WO2015106482A1 - 一种高性能纤维复合材料制品的制备方法 - Google Patents

一种高性能纤维复合材料制品的制备方法 Download PDF

Info

Publication number
WO2015106482A1
WO2015106482A1 PCT/CN2014/072908 CN2014072908W WO2015106482A1 WO 2015106482 A1 WO2015106482 A1 WO 2015106482A1 CN 2014072908 W CN2014072908 W CN 2014072908W WO 2015106482 A1 WO2015106482 A1 WO 2015106482A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
strength
lay
layers
cut
Prior art date
Application number
PCT/CN2014/072908
Other languages
English (en)
French (fr)
Inventor
陈成泗
许史安
陈泉锋
陈建锋
马建刚
胡开波
颜巧喜
达巍峰
Original Assignee
宁波大成新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大成新材料股份有限公司 filed Critical 宁波大成新材料股份有限公司
Publication of WO2015106482A1 publication Critical patent/WO2015106482A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars

Definitions

  • the present invention relates to the field of composite materials, and in particular to a method for producing a composite material for automobiles using a high-performance fiber as a substrate. Background technique
  • High-performance fiber reinforced composite material (such as carbon fiber composite material) is a new type of material; it has the advantages of light material, high strength, high modulus, strong corrosion resistance and good impact toughness; with the rapid development of science and technology, high performance Fiber composite materials have been widely used in petroleum, chemical, marine, metallurgy, mining, pressure vessel manufacturing, environmental protection, food and other industries, especially in today's new energy automotive industry, for automotive housing and other components, providing the most lightweight automotive development Good new structural materials.
  • Patent application CN102941709A inventing a novel carbon fiber composite material, a novel carbon fiber composite material formed by alternately compounding a copper-aluminum alloy layer and a carbon fiber material;
  • Patent application CN103497485A inventing a carbon fiber composite material product, which is rationally formulated by using 30% ⁇ 60% carbon fiber reinforcement and 10% ⁇ 15% foam core material, 35% ⁇ 65% epoxy resin system, using RTM Forming process, curing into carbon fiber composite products;
  • Patent application CN102152522A a novel carbon fiber composite material characterized by an antibacterial and breathable composite material in which a carbon fiber cloth layer, a nano antibacterial fiber cloth and a bamboo carbon fiber cloth are stacked in turn;
  • Patent application CN89101957X inventing a composite FRP sheet, characterized in that a glass fiber cloth is dip coated with an unsaturated polyester resin, and a composite FRP sheet is fixed by hand paste and mold curing; prepared in the above patent application
  • Carbon fiber composite products also have weaknesses such as poor impact toughness, material weight and high manufacturing cost. There is no need in the industry to invent a new high performance, low cost fiber reinforced composite article. Summary of the invention
  • the object of the present invention is to research and develop a new high-performance, low-cost fiber composite material and product preparation process, to overcome the shortcomings of the carbon fiber composite material prepared by the prior art, thereby improving the comprehensive performance of the composite material, reducing the preparation cost of the composite material, and realizing Industrialization.
  • a method for preparing a high-performance fiber composite product is: carbon fiber weaving 15% ⁇ 30%, super strong polyethylene fiber fabric 10% ⁇ 20%, high strength glass fiber fabric 15% ⁇ 30%, unsaturated polyester resin or epoxy resin 40% ⁇ 55%, three kinds of high above Performance fiber fabric, 160g ⁇ 250g per square meter; High-performance fiber composite products are prepared by vacuum assisted molding process or RTM molding process (resin molding transfer molding process).
