en
Publication of WO2015108292A1 publication Critical patent/WO2015108292A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/10Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
    • G01N9/12Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/10Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
    • G01N9/12Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers
    • G01N9/18Special adaptations for indicating, recording, or control

Definitions

  • the present invention relates to a technique for measuring the density value of a liquid using the principle of magnetostriction, and in particular, the density of the liquid using a magnetostriction to accurately measure the unknown density value by using an induction equation between two plotters It relates to a measuring method.
  • a liquid density meter which measures the density value of a liquid by using the principle of magnetostriction is composed of a material having a lower density than the liquid to be measured and floated on the liquid surface to indicate the position of the liquid surface. It has a density plotter which is moved in the downward or upward direction depending on the density.
  • the liquid density measuring device measures the difference in the settlement distance between the liquid level plotter and the density plotter according to the density of the liquid in the state in which the liquid density measuring device is put in the liquid to be measured, and converts the difference in the measured settlement distance into the density value.
  • the settlement distance between the liquid plotter and the density plotter according to the density value of the liquid to be measured is referred to as "effective settling distance”
  • the settlement distance of each of the liquid level plotter and the density plotter according to the density value of the liquid to be measured is referred to as "submersion”. Street ".
  • the settlement distance between the liquid plotter and the density plotter according to the density of the liquid to be measured means the difference between the settlement distance of the liquid plotter and the density plotter according to the density of the liquid to be measured.
  • the density plotter is stopped in a state where the buoyancy, which is the value multiplied by the volume of the liquid to be measured and the density value of the liquid, and the gravity due to the weight of the density plotter are in a floating position.
  • the density plotter is moved downward if the density value of the liquid to be measured is low, and is moved upward if it is high.
  • the floating principle of the density plotter is expressed by Equation 1 as follows.
  • the density plotter protrudes to the surface of the liquid to be measured.
  • the effective settlement distance is not changed in a linear proportional relationship according to a change in the density value of the liquid to be measured, but in a nonlinear proportional relationship.
  • an effective settling distance according to the change of the density value of the liquid to be measured is measured in advance using a density meter, and a lookup table for the relationship between the measured effective settling distance and the density value. Build it.
  • the effective settling distance which is added to the liquid and changes according to the density value of the liquid, is measured, and then the density value of the liquid to be measured is obtained using the lookup table.
  • the graph does not obtain the density value by applying a graph that is nonlinearly changed as it is, and changes linearly for each section. Density values were obtained by applying to the graph considered to be. In other words, the density value of the measurement point for the corresponding settlement distance was determined by considering it as being linearly changed from the density value of the correction point in the immediately preceding and subsequent sections based on the measurement point.
  • the graph changes nonlinearly as in reality. Since the density value is obtained by applying to the graph that changes linearly by section, it is not possible to obtain the density value with high precision because of the actual nonlinear characteristics and the linear calculation error caused by the lookup table.
  • the problem to be solved by the present invention is to obtain a high accuracy by applying to a graph that is non-linearly changed from the two calibration point reference value when the density value of the liquid to be measured is obtained based on the effective settlement distance between the liquid plotter and the density plotter. It is to be able to find the density value which has.
  • Method for measuring the density of a liquid using a magnetostriction for achieving the above technical problem, (a) a liquid surface floater which floats to the surface of the liquid indicating the position of the surface, in the vertical direction in accordance with the density of the liquid
  • a density measuring device including a density plotter, a magnetostrictive wire, and a density detecting unit installed in the density measuring unit; (b) a pulse supplied to the magnetostrictive wire whenever the liquid level plotter and the density plotter are introduced into liquids having different densities, a first magnetic body of the liquid level plotter, and a second magnetic body of the density plotter;
  • the present invention when measuring the unknown liquid density value using the reference value of the two correction points based on the effective settlement distance between the liquid plotter and the density plotter, by applying a graph of the relationship between the effective settling distance and density to the actual nonlinear graph There is an effect that the density with high precision can be obtained.
  • FIG. 1 is a signal flow diagram of a liquid density measurement method using a magnetostriction phenomenon according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a density meter to which a density measurement method of a liquid using the magnetostriction phenomenon of the present invention is applied.
  • 3A is a waveform diagram of a pulse output from the pulse generator to cause a magnetostriction phenomenon.
  • 3B is a waveform diagram of an effective settlement distance detected by the calculation processing unit.
  • 3C is a waveform diagram of a reference pulse string output from an oscillator to measure a time difference between two signal waveforms in a waveform diagram of an effective settlement distance.
  • Figure 1 is a signal flow diagram of a density measurement method of a liquid using a magnetostriction according to an embodiment of the present invention, as shown therein, comprising a density measuring device; A correction point reference value storing step of obtaining a reference value of density correction points; An effective settlement distance measuring step; And a density value calculating step.
  • FIG. 2 is an overall configuration diagram of a density meter to which a density measurement method of a liquid using the magnetostriction of the present invention is applied, and as shown therein, includes a density sensor unit 100 and a density detector 200.
  • the density sensor unit 100 is to be put in a container or a space containing the liquid to be measured density, the shape is not particularly limited, but in the present embodiment it is taken as an example that is configured in the form of a rod.
  • the density sensor unit 100 includes a metal tube 111 having a constant diameter and a vibration wave generator 120 mounted through a plurality of first spaces 112 installed in the metal tube 111.
  • the outer circumferential surface of the metal tube 111 is made of a material having a lower density than the liquid to be measured, which floats on the surface of the liquid to indicate the position of the liquid surface, and a density plotter 102 for measuring the density of the liquid to be measured.
  • the first magnetic material 101A for causing a magnetostriction phenomenon is mounted in the liquid plotter 101
  • the magnetostrictive phenomenon is caused in the density plotter 102
  • the second magnetic body 102A is mounted.
  • the density plotter 102 is equipped with a weight (102B) having an appropriate weight therein to be locked to a position corresponding to the density of the liquid to be measured.
  • the density plotter 102 is equipped with a fluctuating wing 125. Therefore, when the density of the liquid to be measured is high, the density plotter 102 rises upward, and when the density is low, it sinks downward.
  • the principle of immersion by the piercing wing 125 of the density plotter 102 is similar to that of the immersion density meter using a commercial weight.
  • the vibration wave generating unit 120 is inserted into and mounted in the metal tube 111, and the brass tube 121 and the insulating tube 122 and the section which are installed to overlap the inside of the brass tube 121.
  • the magnetostriction wire 123 is installed to penetrate the center of the second space 124 at regular intervals in the interior of the association (122).
  • the density detector 200 includes a pulse generator 210, a pickup coil 220, a signal processor 230, an operation processor 240, a memory 240A, and an oscillator 250.
  • the density measuring unit 300 is a density plotter and a density detector including a liquid floater floating on the surface of the liquid indicating the position of the surface, the density plotter and a magnetostriction wire installed to flow in the vertical direction in accordance with the density of the liquid 200 is provided (S1).
  • the density measuring device 300 obtains an effective settlement distance and a density corresponding to the effective settlement distance, which are the difference between the settlement and the density plotter, and the effective settlement distance.
  • the density, the correction point reference value corresponding to the effective settlement distance and the density are stored in the memory 240A (S2).
  • the high precision density meter for example, a natural frequency measuring density meter.
  • the pulse generator 210 In order to measure the density of the liquid to be measured, the pulse generator 210 generates a series of square wave pulses as shown in (a) of FIG. 3 and multiplies them to generate a sufficient magnetic field for magnetic deformation. .
  • the square wave pulse multiplied as described above passes through the pickup coil 220 and is supplied to the magnetostriction wire 123 of the density sensor unit 100. Accordingly, a magnetic field is generated in the magnetostrictive wire 123, and the magnetic field generated in this way moves in the longitudinal direction of the magnetostrictive wire 123 as the current pulse propagates.
  • the magnetostrictive wire 123 may have a mechanical minute.
  • the modified oscillation wave (ultrasound wave) is generated by the variation of the length, and propagation occurs in both the reverse direction and the forward direction with respect to the traveling direction of the current pulse waveform. This phenomenon is called magnetostriction or magnetostriction.
  • the vibration wave transmitted as described above is transmitted to the pickup coil 220, the vibration of the ferromagnetic material in which the magnetic dipoles are arranged by the external magnetic field is disturbed, thereby changing the magnetic field in reverse, whereby both ends of the pickup coil 220. Induced electromotive force is generated.
  • the signal detector 230 detects the voltage induced in the pickup coil 220 through the above-described process, generates a detection signal accordingly, and then amplifies the signal to a level suitable for processing the signal at a later stage and is suitable for digital signal processing.
  • the pulse is output in a stabilized form.
  • the oscillator 250 generates and outputs a reference pulse string having a predetermined pulse interval as shown in FIG. 3C using the crystal oscillator.
  • the arithmetic processing unit 240 measures the interval between the detection signal input through the signal detector 230, that is, the detection signal by the liquid level plotter 101 and the density plotter 102, from the oscillator 250. The measurement result is converted into the effective settlement distance between the liquid level plotter 101 and the density plotter 102. At this time, the conversion result can be corrected according to the ambient temperature.
  • the detection signal by the liquid level plotter 101 and the detection signal by the density plotter 102 indicate a time difference, and the arithmetic processing unit 240 performs the effective on the basis of this time difference. Calculate settlement distance.
  • the effective settling distance lex between the liquid level plotter 101 and the detection pulses of the density plotter 102 input to the arithmetic processing unit 240 is shown. That is, the density plotter which is somewhat submerged from the surface of the liquid to be measured by the time when the detection signal by the liquid level plotter 101 located on the surface of the liquid to be measured is input to the calculation processing unit 240 and the density of the liquid to be measured. The time at which the detection signal by 102 is input to the calculation processing unit 240 has a difference.
  • the calculation processor 240 calculates an effective settlement distance lex between the liquid level plotter 101 and the density plotter 102 based on the time difference.
  • the effective settlement distance measurement process is the same as the process of measuring the first effective settlement distance and the second effective settlement distance in the second step (S2).
  • the calculation processing unit 240 calculates the density of the unknown liquid as shown in the following description based on the correction point reference value stored in the second step S2 and the effective settlement distance obtained in the third step S3. Compute (S4).
  • FIG. 4 is a graph showing that the settlement distance and the effective settlement distance of the liquid level plotter 101 and the density plotter 102 have a non-linear inverse relationship with density.
  • the measurement point MEA is a coordinate value on the settlement distance-density graph corresponding to the effective settlement distance lex of the density plotter 102 introduced into the measurement target liquid
  • the first correction point COM1 is the second density d2.
  • the correction point COM2 is a settlement distance-density graph corresponding to a second effective settlement distance le2, which is a settlement distance of the density plotter 102 injected into a liquid having a relatively high density compared to the second density d2. Coordinates of the phase.
  • the effective settlement distance lex means a settlement distance of the result of subtracting the settlement distance of the liquid plotter 101 from the settlement distance of the density plotter 102 based on the measurement point MEA.
  • the first effective settling distance le1 means a settling distance of the result of subtracting the settling distance of the liquid level plotter 101 from the settling distance of the density plotter 102 based on the first correction point COM1.
  • the second effective settling distance le2 refers to the settling distance of the result of subtracting the settling distance of the liquid level plotter 101 from the settling distance of the density plotter 102 based on the second correction point COM2.
  • the density dx means the density of the liquid to be measured corresponding to the effective settling distance lex.
  • the first density d1 means a density corresponding to the first effective settlement distance le1.
  • the second density d2 means a density corresponding to the second effective settlement distance le2.
  • 'le1' is the first effective settlement distance
  • 'le2' is the second effective settlement distance
  • 'lex' is the effective settlement distance
  • 'd1' is the first density
  • 'd2' is the second density
  • dx is the density
  • the density dx is proportional to a value obtained by multiplying the difference between the first and second effective settlement distances le1 and le2 by the first and second densities d1 and d2.
  • the density dx is a value obtained by multiplying the difference between the first effective settlement distance le1 and the effective settlement distance lex by the first density d1, the effective settlement distance lex, and the second effective settlement distance le2. It is inversely proportional to the value obtained by multiplying the difference value of) by the second density d2.
  • the previous first effective settlement distance le1, the second effective settlement distance le2 and the first effective settlement distance adjacent to each other based on the effective settlement distance lex The first density d1 corresponding to le1) and the second density d2 corresponding to the second effective settlement distance le2 were substituted to obtain a density dx corresponding to the settlement distance lex.
  • the present invention is not limited thereto. That is, even if two arbitrary settlement distances stored in the memory 240A and two densities corresponding to the two effective settlement distances are substituted into Equation 2, the same density is obtained. You can get it.
  • the density dx of the measurement object is between the first density d1 and the second density d2 (d1 ⁇ dx ⁇ d2), or the density dx is equal to the first density d1.
  • the density of the liquid may be obtained using Equation 2 above.
  • the effective settlement distances lex are the density dx values calculated using Equation 2 above.
  • the first correction point COM1, the second correction point COM2, and the measurement points MEA are all located on a nonlinear graph representing a settlement distance-density relationship. Is defined by deriving the nonlinear graph as a simple equation. Therefore, the density dx obtained by Equation 2 ensures high precision.
  • the measurement point MEA, the first correction point COM1, and the measurement point MEA and the second correction point COM2 are regarded as being present on a linearly changing graph. Since the density of the target liquid is obtained, an error occurs accordingly and high accuracy cannot be guaranteed.

