WO2015107712A1 - Particle separation device and particle measuring device provided with same - Google Patents
Particle separation device and particle measuring device provided with same Download PDFInfo
- Publication number
- WO2015107712A1 WO2015107712A1 PCT/JP2014/071901 JP2014071901W WO2015107712A1 WO 2015107712 A1 WO2015107712 A1 WO 2015107712A1 JP 2014071901 W JP2014071901 W JP 2014071901W WO 2015107712 A1 WO2015107712 A1 WO 2015107712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- branch
- channel
- flow path
- particle
- flow
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 163
- 238000000926 separation method Methods 0.000 title claims abstract description 29
- 239000012530 fluid Substances 0.000 claims description 65
- 239000010419 fine particle Substances 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 14
- 239000011362 coarse particle Substances 0.000 abstract description 51
- 238000005192 partition Methods 0.000 description 13
- 239000011859 microparticle Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 6
- 238000004513 sizing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B7/00—Selective separation of solid materials carried by, or dispersed in, gas currents
- B07B7/02—Selective separation of solid materials carried by, or dispersed in, gas currents by reversal of direction of flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
- G01N2001/222—Other features
- G01N2001/2223—Other features aerosol sampling devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0046—Investigating dispersion of solids in gas, e.g. smoke
Definitions
- the present invention relates to a particle separation device and a particle measuring instrument including the particle separation device.
- Patent Document 1 As a particle measuring instrument that separates fine particles floating in the atmosphere and measures the amount of the separated fine particles, for example, an apparatus disclosed in Patent Document 1 can be cited. In the particle separation method disclosed in Patent Document 1, particles suspended in a fluid are accelerated and separated by inertial force.
- FIG. 11 is a schematic explanatory diagram showing the separation method disclosed in Patent Document 1.
- the main flow 11 and the tributary 12 are arranged in opposite directions, and the particle-containing fluid 15 containing suspended particles is inclined to the tributary 12 side. It is introduced through the nozzle 16 through the passage 16.
- the main flow 11 and the tributary 12 pass through an intake passage that is sucked by a pump, a measuring instrument, or the like. By being sucked by the main flow 11 and the branch flow 12, the particle-containing fluid 15 is introduced into the system through the inflow path 16.
- the particle-containing fluid 15 introduced into the system is accelerated in the nozzle portion 17, and the coarse particles 110 have a large inertial force, so that they are carried on the main flow 11 and removed from the main suction passage 112. Further, since the microparticle 18 has a small inertial force, it is reversed by the branch path 13 and is sent to the branch suction path 114 by being placed on the branch stream 12 in the reverse direction. As a result, the fine particles 18 and the coarse particles 110 contained in the particle-containing fluid 15 are separated.
- the particle classification characteristics are changed by adjusting the flow rate of the main flow 11 and the tributary 12 or adjusting the overall length of the nozzle portion 17 and its interval by moving the movable member such as the sampling pipe 116 up and down. be able to.
- Patent Document 1 As described above has the following problems.
- the particle-containing fluid 15 containing a floating particle is isolate
- the particle measuring instrument when the distance between the branch path 13 and the fan is shortened, turbulence is generated in the space immediately above the fan by the rotation of the fan blades. For this reason, when the distance between the branch path 13 and the fan is shortened, the airflow in the vicinity of the branch path 13 is easily affected by the rotation of the fan. As a result, the coarse particles 110 separated in the branch path 13 flow backward due to the turbulent flow directly above the fan, and flow into an unintended flow path (for example, the branch suction path 114).
- the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a particle separation device capable of preventing the coarse particles flowing in the main flow path from flowing backward to the branch flow path, and the same. It is to provide a particle measuring instrument.
- a particle separation device branches at an introduction flow channel for introducing a gas from the outside and a branching portion at a terminal opposite to the outside in the introduction flow channel.
- a particle separation device that separates particles contained in the gas introduced from the introduction flow path into the main flow path and the branch flow path by its inertial force, the main flow path from the branch side inlet At least a part of the flow path leading to the terminal outlet has a first flow path expansion portion, and in the first flow path expansion section, the airflow passage area through which the airflow passes is from the branching portion side to the terminal outlet side. Gradually toward It is characterized in that there much.
- FIG. 1 It is a perspective view which shows the structure of the particle
- grain measuring device which concerns on Embodiment 1 of this invention is shown, (a) is sectional drawing, (b) is a cross-sectional perspective view. It is sectional drawing which showed typically the state of the particle size in the branch part of the particle-containing fluid introduce
- grain measuring device which concerns on Embodiment 2 of this invention is shown, (a) is sectional drawing, (b) is a cross-sectional perspective view. It is a figure which shows typically the structure of the main flow path in the particle
- grain measuring device which concerns on Embodiment 3 of this invention is shown, (a) is sectional drawing, (b) is a cross-sectional perspective view. It is a figure which shows typically the structure of the main flow path in the particle
- FIG. 1 The schematic structure of the particle
- FIG. 1 is a perspective view showing a configuration of a particle measuring instrument 10A according to the present embodiment.
- the particle measuring instrument 10A according to the present embodiment sucks a gas (for example, air) from the outside and measures the amount of fine particles having a desired particle diameter contained in the gas.
- a gas for example, air
- a particle measuring instrument 10A includes a sensor 1 (measurement unit), an intake unit 2, a sizing unit 3, and a fan 4 (fluid drive unit). Yes.
- the particle measuring instrument 10A introduces external air from the intake section 2 by driving the fan 4 as a single fluid drive section.
- the air introduced into the particle measuring instrument 10 ⁇ / b> A passes through a gas flow path formed in the apparatus and is discharged to the outside through the fan 4.
- the sensor 1 is provided in the middle of the gas flow path formed in the particle measuring instrument 10A, and measures the amount of fine particles contained in the passing air.
- FIG. 2 shows a schematic configuration of a gas flow path formed in the particle measuring instrument 10A
- FIG. 2 (a) is a sectional view
- FIG. 2 (b) is a sectional perspective view.
- the gas flow path formed in the particle measuring instrument 10A includes an introduction flow path 5a, a main flow path 5b, and a branch flow path 5c. .
- the introduction flow path 5a is formed in the intake part 2 and is a flow path for introducing gas (air) from the outside.
- the main flow path 5b and the branch flow path 5c are flow paths branched at the branch portion A that is the end of the introduction flow path 5a opposite to the outside.
- the particle separation device in the particle measuring instrument 10A includes a fan 4 and a gas flow path including an introduction flow path 5a, a main flow path 5b, and a branch flow path 5c. Then, using the fan 4 as a drive source, the particles contained in the gas introduced from the introduction flow path 5a are separated into the main flow path 5b and the branch flow path 5c in the branch portion A by the inertial force.
- the principle of separation (sizing) of particles contained in the gas introduced from the introduction channel 5a will be described later.
- the sensor 1 as a measuring unit for measuring fine particles is provided in the middle of the branch flow path 5c, and measures the amount of fine particles in the gas passing through the branch flow path 5c.
- the sensor 1 measures the amount of fine particles in a gas by, for example, irradiating light on fine particles in a passing air stream and detecting light scattered from the fine particles (that is, a light scattering method).
- the sensor 1 is not limited to the light scattering method, and may measure the amount of fine particles in the gas by a gravimetric method.
- the measurement part which measures a microparticle is not limited to the sensor 1, For example, it may be provided with the filter which collects a microparticle, and may measure the microparticle collected by the filter.
- Only one fan 4 is provided, and generates an air flow from the introduction flow path 5a to the terminal outlets B and D through which the gas in each of the main flow path 5b and the branch flow path 5c is discharged to the outside through the branch portion A. It functions as a fluid drive unit.
- the fluid drive unit in the present embodiment is not limited to the fan 4 shown in FIG. 2, and the gas in each of the main channel 5 b and the branch channel 5 c is discharged to the outside from the introduction channel 5 a via the branch portion A. What is necessary is just to be able to generate the airflow toward the terminal outlets B and D.
- the fluid drive unit may be a pump.
- the fan 4 may be a centrifugal fan or an axial fan.
- the direction perpendicular to the gas suction surface 4a of the fan 4 is defined as the Y direction.
- the Y direction (arrow direction) shown in FIG. 2 is the direction opposite to the gravity direction.
- the direction of the tributary 7c which passes the sensor 1 be an X direction.
- a direction perpendicular to both the X direction and the Y direction is taken as a Z direction.
- an air fluid containing suspended particles passes through the introduction flow path 5a inclined toward the branch flow path 5c. Then, it is introduced into the particle measuring instrument 10A (air flow 7a).
- the introduction flow path 5a has a cross-sectional shape perpendicular to the direction of the air flow 7a, and the area that the flow path surrounds toward the branch portion A (also referred to as an area surrounded by the side walls constituting the flow path). The cross-sectional area or the airflow passage area) is reduced. Therefore, the particle-containing fluid introduced into the introduction channel 5a is accelerated along the air flow 7a toward the branch portion A. Therefore, the introduction flow path 5a is also called a fluid acceleration part.
- the air flow 7a of the particle-containing fluid is branched into a main flow 7b and a branch flow 7c at the branch portion A.
- the main flow 7b and the branch flow 7c pass through the main channel 5b and the branch channel 5c sucked by the fan 4, respectively.
- a particle-containing fluid such as the atmosphere can be introduced into the system through the introduction flow path 5a.
- the particle-containing fluid sucked into the system is, as shown in FIG. 3, when the air flow 7a is branched into the main flow 7b and the branch flow 7c in the branch portion A, the fine particles 8b having a desired particle diameter. And a particle-containing fluid containing coarse particles 8a other than the desired particle size.
- the main flow 7b includes a particle-containing fluid containing coarse particles 8a other than the desired particle diameter.
- the tributary 7c includes a particle-containing fluid including microparticles 8b having a desired particle diameter.
- FIG. 3 is a cross-sectional view schematically showing the state of sizing at the branching portion A of the particle-containing fluid introduced into the system through the introduction flow path 5a.
- the particle-containing fluid sucked into the system by the fan 4 accelerates toward the branch portion A of the introduction flow path 5a.
- the particles contained in the particle-containing fluid move along the main flow 7b along the surrounding air flow 7a depends on the density, diameter, and velocity of the particles according to the Stokes equation. As long as the particles have the same component, the particles contained in the particle-containing fluid deviate from the motion of the particle-containing fluid at a lower speed as the particle size increases. For this reason, since the coarse particles 8a having a relatively large particle size have a large inertial force, the coarse particles 8a are put on the main flow 7b and are discharged from the main flow path 5b to the outside and hardly enter the branch flow 7c.
- the microparticle 8b having a relatively small particle diameter has a small inertial force. Therefore, the movement of the microparticle 8b is governed by the viscosity of the particle-containing fluid. For this reason, the microparticles 8b are sent to the main flow path 5b and the branch flow path 5c by being put on the main flow 7b and the branch flow 7c in the opposite direction to the main flow 7b. Thus, only particles having a specific particle size or less can be guided to the tributary 7c depending on the velocity of the particles in the branch portion A.
- the coarse particles 8a included in the particle-containing fluid sucked by the fan 4 are mainstream in the branch portion A due to the above-described flow path configuration and the arrangement of the fans 4. It does not get mixed into the branch flow path 5c extending in the direction opposite to the path 5b.
- the microparticle 8b exists in both the main channel 5b and the branch channel 5c.
- the particle-containing fluid containing the microparticles 8b sent to the branch channel 5c rides on the branch flow 7c and passes through the sensor 1. By passing through the sensor 1 in this way, the amount of fine particles 8b contained in the particle-containing fluid is measured.
- the particle-containing fluid containing the fine particles 8b flowing out from the sensor 1 flows out toward the terminal outlet D of the branch channel 5c.
- the introduction flow path 5a, the main flow path 5b, and the fan 4 are arranged in substantially the same direction.
- the coarse particle 8a becomes easy to be discharged
- the main flow 7b of the particle-containing fluid including the coarse particles 8a is directed from the branch portion A toward the fan 4 disposed on the lower side. It passes through the main flow path 5b extending so as to be the shortest distance and is discharged from the space formed immediately above the gas suction surface 4a.
- the branch flow 7c of the particle-containing fluid containing the fine particles 8b is discharged from the terminal outlet D from the branch portion A through the branch channel 5c extending in the opposite direction to the main channel 5b and bypassing the sensor 1. .
- the particle-containing fluid containing the coarse particles 8a among the particle-containing fluid sucked from the outside passes through the sensor 1. Without being discharged outside.
- the particle-containing fluid containing the fine particles 8b is discharged to the outside after the amount is measured by the sensor 1.
- the air flow 7a of the particle-containing fluid sucked from the outside is branched into the main flow 7b and the branch flow 7c at the branching portion A, and when this branching, the coarse particles 8a and The fine particles 8b are sized. Further, the main flow 7b and the branch flow 7c are discharged to the outside through the terminal outlets B and D, respectively. Further, the branching of the main flow 7b and the branch flow 7c is realized by the fan 4 which is a single fluid drive source. Then, by providing the sensor 1 in the middle of the branch flow path 5c, the amount of fine particles 8b in the particle-containing fluid of the branch flow 7c is measured.
- the flow velocity of the main flow 7b of the main flow passage 5b and the flow velocity of the branch flow 7c of the branch flow passage 5c need to be adjusted very severely.
- the flow velocity of the main flow 7b is larger than the optimum value and the flow velocity of the branch flow 7c is smaller than the optimum value, not only the coarse particles 8a but most of the fine particles 8b flow to the main flow path 5b side.
- the amount of the fine particles 8b flowing toward the branch flow path 5c becomes small, and therefore, the coarse particles 8a and the fine particles 8b cannot be properly separated.
- the flow velocity of the main flow 7b is smaller than the optimum value and the flow velocity of the branch flow 7c is larger than the optimum value, a part of the coarse particles 8a flows to the branch flow channel 5c side, and preferably, the coarse particles 8a The fine particles 8b cannot be separated.
- the flow velocity of the main flow 7b and the flow velocity of the branch flow 7c are determined by the flow passage resistance of the main flow passage 5b and the branch flow passage 5c and the exhaust speed of the fan 4, respectively.
- the channel resistance is a value determined by the shapes of the main channel 5b and the branch channel 5c, and cannot be adjusted unless the channel shape is changed.
- the exhaust speed is a value that can be adjusted only by adjusting the output of the fan 4 and is relatively easy to adjust. Therefore, as in the technique of Patent Document 1, in the configuration in which the main suction path 112 and the support suction path 114 are exhausted by individual fans, the adjustment of the flow velocity of the fluid in each of the main suction path 112 and the support suction path 114 is as follows. This can be done easily (see FIG. 11). On the other hand, in the particle measuring instrument 10A, since both the main flow path 5b and the branch flow path 5c are exhausted by the single fan 4, the exhaust velocity in each flow path (that is, the main flow 7b and the branch flow 7c is determined by the output of the fan 4). However, the problem remains that the flow rate cannot be adjusted freely.
- the area of the gas suction surface 4a in the fan 4 is made as wide as possible and use it for exhaust.
