WO2015107822A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2015107822A1
WO2015107822A1 PCT/JP2014/083137 JP2014083137W WO2015107822A1 WO 2015107822 A1 WO2015107822 A1 WO 2015107822A1 JP 2014083137 W JP2014083137 W JP 2014083137W WO 2015107822 A1 WO2015107822 A1 WO 2015107822A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
negative electrode
separator
Prior art date
Application number
PCT/JP2014/083137
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 西中
西島 主明
西村 直人
智寿 吉江
貴洋 松山
雄一 上村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015107822A1 publication Critical patent/WO2015107822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to a lithium ion secondary battery having excellent cycle characteristics particularly in a low temperature environment.
  • a lithium ion secondary battery As a secondary battery, a lithium ion secondary battery has been put into practical use and is widely spread. Furthermore, in recent years, lithium ion secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices, but also as large-capacity devices for in-vehicle use and power storage.
  • a lithium ion secondary battery has a positive electrode, a negative electrode, an electrolyte, and a separator as its main components.
  • the positive electrode includes a positive electrode active material
  • the negative electrode includes a negative electrode active material.
  • a layered transition metal oxide typified by LiCoO 2 is used as the positive electrode active material (for example, Japanese Patent Laid-Open Publication No. 2002-270160: Patent Document 1).
  • the layered transition metal oxide easily causes oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and the thermal desorption reaction of the battery can occur due to the oxygen desorption. Therefore, the battery having such a positive electrode active material may cause accidents such as heat generation and ignition.
  • lithium iron phosphate (LiFePO 4 ) having a stable olivine structure that does not release oxygen when abnormal and has a lower olivine structure than LiCoO 2 is expected (for example, Japanese Patent Application Laid-Open No. 2008-2008).
  • No.-10316 Japanese Patent Application Laid-Open No. 2011-71017: Japanese Patent Application Laid-Open No. 2011-71017: Japanese Patent Application Laid-Open No. 2011-71017.
  • LiFePO 4 has a large volume change rate of about 7% between insertion and desorption of Li, and capacity deterioration is caused by repeating charge and discharge cycles. For this reason, a technology for suppressing capacity deterioration by partially replacing Fe and P constituting LiFePO 4 with other elements has been reported (Japanese Patent Laid-Open Publication No. 2012-18836): Patent Document 4 ).
  • Japanese Patent Publication “JP 2002-270160 A” Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2008-10316” Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-71017” Japanese Patent Publication “JP 2012-18836 A”
  • An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics under a low temperature environment.
  • a lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode
  • the positive electrode has the following general formula (1) Li x M y P 1-z Si z O 4 (1) (Wherein M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and A positive electrode active material layer including a positive electrode active material that is a combination with Mn and represented by 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1.2, and 0 ⁇ z ⁇ 1)
  • the negative electrode is a negative electrode active material layer containing a negative electrode active material made of carbon having a specific surface area of 2.5 to 5.0 m 2 / g.
  • (a) is an example of the schematic diagram of a structural member
  • (b) is a figure which shows an example of the whole schematic diagram of a lithium ion secondary battery. It is a graph which shows the relationship between the specific surface area of a negative electrode active material, and a return capacity maintenance factor.
  • (A) is a graph which shows the relationship between charging time and a cell voltage
  • (b) is a graph which shows the relationship between charging time and a positive electrode potential.
  • the lithium ion secondary battery having a deteriorated capacity is (1) A film mainly composed of excess lithium is formed on the negative electrode surface; (2) It is observed that dendrite is formed on the negative electrode surface. The inventors examined this observation result, and found that a specific combination of the positive electrode active material and the negative electrode active material was particularly effective in suppressing the deterioration of the capacity, and reached the present invention.
  • the lithium ion secondary battery of the present invention can suppress capacity deterioration due to repeated charge / discharge cycles particularly at low temperatures.
  • low temperature means 0 degreeC or less.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode.
  • a positive electrode is a positive electrode active material layer containing a positive electrode active material.
  • the cathode active material is represented by the following general formula (1) Li x M y P 1-z Si z O 4 (1) It is represented by
  • M is (I) a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or (ii) a combination of Fe and Mn It is a combination.
  • Fe / Co, Fe / Ni, Fe / Zr, Fe / Sn, Fe / Al, Fe / Y, Mn / Co, Mn / Ni, Mn / Zr, Mn / Sn, Mn / Al, Mn / Y, Fe / Mn is mentioned.
  • X can take a range of 0 ⁇ x ⁇ 2
  • y can take a range of 0.8 ⁇ y ⁇ 1.2
  • z can take a range of 0 ⁇ z ⁇ 1.
  • x is in the range of 0.5 ⁇ x ⁇ 1.5 (when the battery is discharged), y is in the range of 0.9 ⁇ y ⁇ 1.1, and z is in the range of 0.01 ⁇ z ⁇ 0.25. It is preferable. If x, y, and z are out of this range, the average particle diameter of the particles may not be controlled within an appropriate range when the positive electrode active material is produced by a general production method (produced in the discharged state of the battery).
  • x is in the range of 0.9 ⁇ x ⁇ 1.1 (when the battery is discharged), y is in the range of 0.95 ⁇ y ⁇ 1.05, and z is in the range of 0.025 ⁇ z ⁇ 0.05. It is more preferable.
  • the average particle diameter of the particles may not be controlled within an appropriate range when the positive electrode active material is manufactured by a solid phase method (manufactured in a battery discharge state).
  • the ratio of the plurality of elements constituting M is not particularly limited as long as the sum is within the range that y can take.
  • Li x (Fe 1-a Co a ) y P 1-z S iZ O 4 (0.9 ⁇ x ⁇ 1.1, 0.01 ⁇ a ⁇ 0.125, 0.95 ⁇ y ⁇ 1.05, 0.01 ⁇ z ⁇ 0.25) Li x (Fe 1-a Ni a) y P 1-z Si z O 4 (0.9 ⁇ x ⁇ 1.1,0.01 ⁇ a ⁇ 0.125,0.95 ⁇ y ⁇ 1.05, 0.01 ⁇ z ⁇ 0.25) Li x (Fe 1-a Zr a ) y P 1-z S iZ O 4 (0.9 ⁇ x ⁇ 1.1, 0.025 ⁇ a ⁇ 0.125, 0.95 ⁇ y ⁇ 1.05, 0.01 ⁇ z ⁇ 0.25) Li x (Fe 1-a Sn a ) y P 1-z S iZ O 4 (0.9 ⁇ x ⁇ 1.1, 0.01 ⁇
  • the positive electrode active material uses a combination of carbonate, hydroxide, chloride, sulfate, acetate, oxide, oxalate, nitrate, etc. of each element as a raw material. Can be manufactured.
  • methods such as a firing method, a solid phase method, a sol-gel method, a melt quench method, a mechanochemical method, a coprecipitation method, a hydrothermal method, and a spray pyrolysis method can be used.
  • a firing method under an inert atmosphere for example, a nitrogen atmosphere
  • firing conditions are 400 to 800 ° C. for 1 to 48 hours
  • the surface of the positive electrode active material may be coated with carbon in order to improve conductivity.
  • the coating may be on the entire surface of the positive electrode active material or a part thereof.
  • the proportion of carbon to be coated is preferably in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. When the amount is less than 1 part by weight, the effect of covering carbon may not be sufficiently obtained. When the amount is more than 30 parts by weight, the capacity of the battery may be lowered in order to inhibit the diffusion of lithium at the interface between the positive electrode active material and the electrolytic solution. A more desirable ratio is in the range of 1.5 to 15 parts by weight. Within this range, it is easy to control the amount of the conductive material included in the positive electrode active material to an appropriate amount when the positive electrode is manufactured.
  • the carbon coating method is not particularly limited, and a known method can be used.
  • the raw material of the positive electrode active material may be mixed with a compound serving as a carbon source, and the resulting mixture may be coated by firing in an inert atmosphere.
  • the compound serving as the carbon source it is necessary to use a compound that does not prevent the raw material from changing to the positive electrode active material.
  • examples of such compounds include saccharides such as sucrose and fructose, glycols such as polyethylene glycol, fats such as lauric acid, pitch, and tar.
  • the positive electrode may contain a conductive material, a binder, and a current collector in addition to the positive electrode active material.
  • the positive electrode can be produced by a known method such as applying a paste obtained by mixing an active material with water or an organic solvent, optionally together with a conductive material and a binder, to a current collector.
  • Binders include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, Nitrocellulose, acrylic resin, carboxymethylcellulose and the like can be used.
  • acetylene black carbon, graphite, natural graphite, artificial graphite, needle coke, or the like can be used.
  • VGCF (registered trademark) is a high crystallinity of graphite, has high electron conductivity, Li x M y P 1- z Si z O 4 obtained by replacing a part element of the present application
  • the contact resistance between the positive electrode active materials or the contact resistance between the positive electrode active material and the current collector can be reduced.
  • foamed (porous) metal having continuous pores metal formed in a honeycomb shape, sintered metal, expanded metal, non-woven fabric, plate, foil, perforated plate, perforated foil, etc. are used. be able to.
  • N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. are used. be able to.
  • the thickness of the positive electrode active material layer is preferably about 0.01 to 20 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered. In addition, you may compress the positive electrode active material layer obtained by application
  • Negative electrode A negative electrode is a negative electrode active material layer containing a negative electrode active material.
  • Carbon having a specific surface area of 2.5 to 5.0 m 2 / g is used for the negative electrode active material.
  • the specific surface area is smaller than 2.5 m 2 / g, for example, the lithium occlusion rate in the negative electrode becomes slow during low-temperature charging such as 0 ° C., and lithium may precipitate in a dendrite shape on the negative electrode surface.
  • the specific surface area is preferably 2.6 to 4.5 m 2 / g.
  • the specific surface area is within this range, the reactivity with the electrolyte in the case of abnormal heat generation such that the battery temperature becomes, for example, 60 ° C. or more is lowered, and the high temperature storage stability of the battery is improved. Furthermore, the specific surface area is more preferably 2.8 to 4.3 m 2 / g because it is not necessary to use a binder more than necessary during the production of the negative electrode.
  • the specific surface area is a value measured by a BET method based on low-temperature low-humidity physical adsorption of an inert gas such as nitrogen gas.
  • the negative electrode active material is not particularly limited as long as it has carbon having the above specific surface area, and a known material can be used.
  • Examples of such carbon include carbon such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, potato-like, pulverized particle-like, etc.).
  • spherical and potato-like particles are in point contact with each other even when the electrode is pressed, and it is easy to obtain the effect of the specific surface area of the negative electrode active material.
  • artificial graphite examples include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is more preferable because it is inexpensive, close to the redox potential of lithium, and can constitute a high energy density battery.
  • Li dendrite precipitation is unlikely to occur particularly when charging at a low temperature such as 0 ° C.
  • a low temperature such as 0 ° C.
  • the carbon layer with low crystallinity existing on the surface relaxes the process from solvated Li ions to bare Li ions. It is considered that Li ions are suppressed from becoming Li metal on the surface of the graphite particles at low temperatures.
  • the average particle diameter of the negative electrode active material made of carbon is preferably in the range of 0.1 to 75 ⁇ m for producing carbon having the specific surface area, and is in the range of 5 to 25 ⁇ m for the following reason. preferable.
  • the average particle diameter is smaller than 5 ⁇ m, the gap between the particles in the negative electrode active material layer becomes narrow, and the number of Li ions in the electrolyte solution in the vicinity of the negative electrode active material particles is small. The effect at a low temperature such as 0 ° C., which is good, is not sufficient.
  • the average particle diameter is larger than 25 ⁇ m, the number of contacts between the negative electrode active material particles is decreased, the resistance of the electrode is increased, and the effect of suppressing Li dendrite precipitation at low temperatures may be reduced. .
  • the above average particle diameter means a value at which the cumulative degree of particle volume is 50%, and is a value measured using a laser diffraction / scattering particle size distribution measuring apparatus (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.).
  • Lithium transition metal oxide eg, Li 4 Ti 5 O 12
  • lithium transition metal nitride e.g. Li 4 Ti 5 O 12
  • transition metal oxide e.g. Li 4 Ti 5 O 12
  • silicon oxide e.g. Li 4 Ti 5 O 12
  • the negative electrode active material layer surface facing the separator of the negative electrode active material layer preferably has a larger area than the positive electrode active material layer surface facing the separator of the positive electrode active material layer.
  • the area of the negative electrode active material layer surface is more preferably 1% or more than the surface area of the positive electrode active material layer surface, and more preferably in the range of 3 to 15%. This configuration is effective because the substitutional positive electrode active material is fast in supplying lithium to the negative electrode particularly at low temperatures.
  • the ratio of the negative electrode capacity to the positive electrode capacity at 25 ° C. is preferably 1.3 or more, and more preferably in the range of 1.3 to 1.6. If the ratio is less than 1.3, the safety of the battery when it is overcharged may be reduced. If the ratio is greater than 1.6, the amount of the negative electrode with respect to the positive electrode inside the battery becomes excessive, and the energy density of the battery May be damaged.
  • the negative electrode can be produced by a known method. Specifically, it can be manufactured in the same manner as described in the method for manufacturing the positive electrode. That is, a known method such as applying a paste obtained by mixing a negative electrode active material with an organic solvent together with a known binder and a known conductive material described in the preparation method of the positive electrode to a current collector. Can be produced.
  • separator examples include porous materials and nonwoven fabrics.
  • a material for the separator a material that does not dissolve or swell in an organic solvent contained in the electrolyte is preferable.
