JP2006084311A - Magnetic levitation density meter - Google Patents

Magnetic levitation density meter Download PDF

Info

Publication number
JP2006084311A
JP2006084311A JP2004269039A JP2004269039A JP2006084311A JP 2006084311 A JP2006084311 A JP 2006084311A JP 2004269039 A JP2004269039 A JP 2004269039A JP 2004269039 A JP2004269039 A JP 2004269039A JP 2006084311 A JP2006084311 A JP 2006084311A
Authority
JP
Japan
Prior art keywords
weight
load
support member
permanent magnet
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004269039A
Other languages
Japanese (ja)
Other versions
JP4212537B2 (en
Inventor
Yohei Kayukawa
洋平 粥川
Kenichi Fujii
賢一 藤井
Yuya Kano
祐也 狩野
Haruki Sato
春樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004269039A priority Critical patent/JP4212537B2/en
Publication of JP2006084311A publication Critical patent/JP2006084311A/en
Application granted granted Critical
Publication of JP4212537B2 publication Critical patent/JP4212537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable precise density measurement with a magnetic levitation density meter. <P>SOLUTION: Supporting member locking stage sections 44 are projected on the bottoms of a first weight 21 and second weight 23 having different density and known volume, only one of the weights is supported and only tares of a load change member 33 and a permanent magnet 36 are also supported by a first weight supporting member 37 and a second weight supporting member 34 of a load change member 33 of which upper end is fixed to the permanent magnet 36 sucked by an electromagnet 18. The position of the load change member 33 is detected by a position sensor 28, and it is vertically moved by an actuator 17 and held at a stable position with zero power control. The load change member 33 changes the support state of the weight or the like with rotation of the actuator 17, weighing is made by an electronic balance at a tare weighing position, a first weight weighing position, and a second weight weighing position so that the levitated position of the permanent magnet 36 does not vary, and a magnetic force acting on fluid is corrected, and precise density measurement is made. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気浮上を利用して流体中におもりを浮上させ、流体による浮力を受けたそのときのおもりの質量を計測することにより、流体の密度を計測する磁気浮上密度計に関する。   The present invention relates to a magnetic levitation density meter that measures the density of a fluid by levitation of a weight in a fluid using magnetic levitation and measuring the mass of the weight at the time of receiving buoyancy by the fluid.

従来より磁気浮上を利用した液中秤量装置としては種々のものがあるが、図4は下記非特許文献1にも示されている周知の磁気浮上密度計を模式的に示している。耐高圧性のセルからなる容器51は中間に隔壁52が形成され、上部空間53と下部空間54とに分割されており、両空間は隔壁52によって流体が流通不能に隔離されている。上部空間53には上方に配置した電子天秤68から電磁石55が隔壁52の上面に近接して吊り下げられており、制御装置からの通電圧制御によって任意の電磁力を発生可能としている。   Conventionally, there are various types of submerged weighing devices that use magnetic levitation. FIG. 4 schematically shows a known magnetic levitation density meter shown in Non-Patent Document 1 below. A container 51 made of a high-pressure-resistant cell has a partition wall 52 formed in the middle, and is divided into an upper space 53 and a lower space 54, and both spaces are isolated by the partition wall 52 so that fluid cannot flow. In the upper space 53, an electromagnet 55 is suspended from an electronic balance 68 disposed above in the vicinity of the upper surface of the partition wall 52, and an arbitrary electromagnetic force can be generated by controlling the voltage from the control device.

下部空間54の下方にはおもり載置段部56が形成され、この上におもり57が自重で載置できるようにしている。載置段部56には中心孔58を備え、外部の流体を導入可能としており、それにより下部空間54内には流体59が満たされている。この中心孔58の周囲にはポジションセンサ61を配置しており、おもり57の中心通孔62を貫通して延びる荷重交換部材63において、おもり支持部64の下部に形成した下端部65の位置を、中心孔58内に非接触で検知としている。   A weight placing step portion 56 is formed below the lower space 54 so that the weight 57 can be placed under its own weight. The mounting step portion 56 is provided with a central hole 58 so that an external fluid can be introduced, whereby the lower space 54 is filled with the fluid 59. A position sensor 61 is disposed around the center hole 58, and the position of the lower end portion 65 formed in the lower portion of the weight support portion 64 is determined in the load exchange member 63 extending through the center through hole 62 of the weight 57. In the center hole 58, detection is made without contact.

荷重交換部材63の上端部には、隔壁52の下面に近接して配置される永久磁石66を固定しており、永久磁石66と一体化した前記のような荷重交換部材63が上下動する位置を、ポジションセンサ61で検出するようにしている。おもり支持部64は図4(a)中において、おもり載置段部56に載置されたおもり57の底面67より下方に位置しており、また同図(b)はおもり支持部64がおもり57を支持して、上方に持ち上げている状態を示している。   A permanent magnet 66 disposed in the vicinity of the lower surface of the partition wall 52 is fixed to the upper end portion of the load exchange member 63, and the load exchange member 63 integrated with the permanent magnet 66 moves up and down. Is detected by the position sensor 61. The weight support portion 64 is located below the bottom surface 67 of the weight 57 placed on the weight placement step portion 56 in FIG. 4A, and the weight support portion 64 is weighted in FIG. 57 is supported and lifted upward.

上記のような構成の磁気浮上密度計においては、永久磁石66が固定された荷重交換部材63の下端部65の位置を、ポジションセンサ61により検知して電磁石55の通電圧を制御して磁力を調節することにより、荷重交換部材63を安定して浮上させることができる。   In the magnetic levitation density meter having the above-described configuration, the position sensor 61 detects the position of the lower end portion 65 of the load exchange member 63 to which the permanent magnet 66 is fixed, and controls the conduction voltage of the electromagnet 55 to control the magnetic force. By adjusting, the load exchange member 63 can be stably levitated.

このとき浮上位置を調節することで、電磁石55に通電する電圧をゼロにすることができ、電磁石55の発熱を抑えることができる。これをゼロパワー制御と呼ぶ。   By adjusting the floating position at this time, the voltage applied to the electromagnet 55 can be made zero, and the heat generation of the electromagnet 55 can be suppressed. This is called zero power control.