- the end outlets B and D of the main channel 5b and the branch channel 5c are connected to the gas suction surface 4a of the fan 4. In such a configuration, when the gas suction surface 4a of the fan 4 is blocked, the resistance increases and the performance as a drive source of the fan 4 cannot be sufficiently exhibited.
- a space having the same area as the gas suction surface 4a is provided in a portion directly above the suction side of the fan 4. That is, a space is secured in the portion directly above the gas suction surface 4a.
- the main flow 7b and the branch flow 7c are discharged to the outside through a space formed immediately above the gas suction surface 4a.
- the flow path length of the branch flow path 5c is longer than the flow path length of the main flow path 5b.
- the flow path resistance is larger in the branch stream 7c than in the main stream 7b. Therefore, in the configuration in which the main flow 7b and the branch flow 7c merge, the main flow 7b has a higher flow velocity than the branch flow 7c, and thus turbulence occurs.
- a part of the coarse particles 8a included in the main flow 7b may flow backward to the branch flow path 5c.
- a partition plate 6 is provided to partition the main flow 7b discharged from the main flow path 5b and the branch flow 7c discharged from the branch flow path 5c. ing.
- the partition plate 6 is provided at the center of the space formed immediately above the gas suction surface 4a. That is, the area of the gas suction surface 4a partitioned by the partition plate 6 is the same on the main channel 5b side and the branch channel 5c side.
- the partition plate 6 prevents the main flow 7b and the branch flow 7c from joining. As a result, the backflow of particles can be prevented between the main channel 5b and the branch channel 5c.
- the position of the partition plate 6 is not limited to the center of the space formed immediately above the gas suction surface 4a.
- the area through which the main flow 7b passes and the branch flow 7c are The passing area may be different.
- the particle measuring instrument 10A in which the ratio of the flow rate of the main flow 7b and the flow rate of the branch flow 7c is changed. Can be realized.
- the angle and thickness of the partition plate 6 may be different between the main channel 5b side and the branch channel 5c side.
- the partition plate 6 is flat plate shape.
- the shape of the partition plate 6 is not limited to a flat plate shape as long as it prevents the merging of the main flow 7b and the branch flow 7c, and may be a shape having a curved surface.
- the partition plate 6 may have a structure that surrounds the outlet portion of the branch stream 7c.
- the main flow path 5b through which the main flow 7b of the particle-containing fluid including the coarse particles 8a passes is connected so as to be the shortest distance toward the fan 4 disposed on the lower side.
- the branch flow path 5c through which the branch flow 7c of the particle-containing fluid containing the fine particles 8b passes extends in the opposite direction to the main flow path 5b from the branch portion A and is detoured via the sensor 1 and connected to the fan 4.
- the main flow path 5b directly discharges the main flow 7b to the outside by the fan 4, so that the flow path length is relatively short.
- the branch channel 5c is provided with a sensor 1 in the middle, and the branch channel 7c is configured to pass through the sensor 1, so that the channel length is relatively long. Since the particle measuring instrument 10A includes the sensor 1 in the middle of the branch channel 5c and uses only one fan 4 as a fluid drive source, the channel length of the branch channel 5c is longer than the channel length of the main channel 5b. It becomes the composition.
- the flow path length of the branch flow path 5c is longer than the flow path length of the main flow path 5b, so that the flow path resistance of the branch flow 7c in the branch flow path 5c increases as a whole, and the flow of the branch flow 7c in the branch portion A increases.
- the flow rate can be lowered.
- the position of the inlet of the branch flow path 5c at the branch portion A is arranged below the position of the sensor 1 in the gravity direction.
- the direction of the branch flow 7c branched at the branching portion A is the direction opposite to the direction of gravity.
- Sensor 1 has microparticles 8b such as PM2.5 as a measurement target.
- the air flow 7a of the particle-containing fluid flowing from the introduction flow path 5a includes coarse particles 8a such as dust in addition to the fine particles 8b.
- the coarse particles 8a move straight by inertia and are discharged to the outside.
- the position of the inlet of the branch channel 5c in the branch portion A is arranged below the position of the sensor 1 in the gravity direction. Thus, it is possible to reliably prevent the coarse particles 8a from being mixed into the sensor 1 with certainty.
- the main flow path 5b is a part of the flow path extending from the inlet on the branching section A side to the terminal outlet B, and the flow path expanding section 5d (the first flow path 5d shown in FIG. 4).
- FIG. 4 is an enlarged cross-sectional view showing the configuration of the main flow path 5b of the particle measuring instrument 10A.
- the airflow passage area S through which the airflow passes gradually increases from the branching portion A side toward the terminal outlet B side. It can be said that this airflow passage area S is an area (flow channel cross-sectional area) surrounded by the side walls constituting the flow channel. Moreover, it can be said that the shape of the flow path expansion part 5d is what is called a taper shape.
- the two opposite side walls that constitute the flow path expanding portion 5d are configured to become wider from the branching portion A side toward the terminal outlet B side.
- one side wall is provided with a surface parallel to the direction of the main flow 7b, and the other side wall is in the direction of the main flow 7b.
- An inclined surface that is continuously inclined is provided.
- the flow path expanding part 5d Since the air flow passage area S gradually increases from the branching part A side toward the terminal outlet B side, the flow path expanding part 5d has a shape in which the flow path is narrowed at the end part on the branching part A side. It has become. Therefore, the flow velocity of the main flow 7b passing through the flow path expanding portion 5d is highest at the end portion on the branching portion A side, and becomes smaller toward the terminal outlet B.
- the main flow path 5b has the smallest airflow passage area Sa at the inlet on the branching part A side in the flow path from the inlet on the branching part A side to the terminal outlet B. . Therefore, the flow velocity of the main flow 7b passing through the main flow channel 5b is the largest at the inlet on the branching portion A side. Therefore, it is possible to reliably prevent the coarse particles flowing through the main flow path 5b from flowing backward to the branch flow path 5c.
- the main flow path 5b has the largest airflow passage area Sb at the terminal outlet B in the flow path from the inlet on the branching section A side to the terminal outlet B.
- the intake area of the fan 4 can be secured sufficiently wide. For this reason, the intake efficiency of the main flow 7b by the fan 4 can be improved.
- the branch flow path 5c has a second flow path expanding portion in at least a part of the flow path from the gas outlet C to the terminal outlet D in the sensor 1.
- the airflow passage area through which the airflow passes gradually increases from the gas outlet C side to the terminal outlet D side in the sensor 1.
- the branch flow path 5 c has an inclined wall surface 5 e in the flow path from the gas outlet C to the terminal outlet D in the sensor 1.
- the inclined wall surface 5e is inclined such that the distance in the Z direction between the inclined wall surface 5e and the opposite wall surface gradually increases from the outlet C side toward the terminal outlet D side.
- the distance between the two wall surfaces standing on the inclined wall surface 5e is constant in the flow path from the outlet C side to the terminal outlet D side.
- the flow path including the inclined wall surface 5e is the second flow path expansion portion because the airflow passage area increases from the outlet C side toward the terminal outlet D side.
- the particle measuring instrument 10A is configured to generate two fluids such as a main flow 7b and a tributary 7c using one fan 4 as a fluid drive unit. Therefore, the coarse particles discharged from the terminal outlet B of the main flow path 5b may flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1 due to the rotation of the blades of the fan 4.
- the particle measuring instrument 10A since at least a part of the flow path from the gas outlet C to the terminal outlet D in the sensor 1 has the above-described second flow path extension, The flow velocity of the tributary 7c passing through the flow path expanding portion is largest at the end portion on the outlet C side, and becomes smaller toward the terminal outlet D. Therefore, even if the coarse particles discharged from the terminal outlet B of the main flow path 5b flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1 due to the rotation of the fan 4, the main flow at the end on the outlet C side. Since the flow rate of 7b is the largest, coarse particles are not mixed into the sensor 1.
- branch flow path 5c has the smallest airflow passage area at the outlet C in the flow path from the gas outlet C to the terminal outlet D in the sensor 1. Therefore, the flow velocity of the branch flow 7c passing through the branch flow channel 5c is highest at the gas outlet C in the sensor 1. Therefore, the backflow of coarse particles to the sensor 1 can be reliably prevented.
- the branch channel 5c has the largest airflow passage area at the terminal outlet D among the channels from the inlet on the branching section A side to the terminal outlet D.
- the intake area of the fan 4 can be secured sufficiently wide. For this reason, the intake efficiency of the branch 7c by the fan 4 can be improved.
- FIG. 5 shows a schematic configuration of the particle measuring instrument 10B according to the present embodiment.
- FIG. 5 (a) is a sectional view
- FIG. 5 (b) is a sectional perspective view.
- FIG. 6 is a diagram schematically showing the configuration of the main channel in the particle measuring instrument 10B according to the present embodiment.
- members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
- the fan 4 is omitted for the sake of simplicity.
- the main flow path 5b includes a flow path expansion section 5d (first flow path expansion section) in a part of the flow path from the inlet on the branching section A side to the terminal outlet B. Had.
- the main flow path 5 b has a flow path extending portion in the entire flow path from the inlet on the branching section A side to the terminal outlet B.
- the point having 5d is different from the particle measuring instrument 10A according to the first embodiment. That is, in the main flow path 5b of the particle measuring instrument 10B, the airflow passage area through which the airflow passes gradually increases from the inlet on the branching portion A side toward the terminal outlet B.
- the airflow passage area Sa in the main channel 5b has the smallest airflow passage area Sa at the entrance on the branching portion A side. And it gradually increases from the inlet on the branching part A side toward the terminal outlet B, and the airflow passage area Sb at the terminal outlet B is maximized. Therefore, even when the distance between the branch portion A and the fan 4 is reduced, it is possible to prevent the coarse particles flowing in the main flow path 5b from flowing back to the branch flow path 5c.
- FIG. 7 shows a schematic configuration of a particle measuring instrument 10C according to the present embodiment.
- FIG. 7A is a cross-sectional view
- FIG. 7B is a cross-sectional perspective view.
- FIG. 8 is a diagram schematically showing the configuration of the main flow path in the particle measuring instrument 10C according to the present embodiment.
- members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
- the fan 4 is omitted for the sake of brevity.
- the airflow passage area Sa ′ at the end portion on the branching portion A side in the flow path expanding portion 5d is the inlet at the branching portion A side.
- the point which is the same as airflow passage area Sa differs from the said Embodiment 1 and 2.
- the air flow passage area in the main flow path 5b is the same in the flow path from the inlet on the branching section A side to the branching section A side end in the flow path expanding section 5d.
- Airflow passage area Sa ⁇ Sa ′ Airflow passage area. And it gradually increases from the inlet on the branching part A side toward the terminal outlet B, and the airflow passage area Sb at the terminal outlet B is maximized. Therefore, even when the distance between the branch portion A and the fan 4 is reduced, it is possible to prevent the coarse particles flowing in the main flow path 5b from flowing back to the branch flow path 5c.
- FIG. 9 shows a schematic configuration of a particle measuring instrument 10D according to the present embodiment.
- FIG. 9A is a sectional view
- FIG. 9B is a sectional perspective view.
- FIG. 10 is a diagram schematically showing the configuration of the main channel in the particle measuring instrument 10D according to the present embodiment.
- members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
- the fan 4 is omitted for the sake of brevity.
- the two opposing side walls constituting the flow path expanding portion 5d are configured to become wider from the branching portion A side toward the terminal outlet B side.
- one side wall is provided with a surface parallel to the direction of the main flow 7b, and the other side wall is in the direction of the main flow 7b.
- An inclined surface that is continuously inclined is provided.
- one of the two opposing side walls constituting the flow path expanding portion 5d is provided with a surface parallel to the direction of the main flow 7b.
- the other side wall is different from the first embodiment in that an inclined surface that is discontinuously inclined with respect to the direction of the main flow 7b is provided.
- “discontinuously inclined” means that the surfaces constituting the inclined surface are not flush with each other.
- Examples of the “discontinuously inclined surfaces” include stepped inclined surfaces shown in FIGS. 9 and 10.
- the particle separation device includes an introduction channel 5a for introducing a gas from the outside, a main channel 5b and a tributary branching at a branch part A at the end opposite to the outside of the introduction channel 5a.
- Fluid drive for generating an air flow from the channel 5c and the introduction channel 5a to the terminal outlets B and D through which the gas in each of the main channel 5b and the branch channel 5c is discharged to the outside through the branch portion A Part (fan 4), and a particle separation device that separates particles contained in the gas (airflow 7a) introduced from the introduction flow path 5a into the main flow path 5b and the branch flow path 5c by its inertial force.
- the main flow path 5b includes a first flow path expansion section (flow path expansion section 5d) in at least a part of the flow path from the inlet on the branching section A side to the terminal outlet B.
- 1st channel expansion part (channel expansion part In d) the air flow passage area S airflow passes is in progressively increasing toward the branch portion A side to the distal outlet B side.
- the category of “gradual increase” includes configurations that are continuously increasing and configurations that are discontinuously increasing. As a configuration that increases discontinuously, for example, the distance between one wall surface constituting the first flow channel expansion portion (flow channel expansion portion 5d) and the opposite wall surface is from the branching portion A side to the end outlet B side.
- a configuration that is inclined stepwise so that it becomes wider as it goes to is mentioned.
- the 1st flow path expansion part (flow path expansion part 5d) is gradually increasing as the airflow passage area S goes to the terminal exit B side from the branch part A side, it branches The channel is narrowed at the end on the part A side. Therefore, the flow velocity of the airflow (main flow 7b) passing through the flow path expanding portion 5d is the largest at the end portion on the branching portion A side and becomes smaller toward the terminal outlet B.
- the particle separation apparatus which can prevent the coarse particle which flows through the main flow path 5b from flowing backward to the branch flow path 5c side is provided. Can be provided.
- the particle separation device is the particle separation apparatus according to aspect 1, in which the main flow path 5b passes through the air flow at the inlet on the branching part A side in the flow path from the inlet on the branching part A side to the terminal outlet B. It is preferable that the area Sa is the smallest.
- the flow velocity of the air flow (main flow 7b) passing through the main flow path 5b is the largest at the entrance on the branching section A side. Therefore, according to said structure, it can prevent reliably that the coarse particle which flows through the main flow path 5b flows backward to the branch flow path 5c side.
- the particle separation apparatus according to Aspect 3 of the present invention is the particle separation apparatus according to Aspect 1 or 2, wherein the main flow path 5b is an airflow passage area at the terminal outlet B in the flow path from the inlet on the branching section A side to the terminal outlet B. It is preferable that Sb be the largest.
- the intake area of the fluid drive unit (fan 4) can be secured sufficiently wide. For this reason, according to said structure, the intake efficiency of the airflow (main flow 7b) by a fluid drive part (fan 4) can be improved.
- the particle separation device is the particle separation apparatus according to aspects 1 to 3, wherein the first flow path expansion section (flow path expansion section 5d) is connected from the inlet on the branching section A side to the end outlet of the main flow path 5b. You may be provided in the whole flow path to B.
- a particle measuring instrument 10A according to Aspect 5 of the present invention is provided with a particle separation apparatus according to any one of Aspects 1 to 4 and a measuring unit (sensor 1) that is provided in the middle of the branch flow path 5c and measures fine particles in a gas. And.