  • the high-performance fiber composite material prepared by the invention has the advantages of light material, strong bending stress resistance, high elastic modulus, strong impact toughness, ultraviolet resistance, high temperature resistance and low manufacturing cost, and is mainly used for manufacturing automobile.
  • the shell and components are the best materials to meet the energy-saving and emission reduction and lightweight equipment of today's new energy vehicles. detailed description
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Step 1 Cut high-strength glass fiber plain weave fabric or multi-axial warp knit fabric into 2 ⁇ 3 layers according to the specifications of composite products, and lay them together;
  • Step 2 Cut high-strength carbon fiber plain weave or multi-axial warp knit fabric into 3 ⁇ 5 layers according to the specifications of composite products, and lay them together;
  • Step 3 Cut the high-strength and high-modulus polyethylene fiber plain weave fabric that has been surface-plasma treated, and cut 2 ⁇ 3 layers according to the specifications of the composite product, and lay them together;
  • Step 4 Cut high-strength glass fiber plain weave or multi-axial warp knit fabric into 2 ⁇ 3 layers according to the specifications of the composite material, and lay them together;
  • Step 5 Finally, the fabrics of Step 1, Step 2, Step 3, and Step 4 are sequentially placed in the mold, and injected. Unsaturated polyester resin or epoxy resin, then start the hydraulic press to close the upper and lower molds.
  • the material matching weight ratio is: carbon fiber fabric 15% ⁇ 30%, super strong polyethylene fiber fabric 10% ⁇ 20%, high strength glass fiber fabric or multiaxial warp knit fabric 15% ⁇ 30%, unsaturated poly Ester resin or epoxy resin 40% ⁇ 55%.
  • the RTM molding process (resin molding transfer molding process) is adopted, the mold is preheated at 80° to 120°, pressurized at 30T to 100T/m 2 , and cured for 20 to 35 minutes to form a composite product.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Step 1 Cut high-strength glass fiber plain weave or multi-axial warp knit fabric into 2 ⁇ 3 layers according to the specifications of composite products;
  • Step 2 Cut high-strength carbon fiber plain weave fabric or multi-axial warp knit fabric into 3 ⁇ 5 layers according to the specifications of composite product;
  • Step 3 The high-strength and high-modulus polyethylene fiber plain weave fabric which has been surface-plasma treated is cut into 2 ⁇ 3 layers according to the specifications of the composite product;
  • Step 4 Cut high-strength glass fiber plain weave fabric or multi-axial warp knit fabric into 2 ⁇ 3 layers according to the specifications of composite materials;
  • Step 5 Finally, the fabrics of Step 1, Step 2, Step 3, and Step 4 are sequentially placed in the mold, and then The multi-layer fiber fabric is covered with a high-strength plastic film, and a resin guiding tube is placed in the film to inject an unsaturated polyester resin or an epoxy resin; in the mold, the material matching weight ratio is: 15% to 30% of the carbon fiber fabric, Super strong polyethylene fiber fabric 10% ⁇ 20%, high strength glass fiber fabric or multiaxial warp knitted fabric 15% ⁇ 30%, unsaturated polyester resin or epoxy resin 40% ⁇ 55%.
  • the vacuum assisted molding process is carried out at a normal temperature for 40 minutes to 1 hour, and is solidified into a composite product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种高性能纤维为基材的汽车用复合材料制品的生产方法;材料匹配重量比为:碳纤维织物15%~30%、超强聚乙烯纤维织物10%~20%、高强玻璃纤维织物15%~30%,不饱和聚酯树脂或环氧树脂40%~55%,以上使用的三种高性能纤维织物,每平方米160g~250g;通过真空辅助成型工艺或RTM成型工艺(树脂模塑传递成型工艺),制备出高性能纤维复合材料制品。本发明制成的高性能纤维复合材料制品,具有材质轻、抗弯曲应力强、弹性模量高、抗冲击韧性强、能抗紫外线、耐高温、而且制造成本低等优点,主要用于制造汽车壳体及部件,是满足当今新能源汽车节能减排、轻量化装备的最佳材料。