このときの荷重交換部材63にはたらく重力および浮力の和は、上方に位置する電子天秤68により秤量される。図4(a)は風袋秤量位置であり、前記のように荷重交換部材63に設けたおもり支持部64はおもりの底部67から離れており、荷重交換部材63と永久磁石66が流体59中に浮いた状態となって、それにより荷重交換部材63のみの見かけの質量が電子天秤68で測定され、計測機構として風袋を計る風袋秤量位置となる。   The sum of gravity and buoyancy acting on the load exchange member 63 at this time is weighed by an electronic balance 68 positioned above. FIG. 4A shows a tare weighing position. As described above, the weight support portion 64 provided on the load exchange member 63 is separated from the bottom portion 67 of the weight, and the load exchange member 63 and the permanent magnet 66 are in the fluid 59. As a result, the apparent mass of only the load exchange member 63 is measured by the electronic balance 68, and a tare weighing position for measuring the tare as a measuring mechanism is obtained.

一方、図4(b)には永久磁石66を上昇させ、おもり支持部64がおもり57の底部67に接した後も更におもり57を含んで全てのものが浮上した状態を示している。ポジションセンサ61の信号による電磁石55の通電制御によって、全体を所定位置に停止した状態で支持し、ここで合計荷重が電子天秤68で測定される。このときの永久磁石66の位置は、同図(a)に示す位置よりも上方に位置することとなる。この状態は風袋を含めたおもりを秤量するためのおもり秤量位置となる。   On the other hand, FIG. 4B shows a state in which the permanent magnet 66 is lifted and all the objects including the weight 57 are lifted after the weight support part 64 comes into contact with the bottom part 67 of the weight 57. The whole is supported in a state where it is stopped at a predetermined position by energization control of the electromagnet 55 by the signal of the position sensor 61, and the total load is measured by the electronic balance 68 here. The position of the permanent magnet 66 at this time is positioned above the position shown in FIG. This state is a weight weighing position for weighing the weight including the tare.

荷重交換部材63が上記のような風袋秤量位置とおもり秤量位置にあるとき、電子天秤68によって秤量される見かけの質量MAおよびMBは、電磁石等の質量を除いた場合、
A: MA=(ρ−ρ)V (1)
B: MB=(ρ−ρ)V+(ρ−ρ)V (2)
となる。ρは密度、Vは体積、添え字1、2、3はそれぞれ流体、おもり、荷重交換部材をあらわす。
式(1)、(2)を辺々差し引くことにより、
B−A: MB−MA=(ρ−ρ)V (3)
故に、
ρ=ρ−(MB−MA)/V (4)
として流体59の密度が求められる。
When the load exchange member 63 is in the tare weighing position and the weight weighed position as described above, the mass M A and M B the apparent be weighed by the electronic balance 68, when excluding the mass of the electromagnet or the like,
A: M A = (ρ 3 −ρ 1 ) V 3 (1)
B: M B = (ρ 3 −ρ 1 ) V 3 + (ρ 2 −ρ 1 ) V 2 (2)
It becomes. ρ is density, V is volume, subscripts 1, 2, and 3 are fluid, weight, and load exchange member, respectively.
By subtracting Equations (1) and (2) side by side,
B−A: M B −M A = (ρ 2 −ρ 1 ) V 2 (3)
Therefore,
ρ 1 = ρ 2 - (M B -M A) / V 2 (4)
As a result, the density of the fluid 59 is obtained.

この方法は、電磁石55と永久磁石66による磁気浮上を用いることにより、非接触で流体59の密度を測定することが出来るため、流体を高圧セル等の容器51で封じ込め、天秤が使用できないような高温・高圧の条件下でも密度測定が可能となる。
Wagner,R and Kleinrahm, R. Densimeters for very accurate density measurements offluids over large ranges of temperature, pressure, and density, Metrologia41(2004), S24-S39. Kuramoto, N.,Fujii, K. and Waseda, A. Accurate density measurements of reference liquids bya magnetic suspension balance, Metrologia 41(2004), S84-S94.
In this method, the magnetic levitation by the electromagnet 55 and the permanent magnet 66 can be used to measure the density of the fluid 59 in a non-contact manner, so that the fluid is sealed in a container 51 such as a high-pressure cell and the balance cannot be used. Density measurement is possible even under high temperature and high pressure conditions.
Wagner, R and Kleinrahm, R. Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density, Metrologia41 (2004), S24-S39. Kuramoto, N., Fujii, K. and Waseda, A. Accurate density measurements of reference liquids bya magnetic suspension balance, Metrologia 41 (2004), S84-S94.

上記従来の測定手法は、電磁石55と永久磁石66の間で力の伝達が完全に行われていることが前提となっているが、実際にはこれら以外の高圧セルとしての容器51や測定流体59も弱いながら磁石に対して吸引・もしくは反発するため、力の伝達誤差が生じる。このうち、容器51による力の伝達誤差は下部空間54内を真空にした状態で測定をすることにより補正することができる。しかし、流体59による伝達誤差は同様の方法では補正できず、磁化率と密度が既知の2種類の流体を用いて校正を行う必要がある。しかしながら一般的に流体の磁化率は非常に小さく、且つ計算に用いるモデルが不完全のため、補正量の相対的な不確かさが大きい。現在最も高精度な磁気浮上を用いた流体密度計測装置においては、この点が最も大きな不確かさの要因となっており、このことは上記非特許文献2に述べられている。   The conventional measurement method is based on the premise that force is completely transmitted between the electromagnet 55 and the permanent magnet 66, but actually, the container 51 and the measurement fluid as a high-pressure cell other than these are used. Although 59 is weak, it attracts or repels the magnet, resulting in a force transmission error. Among these, the force transmission error due to the container 51 can be corrected by measuring in a state where the lower space 54 is evacuated. However, the transmission error due to the fluid 59 cannot be corrected by the same method, and calibration must be performed using two types of fluids whose susceptibility and density are known. However, in general, the magnetic susceptibility of the fluid is very small, and the model used for the calculation is incomplete, so the relative uncertainty of the correction amount is large. In the fluid density measuring apparatus using the most accurate magnetic levitation at present, this point is the biggest cause of uncertainty, which is described in Non-Patent Document 2 above.