- the particle measuring device 10A which can prevent the coarse particle which flows through the main flow path 5b from flowing backward to the branch flow path 5c side is provided. can do.
- a particle measuring instrument 10A includes an introduction channel 5a for introducing a gas from the outside, a main channel 5b branched at a branch part A at the end opposite to the outside in the introduction channel 5a, and Fluid that generates airflow from the branch channel 5c and the introduction channel 5a to the terminal outlets B and D through which the gas in each of the main channel 5b and the branch channel 5c is discharged to the outside through the branch portion A
- a driving unit (fan 4) and a measuring unit (sensor 1) that is provided in the middle of the branch channel 5c and measures fine particles in the gas are provided, and the branch channel 5c is provided in the measuring unit (sensor 1).
- At least a part of the flow path from the gas outlet C to the terminal outlet D has a second flow path expansion portion (a flow path including the inclined wall surface 5e), and the second flow path expansion portion (the inclined wall surface 5e). Air flow) That the air flow passage area is in progressively increasing toward the distal outlet D side from the outlet C side of the gas in the measuring unit (sensor 1).
- the particle measuring instrument 10A is configured to generate two air streams such as a main flow 7b and a tributary 7c by using one fluid driving unit (fan 4) as a driving source. Therefore, the coarse particles discharged from the terminal outlet B of the main flow path 5b may flow backward from the terminal outlet D of the branch flow path 5c to the measuring section (sensor 1) due to the rotation of the blades of the fluid drive section (fan 4). is there.
- the second flow path expansion is performed.
- the flow velocity of the airflow passing through the section (branch stream 7 c) is greatest at the end portion on the outlet C side and decreases toward the terminal outlet D. Therefore, even if the coarse particles discharged from the terminal outlet B of the main flow path 5b flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1, the flow velocity of the main flow 7b at the end on the outlet C side is the largest. Coarse particles are not mixed into the sensor 1.
- the particle measuring instrument 10A according to aspect 7 of the present invention is the particle measuring apparatus 10A according to aspect 6, in which the branch flow path 5c is measured in the flow path from the gas outlet C to the terminal outlet D in the measurement unit (sensor 1). It is preferable that the airflow passage area of the gas outlet C in the part (sensor 1) is the smallest.
- the flow velocity of the airflow (branch flow 7c) passing through the branch flow path 5c is greatest at the gas outlet C in the measurement unit (sensor 1). Therefore, the backflow of coarse particles to the measurement unit (sensor 1) can be reliably prevented.
- the particle measuring instrument 10A according to Aspect 8 of the present invention is the particle detector 10A according to Aspect 6 or 7, wherein the branch flow path 5c is an air flow at the end outlet D in the flow path from the inlet on the branching section A side to the end outlet D. It is preferable that the passage area is the largest.
- the airflow passage area Sa ′ at the end portion on the branching portion A side in the flow path expanding portion 5d is airflow passage at the inlet on the branching portion A side.
- the configuration may be the same as the area Sa.
- the particle separator in the first to fourth and ninth aspects, it is preferable that one fluid driving unit (fan 4) is provided. Thereby, the particle separator can be further reduced in size.
- the present invention can be used for a fine particle measuring apparatus and a fine particle sensor for separating fine particles floating in the atmosphere and measuring the amount of the separated fine particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
- Combined Means For Separation Of Solids (AREA)
Abstract
The purpose of the present invention is to prevent coarse particles flowing in the main flow path from reversing flow to a branch flow path side even when the size of a particle separation device is reduced. A main flow path (5b) has a flow path extension part (5d) in at least one part of a flow path from an inlet on a branched part (A) side to a terminal outlet (B). In the flow path extension part (5d), an air flow passing surface area (S) wherein an airflow passes expands gradually going from the branched part (A) side to the terminal outlet (B) side.
Description
本発明は、粒子分離装置、及びそれを備えた粒子測定器に関する。
The present invention relates to a particle separation device and a particle measuring instrument including the particle separation device.
大気中に浮遊する微粒子を分離し、分離した微粒子の量を測定する粒子測定器として、例えば特許文献1に開示された機器が挙げられる。特許文献1に開示された粒子の分離方法では、流体中に浮遊する粒子を加速して慣性力によって分離している。
As a particle measuring instrument that separates fine particles floating in the atmosphere and measures the amount of the separated fine particles, for example, an apparatus disclosed in Patent Document 1 can be cited. In the particle separation method disclosed in Patent Document 1, particles suspended in a fluid are accelerated and separated by inertial force.
図11は、特許文献1に開示された分離方法を示す概略説明図である。図11に示されるように、特許文献1の分離方法では、分岐路13において、主流11と支流12とを逆方向に配列し、浮遊粒子を含む含粒子流体15を支流12側へ傾斜した流入路16を通ってノズル部17を経て導入する。主流11及び支流12は、ポンプや測定器等によって吸引される吸気路を通る。主流11と支流12とで吸引されることによって、含粒子流体15は、流入路16を通して系内に導入される。
FIG. 11 is a schematic explanatory diagram showing the separation method disclosed in Patent Document 1. As shown in FIG. 11, in the separation method of Patent Document 1, in the branch path 13, the main flow 11 and the tributary 12 are arranged in opposite directions, and the particle-containing fluid 15 containing suspended particles is inclined to the tributary 12 side. It is introduced through the nozzle 16 through the passage 16. The main flow 11 and the tributary 12 pass through an intake passage that is sucked by a pump, a measuring instrument, or the like. By being sucked by the main flow 11 and the branch flow 12, the particle-containing fluid 15 is introduced into the system through the inflow path 16.
系内に導入された含粒子流体15は、ノズル部17において加速され、粗大粒子110は慣性力が大きいので主流11に乗せて主吸引路112から除去される。また、微小粒子18は慣性力が小さいので、分岐路13にて反転して逆方向の支流12に乗せて支吸引路114へ送り込むようになっている。これによって、含粒子流体15に含まれる微小粒子18及び粗大粒子110が分離されることになる。特許文献1の分離方法では、主流11及び支流12の流量調整、またはサンプリング管116のような可動部材の上下移動でノズル部17の全長とその間隔を調整することによって、粒子の分級特性を変えることができる。
The particle-containing fluid 15 introduced into the system is accelerated in the nozzle portion 17, and the coarse particles 110 have a large inertial force, so that they are carried on the main flow 11 and removed from the main suction passage 112. Further, since the microparticle 18 has a small inertial force, it is reversed by the branch path 13 and is sent to the branch suction path 114 by being placed on the branch stream 12 in the reverse direction. As a result, the fine particles 18 and the coarse particles 110 contained in the particle-containing fluid 15 are separated. In the separation method of Patent Document 1, the particle classification characteristics are changed by adjusting the flow rate of the main flow 11 and the tributary 12 or adjusting the overall length of the nozzle portion 17 and its interval by moving the movable member such as the sampling pipe 116 up and down. be able to.
しかしながら、上述のような特許文献1の技術には、以下の問題がある。
However, the technique of Patent Document 1 as described above has the following problems.
すなわち、主吸引路112及び支吸引路114において、気流が流路の側壁に衝突する部分や流れの撹乱が発生する場合、粒子の逆流が発生するという問題が生じる。例えば主吸引路112に一旦流入した粗大粒子110が支吸引路114側に再度流入してしまう。
That is, in the main suction path 112 and the branch suction path 114, when a portion where the air current collides with the side wall of the flow path or disturbance of the flow occurs, there arises a problem that a back flow of particles occurs. For example, the coarse particles 110 once flowing into the main suction path 112 will flow again into the support suction path 114 side.
このような問題は、粒子測定器を小型化し、流体を吸引する駆動源をファンとした場合、ファンが発生する気流の撹乱の影響を受けやすくなるため、特に顕著となる。
Such a problem becomes particularly prominent when the particle measuring device is downsized and the drive source for sucking the fluid is a fan, which is susceptible to the disturbance of the air flow generated by the fan.
また、特許文献1の粒子測定器では、浮遊粒子を含む含粒子流体15を分岐路13において主流11と支流12とに分離し、一方の流れ(支流12)に含まれる微小粒子18を測定している。このような粒子測定器において、分岐路13とファンとの間の距離が短くする場合、ファンの直上の空間では、ファンの羽が回転することによって乱流が発生する。このため、分岐路13とファンとの距離が短くなることによって、分岐路13近傍の気流は、ファンの回転による影響を受けやすくなる。その結果、分岐路13にて分離された粗大粒子110は、ファン直上の乱流によって逆流し、意図しない流路(例えば支吸引路114)に流入してしまう。
Moreover, in the particle | grain measuring device of patent document 1, the particle-containing fluid 15 containing a floating particle is isolate | separated into the main flow 11 and the tributary 12 in the branch path 13, and the microparticle 18 contained in one flow (branch 12) is measured. ing. In such a particle measuring instrument, when the distance between the branch path 13 and the fan is shortened, turbulence is generated in the space immediately above the fan by the rotation of the fan blades. For this reason, when the distance between the branch path 13 and the fan is shortened, the airflow in the vicinity of the branch path 13 is easily affected by the rotation of the fan. As a result, the coarse particles 110 separated in the branch path 13 flow backward due to the turbulent flow directly above the fan, and flow into an unintended flow path (for example, the branch suction path 114).
本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、主流路を流れる粗大粒子が支流路側へ逆流することを防止することができる粒子分離装置、及びそれを備えた粒子測定器を提供することにある。
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a particle separation device capable of preventing the coarse particles flowing in the main flow path from flowing backward to the branch flow path, and the same. It is to provide a particle measuring instrument.
上記の課題を解決するために、本発明の一態様に係る粒子分離装置は、外部から気体を導入する導入流路と、導入流路における外部と反対側の末端にある分岐部にて分岐した主流路及び支流路と、上記導入流路から、上記分岐部を介して、上記主流路及び上記支流路それぞれにおける気体が外部へ排出される末端出口へ向かう気流を発生させる流体駆動部と、を備え、上記導入流路から導入される気体に含まれる粒子を、その慣性力によって、上記主流路及び上記支流路へ分離する粒子分離装置であって、上記主流路は、分岐部側の入口から上記末端出口へ至る流路の少なくとも一部において、第1の流路拡張部を有し、上記第1の流路拡張部において、気流が通過する気流通過面積は、分岐部側から末端出口側へ向かうに従って漸次的に増大していることを特徴としている。
In order to solve the above problems, a particle separation device according to one embodiment of the present invention branches at an introduction flow channel for introducing a gas from the outside and a branching portion at a terminal opposite to the outside in the introduction flow channel. A main flow channel and a branch flow channel, and a fluid drive unit that generates an air flow from the introduction flow channel to the terminal outlet through which the gas in each of the main flow channel and the branch flow channel is discharged to the outside through the branch portion. A particle separation device that separates particles contained in the gas introduced from the introduction flow path into the main flow path and the branch flow path by its inertial force, the main flow path from the branch side inlet At least a part of the flow path leading to the terminal outlet has a first flow path expansion portion, and in the first flow path expansion section, the airflow passage area through which the airflow passes is from the branching portion side to the terminal outlet side. Gradually toward It is characterized in that there much.
本発明の一態様によれば、主流路を流れる粗大粒子が支流路側へ逆流することを防止することができるという効果を奏する。
According to one aspect of the present invention, it is possible to prevent the coarse particles flowing in the main channel from flowing back to the branch channel.
〔実施形態1〕
以下、本発明の実施の形態について、詳細に説明する。図1は、本実施形態に係る粒子測定器10Aの構成を示す斜視図である。本実施形態に係る粒子測定器10Aは、外部から気体(例えば空気)を吸引し、該気体に含まれる所望粒径の微粒子の量を測定するものである。 Embodiment 1
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a perspective view showing a configuration of a particle measuringinstrument 10A according to the present embodiment. The particle measuring instrument 10A according to the present embodiment sucks a gas (for example, air) from the outside and measures the amount of fine particles having a desired particle diameter contained in the gas.
以下、本発明の実施の形態について、詳細に説明する。図1は、本実施形態に係る粒子測定器10Aの構成を示す斜視図である。本実施形態に係る粒子測定器10Aは、外部から気体(例えば空気)を吸引し、該気体に含まれる所望粒径の微粒子の量を測定するものである。 Embodiment 1
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a perspective view showing a configuration of a particle measuring
図1に示されるように、本実施形態に係る粒子測定器10Aは、センサ1(測定部)と、吸気部2と、分粒部3と、ファン4(流体駆動部)と、を備えている。粒子測定器10Aは、単一の流体駆動部としてのファン4を駆動することによって、吸気部2から外部の空気を導入するようになっている。粒子測定器10A内に導入された空気は、装置内に形成された気体流路を通過して、ファン4を介して外部へ排出される。センサ1は、粒子測定器10A内に形成された気体流路の途中に設けられており、通過する空気中に含まれる微粒子の量を測定する。
As shown in FIG. 1, a particle measuring instrument 10A according to the present embodiment includes a sensor 1 (measurement unit), an intake unit 2, a sizing unit 3, and a fan 4 (fluid drive unit). Yes. The particle measuring instrument 10A introduces external air from the intake section 2 by driving the fan 4 as a single fluid drive section. The air introduced into the particle measuring instrument 10 </ b> A passes through a gas flow path formed in the apparatus and is discharged to the outside through the fan 4. The sensor 1 is provided in the middle of the gas flow path formed in the particle measuring instrument 10A, and measures the amount of fine particles contained in the passing air.
図2は、粒子測定器10A内に形成された気体流路の概略構成を示し、図2の(a)は、断面図であり、図2の(b)は断面斜視図である。図2の(a)及び(b)に示されるように、粒子測定器10A内に形成された気体流路は、導入流路5aと、主流路5bと、支流路5cとから構成されている。
2 shows a schematic configuration of a gas flow path formed in the particle measuring instrument 10A, FIG. 2 (a) is a sectional view, and FIG. 2 (b) is a sectional perspective view. As shown in FIGS. 2A and 2B, the gas flow path formed in the particle measuring instrument 10A includes an introduction flow path 5a, a main flow path 5b, and a branch flow path 5c. .
導入流路5aは、吸気部2に形成されており、外部から気体(空気)を導入するための流路である。主流路5b及び支流路5cは、導入流路5aにおける外部と反対側の末端である分岐部Aにて分岐した流路である。
The introduction flow path 5a is formed in the intake part 2 and is a flow path for introducing gas (air) from the outside. The main flow path 5b and the branch flow path 5c are flow paths branched at the branch portion A that is the end of the introduction flow path 5a opposite to the outside.
粒子測定器10Aにおける粒子分離装置は、ファン4、及び導入流路5aと主流路5bと支流路5cとから構成された気体流路を備えている。そして、ファン4を駆動源として、導入流路5aから導入された気体に含まれる粒子を、その慣性力によって、分岐部Aにおいて主流路5b及び支流路5cへ分離する。導入流路5aから導入された気体に含まれる粒子の分離(分粒)の原理については、後述する。
The particle separation device in the particle measuring instrument 10A includes a fan 4 and a gas flow path including an introduction flow path 5a, a main flow path 5b, and a branch flow path 5c. Then, using the fan 4 as a drive source, the particles contained in the gas introduced from the introduction flow path 5a are separated into the main flow path 5b and the branch flow path 5c in the branch portion A by the inertial force. The principle of separation (sizing) of particles contained in the gas introduced from the introduction channel 5a will be described later.