Abstract

The present invention relates to a technology wherein, when the density of a liquid is measured using the principle of magnetostriction, an induction formula between two floaters is used such that the unknown density can be measured accurately. To this end, according to the present invention, a correction point reference value is stored in advance on the basis of an effective sinking distance between a liquid surface floater and a density floater, and, when the density of a liquid to be measured is obtained later using the correction point reference value, a graph indicating the relationship between the effective sinking distance and the density is applied to a non-linear graph, which is similar to reality, thereby obtaining a density having a high degree of precision.

Description

자기변형을 이용한 액체의 밀도 측정 방법Method for Measuring Density of Liquid Using Magnetostriction
본 발명은 자기변형의 원리를 이용하여 액체의 밀도값을 측정하는 기술에 관한 것으로, 특히 두 개의 플로터 간의 유도식을 이용하여 미지의 밀도값을 정확하게 측정할 수 있도록 한 자기변형을 이용한 액체의 밀도 측정 방법에 관한 것이다.The present invention relates to a technique for measuring the density value of a liquid using the principle of magnetostriction, and in particular, the density of the liquid using a magnetostriction to accurately measure the unknown density value by using an induction equation between two plotters It relates to a measuring method.
일반적으로, 자기 변형의 원리를 이용하여 액체의 밀도값을 측정하는 액체 밀도 측정기는 측정 대상 액체보다 밀도가 낮은 재질로 구성되어 액체표면으로 부상하여 액체 표면의 위치를 나타내는 액면플로터와 측정 대상 액체의 밀도에 따라 아래 또는 위 방향으로 이동되는 밀도 플로터를 구비한다. In general, a liquid density meter which measures the density value of a liquid by using the principle of magnetostriction is composed of a material having a lower density than the liquid to be measured and floated on the liquid surface to indicate the position of the liquid surface. It has a density plotter which is moved in the downward or upward direction depending on the density.
이와 같은 액체 밀도 측정기가 측정 대상 액체에 투입된 상태에서 해당 액체의 밀도에 따른 액면플로터와 밀도 플로터 간의 침하거리의 차이를 측정하고, 상기 측정된 침하거리의 차이를 밀도값으로 환산한다.The liquid density measuring device measures the difference in the settlement distance between the liquid level plotter and the density plotter according to the density of the liquid in the state in which the liquid density measuring device is put in the liquid to be measured, and converts the difference in the measured settlement distance into the density value.
이하, 측정 대상 액체의 밀도값에 따른 액면플로터와 밀도플로터 간의 침하거리의 차이를 "실효침하거리"라 칭하고, 측정 대상 액체의 밀도값에 따른 상기 액면플로터 및 밀도플로터 각각의 침하거리를 "침하거리"라 칭한다. 여기서, 측정 대상 액체의 밀도에 따른 액면플로터와 밀도플로터 간의 침하거리란 측정 대상 액체의 밀도에 따른 액면플로터의 침하거리와 측정 대상 액체의 밀도에 따른 밀도플로터의 침하거리의 차이를 의미한다.Hereinafter, the difference in the settlement distance between the liquid level plotter and the density plotter according to the density value of the liquid to be measured is referred to as "effective settling distance", and the settlement distance of each of the liquid level plotter and the density plotter according to the density value of the liquid to be measured is referred to as "submersion". Street ". Here, the settlement distance between the liquid plotter and the density plotter according to the density of the liquid to be measured means the difference between the settlement distance of the liquid plotter and the density plotter according to the density of the liquid to be measured.
이때, 상기 밀도플로터는 측정 대상 액체 내에 잠긴 부피와 상기 액체의 밀도값을 곱한 값인 부력과 밀도플로터의 무게에 의한 중력이 평형을 이루는 위치에 부상된 상태로 정지하게 된다. 상기 밀도플로터는 측정 대상 액체의 밀도값이 낮으면 아래쪽으로 이동되고, 높으면 위쪽으로 이동된다. 이와 같은 밀도플로터의 부상 원리를 <수학식1>로 표현하면 다음과 같다.At this time, the density plotter is stopped in a state where the buoyancy, which is the value multiplied by the volume of the liquid to be measured and the density value of the liquid, and the gravity due to the weight of the density plotter are in a floating position. The density plotter is moved downward if the density value of the liquid to be measured is low, and is moved upward if it is high. The floating principle of the density plotter is expressed by Equation 1 as follows.
수학식 1
Figure PCTKR2014013053-appb-M000001
Equation 1
Figure PCTKR2014013053-appb-M000001
이때, 상기 밀도플로터의 상측 부위 중에서 일부는 측정 대상 액체의 표면으로 돌출되는데, 상기 돌출되는 부분의 단면적이 적을수록 상기 밀도플로터는 동일한 밀도값에 대해 더 멀리 침하된다. 왜냐하면, 측정 대상 액체의 밀도값 변화에 대하여 밀도플로터의 잠긴 부분의 부피 변화는 일정하므로, 밀도플로터의 돌출된 부분의 단면적이 적을수록 실효침하거리의 변화가 커져야 하기 때문이다. 상기 실효침하거리는 측정 대상 액체의 밀도값 변화에 따라 선형적인 비례 관계로 변화되는 것이 아니라, 비선형적인 비례 관계로 변화된다.At this time, some of the upper portion of the density plotter protrudes to the surface of the liquid to be measured. The smaller the cross-sectional area of the protruding portion, the density plotter is settled farther with respect to the same density value. This is because the volume change of the locked portion of the density plotter is constant with respect to the change in density value of the liquid to be measured, so that the smaller the cross-sectional area of the protruding portion of the density plotter, the larger the change in the effective settling distance. The effective settlement distance is not changed in a linear proportional relationship according to a change in the density value of the liquid to be measured, but in a nonlinear proportional relationship.
이때, 액면플로터의 액체 밀도값 변화에 대한 침하거리는 밀도 플로터에 비해 상대적으로 작게 일어난다. At this time, the settlement distance for the liquid density change of the liquid level plotter occurs relatively smaller than the density plotter.
종래의 액체 밀도 측정기술에 있어서는 사전에 밀도계를 이용하여 측정 대상 액체의 밀도값 변화에 따른 실효 침하거리를 측정하고, 상기 측정된 실효침하거리와 밀도값 간의 관계에 대한 룩업테이블(lookup table)을 구축해 둔다.In the conventional liquid density measuring technique, an effective settling distance according to the change of the density value of the liquid to be measured is measured in advance using a density meter, and a lookup table for the relationship between the measured effective settling distance and the density value. Build it.
이후, 미지의 액체 밀도값을 측정하고자 할 때, 해당 액체에 투입되어 그 액체의 밀도값에 따라 변화되는 실효침하거리를 측정한 후 상기 룩업테이블을 이용하여 측정 대상 액체의 밀도값을 구한다.Subsequently, when the unknown liquid density value is to be measured, the effective settling distance, which is added to the liquid and changes according to the density value of the liquid, is measured, and then the density value of the liquid to be measured is obtained using the lookup table.
그런데, 상기 실효침하거리를 근거로 상기 룩업테이블을 이용하여 측정 대상 액체의 밀도값을 구할 때, 실제와 같이 비선형적으로 변화되는 그래프를 적용하여 밀도값을 구하지 못하고, 각 구간별로 선형적으로 변화되는 것으로 간주된 그래프에 적용하여 밀도값을 구하였다. 즉, 해당 침하거리에 대한 측정점의 밀도값이 상기 측정점을 기준으로, 바로 이전 및 이후 구간의 보정점의 밀도값으로부터 선형적으로 변화되는 것으로 간주하여 구하였다.However, when the density value of the liquid to be measured is obtained using the lookup table based on the effective settling distance, the graph does not obtain the density value by applying a graph that is nonlinearly changed as it is, and changes linearly for each section. Density values were obtained by applying to the graph considered to be. In other words, the density value of the measurement point for the corresponding settlement distance was determined by considering it as being linearly changed from the density value of the correction point in the immediately preceding and subsequent sections based on the measurement point.