このように、上記従来の手法における流体磁性による密度測定不確かさの主要因は、風袋秤量位置とおもり秤量位置とで浮上位置が変わることにより、磁場は、電磁石55と永久磁石66の間で強く、この領域に存在する流体の量が両者で異なると、流体の受ける磁力の差が相殺されないためである。さらに、浮上位置が同じであっても磁石間に働く吸引力が異なれば磁力線の分布が変わるため、流体に働く磁力は一定にならない。   As described above, the main factor of density measurement uncertainty due to fluid magnetism in the above-described conventional method is that the floating position changes between the tare weighing position and the weight weighing position, so that the magnetic field is strong between the electromagnet 55 and the permanent magnet 66. This is because if the amount of fluid existing in this region is different, the difference in magnetic force received by the fluid is not canceled out. Furthermore, even if the floating position is the same, if the attractive force acting between the magnets is different, the distribution of the magnetic field lines changes, so the magnetic force acting on the fluid is not constant.

したがって本発明は、風袋秤量位置とおもり秤量位置とで流体中における永久磁石の位置が異なることを防止し、更に両位置における磁力の差によって生じる流体の磁性の影響を補正して、精密な密度測定が可能な磁気浮上密度計を提供することを主たる目的とする。   Therefore, the present invention prevents the position of the permanent magnet in the fluid from differing between the tare weighing position and the weight weighing position, and further corrects the influence of the magnetic properties of the fluid caused by the difference in magnetic force between the two positions, thereby providing a precise density. The main purpose is to provide a magnetic levitation density meter capable of measurement.

本発明は、上記課題を解決するため、その基本的技術思想として、荷重交換部材に上下動に加えて回転する自由度を持たせ、さらに、天秤から吊り下げられた電磁石を上下させ、任意の風袋位置または測定位置をとることを可能にし、これにより風袋と測定とを同じ位置で行うことができ、流体の磁力による力の伝達誤差の大半を相殺することができるようにしたものである。   In order to solve the above-mentioned problem, the present invention has, as its basic technical idea, a load exchanging member that has a degree of freedom to rotate in addition to vertical movement, and further, an electromagnet suspended from a balance is moved up and down. It is possible to take the tare position or the measurement position, whereby the tare and the measurement can be performed at the same position, and most of force transmission errors due to the magnetic force of the fluid can be offset.

さらに、密度と体積とが既知のおもりを2つ用意し、これらの秤量値から同一測定位置における流体にはたらく磁力の変化割合を求め、磁力線分布の変化による力の伝達誤差をも補正することができるようにした。   In addition, two weights with known density and volume are prepared, and the rate of change in magnetic force acting on the fluid at the same measurement position is obtained from these weighed values, and the force transmission error due to the change in magnetic field distribution can be corrected. I was able to do it.

より具体的には次のような手段によって上記課題を解決する。即ち、本発明の磁気浮上密度計は、密度が異なり体積が共に既知である2個のおもりと、前記2個のおもりを測定流体中で載せかえ、或いはおもりを載せない状態とする荷重交換部材と、荷重を測定するための電子天秤と、前記荷重交換部材のみ、或いはいずれかのおもりを含んだ荷重を前記電子天秤に非接触に伝播させるための磁気浮上機構と、前記荷重交換部材の浮上位置と荷重交換を制御するアクチュエータとを備え、前記電子天秤によりおもりを載せない風袋計測位置と、1つのおもりのみを載せた第1密度計測位置と、他のおもりのみを載せた第2密度計測位置とを任意に設定して秤量を行うことを特徴とする。   More specifically, the above problem is solved by the following means. That is, the magnetic levitation densitometer according to the present invention includes two weights having different densities and known volumes, and a load exchange member that replaces the two weights in a measurement fluid or does not place a weight. An electronic balance for measuring the load, a magnetic levitation mechanism for propagating the load including only the weight exchange member or any weight to the electronic balance in a non-contact manner, and levitation of the load exchange member An actuator for controlling position and load exchange, and a tare measurement position where no weight is placed by the electronic balance, a first density measurement position where only one weight is placed, and a second density measurement where only another weight is placed The weighing is performed by arbitrarily setting the position.

本発明による他の磁気浮上密度計は、前記磁気浮上密度計において、前記荷重交換部材は、2個のおもりの中心孔を貫通するロッドと、該ロッドに固定した第1おもり支持部材及び第2おもり支持部材と、上端部に設けた永久磁石とを備え、前記永久磁石を電磁石により吊り上げる磁気浮上機構を備えたことを特徴とする。   Another magnetic levitation densitometer according to the present invention is the magnetic levitation densitometer, wherein the load exchange member includes a rod penetrating the center hole of two weights, a first weight support member fixed to the rod, and a second weight support member. A weight support member and a permanent magnet provided at the upper end portion are provided, and a magnetic levitation mechanism for lifting the permanent magnet with an electromagnet is provided.

本発明による他の磁気浮上密度計は、前記磁気浮上密度計において、前記荷重交換部材は、各おもりの底面に突出するおもり支持段部と、該支持段部を備えない底面とに選択的に当接するおもり支持部材を備え、前記アクチュエータの回転により荷重交換部材を回転し、前記おもり支持部材の回転によりおもりの載せ換えを行うことを特徴とする。   Another magnetic levitation densitometer according to the present invention is the magnetic levitation densitometer, wherein the load exchange member is selectively provided on a weight support step protruding from a bottom surface of each weight and a bottom surface not provided with the support step. A weight support member that abuts is provided, the load exchange member is rotated by the rotation of the actuator, and the weight is replaced by the rotation of the weight support member.

本発明による他の磁気浮上密度計は、前記磁気浮上密度計において、前記2個のおもりはSi単結晶とGe単結晶の各1個ずつからなることを特徴とする。   Another magnetic levitation density meter according to the present invention is characterized in that, in the magnetic levitation density meter, each of the two weights is composed of one Si single crystal and one Ge single crystal.

本発明は上記のように構成したので、風袋秤量位置とおもり秤量位置とで流体中における永久磁石の位置が異なることによる影響を防止し、更に両位置における磁力の差によって生じる流体の磁性の影響を補正して、精密な密度測定が可能な磁気浮上密度計とすることができる。   Since the present invention is configured as described above, the influence of the position of the permanent magnet in the fluid at the tare weighing position and the weight weighing position is prevented, and further, the influence of the fluid magnetism caused by the difference in magnetic force at both positions. Can be corrected to a magnetic levitation densitometer capable of precise density measurement.

