WO2015107837A1 - Valve lifter - Google Patents

Valve lifter Download PDF

Info

Publication number
WO2015107837A1
WO2015107837A1 PCT/JP2014/083831 JP2014083831W WO2015107837A1 WO 2015107837 A1 WO2015107837 A1 WO 2015107837A1 JP 2014083831 W JP2014083831 W JP 2014083831W WO 2015107837 A1 WO2015107837 A1 WO 2015107837A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve lifter
end region
valve
texture
grooves
Prior art date
Application number
PCT/JP2014/083831
Other languages
French (fr)
Japanese (ja)
Inventor
明男 吉元
正之 佐藤
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2015557749A priority Critical patent/JP6419727B2/en
Publication of WO2015107837A1 publication Critical patent/WO2015107837A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/143Tappets; Push rods for use with overhead camshafts

Definitions

  • the present invention relates to a valve lifter used in a direct-acting valve operating mechanism, and more particularly to a surface structure of a skirt portion of the valve lifter.
  • Friction loss accounts for 75 to 90% of these main sliding parts, and the ratio of piston rings, pistons and connecting rods is high in the middle and high speed rotation range, and the ratio of friction in the valve system is high in the low speed rotation range.
  • There are various technologies for reducing these friction losses basically reducing the surface roughness of the sliding surface to lower the frictional resistance, and providing a surface structure with improved oil retention from the viewpoint of lubrication. Improvements have been made.
  • valve lifter is a member that is disposed between the cam and the valve, and converts the rotational movement of the cam into the opening / closing movement of the valve (Patent Documents 1, 2, etc.).
  • the valve lifter has a valve lifter body including a crown part and a skirt part, and the valve lifter body slides in a bore formed in the cylinder head in accordance with the rotational movement of the cam. Therefore, it is desirable to reduce the frictional resistance between the outer peripheral surface of the skirt portion of the valve lifter body and the bore inner peripheral surface of the cylinder head.
  • the concave portion is formed by shot blasting or sand blasting in the entire outer peripheral surface of the skirt portion of the valve lifter or in the entire inner peripheral surface of the bore into which the valve lifter is inserted (valve lifter accommodating portion).
  • Lubricating oil is held between the skirt and the bore inner peripheral surface to reduce friction.
  • the sliding resistance in the vertical direction is reduced by alternately forming textured grooves and non-textured grooves in the vertical direction of the outer peripheral surface of the skirt portion of the valve lifter.
  • JP 2008-240601 A JP 2008-215172 A JP 2008-75591A JP 2011-256715 A
  • FIG. 1A is a schematic sectional view of a valve lifter valve operating system
  • FIG. 1B is a sectional view when the valve lifter is raised and the valve is closed
  • FIG. 1C is a valve lifter lowered and the valve is It is sectional drawing when it opens.
  • a valve lifter 14 is disposed in a bore 12 formed in the cylinder head 10 so as to be movable up and down with an appropriate clearance.
  • a cam 16 that slides on the crown of the valve lifter 14 is attached to a camshaft 18, and the camshaft 18 is rotated by a drive system 20 such as a chain.
  • the lubricating oil supplied to the space 18A in the camshaft 18 is supplied to the cam journal portion 24 and the cam journal cap 26 through the holes 22, and the lubricating oil that has further lubricated the cam journal portion 24 is indirectly outer periphery thereof. Part is used for lubrication of the valve lifter 14.
  • FIG. 2A is a schematic cross-sectional view when the valve lifter is lowered
  • FIG. 2B is a schematic cross-sectional view when the valve lifter is raised
  • a curved upper surface 32 is formed on the outer peripheral portion (opening end) of the bore 12 of the cylinder head 10 so as to collect the lubricating oil 30 dispersed from the camshaft or the like.
  • the upper surface 32 needs to be formed with a relief so as not to come into contact with the tip of the cam.
  • a sharp edge 34 is formed between the upper surface 32 and the inner wall of the bore 12.
  • the lubricating oil 30 stored on the upper surface 32 is also used for sliding between the outer peripheral surface of the skirt portion 14 ⁇ / b> A of the valve lifter 14 and the inner peripheral surface of the bore 12.
  • the cam 16 slides in a fixed direction on the valve lifter crown surface, but the center of the cam width is slightly offset from the center of the valve lifter 14, so when the cam 16 slides on the crown surface, A rotational moment is applied, and the valve lifter 14 is rotated in the bore 12 together with the lift operation. Since a clearance is set between the valve lifter 14 and the bore 12, the valve lifter 14 is slightly inclined in the bore 12 when moving up and down as shown in FIGS. 2 (A) and 2 (B). Will repeat the reciprocating motion.
  • Fig. 3 shows an example of calculation of the tilt angle (cocking amount) in the bore of the valve lifter.
  • the operation Y with a rectangular inclination is performed immediately after the start of the lift operation and immediately before the maximum lift, and immediately after the maximum lift has elapsed and immediately before the end of the lift.
  • the cam 16 rotates clockwise, a right-turning moment is generated in the valve lifter 14 immediately after the lift starts, and the valve lifter 14 tilts to the right as shown in FIG. 2A, and the right upper end S1 and the left lower end of the skirt portion 14A.
  • S2 contacts the inner wall of the bore and receives moment reaction forces F1 and F2.
  • valve lifter 14 Since the direction of this moment does not change until immediately before the maximum lift, the valve lifter 14 performs the lowering operation while always tilting to the right. At this time, in particular, the supply of the lubricating oil to the lower end S2 is reduced, and the bore inner wall is scraped off by the lower end S2.
  • valve lifter 14 in the process of turning the valve lifter 14 from immediately after the maximum lift to just before opening and closing, the valve lifter is always tilted to the left as shown in FIG.
  • the upper and lower ends S1 and S2 on the side receive moment reaction forces F1 and F2. Since the direction of this moment does not change until just before the end of the lift, the valve lifter 14 always moves upward while tilting to the left. At this time, in particular, the supply of lubricating oil to the upper end S1 is reduced, and the bore inner wall is scraped off. Further, since the valve lifter crown surface rises beyond the edge 34 to the point of lift 0, if the upper end S1 slides with the edge 34 and the lubrication state is insufficient, the frictional resistance there increases, and the edge 34 wears out.
  • the posture of the valve lifter is tilted while moving up and down, and therefore, the main contact portion between the valve lifter 14 and the bore is limited to the upper and lower end portions S1 and S2 of the skirt portion 14A. Due to the structure of the two, since they are in contact and sliding at the edges of each other, the oil film easily breaks at this portion, and there is a concern of increased friction loss and local wear.
  • the edge 34 is worn, the diameter of the upper end portion of the bore increases, and abnormal noise is generated when the valve lifter is cocked (operation Y in FIG. 3).
  • the inclination angle of the valve lifter is also increased, the optimum clearance between the valve lifter and the bore is gradually lost, and the sliding performance is also lowered due to local contact.
  • An object of the present invention is to provide a valve lifter that can solve such problems of the prior art and reduce the frictional resistance between the upper and lower ends of the valve lifter and the bore of the cylinder head.
  • the valve lifter according to the present invention is disposed between the valve and the cam and converts the rotational operation of the cam into the lift operation of the valve.
  • the valve lifter includes a crown surface on which the cam slides, and the crown surface.
  • a second texture groove for holding lubricating oil is formed in the circumferential direction in the lower end region defined by a second distance in the axial direction across an intermediate region adjacent to the upper end region. Formed.
  • the first and second texture grooves are formed by laser processing.
  • the axial distance of the upper end region is larger than the axial distance of the lower end region.
  • an amorphous hard carbon coating is formed on the outer peripheral surface of the skirt portion, and the first and second texture grooves are formed in the amorphous hard carbon coating.
  • the first and second texture grooves are formed by laser processing.
  • the upper end region includes a chamfered edge region, and a first texture groove is formed in the edge region.
  • the lower end region includes a chamfered edge region, and a second texture groove is formed in the edge region.
  • the first and second texture grooves are herringbone patterns.
  • a plurality of grooves extending in a circumferential direction orthogonal to the axial direction are formed in the intermediate region.
  • An internal combustion engine according to the present invention includes a valve lifter having the above characteristics and a cylinder head in which a bore for slidably inserting the valve lifter is formed.
  • the first and second texture grooves are formed in the upper end region and the lower end region of the valve lifter, respectively, so that the edges of the upper end portion and the lower end portion of the valve lifter slide with the bore inner peripheral surface of the cylinder head. Friction when moving can be reduced. Thereby, expansion of the clearance between the valve lifter and the bore due to wear of the bore inner peripheral surface can be suppressed, and generation of abnormal noise during operation of the valve lifter can be suppressed.
  • FIG. 1A is a cross-sectional view schematically showing a valve lifter valve operating system
  • FIG. 1B is a cross-sectional view when the valve lifter is raised and the valve is closed
  • FIG. 1C is a view showing the valve lifter being lowered. It is sectional drawing when a valve opens.
  • 2A is a schematic cross-sectional view for explaining the operation when the valve lifter is lowered
  • FIG. 2B is a schematic cross-sectional view for explaining the operation when the valve lifter is raised. It is a graph which shows the example of calculation of the rotation angle of a cam, and the inclination angle of a valve lifter.
  • 4A is a front view of the valve lifter according to the embodiment of the present invention
  • FIG. 4B is a longitudinal sectional view of FIG. 4A.
  • FIG. 5A is a cross-sectional view illustrating another configuration example of the skirt portion according to the embodiment of the present invention, and FIG. 5A illustrates an example in which texture grooves are formed on the chamfers of the upper end portion and the lower end portion of the skirt portion.
  • FIG. 5B shows an example in which an amorphous hard carbon film is formed on the skirt portion. It is a figure which shows an example of the texture groove
  • FIG. 8 is a diagram showing the configuration of the skirt portion of the valve lifter according to the second embodiment of the present invention.
  • valve lifter according to the present invention will be described below with reference to the drawings. It should be noted that the scale of the drawings is emphasized for easy understanding of the features of the invention, and is not necessarily the same as the scale of actual devices and parts.
  • the valve lifter according to the present embodiment is disposed between the valve stem and the cam in the direct stroke type valve operating mechanism of the internal combustion engine and has a function of transmitting the lift operation of the cam to the valve. Further, the valve lifter may be provided with a pausing mechanism for pausing or operating the lift operation of the valve stem by controlling the hydraulic ON / OFF. For example, when the internal combustion engine is operated at a low speed, the cam lift operation is stopped so as not to be transmitted to the valve, and when the internal combustion engine is operated at a medium or high speed, the cam lift operation is transmitted to the valve.
  • FIG. 4A is a front view of the valve lifter according to the present embodiment
  • FIG. 4B is a longitudinal sectional view of the valve lifter of FIG. 4A
  • the valve lifter 100 according to the present embodiment has a generally inverted cup-shaped valve lifter body, and the valve lifter body has a circular crown portion 110 and a cylindrical skirt portion 120 extending in the vertical direction from the crown portion 110.
  • a boss 122 is formed on the back surface of the valve lifter crown 110 to be in contact with a valve stem or the like.
  • the valve pausing mechanism can be arranged in the space inside the skirt portion 120.
  • the first texture groove 132 is formed in the upper end region 130 of the outer peripheral surface of the skirt portion 120, and the second lower region 150 is separated by the intermediate region 140 adjacent to the upper end region 130.
  • the texture groove 152 is formed. That is, the first texture groove 132 is formed in the upper end region 130 defined by the distance L1 in the axial direction from the upper end surface or the crown surface of the skirt portion 120 as a reference. Further, the second texture groove 152 is formed in the lower end region 150 defined by the lower end surface from the distance L3, with the intermediate region 140 defined by the distances L1 and L2 being separated.
  • the texture groove is a groove with regular irregularities and fine irregularities. Due to the irregular periodic structure, the texture groove has a function of effectively retaining the lubricating oil in the groove and improving the oil retaining property of the lubricating oil.
  • the axial distance L1 of the upper end region 130 is set larger than the axial distance (L3-L2) of the lower end region 150 (L1> (L3-L2)). The reason for this is that, as shown in FIG. 2A, when the valve lifter is in the lift 0 (when it is in the uppermost position), the edge of the upper end region 130 is located above the edge 34, and the edge of the upper end region 130 Since the sliding distance by any one of the edges 34 is effectively increased, the distance L1 is increased accordingly.
  • the first and second texture grooves 132 and 152 are formed by laser processing after the surface roughness of the outer peripheral surface of the skirt portion 120 is polished to Ra 0.3 ⁇ m or less. Laser processing makes it possible to form texture grooves with fine and complex patterns on the outer peripheral surface of the skirt portion by optically scanning with laser light.
  • the depth of the groove can be arbitrarily adjusted by the output of the laser beam.
  • the texture grooves have a depth of about 300 nm, for example, and are formed at a pitch of 0.1 to 0.2 mm, for example.
  • the first and second texture grooves 132 and 152 may have the same configuration or different configurations.
  • the structure of the texture groove is specified from, for example, a pattern, depth, pitch, size, area ratio, cross-sectional shape, and the like.
  • the valve lifter moves up and down in an inclined posture due to the action of the rotational moment.
  • the edges of the upper end S1 and the lower end S2 of the valve lifter are in contact with the bore inner peripheral surface, and the intermediate region between the upper end S1 and the lower end S2 is not substantially in contact with the bore inner peripheral surface.
  • a large surface pressure is generated at the edges of the upper end S1 and the lower end S2 of the valve lifter, the oil retaining properties of the upper end S1 and the lower end S2 are weakened, the frictional resistance is increased, and the wear proceeds.
  • the first texture groove 132 is formed in the upper end region 130 of the skirt portion 120 and the second texture groove 152 is formed in the lower end region 150.
  • the first texture groove 132 the lubricating oil supplied from the gap between the crown 110 and the bore is held by the first texture groove 132, and between the upper end region 130 and the bore inner peripheral surface. Friction is reduced.
  • the second texture groove 152 the oil retaining property of the lower end region 150 of the skirt portion 120 is improved, and the friction between the lower end region 150 and the bore inner peripheral surface is reduced.
  • the texture grooves formed by laser processing have different performance from the grooves formed by shot blasting, sand blasting, or the like. Shot blasting and sand blasting form random grooves, and complex patterns and patterns with periodicity and regularity cannot be formed unlike laser processing. Further, in the case of laser processing, as shown in FIG. 4B, the area ratio of the groove irregularities can be accurately determined.
  • the convex surface P is a region that slides with the inner peripheral surface of the bore, and since the surface pressure is determined by the area of the convex surface P, the area ratio of the texture groove is a very important factor.
  • the intermediate region 140 is not substantially in contact with the inner peripheral surface of the bore during the vertical movement of the valve lifter, so that it is not necessary to form a texture groove here.
  • the cycle time of laser processing can be increased, productivity can be improved, and cost can be reduced.
  • FIG. 5A shows an example in which R chamfering is formed at each edge of the upper end region 130 and the lower end region 150 of the skirt portion.
  • the valve lifter is inclined, and the edge of the upper end region 130 and the edge of the lower end region 150 abut against the bore inner peripheral surface. For this reason, it is desirable to perform R chamfering on the edge E1 of the upper end region 130 and the edge E2 of the lower end region 150 to reduce the surface pressure of the edges E1 and E2 and further suppress the frictional resistance.
  • the R chamfering can be performed by, for example, shot blasting or sand blasting in addition to lace processing.
  • the texture grooves 132 and 152 are formed on the edges C1 and E2 which are chamfered. Thereby, the lubrication by the edges E1 and E2 is further improved, and the frictional resistance and wear can be further reduced.
  • R chamfering may be formed at the edges E1 and E2 instead of R chamfering. Or the combination of R chamfering and C chamfering may be sufficient. By forming the C chamfer, it is possible to expect the same effect as that of the R chamfer.
  • FIG. 5B shows a configuration example of the skirt portion of a further preferable aspect of the present embodiment.
  • An amorphous hard carbon film (hereinafter referred to as a DLC (Diamond-like carbon film)) 160 is formed on the surface of the skirt portion 120.
  • the DLC film 160 may be formed directly on the substrate surface, but may be formed through an intermediate layer of a metal such as Cr or a metal nitride thereof in order to improve adhesion.
  • the base material on which the DLC film 160 is formed is subjected to hardening heat treatment such as carburizing treatment or quenching treatment on steel materials such as SCM415 material according to JIS standard, iron alloys, or the steel materials or iron alloys, and the surface hardness is HRC53 or more.
  • the DLC film 160 can be formed by a PVD method, a CVD method, a PACVD method, or the like.
  • the hydrogen content formed by PVD method, particularly arc ion plating method is 0.5 atomic% or less.
  • the film thickness of the DLC film 160 is, for example, 0.3 to 1.5 ⁇ m, preferably 1.0 ⁇ m or less in the PVD method. If it is CVD method, it can have a film thickness of about 20 micrometers.
  • the first and second texture grooves 132 and 152 are formed on the DLC film 160. Thereby, since the convex surface P (refer FIG. 4 (B)) of the 1st and 2nd texture grooves 132 and 152 becomes a DLC film, the further sliding performance is improved combined with the oil retention property improvement of lubricating oil.
  • FIG. 6A to 6D show a part of the first and second texture grooves 132 and 152 in the upper end region 130 and the lower end region 150.
  • FIG. 6A The texture grooves 132 and 152 in FIG. 6A are formed by forming rectangular grooves in the horizontal direction perpendicular to the sliding direction of the valve lifter. By forming the groove in a direction perpendicular to the sliding direction, the lubricating oil is more easily retained.
  • Textures 132 and 152 in FIG. 6 (B) are obtained by forming a mountain-shaped rectangular herringbone groove.
  • Each of the grooves is substantially V-shaped, and the V-shape is directed toward the crown surface, and a plurality of sets are arranged in the circumferential direction and in the radial direction.
  • the herringbone has a groove that intersects the sliding direction of the valve lifter at a certain angle, and this is continuous in the circumferential direction, so that the lubricating oil is easily held in the groove. Further, the lubricating oil is easily supplied to the lower end region of the skirt portion by the V-shaped direction.
  • FIG. 6C is a modification of FIG.
  • the texture grooves 132 and 152 in FIG. 6D are formed by continuously forming diamond-shaped cross hatch grooves in the circumferential direction. Lubricating oil easily flows in the circumferential direction and the axial direction.
  • FIG. 7 (E) shows an example in which 45 ° and 135 ° oblique grooves are alternately set to form a continuous V-shaped groove in the radial direction.
  • the groove is configured to be continuously connected in the axial direction of the skirt portion.
  • FIG. 7F is a diagram in which the continuity in the radial direction of each hatched groove in FIG.
  • FIG. 7 (G) shows a continuous herring bone formed vertically in the circumferential direction of FIG. 6 (C) and the pitch changed by the upper and lower grooves.
  • FIG. 7H shows a herringbone formed in the chamfered portion of the upper end region and the lower end region.
  • the pattern, depth, pitch, size, area ratio, cross-sectional shape, and the like of the first and second texture grooves 132 and 152 are optimized according to the compatibility with the material on the cylinder head side.
  • texture grooves are formed in the intermediate region 140.
  • the intermediate region 140 is substantially non-contact with the inner peripheral surface of the bore during the vertical movement of the valve lifter, but forms a texture groove in the intermediate region 140.
  • a pattern is formed so that the lubricating oil is easily retained.
  • An example of the texture groove 142 formed in the intermediate region 140 is shown in the specification 8 of FIG.
  • the texture groove 142 shown in the figure is formed by forming a plurality of continuous grooves in the circumferential direction in the pattern of the texture grooves 132 and 152 shown in FIG.
  • the texture groove formed in the intermediate region 140 may be a combination with FIGS. 6B to 7H.
  • valve lifter 110 crown 120: skirt 122: boss 130: upper end region 132: first texture groove 140: intermediate region 142: texture groove 150: lower end region 152: second texture groove

Abstract

[Problem] To provide a valve lifter that can reduce the friction between the edge on the top and bottom ends of a valve lifter and a cylinder head bore. [Solution] This valve lifter (100) has a crown section (110) on which a cam slides, and a skirt section (120) that extends down from the crown section. A first texture groove (132) for retaining lubricating oil is formed in the circumferential direction in a top end region (130) on the skirt section (120), and a second texture groove (152) for retaining the lubricating oil is formed in the circumferential direction in the bottom end region (150) separated by an intermediate region (140) adjacent to the top end region (130).

Description

バルブリフタValve lifter
 本発明は、直打式動弁機構に用いられるバルブリフタに関し、特にバルブリフタのスカート部の表面構造に関する。 The present invention relates to a valve lifter used in a direct-acting valve operating mechanism, and more particularly to a surface structure of a skirt portion of the valve lifter.
 エネルギー、環境問題に対応して燃費を向上させるため、内燃機関の摩擦損失の低減は重要な課題となっている。内燃機関の主要な摺動部としては、動弁系、ピストン系、クランクシャフト系が挙げられる。摩擦損失はこれらの主要摺動部で75~90%を占めており、中高速回転域ではピストンリング、ピストン、コンロッドの割合が高く、低速回転域では動弁系のフリクションの占める割合が高い。これらの摩擦損失を低減する技術は、基本的に摺動面の表面粗さを低減して摩擦抵抗を低くすること、潤滑の観点から保油性を向上した表面構造とすることを基本に様々な改良が成されている。 ∙ Reduction of friction loss in internal combustion engines is an important issue in order to improve fuel efficiency in response to energy and environmental problems. Examples of main sliding parts of the internal combustion engine include a valve system, a piston system, and a crankshaft system. Friction loss accounts for 75 to 90% of these main sliding parts, and the ratio of piston rings, pistons and connecting rods is high in the middle and high speed rotation range, and the ratio of friction in the valve system is high in the low speed rotation range. There are various technologies for reducing these friction losses, basically reducing the surface roughness of the sliding surface to lower the frictional resistance, and providing a surface structure with improved oil retention from the viewpoint of lubrication. Improvements have been made.
 内燃機関の典型的な動弁系の1つにバルブリフタがある。バルブリフタは、カムとバルブとの間に配置され、カムの回転運動をバルブの開閉運動に変換する部材である(特許文献1、2等)。バルブリフタは、冠部およびスカート部を含むバルブリフタ本体を有し、カムの回転運動に応じてバルブリフタ本体がシリンダヘッドに形成されたボア内を摺動する。このため、バルブリフタ本体のスカート部の外周面とシリンダヘッドのボア内周面と間の摩擦抵抗を低減することが望ましい。特許文献3のバルブリフタは、バルブリフタのスカート部の外周面の全域またはバルブリフタが挿入されるボア(バルブリフタ収容部)の内周面の全域に、ショットブラスト加工やサンドブラスト加工により凹部を形成することで、スカート部とボア内周面との間に潤滑油を保持させ、摩擦を低減させている。特許文献4のバルブリフタは、バルブリフタのスカート部の外周面の縦方向にテクスチャー溝と非テクスチャー溝とを交互に形成することで、縦方向の摺動抵抗を低減させている。 One of the typical valve systems of internal combustion engines is the valve lifter. The valve lifter is a member that is disposed between the cam and the valve, and converts the rotational movement of the cam into the opening / closing movement of the valve ( Patent Documents 1, 2, etc.). The valve lifter has a valve lifter body including a crown part and a skirt part, and the valve lifter body slides in a bore formed in the cylinder head in accordance with the rotational movement of the cam. Therefore, it is desirable to reduce the frictional resistance between the outer peripheral surface of the skirt portion of the valve lifter body and the bore inner peripheral surface of the cylinder head. In the valve lifter of Patent Document 3, the concave portion is formed by shot blasting or sand blasting in the entire outer peripheral surface of the skirt portion of the valve lifter or in the entire inner peripheral surface of the bore into which the valve lifter is inserted (valve lifter accommodating portion). Lubricating oil is held between the skirt and the bore inner peripheral surface to reduce friction. In the valve lifter of Patent Document 4, the sliding resistance in the vertical direction is reduced by alternately forming textured grooves and non-textured grooves in the vertical direction of the outer peripheral surface of the skirt portion of the valve lifter.
特開2008-240601号JP 2008-240601 A 特開2008-215172号JP 2008-215172 A 特開2008-75591号JP 2008-75591A 特開2011-256715号JP 2011-256715 A
 図1(A)は、バルブリフタの動弁系の概略断面図、図1(B)は、バルブリフタが上昇しバルブが閉じたときの断面図、図1(C)は、バルブリフタが降下しバルブが開いたときの断面図である。シリンダヘッド10に形成されたボア12内に適度なクリアランスで上下動可能にバルブリフタ14が配置される。バルブリフタ14の冠面と摺動するカム16は、カムシャフト18に取付けられ、カムシャフト18はチェーン等の駆動系20によって回転される。カムシャフト18内の空間18Aに供給された潤滑油は、孔22を介してカムジャーナル部24、カムジャーナルキャップ26に供給され、さらにカムジャーナル部24を潤滑した潤滑油は、間接的にその外周部に散布され、一部がバルブリフタ14の潤滑に利用される。 1A is a schematic sectional view of a valve lifter valve operating system, FIG. 1B is a sectional view when the valve lifter is raised and the valve is closed, and FIG. 1C is a valve lifter lowered and the valve is It is sectional drawing when it opens. A valve lifter 14 is disposed in a bore 12 formed in the cylinder head 10 so as to be movable up and down with an appropriate clearance. A cam 16 that slides on the crown of the valve lifter 14 is attached to a camshaft 18, and the camshaft 18 is rotated by a drive system 20 such as a chain. The lubricating oil supplied to the space 18A in the camshaft 18 is supplied to the cam journal portion 24 and the cam journal cap 26 through the holes 22, and the lubricating oil that has further lubricated the cam journal portion 24 is indirectly outer periphery thereof. Part is used for lubrication of the valve lifter 14.
 図2(A)は、バルブリフタが下降するときの概略断面図、図2(B)は、バルブリフタが上昇するときの概略断面図である。シリンダヘッド10のボア12の外周部(開口端部)には、カムシャフト等から散布された潤滑油30を溜めるような湾曲した上面32が形成される。この上面32には、カム先端部と接触しないような逃げが形成される必要があり、その結果、上面32とボア12の内壁との間に鋭いエッジ34が形成される。上面32に溜められた潤滑油30は、バルブリフタ14のスカート部14Aの外周面とボア12の内周面との間の摺動にも利用される。 2A is a schematic cross-sectional view when the valve lifter is lowered, and FIG. 2B is a schematic cross-sectional view when the valve lifter is raised. A curved upper surface 32 is formed on the outer peripheral portion (opening end) of the bore 12 of the cylinder head 10 so as to collect the lubricating oil 30 dispersed from the camshaft or the like. The upper surface 32 needs to be formed with a relief so as not to come into contact with the tip of the cam. As a result, a sharp edge 34 is formed between the upper surface 32 and the inner wall of the bore 12. The lubricating oil 30 stored on the upper surface 32 is also used for sliding between the outer peripheral surface of the skirt portion 14 </ b> A of the valve lifter 14 and the inner peripheral surface of the bore 12.
 カム16は、バルブリフタ冠面上を一定方向に摺動するが、カム幅の中心は、バルブリフタ14の中心から幾分オフセットされているため、カム16が冠面上を摺動するときバルブリフタ14に回転モーメントが与えられ、バルブリフタ14は、リフト動作とともにボア12内で回転される。バルブリフタ14とボア12との間にはクリアランスが設定されているため、バルブリフタ14は、図2(A)、(B)に示すように上下動するときに、ボア12内で微妙に傾いた姿勢で往復運動を繰り返すことになる。 The cam 16 slides in a fixed direction on the valve lifter crown surface, but the center of the cam width is slightly offset from the center of the valve lifter 14, so when the cam 16 slides on the crown surface, A rotational moment is applied, and the valve lifter 14 is rotated in the bore 12 together with the lift operation. Since a clearance is set between the valve lifter 14 and the bore 12, the valve lifter 14 is slightly inclined in the bore 12 when moving up and down as shown in FIGS. 2 (A) and 2 (B). Will repeat the reciprocating motion.
 図3は、バルブリフタのボア内での傾斜角(コッキング量)の計算例である。図3に示すように、リフト動作の開始直後と最大リフトの間際、並びに最大リフト経過直後とリフト終了間際において、いずれも矩形的に傾きの動作Yが行われる。カム16が右回転の場合、リフト開始直後ではバルブリフタ14に右回転モーメントが発生し、図2(A)に示すようにバルブリフタ14が右側に傾き、スカート部14Aの右側上端部S1と左側下端部S2がボア内壁に接触し、モーメントの反力F1、F2を受ける。このモーメントの方向は、最大リフト直前まで変わらないため、バルブリフタ14は常に右側に傾いた状態で下降動作を行う。このとき特に、下端部S2への潤滑油の供給が少なくなり、下端部S2によりボア内壁が削り取られてしまう。 Fig. 3 shows an example of calculation of the tilt angle (cocking amount) in the bore of the valve lifter. As shown in FIG. 3, the operation Y with a rectangular inclination is performed immediately after the start of the lift operation and immediately before the maximum lift, and immediately after the maximum lift has elapsed and immediately before the end of the lift. When the cam 16 rotates clockwise, a right-turning moment is generated in the valve lifter 14 immediately after the lift starts, and the valve lifter 14 tilts to the right as shown in FIG. 2A, and the right upper end S1 and the left lower end of the skirt portion 14A. S2 contacts the inner wall of the bore and receives moment reaction forces F1 and F2. Since the direction of this moment does not change until immediately before the maximum lift, the valve lifter 14 performs the lowering operation while always tilting to the right. At this time, in particular, the supply of the lubricating oil to the lower end S2 is reduced, and the bore inner wall is scraped off by the lower end S2.
 また、バルブリフタ14が最大リフト直後から開閉間際までの折り返す工程においては、上昇時とは逆に常に左回転のモーメントにより、図2(B)に示すようにバルブリフタが左側に傾き、スカート部の反対側の上下端部S1、S2でモーメントの反力F1、F2を受ける。このモーメントの方向は、リフト終了間際まで変わらないため、バルブリフタ14は常に左側に傾いた状態で上昇動作を行う。このとき特に、上端部S1への潤滑油の供給が少なくなり、ボア内壁が削ら取られてしまう。さらに、バルブリフタ冠面は、エッジ34を超えてリフト0の地点まで上昇するため、上端部S1がエッジ34と摺動し、潤滑状態が不十分であれば、そこでの摩擦抵抗が大きくなり、エッジ34が摩耗してしまう。 Also, in the process of turning the valve lifter 14 from immediately after the maximum lift to just before opening and closing, the valve lifter is always tilted to the left as shown in FIG. The upper and lower ends S1 and S2 on the side receive moment reaction forces F1 and F2. Since the direction of this moment does not change until just before the end of the lift, the valve lifter 14 always moves upward while tilting to the left. At this time, in particular, the supply of lubricating oil to the upper end S1 is reduced, and the bore inner wall is scraped off. Further, since the valve lifter crown surface rises beyond the edge 34 to the point of lift 0, if the upper end S1 slides with the edge 34 and the lubrication state is insufficient, the frictional resistance there increases, and the edge 34 wears out.
 このように、バルブリフタは上下動中に姿勢が傾斜され、それ故、バルブリフタ14とボアとの主要な接触部は、スカート部14Aの上下端部S1、S2に限定される。両者の構造上、互いのエッジで当接・摺動していることから、この部分では油膜が切れ易く、摩擦損失の増大や局所摩耗の懸念がある。特に、エッジ34が摩耗すると、ボアの上端部の径が大きくなり、バルブリフタのコッキンング時(図3の動作Yのとき)に異音を生じさせてしまう。さらにボアの上端部の径が大きくなると、バルブリフタの傾斜角も大きくなり、徐々にバルブリフタとボア間の最適なクリアランスが失われ、局所的な当接により摺動性能も低下してしまう。 Thus, the posture of the valve lifter is tilted while moving up and down, and therefore, the main contact portion between the valve lifter 14 and the bore is limited to the upper and lower end portions S1 and S2 of the skirt portion 14A. Due to the structure of the two, since they are in contact and sliding at the edges of each other, the oil film easily breaks at this portion, and there is a concern of increased friction loss and local wear. In particular, when the edge 34 is worn, the diameter of the upper end portion of the bore increases, and abnormal noise is generated when the valve lifter is cocked (operation Y in FIG. 3). Further, when the diameter of the upper end portion of the bore is increased, the inclination angle of the valve lifter is also increased, the optimum clearance between the valve lifter and the bore is gradually lost, and the sliding performance is also lowered due to local contact.
 本発明は、このような従来技術の課題を解決し、バルブリフタの上下端部とシリンダヘッドのボアとの摩擦抵抗を低減することが可能なバルブリフタを提供することを目的とする。 An object of the present invention is to provide a valve lifter that can solve such problems of the prior art and reduce the frictional resistance between the upper and lower ends of the valve lifter and the bore of the cylinder head.
 本発明に係るバルブリフタは、バルブとカムとの間に配置され、カムの回転動作をバルブのリフト動作に変換するものであって、バルブリフタは、カムが摺動する冠面と、当該冠面から下方に延在するスカート部とを有し、前記スカート部の前記冠面から軸方向に第1の距離で規定される上端部領域には、潤滑油を保持するための第1のテクスチャー溝が周方向に形成され、前記上端部領域に隣接する中間領域を隔てて軸方向に第2の距離で規定される下端部領域には、潤滑油を保持するための第2のテクスチャー溝が周方向に形成される。 The valve lifter according to the present invention is disposed between the valve and the cam and converts the rotational operation of the cam into the lift operation of the valve. The valve lifter includes a crown surface on which the cam slides, and the crown surface. A first texture groove for holding lubricating oil in an upper end region defined by a first distance in the axial direction from the crown surface of the skirt portion. A second texture groove for holding lubricating oil is formed in the circumferential direction in the lower end region defined by a second distance in the axial direction across an intermediate region adjacent to the upper end region. Formed.
 好ましくは第1および第2のテクスチャー溝は、レーザー加工により形成される。好ましくは前記上端部領域の軸方向の距離は、前記下端部領域の軸方向の距離よりも大きい。好ましくは前記スカート部の外周面には非晶質硬質炭素被膜が形成され、第1および第2のテクスチャー溝は、前記非晶質硬質炭素被膜に形成される。好ましくは前記スカート部の外周面の表面粗さを、Ra0.3μm以下に研磨した後に、第1および第2のテクスチャー溝をレーザー加工により形成する。好ましくは前記上端部領域は、面取りされたエッジ領域を含み、当該エッジ領域に第1のテクスチャー溝が形成される。好ましくは前記下端部領域は、面取りされたエッジ領域を含み、当該エッジ領域に第2のテクスチャー溝が形成される。好ましくは第1および第2のテクスチャー溝は、ヘリングボーンの模様である。好ましくは前記中間領域に、軸方向と直交する円周方向に延在する複数の溝が形成される。本発明に係る内燃機関エンジンは、上記特徴を備えたバルブリフタと、当該バルブリフタを摺動自在に挿入するためのボアが形成されたシリンダヘッドとを有する。 Preferably, the first and second texture grooves are formed by laser processing. Preferably, the axial distance of the upper end region is larger than the axial distance of the lower end region. Preferably, an amorphous hard carbon coating is formed on the outer peripheral surface of the skirt portion, and the first and second texture grooves are formed in the amorphous hard carbon coating. Preferably, after the surface roughness of the outer peripheral surface of the skirt portion is polished to Ra 0.3 μm or less, the first and second texture grooves are formed by laser processing. Preferably, the upper end region includes a chamfered edge region, and a first texture groove is formed in the edge region. Preferably, the lower end region includes a chamfered edge region, and a second texture groove is formed in the edge region. Preferably, the first and second texture grooves are herringbone patterns. Preferably, a plurality of grooves extending in a circumferential direction orthogonal to the axial direction are formed in the intermediate region. An internal combustion engine according to the present invention includes a valve lifter having the above characteristics and a cylinder head in which a bore for slidably inserting the valve lifter is formed.
 本発明によれば、バルブリフタの上端部領域および下端部領域にそれぞれ第1および第2のテクスチャー溝を形成したことにより、バルブリフタの上端部および下端部のエッジがシリンダヘッドのボア内周面と摺動するときのフリクションを低減させることができる。これにより、ボア内周面の摩耗することによるバルブリフタとボア間のクリアランスの拡大が抑制され、また、バルブリフタの動作時の異音の発生を抑制することができる。 According to the present invention, the first and second texture grooves are formed in the upper end region and the lower end region of the valve lifter, respectively, so that the edges of the upper end portion and the lower end portion of the valve lifter slide with the bore inner peripheral surface of the cylinder head. Friction when moving can be reduced. Thereby, expansion of the clearance between the valve lifter and the bore due to wear of the bore inner peripheral surface can be suppressed, and generation of abnormal noise during operation of the valve lifter can be suppressed.
図1(A)は、バルブリフタの動弁系の概略を示す断面図、図1(B)は、バルブリフタが上昇しバルブが閉じたときの断面図、図1(C)は、バルブリフタが降下しバルブが開いたときの断面図である。1A is a cross-sectional view schematically showing a valve lifter valve operating system, FIG. 1B is a cross-sectional view when the valve lifter is raised and the valve is closed, and FIG. 1C is a view showing the valve lifter being lowered. It is sectional drawing when a valve opens. 図2(A)は、バルブリフタの下降時の動作を説明する概略断面図、図2(B)は、バルブリフタの上昇時の動作を説明する概略断面図である。2A is a schematic cross-sectional view for explaining the operation when the valve lifter is lowered, and FIG. 2B is a schematic cross-sectional view for explaining the operation when the valve lifter is raised. カムの回転角度とバルブリフタの傾斜角の計算例を示すグラフである。It is a graph which shows the example of calculation of the rotation angle of a cam, and the inclination angle of a valve lifter. 図4(A)は、本発明の実施例に係るバルブリフタの正面図、図4(B)は、図4(A)の縦断面図である。4A is a front view of the valve lifter according to the embodiment of the present invention, and FIG. 4B is a longitudinal sectional view of FIG. 4A. 本発明の実施例に係るスカート部の他の構成例を示す断面図であり、図5(A)は、スカート部の上端部および下端部のエッジの面取りにテクスチャー溝が形成された例を示し、図5(B)は、スカート部に非晶質硬質炭素被膜が形成された例を示す。FIG. 5A is a cross-sectional view illustrating another configuration example of the skirt portion according to the embodiment of the present invention, and FIG. 5A illustrates an example in which texture grooves are formed on the chamfers of the upper end portion and the lower end portion of the skirt portion. FIG. 5B shows an example in which an amorphous hard carbon film is formed on the skirt portion. 本実施例のバルブリフタのスカート部に形成されるテクスチャー溝の一例を示す図である。It is a figure which shows an example of the texture groove | channel formed in the skirt part of the valve lifter of a present Example. 本実施例のバルブリフタのスカート部に形成されるテクスチャー溝の一例を示す図である。It is a figure which shows an example of the texture groove | channel formed in the skirt part of the valve lifter of a present Example. 図8は、本発明の第2の実施例に係るバルブリフタのスカート部の構成を示す図である。FIG. 8 is a diagram showing the configuration of the skirt portion of the valve lifter according to the second embodiment of the present invention.
 以下に、本発明に係るバルブリフタについて図面を参照して説明する。なお、図面のスケールは、発明の特徴を分かり易くするために強調しており、必ずしも実際の装置や部品のスケールと同一ではないことに留意すべきである。 The valve lifter according to the present invention will be described below with reference to the drawings. It should be noted that the scale of the drawings is emphasized for easy understanding of the features of the invention, and is not necessarily the same as the scale of actual devices and parts.
 本実施例に係るバルブリフタは、内燃機関の直打式動弁機構において、バルブステムとカムとの間に配置されカムのリフト動作をバルブに伝達する機能を有する。さらにバルブリフタは、その内部に油圧のON-OFFの制御によりバルブステムのリフト動作を休止させあるいは動作させる休止機構を備えるものであってもよい。例えば、内燃機関が低速運転されるとき、カムのリフト動作がバルブに伝達されないように休止させ、中高速運転されるとき、カムのリフト動作がバルブに伝達されるようにする。 The valve lifter according to the present embodiment is disposed between the valve stem and the cam in the direct stroke type valve operating mechanism of the internal combustion engine and has a function of transmitting the lift operation of the cam to the valve. Further, the valve lifter may be provided with a pausing mechanism for pausing or operating the lift operation of the valve stem by controlling the hydraulic ON / OFF. For example, when the internal combustion engine is operated at a low speed, the cam lift operation is stopped so as not to be transmitted to the valve, and when the internal combustion engine is operated at a medium or high speed, the cam lift operation is transmitted to the valve.
 図4(A)は、本実施例に係るバルブリフタの正面図、図4(B)は、図4(A)のバルブリフタの縦断面図である。本実施例に係るバルブリフタ100は、概して倒立カップ形状のバルブリフタ本体を有し、バルブリフタ本体は、円形状の冠部110と、冠部110から垂直方向に延びる円筒状のスカート部120とを有する。バルブリフタ冠部110の裏面にはバルブステム等に当接されるボス122が形成される。ここには詳細に示さないが、スカート部120の内側の空間にバルブ休止機構を配置させることができる。 4A is a front view of the valve lifter according to the present embodiment, and FIG. 4B is a longitudinal sectional view of the valve lifter of FIG. 4A. The valve lifter 100 according to the present embodiment has a generally inverted cup-shaped valve lifter body, and the valve lifter body has a circular crown portion 110 and a cylindrical skirt portion 120 extending in the vertical direction from the crown portion 110. A boss 122 is formed on the back surface of the valve lifter crown 110 to be in contact with a valve stem or the like. Although not shown in detail here, the valve pausing mechanism can be arranged in the space inside the skirt portion 120.
 本実施例のバルブリフタ100は、スカート部120の外周面の上端部領域130に第1のテクスチャー溝132が形成され、上端部領域130に隣接する中間領域140を隔てて下端部領域150に第2のテクスチャー溝152が形成される。すなわち、スカート部120の上端面または冠面を基準に、そこから軸方向に距離L1で規定される上端部領域130に第1のテクスチャー溝132が形成される。さらに距離L1、L2で規定される中間領域140を隔てて、距離L3から下端面で規定される下端部領域150に第2のテクスチャー溝152が形成される。 In the valve lifter 100 of the present embodiment, the first texture groove 132 is formed in the upper end region 130 of the outer peripheral surface of the skirt portion 120, and the second lower region 150 is separated by the intermediate region 140 adjacent to the upper end region 130. The texture groove 152 is formed. That is, the first texture groove 132 is formed in the upper end region 130 defined by the distance L1 in the axial direction from the upper end surface or the crown surface of the skirt portion 120 as a reference. Further, the second texture groove 152 is formed in the lower end region 150 defined by the lower end surface from the distance L3, with the intermediate region 140 defined by the distances L1 and L2 being separated.
 テクスチャー溝は、規則性または周期性のある微細な凹凸の溝である。凹凸の周期構造により、テクスチャー溝は、潤滑油を溝内に効果的に保持し、潤滑油の保油性を向上させる機能を有する。好ましい態様では、上端部領域130の軸方向の距離L1は、下端部領域150の軸方向の距離(L3-L2)よりも大きく設定される(L1>(L3-L2))。この理由は、図2(A)に示すように、バルブリフタがリフト0のとき(最上位置にあるとき)、上端部領域130のエッジがエッジ34より上方に位置し、上端部領域130のエッジとエッジ34のいずれか一方のエッジによる摺動距離が事実上大きくなるため、それに応じて距離L1が大きくなる。これに対し、下端部領域150では、下端部領域150のエッジとボア内周面との摺動であり、少なくとも下端部領域のエッジに潤滑油が供給できれば良いので、テクスチャー溝の形成される範囲(L3-L2)は小さくてもよい。 The texture groove is a groove with regular irregularities and fine irregularities. Due to the irregular periodic structure, the texture groove has a function of effectively retaining the lubricating oil in the groove and improving the oil retaining property of the lubricating oil. In a preferred embodiment, the axial distance L1 of the upper end region 130 is set larger than the axial distance (L3-L2) of the lower end region 150 (L1> (L3-L2)). The reason for this is that, as shown in FIG. 2A, when the valve lifter is in the lift 0 (when it is in the uppermost position), the edge of the upper end region 130 is located above the edge 34, and the edge of the upper end region 130 Since the sliding distance by any one of the edges 34 is effectively increased, the distance L1 is increased accordingly. On the other hand, in the lower end region 150, it is sliding between the edge of the lower end region 150 and the bore inner peripheral surface, and it is sufficient that the lubricating oil can be supplied to at least the edge of the lower end region. (L3-L2) may be small.
 好ましい態様では、スカート部120の外周面の表面粗さを、Ra0.3μm以下に研磨した後に、第1および第2のテクスチャー溝132、152がレーザー加工により形成される。レーザー加工は、レーザー光を光学的に走査することにより、スカート部の外周面に微細かつ複雑な模様のテクスチャー溝を形成することを可能にする。溝の深さは、レーザー光の出力によって任意に調整することができる。テクスチャー溝は、例えば、300nm程度の深さを有し、例えば、0.1~0.2mmのピッチに形成される。また、第1および第2のテクスチャー溝132、152は、同一構成であってもよいし、異なる構成であってもよい。テクスチャー溝の構成は、例えば、パターン、深さ、ピッチ、サイズ、面積率、断面形状等から特定される。 In a preferred embodiment, the first and second texture grooves 132 and 152 are formed by laser processing after the surface roughness of the outer peripheral surface of the skirt portion 120 is polished to Ra 0.3 μm or less. Laser processing makes it possible to form texture grooves with fine and complex patterns on the outer peripheral surface of the skirt portion by optically scanning with laser light. The depth of the groove can be arbitrarily adjusted by the output of the laser beam. The texture grooves have a depth of about 300 nm, for example, and are formed at a pitch of 0.1 to 0.2 mm, for example. Further, the first and second texture grooves 132 and 152 may have the same configuration or different configurations. The structure of the texture groove is specified from, for example, a pattern, depth, pitch, size, area ratio, cross-sectional shape, and the like.
 図2(A)、(B)で説明したように、バルブリフタは、回転モーメントの作用により傾斜した姿勢で上下動する。このとき、バルブリフタの上端部S1と下端部S2のエッジがボア内周面と接触し、上端部S1と下端部S2との間の中間領域は実質的にボア内周面と接触されない。このため、バルブリフタの上端部S1、下端部S2のエッジには大きな面圧が発生し、上端部S1、下端部S2の保油性が弱まり、摩擦抵抗が大きくなり摩耗が進行する。 As described in FIGS. 2A and 2B, the valve lifter moves up and down in an inclined posture due to the action of the rotational moment. At this time, the edges of the upper end S1 and the lower end S2 of the valve lifter are in contact with the bore inner peripheral surface, and the intermediate region between the upper end S1 and the lower end S2 is not substantially in contact with the bore inner peripheral surface. For this reason, a large surface pressure is generated at the edges of the upper end S1 and the lower end S2 of the valve lifter, the oil retaining properties of the upper end S1 and the lower end S2 are weakened, the frictional resistance is increased, and the wear proceeds.
 本実施例では、このような不具合を解消すべく、スカート部120の上端部領域130に第1のテクスチャー溝132が形成され、下端部領域150に第2のテクスチャー溝152が形成される。第1のテクスチャー溝132を形成することで、冠部110とボアとの間隙から供給された潤滑油が第1のテクスチャー溝132によって保持され、上端部領域130とボア内周面との間のフリクションが低減される。また、第2のテクスチャー溝152を形成することで、スカート部120の下端部領域150の保油性が向上され、下端部領域150とボア内周面との間のフリクションが低減される。上端部領域130および下端部領域150の保油性が向上されるため、上端部領域130および下端部領域150の各エッジによるボア内周面の摩耗が抑制される。特に、図2(A)に示すシリンダヘッドの上面32とボアとを接続するエッジ34の摩耗が抑制され、ボア上端部の径の広がりが抑制される。これにより、バルブリフタとボア間のクリアランスが増加するのが抑制され、バルブリフタの動作時の異音の発生も抑制される。 In the present embodiment, in order to solve such a problem, the first texture groove 132 is formed in the upper end region 130 of the skirt portion 120 and the second texture groove 152 is formed in the lower end region 150. By forming the first texture groove 132, the lubricating oil supplied from the gap between the crown 110 and the bore is held by the first texture groove 132, and between the upper end region 130 and the bore inner peripheral surface. Friction is reduced. Further, by forming the second texture groove 152, the oil retaining property of the lower end region 150 of the skirt portion 120 is improved, and the friction between the lower end region 150 and the bore inner peripheral surface is reduced. Since the oil retaining properties of the upper end region 130 and the lower end region 150 are improved, wear on the bore inner peripheral surface due to the edges of the upper end region 130 and the lower end region 150 is suppressed. In particular, the wear of the edge 34 connecting the upper surface 32 of the cylinder head and the bore shown in FIG. 2A is suppressed, and the spread of the diameter of the upper end of the bore is suppressed. As a result, an increase in the clearance between the valve lifter and the bore is suppressed, and the generation of noise during the operation of the valve lifter is also suppressed.
 また、レーザー加工により形成されるテクスチャー溝は、ショットブラストやサンドブラスト等によって形成される溝とは性能が異なる。ショットブラストやサンドブラストは、ランダムな溝を形成するものであり、レーザー加工のように周期性、規則性のある複雑な模様、パターンを形成することができない。さらに、レーザー加工の場合、図4(B)に示すように溝の凹凸の面積率を正確に定めることができる。凸面Pは、ボアの内周面と摺動する領域であり、凸面Pの面積によって面圧が決定されるから、テクスチャー溝の面積率は非常に重要なファクターである。 Also, the texture grooves formed by laser processing have different performance from the grooves formed by shot blasting, sand blasting, or the like. Shot blasting and sand blasting form random grooves, and complex patterns and patterns with periodicity and regularity cannot be formed unlike laser processing. Further, in the case of laser processing, as shown in FIG. 4B, the area ratio of the groove irregularities can be accurately determined. The convex surface P is a region that slides with the inner peripheral surface of the bore, and since the surface pressure is determined by the area of the convex surface P, the area ratio of the texture groove is a very important factor.
 さらに本実施例では、中間領域140は、バルブリフタの上下動中に、実質的にボア内周面と接触されないので、ここにテクスチャー溝を形成する必要はない。言い換えれば、スカート部120の必要な領域にのみレーザー加工によりテクスチャー溝を形成することで、レーザー加工のサイクルタイムが速くなり、生産性が向上し、コストを低減させることができる。 Furthermore, in this embodiment, the intermediate region 140 is not substantially in contact with the inner peripheral surface of the bore during the vertical movement of the valve lifter, so that it is not necessary to form a texture groove here. In other words, by forming the texture groove only in a necessary region of the skirt portion 120 by laser processing, the cycle time of laser processing can be increased, productivity can be improved, and cost can be reduced.
 次に、本実施例のバルブリフタの他の好ましい態様について説明する。図5(A)は、スカート部の上端部領域130と下端部領域150の各エッジにR面取りが形成された例を示している。上記したようにバルブリフタの上下動中、バルブリフタが傾斜され、上端部領域130のエッジと下端部領域150のエッジがボア内周面に当接する。このため、上端部領域130のエッジE1と下端部領域150のエッジE2にR面取り加工を行い、エッジE1、E2の面圧を低減し、摩擦抵抗をさらに抑制することが望ましい。R面取りは、例えば、レース加工によるほか、ショットブラストやサンドブラスト加工により行うことができる。さらに好ましい態様では、R面取りされたエッジE1、E2に、テクスチャー溝132、152を形成する。これにより、エッジE1、E2による潤滑がさらに向上され、摩擦抵抗および摩耗をさらに低減させることができる。また、ここにはR面取りの例を図示するが、R面取りに代えて、エッジE1、E2にC面取りを形成するようにしてもよい。あるいは、R面取りとC面取りとの組み合わせであってもよい。C面取りを形成することで、R面取りのときと同様の効果を期待することができる。 Next, another preferred embodiment of the valve lifter of this embodiment will be described. FIG. 5A shows an example in which R chamfering is formed at each edge of the upper end region 130 and the lower end region 150 of the skirt portion. As described above, during the vertical movement of the valve lifter, the valve lifter is inclined, and the edge of the upper end region 130 and the edge of the lower end region 150 abut against the bore inner peripheral surface. For this reason, it is desirable to perform R chamfering on the edge E1 of the upper end region 130 and the edge E2 of the lower end region 150 to reduce the surface pressure of the edges E1 and E2 and further suppress the frictional resistance. The R chamfering can be performed by, for example, shot blasting or sand blasting in addition to lace processing. In a more preferred embodiment, the texture grooves 132 and 152 are formed on the edges C1 and E2 which are chamfered. Thereby, the lubrication by the edges E1 and E2 is further improved, and the frictional resistance and wear can be further reduced. Although an example of R chamfering is shown here, C chamfering may be formed at the edges E1 and E2 instead of R chamfering. Or the combination of R chamfering and C chamfering may be sufficient. By forming the C chamfer, it is possible to expect the same effect as that of the R chamfer.
 図5(B)は、本実施例のさらなる好ましい態様のスカート部の構成例を示している。スカート部120の表面には、非晶質硬質炭素被膜(以下、DLC(Diamond like carbon)被膜という)160が形成される。DLC被膜160は、基材表面に直接形成してもよいが、密着性を向上させるために、Cr等の金属又はその金属窒化物の中間層を介して形成してもよい。DLC被膜160を形成する基材には、JIS規格によるSCM415材などの鋼材や鉄系合金或いは前記鋼材や鉄系合金に浸炭処理や焼入処理等の硬化熱処理を施し、表面硬度をHRC53以上としたものを用いることが好ましい。また、DLC被膜160は、PVD法、CVD法、PACVD法などによって形成することができる。例えばPVD法、特にアークイオンプレーティング法により形成された水素含有量が0.5原子%以下であるものが硬度及び耐摩耗性の観点で好ましい。DLC被膜160の膜厚は、例えば、PVD法であれば、0.3~1.5μmであり、好ましくは1.0μm以下である。CVD法であれば、20μm程度の膜厚を有することができる。 FIG. 5B shows a configuration example of the skirt portion of a further preferable aspect of the present embodiment. An amorphous hard carbon film (hereinafter referred to as a DLC (Diamond-like carbon film)) 160 is formed on the surface of the skirt portion 120. The DLC film 160 may be formed directly on the substrate surface, but may be formed through an intermediate layer of a metal such as Cr or a metal nitride thereof in order to improve adhesion. The base material on which the DLC film 160 is formed is subjected to hardening heat treatment such as carburizing treatment or quenching treatment on steel materials such as SCM415 material according to JIS standard, iron alloys, or the steel materials or iron alloys, and the surface hardness is HRC53 or more. It is preferable to use what was done. The DLC film 160 can be formed by a PVD method, a CVD method, a PACVD method, or the like. For example, it is preferable in terms of hardness and wear resistance that the hydrogen content formed by PVD method, particularly arc ion plating method is 0.5 atomic% or less. The film thickness of the DLC film 160 is, for example, 0.3 to 1.5 μm, preferably 1.0 μm or less in the PVD method. If it is CVD method, it can have a film thickness of about 20 micrometers.
 このようなDLC被膜160上に、第1および第2のテクスチャー溝132、152が形成される。これにより、第1および第2のテクスチャー溝132、152の凸面P(図4(B)を参照)がDLC被膜となるので、潤滑油の保油性向上と相まってさらなる摺動性能が向上される。 The first and second texture grooves 132 and 152 are formed on the DLC film 160. Thereby, since the convex surface P (refer FIG. 4 (B)) of the 1st and 2nd texture grooves 132 and 152 becomes a DLC film, the further sliding performance is improved combined with the oil retention property improvement of lubricating oil.
 次に、本実施例のテクスチャー溝の好ましいパターン例について説明する。図6(A)ないし(D)は、上端部領域130および下端部領域150の第1および第2のテクスチャー溝132、152の一部を示している。図6(A)のテクスチャー溝132、152は、バルブリフタの摺動方向と直交する水平方向に矩形状の溝を形成したものである。摺動方向と直交する方向に溝を形成することで潤滑油がより保持され易くなる。 Next, a preferred pattern example of the texture groove of this embodiment will be described. 6A to 6D show a part of the first and second texture grooves 132 and 152 in the upper end region 130 and the lower end region 150. FIG. The texture grooves 132 and 152 in FIG. 6A are formed by forming rectangular grooves in the horizontal direction perpendicular to the sliding direction of the valve lifter. By forming the groove in a direction perpendicular to the sliding direction, the lubricating oil is more easily retained.
 図6(B)のテクスチャー132、152は、山成の矩形状のへリングボーン溝を形成したものである。1つ1つの溝は、概略V字型であり、V字型が冠面側に向けられ、これが周方向にかつ半径方向に複数組配列されている。へリングボーンは、バルブリフタの摺動方向に対して一定の角度で交差する溝を有し、これが周方向で連続するため、溝内に潤滑油が保持され易くなる。また、V字型の方向により、スカート部の下端部領域に潤滑油が供給され易くなる。図6(C)は、図6(B)の変形であり、V字型の溝が周方向に連続したへリングボーン溝である。周方向に溝が連続することで周方向の保油性がさらに向上される。図6(D)のテクスチャー溝132、152は、ひし形のクロスハッチ溝を周方向に連続的に形成したものである。周方向および軸方向において潤滑油が流動し易くなる。 Textures 132 and 152 in FIG. 6 (B) are obtained by forming a mountain-shaped rectangular herringbone groove. Each of the grooves is substantially V-shaped, and the V-shape is directed toward the crown surface, and a plurality of sets are arranged in the circumferential direction and in the radial direction. The herringbone has a groove that intersects the sliding direction of the valve lifter at a certain angle, and this is continuous in the circumferential direction, so that the lubricating oil is easily held in the groove. Further, the lubricating oil is easily supplied to the lower end region of the skirt portion by the V-shaped direction. FIG. 6C is a modification of FIG. 6B, and is a herringbone groove in which V-shaped grooves are continuous in the circumferential direction. Oil retention in the circumferential direction is further improved by the continuous grooves in the circumferential direction. The texture grooves 132 and 152 in FIG. 6D are formed by continuously forming diamond-shaped cross hatch grooves in the circumferential direction. Lubricating oil easily flows in the circumferential direction and the axial direction.
 図7(E)は、45°と135°の斜線溝を交互に設定し半径方向で連続V字溝を構成したものである。溝は、スカート部の軸方向に連続的に繋がるように構成される。図7(F)は、図7(E)の各々の斜線溝の半径方向の連続を遮断したものである。図7(G)は、図6(C)の周方向で連続のへリングボーンを上下に形成し、上下の溝でピッチを変えたものである。図7(H)は、上端部領域および下端部領域の面取り部にヘリングボーンを形成したものである。 FIG. 7 (E) shows an example in which 45 ° and 135 ° oblique grooves are alternately set to form a continuous V-shaped groove in the radial direction. The groove is configured to be continuously connected in the axial direction of the skirt portion. FIG. 7F is a diagram in which the continuity in the radial direction of each hatched groove in FIG. FIG. 7 (G) shows a continuous herring bone formed vertically in the circumferential direction of FIG. 6 (C) and the pitch changed by the upper and lower grooves. FIG. 7H shows a herringbone formed in the chamfered portion of the upper end region and the lower end region.
 好ましくは、第1および第2のテクスチャー溝132、152のパターン、深さ、ピッチ、サイズ、面積率、断面形状等は、シリンダヘッド側の材料との相性に応じて最適化される。 Preferably, the pattern, depth, pitch, size, area ratio, cross-sectional shape, and the like of the first and second texture grooves 132 and 152 are optimized according to the compatibility with the material on the cylinder head side.
 次に、本発明の第2の実施例について説明する。第2の実施例は、中間領域140にテクスチャー溝を形成するものである。中間領域140は、バルブリフタの上下動中にボア内周面にほぼ非接触であるが、中間領域140にテクスチャー溝を形成する。好ましくは、潤滑油が保持され易いようなパターンが形成される。図8の仕様8に中間領域140に形成されるテクスチャー溝142の一例を示す。同図に示すテクスチャー溝142は、図6(A)に示すテクスチャー溝132、152のパターンにおいて、円周方向に直線状の連続する溝を複数形成したものである。これにより、中間領域140において保油性が向上され、結果的に保油された潤滑油が上端部領域130および下端部領域150へ流動される。なお、中間領域140に形成されるテクスチャー溝は、図6(B)ないし図7(H)との組合せであってもよい。 Next, a second embodiment of the present invention will be described. In the second embodiment, texture grooves are formed in the intermediate region 140. The intermediate region 140 is substantially non-contact with the inner peripheral surface of the bore during the vertical movement of the valve lifter, but forms a texture groove in the intermediate region 140. Preferably, a pattern is formed so that the lubricating oil is easily retained. An example of the texture groove 142 formed in the intermediate region 140 is shown in the specification 8 of FIG. The texture groove 142 shown in the figure is formed by forming a plurality of continuous grooves in the circumferential direction in the pattern of the texture grooves 132 and 152 shown in FIG. As a result, the oil retaining property is improved in the intermediate region 140, and as a result, the retained lubricating oil flows to the upper end region 130 and the lower end region 150. The texture groove formed in the intermediate region 140 may be a combination with FIGS. 6B to 7H.
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. Is possible.
100:バルブリフタ
110:冠部
120:スカート部
122:ボス
130:上端部領域
132:第1のテクスチャー溝
140:中間領域
142:テクスチャー溝
150:下端部領域
152:第2のテクスチャー溝
 
100: valve lifter 110: crown 120: skirt 122: boss 130: upper end region 132: first texture groove 140: intermediate region 142: texture groove 150: lower end region 152: second texture groove

Claims (10)

  1. バルブとカムとの間に配置され、カムの回転動作をバルブのリフト動作に変換するバルブリフタであって、
     バルブリフタは、カムが摺動する冠面と、当該冠面から下方に延在するスカート部とを有し、
     前記スカート部の前記冠面から軸方向に第1の距離で規定される上端部領域には、潤滑油を保持するための第1のテクスチャー溝が周方向に形成され、前記上端部領域に隣接する中間領域を隔てて軸方向に第2の距離で規定される下端部領域には、潤滑油を保持するための第2のテクスチャー溝が周方向に形成される、バルブリフタ。
    A valve lifter that is disposed between the valve and the cam and converts the rotational operation of the cam into the lift operation of the valve,
    The valve lifter has a crown surface on which the cam slides and a skirt portion extending downward from the crown surface,
    A first texture groove for holding lubricating oil is formed in a circumferential direction in an upper end region defined by a first distance in the axial direction from the crown surface of the skirt portion, and is adjacent to the upper end region. A valve lifter in which a second texture groove for retaining lubricating oil is formed in the circumferential direction in a lower end region defined by a second distance in the axial direction across the intermediate region.
  2. 第1および第2のテクスチャー溝は、レーザー加工により形成される、請求項1に記載のバルブリフタ。 The valve lifter according to claim 1, wherein the first and second texture grooves are formed by laser processing.
  3. 前記上端部領域の軸方向の距離は、前記下端部領域の軸方向の距離よりも大きい、請求項1または2に記載のバルブリフタ。 The valve lifter according to claim 1 or 2, wherein an axial distance of the upper end region is larger than an axial distance of the lower end region.
  4. 前記スカート部の外周面には非晶質硬質炭素被膜が形成され、第1および第2のテクスチャー溝は、前記非晶質硬質炭素被膜に形成される、請求項1ないし3いずれか1つに記載のバルブリフタ。 The amorphous hard carbon film is formed on the outer peripheral surface of the skirt portion, and the first and second texture grooves are formed in the amorphous hard carbon film. The valve lifter described.
  5. 前記スカート部の外周面の表面粗さを、Ra0.3μm以下に研磨した後に、第1および第2のテクスチャー溝をレーザー加工により形成する、請求項1ないし4のいずれかに記載のバルブリフタ。 5. The valve lifter according to claim 1, wherein the first and second texture grooves are formed by laser processing after the surface roughness of the outer peripheral surface of the skirt portion is polished to Ra 0.3 μm or less.
  6. 前記上端部領域は、面取りされたエッジ領域を含み、当該エッジ領域に第1のテクスチャー溝が形成される、請求項1ないし5いずれか1つに記載のバルブリフタ。 6. The valve lifter according to claim 1, wherein the upper end region includes a chamfered edge region, and a first texture groove is formed in the edge region.
  7. 前記下端部領域は、面取りされたエッジ領域を含み、当該エッジ領域に第2のテクスチャー溝が形成される、請求項1ないし6いずれか1つに記載のバルブリフタ。 The valve lower lifter according to any one of claims 1 to 6, wherein the lower end region includes a chamfered edge region, and a second texture groove is formed in the edge region.
  8. 第1および第2のテクスチャー溝は、ヘリングボーンの模様である、請求項1ないし7いずれか1つに記載のバルブリフタ。 The valve lifter according to any one of claims 1 to 7, wherein the first and second texture grooves have a herringbone pattern.
  9. 前記中間領域に、軸方向と直交する円周方向に延在する複数の溝が形成される、請求項1ないし8いずれか1つに記載のバルブリフタ。 The valve lifter according to any one of claims 1 to 8, wherein a plurality of grooves extending in a circumferential direction orthogonal to the axial direction are formed in the intermediate region.
  10. 請求項1ないし9いずれか1つに記載のバルブリフタと、当該バルブリフタを摺動自在に挿入するためのボアが形成されたシリンダヘッドとを有する内燃機関エンジン。
     
    An internal combustion engine having the valve lifter according to any one of claims 1 to 9, and a cylinder head formed with a bore for slidably inserting the valve lifter.
PCT/JP2014/083831 2014-01-15 2014-12-22 Valve lifter WO2015107837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557749A JP6419727B2 (en) 2014-01-15 2014-12-22 Valve lifter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004852 2014-01-15
JP2014004852 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107837A1 true WO2015107837A1 (en) 2015-07-23

Family

ID=53542739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083831 WO2015107837A1 (en) 2014-01-15 2014-12-22 Valve lifter

Country Status (2)

Country Link
JP (1) JP6419727B2 (en)
WO (1) WO2015107837A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378507A (en) * 1989-08-23 1991-04-03 Nippon Seiko Kk Outer ring of cam follower device for valve system of engine and its manufacturing method
JP2000179307A (en) * 1998-12-15 2000-06-27 Toyota Motor Corp Valve lifter
JP2000240407A (en) * 1999-02-17 2000-09-05 Riken Corp Valve lifter for internal combustion engine
JP2005090489A (en) * 2003-08-11 2005-04-07 Nissan Motor Co Ltd Valve lifter for internal combustion engine
JP2011256715A (en) * 2010-06-04 2011-12-22 Daihatsu Motor Co Ltd Valve gear
US8109248B2 (en) * 2008-07-18 2012-02-07 Hyundai Motor Company Valve lifter and surface treatment method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378507A (en) * 1989-08-23 1991-04-03 Nippon Seiko Kk Outer ring of cam follower device for valve system of engine and its manufacturing method
JP2000179307A (en) * 1998-12-15 2000-06-27 Toyota Motor Corp Valve lifter
JP2000240407A (en) * 1999-02-17 2000-09-05 Riken Corp Valve lifter for internal combustion engine
JP2005090489A (en) * 2003-08-11 2005-04-07 Nissan Motor Co Ltd Valve lifter for internal combustion engine
US8109248B2 (en) * 2008-07-18 2012-02-07 Hyundai Motor Company Valve lifter and surface treatment method thereof
JP2011256715A (en) * 2010-06-04 2011-12-22 Daihatsu Motor Co Ltd Valve gear

Also Published As

Publication number Publication date
JPWO2015107837A1 (en) 2017-03-23
JP6419727B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6533670B2 (en) side rail
JP4779841B2 (en) Internal combustion engine
JP5386213B2 (en) Combination of cylinder and piston
JP6552022B2 (en) Valve lifter
KR102571554B1 (en) Mechanical systems including shafts coupled to bearings and methods of manufacturing such systems
RU2718653C2 (en) Piston ring with reduced friction
JP2016138629A (en) piston ring
JP2009052451A (en) Piston of internal combustion engine
JP6419727B2 (en) Valve lifter
JP5772584B2 (en) piston ring
JP6894879B2 (en) Internal combustion engine cylinder and manufacturing method
JP5860571B1 (en) piston ring
JP2016113926A (en) Internal combustion engine piston and internal combustion engine piston manufacturing method
JP6359299B2 (en) Sliding member
JP7045383B2 (en) piston ring
RU2734266C1 (en) Mechanical system comprising shaft connected to bearing and method of making such system
JP2007255277A (en) Cam follower
JP6576331B2 (en) Roller type rocker arm
JP2013119814A (en) Piston skirt structure and sliding member
JP2017053469A (en) Slide member and its process of manufacture
JP6166087B2 (en) Valve lifter and manufacturing method thereof, and combination of valve lifter and counterpart material
JP6914291B2 (en) Internal combustion engine cylinder
US20170299056A1 (en) Oil Ring for a Piston Assembly
KR101210053B1 (en) Lubrication structure of cylinder bore and piston
JP2023105429A (en) sliding member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878513

Country of ref document: EP

Kind code of ref document: A1