微小粒子を測定する測定部としてのセンサ1は、支流路5cの途中に設けられており、支流路5cを通過する気体中の微小粒子の量を測定する。このセンサ1は、例えば、通過する気流中の微粒子に光を照射し、微粒子から散乱した光を検出する(すなわち光散乱法)によって、気体中の微小粒子の量を測定するものである。また、センサ1は、光散乱法に限らず、重量法によって気体中の微小粒子の量を測定するものであってもよい。また、微小粒子を測定する測定部は、センサ1に限定されず、例えば、微小粒子を捕集するフィルターを備え、フィルターによって捕集された微小粒子を測定するものであってもよい。
The sensor 1 as a measuring unit for measuring fine particles is provided in the middle of the branch flow path 5c, and measures the amount of fine particles in the gas passing through the branch flow path 5c. The sensor 1 measures the amount of fine particles in a gas by, for example, irradiating light on fine particles in a passing air stream and detecting light scattered from the fine particles (that is, a light scattering method). In addition, the sensor 1 is not limited to the light scattering method, and may measure the amount of fine particles in the gas by a gravimetric method. Moreover, the measurement part which measures a microparticle is not limited to the sensor 1, For example, it may be provided with the filter which collects a microparticle, and may measure the microparticle collected by the filter.
ファン4は、ただ1つ設けられおり、導入流路5aから、分岐部Aを介して、主流路5b及び支流路5cそれぞれにおける気体が外部へ排出される末端出口B・Dへ向かう気流を発生させる流体駆動部として機能する。本実施形態における流体駆動部は、図2に示されるファン4に限定されず、導入流路5aから、分岐部Aを介して、主流路5b及び支流路5cそれぞれにおける気体が外部へ排出される末端出口B・Dへ向かう気流を発生させることが可能なものであればよい。例えば、流体駆動部は、ポンプであってもよい。また、ファン4は、遠心ファンであっても、軸流ファンであってもよい。
Only one fan 4 is provided, and generates an air flow from the introduction flow path 5a to the terminal outlets B and D through which the gas in each of the main flow path 5b and the branch flow path 5c is discharged to the outside through the branch portion A. It functions as a fluid drive unit. The fluid drive unit in the present embodiment is not limited to the fan 4 shown in FIG. 2, and the gas in each of the main channel 5 b and the branch channel 5 c is discharged to the outside from the introduction channel 5 a via the branch portion A. What is necessary is just to be able to generate the airflow toward the terminal outlets B and D. For example, the fluid drive unit may be a pump. The fan 4 may be a centrifugal fan or an axial fan.
ここで、ファン4の気体吸入面4aに対し垂直な方向をY方向とする。図2に示されたY方向(矢印方向)は、重力方向と反対方向である。そして、Y方向に垂直な断面において、センサ1を通過する支流7cの方向をX方向とする。そして、X方向及びY方向の両方に垂直な方向をZ方向とする。
Here, the direction perpendicular to the gas suction surface 4a of the fan 4 is defined as the Y direction. The Y direction (arrow direction) shown in FIG. 2 is the direction opposite to the gravity direction. And in the cross section perpendicular | vertical to a Y direction, let the direction of the tributary 7c which passes the sensor 1 be an X direction. A direction perpendicular to both the X direction and the Y direction is taken as a Z direction.
図2の(a)に示されるように、ファン4の駆動によって、浮遊粒子を含んだ空気の流体(以下、含粒子流体と記す)は、支流路5c側へ傾斜した導入流路5aを通って、粒子測定器10A内に導入される(気流7a)。導入流路5aは、気流7aの方向に対して垂直な断面形状において、分岐部Aへ向かうに従い、流路が取り囲む面積(流路を構成する側壁によって囲まれた面積ともいう。以下、流路断面積または気流通過面積と記す)が小さくなる構成になっている。それゆえ、導入流路5aに導入された含粒子流体は、気流7aに沿って、分岐部Aに向かうに従い加速することになる。それゆえ、導入流路5aは、流体加速部ともいう。
As shown in FIG. 2A, when the fan 4 is driven, an air fluid containing suspended particles (hereinafter referred to as a particle-containing fluid) passes through the introduction flow path 5a inclined toward the branch flow path 5c. Then, it is introduced into the particle measuring instrument 10A (air flow 7a). The introduction flow path 5a has a cross-sectional shape perpendicular to the direction of the air flow 7a, and the area that the flow path surrounds toward the branch portion A (also referred to as an area surrounded by the side walls constituting the flow path). The cross-sectional area or the airflow passage area) is reduced. Therefore, the particle-containing fluid introduced into the introduction channel 5a is accelerated along the air flow 7a toward the branch portion A. Therefore, the introduction flow path 5a is also called a fluid acceleration part.
含粒子流体の気流7aは、分岐部Aにおいて、主流7b及び支流7cに分岐する。主流7b及び支流7cは、それぞれ、ファン4によって吸引される主流路5b及び支流路5cを通る。1つのファン4を流体駆動源として、主流7b及び支流7cに分岐して吸引することによって、大気などの含粒子流体を、導入流路5aを通して系内へ導入することができる。
The air flow 7a of the particle-containing fluid is branched into a main flow 7b and a branch flow 7c at the branch portion A. The main flow 7b and the branch flow 7c pass through the main channel 5b and the branch channel 5c sucked by the fan 4, respectively. By using one fan 4 as a fluid drive source and branching into the main flow 7b and the branch flow 7c and sucking, a particle-containing fluid such as the atmosphere can be introduced into the system through the introduction flow path 5a.
粒子測定器10Aにおいて、系内へ吸引された含粒子流体は、図3に示されるように、気流7aが分岐部Aにおいて主流7b及び支流7cに分岐したときに、所望粒径の微小粒子8bを含む含粒子流体と所望粒径以外の粗大粒子8aを含む含粒子流体とに分粒される。このとき、主流7bには、所望粒径以外の粗大粒子8aを含む含粒子流体が含まれる。一方、支流7cには、所望粒径の微小粒子8bを含む含粒子流体が含まれる。
In the particle measuring instrument 10A, the particle-containing fluid sucked into the system is, as shown in FIG. 3, when the air flow 7a is branched into the main flow 7b and the branch flow 7c in the branch portion A, the fine particles 8b having a desired particle diameter. And a particle-containing fluid containing coarse particles 8a other than the desired particle size. At this time, the main flow 7b includes a particle-containing fluid containing coarse particles 8a other than the desired particle diameter. On the other hand, the tributary 7c includes a particle-containing fluid including microparticles 8b having a desired particle diameter.
ここで、図3を参照して、上述した粒子の分粒原理について、詳述する。図3は、導入流路5aを通して系内へ導入された含粒子流体の分岐部Aにおける分粒の状態を模式的に示した断面図である。
Here, with reference to FIG. 3, the above-described particle sizing principle will be described in detail. FIG. 3 is a cross-sectional view schematically showing the state of sizing at the branching portion A of the particle-containing fluid introduced into the system through the introduction flow path 5a.
図3に示されるように、ファン4によって系内に吸引された含粒子流体は、導入流路5aの分岐部Aへ向かうに従い加速する。分岐部Aにおいて、含粒子流体に含まれる粒子が周囲の気流7aに沿った主流7bに沿って運動するか否かは、ストークスの式より、粒子の密度、直径、速度に依存する。同一成分の粒子であれば、含粒子流体に含まれる粒子は、粒径が大きいほど、低い速度で含粒子流体の運動から外れる。このため、粒径が比較的大きい粗大粒子8aは、慣性力が大きいので、主流7bに乗せて主流路5bから外部へ排出され、支流7c側へ入り込みにくくなる。一方、粒径が比較的小さい微小粒子8bは、慣性力が小さい。それゆえ、微小粒子8bの移動は、含粒子流体の粘性によって支配される。このため、微小粒子8bは、主流7b及び主流7bと逆方向の支流7cに乗せて、主流路5b及び支流路5cへ送り込まれる。このように、分岐部Aにおける粒子の速度によって特定粒径以下の粒子のみを支流7cへ導くことが可能になる。
As shown in FIG. 3, the particle-containing fluid sucked into the system by the fan 4 accelerates toward the branch portion A of the introduction flow path 5a. Whether or not the particles contained in the particle-containing fluid move along the main flow 7b along the surrounding air flow 7a depends on the density, diameter, and velocity of the particles according to the Stokes equation. As long as the particles have the same component, the particles contained in the particle-containing fluid deviate from the motion of the particle-containing fluid at a lower speed as the particle size increases. For this reason, since the coarse particles 8a having a relatively large particle size have a large inertial force, the coarse particles 8a are put on the main flow 7b and are discharged from the main flow path 5b to the outside and hardly enter the branch flow 7c. On the other hand, the microparticle 8b having a relatively small particle diameter has a small inertial force. Therefore, the movement of the microparticle 8b is governed by the viscosity of the particle-containing fluid. For this reason, the microparticles 8b are sent to the main flow path 5b and the branch flow path 5c by being put on the main flow 7b and the branch flow 7c in the opposite direction to the main flow 7b. Thus, only particles having a specific particle size or less can be guided to the tributary 7c depending on the velocity of the particles in the branch portion A.
このように、本実施形態に係る粒子測定器10Aでは、上述の流路構成及びファン4の配置などによって、ファン4によって吸引される含粒子流体に含まれる粗大粒子8aは、分岐部Aにおいて主流路5bと逆方向に延びた支流路5cへ混入しないようになっている。一方、微小粒子8bは、主流路5b及び支流路5cの両方に存在する。
As described above, in the particle measuring instrument 10A according to the present embodiment, the coarse particles 8a included in the particle-containing fluid sucked by the fan 4 are mainstream in the branch portion A due to the above-described flow path configuration and the arrangement of the fans 4. It does not get mixed into the branch flow path 5c extending in the direction opposite to the path 5b. On the other hand, the microparticle 8b exists in both the main channel 5b and the branch channel 5c.
図2の(a)に示すように、支流路5cへ送り込まれた、微小粒子8bを含む含粒子流体は、支流7cに乗って、センサ1を通過する。このようにセンサ1を通過することによって、含粒子流体に含まれる微小粒子8bの量が測定される。
As shown in FIG. 2 (a), the particle-containing fluid containing the microparticles 8b sent to the branch channel 5c rides on the branch flow 7c and passes through the sensor 1. By passing through the sensor 1 in this way, the amount of fine particles 8b contained in the particle-containing fluid is measured.
センサ1から流出した、微小粒子8bを含む含粒子流体は、支流路5cの末端出口Dへ向かって流出することになる。ここで、導入流路5a、主流路5b、及びファン4は、略同一方向に配列して設けられている。このような構成とすることによって、粗大粒子8aは、支流路5cへ逆流することなく、主流路5bへ分岐後、末端出口Dを介して外部へ排出されやすくなる。それゆえ、測定対象でない粗大粒子8aを、効率的に除去することができる。
The particle-containing fluid containing the fine particles 8b flowing out from the sensor 1 flows out toward the terminal outlet D of the branch channel 5c. Here, the introduction flow path 5a, the main flow path 5b, and the fan 4 are arranged in substantially the same direction. By setting it as such a structure, the coarse particle 8a becomes easy to be discharged | emitted outside via the terminal exit D after branching to the main flow path 5b, without flowing backward to the branch flow path 5c. Therefore, the coarse particles 8a that are not the measurement target can be efficiently removed.
このように、図2の(a)に示される含粒子流体の気流において、粗大粒子8aを含む、含粒子流体の主流7bは、分岐部Aから、下側に配されたファン4へ向かって最短距離になるように延びる主流路5bを通って、気体吸入面4a真上に形成された空間から排出される。一方、微小粒子8bを含む、含粒子流体の支流7cは、分岐部Aから、主流路5bと逆方向に延びセンサ1を介して迂回する支流路5cを通って、末端出口Dから排出される。そして、このように分岐部Aにて粗大粒子8a及び微小粒子8bが分粒されるので、外部から吸引された含粒子流体のうち、粗大粒子8aを含む含粒子流体は、センサ1を通過することなく外部へ排出される。一方、微小粒子8bを含む含粒子流体は、センサ1にて量が測定された後、外部へ排出されることになる。
As described above, in the air flow of the particle-containing fluid shown in FIG. 2A, the main flow 7b of the particle-containing fluid including the coarse particles 8a is directed from the branch portion A toward the fan 4 disposed on the lower side. It passes through the main flow path 5b extending so as to be the shortest distance and is discharged from the space formed immediately above the gas suction surface 4a. On the other hand, the branch flow 7c of the particle-containing fluid containing the fine particles 8b is discharged from the terminal outlet D from the branch portion A through the branch channel 5c extending in the opposite direction to the main channel 5b and bypassing the sensor 1. . Since the coarse particles 8a and the fine particles 8b are thus sized at the branch portion A, the particle-containing fluid containing the coarse particles 8a among the particle-containing fluid sucked from the outside passes through the sensor 1. Without being discharged outside. On the other hand, the particle-containing fluid containing the fine particles 8b is discharged to the outside after the amount is measured by the sensor 1.
このように、本実施形態に係る粒子測定器10Aにおいては、外部から吸引される含粒子流体の気流7aを、分岐部Aにおいて主流7b及び支流7cに分岐し、この分岐に際し、粗大粒子8a及び微小粒子8bの分粒を行っている。さらに、主流7b及び支流7cをそれぞれ、末端出口B及びDを介して外部へ排出している。また、主流7b及び支流7cの分岐は、単一の流体駆動源であるファン4によって実現されている。そして、支流路5cの途中にセンサ1を設けたことによって、支流7cの含粒子流体中の微小粒子8bの量を測定している。
As described above, in the particle measuring instrument 10A according to the present embodiment, the air flow 7a of the particle-containing fluid sucked from the outside is branched into the main flow 7b and the branch flow 7c at the branching portion A, and when this branching, the coarse particles 8a and The fine particles 8b are sized. Further, the main flow 7b and the branch flow 7c are discharged to the outside through the terminal outlets B and D, respectively. Further, the branching of the main flow 7b and the branch flow 7c is realized by the fan 4 which is a single fluid drive source. Then, by providing the sensor 1 in the middle of the branch flow path 5c, the amount of fine particles 8b in the particle-containing fluid of the branch flow 7c is measured.
それゆえ、ポンプ及び測定器という2つの駆動源を用いている特許文献1の技術と比較して、小型であり、かつ安価な粒子測定器を実現することができる。
Therefore, it is possible to realize a particle measuring device that is small and inexpensive as compared with the technique of Patent Document 1 that uses two driving sources of a pump and a measuring device.