  • organic materials such as polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and inorganic materials such as glass.
  • non-woven fabrics such as polyethylene and polypropylene which are synthetic resins are preferable from the viewpoint of quality stability.
  • Some of these synthetic resin nonwoven fabrics have a function in which the separator is dissolved by heat when the battery abnormally generates heat, and a function of blocking between the positive electrode and the negative electrode is added. From the viewpoint of safety, these are also preferable.
  • the thickness of the separator is not particularly limited as long as it can hold a necessary amount of electrolyte and can prevent a short circuit between the positive electrode and the negative electrode, and is usually about 0.01 to 0.1 mm.
  • the thickness is preferably about 0.015 to 0.05 mm.
  • the thickness of the separator is less than 0.015 mm, the lithium dendrite deposit may break through the separator when the battery is overcharged, causing an internal short circuit of the battery. If the thickness is greater than 0.05 mm, the separator volume inside the battery is increased. There is a risk of increasing the energy density of the battery.
  • the porosity of the separator is preferably 30 to 90%, and it is particularly 45 to 65% that does not affect Li dendrite precipitation even at a low temperature of 0 ° C.
  • the separator surface facing the negative electrode active material layer of the separator preferably has a larger area than the negative electrode active material layer surface.
  • the movement speed of lithium ions becomes slow, so that the amount of lithium ions tends to be smaller than the amount of negative electrode active material.
  • the area of the separator is increased, the amount of lithium ions retained tends to increase. Considering these tendencies, the reaction efficiency of the negative electrode active material with lithium ions can be further improved by making the area of the separator larger than that of the negative electrode active material layer.
  • the area of the separator surface is more preferably 1% or more larger than the surface of the negative electrode active material layer, and still more preferably in the range of 2 to 7%.
  • the separator surface is smaller than 2% of the surface of the negative electrode active material layer, there is a risk that the separator contracts and the battery is short-circuited during abnormal heat generation such that the battery becomes higher than the softening temperature of the separator. If it is larger, the volume of the separator occupying the inside of the battery increases, which may impair the energy density of the battery.
  • Nonaqueous electrolyte A lithium ion secondary battery usually includes a nonaqueous electrolyte.
  • a nonaqueous electrolyte for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. Of these, the use of an organic electrolyte is common.
  • organic solvent constituting the organic electrolyte examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate.
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate.
  • Chain carbonates such as ⁇ -butyrolactone (GBL), lactones such as ⁇ -valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxy
  • Examples include ethers such as ethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. Use one or more of these in combination. Can do.
  • cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as a solvent to be mixed with GBL.
  • Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO) ), Lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and one or more of these may be used in combination.
  • the salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l. In particular, 0.8 to 1.5 mol / l is preferable in order to ensure the amount of lithium ions in the negative electrode during low-temperature charging.
  • Battery container Various battery containers used for conventionally known lithium ion secondary batteries can also be used for the battery container, and there is no particular limitation.
  • a battery container such as a cylindrical type, a square type, or a film type may be used.
  • a lithium ion secondary battery can be manufactured as follows, for example.
  • a positive electrode, a negative electrode, and a separator sandwiched between them are placed in a battery container in the form of a laminate.
  • the laminate may have, for example, a strip-like planar shape. Moreover, when producing a cylindrical or flat battery, the laminate may be wound.
  • the laminated body put in a battery container may consist of a some positive electrode, a negative electrode, and a separator.
  • the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked.
  • a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used.
  • a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used.
  • a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used.
  • An opening for injecting electrolyte is usually provided at the time of sealing.
  • a lithium ion secondary battery can be obtained by injecting a nonaqueous electrolyte from the opening and then sealing the opening.
  • the lithium ion secondary battery according to aspect 1 of the present invention is A positive electrode (1), a negative electrode (2), and a separator (9) between the positive electrode and the negative electrode,
  • the positive electrode has the following general formula (1) Li x M y P 1-z Si z O 4 (1) (Wherein M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and A positive electrode active material layer including a positive electrode active material that is a combination with Mn and represented by 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1.2, and 0 ⁇ z ⁇ 1)
  • the negative electrode is a negative electrode active material layer containing a negative electrode active material made of carbon having a specific surface area of 2.5 to 5.0 m 2 / g.
  • the lithium ion secondary battery which concerns on aspect 2 of this invention is the aspect 1,
  • the negative electrode active material layer surface of the negative electrode active material layer facing the separator may have a larger area than the positive electrode active material layer surface of the positive electrode active material layer facing the separator.
  • the lithium ion secondary battery has a good balance of Li ion insertion / desorption at the negative electrode with respect to Li ion desorption / insertion at the positive electrode during low temperature charge / discharge of the lithium ion secondary battery, and the input / output characteristics of the lithium ion secondary battery at low temperature It can be improved.
  • the lithium ion secondary battery which concerns on aspect 3 of this invention is the aspect 1 or 2
  • the separator surface facing the negative electrode of the separator may have a larger area than the negative electrode active material layer surface facing the separator of the negative electrode active material layer.
  • the lithium ion secondary battery according to Aspect 4 of the present invention is any one of Aspects 1 to 3,
  • the M may be a combination of Fe and Zr.
  • a lithium ion secondary battery according to Aspect 5 of the present invention is any one of Aspects 1 to 4,
  • the z may be 0.01 ⁇ z ⁇ 0.25.
  • the starting materials are LiCH 3 COO as a lithium source, FeC 2 O 4 .2H 2 O as an iron source, ZrO (CH 3 COO) 2 as a zirconium source, (NH 4 ) 2 HPO 4 as a phosphorus source, and SiO 2 as a silicon source. used.
  • Each of the above-mentioned substances such that LiCH 3 COO as a lithium source is 0.6599 g and Li: Fe: Zr: P: Si is in a molar ratio of 1: 0.948: 0.052: 0.948: 0.052.
  • the ball mill conditions were a rotation speed of 400 rpm, a rotation time of 1 hour, a ball made of zirconia having a diameter of 10 mm, and a mill pot made of zirconia.
  • 15% by weight of sucrose with respect to the obtained powder was dissolved in an aqueous solution, and the obtained powder was mixed, mixed well in an agate mortar, and dried at 60 ° C.
  • the obtained powder is put into a quartz crucible, fired in a nitrogen atmosphere with a firing temperature of 550 ° C., a firing time of 12 hours, a heating / cooling rate of 200 ° C./h, and a particle size in the range of 0.4 to 80 ⁇ m by classification.
  • substitution system positive electrode active material A1 which is single phase powder with an average particle diameter of 15 micrometers was synthesize
  • the Zr substitution amount a was 0.05
  • the Si substitution amount z was 0.05
  • the substitution amounts a and z were obtained by a calibration curve method using an ICP mass spectrometer (ICP-MS 7500cs manufactured by Agilent Technologies).
  • the average particle size of the single-phase powder means a value at which the cumulative volume of the particles is 50%, and is a value measured using a laser diffraction / scattering type particle size distribution analyzer (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.). is there.
  • LMS-2000e laser diffraction / scattering type particle size distribution analyzer
  • the lattice constant was obtained by the following procedure.
  • the substitutional positive electrode active material A1 was pulverized in an agate mortar, and a powder X-ray diffraction pattern was obtained using an X-ray analyzer MiniFlexII manufactured by Rigaku Corporation.
  • the measurement conditions were set at a voltage of 30 kV, a current of 15 mA, a divergence slit of 1.25 °, a light receiving slit of 0.3 mm, a scattering slit of 1.25 °, a range of 2 ⁇ of 10 ° to 90 °, and a step of 0.02 °
  • the measurement time for each step was adjusted so that the peak intensity was 800-1500.
  • “RIETA-FP” F.
  • the mixture was stirred and mixed at room temperature using a Fillmix 40-40 type (manufactured by Primics) to obtain an aqueous positive electrode manufacturing paste.
  • This paste was applied onto a rolled aluminum foil (thickness: 20 ⁇ m) as a current collector using a die coater so that the coating amount of the positive electrode active material per side was 15 to 17 mg / cm 2 .
  • the obtained coating film was dried in air at 100 ° C. for 30 minutes and pressed to obtain a positive electrode (coating surface size: 28 mm (vertical) ⁇ 28 mm (horizontal)) described in Table 2 below.
  • L1 is spherical natural graphite having an average particle diameter of 18.7 ⁇ m
  • L2 is potato-shaped artificial graphite having an average particle diameter of 5.6 ⁇ m
  • L3 is spherical natural graphite having an average particle diameter of 12.3 ⁇ m
  • L4 is an average particle diameter.
  • L5 was spherical artificial graphite having an average particle diameter of 18.0 ⁇ m
  • L6 was spherical natural graphite having an average particle diameter of 13.1 ⁇ m.
  • the average particle diameter of graphite means a value at which the cumulative volume of particles is 50%, and is a value measured using a laser diffraction / scattering type particle size distribution measuring apparatus (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.). The shape was observed by SEM.
  • LMS-2000e laser diffraction / scattering type particle size distribution measuring apparatus
  • the lithium ion secondary battery shown in FIG. 1B was manufactured by the procedure shown in FIG.
  • the positive electrode 1 and the negative electrode 2 were dried under reduced pressure at 130 ° C. for 24 hours, and then placed in a glow box in a dry Ar atmosphere.
  • an aluminum tab lead 4 with an adhesive film 3 was ultrasonically welded to the positive electrode 1
  • a nickel tab lead 6 with an adhesive film 5 was ultrasonically welded to the negative electrode 2.
  • a polyethylene microporous film size: 31 mm (length) ⁇ 31 mm (width), thickness 25 ⁇ m, porosity 55%) was loaded as a separator 9 so that the coated surface 7 of the negative electrode 2 was hidden.
  • a laminate was obtained by superposing the positive electrode 1 on the separator 9 so that the coating surface 8 overlapped the center of the separator 9.
  • the laminate was sandwiched between the aluminum laminate films 11 and 12, and the three sides of the aluminum laminate films 11 and 12 were thermally welded so that the adhesive films 3 and 5 of the tab leads 4 and 6 were sandwiched (13 is a heat fusion part).
  • an electrolytic solution in which LiPF 6 was dissolved was poured into a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 so as to be 1 mol / l.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the last side of the aluminum laminate bag was heat-sealed under a reduced pressure of 10 kPa to obtain a laminated lithium ion secondary battery (cell) 14 of the single cell 10.
  • the injection amount of the electrolyte was appropriately determined according to the thickness of the positive electrode and the negative electrode used in the battery, and was set to an amount that allowed the electrolyte to sufficiently permeate the positive electrode, the negative electrode, and the separator.
  • the negative electrode active material layer surface area ⁇ positive electrode active material layer surface area / positive electrode active material layer surface area ⁇ 100 of these batteries was 14.8 (%), (separator surface area ⁇ negative electrode active material layer surface area) / negative electrode active material layer surface.
  • the area ⁇ 100 was 6.8 (%).
  • Table 2 shows the results obtained. Further, FIG. 2 shows the relationship between the specific surface area and the return capacity retention rate of the negative electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 in Table 2.
  • Examples 4 to 7 A laminated cell was obtained in the same manner as in Example 2 except that the coating amount of the positive electrode and the negative electrode was changed. The obtained results are shown in Table 3.
  • the return capacity retention rate after 100 cycles means the ratio measured in the same manner as in Examples 1 to 3 above.
  • the return capacity maintenance rate after 200 cycles was measured as follows. First, after performing the 101st charge / discharge in the same manner as in Examples 1 to 3 above, CC-CV charge conditions at 1.0 C (3.6 V cut, 0.01 C cut) and CC at 1.0 C Charging / discharging was repeated 99 times under discharge conditions (2.0 V cut). Thereafter, the same 0.1 C charge / discharge as in the first and second times was performed again. The charge / discharge capacity at each time was measured, and the ratio (201 cy ⁇ 1 cy ⁇ 100) of the 201st (201 cy) charge / discharge capacity to the first time was calculated as the return capacity maintenance rate (%) after 200 cycles.
  • the capacity of the positive electrode was obtained as follows. First, an electrolytic solution in which LiPF 6 was dissolved in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 2 so as to be 1 mol / l was put in a 50 ml reagent bottle. Next, a positive electrode (or a negative electrode), a counter electrode made of lithium, and a reference electrode are installed so that they are not in contact with each other after the lead wire is added thereto, so that the beaker cell (lithium ion secondary battery) is installed.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • This beaker cell has a positive electrode active current obtained when a constant current charge / discharge of 0.1 C is performed at 25 ° C. in a potential range of 2 to 4 V (0 to 2.5 V for the negative electrode) with respect to the potential of lithium.
  • the charge / discharge capacity per gram of the material (negative electrode active material) was measured, and the product of the amount applied to the positive electrode (or negative electrode) was used as the capacity of the positive electrode (or negative electrode).
  • the return capacity retention rate after 100 cycles at 0 ° C. with respect to the negative electrode capacity / positive electrode capacity was 60% or more, and both were maintained well.
  • the return capacity retention rate after 200 cycles was slightly lower in Example 4.
  • the negative electrode capacity / positive electrode capacity was preferably larger than 1.3, more preferably 1.4 or more. Further, when the negative electrode capacity / positive electrode capacity was 1.6 or more, the return capacity retention ratio was high and almost constant.
  • Example 8 is an example showing that the negative electrode L2 has an optimum specific surface area when the substitutional positive electrode active material A1 is used in Examples 1 to 3.