이와 같이 종래의 액체 밀도 측정기술에 있어서는 밀도값에 따른 액면플로터와 밀도플로터 간의 실효침하거리를 근거로 룩업테이블을 이용하여 측정 대상 액체의 밀도값을 구할 때, 실제와 같이 비선형적으로 변화되는 그래프에 적용하지 못하고 구간별로 선형적으로 변화되는 그래프에 적용하여 밀도값을 구하므로 실제의 비선형적인 특성과 룩업테이블에 의한 선형적 계산상의 오차가 발생되어 높은 정밀도를 갖는 밀도값을 구하지 못하였다.As described above, in the conventional liquid density measurement technology, when the density value of the liquid to be measured is calculated using a lookup table based on the effective settlement distance between the liquid plotter and the density plotter according to the density value, the graph changes nonlinearly as in reality. Since the density value is obtained by applying to the graph that changes linearly by section, it is not possible to obtain the density value with high precision because of the actual nonlinear characteristics and the linear calculation error caused by the lookup table.
본 발명이 해결하고자 하는 과제는 액면플로터와 밀도플로터 간의 실효침하거리를 근거로 측정 대상 액체의 밀도값을 구할 때, 두 보정점 참조값으로부터 실제와 같이 비선형적으로 변화되는 그래프에 적용하여 높은 정밀도를 갖는 밀도값을 구할 수 있도록 하는데 있다.The problem to be solved by the present invention is to obtain a high accuracy by applying to a graph that is non-linearly changed from the two calibration point reference value when the density value of the liquid to be measured is obtained based on the effective settlement distance between the liquid plotter and the density plotter. It is to be able to find the density value which has.
상기 기술적 과제를 이루기 위한 본 발명의 실시예에 따른 자기변형을 이용한 액체의 밀도 측정 방법은, (a) 액체의 표면으로 부상하여 표면의 위치를 나타내는 액면플로터, 상기 액체의 밀도에 따라 상하 방향으로 유동가능하게 설치된 밀도플로터, 자기변형 와이어 및 밀도검출부를 밀도측정기에 구비하는 밀도측정기 구비단계; (b) 상기 액면플로터와 밀도플로터가 각기 다른 밀도를 갖는 액체들에 투입될 때마다 상기 밀도검출부가 상기 자기변형 와이어에 공급되는 펄스 및 상기 액면플로터의 제1자성체 및 상기 밀도플로터의 제2자성체에 의해 발생되는 자기변형 현상을 이용하여 상기 액면플로터와 밀도플로터 간의 침하거리 차인 실효침하거리 및 상기 실효침하거리에 대응되는 밀도를 구하여 그에 따른 보정점 참조값을 저장하는 보정점 참조값 저장단계; (c) 미지의 액체에 대한 밀도를 측정하고자 할 때, 상기 밀도검출부가 상기 자기 변형 현상을 이용하여, 상기 액면플로터와 밀도플로터 간의 실효침하거리를 측정하는 실효침하거리 측정단계; 및 (d) 상기 밀도검출부가 상기 (b) 단계에서 저장된 상기 보정점 참조값 및 상기 (c) 단계에서 측정된 상기 실효침하거리를 근거로 하여 상기 미지의 액체에 대한 밀도를 연산하는 밀도 연산단계를 포함한다.Method for measuring the density of a liquid using a magnetostriction according to an embodiment of the present invention for achieving the above technical problem, (a) a liquid surface floater which floats to the surface of the liquid indicating the position of the surface, in the vertical direction in accordance with the density of the liquid A density measuring device including a density plotter, a magnetostrictive wire, and a density detecting unit installed in the density measuring unit; (b) a pulse supplied to the magnetostrictive wire whenever the liquid level plotter and the density plotter are introduced into liquids having different densities, a first magnetic body of the liquid level plotter, and a second magnetic body of the density plotter; A correction point reference value storing step of obtaining an effective settlement distance and a density corresponding to the effective settlement distance by using the magnetostriction generated by the liquid plotter and a density plotter, and storing a correction point reference value accordingly; (c) an effective settling distance measuring step of measuring an effective settling distance between the liquid level plotter and the density plotter by using the magnetostrictive phenomenon when the density detection unit measures the density of an unknown liquid; And (d) a density calculation step of calculating the density of the unknown liquid based on the correction point reference value stored in the step (b) and the effective settlement distance measured in the step (c). Include.
본 발명은 액면플로터와 밀도플로터 간의 실효침하거리를 근거로 두 보정점의 참조값을 이용하여 미지의 액체 밀도값을 측정할 때, 실효침하거리와 밀도의 관계 그래프를 실제와 같은 비선형 그래프에 적용 함으로써 높은 정밀도를 갖는 밀도를 구할 수 있는 효과가 있다.The present invention, when measuring the unknown liquid density value using the reference value of the two correction points based on the effective settlement distance between the liquid plotter and the density plotter, by applying a graph of the relationship between the effective settling distance and density to the actual nonlinear graph There is an effect that the density with high precision can be obtained.
도 1은 본 발명의 실시예에 따른 자기변형 현상을 이용한 액체의 밀도 측정 방법의 신호 흐름도이다.1 is a signal flow diagram of a liquid density measurement method using a magnetostriction phenomenon according to an embodiment of the present invention.
도 2는 본 발명의 자기변형 현상을 이용한 액체의 밀도 측정 방법이 적용되는 밀도 측정기의 전체 구성도이다.2 is an overall configuration diagram of a density meter to which a density measurement method of a liquid using the magnetostriction phenomenon of the present invention is applied.
도 3의 (a)는 자기변형 현상을 일으기키 위해 펄스생성부에서 출력되는 펄스의 파형도이다.3A is a waveform diagram of a pulse output from the pulse generator to cause a magnetostriction phenomenon.
도 3의 (b)는 연산처리부에서 검출한 실효침하거리의 파형도이다. 3B is a waveform diagram of an effective settlement distance detected by the calculation processing unit.
도 3의 (c)는 실효침하거리의 파형도에서 두 신호파형 사이의 시간차를 측정하기 위해 발진부에서 출력되는 기준 펄스열의 파형도이다.3C is a waveform diagram of a reference pulse string output from an oscillator to measure a time difference between two signal waveforms in a waveform diagram of an effective settlement distance.
도 4는 본 발명에 적용되는 밀도플로터의 침하거리-밀도의 관계 그래프이다.4 is a relationship graph of settlement distance-density of a density plotter applied to the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1은 본 발명의 실시예에 따른 자기변형을 이용한 액체의 밀도 측정 방법의 신호 흐름도로서 이에 도시한 바와 같이, 밀도측정기 구비단계; 밀도측정용 보정점들의 참조값을 구하는 보정점 참조값 저장단계; 실효침하거리 측정단계; 및 밀도값 연산 단계를 포함한다.First, Figure 1 is a signal flow diagram of a density measurement method of a liquid using a magnetostriction according to an embodiment of the present invention, as shown therein, comprising a density measuring device; A correction point reference value storing step of obtaining a reference value of density correction points; An effective settlement distance measuring step; And a density value calculating step.
도 2는 본 발명의 자기변형을 이용한 액체의 밀도 측정 방법이 적용되는 밀도 측정기의 전체 구성도로서 이에 도시한 바와 같이, 밀도 센서부(100) 및 밀도 검출부(200)를 포함한다.FIG. 2 is an overall configuration diagram of a density meter to which a density measurement method of a liquid using the magnetostriction of the present invention is applied, and as shown therein, includes a density sensor unit 100 and a density detector 200.
상기 밀도 센서부(100)는 밀도 측정 대상 액체가 담긴 용기나 공간에 투입되는 것으로, 형상은 특별히 한정되지 않으나 본 실시예에서는 봉 형태로 구성된 것을 예로 하였다. The density sensor unit 100 is to be put in a container or a space containing the liquid to be measured density, the shape is not particularly limited, but in the present embodiment it is taken as an example that is configured in the form of a rod.