本発明は磁気浮上密度計において、風袋秤量位置とおもり秤量位置とで流体中における永久磁石の位置が異なることによる影響を防止し、更に両位置における磁力の差によって生じる流体の磁性の影響を補正するという課題を、密度が異なり体積が共に既知である2個のおもりと、前記2個のおもりを測定流体中で載せかえ、或いはおもりを載せない状態とする荷重交換部材と、荷重を測定するための電子天秤と、前記荷重交換部材のみ、或いはいずれかのおもりを含んだ荷重を前記電子天秤に非接触に伝播させるための磁気浮上機構と、前記荷重交換部材の浮上位置と荷重交換を制御するアクチュエータとを備え、前記電子天秤によりおもりを載せない風袋計測位置と、1つのおもりのみを載せた第1密度計測位置と、他のおもりのみを載せた第2密度計測位置とを任意に設定して秤量を行うことによって解決した。   In the magnetic levitation density meter, the present invention prevents the influence of the position of the permanent magnet in the fluid at the tare weighing position and the weight weighing position, and further corrects the influence of the fluid magnetism caused by the magnetic force difference at both positions. To measure the load, two weights with different densities and known volumes, a load exchange member that replaces the two weights in the measurement fluid, or a state in which no weight is placed, and the load An electronic balance, a magnetic levitation mechanism for propagating a load including only the weight exchange member or any weight to the electronic balance in a non-contact manner, and controlling a floating position and load exchange of the load exchange member A tare measurement position where no weight is placed by the electronic balance, a first density measurement position where only one weight is placed, and only another weight. It was resolved by performing a second density measurement position and the arbitrarily set to weighing.

以下、本発明の実施例を図面に基づいて説明する。図1は本発明による磁気浮上密度計11を模式的に示している。耐高圧性のセルからなる容器12は前記従来のものと同様に中間に隔壁13が形成され、上部空間14と下部空間15とに分割している。上部空間14には上方に配置した電子天秤16から、アクチュエータ17を介して電磁石18が隔壁13の上面に近接して吊り下げられており、制御装置からの通電圧制御によって任意の電磁力を発生可能としている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a magnetic levitation density meter 11 according to the present invention. A container 12 made of a high pressure resistant cell is formed with a partition wall 13 in the middle as in the conventional case, and is divided into an upper space 14 and a lower space 15. An electromagnet 18 is suspended in close proximity to the upper surface of the partition wall 13 from an electronic balance 16 disposed above in the upper space 14 via an actuator 17, and generates an arbitrary electromagnetic force through voltage control from a control device. It is possible.

下部空間15の略中間部には第1おもり載置段部20が形成され、この上に第1おもり21が自重で載置できるようにしている。更にその下方には第2おもり載置段部22が形成され、この上に第2おもり23が自重で載置できるようにしている。第2おもり載置段部22には中心孔24を備え、外部の流体を導入可能としており、同様に第1おもり載置段部20にも通孔25を備えて被測定流体を流通可能とし、それにより下部空間15内の全てに被測定流体26が満たされる。   A first weight placing step portion 20 is formed at a substantially middle portion of the lower space 15 so that the first weight 21 can be placed by its own weight on the first weight placing step portion 20. Further, a second weight placing step 22 is formed below the second weight 23 so that the second weight 23 can be placed under its own weight. The second weight mounting step 22 is provided with a central hole 24 so that an external fluid can be introduced. Similarly, the first weight mounting step 20 is also provided with a through hole 25 so that the fluid to be measured can flow. Thereby, the fluid to be measured 26 is filled in the entire lower space 15.

上記中心孔24の周囲にはポジションセンサ28を配置しており、第1おもり21の中心通孔30と第2おもり23の中心通孔31とを貫通して延びる荷重交換部材33において、下端近傍の第2おもり支持部材34の下部に形成した下端部35の位置を、中心孔24内に非接触で検知している。   A position sensor 28 is arranged around the center hole 24, and in the load exchange member 33 extending through the center through hole 30 of the first weight 21 and the center through hole 31 of the second weight 23, in the vicinity of the lower end. The position of the lower end portion 35 formed at the lower portion of the second weight support member 34 is detected in the center hole 24 without contact.

荷重交換部材33の上端部には、隔壁13の下面に近接して配置される永久磁石36を固定しており、また、第1おもり21の下方には第1おもり支持部材37を備え、前記第2おもり支持部材34を含め永久磁石36と一体化した荷重交換部材33が上下動する位置を、ポジションセンサ28で検出するようにしている。また、電磁石18と永久磁石36とを近接させることにより、永久磁石36側に作用する荷重を非接触で電磁石18側に伝達できるようにし、磁気浮上機構を形成している。   A permanent magnet 36 disposed in proximity to the lower surface of the partition wall 13 is fixed to the upper end portion of the load exchange member 33, and a first weight support member 37 is provided below the first weight 21, The position sensor 28 detects the position where the load exchange member 33 integrated with the permanent magnet 36 including the second weight support member 34 moves up and down. Further, by bringing the electromagnet 18 and the permanent magnet 36 close to each other, a load acting on the permanent magnet 36 side can be transmitted to the electromagnet 18 side in a non-contact manner, thereby forming a magnetic levitation mechanism.

第1おもり21と第2おもり23とは同様の構成を備え、第2おもり23を例にとって説明すると図1(b)の斜視図に示すような構成をなし、第2おもり支持部材34は図1(c)〜(e)に示すような相対回転移動がなされる。即ちこの第2おもり23においては、おもり本体部40の下端面43には図示実施例では3個の支持部材係止段部44を備えている。   The first weight 21 and the second weight 23 have the same configuration. If the second weight 23 is described as an example, the first weight 21 and the second weight 23 are configured as shown in the perspective view of FIG. A relative rotational movement as shown in 1 (c) to (e) is performed. That is, in the second weight 23, the lower end surface 43 of the weight main body portion 40 is provided with three support member locking step portions 44 in the illustrated embodiment.

おもりとしては種々のものを使用することができるが、熱膨張性、圧縮性、及び計測の再現性、完全等方位性、更には密度が小さく、化学的に安定である点等を考慮すると、単結晶のSi素材を用いることが好ましい。上記のような性能を有するものとしてはその他、単元素単結晶の素材としてGeも適切であることが本発明者等の研究によって明らかになった。   A variety of weights can be used, but considering the thermal expansion property, compressibility, reproducibility of measurement, complete isotropic orientation, further low density, and chemical stability, It is preferable to use a single crystal Si material. In addition to those having the above-mentioned performance, it has been clarified by research by the present inventors that Ge is also suitable as a material for a single element single crystal.