ここで、主流路5bの主流7bの流速と支流路5cの支流7cの流速とは、非常にシビアな調整が必要である。例えば、主流7bの流速が最適値よりも大きく、支流7cの流速が最適値よりも小さい場合、主流路5b側に、粗大粒子8aのみならず微小粒子8bの大半が流れてしまう。その結果、支流路5c側へ流れる微小粒子8bの量が僅少となるため、好適に、粗大粒子8aと微小粒子8bとを分別することができない。反対に、主流7bの流速が最適値よりも小さく、支流7cの流速が最適値よりも大きい場合、粗大粒子8aの一部が支流路5c側へ流れてしまい、やはり好適に、粗大粒子8aと微小粒子8bとを分別することができない。主流7bの流速及び支流7cの流速はそれぞれ、主流路5b及び支流路5cの流路抵抗とファン4の排気速度によって決定される。このうち、流路抵抗は、主流路5b及び支流路5cの形状によって決定される値であり、流路形状を変更しない限り調整することができない。一方、排気速度は、ファン4の出力の調整によってのみ、調整可能な値であり、比較的調整が容易である。このため、特許文献1の技術のように、主吸引路112及び支吸引路114に対し個別のファンによって排気する構成では、主吸引路112及び支吸引路114それぞれにおける流体の流速の調整は、容易に行うことができる(図11参照)。これに対して、粒子測定器10Aでは、単一のファン4によって主流路5b及び支流路5cの両方を排気するので、ファン4の出力によってそれぞれの流路における排気速度(すなわち主流7b及び支流7cの流速)を自由に調整することができないという課題が残されている。
Here, the flow velocity of the main flow 7b of the main flow passage 5b and the flow velocity of the branch flow 7c of the branch flow passage 5c need to be adjusted very severely. For example, when the flow velocity of the main flow 7b is larger than the optimum value and the flow velocity of the branch flow 7c is smaller than the optimum value, not only the coarse particles 8a but most of the fine particles 8b flow to the main flow path 5b side. As a result, the amount of the fine particles 8b flowing toward the branch flow path 5c becomes small, and therefore, the coarse particles 8a and the fine particles 8b cannot be properly separated. On the contrary, when the flow velocity of the main flow 7b is smaller than the optimum value and the flow velocity of the branch flow 7c is larger than the optimum value, a part of the coarse particles 8a flows to the branch flow channel 5c side, and preferably, the coarse particles 8a The fine particles 8b cannot be separated. The flow velocity of the main flow 7b and the flow velocity of the branch flow 7c are determined by the flow passage resistance of the main flow passage 5b and the branch flow passage 5c and the exhaust speed of the fan 4, respectively. Among these, the channel resistance is a value determined by the shapes of the main channel 5b and the branch channel 5c, and cannot be adjusted unless the channel shape is changed. On the other hand, the exhaust speed is a value that can be adjusted only by adjusting the output of the fan 4 and is relatively easy to adjust. Therefore, as in the technique of Patent Document 1, in the configuration in which the main suction path 112 and the support suction path 114 are exhausted by individual fans, the adjustment of the flow velocity of the fluid in each of the main suction path 112 and the support suction path 114 is as follows. This can be done easily (see FIG. 11). On the other hand, in the particle measuring instrument 10A, since both the main flow path 5b and the branch flow path 5c are exhausted by the single fan 4, the exhaust velocity in each flow path (that is, the main flow 7b and the branch flow 7c is determined by the output of the fan 4). However, the problem remains that the flow rate cannot be adjusted freely.
また、主流7b及び支流7cの流速に対しファン4の排気速度を十分に活かすためには、ファン4における気体吸入面4aの面積を可能な限り広くし、排気に利用する形態とすることが望ましい。このような形態をとるために、粒子測定器10Aでは、主流路5b及び支流路5cの末端出口B・Dをファン4の気体吸入面4aに接続した構成となっている。このような構成において、ファン4の気体吸入面4aが塞がれている場合、抵抗が大きくなりファン4の駆動源としての性能を十分に発揮することができない。それゆえ、ファン4の性能を十分に発揮するため、粒子測定器10Aでは、ファン4における吸気側の真上の部分に、気体吸入面4aと同程度の面積を有する空間を設けている。すなわち、気体吸入面4aの真上部分に空間を確保している。主流7b及び支流7cは、気体吸入面4a真上に形成された空間を通って外部に排出される。
In order to make full use of the exhaust speed of the fan 4 with respect to the flow rates of the main flow 7b and the branch flow 7c, it is desirable to make the area of the gas suction surface 4a in the fan 4 as wide as possible and use it for exhaust. . In order to take such a form, in the particle measuring instrument 10A, the end outlets B and D of the main channel 5b and the branch channel 5c are connected to the gas suction surface 4a of the fan 4. In such a configuration, when the gas suction surface 4a of the fan 4 is blocked, the resistance increases and the performance as a drive source of the fan 4 cannot be sufficiently exhibited. Therefore, in order to exhibit the performance of the fan 4 sufficiently, in the particle measuring instrument 10A, a space having the same area as the gas suction surface 4a is provided in a portion directly above the suction side of the fan 4. That is, a space is secured in the portion directly above the gas suction surface 4a. The main flow 7b and the branch flow 7c are discharged to the outside through a space formed immediately above the gas suction surface 4a.
ここで、図2に示されるように、粒子測定器10Aでは、支流路5cの流路長は、主流路5bの流路長よりも長くなっている。このため、主流7bよりも支流7cの方が、流路抵抗が大きくなっている。それゆえ、主流7b及び支流7cが合流する構成では、主流7bの方が、支流7cよりも流速が大きいため、乱流が発生する。その結果、気体吸入面4a真上に形成された空間において、主流7bに含まれる粗大粒子8aの一部が支流路5c側へ逆流するおそれがある。
Here, as shown in FIG. 2, in the particle measuring instrument 10A, the flow path length of the branch flow path 5c is longer than the flow path length of the main flow path 5b. For this reason, the flow path resistance is larger in the branch stream 7c than in the main stream 7b. Therefore, in the configuration in which the main flow 7b and the branch flow 7c merge, the main flow 7b has a higher flow velocity than the branch flow 7c, and thus turbulence occurs. As a result, in the space formed immediately above the gas suction surface 4a, a part of the coarse particles 8a included in the main flow 7b may flow backward to the branch flow path 5c.
そこで、本実施形態に係る粒子測定器10Aでは、図2に示されるように、主流路5bから排出される主流7bと、支流路5cから排出される支流7cとを仕切る仕切板6が設けられている。この仕切板6は、気体吸入面4a真上に形成された空間の中央に設けられている。すなわち、仕切板6によって区切られた気体吸入面4aの面積が、主流路5b側と支流路5c側とにおいて同じになっている。この仕切板6によって、主流7bと支流7cとの合流が防止される。その結果、主流路5bと支流路5cとの間にて粒子の逆流を防止することができる。
Therefore, in the particle measuring instrument 10A according to the present embodiment, as shown in FIG. 2, a partition plate 6 is provided to partition the main flow 7b discharged from the main flow path 5b and the branch flow 7c discharged from the branch flow path 5c. ing. The partition plate 6 is provided at the center of the space formed immediately above the gas suction surface 4a. That is, the area of the gas suction surface 4a partitioned by the partition plate 6 is the same on the main channel 5b side and the branch channel 5c side. The partition plate 6 prevents the main flow 7b and the branch flow 7c from joining. As a result, the backflow of particles can be prevented between the main channel 5b and the branch channel 5c.
なお、仕切板6の位置は、気体吸入面4a真上に形成された空間の中央に限定されず、仕切板6によって区切られた気体吸入面4aにおいて、主流7bが通過する面積と支流7cが通過する面積とが異なっていてもよい。このように、気体吸入面4a真上に形成された空間において仕切板6を中央からずれた位置に配置することによって、主流7bの流速及び支流7cの流速の比率が変化した粒子測定器10Aを実現することができる。
The position of the partition plate 6 is not limited to the center of the space formed immediately above the gas suction surface 4a. On the gas suction surface 4a partitioned by the partition plate 6, the area through which the main flow 7b passes and the branch flow 7c are The passing area may be different. In this way, by arranging the partition plate 6 at a position shifted from the center in the space formed immediately above the gas suction surface 4a, the particle measuring instrument 10A in which the ratio of the flow rate of the main flow 7b and the flow rate of the branch flow 7c is changed. Can be realized.
また、仕切板6の角度や厚さは、主流路5b側と支流路5c側との間で異なっていてもよい。また、図2に示された構成では、仕切板6は、平板形状である。しかし、仕切板6の形状は、主流7bと支流7cとの合流を防止する構成であれば、平板形状に限定されず、曲面を有する形状であってもよい。さらには、仕切板6は、支流7cの出口部分を囲うような構造であってもよい。
Further, the angle and thickness of the partition plate 6 may be different between the main channel 5b side and the branch channel 5c side. Moreover, in the structure shown by FIG. 2, the partition plate 6 is flat plate shape. However, the shape of the partition plate 6 is not limited to a flat plate shape as long as it prevents the merging of the main flow 7b and the branch flow 7c, and may be a shape having a curved surface. Furthermore, the partition plate 6 may have a structure that surrounds the outlet portion of the branch stream 7c.
また、本実施形態に係る粒子測定器10Aにおいて、粗大粒子8aを含む含粒子流体の主流7bが通る主流路5bは、下側に配されたファン4へ向かって最短距離になるように連結されている。一方、微小粒子8bを含む含粒子流体の支流7cが通る支流路5cは、分岐部Aから、主流路5bと逆方向に延びセンサ1を介して迂回してファン4に連結する。
Further, in the particle measuring instrument 10A according to the present embodiment, the main flow path 5b through which the main flow 7b of the particle-containing fluid including the coarse particles 8a passes is connected so as to be the shortest distance toward the fan 4 disposed on the lower side. ing. On the other hand, the branch flow path 5c through which the branch flow 7c of the particle-containing fluid containing the fine particles 8b passes extends in the opposite direction to the main flow path 5b from the branch portion A and is detoured via the sensor 1 and connected to the fan 4.
このように、本実施形態に係る粒子測定器10Aにおいて、主流路5bは、ファン4によって直接主流7bを外部へ排出するため、流路長が比較的短くなっている。一方、支流路5cは、途中にセンサ1が設けられており、支流7cがセンサ1を通過するように構成されているため、流路長が比較的長くなっている。粒子測定器10Aは、支流路5cの途中にセンサ1を備え、かつただ1つのファン4を流体駆動源としているため、支流路5cの流路長が主流路5bの流路長よりも長くなった構成となる。このように、支流路5cの流路長が主流路5bの流路長よりも長くなることによって、支流路5cにおける支流7cの流路抵抗が全体として大きくなり、分岐部Aでの支流7cの流速を低くすることができる。
Thus, in the particle measuring instrument 10A according to the present embodiment, the main flow path 5b directly discharges the main flow 7b to the outside by the fan 4, so that the flow path length is relatively short. On the other hand, the branch channel 5c is provided with a sensor 1 in the middle, and the branch channel 7c is configured to pass through the sensor 1, so that the channel length is relatively long. Since the particle measuring instrument 10A includes the sensor 1 in the middle of the branch channel 5c and uses only one fan 4 as a fluid drive source, the channel length of the branch channel 5c is longer than the channel length of the main channel 5b. It becomes the composition. As described above, the flow path length of the branch flow path 5c is longer than the flow path length of the main flow path 5b, so that the flow path resistance of the branch flow 7c in the branch flow path 5c increases as a whole, and the flow of the branch flow 7c in the branch portion A increases. The flow rate can be lowered.
また、本実施形態に係る粒子測定器10Aにおいて、分岐部Aでの支流路5cの入口の位置は、センサ1の位置よりも重力方向の下側に配されている。この場合、分岐部Aにおいて分岐した支流7cの方向は、重力方向と反対側の方向になる。
Further, in the particle measuring instrument 10A according to the present embodiment, the position of the inlet of the branch flow path 5c at the branch portion A is arranged below the position of the sensor 1 in the gravity direction. In this case, the direction of the branch flow 7c branched at the branching portion A is the direction opposite to the direction of gravity.
センサ1は、PM2.5等の微小粒子8bを測定対象としている。導入流路5aから流入する含粒子流体の気流7aには、微小粒子8bの他に、ほこり等の粗大粒子8aが含まれる。粗大粒子8aは、慣性力によって直進運動し外部へ排出される。ここで、ほこり等の粗大粒子8aは、自重によって自然沈降の影響が大きいため、分岐部Aでの支流路5cの入口の位置を、センサ1の位置よりも重力方向の下側に配することによって、粗大粒子8aのセンサ1への誤混入を確実に防止することができる。
Sensor 1 has microparticles 8b such as PM2.5 as a measurement target. The air flow 7a of the particle-containing fluid flowing from the introduction flow path 5a includes coarse particles 8a such as dust in addition to the fine particles 8b. The coarse particles 8a move straight by inertia and are discharged to the outside. Here, since the coarse particles 8a such as dust are greatly affected by the natural sedimentation due to their own weight, the position of the inlet of the branch channel 5c in the branch portion A is arranged below the position of the sensor 1 in the gravity direction. Thus, it is possible to reliably prevent the coarse particles 8a from being mixed into the sensor 1 with certainty.
ここで、本実施形態の粒子測定器10Aにおいて、主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の一部において、図4に示す流路拡張部5d(第1の流路拡張部)を有する。図4は、粒子測定器10Aの主流路5bの構成を示す拡大断面図である。
Here, in the particle measuring instrument 10A of the present embodiment, the main flow path 5b is a part of the flow path extending from the inlet on the branching section A side to the terminal outlet B, and the flow path expanding section 5d (the first flow path 5d shown in FIG. 4). A flow path expansion section). FIG. 4 is an enlarged cross-sectional view showing the configuration of the main flow path 5b of the particle measuring instrument 10A.
図4に示されるように、流路拡張部5dにおいて、気流が通過する気流通過面積Sは、分岐部A側から末端出口B側へ向かうに従って漸次的に増大している。この気流通過面積Sは、流路を構成する側壁に囲まれた面積(流路断面積)であるともいえる。また、流路拡張部5dの形状は、所謂テーパ形状であるといえる。
As shown in Fig. 4, in the flow path expanding portion 5d, the airflow passage area S through which the airflow passes gradually increases from the branching portion A side toward the terminal outlet B side. It can be said that this airflow passage area S is an area (flow channel cross-sectional area) surrounded by the side walls constituting the flow channel. Moreover, it can be said that the shape of the flow path expansion part 5d is what is called a taper shape.
流路拡張部5dを構成する、互いに対向する2つの側壁は、分岐部A側から末端出口B側へ向かうに従って幅広になるように構成されている。また、流路拡張部5dを構成する、互いに対向する2つの側壁のうち、一方の側壁は、主流7bの方向に平行な面が設けられており、他方の側壁は、主流7bの方向に対して連続的に傾斜した傾斜面が設けられている。
The two opposite side walls that constitute the flow path expanding portion 5d are configured to become wider from the branching portion A side toward the terminal outlet B side. In addition, of the two side walls facing each other that constitute the flow path expanding portion 5d, one side wall is provided with a surface parallel to the direction of the main flow 7b, and the other side wall is in the direction of the main flow 7b. An inclined surface that is continuously inclined is provided.