  • Comparative Example 4 is an example in which the negative electrode L2 having a specific surface area that was optimal for the substituted positive electrode active material A1 and the unsubstituted positive electrode active material A2 were combined. From comparison between Example 2 and Comparative Example 4 in Table 2, Example 2 using the substituted positive electrode active material A1 shows superior characteristics. This result suggests the advantage of using a substitutional positive electrode active material, particularly at low temperatures.
  • the reason why the substitution positive electrode active material is superior was verified by a tripotential beaker cell using graphite L2 for the negative electrode and A1 or A2 for the positive electrode.
  • the beaker cell was obtained as follows. First, an electrolytic solution in which LiPF 6 was dissolved to a concentration of 1 mol / l in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 was placed in a 50 ml reagent bottle. Next, the positive electrode and the negative electrode, together with a reference electrode made of lithium, are added so that they are not in contact with each other after the lead wire is added thereto, thereby obtaining a beaker cell (lithium ion secondary battery). It was. In this beaker cell, the positive electrode potential (with respect to Li) can be detected simultaneously while controlling the cell voltage (between the positive electrode and the negative electrode).
  • FIG. 3 (a) and (b) Measure the cell voltage and positive electrode potential (cell temperature 25 ° C.) over time of charging time, and the results are shown in FIG. 3 (a) and (b).
  • the solid line represents the case of using the substituted positive electrode active material A1
  • the dotted line represents the case of using the non-substituted positive electrode active material A2.
  • the transition of the potential during charging depends on the properties of the positive electrode active material itself, in particular, whether or not it is a substitution system. That is, based on the results of Examples 1 to 3 and Comparative Examples 1 to 4 shown in Table 2, the negative electrode whose specific surface area is 2.5 to 5.0 m 2 / g is a substituted positive electrode active material. It is considered that the laminate cell to be used is also effective.
  • Example 9 to 11 (1) The coated surface (positive electrode active material layer surface) size of the positive electrode is 150 mm (vertical) ⁇ 225 mm (horizontal), (2) The negative electrode coating surface (negative electrode active material layer surface) size is 151 mm (vertical) ⁇ 226 mm (horizontal), (3) The separator surface size of a polyethylene microporous membrane as a separator is 152 mm (vertical) ⁇ 227 mm (horizontal), thickness 25 ⁇ m, porosity 55%, (4) The laminated body is formed into a multilayer laminated structure comprising 88 positive electrodes, 176 separators, and 89 negative electrodes so as to be negative electrode / separator / positive electrode / separator / negative electrode /. Batteries of Examples 9 to 11 were produced in the same manner as Examples 1 to 3 except for changing each. The obtained batteries were evaluated in the same manner as in Examples 1 to 3. As a result, a return capacity retention rate of 60% or more was obtained.
  • the present invention can be widely applied to all lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

A cathode (1) is a cathode active material layer containing a cathode active material represented by LixMyP1-zSizO4 (M being a combination of Fe and Mn or a combination of Fe and/or Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al, and Y, 0≤x≤2, 0.8≤y≤1.2, and 0<z≤1), and an anode (2) is an anode active material layer containing an anode active material comprising carbon having a specific surface area of 2.5-5.0 m2/g.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。更に詳しくは、本発明は、特に低温環境下でのサイクル特性に優れたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to a lithium ion secondary battery having excellent cycle characteristics particularly in a low temperature environment.
 二次電池として、リチウムイオン二次電池が実用化されており、広く普及している。更に近年、リチウムイオン二次電池は、ポータブル電子機器用の小型のものだけでなく、車載用や電力貯蔵用等の大容量のデバイスとしても注目されている。リチウムイオン二次電池は、その主たる構成要素として正極、負極、電解質、及びセパレータを有する。また、上記正極は、正極活物質を、負極は、負極活物質を含んでいる。 As a secondary battery, a lithium ion secondary battery has been put into practical use and is widely spread. Furthermore, in recent years, lithium ion secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices, but also as large-capacity devices for in-vehicle use and power storage. A lithium ion secondary battery has a positive electrode, a negative electrode, an electrolyte, and a separator as its main components. The positive electrode includes a positive electrode active material, and the negative electrode includes a negative electrode active material.
 一般に、正極活物質としては、LiCoOに代表される層状遷移金属酸化物が用いられている(例えば、日本国公開特許公報「特開2002-270160号公報」:特許文献1)。しかしながら、層状遷移金属酸化物は、満充電状態において、150℃前後の比較的低温で酸素脱離を起こし易く、当該酸素脱離により電池の熱暴走反応が起こり得る。従って、このような正極活物質を有する電池は、発熱、発火等の事故が発生する恐れがあった。 In general, a layered transition metal oxide typified by LiCoO 2 is used as the positive electrode active material (for example, Japanese Patent Laid-Open Publication No. 2002-270160: Patent Document 1). However, the layered transition metal oxide easily causes oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and the thermal desorption reaction of the battery can occur due to the oxygen desorption. Therefore, the battery having such a positive electrode active material may cause accidents such as heat generation and ignition.
 このため、構造が安定し異常時に酸素を放出せず、LiCoOより安価なオリビン型構造を有するリン酸鉄リチウム(LiFePO)が期待されている(例えば、日本国公開特許公報「特開2008-10316号公報」:特許文献2、日本国公開特許公報「特開2011-71017号公報」:特許文献3)。 For this reason, lithium iron phosphate (LiFePO 4 ) having a stable olivine structure that does not release oxygen when abnormal and has a lower olivine structure than LiCoO 2 is expected (for example, Japanese Patent Application Laid-Open No. 2008-2008). No.-10316 ”: Japanese Patent Application Laid-Open No. 2011-71017: Japanese Patent Application Laid-Open No. 2011-71017: Japanese Patent Application Laid-Open No. 2011-71017.
 LiFePOは、Li挿入時と脱離時の間の体積変化率が約7%と大きく、充放電サイクルを繰り返すことにより、容量劣化を生じることが知られている。そのため、LiFePOを構成するFeとPを他の元素で一部置き換えることで容量劣化を抑制する技術が報告されている(日本国公開特許公報「特開2012-18836号公報」:特許文献4)。 It is known that LiFePO 4 has a large volume change rate of about 7% between insertion and desorption of Li, and capacity deterioration is caused by repeating charge and discharge cycles. For this reason, a technology for suppressing capacity deterioration by partially replacing Fe and P constituting LiFePO 4 with other elements has been reported (Japanese Patent Laid-Open Publication No. 2012-18836): Patent Document 4 ).
日本国公開特許公報「特開2002-270160号公報」Japanese Patent Publication “JP 2002-270160 A” 日本国公開特許公報「特開2008-10316号公報」Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2008-10316” 日本国公開特許公報「特開2011-71017号公報」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-71017” 日本国公開特許公報「特開2012-18836号公報」Japanese Patent Publication “JP 2012-18836 A”
 上記特許文献4では、容量劣化はある程度抑制できている。しかしながら、リチウムイオン二次電池は、大容量のデバイスとして使用することが望まれており、そのようなデバイスでは、環境温度の大きな変動時でも容量劣化が抑制されている必要がある。特に、低温下で充放電サイクルを繰り返した場合の容量劣化は、室温下より大きいため、低温下での容量劣化の抑制が望まれていた。 In the above-mentioned Patent Document 4, capacity deterioration can be suppressed to some extent. However, the lithium ion secondary battery is desired to be used as a large-capacity device. In such a device, it is necessary to suppress the capacity deterioration even when the environmental temperature varies greatly. In particular, since the capacity deterioration when the charge / discharge cycle is repeated at a low temperature is larger than that at room temperature, it is desired to suppress the capacity deterioration at a low temperature.
 本発明は、低温環境下でのサイクル特性に優れた非水電解質二次電池を提供することを課題とする。 An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics under a low temperature environment.
 本発明の一態様に係るリチウムイオン二次電池は、正極と、負極と、正極及び負極間のセパレータとを含み、
 前記正極が、下記一般式(1)
Li1-zSi  (1)
(ここで、Mは、Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせであるか、FeとMnとの組み合わせであり、0≦x≦2、0.8≦y≦1.2、0<z≦1)で表される正極活物質を含む正極活物質層であり、
 前記負極が、比表面積2.5~5.0m/gの炭素からなる負極活物質を含む負極活物質層である。
A lithium ion secondary battery according to one embodiment of the present invention includes a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode,
The positive electrode has the following general formula (1)
Li x M y P 1-z Si z O 4 (1)
(Wherein M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and A positive electrode active material layer including a positive electrode active material that is a combination with Mn and represented by 0 ≦ x ≦ 2, 0.8 ≦ y ≦ 1.2, and 0 <z ≦ 1)
The negative electrode is a negative electrode active material layer containing a negative electrode active material made of carbon having a specific surface area of 2.5 to 5.0 m 2 / g.
 本発明によれば、特に低温での充放電サイクルの繰返しによる容量劣化を抑制できる。 According to the present invention, it is possible to suppress capacity deterioration due to repeated charge / discharge cycles particularly at low temperatures.
リチウムイオン二次電池の概略図であり、(a)は構成部材の概略図の一例、(b)はリチウムイオン二次電池の全体概略図の一例を示す図である。It is the schematic of a lithium ion secondary battery, (a) is an example of the schematic diagram of a structural member, (b) is a figure which shows an example of the whole schematic diagram of a lithium ion secondary battery. 負極活物質の比表面積と戻り容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the specific surface area of a negative electrode active material, and a return capacity maintenance factor. (a)は充電時間とセル電圧との関係を示すグラフであり、(b)は充電時間と正極電位との関係を示すグラフである。(A) is a graph which shows the relationship between charging time and a cell voltage, (b) is a graph which shows the relationship between charging time and a positive electrode potential.
 本発明の発明者等は、低温下での充放電サイクルを繰り返した場合、容量が劣化したリチウムイオン二次電池には、
(1)負極表面に過剰なリチウムを主体とする被膜が形成されていること、
(2)負極表面にデンドライトが形成されていること
を観察している。発明者等は、この観察結果を検討したところ、容量の劣化の抑制には、正極活物質と負極活物質の特定の組み合わせが特に有効であることを見出し、本発明に至った。
When the inventors of the present invention repeat the charge / discharge cycle at a low temperature, the lithium ion secondary battery having a deteriorated capacity is
(1) A film mainly composed of excess lithium is formed on the negative electrode surface;
(2) It is observed that dendrite is formed on the negative electrode surface. The inventors examined this observation result, and found that a specific combination of the positive electrode active material and the negative electrode active material was particularly effective in suppressing the deterioration of the capacity, and reached the present invention.
 以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.
 本発明のリチウムイオン二次電池は、特に低温での充放電サイクルの繰返しによる容量劣化を抑制できる。ここで、低温とは0℃以下を意味する。 The lithium ion secondary battery of the present invention can suppress capacity deterioration due to repeated charge / discharge cycles particularly at low temperatures. Here, low temperature means 0 degreeC or less.
 本発明のリチウムイオン二次電池は、正極と、負極と、正極及び負極間のセパレータとを含む。 The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode.
 (A)正極
 正極は、正極活物質を含む正極活物質層である。
(A) Positive electrode A positive electrode is a positive electrode active material layer containing a positive electrode active material.
 (I)正極活物質
 正極活物質は、下記一般式(1)
Li1-zSi  (1)
で表される。
(I) Cathode Active Material The cathode active material is represented by the following general formula (1)
Li x M y P 1-z Si z O 4 (1)
It is represented by
 一般式(1)中、Mは、
(i)Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせ、又は
(ii)FeとMnとの組み合わせ
である。例えば、Fe/Co、Fe/Ni、Fe/Zr、Fe/Sn、Fe/Al、Fe/Y、Mn/Co、Mn/Ni、Mn/Zr、Mn/Sn、Mn/Al、Mn/Y、Fe/Mnが挙げられる。
In general formula (1), M is
(I) a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or (ii) a combination of Fe and Mn It is a combination. For example, Fe / Co, Fe / Ni, Fe / Zr, Fe / Sn, Fe / Al, Fe / Y, Mn / Co, Mn / Ni, Mn / Zr, Mn / Sn, Mn / Al, Mn / Y, Fe / Mn is mentioned.
 xは0≦x≦2の範囲を、yは0.8≦y≦1.2の範囲を、zは0<z≦1の範囲を取り得る。xが2より大きい場合、Mを上記金属で選択すると不純物が多く生成することがある。yが0.8より小さい場合、Mを上記金属で選択すると不純物が多く生成することがあり、1.2より大きい場合、Mを上記金属で選択すると不純物が多く生成することがある。zが0の場合、充放電反応時の材料体積変化が大きくなることがある。xは(電池の放電状態で)0.5≦x≦1.5の範囲、yは0.9≦y≦1.1の範囲、zは0.01≦z≦0.25の範囲であることが好ましい。x、y及びzがこの範囲から外れると一般的な製法で正極活物質を製造する場合(電池の放電状態で製造)に、粒子の平均粒径が適切な範囲に制御できないことがある。xは(電池の放電状態で)0.9≦x≦1.1の範囲、yは0.95≦y≦1.05の範囲、zは0.025≦z≦0.05の範囲であることがより好ましい。x、y及びzがこの範囲から外れると固相法で正極活物質を製造する場合(電池の放電状態で製造)に、粒子の平均粒径が適切な範囲に制御できないことがある。Mを構成する複数の元素の比は、合計がyの取り得る範囲内であれば特に限定されない。 X can take a range of 0 ≦ x ≦ 2, y can take a range of 0.8 ≦ y ≦ 1.2, and z can take a range of 0 <z ≦ 1. When x is larger than 2, when M is selected from the above metals, a large amount of impurities may be generated. When y is smaller than 0.8, many impurities may be generated when M is selected from the above metals, and when M is selected from the above metals, many impurities may be generated. When z is 0, the material volume change during the charge / discharge reaction may increase. x is in the range of 0.5 ≦ x ≦ 1.5 (when the battery is discharged), y is in the range of 0.9 ≦ y ≦ 1.1, and z is in the range of 0.01 ≦ z ≦ 0.25. It is preferable. If x, y, and z are out of this range, the average particle diameter of the particles may not be controlled within an appropriate range when the positive electrode active material is produced by a general production method (produced in the discharged state of the battery). x is in the range of 0.9 ≦ x ≦ 1.1 (when the battery is discharged), y is in the range of 0.95 ≦ y ≦ 1.05, and z is in the range of 0.025 ≦ z ≦ 0.05. It is more preferable. When x, y, and z are out of this range, the average particle diameter of the particles may not be controlled within an appropriate range when the positive electrode active material is manufactured by a solid phase method (manufactured in a battery discharge state). The ratio of the plurality of elements constituting M is not particularly limited as long as the sum is within the range that y can take.
 より具体的な正極活物質としては、
Li(Fe1-aCo1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-aNi1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-aZr1-zSi(0.9≦x≦1.1、0.025≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-aSn1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-aAl1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-a1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-aCo1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-aNi1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-aZr1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-aSn1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-aAl1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Mn1-a1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
Li(Fe1-aMn1-zSi(0.9≦x≦1.1、0.01≦a≦0.125、0.95≦y≦1.05、0.01≦z≦0.25)
等が挙げられる。但し、xは電池の放電状態における値である。
As a more specific positive electrode active material,
Li x (Fe 1-a Co a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1-a Ni a) y P 1-z Si z O 4 (0.9 ≦ x ≦ 1.1,0.01 ≦ a ≦ 0.125,0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1-a Zr a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.025 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1-a Sn a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1-a Al a) y P 1-z Si z O 4 (0.9 ≦ x ≦ 1.1,0.01 ≦ a ≦ 0.125,0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1−a Y a ) y P 1−z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1-a Co a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1-a Ni a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1-a Zr a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1-a Sn a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1-a Al a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Mn 1−a Y a ) y P 1−z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Li x (Fe 1-a Mn a ) y P 1-z S iZ O 4 (0.9 ≦ x ≦ 1.1, 0.01 ≦ a ≦ 0.125, 0.95 ≦ y ≦ 1.05, 0.01 ≦ z ≦ 0.25)
Etc. However, x is a value in the discharge state of a battery.
 (a)正極活物質の製造方法
 正極活物質は、原料として、各元素の炭酸塩、水酸化物、塩化物、硫酸塩、酢酸塩、酸化物、シュウ酸塩、硝酸塩等の組合せを用いることにより製造できる。製造方法としては、焼成法、固相法、ゾルゲル法、溶融急冷法、メカノケミカル法、共沈法、水熱法、噴霧熱分解法等の方法を用いることができる。これら方法の内、不活性雰囲気(例えば、窒素雰囲気)下での焼成法(焼成条件は、400~800℃で1~48時間)が簡便である。
(A) Method for producing positive electrode active material The positive electrode active material uses a combination of carbonate, hydroxide, chloride, sulfate, acetate, oxide, oxalate, nitrate, etc. of each element as a raw material. Can be manufactured. As the production method, methods such as a firing method, a solid phase method, a sol-gel method, a melt quench method, a mechanochemical method, a coprecipitation method, a hydrothermal method, and a spray pyrolysis method can be used. Among these methods, a firing method under an inert atmosphere (for example, a nitrogen atmosphere) (firing conditions are 400 to 800 ° C. for 1 to 48 hours) is convenient.
 (b)その他
 正極活物質は、導電性を向上するために、その表面が炭素で被覆されていてもよい。被覆は、正極活物質全面でもよく、一部でもよい。
(B) Others The surface of the positive electrode active material may be coated with carbon in order to improve conductivity. The coating may be on the entire surface of the positive electrode active material or a part thereof.
 被覆する炭素の割合は、正極活物質100重量部に対して、1~30重量部の範囲であることが好ましい。1重量部未満の場合、炭素を被覆する効果が十分に得られないことがある。30重量部より多い場合、正極活物質と電解液界面でのリチウムの拡散を阻害するために、電池の容量が低下することがある。より好ましい割合は、1.5~15重量部の範囲である。この範囲であると正極作製時に、正極活物質に対して含ませる導電材の量を適量に制御しやすい。 The proportion of carbon to be coated is preferably in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. When the amount is less than 1 part by weight, the effect of covering carbon may not be sufficiently obtained. When the amount is more than 30 parts by weight, the capacity of the battery may be lowered in order to inhibit the diffusion of lithium at the interface between the positive electrode active material and the electrolytic solution. A more desirable ratio is in the range of 1.5 to 15 parts by weight. Within this range, it is easy to control the amount of the conductive material included in the positive electrode active material to an appropriate amount when the positive electrode is manufactured.
 炭素の被覆方法は、特に限定されず、公知の方法を利用できる。例えば、正極活物質の原料に、炭素源となる化合物を混合し、得られた混合物を不活性雰囲気下で焼成することにより被覆する方法が挙げられる。炭素源となる化合物は、原料が正極活物質に変化することを妨げない化合物を使用する必要がある。そのような化合物としては、スクロース、フルクトース等の糖類、ポリエチレングリコールのようなグリコール類、ラウリン酸のような脂肪類、ピッチ、タール等が挙げられる。 The carbon coating method is not particularly limited, and a known method can be used. For example, the raw material of the positive electrode active material may be mixed with a compound serving as a carbon source, and the resulting mixture may be coated by firing in an inert atmosphere. As the compound serving as the carbon source, it is necessary to use a compound that does not prevent the raw material from changing to the positive electrode active material. Examples of such compounds include saccharides such as sucrose and fructose, glycols such as polyethylene glycol, fats such as lauric acid, pitch, and tar.
 (II)正極活物質以外の構成
 正極は、正極活物質以外に、導電材とバインダーと集電体とを含んでいてもよい。また、正極は、例えば、活物質を、任意に、導電材及びバインダーと共に、水又は有機溶剤と混合して得たペーストを集電体に塗布する等の公知の方法によって作製できる。
(II) Configuration Other than Positive Electrode Active Material The positive electrode may contain a conductive material, a binder, and a current collector in addition to the positive electrode active material. The positive electrode can be produced by a known method such as applying a paste obtained by mixing an active material with water or an organic solvent, optionally together with a conductive material and a binder, to a current collector.
 バインダー(結着材)としては、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、アクリル系樹脂、カルボキシメチルセルロース等を用いることができる。 Binders (binders) include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, Nitrocellulose, acrylic resin, carboxymethylcellulose and the like can be used.
 導電材としては、アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等を用いることができる。 As the conductive material, acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, or the like can be used.
 上記導電材の人造黒鉛の中でも、VGCF(登録商標)は、黒鉛の結晶性が高く、電子伝導性が高いため、本願の一部元素を置換したLi1-zSiの正極活物質に対して、正極活物質同士の接触抵抗、または正極活物質と集電体との接触抵抗が低くできる。 Among the artificial graphite of the conductive material, VGCF (registered trademark) is a high crystallinity of graphite, has high electron conductivity, Li x M y P 1- z Si z O 4 obtained by replacing a part element of the present application The contact resistance between the positive electrode active materials or the contact resistance between the positive electrode active material and the current collector can be reduced.
 集電体としては、連続孔を持つ発泡(多孔質)金属、ハニカム状に形成された金属、焼結金属、エキスパンドメタル、不織布、板、箔、孔開きの板、孔開きの箔等を用いることができる。 As the current collector, foamed (porous) metal having continuous pores, metal formed in a honeycomb shape, sintered metal, expanded metal, non-woven fabric, plate, foil, perforated plate, perforated foil, etc. are used. be able to.
 有機溶剤としては、N-メチル-2-ピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等を用いることができる。 As the organic solvent, N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. are used. be able to.
 正極活物質層の厚さは、0.01~20mm程度が好ましい。厚すぎると導電性が低下し、薄すぎると単位面積当たりの容量が低下するので好ましくない。なお、塗布並びに乾燥によって得られた正極活物質層は、活物質の充填密度を高めるためローラープレス等により圧縮してもよい。 The thickness of the positive electrode active material layer is preferably about 0.01 to 20 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered. In addition, you may compress the positive electrode active material layer obtained by application | coating and drying with a roller press etc. in order to raise the packing density of an active material.
 (B)負極
 負極は、負極活物質を含む負極活物質層である。
(B) Negative electrode A negative electrode is a negative electrode active material layer containing a negative electrode active material.
 負極活物質には比表面積2.5~5.0m/gの炭素が使用される。比表面積が2.5m/gより小さい場合、例えば0℃のような低温充電時に負極内へのリチウムの吸蔵速度が遅くなり、負極表面上にリチウムがデンドライト状に析出することがある。5.0m/gより大きい場合、電解質との副反応が多くなり、電池の充放電効率が低下することがある。比表面積は、2.6~4.5m/gであることが好ましい。比表面積がこの範囲内であれば、電池温度が例えば60℃以上になるような異常発熱した場合の電解質との反応性が低くなり、電池の高温保存性が向上する。さらに、負極作製時にバインダーを必要以上に使用しなくて済むので、比表面積は2.8~4.3m/gであることがより好ましい。なお、比表面積は、窒素ガス等不活性気体の低温低湿物理吸着によるBET法により測定した値である。 Carbon having a specific surface area of 2.5 to 5.0 m 2 / g is used for the negative electrode active material. When the specific surface area is smaller than 2.5 m 2 / g, for example, the lithium occlusion rate in the negative electrode becomes slow during low-temperature charging such as 0 ° C., and lithium may precipitate in a dendrite shape on the negative electrode surface. When larger than 5.0 m < 2 > / g, side reaction with electrolyte increases and the charging / discharging efficiency of a battery may fall. The specific surface area is preferably 2.6 to 4.5 m 2 / g. If the specific surface area is within this range, the reactivity with the electrolyte in the case of abnormal heat generation such that the battery temperature becomes, for example, 60 ° C. or more is lowered, and the high temperature storage stability of the battery is improved. Furthermore, the specific surface area is more preferably 2.8 to 4.3 m 2 / g because it is not necessary to use a binder more than necessary during the production of the negative electrode. The specific surface area is a value measured by a BET method based on low-temperature low-humidity physical adsorption of an inert gas such as nitrogen gas.
 負極活物質としては、上記比表面積を有する炭素であれば特に限定されず、公知の材料を用いることができる。そのような炭素として、例えば、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、ポテト状、粉砕粒子状等)の天然もしくは人造黒鉛のような炭素が挙げられる。特に球状及びポテト状粒子は電極をプレスしても粒子同士が点接触となり、負極活物質の比表面積の効果を得やすい。 The negative electrode active material is not particularly limited as long as it has carbon having the above specific surface area, and a known material can be used. Examples of such carbon include carbon such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, potato-like, pulverized particle-like, etc.). In particular, spherical and potato-like particles are in point contact with each other even when the electrode is pressed, and it is easy to obtain the effect of the specific surface area of the negative electrode active material.
 人造黒鉛としては、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等を黒鉛化して得られる黒鉛が挙げられる。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。これらの中で、天然黒鉛は、安価でかつリチウムの酸化還元電位に近く、高エネルギー密度電池が構成できるためより好ましい。 Examples of artificial graphite include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is more preferable because it is inexpensive, close to the redox potential of lithium, and can constitute a high energy density battery.
 さらに、上記天然もしくは人造黒鉛粒子表面の少なくとも一部をその黒鉛よりも低い結晶性の炭素で覆っている材料については、特に0℃のような低温での充電時にLiのデンドライト析出が起こりにくい。この理由としては、充電時に黒鉛粒子内にLiイオンが挿入する際に、その表面に存在する結晶性の低い炭素層が、溶媒和したLiイオンから裸のLiイオンとなるまでのプロセスを緩和しており、低温時に黒鉛粒子表面でLiイオンがLi金属になるのを抑制していることが考えられる。 Furthermore, with respect to a material in which at least a part of the surface of the natural or artificial graphite particles is covered with crystalline carbon lower than that of the graphite, Li dendrite precipitation is unlikely to occur particularly when charging at a low temperature such as 0 ° C. The reason for this is that when Li ions are inserted into the graphite particles during charging, the carbon layer with low crystallinity existing on the surface relaxes the process from solvated Li ions to bare Li ions. It is considered that Li ions are suppressed from becoming Li metal on the surface of the graphite particles at low temperatures.
 上記炭素からなる負極活物質の平均粒子径は、0.1~75μmの範囲であることが上記比表面積を有する炭素を作製する上で好ましく、5~25μmの範囲であることが次の理由から好ましい。平均粒子径が5μmより小さくなると、負極活物質層中の粒子間の空隙が狭くなり、負極活物質粒子近傍の電解液中のLiイオンの数が少ないため、特に本願のリチウムイオン二次電池が得意とする0℃のような低温での効果が十分でなくなる。また、平均粒子径が25μmより大きくなると、負極活物質粒子間の接点数が減少してしまい、電極の抵抗が増大してしまい、低温時にLiのデンドライト析出を抑制する効果が低くなる虞がある。 The average particle diameter of the negative electrode active material made of carbon is preferably in the range of 0.1 to 75 μm for producing carbon having the specific surface area, and is in the range of 5 to 25 μm for the following reason. preferable. When the average particle diameter is smaller than 5 μm, the gap between the particles in the negative electrode active material layer becomes narrow, and the number of Li ions in the electrolyte solution in the vicinity of the negative electrode active material particles is small. The effect at a low temperature such as 0 ° C., which is good, is not sufficient. Further, when the average particle diameter is larger than 25 μm, the number of contacts between the negative electrode active material particles is decreased, the resistance of the electrode is increased, and the effect of suppressing Li dendrite precipitation at low temperatures may be reduced. .
 上記の平均粒子径は、粒子体積の累積度が50%となる値を意味し、レーザー回折・散乱式粒度分布測定装置(セイシン企業社製 LMS-2000e)を用いて測定された値である。 The above average particle diameter means a value at which the cumulative degree of particle volume is 50%, and is a value measured using a laser diffraction / scattering particle size distribution measuring apparatus (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.).
 リチウム遷移金属酸化物(例えば、LiTi12)、リチウム遷移金属窒化物、遷移金属酸化物、酸化シリコン等を上記炭素と併用可能である。 Lithium transition metal oxide (eg, Li 4 Ti 5 O 12 ), lithium transition metal nitride, transition metal oxide, silicon oxide, or the like can be used in combination with the carbon.
 負極活物質層のセパレータと対向する負極活物質層面は、正極活物質層のセパレータと対向する正極活物質層面より大きな面積を有することが好ましい。大きな面積を有することで、充電時に正極活物質層からのリチウムイオンがデンドライト状に析出することを抑制できる。即ち、充電時に正極活物質層から出たリチウムイオンは、負極活物質層へ向けて移動するが、負極活物質層が正極活物質層と等しいか又は小さい場合、負極活物質層へ到達できず、その結果、デンドライト状に析出する可能性が高くなる。この可能性は、低温充電時に、電圧を高く維持できたとしても生じる。ここで、負極活物質層面の面積は、正極活物質層面の表面積より1%以上大きいことがより好ましく、3~15%の範囲で大きいことが更に好ましい。置換系正極活物質は、特に低温時の負極へのリチウム供給が早いので、この構成が効果的である。 The negative electrode active material layer surface facing the separator of the negative electrode active material layer preferably has a larger area than the positive electrode active material layer surface facing the separator of the positive electrode active material layer. By having a large area, lithium ions from the positive electrode active material layer can be prevented from precipitating in a dendrite state during charging. That is, lithium ions that have come out of the positive electrode active material layer during charging move toward the negative electrode active material layer, but cannot reach the negative electrode active material layer when the negative electrode active material layer is equal to or smaller than the positive electrode active material layer. As a result, the possibility of depositing in a dendrite state increases. This possibility occurs even when the voltage can be kept high during low-temperature charging. Here, the area of the negative electrode active material layer surface is more preferably 1% or more than the surface area of the positive electrode active material layer surface, and more preferably in the range of 3 to 15%. This configuration is effective because the substitutional positive electrode active material is fast in supplying lithium to the negative electrode particularly at low temperatures.
 また、25℃における正極容量に対する負極容量の比(負極容量/正極容量)は、1.3以上であることが好ましく、1.3~1.6の範囲であることがより好ましい。比が1.3より小さくなると、電池の過充電時の安全性が低くなる虞があり、比が1・6より大きくなると、電池内部の正極に対する負極の量が過剰となり過ぎ、電池のエネルギー密度が損なわれる虞がある。 The ratio of the negative electrode capacity to the positive electrode capacity at 25 ° C. (negative electrode capacity / positive electrode capacity) is preferably 1.3 or more, and more preferably in the range of 1.3 to 1.6. If the ratio is less than 1.3, the safety of the battery when it is overcharged may be reduced. If the ratio is greater than 1.6, the amount of the negative electrode with respect to the positive electrode inside the battery becomes excessive, and the energy density of the battery May be damaged.
 負極は公知の方法により作製できる。具体的には、正極の作製法で説明した方法と同様にして作製できる。つまり、負極活物質を、任意に、正極の作製法で説明した公知の結着材及び公知の導電材と共に、有機溶剤と混合して得たペーストを集電体に塗布する等の公知の方法によって作製できる。 The negative electrode can be produced by a known method. Specifically, it can be manufactured in the same manner as described in the method for manufacturing the positive electrode. That is, a known method such as applying a paste obtained by mixing a negative electrode active material with an organic solvent together with a known binder and a known conductive material described in the preparation method of the positive electrode to a current collector. Can be produced.
 (C)セパレータ
 セパレータとしては、多孔質材料、不織布等が挙げられる。セパレータの材質としては、電解質中に含まれる有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー等の有機材料、ガラスのような無機材料等が挙げられる。
(C) Separator Examples of the separator include porous materials and nonwoven fabrics. As a material for the separator, a material that does not dissolve or swell in an organic solvent contained in the electrolyte is preferable. Specific examples include organic materials such as polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and inorganic materials such as glass.
 これらの中でも、合成樹脂であるポリエチレン、ポリプロピレンなどの不織布が品質の安定性などの点から好ましい。これら合成樹脂の不織布には、電池が異常発熱した場合に、セパレータが熱により溶解して、正極と負極との間を遮断する機能を付加したものがあり、安全性の観点から、これらも好適に使用することができる。セパレータの厚みは、特に限定されず、必要量の電解液を保持することが可能であり、かつ正極と負極との短絡を防ぐことができればよく、通常0.01~0.1mm程度であり、好ましくは0.015~0.05mm程度である。セパレータの厚みが0.015mmより薄くなると、電池の過充電時にセパレータをLiのデンドライト析出部が突き破ってしまい、電池の内部短絡を引き起こす虞があり、0.05mmより厚くなると電池内部のセパレータ容積が多くなり電池のエネルギー密度を損なう虞がある。セパレータの空隙率は30~90%が好ましく、特に0℃のような低温でもLiのデンドライト析出に影響を与えないのは、45~65%である。 Among these, non-woven fabrics such as polyethylene and polypropylene which are synthetic resins are preferable from the viewpoint of quality stability. Some of these synthetic resin nonwoven fabrics have a function in which the separator is dissolved by heat when the battery abnormally generates heat, and a function of blocking between the positive electrode and the negative electrode is added. From the viewpoint of safety, these are also preferable. Can be used for The thickness of the separator is not particularly limited as long as it can hold a necessary amount of electrolyte and can prevent a short circuit between the positive electrode and the negative electrode, and is usually about 0.01 to 0.1 mm. The thickness is preferably about 0.015 to 0.05 mm. If the thickness of the separator is less than 0.015 mm, the lithium dendrite deposit may break through the separator when the battery is overcharged, causing an internal short circuit of the battery. If the thickness is greater than 0.05 mm, the separator volume inside the battery is increased. There is a risk of increasing the energy density of the battery. The porosity of the separator is preferably 30 to 90%, and it is particularly 45 to 65% that does not affect Li dendrite precipitation even at a low temperature of 0 ° C.
 セパレータの負極活物質層と対向しているセパレータ面は、負極活物質層面より大きな面積を有することが好ましい。低温での充放電時には、リチウムイオンの移動速度が遅くなるため、リチウムイオンの量が負極活物質の量より少なくなる傾向がある。ここで、セパレータは、その面積を大きくすればリチウムイオンの保持量が増える傾向がある。これら傾向を考慮して、セパレータの面積を負極活物質層より大きくすることで、負極活物質のリチウムイオンとの反応効率をより向上できる。セパレータ面の面積は、負極活物質層面より1%以上大きいことがより好ましく、2~7%の範囲で大きいことが更に好ましい。セパレータ面の面積が負極活物質層面より2%より小さいと、電池がセパレータの軟化温度よりも高くなるような異常発熱時に、セパレータの収縮が起こり電池の内部短絡してしまう虞があり、7%より大きくなると電池内部に占めるセパレータの体積が多くなり、電池のエネルギー密度を損なう虞がある。 The separator surface facing the negative electrode active material layer of the separator preferably has a larger area than the negative electrode active material layer surface. At the time of charging / discharging at a low temperature, the movement speed of lithium ions becomes slow, so that the amount of lithium ions tends to be smaller than the amount of negative electrode active material. Here, if the area of the separator is increased, the amount of lithium ions retained tends to increase. Considering these tendencies, the reaction efficiency of the negative electrode active material with lithium ions can be further improved by making the area of the separator larger than that of the negative electrode active material layer. The area of the separator surface is more preferably 1% or more larger than the surface of the negative electrode active material layer, and still more preferably in the range of 2 to 7%. If the area of the separator surface is smaller than 2% of the surface of the negative electrode active material layer, there is a risk that the separator contracts and the battery is short-circuited during abnormal heat generation such that the battery becomes higher than the softening temperature of the separator. If it is larger, the volume of the separator occupying the inside of the battery increases, which may impair the energy density of the battery.
 (D)その他
 (I)非水電解質
 リチウムイオン二次電池は、通常、非水電解質を備える。非水電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。この内、有機電解液の使用が一般的である。
(D) Others (I) Nonaqueous electrolyte A lithium ion secondary battery usually includes a nonaqueous electrolyte. As the non-aqueous electrolyte, for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. Of these, the use of an organic electrolyte is common.
 有機電解液を構成する有機溶媒としては、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、テトラヒドロフラン、2-メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられ、これらの1種以上を混合して用いることができる。 Examples of the organic solvent constituting the organic electrolyte include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate. Chain carbonates such as γ-butyrolactone (GBL), lactones such as γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxy Examples include ethers such as ethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. Use one or more of these in combination. Can do.
 また、PC、EC及びブチレンカーボネート等の環状カーボネート類は高沸点溶媒であるため、GBLと混合する溶媒として好適である。 Moreover, since cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as a solvent to be mixed with GBL.
 有機電解液を構成する電解質塩としては、ホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、トリフルオロ酢酸リチウム(LiCFCOO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CFSO)等のリチウム塩が挙げられ、これらの1種以上を混合して用いることができる。電解液の塩濃度は、0.5~3mol/lが好ましく、特に低温充電時の負極内へのリチウムイオンの量を確保するには、0.8~1.5mol/lが好ましい。 Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO) ), Lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and one or more of these may be used in combination. The salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l. In particular, 0.8 to 1.5 mol / l is preferable in order to ensure the amount of lithium ions in the negative electrode during low-temperature charging.
 (II)電池容器
 電池容器についても従来公知のリチウムイオン二次電池に使用される各種の電池容器を使用でき、特に制限はない。例えば、円筒型、角型、フィルム型等の電池容器が挙げられる。
(II) Battery container Various battery containers used for conventionally known lithium ion secondary batteries can also be used for the battery container, and there is no particular limitation. For example, a battery container such as a cylindrical type, a square type, or a film type may be used.
 (E)リチウムイオン二次電池の製造方法
 リチウムイオン二次電池は、例えば、以下のようにして製造できる。
(E) Manufacturing method of lithium ion secondary battery A lithium ion secondary battery can be manufactured as follows, for example.
 まず、正極、負極、及びそれらの間に挟まれたセパレータを積層体の形態で電池容器中に入れる。積層体は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層体を巻き取ってもよい。電池容器中に入れられる積層体は、複数の正極、負極及びセパレータからなっていてもよい。 First, a positive electrode, a negative electrode, and a separator sandwiched between them are placed in a battery container in the form of a laminate. The laminate may have, for example, a strip-like planar shape. Moreover, when producing a cylindrical or flat battery, the laminate may be wound. The laminated body put in a battery container may consist of a some positive electrode, a negative electrode, and a separator.
 次に、通常、正極及び負極を電池の外部導電端子に接続した後に、正極、負極及びセパレータを外気より遮断するために電池容器を密封する。密封の方法は、円筒電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、電池容器と蓋とをかしめる方法が一般的である。また、角型電池の場合、金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行う方法を使用できる。これらの方法以外に、結着材で密封する方法、ガスケットを介してボルトで固定する方法も使用できる。更に、金属箔に熱可塑性樹脂を貼り付けたラミネートフィルムで密封する方法も使用できる。なお、密封時に電解質注入用の開口部が通常設けられる。 Next, usually, after the positive electrode and the negative electrode are connected to the external conductive terminal of the battery, the battery container is sealed in order to block the positive electrode, the negative electrode and the separator from the outside air. In the case of a cylindrical battery, the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked. In the case of a square battery, a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used. In addition to these methods, a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used. Furthermore, a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used. An opening for injecting electrolyte is usually provided at the time of sealing.
 更に、開口部から非水電解質を注入した後、開口部を封止することでリチウムイオン二次電池を得ることができる。 Furthermore, a lithium ion secondary battery can be obtained by injecting a nonaqueous electrolyte from the opening and then sealing the opening.
 〔まとめ〕
 本発明の態様1に係るリチウムイオン二次電池は、
 正極(1)と、負極(2)と、正極及び負極間のセパレータ(9)とを含み、
 前記正極が、下記一般式(1)
Li1-zSi  (1)
(ここで、Mは、Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせであるか、FeとMnとの組み合わせであり、0≦x≦2、0.8≦y≦1.2、0<z≦1)で表される正極活物質を含む正極活物質層であり、
 前記負極が、比表面積2.5~5.0m/gの炭素からなる負極活物質を含む負極活物質層である。
[Summary]
The lithium ion secondary battery according to aspect 1 of the present invention is
A positive electrode (1), a negative electrode (2), and a separator (9) between the positive electrode and the negative electrode,
The positive electrode has the following general formula (1)
Li x M y P 1-z Si z O 4 (1)
(Wherein M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and A positive electrode active material layer including a positive electrode active material that is a combination with Mn and represented by 0 ≦ x ≦ 2, 0.8 ≦ y ≦ 1.2, and 0 <z ≦ 1)
The negative electrode is a negative electrode active material layer containing a negative electrode active material made of carbon having a specific surface area of 2.5 to 5.0 m 2 / g.
 上記構成によれば、特に低温での充放電サイクルの繰返しによる容量劣化を抑制できる。 According to the above configuration, capacity deterioration due to repeated charge / discharge cycles at a particularly low temperature can be suppressed.
 さらに、本発明の態様2に係るリチウムイオン二次電池は、態様1において、
 前記負極活物質層の前記セパレータと対向する負極活物質層面が、前記正極活物質層の前記セパレータと対向する正極活物質層面よりも大きな面積を有してもよい。
Furthermore, the lithium ion secondary battery which concerns on aspect 2 of this invention is the aspect 1,
The negative electrode active material layer surface of the negative electrode active material layer facing the separator may have a larger area than the positive electrode active material layer surface of the positive electrode active material layer facing the separator.
 上記構成によれば、負極活物質層のセパレータと対向する負極活物質層面が、正極活物質層のセパレータと対向する正極活物質層面よりも大きな面積を有する場合、充放電サイクルの繰返しによる容量劣化をより抑制できる。また、リチウムイオン二次電池の低温充放電時における正極でのLiイオン脱離/挿入に対する負極でのLiイオン挿入/脱離のバランスが良く、低温時のリチウムイオン二次電池の入出力特性が向上できる。 According to the above configuration, when the negative electrode active material layer surface facing the separator of the negative electrode active material layer has a larger area than the positive electrode active material layer surface facing the separator of the positive electrode active material layer, capacity degradation due to repeated charge / discharge cycles Can be further suppressed. Moreover, the lithium ion secondary battery has a good balance of Li ion insertion / desorption at the negative electrode with respect to Li ion desorption / insertion at the positive electrode during low temperature charge / discharge of the lithium ion secondary battery, and the input / output characteristics of the lithium ion secondary battery at low temperature It can be improved.
 さらに、本発明の態様3に係るリチウムイオン二次電池は、態様1または2において、
 前記セパレータの前記負極と対向するセパレータ面が、前記負極活物質層の前記セパレータと対向する負極活物質層面よりも大きな面積を有してもよい。
Furthermore, the lithium ion secondary battery which concerns on aspect 3 of this invention is the aspect 1 or 2,
The separator surface facing the negative electrode of the separator may have a larger area than the negative electrode active material layer surface facing the separator of the negative electrode active material layer.
 上記構成によれば、セパレータの負極と対向するセパレータ面が、負極活物質層のセパレータと対向する負極活物質層面よりも大きな面積を有する場合、充放電サイクルの繰返しによる容量劣化をより抑制できる。また、リチウムイオン二次電池が過充電状態になった際、電池の異常発熱を遅らせることができる。 According to the above configuration, when the separator surface facing the negative electrode of the separator has a larger area than the negative electrode active material layer surface facing the separator of the negative electrode active material layer, capacity deterioration due to repeated charge / discharge cycles can be further suppressed. Moreover, when the lithium ion secondary battery is overcharged, abnormal heat generation of the battery can be delayed.
 さらに、本発明の態様4に係るリチウムイオン二次電池は、態様1~3のいずれか1つにおいて、
 前記Mが、FeとZrの組み合わせであってもよい。
Furthermore, the lithium ion secondary battery according to Aspect 4 of the present invention is any one of Aspects 1 to 3,
The M may be a combination of Fe and Zr.
 上記構成によれば、Mが、FeとZrの組み合わせである場合、充放電サイクルの繰返しによる容量劣化をより抑制できる。 According to the above configuration, when M is a combination of Fe and Zr, capacity deterioration due to repeated charge / discharge cycles can be further suppressed.
 さらに、本発明の態様5に係るリチウムイオン二次電池は、態様1~4のいずれか1つにおいて、
 前記zが、0.01≦z≦0.25であってもよい。
Furthermore, a lithium ion secondary battery according to Aspect 5 of the present invention is any one of Aspects 1 to 4,
The z may be 0.01 ≦ z ≦ 0.25.
 上記構成によれば、zが、0.01≦z≦0.25である場合、充放電サイクルの繰返しによる容量劣化をより抑制できる。また、正極活物質の平均粒径が制御されるため、正極作成時のプレス効果が上がり、電極密度が向上できる。ひいてはリチウムイオン二次電池の体積エネルギー密度が向上できる。 According to the above configuration, when z is 0.01 ≦ z ≦ 0.25, capacity deterioration due to repeated charge / discharge cycles can be further suppressed. Moreover, since the average particle diameter of the positive electrode active material is controlled, the press effect at the time of producing the positive electrode is increased, and the electrode density can be improved. As a result, the volume energy density of the lithium ion secondary battery can be improved.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例で使用した試薬等は、特に断りのない限りキシダ化学社製の特級試薬を用いた。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples. The reagents used in the examples were special grade reagents manufactured by Kishida Chemical Co. unless otherwise specified.
 (実施例1~3及び比較例1~4)
 〔正極活物質A1の合成〕
 LiFe1-aZr1-zSi(x=1、y=1)(以下、置換系正極活物質A1)を以下の手順で合成した。
(Examples 1 to 3 and Comparative Examples 1 to 4)
[Synthesis of positive electrode active material A1]
LiFe 1-a Zr a P 1-z Si z O 4 (x = 1, y = 1) (hereinafter, substituted positive electrode active material A1) was synthesized by the following procedure.
 出発原料にリチウム源としてLiCHCOO、鉄源としてFeC・2HO、ジルコニウム源としてZrO(CHCOO)、リン源として(NHHPO、シリコン源としてSiOを使用した。リチウム源であるLiCHCOOを0.6599gとして、Li:Fe:Zr:P:Siがモル比で1:0.948:0.052:0.948:0.052となるように上記各物質を秤量した。これらをメノウ乳鉢でよく混合した。この混合体を遊星式のボールミルを用いて粉砕・混合した。ボールミル条件は回転速度400rpm、回転時間1時間、ボールは直径10mmのジルコニア製ボールを用い、またミルポットもジルコニア製ポットを用いた。得られた粉末に対して15重量%のスクロースを水溶液に溶解させ、その溶液に得られた粉末を混合し、メノウ乳鉢でよく混合し、60℃で乾燥させた。得られた粉末を石英製るつぼに入れ、焼成温度550℃、焼成時間12時間、昇降温速度200℃/h、窒素雰囲気下で焼成を行い、分級処理により0.4~80μmの範囲の粒子径かつ平均粒子径15μmの単相粉末である置換系正極活物質A1を合成した。得られた置換系正極活物質A1のZrの置換量aは0.05、Siの置換量zは0.05であり、格子定数は(a,b,c)=(10.328,6.008,4.694)であった。なお、置換量a及びzは、ICP質量分析装置(Agilent Technologies社製 ICP-MS 7500cs)を用い、検量線法により得た。 The starting materials are LiCH 3 COO as a lithium source, FeC 2 O 4 .2H 2 O as an iron source, ZrO (CH 3 COO) 2 as a zirconium source, (NH 4 ) 2 HPO 4 as a phosphorus source, and SiO 2 as a silicon source. used. Each of the above-mentioned substances such that LiCH 3 COO as a lithium source is 0.6599 g and Li: Fe: Zr: P: Si is in a molar ratio of 1: 0.948: 0.052: 0.948: 0.052. Was weighed. These were mixed well in an agate mortar. This mixture was pulverized and mixed using a planetary ball mill. The ball mill conditions were a rotation speed of 400 rpm, a rotation time of 1 hour, a ball made of zirconia having a diameter of 10 mm, and a mill pot made of zirconia. 15% by weight of sucrose with respect to the obtained powder was dissolved in an aqueous solution, and the obtained powder was mixed, mixed well in an agate mortar, and dried at 60 ° C. The obtained powder is put into a quartz crucible, fired in a nitrogen atmosphere with a firing temperature of 550 ° C., a firing time of 12 hours, a heating / cooling rate of 200 ° C./h, and a particle size in the range of 0.4 to 80 μm by classification. And substitution system positive electrode active material A1 which is single phase powder with an average particle diameter of 15 micrometers was synthesize | combined. In the obtained substituted positive electrode active material A1, the Zr substitution amount a was 0.05, the Si substitution amount z was 0.05, and the lattice constant was (a, b, c) = (10.328,6. 008, 4.694). The substitution amounts a and z were obtained by a calibration curve method using an ICP mass spectrometer (ICP-MS 7500cs manufactured by Agilent Technologies).
 単相粉末の平均粒子径は、粒子体積の累積度が50%となる値を意味し、レーザー回折・散乱式粒度分布測定装置(セイシン企業社製 LMS―2000e)を用いて測定された値である。 The average particle size of the single-phase powder means a value at which the cumulative volume of the particles is 50%, and is a value measured using a laser diffraction / scattering type particle size distribution analyzer (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.). is there.
 また、格子定数は以下の手順で求めた。 Also, the lattice constant was obtained by the following procedure.
 置換系正極活物質A1をメノウ乳鉢にて粉砕し、理学社製X線解析装置MiniFlexIIにより粉末X線回折パターンを得た。測定条件は電圧30kV、電流15mA、発散スリット1.25°、受光スリット0.3mm、散乱スリット1.25°、2θの範囲が10°~90°、1ステップ0.02°に設定し、最大ピークの強度が800~1500になるようにステップ毎の計測時間を調整した。次に、得られた粉末X線回折パターンについて、「RIETAN-FP」(F. Izumi and K. Momma, "Three-dimensional visualization in powder diffraction," Solid State Phenom., 130, 15-20 (2007))を用いて、表1に示すパラメータを初期値としてinsファイルを作成し、「DD3.bat」を使用してリートベルト解析による構造解析を行い、「.lst」ファイルより、各パラメータを読み取り、格子定数を決定した(S値(収束度合)は1.1~1.3)。 The substitutional positive electrode active material A1 was pulverized in an agate mortar, and a powder X-ray diffraction pattern was obtained using an X-ray analyzer MiniFlexII manufactured by Rigaku Corporation. The measurement conditions were set at a voltage of 30 kV, a current of 15 mA, a divergence slit of 1.25 °, a light receiving slit of 0.3 mm, a scattering slit of 1.25 °, a range of 2θ of 10 ° to 90 °, and a step of 0.02 ° The measurement time for each step was adjusted so that the peak intensity was 800-1500. Next, regarding the obtained powder X-ray diffraction pattern, “RIETA-FP” (F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom., 130, 15-20 (2007) ), An ins file is created with the parameters shown in Table 1 as initial values, a structure analysis is performed by Rietveld analysis using “DD3.bat”, and each parameter is read from the “.lst” file. The lattice constant was determined (S value (degree of convergence) was 1.1 to 1.3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、*はICP質量分析から得られたモル比で割り振ることを意味する。置換系正極活物質A1の場合、上から、0.95、0.05、0.95及び0.05の値となる。 * In Table 1, * means allocation by the molar ratio obtained from ICP mass spectrometry. In the case of the substitutional positive electrode active material A1, the values are 0.95, 0.05, 0.95, and 0.05 from the top.
 〔正極活物質A2の合成〕
 出発原料をLi:Fe:Zr:P:Siがモル比で1:1:0:1:0となるよう秤量すること以外は、上記合成例1と同様の方法でLiFePO(x=1、y=1、z=0)(以下、無置換系正極活物質A2)、0.4~80μmの範囲の粒子径かつ平均粒子径15μmの単相粉末を合成した。なお、格子定数は(a,b,c)=(10.325,6.004,4.683)であった。
[Synthesis of positive electrode active material A2]
Except that the starting material is weighed so that the molar ratio of Li: Fe: Zr: P: Si is 1: 1: 0: 1: 0, LiFePO 4 (x = 1, y = 1, z = 0) (hereinafter, unsubstituted positive electrode active material A2), a single-phase powder having a particle size in the range of 0.4 to 80 μm and an average particle size of 15 μm was synthesized. The lattice constant was (a, b, c) = (10.325, 6.004, 4.683).
 〔正極の製造〕
 上記正極活物質A1又はA2、アセチレンブラックB、アクリル系樹脂C及びカルボキシメチルセルロースDを、正極活物質:B:C:D=100:4:6:1.2(重量比)となるように計量し、フィルミックス40-40型(プライミクス社製)を用いて室温下で攪拌混合することで、水性の正極製造用ペーストを得た。このペーストを、集電体としての圧延アルミニウム箔(厚さ:20μm)上にダイコーターを用いて片面あたりの正極活物質の塗工量が15~17mg/cmになるように塗布した。得られた塗膜を、空気中100℃で30分間乾燥し、プレス加工することで下記表2に記載した正極(塗工面サイズ:28mm(縦)×28mm(横))を得た。
[Production of positive electrode]
The positive electrode active material A1 or A2, acetylene black B, acrylic resin C and carboxymethyl cellulose D are weighed so that the positive electrode active material: B: C: D = 100: 4: 6: 1.2 (weight ratio). The mixture was stirred and mixed at room temperature using a Fillmix 40-40 type (manufactured by Primics) to obtain an aqueous positive electrode manufacturing paste. This paste was applied onto a rolled aluminum foil (thickness: 20 μm) as a current collector using a die coater so that the coating amount of the positive electrode active material per side was 15 to 17 mg / cm 2 . The obtained coating film was dried in air at 100 ° C. for 30 minutes and pressed to obtain a positive electrode (coating surface size: 28 mm (vertical) × 28 mm (horizontal)) described in Table 2 below.
 〔負極の製造〕
 比表面積が異なる黒鉛(負極活物質)L1~L6のいずれか、スチレンブタジエンゴムM及びカルボキシメチルセルロースNを、黒鉛:M:N=98:2:1(重量比)となるように計量し、2軸遊星プラネタリミキサー(プライミクス社製)を用いて室温下で攪拌混練することで、水性の負極製造用ペーストを得た。このペーストを、集電体としての圧延銅箔(厚さ:10μm)上にダイコーターを用いて片面あたりの黒鉛の塗工量が9~12mg/cmとなるように塗布した。得られた塗膜を、空気中100℃で30分間乾燥し、プレス加工することで下記表2に記載した負極(塗工面サイズ:30mm(縦)×30mm(横))を得た。
[Manufacture of negative electrode]
Any one of graphites (negative electrode active materials) L1 to L6 having different specific surface areas, styrene butadiene rubber M, and carboxymethyl cellulose N are weighed so that graphite: M: N = 98: 2: 1 (weight ratio). An aqueous negative electrode production paste was obtained by stirring and kneading at room temperature using an axial planetary mixer (manufactured by Primics). This paste was applied onto a rolled copper foil (thickness: 10 μm) as a current collector using a die coater so that the coating amount of graphite per side was 9 to 12 mg / cm 2 . The obtained coating film was dried in air at 100 ° C. for 30 minutes and pressed to obtain a negative electrode (coating surface size: 30 mm (vertical) × 30 mm (horizontal)) shown in Table 2 below.
 なお、L1は平均粒子径が18.7μmの球状天然黒鉛、L2は平均粒子径が5.6μmのポテト状人造黒鉛、L3は平均粒子径が12.3μmの球状天然黒鉛、L4は平均粒子径が21.8μmの球状人造黒鉛、L5は平均粒子径が18.0μmの球状人造黒鉛、L6は平均粒子径が13.1μmの球状天然黒鉛を使用した。黒鉛の平均粒子径は、粒子体積の累積度が50%となる値を意味し、レーザー回折・散乱式粒度分布測定装置(セイシン企業社製LMS-2000e)を用いて測定された値である。形状はSEMにより観察したものである。 L1 is spherical natural graphite having an average particle diameter of 18.7 μm, L2 is potato-shaped artificial graphite having an average particle diameter of 5.6 μm, L3 is spherical natural graphite having an average particle diameter of 12.3 μm, and L4 is an average particle diameter. Was 21.8 μm spherical artificial graphite, L5 was spherical artificial graphite having an average particle diameter of 18.0 μm, and L6 was spherical natural graphite having an average particle diameter of 13.1 μm. The average particle diameter of graphite means a value at which the cumulative volume of particles is 50%, and is a value measured using a laser diffraction / scattering type particle size distribution measuring apparatus (LMS-2000e manufactured by Seishin Enterprise Co., Ltd.). The shape was observed by SEM.
 〔リチウムイオン二次電池の製造〕
 図1の(a)及び以下に示す手順で、図1の(b)に示すリチウムイオン二次電池を製造した。
[Manufacture of lithium ion secondary batteries]
The lithium ion secondary battery shown in FIG. 1B was manufactured by the procedure shown in FIG.
 正極1及び負極2を130℃で24時間減圧乾燥した後に、ドライAr雰囲気下のグローボックス内に入れた。次いで、正極1に接着フィルム3付きのアルミニウム製タブリード4を、負極2に接着フィルム5付きのニッケル製のタブリード6をそれぞれ超音波溶接した。グローボックス内で、負極2の塗工面7が隠れるようにセパレータ9としてポリエチレンの微多孔膜(サイズ:31mm(縦)×31mm(横)、厚さ25μm、空隙率55%)を積載した。更に、セパレータ9上から、塗工面8がセパレータ9の中心に重なるように正極1を重ねることで積層体を得た。更に、アルミラミネートフィルム11及び12で積層体をはさみ、タブリード4及び6の接着フィルム3及び5を挟むようにアルミラミネートフィルム11及び12の3辺を熱溶着した(13は熱融着部)。未溶着の1辺から、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に1mol/lになるようにLiPFを溶解させた電解液を注液した。注液後、アルミラミネート袋の最後の1辺を10kPaの減圧下で熱融着することで、単セル10のラミネート型のリチウムイオン二次電池(セル)14を得た。電解液の注液量は、電池で使用する正極及び負極の厚さに準じて適宜決定しており、正極、負極及びセパレータに電解液が十分浸透する量とした。 The positive electrode 1 and the negative electrode 2 were dried under reduced pressure at 130 ° C. for 24 hours, and then placed in a glow box in a dry Ar atmosphere. Next, an aluminum tab lead 4 with an adhesive film 3 was ultrasonically welded to the positive electrode 1, and a nickel tab lead 6 with an adhesive film 5 was ultrasonically welded to the negative electrode 2. In the glow box, a polyethylene microporous film (size: 31 mm (length) × 31 mm (width), thickness 25 μm, porosity 55%) was loaded as a separator 9 so that the coated surface 7 of the negative electrode 2 was hidden. Furthermore, a laminate was obtained by superposing the positive electrode 1 on the separator 9 so that the coating surface 8 overlapped the center of the separator 9. Further, the laminate was sandwiched between the aluminum laminate films 11 and 12, and the three sides of the aluminum laminate films 11 and 12 were thermally welded so that the adhesive films 3 and 5 of the tab leads 4 and 6 were sandwiched (13 is a heat fusion part). From one side of the unwelded, an electrolytic solution in which LiPF 6 was dissolved was poured into a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 so as to be 1 mol / l. After the injection, the last side of the aluminum laminate bag was heat-sealed under a reduced pressure of 10 kPa to obtain a laminated lithium ion secondary battery (cell) 14 of the single cell 10. The injection amount of the electrolyte was appropriately determined according to the thickness of the positive electrode and the negative electrode used in the battery, and was set to an amount that allowed the electrolyte to sufficiently permeate the positive electrode, the negative electrode, and the separator.
 これら電池の(負極活物質層面面積-正極活物質層面面積)/正極活物質層面面積×100は14.8(%)であり、(セパレータ面面積-負極活物質層面面積)/負極活物質層面面積×100は6.8(%)であった。 The negative electrode active material layer surface area−positive electrode active material layer surface area / positive electrode active material layer surface area × 100 of these batteries was 14.8 (%), (separator surface area−negative electrode active material layer surface area) / negative electrode active material layer surface. The area × 100 was 6.8 (%).
 〔戻り容量維持率の測定法〕
 0℃環境下、ラミネート型セルについて、0.1CでのCC-CV充電条件(3.6V cut、0.01C cut)及びCC放電条件(2.0V cut)にて充放電を2回繰り返した。次いで、1.0CでのCC-CV充電条件(3.6V cut、0.01C cut)及び1.0CでのCC放電条件(2.0V cut)にて充放電を98回繰り返した。この後、再び1回目(1cy)及び2回目と同じ条件で0.1C充放電した。各回の充放電容量を測定し、1回目に対する101回目(101cy)の充放電容量の比(101cy÷1cy×100)を戻り容量維持率(%)として算出した。
[Measurement method of return capacity maintenance rate]
Under a 0 ° C. environment, charging and discharging were repeated twice for the laminated cell under CC-CV charging conditions (3.6 V cut, 0.01 C cut) at 0.1 C and CC discharging conditions (2.0 V cut). . Next, charge and discharge were repeated 98 times under CC-CV charge conditions at 1.0 C (3.6 V cut, 0.01 C cut) and CC discharge conditions at 1.0 C (2.0 V cut). Thereafter, the battery was charged and discharged by 0.1 C under the same conditions as the first time (1 cy) and the second time again. The charge / discharge capacity of each time was measured, and the ratio (101 cy ÷ 1 cy × 100) of the 101st (101 cy) charge / discharge capacity to the first time was calculated as the return capacity maintenance rate (%).
 得られた結果を表2に示す。また、表2の実施例1~3及び比較例1~3の負極の比表面積と戻り容量維持率との関係を図2に示す。 Table 2 shows the results obtained. Further, FIG. 2 shows the relationship between the specific surface area and the return capacity retention rate of the negative electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の実施例1~3及び比較例1~3と図2とから、負極活物質の比表面積が2.5~5.0m/gの範囲であることで、0℃での戻り容量維持率が高く保たれていることが分かる。2.5より小さい場合、デンドライトが析出することで維持率が低下することが分かる。5.0より大きい場合、電解液との反応が生じ、そのため負極表面に被膜(SEI膜)形成が過度に進行することで維持率が低下することが分かる。 From Examples 1 to 3 and Comparative Examples 1 to 3 in Table 2 and FIG. 2, the return capacity at 0 ° C. is obtained when the specific surface area of the negative electrode active material is in the range of 2.5 to 5.0 m 2 / g. It can be seen that the maintenance rate is kept high. When the ratio is less than 2.5, it can be seen that the retention rate decreases due to precipitation of dendrites. When larger than 5.0, reaction with electrolyte solution arises, Therefore It turns out that a maintenance factor falls because coating (SEI film | membrane) formation progresses on the negative electrode surface excessively.
 実施例1~3と比較例4とから、負極活物質の比表面積が2.5~5.0m/gの範囲内でも、非置換系正極活物質を使用すると戻り容量維持率を高く保つことができず、置換系正極活物質を使用すると高く保つことができることが分かる。これは、置換系正極活物質が低温下での充放電に有用であることを意味している。 From Examples 1 to 3 and Comparative Example 4, even when the specific surface area of the negative electrode active material is in the range of 2.5 to 5.0 m 2 / g, the return capacity retention rate is kept high when the non-substituted positive electrode active material is used. It can be seen that when a substitutional positive electrode active material is used, it can be kept high. This means that the substitutional positive electrode active material is useful for charging and discharging at a low temperature.
 (実施例4~7)
 正極と負極の塗布量を変えること以外は実施例2と同様にしてラミネート型セルを得た。得られた結果を表3に示す。
(Examples 4 to 7)
A laminated cell was obtained in the same manner as in Example 2 except that the coating amount of the positive electrode and the negative electrode was changed. The obtained results are shown in Table 3.
 表3中、100サイクル後の戻り容量維持率は、上記実施例1~3と同様にして測定した比を意味する。 In Table 3, the return capacity retention rate after 100 cycles means the ratio measured in the same manner as in Examples 1 to 3 above.
 また、200サイクル後の戻り容量維持率は、次のように測定した。まず、上記実施例1~3と同様にして101回目の充放電を行った後、1.0CでのCC-CV充電条件(3.6V cut、0.01C cut)及び1.0CでのCC放電条件(2.0V cut)にて充放電を99回繰り返した。この後、再び1回目及び2回目と同じ0.1C充放電した。各回の充放電容量を測定し、1回目に対する201回目(201cy)の充放電容量の比(201cy÷1cy×100)を200サイクル後の戻り容量維持率(%)として算出した。 Also, the return capacity maintenance rate after 200 cycles was measured as follows. First, after performing the 101st charge / discharge in the same manner as in Examples 1 to 3 above, CC-CV charge conditions at 1.0 C (3.6 V cut, 0.01 C cut) and CC at 1.0 C Charging / discharging was repeated 99 times under discharge conditions (2.0 V cut). Thereafter, the same 0.1 C charge / discharge as in the first and second times was performed again. The charge / discharge capacity at each time was measured, and the ratio (201 cy ÷ 1 cy × 100) of the 201st (201 cy) charge / discharge capacity to the first time was calculated as the return capacity maintenance rate (%) after 200 cycles.
 更に、正極(又は負極)の容量は、次のようにして得た。まず、50mlの試薬ビンに、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に1mol/lになるようにLiPFを溶解させた電解液を入れた。次に、正極(又は負極)と、リチウムからなる対極及び参照極を、それぞれにリード線を付加した後に、上記試薬ビンに互いに接しないように設置することで、ビーカーセル(リチウムイオン二次電池)を得た。このビーカーセルに、リチウムの電位に対して2~4V(負極の場合は0~2.5V)の電位範囲、25℃で、0.1Cの定電流充放電を行ったときに得られる正極活物質(負極活物質)の1g当たりの充放電容量を測定し、正極(又は負極)塗布量を乗じたものを正極(又は負極)の容量とした。 Furthermore, the capacity of the positive electrode (or negative electrode) was obtained as follows. First, an electrolytic solution in which LiPF 6 was dissolved in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 2 so as to be 1 mol / l was put in a 50 ml reagent bottle. Next, a positive electrode (or a negative electrode), a counter electrode made of lithium, and a reference electrode are installed so that they are not in contact with each other after the lead wire is added thereto, so that the beaker cell (lithium ion secondary battery) is installed. ) This beaker cell has a positive electrode active current obtained when a constant current charge / discharge of 0.1 C is performed at 25 ° C. in a potential range of 2 to 4 V (0 to 2.5 V for the negative electrode) with respect to the potential of lithium. The charge / discharge capacity per gram of the material (negative electrode active material) was measured, and the product of the amount applied to the positive electrode (or negative electrode) was used as the capacity of the positive electrode (or negative electrode).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例4~7において、負極容量/正極容量に対する0℃100サイクル後の戻り容量維持率は60%以上といずれも良好に維持されていた。200サイクル後の戻り容量維持率は、実施例4が若干低下した。置換系活物質A1において、比表面積2.5~5.0m/gの負極活物質を用いる場合、低温サイクルにて高い戻り容量維持率(60%以上)を有するセルを得るためには、負極容量/正極容量は、好ましくは1.3より大きく、より好ましくは1.4以上であることが分かった。また、負極容量/正極容量が1.6以上であると、戻り容量維持率は高い値でほぼ一定値となった。 In Examples 4 to 7, the return capacity retention rate after 100 cycles at 0 ° C. with respect to the negative electrode capacity / positive electrode capacity was 60% or more, and both were maintained well. The return capacity retention rate after 200 cycles was slightly lower in Example 4. In the case of using a negative electrode active material having a specific surface area of 2.5 to 5.0 m 2 / g in the substitutional active material A1, in order to obtain a cell having a high return capacity retention ratio (60% or more) in a low temperature cycle, It was found that the negative electrode capacity / positive electrode capacity was preferably larger than 1.3, more preferably 1.4 or more. Further, when the negative electrode capacity / positive electrode capacity was 1.6 or more, the return capacity retention ratio was high and almost constant.
 (実施例8)
 実施例2は、実施例1~3中、置換系正極活物質A1を使用した場合、負極L2が最適の比表面積であることを示した例である。一方、比較例4は、置換系正極活物質A1にて最適であった比表面積を有する負極L2と無置換系正極活物質A2を組み合わせた例である。表2中の実施例2と比較例4の比較より、置換系正極活物質A1を用いた実施例2が優れた特性を示している。この結果には、特に低温で、置換系正極活物質を用いることの優位性が示唆されている。
(Example 8)
Example 2 is an example showing that the negative electrode L2 has an optimum specific surface area when the substitutional positive electrode active material A1 is used in Examples 1 to 3. On the other hand, Comparative Example 4 is an example in which the negative electrode L2 having a specific surface area that was optimal for the substituted positive electrode active material A1 and the unsubstituted positive electrode active material A2 were combined. From comparison between Example 2 and Comparative Example 4 in Table 2, Example 2 using the substituted positive electrode active material A1 shows superior characteristics. This result suggests the advantage of using a substitutional positive electrode active material, particularly at low temperatures.
 置換系正極活物質の優位性が生じる理由を、負極に黒鉛L2、正極にA1又はA2を用いた三電位ビーカーセルにより検証した。ビーカーセルは、次のようにして得た。まず、50mlの試薬ビンに、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:2で混合した溶媒に、1mol/lになるようにLiPFを溶解させた電解液を入れた。次に、上記正極及び負極を、リチウムからなる参照極と共に、それぞれにリード線を付加した後に、上記試薬ビンに互いに接しないように設置することで、ビーカーセル(リチウムイオン二次電池)を得た。このビーカーセルではセルの電圧(正極-負極間)を制御しながら、同時に正極電位(対Li)を検出することができる。 The reason why the substitution positive electrode active material is superior was verified by a tripotential beaker cell using graphite L2 for the negative electrode and A1 or A2 for the positive electrode. The beaker cell was obtained as follows. First, an electrolytic solution in which LiPF 6 was dissolved to a concentration of 1 mol / l in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 2 was placed in a 50 ml reagent bottle. Next, the positive electrode and the negative electrode, together with a reference electrode made of lithium, are added so that they are not in contact with each other after the lead wire is added thereto, thereby obtaining a beaker cell (lithium ion secondary battery). It was. In this beaker cell, the positive electrode potential (with respect to Li) can be detected simultaneously while controlling the cell voltage (between the positive electrode and the negative electrode).
 充電時間の経時毎のセル電圧と正極電位を測定(セル温度25℃)し、結果を図3の(a)及び(b)に示す。これら図中、実線は置換系正極活物質A1を、点線は無置換系正極活物質A2を用いた場合を表している。 Measure the cell voltage and positive electrode potential (cell temperature 25 ° C.) over time of charging time, and the results are shown in FIG. 3 (a) and (b). In these figures, the solid line represents the case of using the substituted positive electrode active material A1, and the dotted line represents the case of using the non-substituted positive electrode active material A2.
 図3の(a)より、充電時間に対しセル電圧は、両者とも同程度の値で推移していることが分かる。これに対し、図3の(b)より、正極電位は、置換系正極活物質A1の方が無置換系正極活物質A2より明らかに高い値にて推移していることが分かる。ここで、セル電圧は正極と負極の電位差であるから、負極電位は置換系正極活物質A1を用いた方が無置換系正極活物質A2より高い値で推移していることを算出可能である。この傾向はビーカーセルだけでなくラミネートセルにおける低温サイクル評価でも同様と考えられる。負極電位が高いと負極表面にLiのデンドライドが析出することを抑制できることから、置換系正極活物質A1を用いたラミネートセルでも良好なサイクル特性が得られていると考えられる。 3 (a), it can be seen that the cell voltage changes at a similar level with respect to the charging time. On the other hand, from FIG. 3B, it can be seen that the positive electrode potential is clearly higher in the substituted positive electrode active material A1 than in the unsubstituted positive electrode active material A2. Here, since the cell voltage is the potential difference between the positive electrode and the negative electrode, it is possible to calculate that the negative electrode potential has a higher value in the case of using the substituted positive electrode active material A1 than in the non-substituted positive electrode active material A2. . This tendency is considered to be the same not only in the beaker cell but also in the low temperature cycle evaluation in the laminate cell. When the negative electrode potential is high, it is possible to suppress the precipitation of Li dendride on the negative electrode surface. Therefore, it is considered that good cycle characteristics are obtained even in the laminate cell using the substitutional positive electrode active material A1.
 また、充電時の電位の推移は正極活物質の材料自身の性質、特に置換系であるか否か、に依存している。すなわち、表2に示した実施例1~3及び比較例1~4の結果を踏まえると、比表面積の範囲が2.5~5.0m/gである負極は、置換系正極活物質を用いるラミネートセルでも有効であると考えられる。 In addition, the transition of the potential during charging depends on the properties of the positive electrode active material itself, in particular, whether or not it is a substitution system. That is, based on the results of Examples 1 to 3 and Comparative Examples 1 to 4 shown in Table 2, the negative electrode whose specific surface area is 2.5 to 5.0 m 2 / g is a substituted positive electrode active material. It is considered that the laminate cell to be used is also effective.
 (実施例9~11)
(1)正極の塗工面(正極活物質層面)サイズを150mm(縦)×225mm(横)に、
(2)負極の塗工面(負極活物質層面)サイズを151mm(縦)×226mm(横)に、
(3)セパレータとしてポリエチレンの微多孔膜のセパレータ面サイズを152mm(縦)×227mm(横)、厚さ25μm、空隙率55%に、
(4)積層体を、負極/セパレータ/正極/セパレータ/負極/・・・/負極となるよう正極88枚、セパレータ176枚、負極89枚となる多層積層構成に、
それぞれ変更すること以外は、実施例1~3と同様にして実施例9~11の電池を作製した。得られた電池を実施例1~3と同様にして評価した。その結果、60%以上の戻り容量維持率を得た。
(Examples 9 to 11)
(1) The coated surface (positive electrode active material layer surface) size of the positive electrode is 150 mm (vertical) × 225 mm (horizontal),
(2) The negative electrode coating surface (negative electrode active material layer surface) size is 151 mm (vertical) × 226 mm (horizontal),
(3) The separator surface size of a polyethylene microporous membrane as a separator is 152 mm (vertical) × 227 mm (horizontal), thickness 25 μm, porosity 55%,
(4) The laminated body is formed into a multilayer laminated structure comprising 88 positive electrodes, 176 separators, and 89 negative electrodes so as to be negative electrode / separator / positive electrode / separator / negative electrode /.
Batteries of Examples 9 to 11 were produced in the same manner as Examples 1 to 3 except for changing each. The obtained batteries were evaluated in the same manner as in Examples 1 to 3. As a result, a return capacity retention rate of 60% or more was obtained.
 なお、これら電池の(負極活物質層面面積-正極活物質層面面積)/正極活物質層面面積×100は1.1(%)であり、(セパレータ面面積-負極活物質層面面積)/負極活物質層面面積×100は1.1(%)であった。 In addition, (negative electrode active material layer surface area−positive electrode active material layer surface area) / positive electrode active material layer surface area × 100 of these batteries is 1.1 (%), (separator surface area−negative electrode active material layer surface area) / negative electrode active The material layer surface area × 100 was 1.1 (%).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、リチウムイオン二次電池全般に広く適用できる。 The present invention can be widely applied to all lithium ion secondary batteries.
1 正極
2 負極
3及び5 接着フィルム
4及び6 タブリード
7及び8 塗工面
9 セパレータ
10 単セル
11及び12 アルミラミネートフィルム
13 熱融着部
14 リチウムイオン二次電池
 
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 and 5 Adhesive film 4 and 6 Tab lead 7 and 8 Coating surface 9 Separator 10 Single cell 11 and 12 Aluminum laminated film 13 Thermal fusion part 14 Lithium ion secondary battery

Claims (5)

  1.  正極と、負極と、正極及び負極間のセパレータとを含み、
     前記正極が、下記一般式(1)
    Li1-zSi  (1)
    (ここで、Mは、Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせであるか、FeとMnとの組み合わせであり、0≦x≦2、0.8≦y≦1.2、0<z≦1)で表される正極活物質を含む正極活物質層であり、
     前記負極が、比表面積2.5~5.0m/gの炭素からなる負極活物質を含む負極活物質層であるリチウムイオン二次電池。
    Including a positive electrode, a negative electrode, and a separator between the positive electrode and the negative electrode,
    The positive electrode has the following general formula (1)
    Li x M y P 1-z Si z O 4 (1)
    (Wherein M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and A positive electrode active material layer including a positive electrode active material that is a combination with Mn and represented by 0 ≦ x ≦ 2, 0.8 ≦ y ≦ 1.2, and 0 <z ≦ 1)
    A lithium ion secondary battery, wherein the negative electrode is a negative electrode active material layer including a negative electrode active material made of carbon having a specific surface area of 2.5 to 5.0 m 2 / g.
  2.  前記負極活物質層の前記セパレータと対向する負極活物質層面が、前記正極活物質層の前記セパレータと対向する正極活物質層面よりも大きな面積を有する請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein a surface of the negative electrode active material layer facing the separator of the negative electrode active material layer has a larger area than a surface of the positive electrode active material layer facing the separator of the positive electrode active material layer.
  3.  前記セパレータの前記負極と対向するセパレータ面が、前記負極活物質層の前記セパレータと対向する負極活物質層面よりも大きな面積を有する請求項1又は2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2, wherein a separator surface of the separator facing the negative electrode has a larger area than a surface of the negative electrode active material layer facing the separator.
  4.  前記Mが、FeとZrの組み合わせである請求項1~3のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the M is a combination of Fe and Zr.
  5.  前記zが、0.01≦z≦0.25である請求項1~4のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4, wherein the z is 0.01≤z≤0.25.
PCT/JP2014/083137 2014-01-15 2014-12-15 Lithium ion secondary battery WO2015107822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-005273 2014-01-15
JP2014005273 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107822A1 true WO2015107822A1 (en) 2015-07-23

Family

ID=53542725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083137 WO2015107822A1 (en) 2014-01-15 2014-12-15 Lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2015107822A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104429A (en) * 2010-11-12 2012-05-31 Konica Minolta Holdings Inc Method of manufacturing electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2012141301A1 (en) * 2011-04-13 2012-10-18 日本電気株式会社 Lithium secondary cell
JP2012226916A (en) * 2011-04-18 2012-11-15 Sharp Corp Cathode active material and manufacturing method thereof, cathode, and nonaqueous electrolyte secondary battery
JP2013170094A (en) * 2012-02-20 2013-09-02 Taiheiyo Cement Corp Cathode active material for secondary battery and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104429A (en) * 2010-11-12 2012-05-31 Konica Minolta Holdings Inc Method of manufacturing electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2012141301A1 (en) * 2011-04-13 2012-10-18 日本電気株式会社 Lithium secondary cell
JP2012226916A (en) * 2011-04-18 2012-11-15 Sharp Corp Cathode active material and manufacturing method thereof, cathode, and nonaqueous electrolyte secondary battery
JP2013170094A (en) * 2012-02-20 2013-09-02 Taiheiyo Cement Corp Cathode active material for secondary battery and production method therefor

Similar Documents

Publication Publication Date Title
TWI709273B (en) Anode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
JP5843766B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5389143B2 (en) Non-aqueous electrolyte battery
JP5772197B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, electronic device, electric tool, electric vehicle and power storage system
TWI691115B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and method for producing non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery using the negative electrode active material
US10141565B2 (en) Non-aqueous electrolyte secondary battery comprising surface-coated positive electrode material
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2013084565A (en) Positive electrode material, lithium ion secondary battery with the same, and method for manufacturing positive electrode material
JP2014017199A (en) Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5442915B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, cathode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2018179934A1 (en) Anode material and non-aqueous electrolyte secondary battery
JP2017097995A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2016219190A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP2014029872A (en) Nonaqueous electrolyte battery
JP2013149451A (en) Lithium secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
US9350021B2 (en) Cathode active material, cathode, and nonaqueous secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5482115B2 (en) Non-aqueous secondary battery active material and non-aqueous secondary battery
WO2014175350A1 (en) Lithium ion secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2015019851A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
WO2014021395A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries
WO2015107822A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14878521

Country of ref document: EP

Kind code of ref document: A1