상기 밀도 센서부(100)는 일정한 직경을 갖는 금속관(111) 및 상기 금속관(111)의 내부에 설치된 복수 개의 제1스페이스(112)를 통해 장착되는 진동파 발생부(120)를 포함한다. The density sensor unit 100 includes a metal tube 111 having a constant diameter and a vibration wave generator 120 mounted through a plurality of first spaces 112 installed in the metal tube 111.
상기 금속관(111)의 외주면에는 측정 대상 액체보다 밀도가 낮은 재질로 구성되어 액체의 표면으로 부상하여 액체 표면의 위치를 나타내는 액면플로터(101)와 측정 대상 액체의 밀도를 측정하기 위한 밀도플로터(102)가 상하 방향으로 유동 가능하게 설치되며, 상기 액면플로터(101)의 내부에는 자기변형 현상을 일으키기 위한 제1자성체(101A)가 장착되고, 상기 밀도플로터(102)의 내부에는 자기변형 현상을 일으키기 위한 제2자성체(102A)가 장착되어 있다. The outer circumferential surface of the metal tube 111 is made of a material having a lower density than the liquid to be measured, which floats on the surface of the liquid to indicate the position of the liquid surface, and a density plotter 102 for measuring the density of the liquid to be measured. ) Is installed to be movable in the vertical direction, the first magnetic material 101A for causing a magnetostriction phenomenon is mounted in the liquid plotter 101, the magnetostrictive phenomenon is caused in the density plotter 102 The second magnetic body 102A is mounted.
상기 밀도플로터(102)는 측정 대상 액체의 밀도에 상응되는 위치에 잠기도록 하기 위해 내부에 적절한 무게를 갖는 무게추(102B)가 장착되어 있다. The density plotter 102 is equipped with a weight (102B) having an appropriate weight therein to be locked to a position corresponding to the density of the liquid to be measured.
그리고, 상기 밀도플로터(102)에는 부침날개(fluctuating wing)(125)가 장착되어 있다. 따라서, 상기 측정 대상 액체의 밀도가 높은 경우 상기 밀도플로터(102)는 위로 부상하고, 밀도가 낮을 경우에는 아래로 침하 된다. 상기 밀도플로터(102)의 부침날개(125)에 의한 부침 원리는 상용의 추를 이용한 부침식 밀도계의 원리와 유사하다. In addition, the density plotter 102 is equipped with a fluctuating wing 125. Therefore, when the density of the liquid to be measured is high, the density plotter 102 rises upward, and when the density is low, it sinks downward. The principle of immersion by the piercing wing 125 of the density plotter 102 is similar to that of the immersion density meter using a commercial weight.
상기 진동파 발생부(120)는 상기 금속관(111)의 내부에 삽입되어 장착되는 것으로, 황동관(121), 상기 황동관(121)의 내부에 겹치도록 설치되는 절연관(122) 및 상기 절연관(122)의 내부에 일정 간격으로 설치된 제2스페이스(124)의 정 중앙을 관통하도록 설치되는 자기변형 와이어(123)를 포함한다.The vibration wave generating unit 120 is inserted into and mounted in the metal tube 111, and the brass tube 121 and the insulating tube 122 and the section which are installed to overlap the inside of the brass tube 121. The magnetostriction wire 123 is installed to penetrate the center of the second space 124 at regular intervals in the interior of the association (122).
상기 밀도 검출부(200)는 펄스 생성부(210), 픽업코일(220), 신호처리부(230), 연산처리부(240), 메모리(240A) 및 발진부(250)를 포함한다.The density detector 200 includes a pulse generator 210, a pickup coil 220, a signal processor 230, an operation processor 240, a memory 240A, and an oscillator 250.
도 1 내지 도 4를 참조하여 본 발명에 따른 자기변형을 이용한 액체의 밀도 측정 방법에 대하여 설명하면 다음과 같다.Referring to Figures 1 to 4 will be described with respect to the density measurement method of the liquid using the magnetostriction according to the present invention.
먼저, 밀도측정기(300)는 액체의 표면으로 부상하여 표면의 위치를 나타내는 액면플로터, 상기 액체의 밀도에 따라 상하 방향으로 유동가능하게 설치된 밀도플로터 및 자기변형 와이어를 포함하는 밀도센서부 및 밀도검출부(200)를 구비한다(S1).First, the density measuring unit 300 is a density plotter and a density detector including a liquid floater floating on the surface of the liquid indicating the position of the surface, the density plotter and a magnetostriction wire installed to flow in the vertical direction in accordance with the density of the liquid 200 is provided (S1).
밀도 측정기(300)가 출하되기 전 또는 출하된 후 필요한 시점에서 밀도 측정기(300)는 액면플로터와 밀도플로터 간의 침하거리 차인 실효침하거리 및 상기 실효침하거리에 대응되는 밀도를 구하여, 상기 실효침하거리, 밀도, 상기 실효침하거리 및 밀도에 대응되는 보정점 참조값을 메모리(240A)에 저장한다(S2).At the required time before or after shipment of the density measuring device 300, the density measuring device 300 obtains an effective settlement distance and a density corresponding to the effective settlement distance, which are the difference between the settlement and the density plotter, and the effective settlement distance. The density, the correction point reference value corresponding to the effective settlement distance and the density are stored in the memory 240A (S2).
예를 들어, 도 4에서와 같이 상기 고정밀 밀도계(예: 고유진동주기 측정식 밀도계)에 의해 측정된 제1밀도(d1= 0.70 g/cm3)를 갖는 액체에 투입된 액면플로터와 밀도플로터 간의 침하거리가 상기 밀도 측정기(300)에 의해 제1실효침하거리(le1)로 측정된 경우 상기 제1실효침하거리(le1) 및 상기 제1밀도(d1= 0.70 g/cm3)에 따른 보정점 참조값이 상기 메모리(240A)에 저장된다.For example, as shown in FIG. 4, a liquid plotter and a density plotter injected into a liquid having a first density (d1 = 0.70 g / cm 3 ) measured by the high precision density meter (for example, a natural frequency measuring density meter). When the settlement distance of the liver is measured as the first effective settlement distance (le1) by the density meter 300, the correction according to the first effective settlement distance (le1) and the first density (d1 = 0.70 g / cm 3 ) Point reference values are stored in the memory 240A.
마찬가지로, 상기 고정밀 밀도계에 의해 측정된 제2밀도(d1= 0.80 g/cm3)를 갖는 액체에 투입된 액면플로터와 밀도플로터 간의 침하거리가 상기 밀도 측정기(300)에 의해 제2실효침하거리(le2)로 측정된 경우 상기 제2실효침하거리(le2) 및 상기 제2밀도(d1= 0.80 g/cm3)에 따른 보정점참조값이 상기 메모리(240A)에 저장된다.Similarly, the settling distance between the liquid level plotter and the density plotter injected into the liquid having the second density (d1 = 0.80 g / cm 3 ) measured by the high precision density meter is determined by the density meter 300 by the second effective settling distance ( When measured by le2), a correction point reference value according to the second effective settlement distance le2 and the second density d1 = 0.80 g / cm 3 is stored in the memory 240A.
이후, 도 2와 같은 밀도측정기(300)를 이용하여 어떤 용기나 공간에 담겨있는 측정 대상 액체에 대한 액면플로터와 밀도플로터 간의 실효침하거리를 다음과 같이 측정한다(S3).Thereafter, the effective settlement distance between the liquid level plotter and the density plotter for the measurement target liquid contained in any container or space is measured using the density meter 300 as shown in FIG. 2 (S3).
펄스 생성부(210)는 측정 대상 액체의 밀도를 측정하기 위해 도 3의 (a)에서와 같은 일련의 구형파 펄스를 생성한 후 자기 변형에 필요한 충분한 자장을 발생할 수 있도록 체배(Multiply)하여 출력한다.In order to measure the density of the liquid to be measured, the pulse generator 210 generates a series of square wave pulses as shown in (a) of FIG. 3 and multiplies them to generate a sufficient magnetic field for magnetic deformation. .
상기와 같이 체배된 구형파 펄스는 픽업코일(220)을 통과하여 밀도 센서부(100)의 자기변형 와이어(123)에 공급된다. 이에 따라, 상기 자기변형 와이어(123)에 자장이 발생되고, 이렇게 발생되는 자장은 전파되는 전류 펄스의 이동에 따라 자기변형 와이어(123)의 길이 방향으로 이동하게 된다. The square wave pulse multiplied as described above passes through the pickup coil 220 and is supplied to the magnetostriction wire 123 of the density sensor unit 100. Accordingly, a magnetic field is generated in the magnetostrictive wire 123, and the magnetic field generated in this way moves in the longitudinal direction of the magnetostrictive wire 123 as the current pulse propagates.