図1(b)に示すように、荷重交換部材33のロッド45には、前記3個の支持部材係止段部44における係合溝46に対応する位置に3個のおもり支持部47を固定しており、それにより図1(c)に示す支持部材位置[A]の状態では、その係合溝46におもり支持部47が係合する。また、後述するようにアクチュエータ17が永久磁石18を、図示実施例では40度ずつ回転することにより、荷重交換部材33のみが同様に40度ずつ回転し、図1(d)の支持部材位置[B]と図1(e)の支持部材位置[C]で示すように、両おもり支持部47が支持部材係止段部44に係合せず、また下端面43に接触せずに近接した状態をとるようにしている。   As shown in FIG. 1 (b), three weight support portions 47 are fixed to the rod 45 of the load exchange member 33 at positions corresponding to the engagement grooves 46 in the three support member locking step portions 44. Thus, in the state of the support member position [A] shown in FIG. 1C, the weight support portion 47 engages with the engagement groove 46. Further, as will be described later, when the actuator 17 rotates the permanent magnet 18 by 40 degrees in the illustrated embodiment, only the load exchange member 33 is similarly rotated by 40 degrees, and the support member position [ B] and the support member position [C] in FIG. 1 (e), the two weight support portions 47 are not engaged with the support member locking step portion 44 and are not in contact with the lower end surface 43, but are close to each other. To take.

なお、このようなおもり支持部47の回転は、後述するように図1(a)に示すような両おもりの支持部材係止段部44と全ての両おもり支持部47が互いに干渉しない位置で回転操作がなされる。   Note that the rotation of the weight support portion 47 is performed at a position where the support member locking step portions 44 of both weights and all the weight support portions 47 do not interfere with each other as shown in FIG. A rotation operation is performed.

また、このようなおもり支持部47の回転は、例えば図2(a)に示すように第1おもり支持部材37と第2おもり支持部材34とで位相を40度異ならせることにより、第1おもり支持部材37においては支持部材位置[C]となり、第2おもり支持部材34においては支持部材位置[B]となるように配置する。その後は荷重交換部材33がアクチュエータ17により40度ずつ回転されることにより、図2(b)における第1おもり支持部材37においては支持部材位置[A]となり、第2おもり支持部材34においては支持部材位置[C]となるようにし、図2(c)における第1おもり支持部材37においては支持部材位置[B]となり、第2おもり支持部材34においては支持部材位置[A]となるようにし、以降は再び図2(a)の位置に戻ることができるようにしている。   In addition, such rotation of the weight support portion 47 is caused by making the first weight support member 37 and the second weight support member 34 have different phases by 40 degrees as shown in FIG. 2A, for example. The support member 37 is arranged to be at the support member position [C], and the second weight support member 34 is arranged to be at the support member position [B]. Thereafter, the load exchanging member 33 is rotated by 40 degrees by the actuator 17 so that the first weight support member 37 in FIG. 2B becomes the support member position [A], and the second weight support member 34 supports it. 2C, the first weight support member 37 in FIG. 2C is the support member position [B], and the second weight support member 34 is the support member position [A]. Thereafter, it is possible to return to the position of FIG. 2A again.

なお、上記実施例においては荷重交換部材33が常に一方向に回転しても本発明を実施することができるようにした例を示しているが、荷重交換部材33を適宜左右に任意の角度回転することにより、図2(a)、図2(b)、図2(c)の各状態を得るようにしてもよい。   In the above embodiment, an example is shown in which the present invention can be implemented even if the load exchanging member 33 always rotates in one direction. By doing so, each state of FIG. 2A, FIG. 2B, and FIG. 2C may be obtained.

電子天秤16から吊り下げられる上部ロッド48にはアクチュエータ17が固定され、アクチュエータ17は前記のようにおもり支持部47を40度ずつ回転すると共に、上下方向の直動制御も可能となっている。
このアクチュエータ17から下方に延びる下部ロッド49の下端には電磁石18を固定している。この電磁石18は隔壁13の上面に近接して吊り下げられており、隔壁13を介して隔壁13の下面に近接して配置されている永久磁石36を制御装置からの通電制御により、電圧ゼロで浮上する位置で安定に静止させることができる。
The actuator 17 is fixed to the upper rod 48 suspended from the electronic balance 16, and the actuator 17 rotates the weight support portion 47 by 40 degrees as described above, and can also be controlled in the vertical direction.
The electromagnet 18 is fixed to the lower end of the lower rod 49 extending downward from the actuator 17. The electromagnet 18 is suspended close to the upper surface of the partition wall 13, and the permanent magnet 36 disposed close to the lower surface of the partition wall 13 via the partition wall 13 is controlled at a voltage of zero by energization control from the control device. It can be stably stopped at the position where it rises.

電磁石18と永久磁石36は非軸対象の構造になっており、したがって電磁石18の回転に追従して永久磁石36を回転させることができ、また上下動も追従してできるようにして、それによりゼロパワー制御を保ったまま荷重交換部材33を任意に上下・回転させることができる。高圧セルからなる容器12内に配置される上記のような第1おもり21と第2おもり23は共に密度と体積が既知であり、荷重交換部材33の回転によって荷重交換部材33のみ、または荷重交換部材33と第1おもり21或いは第2おもり33のいずれかを浮上させることができる。   The electromagnet 18 and the permanent magnet 36 are non-axially structured, so that the permanent magnet 36 can be rotated following the rotation of the electromagnet 18 and the vertical movement can also be tracked. The load exchange member 33 can be arbitrarily moved up and down and rotated while maintaining zero power control. Both the first weight 21 and the second weight 23 arranged in the container 12 composed of the high-pressure cell have known density and volume, and only the load exchange member 33 or the load exchange is performed by the rotation of the load exchange member 33. Either the member 33 and the first weight 21 or the second weight 33 can be levitated.