流路拡張部5dは、気流通過面積Sが分岐部A側から末端出口B側へ向かうに従って漸次的に増大しているので、分岐部A側の端部にて流路が絞り込まれた形状になっている。それゆえ、流路拡張部5dを通過する主流7bの流速は、分岐部A側の端部で最も大きくなり、末端出口Bへ向かうに従い小さくなる。
Since the air flow passage area S gradually increases from the branching part A side toward the terminal outlet B side, the flow path expanding part 5d has a shape in which the flow path is narrowed at the end part on the branching part A side. It has become. Therefore, the flow velocity of the main flow 7b passing through the flow path expanding portion 5d is highest at the end portion on the branching portion A side, and becomes smaller toward the terminal outlet B.
それゆえ、ファン4における羽根の回転による乱流に含まれる粗大粒子や主流路5bの壁面と衝突した粗大粒子が分岐部Aへ向かって逆流したとしても、分岐部A側の端部での主流7bの流速が最も大きいため、粗大粒子が分岐部Aから支流路5cへ混入することがない。よって、分岐部Aとファン4との距離を小さくし粒子測定器10Aのサイズを小型化した場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止することができる。
Therefore, even if the coarse particles included in the turbulent flow due to the rotation of the blades in the fan 4 or the coarse particles colliding with the wall surface of the main flow path 5b flow back toward the branch portion A, the main flow at the end portion on the branch portion A side. Since the flow rate of 7b is the largest, coarse particles are not mixed into the branch channel 5c from the branch part A. Therefore, even when the distance between the branch part A and the fan 4 is reduced and the size of the particle measuring device 10A is reduced, the coarse particles flowing in the main flow path 5b are prevented from flowing back to the branch flow path 5c side. Can do.
また、図4に示されるように、主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の中で、分岐部A側の入口における気流通過面積Saが最も小さくなっている。それゆえ、主流路5bを通過する主流7bの流速は、分岐部A側の入口で最も大きくなる。したがって、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを確実に防止することができる。
Further, as shown in FIG. 4, the main flow path 5b has the smallest airflow passage area Sa at the inlet on the branching part A side in the flow path from the inlet on the branching part A side to the terminal outlet B. . Therefore, the flow velocity of the main flow 7b passing through the main flow channel 5b is the largest at the inlet on the branching portion A side. Therefore, it is possible to reliably prevent the coarse particles flowing through the main flow path 5b from flowing backward to the branch flow path 5c.
また、主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の中で、末端出口Bにおける気流通過面積Sbが最も大きくなっている。このように末端出口Bにおける気流通過面積Sbが最も大きくなっているので、ファン4の吸気面積を十分に広く確保することができる。このため、ファン4による主流7bの吸気効率を向上させることができる。
Further, the main flow path 5b has the largest airflow passage area Sb at the terminal outlet B in the flow path from the inlet on the branching section A side to the terminal outlet B. Thus, since the airflow passage area Sb at the terminal outlet B is the largest, the intake area of the fan 4 can be secured sufficiently wide. For this reason, the intake efficiency of the main flow 7b by the fan 4 can be improved.
また、本実施形態に係る粒子測定器10Aにおいて、支流路5cは、センサ1における気体の出口Cから末端出口Dへ至る流路の少なくとも一部において、第2の流路拡張部を有する。上記第2の流路拡張部において、気流が通過する気流通過面積は、センサ1における気体の出口C側から末端出口D側へ向かうに従って漸次的に増大している。
Further, in the particle measuring instrument 10A according to the present embodiment, the branch flow path 5c has a second flow path expanding portion in at least a part of the flow path from the gas outlet C to the terminal outlet D in the sensor 1. In the second flow path expanding portion, the airflow passage area through which the airflow passes gradually increases from the gas outlet C side to the terminal outlet D side in the sensor 1.
具体的には、図2に示されるように、支流路5cは、センサ1における気体の出口Cから末端出口Dへ至る流路において、傾斜壁面5eを有する。この傾斜壁面5eは、該傾斜壁面5eと対向する壁面とのZ方向の距離が出口C側から末端出口D側へ向かうに従って漸次的に増加するように傾斜している。一方、傾斜壁面5eに対して立設する2つの壁面は、出口C側から末端出口D側へ至る流路において、互いの距離が一定になっている。このため、支流路5cにおいて、傾斜壁面5eを含む流路は、出口C側から末端出口D側へ向かうに従い気流通過面積が増大しているので、上記第2の流路拡張部である。
Specifically, as shown in FIG. 2, the branch flow path 5 c has an inclined wall surface 5 e in the flow path from the gas outlet C to the terminal outlet D in the sensor 1. The inclined wall surface 5e is inclined such that the distance in the Z direction between the inclined wall surface 5e and the opposite wall surface gradually increases from the outlet C side toward the terminal outlet D side. On the other hand, the distance between the two wall surfaces standing on the inclined wall surface 5e is constant in the flow path from the outlet C side to the terminal outlet D side. For this reason, in the branch flow path 5c, the flow path including the inclined wall surface 5e is the second flow path expansion portion because the airflow passage area increases from the outlet C side toward the terminal outlet D side.
ここで、粒子測定器10Aは、1つのファン4を流体駆動部として、主流7b及び支流7cといった2つの流体を発生させる構成になっている。それゆえ、主流路5bの末端出口Bから排出された粗大粒子が、ファン4の羽の回転によって、支流路5cの末端出口Dからセンサ1へ逆流するおそれがある。
Here, the particle measuring instrument 10A is configured to generate two fluids such as a main flow 7b and a tributary 7c using one fan 4 as a fluid drive unit. Therefore, the coarse particles discharged from the terminal outlet B of the main flow path 5b may flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1 due to the rotation of the blades of the fan 4.
本実施形態に係る粒子測定器10Aによれば、センサ1における気体の出口Cから末端出口Dへ至る流路の少なくとも一部において、上述の第2の流路拡張部を有するので、第2の流路拡張部を通過する支流7cの流速は、出口C側の端部で最も大きくなり、末端出口Dへ向かうに従い小さくなる。それゆえ、主流路5bの末端出口Bから排出された粗大粒子が、ファン4の羽の回転によって支流路5cの末端出口Dからセンサ1へ逆流したとしても、出口C側の端部での主流7bの流速が最も大きいため、粗大粒子がセンサ1へ混入することがない。
According to the particle measuring instrument 10A according to the present embodiment, since at least a part of the flow path from the gas outlet C to the terminal outlet D in the sensor 1 has the above-described second flow path extension, The flow velocity of the tributary 7c passing through the flow path expanding portion is largest at the end portion on the outlet C side, and becomes smaller toward the terminal outlet D. Therefore, even if the coarse particles discharged from the terminal outlet B of the main flow path 5b flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1 due to the rotation of the fan 4, the main flow at the end on the outlet C side. Since the flow rate of 7b is the largest, coarse particles are not mixed into the sensor 1.
また、支流路5cは、センサ1における気体の出口Cから末端出口Dへ至る流路の中で、出口Cにおける気流通過面積が最も小さくなっている。それゆえ、支流路5cを通過する支流7cの流速は、センサ1における気体の出口Cで最も大きくなる。したがって、粗大粒子のセンサ1への逆流を確実に防止することができる。
Further, the branch flow path 5c has the smallest airflow passage area at the outlet C in the flow path from the gas outlet C to the terminal outlet D in the sensor 1. Therefore, the flow velocity of the branch flow 7c passing through the branch flow channel 5c is highest at the gas outlet C in the sensor 1. Therefore, the backflow of coarse particles to the sensor 1 can be reliably prevented.
また、支流路5cは、分岐部A側の入口から末端出口Dへ至る流路の中で、末端出口Dにおける気流通過面積が最も大きくなっている。このように末端出口Dにおける気流通過面積が最も大きくなっているので、ファン4の吸気面積を十分に広く確保することができる。このため、ファン4による支流7cの吸気効率を向上させることができる。
Further, the branch channel 5c has the largest airflow passage area at the terminal outlet D among the channels from the inlet on the branching section A side to the terminal outlet D. Thus, since the airflow passage area at the terminal outlet D is the largest, the intake area of the fan 4 can be secured sufficiently wide. For this reason, the intake efficiency of the branch 7c by the fan 4 can be improved.
〔実施形態2〕
本発明の他の実施形態について、図5及び図6に基づいて説明すれば、以下のとおりである。図5は、本実施形態に係る粒子測定器10Bの概略構成を示し、図5の(a)は、断面図であり、図5の(b)は断面斜視図である。図6は、本実施形態に係る粒子測定器10Bにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図5では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. FIG. 5 shows a schematic configuration of theparticle measuring instrument 10B according to the present embodiment. FIG. 5 (a) is a sectional view, and FIG. 5 (b) is a sectional perspective view. FIG. 6 is a diagram schematically showing the configuration of the main channel in the particle measuring instrument 10B according to the present embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In FIG. 5, the fan 4 is omitted for the sake of simplicity.
本発明の他の実施形態について、図5及び図6に基づいて説明すれば、以下のとおりである。図5は、本実施形態に係る粒子測定器10Bの概略構成を示し、図5の(a)は、断面図であり、図5の(b)は断面斜視図である。図6は、本実施形態に係る粒子測定器10Bにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図5では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. FIG. 5 shows a schematic configuration of the
実施形態1に係る粒子測定器10Aにおいて、主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の一部において、流路拡張部5d(第1の流路拡張部)を有していた。
In the particle measuring instrument 10A according to the first embodiment, the main flow path 5b includes a flow path expansion section 5d (first flow path expansion section) in a part of the flow path from the inlet on the branching section A side to the terminal outlet B. Had.
しかし、図5及び図6に示されるように、本実施形態に係る粒子測定器10Bにおいては、主流路5bは、分岐部A側の入口から末端出口Bへ至る流路全体に流路拡張部5dを有している点が実施形態1に係る粒子測定器10Aと異なる。すなわち、粒子測定器10Bの主流路5bにおいて、気流が通過する気流通過面積は、分岐部A側の入口のから末端出口Bへ向かうに従って漸次的に増大している。
However, as shown in FIGS. 5 and 6, in the particle measuring instrument 10 </ b> B according to the present embodiment, the main flow path 5 b has a flow path extending portion in the entire flow path from the inlet on the branching section A side to the terminal outlet B. The point having 5d is different from the particle measuring instrument 10A according to the first embodiment. That is, in the main flow path 5b of the particle measuring instrument 10B, the airflow passage area through which the airflow passes gradually increases from the inlet on the branching portion A side toward the terminal outlet B.
本実施形態に係る粒子測定器10Bによれば、主流路5bにおける気流通過面積は、分岐部A側の入口での気流通過面積Saが最小である。そして、分岐部A側の入口から末端出口Bへ向かい漸次的に増加し、末端出口Bでの気流通過面積Sbが最大となっている。それゆえ、分岐部Aとファン4との距離を小さくした場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止することができる。
According to the particle measuring instrument 10B according to the present embodiment, the airflow passage area Sa in the main channel 5b has the smallest airflow passage area Sa at the entrance on the branching portion A side. And it gradually increases from the inlet on the branching part A side toward the terminal outlet B, and the airflow passage area Sb at the terminal outlet B is maximized. Therefore, even when the distance between the branch portion A and the fan 4 is reduced, it is possible to prevent the coarse particles flowing in the main flow path 5b from flowing back to the branch flow path 5c.
〔実施形態3〕
本発明のさらに他の実施形態について、図7及び図8に基づいて説明すれば、以下のとおりである。図7は、本実施形態に係る粒子測定器10Cの概略構成を示し、図7の(a)は、断面図であり、図7の(b)は断面斜視図である。図8は、本実施形態に係る粒子測定器10Cにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図7では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIGS. FIG. 7 shows a schematic configuration of a particle measuring instrument 10C according to the present embodiment. FIG. 7A is a cross-sectional view, and FIG. 7B is a cross-sectional perspective view. FIG. 8 is a diagram schematically showing the configuration of the main flow path in the particle measuring instrument 10C according to the present embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In FIG. 7, thefan 4 is omitted for the sake of brevity.
本発明のさらに他の実施形態について、図7及び図8に基づいて説明すれば、以下のとおりである。図7は、本実施形態に係る粒子測定器10Cの概略構成を示し、図7の(a)は、断面図であり、図7の(b)は断面斜視図である。図8は、本実施形態に係る粒子測定器10Cにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図7では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIGS. FIG. 7 shows a schematic configuration of a particle measuring instrument 10C according to the present embodiment. FIG. 7A is a cross-sectional view, and FIG. 7B is a cross-sectional perspective view. FIG. 8 is a diagram schematically showing the configuration of the main flow path in the particle measuring instrument 10C according to the present embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In FIG. 7, the
図7及び図8に示されるように、本実施形態に係る粒子測定器10Cは、流路拡張部5dにおける分岐部A側端部の気流通過面積Sa’が、分岐部A側の入口での気流通過面積Saと同じである点が、上記実施形態1及び2と異なる。
As shown in FIGS. 7 and 8, in the particle measuring instrument 10C according to the present embodiment, the airflow passage area Sa ′ at the end portion on the branching portion A side in the flow path expanding portion 5d is the inlet at the branching portion A side. The point which is the same as airflow passage area Sa differs from the said Embodiment 1 and 2.
本実施形態に係る粒子測定器10Cによれば、主流路5bにおける気流通過面積は、分岐部A側の入口から流路拡張部5dにおける分岐部A側端部へ至るまでの流路において、同一の気流通過面積Sa・Sa’となっている。そして、分岐部A側の入口から末端出口Bへ向かい漸次的に増加し、末端出口Bでの気流通過面積Sbが最大となっている。それゆえ、分岐部Aとファン4との距離を小さくした場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止することができる。
According to the particle measuring instrument 10C according to the present embodiment, the air flow passage area in the main flow path 5b is the same in the flow path from the inlet on the branching section A side to the branching section A side end in the flow path expanding section 5d. Airflow passage area Sa · Sa ′. And it gradually increases from the inlet on the branching part A side toward the terminal outlet B, and the airflow passage area Sb at the terminal outlet B is maximized. Therefore, even when the distance between the branch portion A and the fan 4 is reduced, it is possible to prevent the coarse particles flowing in the main flow path 5b from flowing back to the branch flow path 5c.
〔実施形態4〕
本発明のさらに他の実施形態について、図9及び図10に基づいて説明すれば、以下のとおりである。図9は、本実施形態に係る粒子測定器10Dの概略構成を示し、図9の(a)は、断面図であり、図9の(b)は断面斜視図である。図10は、本実施形態に係る粒子測定器10Dにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図9では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 4]
The following will describe still another embodiment of the present invention with reference to FIGS. FIG. 9 shows a schematic configuration of aparticle measuring instrument 10D according to the present embodiment. FIG. 9A is a sectional view, and FIG. 9B is a sectional perspective view. FIG. 10 is a diagram schematically showing the configuration of the main channel in the particle measuring instrument 10D according to the present embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted. In FIG. 9, the fan 4 is omitted for the sake of brevity.
本発明のさらに他の実施形態について、図9及び図10に基づいて説明すれば、以下のとおりである。図9は、本実施形態に係る粒子測定器10Dの概略構成を示し、図9の(a)は、断面図であり、図9の(b)は断面斜視図である。図10は、本実施形態に係る粒子測定器10Dにおける主流路の構成を模式的に示す図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。また、図9では、図面を簡潔にするため、ファン4を省略している。 [Embodiment 4]
The following will describe still another embodiment of the present invention with reference to FIGS. FIG. 9 shows a schematic configuration of a
実施形態1に係る粒子測定器10Aにおいて、流路拡張部5dを構成する、互いに対向する2つの側壁は、分岐部A側から末端出口B側へ向かうに従って幅広になるように構成されていた。また、流路拡張部5dを構成する、互いに対向する2つの側壁のうち、一方の側壁は、主流7bの方向に平行な面が設けられており、他方の側壁は、主流7bの方向に対して連続的に傾斜した傾斜面が設けられていた。
In the particle measuring instrument 10A according to the first embodiment, the two opposing side walls constituting the flow path expanding portion 5d are configured to become wider from the branching portion A side toward the terminal outlet B side. In addition, of the two side walls facing each other that constitute the flow path expanding portion 5d, one side wall is provided with a surface parallel to the direction of the main flow 7b, and the other side wall is in the direction of the main flow 7b. An inclined surface that is continuously inclined is provided.
しかし、本実施形態に係る粒子測定器10Dにおいては、流路拡張部5dを構成する、互いに対向する2つの側壁のうち、一方の側壁が、主流7bの方向に平行な面が設けられており、他方の側壁が、主流7bの方向に対して非連続的に傾斜した傾斜面が設けられている点が上記実施形態1と異なる。
However, in the particle measuring instrument 10D according to the present embodiment, one of the two opposing side walls constituting the flow path expanding portion 5d is provided with a surface parallel to the direction of the main flow 7b. The other side wall is different from the first embodiment in that an inclined surface that is discontinuously inclined with respect to the direction of the main flow 7b is provided.
上記傾斜面において、「非連続的に傾斜した」とは、傾斜面を構成する面が面一になっていないことをいう。「非連続的に傾斜した傾斜面」としては、例えば、図9及び図10に示される階段状の傾斜面が挙げられる。
In the above inclined surface, “discontinuously inclined” means that the surfaces constituting the inclined surface are not flush with each other. Examples of the “discontinuously inclined surfaces” include stepped inclined surfaces shown in FIGS. 9 and 10.
〔まとめ〕
本発明の態様1に係る粒子分離装置は、外部から気体を導入する導入流路5aと、上記導入流路5aにおける外部と反対側の末端にある分岐部Aにて分岐した主流路5b及び支流路5cと、上記導入流路5aから、上記分岐部Aを介して、上記主流路5b及び上記支流路5cそれぞれにおける気体が外部へ排出される末端出口B・Dへ向かう気流を発生させる流体駆動部(ファン4)と、を備え、上記導入流路5aから導入される気体(気流7a)に含まれる粒子を、その慣性力によって、上記主流路5b及び上記支流路5cへ分離する粒子分離装置であって、上記主流路5bは、分岐部A側の入口から上記末端出口Bへ至る流路の少なくとも一部において、第1の流路拡張部(流路拡張部5d)を有し、上記第1の流路拡張部(流路拡張部5d)において、気流が通過する気流通過面積Sは、分岐部A側から末端出口B側へ向かうに従って漸次的に増大している。ここで、「漸次的に増大」の範疇には、連続的に増大している構成も非連続的に増大している構成も含まれる。非連続的に増大する構成としては、例えば、第1の流路拡張部(流路拡張部5d)を構成する1つの壁面が、対向する壁面との距離が分岐部A側から末端出口B側へ向かうに従って広くなるように、階段状に傾斜した構成が挙げられる。 [Summary]
The particle separation device according to the first aspect of the present invention includes anintroduction channel 5a for introducing a gas from the outside, a main channel 5b and a tributary branching at a branch part A at the end opposite to the outside of the introduction channel 5a. Fluid drive for generating an air flow from the channel 5c and the introduction channel 5a to the terminal outlets B and D through which the gas in each of the main channel 5b and the branch channel 5c is discharged to the outside through the branch portion A Part (fan 4), and a particle separation device that separates particles contained in the gas (airflow 7a) introduced from the introduction flow path 5a into the main flow path 5b and the branch flow path 5c by its inertial force. The main flow path 5b includes a first flow path expansion section (flow path expansion section 5d) in at least a part of the flow path from the inlet on the branching section A side to the terminal outlet B. 1st channel expansion part (channel expansion part In d), the air flow passage area S airflow passes is in progressively increasing toward the branch portion A side to the distal outlet B side. Here, the category of “gradual increase” includes configurations that are continuously increasing and configurations that are discontinuously increasing. As a configuration that increases discontinuously, for example, the distance between one wall surface constituting the first flow channel expansion portion (flow channel expansion portion 5d) and the opposite wall surface is from the branching portion A side to the end outlet B side. A configuration that is inclined stepwise so that it becomes wider as it goes to is mentioned.
本発明の態様1に係る粒子分離装置は、外部から気体を導入する導入流路5aと、上記導入流路5aにおける外部と反対側の末端にある分岐部Aにて分岐した主流路5b及び支流路5cと、上記導入流路5aから、上記分岐部Aを介して、上記主流路5b及び上記支流路5cそれぞれにおける気体が外部へ排出される末端出口B・Dへ向かう気流を発生させる流体駆動部(ファン4)と、を備え、上記導入流路5aから導入される気体(気流7a)に含まれる粒子を、その慣性力によって、上記主流路5b及び上記支流路5cへ分離する粒子分離装置であって、上記主流路5bは、分岐部A側の入口から上記末端出口Bへ至る流路の少なくとも一部において、第1の流路拡張部(流路拡張部5d)を有し、上記第1の流路拡張部(流路拡張部5d)において、気流が通過する気流通過面積Sは、分岐部A側から末端出口B側へ向かうに従って漸次的に増大している。ここで、「漸次的に増大」の範疇には、連続的に増大している構成も非連続的に増大している構成も含まれる。非連続的に増大する構成としては、例えば、第1の流路拡張部(流路拡張部5d)を構成する1つの壁面が、対向する壁面との距離が分岐部A側から末端出口B側へ向かうに従って広くなるように、階段状に傾斜した構成が挙げられる。 [Summary]
The particle separation device according to the first aspect of the present invention includes an
上記の構成によれば、第1の流路拡張部(流路拡張部5d)は、気流通過面積Sが分岐部A側から末端出口B側へ向かうに従って漸次的に増大しているので、分岐部A側の端部にて流路が絞り込まれた形状になっている。それゆえ、流路拡張部5dを通過する気流(主流7b)の流速は、分岐部A側の端部で最も大きくなり、末端出口Bへ向かうに従い小さくなる。
According to said structure, since the 1st flow path expansion part (flow path expansion part 5d) is gradually increasing as the airflow passage area S goes to the terminal exit B side from the branch part A side, it branches The channel is narrowed at the end on the part A side. Therefore, the flow velocity of the airflow (main flow 7b) passing through the flow path expanding portion 5d is the largest at the end portion on the branching portion A side and becomes smaller toward the terminal outlet B.
それゆえ、流体駆動部(ファン4)における羽根の回転による乱流に含まれる粗大粒子や主流路5bの壁面と衝突した粗大粒子が分岐部Aへ向かって逆流したとしても、分岐部A側の端部での主流7bの流速が最も大きいため、粗大粒子が分岐部Aから支流路5cへ混入することがない。よって、上記の構成によれば、分岐部Aとファン4との距離を小さくした場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止できる粒子分離装置を提供することができる。
Therefore, even if the coarse particles included in the turbulent flow due to the rotation of the blades in the fluid drive unit (fan 4) or the coarse particles colliding with the wall surface of the main flow path 5b flow back toward the branch portion A, Since the flow velocity of the main flow 7b at the end is the highest, coarse particles are not mixed into the branch channel 5c from the branch portion A. Therefore, according to said structure, even if it is a case where the distance of the branch part A and the fan 4 is made small, the particle separation apparatus which can prevent the coarse particle which flows through the main flow path 5b from flowing backward to the branch flow path 5c side is provided. Can be provided.
本発明の態様2に係る粒子分離装置は、上記態様1において、上記主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の中で、分岐部A側の入口における気流通過面積Saが最も小さい構成であることが好ましい。
The particle separation device according to aspect 2 of the present invention is the particle separation apparatus according to aspect 1, in which the main flow path 5b passes through the air flow at the inlet on the branching part A side in the flow path from the inlet on the branching part A side to the terminal outlet B. It is preferable that the area Sa is the smallest.
上記の構成によれば、主流路5bを通過する気流(主流7b)の流速は、分岐部A側の入口で最も大きくなる。したがって、上記の構成によれば、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを確実に防止することができる。
According to the above configuration, the flow velocity of the air flow (main flow 7b) passing through the main flow path 5b is the largest at the entrance on the branching section A side. Therefore, according to said structure, it can prevent reliably that the coarse particle which flows through the main flow path 5b flows backward to the branch flow path 5c side.
本発明の態様3に係る粒子分離装置は、上記態様1または2において、上記主流路5bは、分岐部A側の入口から末端出口Bへ至る流路の中で、末端出口Bにおける気流通過面積Sbが最も大きい構成であることが好ましい。
The particle separation apparatus according to Aspect 3 of the present invention is the particle separation apparatus according to Aspect 1 or 2, wherein the main flow path 5b is an airflow passage area at the terminal outlet B in the flow path from the inlet on the branching section A side to the terminal outlet B. It is preferable that Sb be the largest.
上記の構成によれば、末端出口Bにおける気流通過面積Sbが最も大きくなっているので、流体駆動部(ファン4)の吸気面積を十分に広く確保することができる。このため、上記の構成によれば、流体駆動部(ファン4)による気流(主流7b)の吸気効率を向上させることができる。
According to the above configuration, since the airflow passage area Sb at the end outlet B is the largest, the intake area of the fluid drive unit (fan 4) can be secured sufficiently wide. For this reason, according to said structure, the intake efficiency of the airflow (main flow 7b) by a fluid drive part (fan 4) can be improved.
本発明の態様4に係る粒子分離装置は、上記態様1から3において、上記第1の流路拡張部(流路拡張部5d)は、上記主流路5bにおける分岐部A側の入口から末端出口Bへ至る流路全体に設けられていてもよい。
The particle separation device according to aspect 4 of the present invention is the particle separation apparatus according to aspects 1 to 3, wherein the first flow path expansion section (flow path expansion section 5d) is connected from the inlet on the branching section A side to the end outlet of the main flow path 5b. You may be provided in the whole flow path to B.
これにより、分岐部Aと流体駆動部(ファン4)との距離を小さくした場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止することができる。
Thereby, even when the distance between the branch part A and the fluid drive part (fan 4) is reduced, it is possible to prevent the coarse particles flowing in the main flow path 5b from flowing back to the branch flow path 5c.
本発明の態様5に係る粒子測定器10Aは、上記態様1から4の何れかの粒子分離装置と、上記支流路5cの途中に設けられ、気体中の微粒子を測定する測定部(センサ1)と、を備えている。
A particle measuring instrument 10A according to Aspect 5 of the present invention is provided with a particle separation apparatus according to any one of Aspects 1 to 4 and a measuring unit (sensor 1) that is provided in the middle of the branch flow path 5c and measures fine particles in a gas. And.
上記の構成によれば、分岐部Aとファン4との距離を小さくした場合であっても、主流路5bを流れる粗大粒子が支流路5c側へ逆流することを防止できる粒子測定器10Aを提供することができる。
According to said structure, even if it is a case where the distance of the branch part A and the fan 4 is made small, the particle measuring device 10A which can prevent the coarse particle which flows through the main flow path 5b from flowing backward to the branch flow path 5c side is provided. can do.
本発明の態様6に係る粒子測定器10Aは、外部から気体を導入する導入流路5aと、上記導入流路5aにおける外部と反対側の末端にある分岐部Aにて分岐した主流路5b及び支流路5cと、上記導入流路5aから、上記分岐部Aを介して、上記主流路5b及び上記支流路5cそれぞれにおける気体が外部へ排出される末端出口B・Dへ向かう気流を発生させる流体駆動部(ファン4)と、上記支流路5cの途中に設けられ、気体中の微粒子を測定する測定部(センサ1)と、を備え、上記支流路5cは、上記測定部(センサ1)における気体の出口Cから末端出口Dへ至る流路の少なくとも一部において、第2の流路拡張部(傾斜壁面5eを含む流路)を有し、上記第2の流路拡張部(傾斜壁面5eを含む流路)において、気流が通過する気流通過面積は、上記測定部(センサ1)における気体の出口C側から末端出口D側へ向かうに従って漸次的に増大している。
A particle measuring instrument 10A according to Aspect 6 of the present invention includes an introduction channel 5a for introducing a gas from the outside, a main channel 5b branched at a branch part A at the end opposite to the outside in the introduction channel 5a, and Fluid that generates airflow from the branch channel 5c and the introduction channel 5a to the terminal outlets B and D through which the gas in each of the main channel 5b and the branch channel 5c is discharged to the outside through the branch portion A A driving unit (fan 4) and a measuring unit (sensor 1) that is provided in the middle of the branch channel 5c and measures fine particles in the gas are provided, and the branch channel 5c is provided in the measuring unit (sensor 1). At least a part of the flow path from the gas outlet C to the terminal outlet D has a second flow path expansion portion (a flow path including the inclined wall surface 5e), and the second flow path expansion portion (the inclined wall surface 5e). Air flow) That the air flow passage area is in progressively increasing toward the distal outlet D side from the outlet C side of the gas in the measuring unit (sensor 1).
ここで、粒子測定器10Aは、1つの流体駆動部(ファン4)を駆動源として、主流7b及び支流7cといった2つの気流を発生させる構成になっている。それゆえ、主流路5bの末端出口Bから排出された粗大粒子が、流体駆動部(ファン4)の羽の回転によって、支流路5cの末端出口Dから測定部(センサ1)へ逆流するおそれがある。
Here, the particle measuring instrument 10A is configured to generate two air streams such as a main flow 7b and a tributary 7c by using one fluid driving unit (fan 4) as a driving source. Therefore, the coarse particles discharged from the terminal outlet B of the main flow path 5b may flow backward from the terminal outlet D of the branch flow path 5c to the measuring section (sensor 1) due to the rotation of the blades of the fluid drive section (fan 4). is there.
上記の構成によれば、測定部(センサ1)における気体の出口Cから末端出口Dへ至る流路の少なくとも一部において、上記第2の流路拡張部を有するので、第2の流路拡張部を通過する気流(支流7c)の流速は、出口C側の端部で最も大きくなり、末端出口Dへ向かうに従い小さくなる。それゆえ、主流路5bの末端出口Bから排出された粗大粒子が、支流路5cの末端出口Dからセンサ1へ逆流したとしても、出口C側の端部での主流7bの流速が最も大きいため、粗大粒子がセンサ1へ混入することがない。
According to the above configuration, since at least a part of the flow path from the gas outlet C to the terminal outlet D in the measurement section (sensor 1) has the second flow path expansion section, the second flow path expansion is performed. The flow velocity of the airflow passing through the section (branch stream 7 c) is greatest at the end portion on the outlet C side and decreases toward the terminal outlet D. Therefore, even if the coarse particles discharged from the terminal outlet B of the main flow path 5b flow backward from the terminal outlet D of the branch flow path 5c to the sensor 1, the flow velocity of the main flow 7b at the end on the outlet C side is the largest. Coarse particles are not mixed into the sensor 1.
本発明の態様7に係る粒子測定器10Aは、上記態様6において、上記支流路5cは、上記測定部(センサ1)における気体の出口Cから末端出口Dへ至る流路の中で、上記測定部(センサ1)における気体の出口Cの気流通過面積が最も小さい構成であることが好ましい。
The particle measuring instrument 10A according to aspect 7 of the present invention is the particle measuring apparatus 10A according to aspect 6, in which the branch flow path 5c is measured in the flow path from the gas outlet C to the terminal outlet D in the measurement unit (sensor 1). It is preferable that the airflow passage area of the gas outlet C in the part (sensor 1) is the smallest.
上記の構成によれば、支流路5cを通過する気流(支流7c)の流速は、上記測定部(センサ1)における気体の出口Cで最も大きくなる。したがって、粗大粒子の上記測定部(センサ1)への逆流を確実に防止することができる。
According to the above configuration, the flow velocity of the airflow (branch flow 7c) passing through the branch flow path 5c is greatest at the gas outlet C in the measurement unit (sensor 1). Therefore, the backflow of coarse particles to the measurement unit (sensor 1) can be reliably prevented.
本発明の態様8に係る粒子測定器10Aは、上記態様6または7において、上記支流路5cは、上記分岐部A側の入口から末端出口Dへ至る流路の中で、末端出口Dにおける気流通過面積が最も大きい構成であることが好ましい。
The particle measuring instrument 10A according to Aspect 8 of the present invention is the particle detector 10A according to Aspect 6 or 7, wherein the branch flow path 5c is an air flow at the end outlet D in the flow path from the inlet on the branching section A side to the end outlet D. It is preferable that the passage area is the largest.
上記の構成によれば、支流路5cの末端出口Dにおける気流通過面積が最も大きくなっているので、流体駆動部(ファン4)の吸気面積を十分に広く確保することができる。このため、流体駆動部(ファン4)による気流(支流7c)の吸気効率を向上させることができる。
According to the above configuration, since the airflow passage area at the end outlet D of the branch flow path 5c is the largest, it is possible to ensure a sufficiently large intake area of the fluid drive unit (fan 4). For this reason, the intake efficiency of the airflow (branch 7c) by the fluid drive unit (fan 4) can be improved.
本発明の態様9に係る粒子分離装置は、上記態様1から4において、流路拡張部5dにおける分岐部A側の端部の気流通過面積Sa’が、分岐部A側の入口での気流通過面積Saと同じである構成であってもよい。
In the particle separation device according to aspect 9 of the present invention, in the above aspects 1 to 4, the airflow passage area Sa ′ at the end portion on the branching portion A side in the flow path expanding portion 5d is airflow passage at the inlet on the branching portion A side. The configuration may be the same as the area Sa.
本発明の態様10に係る粒子分離装置は、上記態様1から4、9において、上記流体駆動部(ファン4)が1つ設けられていることが好ましい。これにより、粒子分離装置をさらに小型化することができる。
In the particle separator according to the tenth aspect of the present invention, in the first to fourth and ninth aspects, it is preferable that one fluid driving unit (fan 4) is provided. Thereby, the particle separator can be further reduced in size.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、大気中に浮遊する微粒子を分離し分離した微粒子の量を測定する、微粒子測定装置や微粒子センサに利用することができる。
The present invention can be used for a fine particle measuring apparatus and a fine particle sensor for separating fine particles floating in the atmosphere and measuring the amount of the separated fine particles.
1 センサ(測定部)
2 吸気部
3 分粒部
4 ファン(流体駆動部)
5a 導入流路
5b 主流路
5c 支流路
5d 流路拡張部(第1の流路拡張部)
5e 傾斜壁面(第2の流路拡張部を構成する壁面の一部)
6、 仕切板
7a 気流
7b 主流
7c 支流
8a 粗大粒子
8b 微小粒子
10A、10B、10C、10D 微粒子測定器
A 分岐部
B 末端出口
C 出口
D 末端出口
S、Sa、Sb 気流通過面積 1 Sensor (measurement unit)
2Intake section 3 Sizing section 4 Fan (fluid drive section)
5a Introduction channel 5b Main channel 5c Branch channel 5d Channel expansion part (first channel expansion part)
5e Inclined wall surface (part of the wall surface constituting the second flow path extension)
6,Partition plate 7a Air flow 7b Main flow 7c Branch flow 8a Coarse particle 8b Fine particle 10A, 10B, 10C, 10D Fine particle measuring device A Branch part B Terminal outlet C Outlet D Terminal outlet S, Sa, Sb Air flow passage area
2 吸気部
3 分粒部
4 ファン(流体駆動部)
5a 導入流路
5b 主流路
5c 支流路
5d 流路拡張部(第1の流路拡張部)
5e 傾斜壁面(第2の流路拡張部を構成する壁面の一部)
6、 仕切板
7a 気流
7b 主流
7c 支流
8a 粗大粒子
8b 微小粒子
10A、10B、10C、10D 微粒子測定器
A 分岐部
B 末端出口
C 出口
D 末端出口
S、Sa、Sb 気流通過面積 1 Sensor (measurement unit)
2
5e Inclined wall surface (part of the wall surface constituting the second flow path extension)
6,
Claims (7)
- 外部から気体を導入する導入流路と、
上記導入流路における外部と反対側の末端にある分岐部にて分岐した主流路及び支流路と、
上記導入流路から、上記分岐部を介して、上記主流路及び上記支流路それぞれにおける気体が外部へ排出される末端出口へ向かう気流を発生させる流体駆動部と、を備え、上記導入流路から導入される気体に含まれる粒子を、その慣性力によって、上記主流路及び上記支流路へ分離する粒子分離装置であって、
上記主流路は、分岐部側の入口から上記末端出口へ至る流路の少なくとも一部において、第1の流路拡張部を有し、上記第1の流路拡張部において、気流が通過する気流通過面積は、分岐部側から末端出口側へ向かうに従って漸次的に増大していることを特徴とする粒子分離装置。 An introduction channel for introducing gas from the outside;
A main channel and a branch channel branched at a branching portion on the opposite end to the outside in the introduction channel;
A fluid drive unit that generates an air flow from the introduction channel to the terminal outlet through which the gas in each of the main channel and the branch channel is discharged to the outside through the branch portion, and from the introduction channel A particle separation device for separating particles contained in a gas to be introduced into the main channel and the branch channel by inertial force thereof,
The main channel has a first channel expansion part in at least a part of the channel from the inlet on the branching part side to the terminal outlet, and an airflow through which an airflow passes in the first channel expansion part. The particle separation device, wherein the passage area gradually increases from the branching portion side toward the terminal outlet side. - 上記主流路は、分岐部側の入口から末端出口へ至る流路の中で、分岐部側の入口における気流通過面積が最も小さいことを特徴とする請求項1に記載の粒子分離装置。 The particle separation device according to claim 1, wherein the main channel has the smallest airflow passage area at the branch side inlet among the channels from the branch side inlet to the terminal outlet.
- 上記主流路は、分岐部側の入口から末端出口へ至る流路の中で、末端出口における気流通過面積が最も大きいことを特徴とする請求項1または2に記載の粒子分離装置。 The particle separation apparatus according to claim 1 or 2, wherein the main channel has the largest airflow passage area at the end outlet among the channels from the branch side inlet to the terminal outlet.
- 上記第1の流路拡張部は、上記主流路における分岐部側の入口から末端出口へ至る流路全体に設けられていることを特徴とする請求項1~3の何れか1項に記載の粒子分離装置。 The first flow path extension section is provided in the entire flow path from the branch side inlet to the terminal outlet of the main flow path. Particle separator.
- 請求項1~4の何れか1項に記載の粒子分離装置と、
上記支流路の途中に設けられ、気体中の微粒子を測定する測定部と、を備えたことを特徴とする粒子測定器。 The particle separator according to any one of claims 1 to 4,
A particle measuring instrument, comprising: a measuring unit that is provided in the middle of the branch channel and measures fine particles in a gas. - 外部から気体を導入する導入流路と、
上記導入流路における外部と反対側の末端にある分岐部にて分岐した主流路及び支流路と、
上記導入流路から、上記分岐部を介して、上記主流路及び上記支流路それぞれにおける気体が外部へ排出される末端出口へ向かう気流を発生させる流体駆動部と、
上記支流路の途中に設けられ、気体中の微粒子を測定する測定部と、を備え、
上記支流路は、上記測定部における気体の出口から末端出口へ至る流路の少なくとも一部において、第2の流路拡張部を有し、上記第2の流路拡張部において、気流が通過する気流通過面積は、上記測定部における気体の出口側から末端出口側へ向かうに従って漸次的に増大していることを特徴とする粒子測定器。 An introduction channel for introducing gas from the outside;
A main channel and a branch channel branched at a branching portion on the opposite end to the outside in the introduction channel;
A fluid drive unit that generates an air flow from the introduction channel to the terminal outlet through which the gas in each of the main channel and the branch channel is discharged to the outside through the branch unit;
Provided in the middle of the branch flow path, and a measuring unit for measuring fine particles in the gas,
The branch channel has a second channel expansion part in at least a part of the channel from the gas outlet to the terminal outlet in the measurement unit, and the airflow passes through the second channel expansion unit. The air flow passage area gradually increases from the gas outlet side toward the terminal outlet side in the measurement unit. - 上記支流路は、上記測定部における気体の出口から末端出口へ至る流路の中で、上記測定部における気体の出口の気流通過面積が最も小さいことを特徴とする請求項6に記載の粒子測定器。 The particle measurement according to claim 6, wherein the branch channel has the smallest airflow passage area at the gas outlet in the measurement unit among the channels from the gas outlet to the terminal outlet in the measurement unit. vessel.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-007034 | 2014-01-17 | ||
JP2014007034A JP5837107B2 (en) | 2014-01-17 | 2014-01-17 | Particle measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107712A1 true WO2015107712A1 (en) | 2015-07-23 |
Family
ID=53321846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071901 WO2015107712A1 (en) | 2014-01-17 | 2014-08-21 | Particle separation device and particle measuring device provided with same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5837107B2 (en) |
CN (1) | CN204365597U (en) |
WO (1) | WO2015107712A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113454437A (en) * | 2019-02-27 | 2021-09-28 | 京瓷株式会社 | Particle separation measuring device and particle separation measuring apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102402012B1 (en) * | 2015-06-19 | 2022-05-25 | 삼성전자주식회사 | Dust sensing device and air conditioner for the same |
JP6714441B2 (en) * | 2016-06-09 | 2020-06-24 | アズビル株式会社 | Particle detecting device and method of controlling particle detecting device |
CN112601613B (en) * | 2018-08-28 | 2022-07-05 | 京瓷株式会社 | Particle separation device and particle separation apparatus |
JP7206814B2 (en) * | 2018-10-31 | 2023-01-18 | 株式会社デンソー | PM sensor |
WO2020179502A1 (en) * | 2019-03-01 | 2020-09-10 | 日本碍子株式会社 | Fine particle detection element and fine particle detector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499059U (en) * | 1991-01-30 | 1992-08-27 | ||
JP2000042494A (en) * | 1998-07-31 | 2000-02-15 | Ricoh Co Ltd | Air-current classification |
JP2001215752A (en) * | 2000-02-01 | 2001-08-10 | Dainippon Ink & Chem Inc | Method of producing toner |
JP2004089898A (en) * | 2002-09-02 | 2004-03-25 | Hyogo Prefecture | Method and apparatus for isolating suspended particle in fluid |
JP2008224332A (en) * | 2007-03-09 | 2008-09-25 | Nippon Steel Corp | Device and method for measuring continuous falling dust |
US20110226675A1 (en) * | 2008-09-03 | 2011-09-22 | Bae Systems Plc | Particle separators |
-
2014
- 2014-01-17 JP JP2014007034A patent/JP5837107B2/en not_active Expired - Fee Related
- 2014-08-21 WO PCT/JP2014/071901 patent/WO2015107712A1/en active Application Filing
- 2014-11-19 CN CN201420696336.1U patent/CN204365597U/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499059U (en) * | 1991-01-30 | 1992-08-27 | ||
JP2000042494A (en) * | 1998-07-31 | 2000-02-15 | Ricoh Co Ltd | Air-current classification |
JP2001215752A (en) * | 2000-02-01 | 2001-08-10 | Dainippon Ink & Chem Inc | Method of producing toner |
JP2004089898A (en) * | 2002-09-02 | 2004-03-25 | Hyogo Prefecture | Method and apparatus for isolating suspended particle in fluid |
JP2008224332A (en) * | 2007-03-09 | 2008-09-25 | Nippon Steel Corp | Device and method for measuring continuous falling dust |
US20110226675A1 (en) * | 2008-09-03 | 2011-09-22 | Bae Systems Plc | Particle separators |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113454437A (en) * | 2019-02-27 | 2021-09-28 | 京瓷株式会社 | Particle separation measuring device and particle separation measuring apparatus |
CN113454437B (en) * | 2019-02-27 | 2024-03-15 | 京瓷株式会社 | Particle separation device and particle separation measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2015134325A (en) | 2015-07-27 |
JP5837107B2 (en) | 2015-12-24 |
CN204365597U (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5837107B2 (en) | Particle measuring instrument | |
JP5851534B2 (en) | Fine particle measuring device | |
JP5770255B2 (en) | Particle measuring apparatus and particle measuring method | |
US10209198B2 (en) | Particle sensing device and air conditioner including the same | |
JP3327393B2 (en) | Particle sensor with low pressure loss airflow system | |
ES2398304T3 (en) | Device and procedure for separating a mixture of fluid medium with a stationary cyclone | |
RU2014151748A (en) | SEPARATION DEVICE | |
US10890519B2 (en) | Sensor system for sensing the mass concentration of particles in air | |
JP5805731B2 (en) | Particle separator and particle measuring instrument equipped with the same | |
ITFI20120125A1 (en) | "WET GAS COMPRESSOR AND METHOD" | |
JP2019098318A5 (en) | ||
JP6527962B2 (en) | Multistage axial flow cyclone separator | |
JP6596041B2 (en) | Fine particle collector | |
JP2019020372A (en) | Processing flow rate variable virtual impactor and pretreatment system for bioaerosol measuring instrument using processing flow rate variable virtual impactor | |
Baltrėnas et al. | Investigation into a new generation multi-channel cyclone used for removing lignin particulate matter from gas under conditions of an aggressive environment | |
JP6305771B2 (en) | Particle separator | |
TW202000293A (en) | Filtration system | |
KR100933439B1 (en) | Cyclone-specific particle concentrator | |
JP2017190998A (en) | Fine particle measuring apparatus | |
KR20190051142A (en) | Dust collector using axial flow cyclone | |
JP6558686B2 (en) | Separation device | |
JP2020071140A (en) | PM sensor | |
Gotoh et al. | Development of annular-type virtual impactor | |
CN111437669A (en) | Air purifier | |
RU131307U1 (en) | GAS FLOW PARTICLES CAPTURE DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14878765 Country of ref document: EP Kind code of ref document: A1 |