상기와 같이 이동되는 자장이 액면플로터(101)의 제1자성체(101A) 및 밀도플로터(102)의 제2자성체(102A)에 의한 자장과 만나 간섭을 일으키면 상기 자기변형 와이어(123)에는 기계적 미소 길이 변동에 의한 변형된 진동파(초음파)가 발생되어 상기 전류 펄스 파형의 진행 방향을 기준으로 역방향과 순방향의 양방향으로의 전파가 일어난다. 이와 같은 현상을 자기변형 또는 자기변형(Magnetostriction) 현상이라 한다. 상기와 같이 전달되는 진동파가 상기 픽업코일(220)에 전달되면 외부 자장에 의해 자기 쌍극자가 배열된 강자성체의 진동이 교란되어 역으로 자장을 변화시키게 되고, 이에 의해 상기 픽업코일(220)의 양단에는 유도 기전력이 발생된다. When the magnetic field moved as described above encounters and interferes with the magnetic fields of the first magnetic body 101A of the liquid level plotter 101 and the second magnetic body 102A of the density plotter 102, the magnetostrictive wire 123 may have a mechanical minute. The modified oscillation wave (ultrasound wave) is generated by the variation of the length, and propagation occurs in both the reverse direction and the forward direction with respect to the traveling direction of the current pulse waveform. This phenomenon is called magnetostriction or magnetostriction. When the vibration wave transmitted as described above is transmitted to the pickup coil 220, the vibration of the ferromagnetic material in which the magnetic dipoles are arranged by the external magnetic field is disturbed, thereby changing the magnetic field in reverse, whereby both ends of the pickup coil 220. Induced electromotive force is generated.
신호 검출부(230)는 상기와 같은 과정을 통해 상기 픽업코일(220)에 유기되는 전압을 검출하여 그에 따른 검출신호를 생성한 후 이후 단에서 신호를 처리하는데 적당한 레벨로 증폭하고 디지털 신호 처리에 적합하도록 안정화된 형태의 펄스로 출력한다.The signal detector 230 detects the voltage induced in the pickup coil 220 through the above-described process, generates a detection signal accordingly, and then amplifies the signal to a level suitable for processing the signal at a later stage and is suitable for digital signal processing. The pulse is output in a stabilized form.
발진부(250)는 수정 발진자를 이용하여 도 3의 (c)와 같이 소정의 펄스간격을 갖는 기준펄스열을 생성하여 출력한다.The oscillator 250 generates and outputs a reference pulse string having a predetermined pulse interval as shown in FIG. 3C using the crystal oscillator.
연산처리부(240)는 상기 신호검출부(230)를 통해 입력되는 검출신호 즉, 상기 액면플로터(101) 및 밀도플로터(102)에 의한 검출신호 간의 간격을 상기 발진부(250)로부터 입력되는 기준펄스열을 이용하여 측정하고, 그 측정 결과를 상기 액면플로터(101)와 밀도플로터(102) 간의 실효침하거리로 환산한다. 이때, 상기 환산 결과를 주변의 온도에 따라 보정할 수 있다.The arithmetic processing unit 240 measures the interval between the detection signal input through the signal detector 230, that is, the detection signal by the liquid level plotter 101 and the density plotter 102, from the oscillator 250. The measurement result is converted into the effective settlement distance between the liquid level plotter 101 and the density plotter 102. At this time, the conversion result can be corrected according to the ambient temperature.
다시 말해서, 상기 경로를 통해 입력되는 액면플로터(101)에 의한 검출신호와 밀도플로터(102)에 의한 검출신호가 시간 차이를 나타내는데, 상기 연산처리부(240)는 이 시간 차이를 근거로 하여 상기 실효침하거리를 산출한다. In other words, the detection signal by the liquid level plotter 101 and the detection signal by the density plotter 102 indicate a time difference, and the arithmetic processing unit 240 performs the effective on the basis of this time difference. Calculate settlement distance.
도 3의 (b)에서는 상기 연산처리부(240)에 입력되는 액면플로터(101) 및 밀도플로터(102)에 의한 검출펄스 간의 실효침하거리(lex)를 나타내고 있다. 즉, 측정 대상 액체의 표면에 위치하는 액면플로터(101)에 의한 검출신호가 연산처리부(240)에 입력되는 시간과, 측정 대상 액체의 밀도에 의해 측정 대상 액체의 표면으로부터 어느 정도 잠겨있는 밀도플로터(102)에 의한 검출신호가 연산처리부(240)에 입력되는 시간이 차이를 갖게 된다. 상기 연산처리부(240)는 상기 시간 차이를 근거로 상기 액면플로터(101)와 밀도플로터(102) 간의 실효침하거리(lex)를 산출한다. 이와 같은 실효침하거리 측정 과정은 상기 제2단계(S2)에서 제1 실효침하거리와 제2 실효침하거리를 측정하는 과정과 동일하다.In FIG. 3B, the effective settling distance lex between the liquid level plotter 101 and the detection pulses of the density plotter 102 input to the arithmetic processing unit 240 is shown. That is, the density plotter which is somewhat submerged from the surface of the liquid to be measured by the time when the detection signal by the liquid level plotter 101 located on the surface of the liquid to be measured is input to the calculation processing unit 240 and the density of the liquid to be measured. The time at which the detection signal by 102 is input to the calculation processing unit 240 has a difference. The calculation processor 240 calculates an effective settlement distance lex between the liquid level plotter 101 and the density plotter 102 based on the time difference. The effective settlement distance measurement process is the same as the process of measuring the first effective settlement distance and the second effective settlement distance in the second step (S2).
이후, 상기 연산처리부(240)는 상기 제2단계(S2)에서 저장된 보정점참조값 및 상기 제3단계(S3)에서 구한 실효침하거리를 근거로 다음의 설명에서와 같이 미지의 액체에 대한 밀도를 연산한다(S4).Thereafter, the calculation processing unit 240 calculates the density of the unknown liquid as shown in the following description based on the correction point reference value stored in the second step S2 and the effective settlement distance obtained in the third step S3. Compute (S4).
먼저, 도 4는 상기 액면플로터(101)와 밀도플로터(102)의 침하거리와 실효침하거리가 밀도에 대하여 비선형적인 반비례 관계인 것을 나타낸 그래프이다. 여기서, 측정점(MEA)은 측정 대상 액체에 투입된 밀도플로터(102)의 실효침하거리(lex)에 대응되는 침하거리-밀도 그래프 상의 좌표값이고, 제1보정점(COM1)은 제2밀도(d2)에 비하여 상대적으로 낮은 제1밀도(d1)를 갖는 액체에 투입된 상기 밀도플로터(102)의 침하거리인 제1실효 침하거리(le1)에 대응되는 침하거리-밀도 그래프 상의 좌표값이고, 제2보정점(COM2)은 상기 제2밀도(d2)에 비하여 상대적으로 높은 밀도를 갖는 액체에 투입된 상기 밀도플로터(102)의 침하거리인 제2실효 침하거리(le2)에 대응되는 침하거리-밀도 그래프 상의 좌표값이다.First, FIG. 4 is a graph showing that the settlement distance and the effective settlement distance of the liquid level plotter 101 and the density plotter 102 have a non-linear inverse relationship with density. Here, the measurement point MEA is a coordinate value on the settlement distance-density graph corresponding to the effective settlement distance lex of the density plotter 102 introduced into the measurement target liquid, and the first correction point COM1 is the second density d2. Is a coordinate value on a settlement distance-density graph corresponding to a first effective settlement distance le1, which is a settlement distance of the density plotter 102 injected into a liquid having a relatively low first density d1 compared to The correction point COM2 is a settlement distance-density graph corresponding to a second effective settlement distance le2, which is a settlement distance of the density plotter 102 injected into a liquid having a relatively high density compared to the second density d2. Coordinates of the phase.