上記のような機構によって、例えば図2(a)のように第1おもり支持部材37においては支持部材位置[C]、第2おもり支持部材34においては支持部材位置[B]であるとき、第1おもり支持部材37と第2おもり支持部材34のおもり支持部47は全ておもり支持段部44には係合せず、自由状態になる。このときの荷重交換部材33と永久磁石36に働く重力及び浮力の和を電子天秤16で計測することにより、おもりを支持する風袋の秤量を行うことができる。   When the first weight support member 37 is at the support member position [C] and the second weight support member 34 is at the support member position [B], for example, as shown in FIG. All of the weight support portions 47 of the first weight support member 37 and the second weight support member 34 do not engage with the weight support step portion 44 and are in a free state. By measuring the sum of gravity and buoyancy acting on the load exchange member 33 and the permanent magnet 36 at this time with the electronic balance 16, the tare supporting the weight can be weighed.

この状態から荷重交換部材33を図1(a)に示す状態まで降下させ、アクチュエータ17により電磁石18を40度回転し、それに追従して永久磁石36を同様に回転させ、それにより第1おもり支持部材37においては支持部材位置[A]、第2おもり支持部材34においては支持部材位置[C]となる。それにより第1おもり支持部材37の3個のおもり支持部47は、おもり支持段部44の係合溝46に係合し、第2おもり支持部材34とは自由状態の位置となるので、この状態からゼロパワー制御を保ちつつアクチュエータ17により第1おもり21のみを支持しながら荷重交換部材33を上昇させる。
それにより図2(b)に示す安定状態となり、ここで電子天秤16で前記と同様に計測し、第1おもりと風袋の合計の秤量を行う。
From this state, the load exchanging member 33 is lowered to the state shown in FIG. 1A, the electromagnet 18 is rotated 40 degrees by the actuator 17, and the permanent magnet 36 is rotated in the same manner, thereby supporting the first weight. The member 37 is the support member position [A], and the second weight support member 34 is the support member position [C]. As a result, the three weight support portions 47 of the first weight support member 37 are engaged with the engagement grooves 46 of the weight support step portion 44, and the second weight support member 34 is in a free state position. The load exchange member 33 is raised while supporting only the first weight 21 by the actuator 17 while maintaining zero power control from the state.
Thereby, the stable state shown in FIG. 2B is obtained, and the electronic balance 16 is measured in the same manner as described above, and the total weight of the first weight and the tare is measured.

その後、再び荷重交換部材33を図1(a)に示す位置まで降下し、荷重交換部材を自由状態にして同方向に40度回転させる。それにより図2(c)に示すように第1おもり支持部材37は支持部材位置[B]、第2おもり支持部材34は支持部材位置[A]となり、第2おもり支持部材34が第2おもり23のおもり支持段部と係合可能となる。それにより第2おもり支持部材34の3個のおもり支持部47は、おもり支持段部44の係合溝46に係合し、第1おもり支持部材37は係合しない自由状態の位置となるので、この状態からゼロパワー制御を保ちつつアクチュエータ17により第2おもり23のみを支持しながら荷重交換部材33を上昇させる。
それにより図2(c)に示す安定状態となり、ここで電子天秤16で前記と同様に計測し、第2おもりと風袋の合計の秤量を行う。
Thereafter, the load exchange member 33 is lowered again to the position shown in FIG. 1A, and the load exchange member is brought into a free state and rotated by 40 degrees in the same direction. As a result, as shown in FIG. 2C, the first weight support member 37 is in the support member position [B], the second weight support member 34 is in the support member position [A], and the second weight support member 34 is in the second weight. It becomes possible to engage with the 23 weight support steps. As a result, the three weight support portions 47 of the second weight support member 34 are engaged with the engagement grooves 46 of the weight support step portion 44, and the first weight support member 37 is in a free position where it is not engaged. From this state, the load exchange member 33 is raised while supporting only the second weight 23 by the actuator 17 while maintaining zero power control.
As a result, the stable state shown in FIG. 2C is obtained, where the electronic balance 16 is measured in the same manner as described above, and the total weight of the second weight and the tare is measured.

上記のような機構を用いて図2(a)の風袋秤量位置、図2(b)の第1おもり秤量位置、図2(c)の第2おもり秤量位置とすることができるものであるが、各々の秤量位置における永久磁石36の位置は一定であり、隔壁13の底面と永久磁石36の間隔Lを一定とすることができる。したがって、前記従来のもののような風袋秤量位置とおもり秤量位置とで流体中における永久磁石の位置が異なることにより流体の磁性の影響を受けることを防止することができるようになる。   Using the mechanism as described above, the tare weighing position in FIG. 2 (a), the first weight weighing position in FIG. 2 (b), and the second weight weighing position in FIG. 2 (c) can be obtained. The position of the permanent magnet 36 at each weighing position is constant, and the distance L between the bottom surface of the partition wall 13 and the permanent magnet 36 can be constant. Accordingly, the position of the permanent magnet in the fluid differs between the tare weighing position and the weight weighing position as in the conventional one, thereby preventing the influence of the magnetic properties of the fluid.

また、上記のように本発明においては密度と体積とが既知のおもりを2個用いて前記のような秤量を行うことによって、これらの秤量値から同一測定位置における流体にはたらく磁力の変化割合を求め、磁力線の強弱によって生じる、力の伝達誤差の変化分をも補正することができるようになる。即ち、図3は永久磁石36を同一位置で浮上させながら、電磁石18の位置を変化させ両者に働く吸引力を変化させたときに、流体に働く磁気力の大きさを有限要素法を用いて計算した例である。荷重交換部材33にかかる見かけの質量が50〜200 gfで変化したときに、流体に働く磁気力は2.3〜2.6 mgと直線的に変化している。このことから風袋秤量位置とおもり秤量位置での流体の磁気力による誤差は吸引力の変化100 gfに対して0.2 mgfに抑えることができる。   Further, as described above, in the present invention, by performing weighing as described above using two weights whose density and volume are known, the rate of change in magnetic force acting on the fluid at the same measurement position can be determined from these measured values. Thus, it is possible to correct a change in force transmission error caused by the strength of the magnetic field lines. That is, FIG. 3 shows the magnitude of the magnetic force acting on the fluid using the finite element method when the position of the electromagnet 18 is changed while the permanent magnet 36 is levitated at the same position and the attractive force acting on both is changed. This is a calculated example. When the apparent mass applied to the load exchange member 33 changes from 50 to 200 gf, the magnetic force acting on the fluid changes linearly from 2.3 to 2.6 mg. Therefore, the error due to the magnetic force of the fluid at the tare weighing position and the weight weighing position can be suppressed to 0.2 mgf with respect to the change in suction force of 100 gf.