Description

一种高性能纤维复合材料制品的制备方法
技术领域
本发明涉及复合材料领域, 特别涉及一种高性能纤维为基材的汽车用复合 材料制品的生产方法。 背景技术
高性能纤维增强复合材料, (如碳纤维复合材料) 是一种新型材料; 它具有 材质轻、 强度大、 模量高、 耐腐蚀强、 冲击韧性好等优点; 随着科学技术快速 发展, 高性能纤维复合材料已广泛应用于石油、 化工、 船舶、 冶金、 矿山、 压 力容器制造、 环保、 食品等行业, 尤其在当今新能源汽车工业, 用于汽车壳体 等部件, 为汽车轻量化发展提供最佳的新型结构材料。 如:
1.专利申请 CN102941709A, 发明一种新型碳纤维复合材料, 通过铜铝合金 层和碳纤维材料交替复合而成的新型碳纤维复合材料;
2.专利申请 CN103497485A, 发明一种碳纤维复合材料制品, 通过 30%〜60% 碳纤维增强体和 10%〜15%的泡沫芯材、 35%〜65%的环氧树脂体系进行合理调配, 用 RTM成型工艺, 固化成碳纤维复合材料制品;
3.专利申请 CN102152522A, 发明一种新型碳纤维复合材料, 其特征是碳纤 维布层与纳米抗菌纤维布、 竹碳纤维布依次叠放组合的一种抗菌透气复合材料;
4.专利申请 CN89101957X, 发明一种复合玻璃钢板材, 其特征是将玻璃纤维 布浸涂不饱和聚酯树脂, 通过手糊与模压固化定型的一种复合玻璃钢板材; 以上所述的专利申请中制备的碳纤维复合材料制品, 还存在抗冲击韧性差、 材质重及制造成本高等弱点。 工业上亟须发明出一种新的高性能、 低成本纤维 增强复合材料制品。 发明内容
本发明的目的是研究开发高性能、 低成本纤维复合材料及制品制备新工艺, 来克服现有技术制备的碳纤维复合材料制品的缺点, 从而提高复合材料综合性 能, 降低复合材料制备成本, 并实现产业化。
本发明的技术方案为:
一种高性能纤维复合材料制品的制备方法, 材料匹配重量比为: 碳纤维织 物 15%〜30%、超强聚乙烯纤维织物 10%〜20%、 高强玻璃纤维织物 15%〜30%, 不 饱和聚酯树脂或环氧树脂 40%〜55%, 以上使用的三种高性能纤维织物, 每平方 米 160g〜250g; 通过真空辅助成型工艺或 RTM成型工艺 (树脂模塑传递成型工 艺), 制备出高性能纤维复合材料制品。
本发明制成的高性能纤维复合材料制品, 具有材质轻、 抗弯曲应力强、 弹 性模量高、 抗冲击韧性强、 能抗紫外线、 耐高温、 而且制造成本低等优点, 主 要用于制造汽车壳体及部件, 是满足当今新能源汽车节能减排、 轻量化装备的 最佳材料。 具体实施方式
实施例一:
步骤 1 : 将高强玻璃纤维平纹织物或多轴向经编织物, 按复合材料制品规格 裁剪 2〜3层, 铺放在一起;
步骤 2: 将高强碳纤维平纹织物或多轴向经编织物, 按复合材料制品规格裁 剪 3〜5层, 铺放在在一起;
步骤 3: 将已经表面等离子体处理过的高强 ·高模聚乙烯纤维平纹织物, 按 复合材料制品规格裁剪 2〜3层, 铺放在在一起;
步骤 4: 将高强玻璃纤维平纹织物或多轴向经编织物, 按复合材料规格裁剪 2〜3层, 铺放在在一起;
以上步骤 1〜步骤 4所使用的三种高性能纤维织物, 每平方米 160g〜250g; 步骤 5: 最后将步骤 1、 步骤 2、 步骤 3、 步骤 4的织物, 依次铺放在模具 内, 注入不饱和聚酯树脂或环氧树脂, 然后起动液压机将上下模合拢。 模具内, 材料匹配的重量比为: 碳纤维织物 15%〜30%、 超强聚乙烯纤维织物 10%〜20%、 高强玻璃纤维织物或多轴向经编织物 15%〜30%, 不饱和聚酯树脂或环氧树脂 40%〜55%。合模后采用 RTM成型工艺(树脂模塑传递成型工艺),模具预热 80°〜 120°, 加压 30T〜100T/m2, 固化 20〜35分钟制成复合材料制品。
实施例二:
步骤 1 : 将高强玻璃纤维平纹织布或多轴向经编织物, 按复合材料制品规格 裁剪 2〜3层铺放在一起;
步骤 2: 将高强碳纤维平纹织物或多轴向经编织物, 按复合材料制品规格要 求裁剪 3〜5层铺放在一起;
步骤 3: 将已经表面等离子体处理过的高强 ·高模聚乙烯纤维平纹织物, 按 复合材料制品规格要求裁剪 2〜3层铺放在一起; 步骤 4: 将高强玻璃纤维平纹织物或多轴向经编织物, 按复合材料规格要求 裁剪 2〜3层铺放在一起;
以上步骤 1〜步骤 4所使用的三种高性能纤维织物, 每平方米 160g〜250g; 步骤 5: 最后将步骤 1、 步骤 2、 步骤 3、 步骤 4的织物, 依次铺放在模具 内, 再在这多层纤维织物上覆盖高强塑料薄膜, 在薄膜内放置树脂导流管, 注 入不饱和聚酯树脂或环氧树脂;模具内,材料匹配的重量比为:碳纤维织物 15%〜 30%、超强聚乙烯纤维织物 10%〜20%、高强玻璃纤维织物或多轴向经编织物 15%〜 30%, 不饱和聚酯树脂或环氧树脂 40%〜55%。采用真空辅助成型工艺, 常温条件 下时间为 40分钟〜 1小时, 固化定型成复合材料制品。