그리고, 실효침하거리(lex)는 상기 측정점(MEA)을 기준으로, 상기 밀도플로터(102)의 침하거리에서 액면플로터(101)의 침하거리를 감산한 결과의 침하거리를 의미한다. 제1실효침하거리(le1)는 상기 제1보정점(COM1)을 기준으로, 상기 밀도플로터(102)의 침하거리에서 액면플로터(101)의 침하거리를 감산한 결과의 침하거리를 의미한다. 제2실효침하거리(le2)는 상기 제2보정점(COM2)을 기준으로, 상기 밀도플로터(102)의 침하거리에서 액면플로터(101)의 침하거리를 감산한 결과의 침하거리를 의미한다.In addition, the effective settlement distance lex means a settlement distance of the result of subtracting the settlement distance of the liquid plotter 101 from the settlement distance of the density plotter 102 based on the measurement point MEA. The first effective settling distance le1 means a settling distance of the result of subtracting the settling distance of the liquid level plotter 101 from the settling distance of the density plotter 102 based on the first correction point COM1. The second effective settling distance le2 refers to the settling distance of the result of subtracting the settling distance of the liquid level plotter 101 from the settling distance of the density plotter 102 based on the second correction point COM2.
또한, 상기 도 4에서 밀도(dx)는 상기 실효침하거리(lex)에 대응되는 측정 대상 액체의 밀도를 의미한다. 제1밀도(d1)는 상기 제1실효침하거리(le1)에 대응되는 밀도를 의미한다. 제2밀도(d2)는 상기 제2실효침하거리(le2)에 대응되는 밀도를 의미한다. In addition, in FIG. 4, the density dx means the density of the liquid to be measured corresponding to the effective settling distance lex. The first density d1 means a density corresponding to the first effective settlement distance le1. The second density d2 means a density corresponding to the second effective settlement distance le2.
수학식 2
Figure PCTKR2014013053-appb-M000002
Equation 2
Figure PCTKR2014013053-appb-M000002
여기서, 'le1'은 상기 제1실효침하거리이고, 'le2'는 상기 제2실효침하거리이며, 'lex'는 상기 실효침하거리이다. 'd1'은 상기 제1밀도이고, 'd2'는 상기 제2밀도이며, dx는 상기 밀도이다.Here, 'le1' is the first effective settlement distance, 'le2' is the second effective settlement distance, 'lex' is the effective settlement distance. 'd1' is the first density, 'd2' is the second density, and dx is the density.
즉, 상기 밀도(dx)는 제1,2실효침하거리(le1),(le2)의 차값에 제1,2밀도(d1),(d2)를 곱한 값에 비례한다. 또한, 상기 밀도(dx)는 제1실효침하거리(le1), 실효침하거리(lex)의 차값에 제1밀도(d1)를 곱한 값과 실효침하거리(lex), 제2실효침하거리(le2)의 차값에 제2밀도(d2)를 곱한 값을 더한 값에 반비례한다. That is, the density dx is proportional to a value obtained by multiplying the difference between the first and second effective settlement distances le1 and le2 by the first and second densities d1 and d2. In addition, the density dx is a value obtained by multiplying the difference between the first effective settlement distance le1 and the effective settlement distance lex by the first density d1, the effective settlement distance lex, and the second effective settlement distance le2. It is inversely proportional to the value obtained by multiplying the difference value of) by the second density d2.
상기 <수학식2>의 예에서는 상기 실효침하거리(lex)를 기준으로 인접된 이전의 제1실효침하거리(le1), 이후의 제2실효침하거리(le2), 상기 제1실효침하거리(le1)에 대응되는 제1밀도(d1), 제2실효침하거리(le2)에 대응되는 제2밀도(d2)를 대입하여 상기 침하거리(lex)에 상응되는 밀도(dx)를 구하는 것을 설명하였으나, 본 발명이 이에 한정되는 것이 아니다. 즉, 상기 메모리(240A)에 저장되어 있는 임의의 두 개의 실효침하거리와, 상기 임의의 두 개의 실효침하거리에 대응되는 두 개의 밀도를 상기 <수학식2>에 대입하여도 상기와 동일한 밀도를 얻을 수 있다. In the example of Equation 2, the previous first effective settlement distance le1, the second effective settlement distance le2 and the first effective settlement distance adjacent to each other based on the effective settlement distance lex The first density d1 corresponding to le1) and the second density d2 corresponding to the second effective settlement distance le2 were substituted to obtain a density dx corresponding to the settlement distance lex. However, the present invention is not limited thereto. That is, even if two arbitrary settlement distances stored in the memory 240A and two densities corresponding to the two effective settlement distances are substituted into Equation 2, the same density is obtained. You can get it.
다시 말해서, 상기 측정 대상의 밀도(dx)가 제1밀도(d1)와 제2밀도(d2)의 사이에 있거나(d1 < dx < d2), 상기 밀도(dx)가 제1밀도(d1)와 제2밀도(d2)의 바깥에 있는 경우(d1 < d2 < dx)(dx < d1 < d2)에도 상기 <수학식2>를 이용하여 해당 액체의 밀도를 구할 수 있다.In other words, the density dx of the measurement object is between the first density d1 and the second density d2 (d1 <dx <d2), or the density dx is equal to the first density d1. Even when outside the second density d2 (d1 <d2 <dx) (dx <d1 <d2), the density of the liquid may be obtained using Equation 2 above.
아래의 표는 제1밀도 d1= 0.7 g/cm3에서 제1실효침하거리 le1=100 mm이고, 제2밀도 d2 = 0.8 g/cm3에서 제2실효침하거리 le2=0 mm(기준점)이라 할 때, 실효침하거리(lex)들을 상기 <수학식2>를 이용하여 계산한 밀도(dx)들을 나타낸 것이다.The following table referred to as a first density d1 = 0.7 g / first effective subsidence distance le1 = 100 mm in cm 3, and the second density d2 = 0.8 g / second effective subsidence distance in cm 3 le2 = 0 mm (the reference point) In this case, the effective settlement distances lex are the density dx values calculated using Equation 2 above.
표 1
측정된 플로터 간 실효거리(lex) 환산된 밀도(dx) 측정된 플로터간 실효거리(lex) 환산된 밀도(dx)
150 0.65882 70 0.72727
145 0.66272 65 0.73203
140 0.66667 60 0.73684
135 0.68066 55 0.74172
130 0.67470 50 0.74667
125 0.67879 45 0.75168
120 0.68293 40 0.75676
115 0.68712 35 0.76190
110 0.69136 30 0.76712
105 0.69565 25 0.77241
100 0.70000 20 0.77778
95 0.70440 15 0.78322
90 0.70886 10 0.78873
85 0.71338 5 0.79433
80 0.71795 0 0.80000
75 0.72258 -5 0.80576
Table 1
Effective distance between measured plotters (lex) Converted density (dx) Effective distance between plotters measured (lex) Converted density (dx)
150 0.65882 70 0.72727
145 0.66272 65 0.73203
140 0.66667 60 0.73684
135 0.68066 55 0.74172
130 0.67470 50 0.74667
125 0.67879 45 0.75168
120 0.68293 40 0.75676
115 0.68712 35 0.76190
110 0.69136 30 0.76712
105 0.69565 25 0.77241
100 0.70000 20 0.77778
95 0.70440 15 0.78322
90 0.70886 10 0.78873
85 0.71338 5 0.79433
80 0.71795 0 0.80000
75 0.72258 -5 0.80576
결국, 상기 도 4에서와 같이 제1보정점(COM1), 제2보정점(COM2) 및 측정점(MEA)들이 모두 침하거리-밀도 관계를 나타내는 비선형 그래프상에 위치하는데, 상기 <수학식2>는 상기와 같은 비선형 그래프를 단순한 수식으로 유도하여 정의한 것이다. 따라서, 상기 <수학식2>로 구해지는 밀도(dx)은 높은 정밀도를 보장한다. As a result, as shown in FIG. 4, the first correction point COM1, the second correction point COM2, and the measurement points MEA are all located on a nonlinear graph representing a settlement distance-density relationship. Is defined by deriving the nonlinear graph as a simple equation. Therefore, the density dx obtained by Equation 2 ensures high precision.
이에 비하여, 종래의 밀도 측정기술에 있어서는 측정점(MEA)과 제1보정점(COM1) 및 측정점(MEA)과 제2보정점(COM2)이 선형적으로 변화되는 그래프 상에 존재하는 것으로 간주하여 측정 대상 액체의 밀도를 구하였으므로 그에 따른 오차가 발생되어 높은 정밀도를 보장할 수 없다.In contrast, in the conventional density measurement technique, the measurement point MEA, the first correction point COM1, and the measurement point MEA and the second correction point COM2 are regarded as being present on a linearly changing graph. Since the density of the target liquid is obtained, an error occurs accordingly and high accuracy cannot be guaranteed.
이상에서 본 발명의 바람직한 실시예에 대하여 상세히 설명하였지만, 본 발명의 권리범위가 이에 한정되는 것이 아니라 다음의 청구범위에서 정의하는 본 발명의 기본 개념을 바탕으로 보다 다양한 실시예로 구현될 수 있으며, 이러한 실시예들 또한 본 발명의 권리범위에 속하는 것이다. Although the preferred embodiment of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and may be implemented in various embodiments based on the basic concept of the present invention defined in the following claims. Such embodiments are also within the scope of the present invention.

Claims (10)

  1. (a) 액체의 표면으로 부상하여 표면의 위치를 나타내는 액면플로터, 상기 액체의 밀도에 따라 상하 방향으로 유동가능하게 설치된 밀도플로터, 자기변형 와이어 및 밀도검출부를 밀도측정기에 구비하는 밀도측정기 구비단계; (a) a density plotter comprising a liquid level floater floating on the surface of the liquid to indicate a position of the surface, a density plotter installed to be able to flow in an up-down direction according to the density of the liquid, a magnetostrictive wire and a density detector in the density meter;
    (b) 상기 액면플로터와 밀도플로터가 각기 다른 밀도를 갖는 액체들에 투입될 때마다 상기 밀도검출부가 상기 자기변형 와이어에 공급되는 펄스 및 상기 액면플로터의 제1자성체 및 상기 밀도플로터의 제2자성체에 의해 발생되는 자기변형 현상을 이용하여 상기 액면플로터와 밀도플로터 간의 침하거리 차인 실효침하거리 및 상기 실효침하거리에 대응되는 밀도를 구하여 그에 따른 보정점 참조값을 저장하는 보정점 참조값 저장단계;(b) a pulse supplied to the magnetostrictive wire whenever the liquid level plotter and the density plotter are introduced into liquids having different densities, a first magnetic body of the liquid level plotter, and a second magnetic body of the density plotter; A correction point reference value storing step of obtaining an effective settlement distance and a density corresponding to the effective settlement distance by using the magnetostriction generated by the liquid plotter and a density plotter, and storing a correction point reference value accordingly;
    (c) 미지의 액체에 대한 밀도를 측정하고자 할 때, 상기 밀도검출부가 상기 자기 변형 현상을 이용하여, 상기 액면플로터와 밀도플로터 간의 실효침하거리를 측정하는 실효침하거리 측정단계; 및(c) an effective settling distance measuring step of measuring an effective settling distance between the liquid level plotter and the density plotter by using the magnetostrictive phenomenon when the density detection unit measures the density of an unknown liquid; And
    (d) 상기 밀도검출부가 상기 (b) 단계에서 저장된 상기 보정점 참조값 및 상기 (c) 단계에서 측정된 상기 실효침하거리를 근거로 하여 상기 미지의 액체에 대한 밀도를 연산하는 밀도 연산단계를 포함하는 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.(d) a density calculation step of calculating the density of the unknown liquid based on the correction point reference value stored in the step (b) and the effective settlement distance measured in the step (c). Density measurement method of a liquid using magnetostriction, characterized in that.
  2. 제1항에 있어서, 상기 (b) 단계에서 상기 밀도는 요구된 기준치보다 높은 정밀도로 측정되는 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.The method of claim 1, wherein the density in the step (b) is measured with higher precision than the required reference value.
  3. 제1항에 있어서, 상기 보정점 참조값은 상기 밀도 검출부의 메모리에 저장되는 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.The method of claim 1, wherein the correction point reference value is stored in a memory of the density detector.
  4. 제1항에 있어서, 상기 자기변형 와이어는 상기 액면플로터와 밀도플로터가 상하방향으로 유동하는 경로상에 설치된 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.The method of claim 1, wherein the magnetostrictive wire is installed on a path through which the liquid level plotter and the density plotter flow in the vertical direction.
  5. 제1항에 있어서, 상기 밀도검출부는 The method of claim 1, wherein the density detection unit
    상기 자기변형 와이어에 연결되어 상기 자기변형 현상에 따른 유도 기전력을 발생하는 픽업코일;A pickup coil connected to the magnetostrictive wire to generate induced electromotive force according to the magnetostriction phenomenon;
    상기 픽업코일에 유기되는 전압을 검출하여 그에 따른 검출신호를 생성한 후 증폭하고 안정화된 펄스 형태로 출력하는 신호 검출부; 및A signal detector for detecting a voltage induced in the pickup coil, generating a detection signal according to the pick-up coil, amplifying the signal, and outputting the amplified pulse in a stabilized pulse form; And
    상기 검출신호를 근거로 상기 실효침하거리를 연산하고, 상기 보정점 참조값 및 상기 실효침하거리를 근거로 하여 상기 미지의 액체에 대한 밀도를 구하는 연산처리부를 포함하는 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.And a calculation processing unit for calculating the effective settlement distance based on the detection signal, and calculating a density of the unknown liquid based on the correction point reference value and the effective settlement distance. How to measure the density of.
  6. 제1항에 있어서, 상기 액면플로터 및 밀도플로터는 상기 자기변형와이어를 포함하는 금속관의 외주면에 각기 설치된 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법.The method of claim 1, wherein the liquid level plotter and the density plotter are respectively installed on an outer circumferential surface of the metal tube including the magnetostrictive wires.
  7. 제1항에 있어서, 상기 (d) 단계는 다음의 <수학식>을 이용하여 상기 미지의 액체에 대한 밀도 dx를 구하는 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법. The method of claim 1, wherein the step (d) calculates the density dx of the unknown liquid by using the following Equation.
    Figure PCTKR2014013053-appb-I000001
    Figure PCTKR2014013053-appb-I000001
    여기서, 'le1'은 상기 보정점 참조값 저장단계에서 구해진 제1실효침하거리이고,Here, 'le1' is the first effective settlement distance obtained in the step of storing the correction point reference value,
    'le2'는 상기 보정점 참조값 저장단계에서 구해진 제2실효침하거리이고,'le2' is the second effective settlement distance obtained in the correction point reference value storing step,
    'lex'는 상기 실효침하거리 측정단계에서 측정된 상기 실효침하거리이고,'lex' is the effective settlement distance measured in the effective settlement distance measuring step,
    'd1'은 상기 제1실효침하거리에 대응되는 제1밀도이고, 'd1' is a first density corresponding to the first effective settlement distance,
    'd2'는 상기 제2실효침하거리에 대응되는 제2밀도이다. 'd2' is a second density corresponding to the second effective settlement distance.
  8. 제7항에 있어서, 상기 'lex'는 측정점을 기준으로 상기 밀도플로터의 침하거리에서 상기 액면플로터의 침하거리를 감산한 결과의 침하거리인 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법. The method of claim 7, wherein 'lex' is a settlement distance obtained by subtracting the settlement distance of the liquid plotter from the settlement distance of the density plotter based on a measurement point.
  9. 제7항에 있어서, 상기 'le1'은 상기 측정 대상 액체보다 낮은 밀도의 액체에 투입된 상기 밀도플로터의 침하거리에서 상기 액면플로터의 침하거리를 감산한 결과의 침하거리인 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법. 8. The magnetostriction of claim 7, wherein the 'le1' is a settlement distance as a result of subtracting the settlement distance of the liquid plotter from the settlement distance of the density plotter injected into a liquid having a lower density than the liquid to be measured. Method for measuring density of liquid used.
  10. 제7항에 있어서, 상기 'le2'는 상기 측정 대상 액체보다 높은 밀도의 액체에 투입된 상기 밀도플로터의 침하거리에서 상기 액면플로터의 침하거리를 감산한 결과의 침하거리인 것을 특징으로 하는 자기변형을 이용한 액체의 밀도 측정 방법. 8. The magnetostriction of claim 7, wherein the 'le2' is a settling distance as a result of subtracting the settling distance of the liquid plotter from the settling distance of the density plotter injected into a liquid having a higher density than the liquid to be measured. Method for measuring density of liquid used.
PCT/KR2014/013053 2014-01-17 2014-12-30 Method for measuring density of liquid using magnetostriction WO2015108292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480002492.6A CN104969053A (en) 2014-01-17 2014-12-30 Method for measuring density of liquid using magnetostriction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140005905A KR101415128B1 (en) 2014-01-17 2014-01-17 Method for measuring density of liquid using magnetostriction
KR10-2014-0005905 2014-01-17

Publications (1)

Publication Number Publication Date
WO2015108292A1 true WO2015108292A1 (en) 2015-07-23

Family

ID=51741119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/013053 WO2015108292A1 (en) 2014-01-17 2014-12-30 Method for measuring density of liquid using magnetostriction

Country Status (3)

Country Link
KR (1) KR101415128B1 (en)
CN (1) CN104969053A (en)
WO (1) WO2015108292A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675437B (en) * 2015-12-29 2018-07-03 长沙学院 Displacement difference solution density measuring device and its measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084311A (en) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology Magnetic levitation density meter
KR100704490B1 (en) * 2005-07-20 2007-04-10 한국표준과학연구원 Construction of hydrostatic weighing apparatus for density measurement
KR20100086523A (en) * 2009-01-23 2010-08-02 한국과학기술원 Density measurement device with shock absorbing device
KR101258482B1 (en) * 2006-01-30 2013-04-26 프랭클린 퓨얼링 시스템즈, 인코포레이티드 Liquid level and density measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764063B1 (en) * 1997-06-02 1999-07-16 Cogema INSTALLATION AND METHOD FOR DETERMINING THE LEVEL AND DENSITY OF A LIQUID IN A TANK, BY MEANS OF A SINGLE SUBMERSIBLE BOILING ROD
CN1374513A (en) * 2002-04-06 2002-10-16 徐晗 Magnetostriction-type liquid level, density and mass measurer
CN2588363Y (en) * 2002-12-17 2003-11-26 曹生义 Magneto-measurer for density
CN2793705Y (en) * 2005-05-18 2006-07-05 徐伟 Magnetic telescopic level meter
CN202433061U (en) * 2012-01-06 2012-09-12 青岛澳科仪器有限责任公司 Magnetostrictive liquid level meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084311A (en) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology Magnetic levitation density meter
KR100704490B1 (en) * 2005-07-20 2007-04-10 한국표준과학연구원 Construction of hydrostatic weighing apparatus for density measurement
KR101258482B1 (en) * 2006-01-30 2013-04-26 프랭클린 퓨얼링 시스템즈, 인코포레이티드 Liquid level and density measurement device
KR20100086523A (en) * 2009-01-23 2010-08-02 한국과학기술원 Density measurement device with shock absorbing device

Also Published As

Publication number Publication date
CN104969053A (en) 2015-10-07
KR101415128B1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
US5253522A (en) Apparatus for determining fluid level and fluid density
US11519772B2 (en) Liquid pressure and level sensor systems and sensors, methods, and applications therefor
US20130276533A1 (en) Device for measuring fluid level in a container
Lanckriet et al. A conductivity concentration profiler for sheet flow sediment transport
US8576085B2 (en) Capacitance-type liquid level measuring probe
CA2060572A1 (en) System and method for electromagnetically determining both the proximityand dimensions of a non-conductive structure
JP2009204601A (en) Apparatus and method for measuring suspended solid concentration utilizing time domain reflectometry
JPH0915278A (en) Electric conductivity measuring circuit and probe therefor
US10018494B2 (en) Temperature compensated transmission line based liquid level sensing apparatus and method
Ridd A sediment level sensor for erosion and siltation detection
JP5372060B2 (en) Device for measuring the density of liquids
WO2015108292A1 (en) Method for measuring density of liquid using magnetostriction
CN114370913A (en) Temperature compensation for magnetostrictive position detectors
WO2019193453A1 (en) A magnetostrictive level transmitter with orientation sensor
JP3148986B2 (en) Hull position deviation detector
CN105403483A (en) Solution density differential pressure measurement apparatus and measurement method thereof
JP6768305B2 (en) Flaw detector and flaw detection method
JP2011141255A (en) Resistance change type liquid level gage
KR102271549B1 (en) Capacitance type wave height meter calibration device and calibration method
WO2015108334A1 (en) Device for measuring density of liquid using magnetostriction
US3439319A (en) Marine seismic cable with depth detector system
KR101030342B1 (en) Electrostatic capacitance type sensor for detecting liquid level and system
JPH0619472B2 (en) Groundwater flow direction and flow velocity measuring method and device
GB2123237A (en) Surface detector
KR101197484B1 (en) Reformulated gasoline test apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878645

Country of ref document: EP

Kind code of ref document: A1