この流体の磁気力の大きさFLは図3から
FL=α F+β (5)
となる。ここでFは吸引力、α、βは定数をそれぞれ表す。風袋秤量位置、第1おもり秤量位置、および第2おもり秤量位置において、電子天秤16で秤量される見かけの質量をそれぞれMA、MB、およびMCとすると、(5)式を適用して
MA=(α+1)(ρ−ρ)V+β (6)
MB=(α+1){(ρ−ρ)V+(ρ2a−ρ)V2a}+β (7)
MC=(α+1){(ρ−ρ)V+(ρ2b−ρ)V2b}+β (8)
ρは密度、Vは体積、添え字1、2a、2b、3はそれぞれ流体、第1おもり、第2おもり、荷重交換部材をあらわす。(7)式、(8)式から(6)式を辺々差し引くと
MB−MA=(α+1)(ρ2a−ρ)V2a (9)
MC−MA=(α+1)(ρ2b−ρ)V2b (10)
さらに式(9)と式(10)を辺々割り算すると
ρ={(MC−MA)V2aρ2a−(MB−MA)V2bρ2b}/{(MC−MA)V2a−(MB−MA)V2b} (11)
となり、流体の密度ρを求めることが可能である。これにより、浮上位置が一定でありながら、吸引力が変化したときの流体に作用する微小な磁気力変化分さえも補正した密度算出を行うことが可能である。
上記のように密度と体積とが既知のおもりを2個用いて秤量を行うため、両おもりの密度を異ならせる必要があり、従来から用いられているSi単結晶からなるおもりのほか、前記のようなGe単結晶からなるおもりを用いている。
Size F L of the magnetic force of the fluid from Figure 3
F L = α F + β (5)
It becomes. Here, F represents a suction force, and α and β represent constants, respectively. Assuming that the apparent masses weighed by the electronic balance 16 at the tare weighing position, the first weight weighing position, and the second weight weighing position are M A , M B , and M C , respectively,
M A = (α + 1) (ρ 3 −ρ 1 ) V 3 + β (6)
M B = (α + 1) {(ρ 3 −ρ 1 ) V 3 + (ρ 2a −ρ 1 ) V 2a } + β (7)
M C = (α + 1) {(ρ 3 −ρ 1 ) V 3 + (ρ 2b −ρ 1 ) V 2b } + β (8)
ρ is density, V is volume, subscripts 1, 2a, 2b, and 3 are fluid, first weight, second weight, and load exchange member, respectively. If you subtract (6) from (7) and (8),
M B −M A = (α + 1) (ρ 2a −ρ 1 ) V 2a (9)
M C −M A = (α + 1) (ρ 2b −ρ 1 ) V 2b (10)
Further, when dividing equation (9) and equation (10) side by side, ρ 1 = {(M C −M A ) V 2a ρ 2a − (M B −M A ) V 2b ρ 2b } / {(M C −M A) V 2a - (M B -M A) V 2b} (11)
Thus, the fluid density ρ 1 can be obtained. Accordingly, it is possible to perform density calculation in which even a minute magnetic force change acting on the fluid when the attractive force changes is corrected while the floating position is constant.
Since weighing is performed using two weights whose density and volume are known as described above, it is necessary to make the densities of the two weights different from each other. A weight made of such a Ge single crystal is used.

本発明の実施例の説明図であり、(a)はおもり支持部材回転移動位置における各部材の位置関係を示す断面図であり、(b)はおもり及びおもり支持部材の斜視図であり、(c)は支持部材位置[A]、(d)は支持部材位置[B]、(e)は支持部材位置[C]の状態を示す斜視図及び底面図である。It is explanatory drawing of the Example of this invention, (a) is sectional drawing which shows the positional relationship of each member in a weight support member rotation movement position, (b) is a perspective view of a weight and a weight support member, (c) is a support member position [A], (d) is a support member position [B], and (e) is a perspective view and a bottom view showing the support member position [C]. 本発明の実施例の各種状態を示す断面図であり、(a)は風袋秤量位置、(b)は第1おもり秤量位置、(c)は第2おもり秤量位置を示す。It is sectional drawing which shows the various states of the Example of this invention, (a) shows the tare weighing position, (b) shows the 1st weight weighing position, (c) shows the 2nd weight weighing position. 浮上位置を一定にしたときの吸引力と流体に働く磁気力の関係を有限要素法を用いて解析した例を示すグラフである。It is a graph which shows the example which analyzed using the finite element method the relationship between the attractive force when making a floating position constant, and the magnetic force which acts on a fluid. 従来例を示す断面図であり、(a)は風袋秤量位置、(b)はおもり秤量位置を示す。It is sectional drawing which shows a prior art example, (a) shows a tare weighing position, (b) shows a weight weighing position.

符号の説明Explanation of symbols

11 磁気浮上密度計
12 容器
13 隔壁
14 上部空間
15 下部空間
16 電子天秤
17 アクチュエータ
18 電磁石
20 第1おもり載置段部
21 第1おもり
22 第2おもり載置段部
23 第2おもり
24 中心孔
25 通孔
26 被測定流体
28 ポジションセンサ
30 中心通孔
31 中心通孔
33 荷重交換部材
34 第2おもり支持部材
35 下端部
36 永久磁石
37 第1おもり支持部材
40 おもり本体部
43 下端面
44 支持部材係止段部
45 ロッド
46 係合溝
47 おもり支持部
48 上部ロッド
DESCRIPTION OF SYMBOLS 11 Magnetic levitation density meter 12 Container 13 Bulkhead 14 Upper space 15 Lower space 16 Electronic balance 17 Actuator 18 Electromagnet 20 1st weight mounting step part 21 1st weight 22 2nd weight mounting step part 23 2nd weight 24 Central hole 25 Through hole 26 Fluid to be measured 28 Position sensor 30 Center through hole 31 Center through hole 33 Load exchange member 34 Second weight support member 35 Lower end portion 36 Permanent magnet 37 First weight support member 40 Weight main body portion 43 Lower end surface 44 Support member engagement Stop part 45 Rod 46 Engaging groove 47 Weight support part 48 Upper rod

Claims (4)