Claims

权 利 要 求
1、 一种高性能纤维复合材料制品的制备方法, 其特征在于, 原材料匹配重量比为: 碳纤 维织物 15%〜30%、 超强聚乙烯纤维织物 10%〜20%、 高强玻璃纤维织物 15%〜30%, 不饱和聚 酯树脂或环氧树脂 40%〜55%; 以上使用的三种高性能纤维织物, 每平方米 160g〜250g; 通过 真空辅助成型工艺或 RTM成型工艺, 制备出高性能纤维复合材料制品。
2、 根据权利要求 1所述的制备方法, 其步骤为:
步骤 1、将高强玻璃纤维平纹织物或多轴向经编织物,按复合材料制品规格裁剪 2〜3层, 铺放在一起;
步骤 2、 将高强碳纤维平纹织物或多轴向经编织物, 按复合材料制品规格裁剪 3〜5层, 铺放在在一起;
步骤 3、 将已经表面等离子体处理过的高强 ·高模聚乙烯纤维平纹织物, 按复合材料制 品规格裁剪 2〜3层, 铺放在在一起;
步骤 4、 将高强玻璃纤维平纹织物或多轴向经编织物, 按复合材料规格裁剪 2〜3层, 铺 放在在一起;
以上步骤 1〜步骤 4所使用的三种高性能纤维织物, 每平方米 160g〜250g;
步骤 5、 最后将步骤 1、 步骤 2、 步骤 3、 步骤 4的织物, 依次铺放在模具内, 注入不饱 和聚酯树脂或环氧树脂, 然后起动液压机将上下模合拢; 合模后采用 RTM成型工艺, 模具预 热 80°〜 120°, 加压 30T〜100T/m2, 固化 20〜35分钟制成复合材料制品。
3、 根据权利要求 1所述的制备方法, 其步骤为:
步骤 1、 将高强玻璃纤维平纹织布或多轴向经编织物, 按复合材料制品规格裁剪 2〜3层 铺放在一起;
步骤 2、 将高强碳纤维平纹织物或多轴向经编织物, 按复合材料制品规格要求裁剪 3〜5 层铺放在一起;
步骤 3、 将已经表面等离子体处理过的高强 ·高模聚乙烯纤维平纹织物, 按复合材料制 品规格要求裁剪 2〜3层铺放在一起;
步骤 4、 将高强玻璃纤维平纹织物或多轴向经编织物, 按复合材料规格要求裁剪 2〜3层 铺放在一起;
以上步骤 1〜步骤 4所使用的三种高性能纤维织物, 每平方米 160g〜250g;
步骤 5、 最后将步骤 1、 步骤 2、 步骤 3、 步骤 4的织物, 依次铺放在模具内, 再在这多层 纤维织物上覆盖高强塑料薄膜, 在薄膜内放置树脂导流管, 注入不饱和聚酯树脂或环氧树 脂; 采用真空辅助成型工艺, 常温条件下时间为 40分钟〜 1小时, 固化定型成复合材料 生【I 口
巿1」 PR o
PCT/CN2014/072908 2014-01-20 2014-03-05 一种高性能纤维复合材料制品的制备方法 WO2015106482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410023331.7 2014-01-20
CN201410023331.7A CN103770343B (zh) 2014-01-20 2014-01-20 一种高性能纤维复合材料制品的制备方法

Publications (1)

Publication Number Publication Date
WO2015106482A1 true WO2015106482A1 (zh) 2015-07-23

Family

ID=50563324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072908 WO2015106482A1 (zh) 2014-01-20 2014-03-05 一种高性能纤维复合材料制品的制备方法

Country Status (2)

Country Link
CN (1) CN103770343B (zh)
WO (1) WO2015106482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394994A (zh) * 2019-07-16 2019-11-01 西安西电电工材料有限责任公司 一种半固化云母制品箔的成型工艺方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816489A (zh) * 2015-04-21 2015-08-05 江阴优培德复合材料有限公司 一种碳纤维嵌件注塑复合制品制作工艺
CN105172256A (zh) * 2015-09-14 2015-12-23 浙江理工大学 一种增强材料不同叠层比例的防弹板材的制备方法
CN107418171A (zh) * 2017-06-08 2017-12-01 合肥峰腾节能科技有限公司 一种纤维复合节能材料及其制备方法
CN108995328A (zh) * 2018-07-03 2018-12-14 合肥连森裕腾新材料科技开发有限公司 一种高性能纤维复合材料制品及其制备方法
CN108774350A (zh) * 2018-07-12 2018-11-09 合肥连森裕腾新材料科技开发有限公司 一种高性能纤维复合材料及其制备方法
CN112606427A (zh) * 2020-12-16 2021-04-06 浙江博澳节能科技有限公司 一种高性能多轴向格构纤维复合材料制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720276A (zh) * 2007-06-28 2010-06-02 达史奥帕斯特有限公司 复合织物产品及其生产方法
CN102582207A (zh) * 2012-03-02 2012-07-18 中国航空工业集团公司北京航空材料研究院 一种植物纤维叠层混杂功能性复合材料层合板的制备方法
CN102766343A (zh) * 2006-05-24 2012-11-07 奥克塞迪克科技有限公司 复合材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143492A (zh) * 2007-11-02 2008-03-19 贵州云马飞机制造厂 压缩式rtm成型方法
CN101492573B (zh) * 2008-12-26 2012-05-23 威海光威复合材料有限公司 真空成型大型制品用预浸料
CN101503014B (zh) * 2009-03-27 2012-05-30 中国航空工业第一集团公司北京航空材料研究院 一种表面显示内部损伤的复合材料层压板
CN101845232B (zh) * 2010-04-29 2012-09-26 中国科学院宁波材料技术与工程研究所 一种热塑性树脂基碳纤维复合材料及其制备方法
CN102173153A (zh) * 2010-12-13 2011-09-07 中国航空工业集团公司北京航空材料研究院 一种纤维增强复合材料的制备方法
JP5821267B2 (ja) * 2011-05-12 2015-11-24 住友ベークライト株式会社 複合材料組成物の製造方法、複合材料組成物及び成形体
CN102744889A (zh) * 2012-07-06 2012-10-24 内蒙古金岗重工有限公司 碳纤维混杂树脂基复合材料泡沫夹层结构及其制备工艺
CN103205004A (zh) * 2013-04-02 2013-07-17 天津顺御科技有限公司 一种复合材料型材及其制备方法与在制备太阳能光伏组件中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766343A (zh) * 2006-05-24 2012-11-07 奥克塞迪克科技有限公司 复合材料
CN101720276A (zh) * 2007-06-28 2010-06-02 达史奥帕斯特有限公司 复合织物产品及其生产方法
CN102582207A (zh) * 2012-03-02 2012-07-18 中国航空工业集团公司北京航空材料研究院 一种植物纤维叠层混杂功能性复合材料层合板的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394994A (zh) * 2019-07-16 2019-11-01 西安西电电工材料有限责任公司 一种半固化云母制品箔的成型工艺方法

Also Published As

Publication number Publication date
CN103770343B (zh) 2017-02-01
CN103770343A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015106482A1 (zh) 一种高性能纤维复合材料制品的制备方法
Nagavally Composite materials-history, types, fabrication techniques, advantages, and applications
Jose et al. Advances in polymer composites: macro‐and microcomposites–state of the art, new challenges, and opportunities
CN107642678B (zh) 一种三维编织压力气瓶及其制备方法
CN103963319A (zh) 一种复合材料加筋壁板的预浸料/树脂膜熔渗共固化成型方法
CN107471679B (zh) 碳纤维复合材料制造方法
CN103072284A (zh) 一种含增强筋的夹芯结构复合材料及其制造方法
CN105346099B (zh) 一种碳纤维复合材料薄壁曲线管件的制备方法
Marques Fibrous materials reinforced composites production techniques
CN101845166A (zh) 热固性混杂织物复合材料及其制备方法和应用
Kulhan et al. Fabrication methods of glass fibre composites—a review
CN102924741A (zh) 一种提高液态成型复合材料表面耐磨损性能的方法
CN110561779A (zh) 一种磁场取向碳纳米管增强纤维树脂基复合材料层间力学性能的方法
CN106808762A (zh) 一种高强度拉挤型材及其制备方法
CN101973101A (zh) 房车车头的制作工艺
CN105504750B (zh) 一种连续碳纤维增强聚碳酸酯复合材料及其制备方法
CN106218146A (zh) 一种箱包用柔性材料增韧的复合材料及其制备和应用
CN102463679B (zh) 一种输电线路用间隔棒框架的制备方法
CN107417944A (zh) 粗糙毛面纤维毡预浸料、复合材料及复合材料的制备方法
CN105881929A (zh) 一种连续纤维织物和lft复合壁板结构的制造方法
CN104325653B (zh) 一种玻璃钢管道的连续制造方法及制得的玻璃钢管道
CN104401106A (zh) 一种纤维增强金属复合材料的制备方法
CN103909661A (zh) 方舱副车架用梁模具制造方法及所得模具
CN102785368B (zh) 超混杂复合材料制造方法
CN100496936C (zh) 一种布带缠绕酚醛复合材料制品的固化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878874

Country of ref document: EP

Kind code of ref document: A1