密度が異なり体積が共に既知である2個のおもりと、
前記2個のおもりを測定流体中で載せかえ、或いはおもりを載せない状態とする荷重交換部材と、
荷重を測定するための電子天秤と、
前記荷重交換部材のみ、或いはいずれかのおもりを含んだ荷重を前記電子天秤に非接触に伝播させるための磁気浮上機構と、
前記荷重交換部材の浮上位置と荷重交換を制御するアクチュエータとを備え、
おもりを載せない風袋計測位置と、1つのおもりのみを載せた第1密度計測位置と、他のおもりのみを載せた第2密度計測位置とを任意に設定して前記電子天秤により秤量を行うことを特徴とする磁気浮上密度計。
Two weights of different density and known volume,
A load exchanging member that replaces the two weights in the measurement fluid or puts no weight on the fluid;
An electronic balance for measuring the load;
A magnetic levitation mechanism for propagating a load including only the load exchange member or any weight to the electronic balance in a non-contact manner;
An actuator for controlling the floating position of the load exchange member and load exchange;
A tare measurement position where no weight is placed, a first density measurement position where only one weight is placed, and a second density measurement position where only another weight is placed are arbitrarily set and weighing is performed using the electronic balance. Magnetic levitation density meter.
前記荷重交換部材は、2個のおもりの中心孔を貫通するロッドと、該ロッドに固定した第1おもり支持部材及び第2おもり支持部材と、上端部に設けた永久磁石とを備え、
前記永久磁石を電磁石により吊り上げる磁気浮上機構を備えたことを特徴とする請求項1記載の磁気密度計。
The load exchange member includes a rod penetrating the center hole of two weights, a first weight support member and a second weight support member fixed to the rods, and a permanent magnet provided at an upper end portion,
The magnetic density meter according to claim 1, further comprising a magnetic levitation mechanism that lifts the permanent magnet with an electromagnet.
前記荷重交換部材は、各おもりの底面に突出するおもり支持段部と、該支持段部を備えない底面とに選択的に当接するおもり支持部材を備え、
前記アクチュエータの回転により荷重交換部材を回転し、前記おもり支持部材の回転によりおもりの載せ換えを行うことを特徴とする請求項1記載の磁気密度計。
The load exchange member includes a weight support step that protrudes from the bottom surface of each weight, and a weight support member that selectively contacts a bottom surface that does not include the support step portion.
The magnetic density meter according to claim 1, wherein the load exchange member is rotated by the rotation of the actuator, and the weight is replaced by the rotation of the weight support member.
前記2個のおもりはSi単結晶とGe単結晶の各1個ずつからなることを特徴とする請求項1記載の磁気密度計。
2. The magnetic density meter according to claim 1, wherein the two weights are each composed of one Si crystal and one Ge crystal.
JP2004269039A 2004-09-15 2004-09-15 Magnetic levitation density meter Expired - Fee Related JP4212537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269039A JP4212537B2 (en) 2004-09-15 2004-09-15 Magnetic levitation density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269039A JP4212537B2 (en) 2004-09-15 2004-09-15 Magnetic levitation density meter

Publications (2)

Publication Number Publication Date
JP2006084311A true JP2006084311A (en) 2006-03-30
JP4212537B2 JP4212537B2 (en) 2009-01-21

Family

ID=36162938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269039A Expired - Fee Related JP4212537B2 (en) 2004-09-15 2004-09-15 Magnetic levitation density meter

Country Status (1)

Country Link
JP (1) JP4212537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415128B1 (en) 2014-01-17 2014-07-04 서무교 Method for measuring density of liquid using magnetostriction
KR101423119B1 (en) 2014-01-16 2014-07-25 서무교 Apparatus for measuring density of liquid using magnetostriction
CN106053293A (en) * 2016-08-05 2016-10-26 江苏三联安全评价咨询有限公司 Novel industrial powder bulk density testing device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344522A (en) * 2013-06-24 2013-10-09 湖南工业大学 Liquid density measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423119B1 (en) 2014-01-16 2014-07-25 서무교 Apparatus for measuring density of liquid using magnetostriction
WO2015108334A1 (en) * 2014-01-16 2015-07-23 산들정보통신 주식회사 Device for measuring density of liquid using magnetostriction
KR101415128B1 (en) 2014-01-17 2014-07-04 서무교 Method for measuring density of liquid using magnetostriction
WO2015108292A1 (en) * 2014-01-17 2015-07-23 산들정보통신 주식회사 Method for measuring density of liquid using magnetostriction
CN104969053A (en) * 2014-01-17 2015-10-07 群山信息技术株式会社 Method for measuring density of liquid using magnetostriction
CN106053293A (en) * 2016-08-05 2016-10-26 江苏三联安全评价咨询有限公司 Novel industrial powder bulk density testing device and method

Also Published As

Publication number Publication date
JP4212537B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
CN101099092B (en) Device and method for detecting material by way of gravitational field analysis
JP6588086B2 (en) Scale with floating weighing pan
Quinn The beam balance as an instrument for very precise weighing
EP1979722B1 (en) Liquid level and density measurement device
JP4229895B2 (en) Magnetic levitation density meter
JP4212537B2 (en) Magnetic levitation density meter
CN111323110B (en) Calibration weight assembly for a weight measuring device
Masui et al. Densimetry in compressed fluids by combining hydrostatic weighing and magnetic levitation
CN217277667U (en) Pump suction type liquid surface tension coefficient measuring instrument
CN215339418U (en) Multi-index water infiltration system with adjustable water head
CN210894735U (en) High-precision broadband gravimeter
FI105237B (en) Silicon micro mechanical balance
Nor et al. An improved ring method for calibration of hydrometers
CN110208132B (en) Magnetic fluid thermal expansion coefficient measurement system and method
CN103697976B (en) Microbalance check weighing system
Bowman et al. Cartesian diver as a density comparator
RU2331865C1 (en) Method of fluid medium density measurement and device for its implementation
Probst et al. Investigation of a hydrostatic weighing method for a 1 kg mass comparator
Rivetti et al. BIC 3, the latest inertial centrifugal balance for mass measurement in weightless conditions
CN204612796U (en) Electronic balance magnet steel overcoat
RU2488125C1 (en) Hydrostatic accelerometer
Richter et al. A new apparatus for accurate measurements of the densities of liquefied natural gas (LNG)
JP2011185907A (en) Flow sensor
JP2002365051A (en) Gradient angle measuring sensor
JP2000275089A (en) Level floatation-type balance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees