WO2015105022A1 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
WO2015105022A1
WO2015105022A1 PCT/JP2014/084494 JP2014084494W WO2015105022A1 WO 2015105022 A1 WO2015105022 A1 WO 2015105022A1 JP 2014084494 W JP2014084494 W JP 2014084494W WO 2015105022 A1 WO2015105022 A1 WO 2015105022A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
electrode
quantum
quantum battery
Prior art date
Application number
PCT/JP2014/084494
Other languages
French (fr)
Japanese (ja)
Inventor
秀謙 尾関
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015556774A priority Critical patent/JPWO2015105022A1/en
Publication of WO2015105022A1 publication Critical patent/WO2015105022A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element

Definitions

  • the present invention relates to an organic electroluminescence device including an organic electroluminescence element and a driving power source.
  • an image display device display
  • an organic electroluminescence (EL) element or the like as a light emitting element
  • flexibility and cable-less use for mobile applications are required.
  • a drive power supply that is a power supply needs to be flexible.
  • an organic electroluminescence device having flexibility by combining an organic electroluminescence element and a secondary battery has not been realized.
  • an organic electroluminescence device having flexibility is realized.
  • An organic electroluminescent device of the present invention includes an organic electroluminescent element having a light emitting surface on one surface and a driving power source provided on the other surface of the organic electroluminescent element, and the driving power source is a quantum device having flexibility. Includes batteries.
  • an organic electroluminescent device having flexibility can be provided.
  • Embodiment of organic electroluminescence device (first embodiment) 2.
  • Embodiment of organic electroluminescence device (second embodiment)
  • FIG. 1 the schematic block diagram of the organic EL device of this embodiment is shown.
  • the drive power supply 11 is sealed with a sealing material 12
  • the organic EL element 13 is sealed with a sealing material 14, and the sealing material 12 and the sealing material 14 are bonded to each other.
  • 15 is adhered and configured.
  • the organic EL element 13 and the drive power supply 11 have an arrangement in which the organic EL element 13 and the drive power supply 11 are stacked close to each other via the adhesive layer 15 and the sealing materials 12 and 14.
  • the organic EL device 10 emits light from the surface (upper surface) opposite to the side close to the drive power supply 11 of the organic EL element 13.
  • the organic EL device 10 may include other configurations necessary for realizing the organic EL device, such as a drive circuit (not shown) for driving and controlling the organic EL element 13.
  • the drive power supply 11 can be composed of a thin, sheet-like (planar) quantum battery having flexibility.
  • the details of the drive power supply 11 applicable to the organic EL device 10 and the quantum battery constituting the drive power supply 11 will be described later.
  • the organic EL element 13 can be constituted by a light emitting element composed of a conventionally proposed organic electroluminescent element (organic EL element, OLED) having sheet-like (planar) flexibility.
  • OLED organic electroluminescent element
  • As the sealing material 12 and the sealing material 14 a conventionally known sealing material having flexibility can be used.
  • the sealing materials 12 and 14 themselves may contain a material having gas barrier properties, and a film having gas barrier properties may be formed inside the sealing materials 12 and 14.
  • the drive power supply 11 and the organic EL element 13 are electrically connected.
  • the standard of flexibility is that the bending radius R is 100 mm or less, preferably the bending radius R is 30 mm to 3 mm.
  • the organic EL device 10 preferably has a thickness of 3 mm or less. In the quantum battery having flexibility, the thickness is preferably 2.5 mm or less, more preferably 0.5 mm or less in consideration of the mounting limit to the card standard.
  • a booster circuit that boosts the electromotive force of the drive power supply 11 and supplies it to the organic EL element 13 can be provided outside the organic EL device 10 as necessary. If the booster circuit can be composed of a flexible substrate and a thin film circuit, it can be provided inside the organic EL device 10.
  • the sealing materials 12 and 14 for sealing the drive power supply 11 and the organic EL element 13 are bonded, and the drive power supply 11 and the organic EL element 13 are electrically connected. Therefore, the organic EL element 13 can be driven by the drive power supply 11 to emit light. Moreover, since the drive power supply 11 and the organic EL element 13 are both sheet-like and flexible, the organic EL device 10 having flexibility can be realized. Further, it is possible to emit light even when the organic EL device 10 is bent.
  • Organic EL device The organic EL element 13 applied to the organic EL device 10 has been proposed to have a flexible structure using a transparent flexible film as a substrate. By using this organic electroluminescent element having flexibility, the organic EL device 10 having flexibility can be realized.
  • Base film / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Base film / anode / hole injection layer / hole transport layer / light emitting layer / electron Transport layer / electron injection layer / cathode (iii) substrate film / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / hole blocking layer / cathode (iv) substrate film / anode / positive Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / hole blocking layer / cathode (v) substrate film / anode / hole injection layer / hole transport layer / electron blocking layer / light emission Layer / electron transport layer / electron injection layer / hole blocking layer / cathode For
  • a conventionally well-known material can be used for the material of each layer of each layer structure.
  • a protective film is preferably formed on the cathode of each layer structure. Moreover, it is preferable to form a gas barrier film
  • the organic EL device 10 When the organic EL device 10 is applied to a lighting device that uses the organic EL element 13 as a light emitting element, it is possible to dispose a flexible quantum battery on one side of the light emitting element.
  • the organic EL element 13 and the quantum battery are bonded and bonded, or the light emitting element and the quantum battery are stacked and integrated.
  • the drive power supply 11 is disposed on the non-light emitting surface of the organic EL element 13.
  • the drive power supply 11 can be composed of a single quantum battery or a plurality of quantum batteries.
  • a configuration in which a plurality of quantum cells are connected in series may be employed.
  • an output voltage of at least 2.5 V or more is required for driving an organic EL element. For this reason, when a single quantum cell does not have this output voltage, a plurality of quantum cells can be connected in series to generate an output voltage required for the drive power supply 11.
  • the quantum cells When a plurality of quantum cells are connected, the quantum cells are arranged in a single layer in a plane parallel to the light emitting surface of the organic EL device 10, or the plurality of quantum cells are perpendicular to the light emitting surface of the organic EL device 10. Laminate in any direction. And the circuit which draws out from the drive power supply 11 by connecting the electrode of each arrange
  • the stacked capacity of the quantum batteries can be increased in capacity with a smaller main area than in the case of a single layer. For this reason, it is preferable to have a configuration in which a plurality of quantum cells are stacked. Even when a plurality of quantum cells are stacked, it is possible to satisfy the flexibility required for the organic EL device 10 by using a quantum cell having a configuration described later.
  • lithium ion secondary batteries have high heat generation, and when a plurality of layers are stacked, particularly when three or more layers are stacked, the heat dissipation of the batteries stacked in the center is a problem. Become. For this reason, it is difficult to realize a laminated structure using a lithium ion secondary battery. In the quantum battery described later, the heat generation is low, and even when three or more layers are stacked, a problem due to heat generation hardly occurs. For this reason, it becomes possible to stack
  • FIG. 2 shows a schematic configuration (cross-sectional structure) of the quantum battery 20.
  • the quantum battery 20 is a secondary battery based on a charging principle in which a photoexcitation structure change technique is adopted for the charging layer 22 and can be repeatedly charged and discharged.
  • a quantum battery 20 shown in FIG. 2 includes a conductive first electrode 21 using a metal material having passive characteristics, a charge layer 22 for charging energy, a p-type metal oxide semiconductor layer 23, and a first electrode 21.
  • the conductive second electrode 24 using a metal material having passive characteristics is laminated.
  • the first electrode 21 and the second electrode 24 may be functionally provided with a conductive film, and may be made of a highly conductive metal such as copper, copper alloy, nickel, aluminum, silver, gold, zinc, or tin. It is possible to use. Among these, copper is inexpensive and suitable as an electrode material.
  • the first electrode 21 and the second electrode 24 are provided with a metal layer having a passive characteristic in order to prevent deterioration due to oxidation of the electrode caused by a thermal process at the time of manufacturing a battery or aging.
  • Passivity is a state of a metal that corrodes at an extremely slow rate despite the fact that the metal electrochemical column is in a base (active) position, and is the basis of the corrosion resistance of the metal material.
  • Metals that are highly polarized by a small anodic current are passivated by approaching the behavior of electrochemically fairly noble (inactive) metals. In this case, the oxide film as the corrosion product comes to have a protective property and is given corrosion resistance.
  • the corrosion region can be examined by an anodic polarization curve in which a potential is applied to the electrode in the positive direction so that an oxidation reaction occurs.
  • a potential is applied to the electrode in the positive direction so that an oxidation reaction occurs.
  • the current increases with the potential, and when exceeding a certain potential, the current rapidly decreases and continues in a certain potential range, and then rises again.
  • the potential region where the initial current rises is called the active state region
  • the passive region where the current is kept at a low value is called the passive region
  • the potential region where the current increases again is called the overpassive region.
  • the current is reduced, i.e. the conductivity is disturbed, but usually the electrode is protected to prevent contact with the atmosphere, and the oxidation of the electrode occurs locally It is. Therefore, the oxidation is locally suppressed, the electrode is prevented from being deteriorated, and a quantum battery that can be used for a long time even after repeated charge and discharge is possible.
  • the metal material having passive characteristics include chromium, nickel, titanium, and molybdenum, or an alloy containing at least one kind of chromium, nickel, titanium, and molybdenum.
  • FIG. 3 shows the configuration of the charge layer 22 of the quantum battery.
  • the charging layer 22 shown in FIG. 3 has a configuration filled with an n-type metal oxide semiconductor 25 covered with an insulating coating 26.
  • the charge layer 22 has a function of storing energy when the n-type metal oxide semiconductor 25 is irradiated with ultraviolet rays to cause a photoexcitation structure change.
  • Examples of the material of the n-type metal oxide semiconductor 25 used for the charging layer 22 include titanium dioxide, stannic oxide, and zinc oxide. These metal oxides can be produced by decomposing metal aliphatic acid salts. For the production of metal oxides, metal aliphatic acid salts that are converted to metal oxides by combustion in an oxidizing atmosphere are used.
  • insulating coating 26 may be used for the insulating coating 26 as an inorganic insulator, and thermoplastic resins such as polyethylene and polypropylene are used as the insulating resin. Further, a thermosetting resin such as a phenol resin or an amino resin may be used.
  • the n-type metal oxide semiconductor 25 irradiated with ultraviolet rays forms a new energy level due to the change of the photoexcitation structure.
  • the photoexcited structure change is a phenomenon in which the interstitial distance of a substance excited by light irradiation changes, and this photoexcited structure change occurs in the n-type metal oxide semiconductor 25 which is an amorphous metal oxide.
  • Use materials with properties hereinafter, the formation state of the new energy level of the charge layer 22 due to the change in the photoexcitation structure will be described using a band diagram in an example in which the n-type metal oxide semiconductor 25 is titanium dioxide and the material of the insulating film is silicone.
  • FIG. 4 shows a state in which an ultraviolet ray 38 is irradiated on a structure having an insulating layer made of silicone 34 between titanium dioxide 32 and copper 30.
  • the ultraviolet rays 38 are irradiated to the titanium dioxide 32 coated with an insulating film, the electrons 42 in the valence band 40 of the titanium dioxide 32 are excited to the conduction band 36.
  • the electrons 42 pass through the insulating layer of the silicone 34 with a certain probability and temporarily move to the copper 30.
  • the photoexcited structural change of the titanium dioxide 32 occurs in the absence of the electrons 42, and the interatomic distance of the site from which the electrons 42 of the valence band 40 are removed changes. At this time, the energy level 44 has moved to the band gap in the Fermi level 46. As a result, an energy level 44 is formed in the band gap in the Fermi level 46. Formation of the energy level 44 due to the photoexcitation structure change of the titanium dioxide 32 occurs continuously while the ultraviolet ray 38 is irradiated.
  • FIG. 5 shows a state in which the above-described phenomenon occurs repeatedly while the ultraviolet ray 38 is irradiated, and a large number of energy levels 44 are formed in the band gap. However, the electrons 42 to be trapped in these energy levels 44 are excited by the ultraviolet rays 38 and moved to the copper 30. The energy level 44 in the band gap in the absence of electrons thus generated remains even after the ultraviolet irradiation is finished.
  • the role of the silicone 34 as an insulating layer is to create a barrier between the copper 30 and the titanium dioxide 32 and allow the excited electrons 42 to pass through the tunnel effect to form an energy level 44 in the band gap in the absence of electrons. It is. The electrons 42 that have moved to the copper 30 remain on the copper 30 due to the charging potential around the silicone 34.
  • the p-type metal oxide semiconductor layer 23 is further stacked on the charging layer 22 to form a blocking layer, and the second electrode 24 is provided thereon.
  • the principle of the secondary battery having such a structure will be described with reference to band diagrams shown in FIGS.
  • the charging layer 22 made of silicone 34 and titanium dioxide 32 and the p-type made of nickel oxide 50 sandwiched between the first electrode 21 made of copper 30 and the second electrode 24 made of copper 48.
  • the quantum battery 20 having a configuration including the metal oxide semiconductor layer 23 will be described as an example.
  • FIG. 6 is a band diagram when a negative voltage is applied to the copper 48 constituting the second electrode 24 and the copper 30 constituting the first electrode 21 is grounded to 0V.
  • a bias electric field ( ⁇ ) is applied to the titanium dioxide 32 having the energy level 44 in the band gap
  • the electrons 42 of the copper 30 pass through the barrier due to the silicone 34 (tunneling) and move to the titanium dioxide 32.
  • the moved electrons 42 are captured by the energy level 44 existing between the band gaps of the titanium dioxide 32 because the nickel oxide 50 blocks further movement to the copper 48. That is, energy is stored in the charging layer 22 made of titanium dioxide 32, and the charging layer 22 is charged with electrons 42. Since this state is maintained even after the application of the bias electric field is canceled, the quantum battery having this configuration has a function as a secondary battery.
  • FIG. 7 is a band diagram when a load (not shown) is connected to the copper 30 and the copper 48 and discharged.
  • the electrons 42 trapped in the band gap of the titanium dioxide 32 become free electrons in the conduction band 36.
  • the free electrons move to the copper 30 and flow to the load. This phenomenon is an energy output state and a discharge state.
  • the energy level formed in the band gap of titanium dioxide can be filled with electrons. Then, by connecting a load to the electrode, electrons can be emitted to extract energy. Therefore, it can function as a battery. Moreover, it can be used as a secondary battery by repeating this phenomenon.
  • This is the basic principle of the quantum battery constituting the drive power supply 11 of the organic EL device 10.
  • the electrons 42 move and stay in the first electrode 21 due to the tunneling effect through the insulating coating 26, and thus the charging layer 22.
  • the first electrode 21 are extremely important. For this reason, it is important to prevent deterioration in adhesion due to oxidation of the electrode caused by a thermal process and aging during the manufacture of the battery. For this reason, deterioration due to electrode oxidation has a great influence on the quantum battery. For this reason, it is possible to prevent the electrode from being oxidized and to realize a long-life quantum cell by forming the electrode with a metal having passive characteristics and limiting the deterioration of the electrode to partial surface oxidation. .
  • the second electrode 24 is a laminate through the p-type metal oxide semiconductor layer 23, and the problem from the viewpoint of adhesion in the first electrode 21 is small. Is also an important issue. For this reason, it is an effective means for extending the lifetime of the quantum battery that the second electrode 24 is also made of a metal material having passive characteristics.
  • the quantum battery having the above-described configuration can obtain only an output voltage of about 1.2 to 1.5 V in a single-layer cell. However, by connecting at least two or more quantum battery cells in series, an organic EL element can be obtained. An output voltage of 2.5 V or more necessary for light emission can be obtained.
  • a bipolar quantum cell 60 shown in FIG. 8 includes a first electrode 61, a first charge layer 62, a first p-type metal oxide semiconductor layer 63, a second electrode 64, a second charge layer 65, and a second p-type metal oxide semiconductor.
  • the layer 66 and the third electrode 67 are stacked in this order.
  • the first electrode 61, the second electrode 64, and the third electrode 67 have the same configuration as the first electrode 21 and the second electrode 24 in the quantum battery 20 shown in FIG. Can do.
  • the 1st charge layer 62 and the 2nd charge layer 65 can be set as the structure similar to the charge layer 22 in the quantum battery 20 shown in the above-mentioned FIG.
  • the first p-type metal oxide semiconductor layer 63 and the second p-type metal oxide semiconductor layer 66 can have the same configuration as the p-type metal oxide semiconductor layer 23 in the quantum battery 20 shown in FIG. .
  • the bipolar quantum battery 60 has a configuration in which two quantum batteries 20 shown in FIG. 2 are stacked while sharing one electrode. That is, the second electrode 64 of the bipolar quantum cell 60 shown in FIG. 8 is sandwiched between the first p-type metal oxide semiconductor layer 63 and the second charge layer 65, so that one is a negative electrode surface and the other is a positive electrode surface. It becomes a functioning bipolar electrode.
  • the bipolar quantum battery 60 having the configuration shown in FIG. 8 has the same function as when two cells of the quantum battery 20 shown in FIG. 2 are connected in series. For this reason, the cell of the single-layer quantum battery 20 having an output voltage of about 1.2 to 1.5 V is used as the bipolar quantum battery 60, so that the organic EL element 13 emits light with one quantum battery cell. Therefore, it is possible to secure an output voltage necessary for this.
  • the third electrode 67 is also formed as a bipolar electrode by further stacking a charge layer, a p-type metal oxide semiconductor layer, and an electrode on the third electrode 67.
  • a higher output quantum battery cell can be configured.
  • a quantum battery cell having a configuration in which three or more charging layers are stacked may be formed according to a required output.
  • Power supply method As a power supply method to the drive power supply 11 applied to the organic EL device 10, wireless power supply of a capacitive coupling type, an electromagnetic induction type, an electric field / magnetic field resonance type, a radio wave reception type, or the like can be used.
  • a power feeding configuration connected to the above-described quantum battery may be provided.
  • an organic EL device with high flexibility can be configured. Furthermore, by adopting a configuration in which the cells of the quantum battery used for the driving power source are connected in series or a bipolar structure, the output voltage from the driving power source can be increased to such an extent that the organic EL element can emit light. Therefore, a highly flexible organic EL device can be realized.
  • a flexible lithium ion secondary battery has an exothermic temperature of 45 ° C. or higher.
  • the exothermic temperature of this lithium ion secondary battery is higher than an appropriate temperature range in which the organic EL element emits light. For this reason, in order to achieve thinning in the organic EL device, when the organic EL element and the lithium ion secondary battery are stacked close to each other, the reduction in the luminous efficiency of the organic EL element, the adverse effect on the life, Performance degradation such as display quality degradation occurs. Therefore, when a lithium ion secondary battery is used for the organic EL device, a design such as increasing the distance between the organic EL element and the drive power supply is required, which causes a reduction in thickness and flexibility.
  • the heat generation temperature is about 20 ° C.
  • the heat generation temperature of the quantum battery of about 20 ° C. is a suitable temperature range in which the organic EL element has good light emission efficiency.
  • the temperature of the organic EL element is led to a suitable temperature range where the luminous efficiency is good, and the temperature of the organic EL element is set within a temperature range where the luminous efficiency is good. It can be stabilized. Therefore, by disposing the organic EL element so as to be stacked close to the quantum battery, the light emission efficiency of the organic EL element can be improved, and the performance of the organic EL device can be improved.
  • FIG. 9 shows a schematic configuration diagram (cross-sectional view) of an organic electroluminescence (organic EL) device according to the second embodiment of the present invention.
  • An organic EL device 70 shown in FIG. 9 has a configuration in which an organic EL element 72 is stacked on a drive power supply 71 and the whole is sealed with a sealing material 73.
  • the organic EL device 70 has an arrangement in which the organic EL element 72 and the drive power supply 71 are stacked close to each other by directly stacking the organic EL element 72 on the drive power supply 71.
  • the organic EL device 70 has a configuration in which a drive power supply 71 is stacked on the non-light emitting surface side of the organic EL element 72 and emits light from a surface (upper surface) opposite to the side adjacent to the drive power supply 71 of the organic EL element 72. It has become.
  • the organic EL device 70 may include other configurations necessary for realizing this device, such as a drive circuit (not shown) for driving and controlling the organic EL element 72.
  • the drive power supply 71 can apply the same configuration as that of the organic EL device 10 described in the first embodiment.
  • the various quantum battery configurations described in the first embodiment can be used as appropriate.
  • the organic EL element 72 can be constituted by a light-emitting element composed of an organic electroluminescence element (OLED) having a sheet-like flexibility that has been conventionally proposed.
  • OLED organic electroluminescence element
  • As the sealing material 73 a conventionally known sealing material having flexibility can be used. Further, the sealing material 73 itself may contain a material having gas barrier properties, and a film having gas barrier properties may be formed inside the sealing material 73.
  • the drive power supply 71 and the organic EL element 72 are electrically connected.
  • the organic EL element 72 and the drive power supply 71 are laminated, and the drive power supply 71 and the organic EL element 72 are electrically connected.
  • the element 72 can be driven to emit light.
  • the drive power supply 71 and the organic EL element 72 are both sheet-like and have flexibility, the organic EL device 70 having flexibility can be realized. Further, it is possible to emit light even when the organic EL device 70 is bent.
  • the organic EL device of the second embodiment has the same effect as that of the first embodiment. Further, the organic EL element and the driving power source are stacked, so that the thickness can be further reduced. In addition, by directly stacking the organic EL element and the driving power source, heat from the quantum battery constituting the driving power source is more easily transmitted to the organic EL element. For this reason, the effect which makes the luminous efficiency of the organic EL element favorable by the heat_generation

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

This organic electroluminescent device is configured by being provided with an organic electroluminescent element having a light emitting surface as one surface, and a drive power supply that is provided on the other surface of the organic electroluminescent element, said drive power supply including a flexible quantum cell.

Description

有機エレクトロルミネセンスデバイスOrganic electroluminescence device
 本発明は、有機エレクトロルミネセンス素子と駆動電源とを備える有機エレクトロルミネセンスデバイスに係わる。 The present invention relates to an organic electroluminescence device including an organic electroluminescence element and a driving power source.
 有機エレクトロルミネセンス(EL)素子等を発光素子に用いた画像表示装置(ディスプレイ)等において、フレキシブル化やモバイル用途でのケーブルレス化が求められている。
 画像表示装置等のフレキシブル化やケーブルレス化に伴い、パワーサプライである駆動電源のフレキシブル化も必要になっている。
In an image display device (display) using an organic electroluminescence (EL) element or the like as a light emitting element, flexibility and cable-less use for mobile applications are required.
As image display devices and the like become flexible and cable-less, a drive power supply that is a power supply needs to be flexible.
 現在、二次電池の主流であるリチウムイオン電池では、高容量化とフレキシブル性の両方に課題がある。一方、これらの課題を解決する電池として、繰り返し充放電できる量子電池が提案されている(例えば、特許文献1参照)。 Currently, lithium ion batteries, which are the mainstream of secondary batteries, have problems in both high capacity and flexibility. On the other hand, a quantum battery that can be repeatedly charged and discharged has been proposed as a battery that solves these problems (see, for example, Patent Document 1).
国際公開第2013/065093号International Publication No. 2013/065093
 しかしながら、有機エレクトロルミネッセンス素子と二次電池とを組み合わせによる、フレキシブル性を有する有機エレクトロルミネッセンスデバイスは実現されていない。
 上述した問題の解決のため、本発明においては、フレキシブル性を有する有機エレクトロルミネッセンスデバイスを実現する。
However, an organic electroluminescence device having flexibility by combining an organic electroluminescence element and a secondary battery has not been realized.
In order to solve the above-described problem, in the present invention, an organic electroluminescence device having flexibility is realized.
 本発明の有機エレクトロルミネセンスデバイスは、一方の面に発光面を有する有機エレクトロルミネッセンス素子と、有機エレクトロルミネッセンス素子の他方の面に設けられた駆動電源とを備え、駆動電源がフレキシブル性を有する量子電池を含む。 An organic electroluminescent device of the present invention includes an organic electroluminescent element having a light emitting surface on one surface and a driving power source provided on the other surface of the organic electroluminescent element, and the driving power source is a quantum device having flexibility. Includes batteries.
 本発明によれば、フレキシブル性を有する有機エレクトロルミネセンスデバイスを提供することができる。 According to the present invention, an organic electroluminescent device having flexibility can be provided.
第1実施形態の有機ELデバイスの概略構成を示す図である。It is a figure which shows schematic structure of the organic EL device of 1st Embodiment. 量子電池の概略構成(断面構造)を示す図である。It is a figure which shows schematic structure (cross-section structure) of a quantum battery. 量子電池の充電層の構成を示す図である。It is a figure which shows the structure of the charge layer of a quantum battery. 光励起構造変化により形成された新しいエネルギー準位を説明するためのバンド図である。It is a band figure for demonstrating the new energy level formed by the photoexcitation structure change. 光励起構造変化により形成された新しいエネルギー準位を説明するためのバンド図である。It is a band figure for demonstrating the new energy level formed by the photoexcitation structure change. 量子電池の充放電機能を説明するバンド図である。It is a band figure explaining the charging / discharging function of a quantum battery. 量子電池の充放電機能を説明するバンド図である。It is a band figure explaining the charging / discharging function of a quantum battery. バイポーラ型の量子電池の構成を示す図である。It is a figure which shows the structure of a bipolar type quantum battery. 第2実施形態の有機ELデバイスの概略構成を示す図である。It is a figure which shows schematic structure of the organic EL device of 2nd Embodiment.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.有機エレクトロルミネセンスデバイスの実施形態(第1実施形態)
2.有機エレクトロルミネセンスデバイスの実施形態(第2実施形態)
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment of organic electroluminescence device (first embodiment)
2. Embodiment of organic electroluminescence device (second embodiment)
〈1.有機エレクトロルミネセンスデバイスの実施形態(第1実施形態)〉
 以下本発明の有機エレクトロルミネセンス(有機EL)デバイスの具体的な実施の形態について説明する。
[有機ELデバイスの構成]
 図1に、本実施形態の有機ELデバイスの概略構成図を示す。
 図1に示す有機ELデバイス10は、駆動電源11が封止材12によって封止され、有機EL素子13が封止材14によって封止され、封止材12と封止材14とが接着層15によって接着されて構成されている。有機EL素子13と駆動電源11とは、接着層15と封止材12,14とを介して、近接して積層された配置を有している。また、有機ELデバイス10は、有機EL素子13の駆動電源11と近接する側と反対側の面(上面)から発光する構成である。
 なお、有機ELデバイス10は、有機EL素子13を駆動、制御するための図示しない駆動回路等、有機ELデバイスの実現に必要なその他の構成を備えていてもよい。
<1. Embodiment of Organic Electroluminescence Device (First Embodiment)>
Hereinafter, specific embodiments of the organic electroluminescence (organic EL) device of the present invention will be described.
[Configuration of organic EL device]
In FIG. 1, the schematic block diagram of the organic EL device of this embodiment is shown.
In the organic EL device 10 shown in FIG. 1, the drive power supply 11 is sealed with a sealing material 12, the organic EL element 13 is sealed with a sealing material 14, and the sealing material 12 and the sealing material 14 are bonded to each other. 15 is adhered and configured. The organic EL element 13 and the drive power supply 11 have an arrangement in which the organic EL element 13 and the drive power supply 11 are stacked close to each other via the adhesive layer 15 and the sealing materials 12 and 14. The organic EL device 10 emits light from the surface (upper surface) opposite to the side close to the drive power supply 11 of the organic EL element 13.
The organic EL device 10 may include other configurations necessary for realizing the organic EL device, such as a drive circuit (not shown) for driving and controlling the organic EL element 13.
 駆動電源11は、フレキシブル性を有する薄型でシート状(平面状)の量子電池により構成することができる。この有機ELデバイス10に適用可能な駆動電源11、及び、駆動電源11を構成する量子電池の詳細については後述する。
 有機EL素子13は、従来から提案されている、シート状(平面状)のフレキシブル性を有する有機エレクトロルミネセンス素子(有機EL素子、OLED)から成る発光素子によって構成することができる。
 封止材12及び封止材14には、フレキシブル性を有する、従来公知の封止用の材料を使用することができる。また、封止材12,14自体がガスバリア性を有する材料を含有してもよく、封止材12,14の内側にガスバリア性を有する膜が形成されていてもよい。
 駆動電源11と有機EL素子13とは、図示しないが、電気的に接続されている。
The drive power supply 11 can be composed of a thin, sheet-like (planar) quantum battery having flexibility. The details of the drive power supply 11 applicable to the organic EL device 10 and the quantum battery constituting the drive power supply 11 will be described later.
The organic EL element 13 can be constituted by a light emitting element composed of a conventionally proposed organic electroluminescent element (organic EL element, OLED) having sheet-like (planar) flexibility.
As the sealing material 12 and the sealing material 14, a conventionally known sealing material having flexibility can be used. Moreover, the sealing materials 12 and 14 themselves may contain a material having gas barrier properties, and a film having gas barrier properties may be formed inside the sealing materials 12 and 14.
Although not shown, the drive power supply 11 and the organic EL element 13 are electrically connected.
 フレキシブル性の基準は、屈曲半径Rが100mm以下、好ましくは、屈曲半径Rが30mm~3mmである。
 また、有機ELデバイス10は、厚さが3mm以下であることが好ましい。
 フレキシブル性を有する量子電池では、カード規格への実装限界を考慮すると厚さを2.5mm以下とすることが好ましく、さらに0.5mm以下とすることが好ましい。
The standard of flexibility is that the bending radius R is 100 mm or less, preferably the bending radius R is 30 mm to 3 mm.
The organic EL device 10 preferably has a thickness of 3 mm or less.
In the quantum battery having flexibility, the thickness is preferably 2.5 mm or less, more preferably 0.5 mm or less in consideration of the mounting limit to the card standard.
 さらに、必要に応じて、例えば、有機ELデバイス10の外部に、駆動電源11の起電力を昇圧して有機EL素子13に供給する、昇圧回路を設けることができる。
 なお、昇圧回路をフレキシブル基板と薄膜の回路で構成することができれば、有機ELデバイス10の内部に設けることも可能である。
Further, for example, a booster circuit that boosts the electromotive force of the drive power supply 11 and supplies it to the organic EL element 13 can be provided outside the organic EL device 10 as necessary.
If the booster circuit can be composed of a flexible substrate and a thin film circuit, it can be provided inside the organic EL device 10.
 本実施形態の有機ELデバイス10は、駆動電源11と有機EL素子13のそれぞれを封止する封止材12,14が接着され、かつ、駆動電源11と有機EL素子13とが電気的に接続されているので、駆動電源11によって有機EL素子13を駆動して、発光させることができる。
 また、駆動電源11と有機EL素子13が、いずれもシート状でフレキシブル性を有しているため、フレキシブル性を有する有機ELデバイス10を実現することができる。そして、有機ELデバイス10を曲げた状態でも発光させることが可能になる。
In the organic EL device 10 of the present embodiment, the sealing materials 12 and 14 for sealing the drive power supply 11 and the organic EL element 13 are bonded, and the drive power supply 11 and the organic EL element 13 are electrically connected. Therefore, the organic EL element 13 can be driven by the drive power supply 11 to emit light.
Moreover, since the drive power supply 11 and the organic EL element 13 are both sheet-like and flexible, the organic EL device 10 having flexibility can be realized. Further, it is possible to emit light even when the organic EL device 10 is bent.
[有機EL素子]
 有機ELデバイス10に適用される有機EL素子13は、基板に透明可撓性フィルムを用いた、フレキシブル性を有する構成が提案されている。このフレキシブル性を有する有機エレクトロルミネセンス素子を用いることにより、フレキシブル性を有する有機ELデバイス10を実現することができる。
[Organic EL device]
The organic EL element 13 applied to the organic EL device 10 has been proposed to have a flexible structure using a transparent flexible film as a substrate. By using this organic electroluminescent element having flexibility, the organic EL device 10 having flexibility can be realized.
 有機ELデバイス10に適用される有機EL素子13の好ましい層構成の具体例を以下に示す。
(i)基材フィルム/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(ii)基材フィルム/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(iii)基材フィルム/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/正孔阻止層/陰極
(iv)基材フィルム/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/正孔阻止層/陰極
(v)基材フィルム/陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/電子輸送層/電子注入層/正孔阻止層/陰極
 基材フィルムには、フレキシブル性を有する樹脂フィルムを使用する。
 それぞれの層構成の各層の材料には、従来公知の材料を使用することができる。
 各層構成の陰極の上には、保護フィルムを形成することが好ましい。
 また、基材フィルムや保護フィルムの内面側に、ガスバリア膜を形成することが好ましい。
A specific example of a preferable layer configuration of the organic EL element 13 applied to the organic EL device 10 is shown below.
(I) Base film / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Base film / anode / hole injection layer / hole transport layer / light emitting layer / electron Transport layer / electron injection layer / cathode (iii) substrate film / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / hole blocking layer / cathode (iv) substrate film / anode / positive Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / hole blocking layer / cathode (v) substrate film / anode / hole injection layer / hole transport layer / electron blocking layer / light emission Layer / electron transport layer / electron injection layer / hole blocking layer / cathode For the base film, a resin film having flexibility is used.
A conventionally well-known material can be used for the material of each layer of each layer structure.
A protective film is preferably formed on the cathode of each layer structure.
Moreover, it is preferable to form a gas barrier film | membrane on the inner surface side of a base film or a protective film.
 有機ELデバイス10を、有機EL素子13を発光素子として用いる照明機器に適用する場合には、フレキシブル性を有する量子電池を発光素子の片面に配置することが可能である。この構成の照明機器を作製する際には、例えば、有機EL素子13と量子電池とを貼り合わせにより接合する、或いは、発光素子と量子電池とを積層して一体化させる。 When the organic EL device 10 is applied to a lighting device that uses the organic EL element 13 as a light emitting element, it is possible to dispose a flexible quantum battery on one side of the light emitting element. When manufacturing the illumination device having this configuration, for example, the organic EL element 13 and the quantum battery are bonded and bonded, or the light emitting element and the quantum battery are stacked and integrated.
[駆動電源]
 次に、上述の有機ELデバイス10に適用される駆動電源11の構成について説明する。
 駆動電源11は、有機EL素子13の非発光面に配置されている。また、駆動電源11は、単独の量子電池、又は、複数の量子電池から構成することができる。
 例えば、有機EL素子13の発光に必要な出力電圧を得るために、複数の量子電池を直列接続した構成としてもよい。
 一般的に、有機EL素子の駆動には少なくとも2.5V以上の出力電圧が必要とされている。このため、単独の量子電池がこの出力電圧を有していない場合には、複数の量子電池を直列接続し、駆動電源11に要求される出力電圧を発生させることができる。
[Drive power supply]
Next, the configuration of the drive power supply 11 applied to the organic EL device 10 described above will be described.
The drive power supply 11 is disposed on the non-light emitting surface of the organic EL element 13. The drive power supply 11 can be composed of a single quantum battery or a plurality of quantum batteries.
For example, in order to obtain an output voltage necessary for light emission of the organic EL element 13, a configuration in which a plurality of quantum cells are connected in series may be employed.
In general, an output voltage of at least 2.5 V or more is required for driving an organic EL element. For this reason, when a single quantum cell does not have this output voltage, a plurality of quantum cells can be connected in series to generate an output voltage required for the drive power supply 11.
 複数の量子電池を接続する場合には、量子電池を有機ELデバイス10の発光面と並行な平面に並べて単層で配置するか、或いは、複数の量子電池を有機ELデバイス10の発光面と垂直な方向に積層して配置する。そして、配置されたそれぞれの量子電池の電極を直列に接続して駆動電源11から引出すような回路を形成する。
 これにより、例えば、単独で1.2~1.5V程度の出力電圧しか有さない量子電池を用いても、駆動電源11から有機EL素子13の発光に必要な2.5V以上を出力することができる。さらに、直列接続する量子電池の数を多くすることで、6V以上の出力電圧を得ることもできる。
When a plurality of quantum cells are connected, the quantum cells are arranged in a single layer in a plane parallel to the light emitting surface of the organic EL device 10, or the plurality of quantum cells are perpendicular to the light emitting surface of the organic EL device 10. Laminate in any direction. And the circuit which draws out from the drive power supply 11 by connecting the electrode of each arrange | positioned quantum battery in series is formed.
Thus, for example, even when a quantum battery having an output voltage of about 1.2 to 1.5 V alone is used, 2.5 V or more necessary for light emission of the organic EL element 13 is output from the drive power supply 11. Can do. Furthermore, an output voltage of 6 V or more can be obtained by increasing the number of quantum cells connected in series.
 駆動電源11では、量子電池を積層させた方が、単層の場合よりもより小さい主面積で高容量化できる。このため、量子電池を複数積層させた構成とすることが好ましい。複数の量子電池を積層した場合にも、後述する構成の量子電池を用いることにより、有機ELデバイス10に必要とされるフレキシブル性を満たすことが可能である。 In the driving power source 11, the stacked capacity of the quantum batteries can be increased in capacity with a smaller main area than in the case of a single layer. For this reason, it is preferable to have a configuration in which a plurality of quantum cells are stacked. Even when a plurality of quantum cells are stacked, it is possible to satisfy the flexibility required for the organic EL device 10 by using a quantum cell having a configuration described later.
 また、一般的に用いられているリチウムイオン二次電池は発熱性が高く、複数積層させた場合、特に3層以上積層させた場合には、中心部に積層された電池の放熱性が問題となる。このため、リチウムイオン二次電池を用いた積層構造は実現が難しい。
 後述する量子電池では、発熱性が低く、3層以上積層された場合にも発熱による問題が生じにくい。このため、有機ELデバイス10で要求される容量、出力電圧等の駆動電源11の特性を満たすために必要となる量の量子電池を積層させることも可能となる。
In addition, generally used lithium ion secondary batteries have high heat generation, and when a plurality of layers are stacked, particularly when three or more layers are stacked, the heat dissipation of the batteries stacked in the center is a problem. Become. For this reason, it is difficult to realize a laminated structure using a lithium ion secondary battery.
In the quantum battery described later, the heat generation is low, and even when three or more layers are stacked, a problem due to heat generation hardly occurs. For this reason, it becomes possible to stack | stack the quantum battery of the quantity required in order to satisfy | fill the characteristics of the drive power supply 11, such as a capacity | capacitance required by the organic EL device 10, and an output voltage.
[量子電池]
 次に、駆動電源11に適用される量子電池の構成について説明する。
 図2に、量子電池20の概略構成(断面構造)を示す。この量子電池20は、充電層22に光励起構造変化技術を採用した充電原理に基づく二次電池であり、充放電の繰り返しが可能である。
[Quantum battery]
Next, the configuration of the quantum battery applied to the drive power supply 11 will be described.
FIG. 2 shows a schematic configuration (cross-sectional structure) of the quantum battery 20. The quantum battery 20 is a secondary battery based on a charging principle in which a photoexcitation structure change technique is adopted for the charging layer 22 and can be repeatedly charged and discharged.
 図2に示す量子電池20は、不動態特性を有する金属材料を使用した導電性の第1電極21、エネルギーを充電する充電層22、p型金属酸化物半導体層23、及び、第1電極21と同じく不動態特性を有する金属材料を使用した導電性の第2電極24が積層された構成である。 A quantum battery 20 shown in FIG. 2 includes a conductive first electrode 21 using a metal material having passive characteristics, a charge layer 22 for charging energy, a p-type metal oxide semiconductor layer 23, and a first electrode 21. The conductive second electrode 24 using a metal material having passive characteristics is laminated.
(電極)
 第1電極21及び第2電極24は、機能的には導電膜が形成されていればよく、導電性のよい金属、例えば銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能である。なかでも銅は安価であり電極の材料としては適している。第1電極21及び第2電極24は、電池製造時の熱工程や経年変化によって生じる電極の酸化による劣化を防止するために、不動態特性を有する金属層を設けている。
(electrode)
The first electrode 21 and the second electrode 24 may be functionally provided with a conductive film, and may be made of a highly conductive metal such as copper, copper alloy, nickel, aluminum, silver, gold, zinc, or tin. It is possible to use. Among these, copper is inexpensive and suitable as an electrode material. The first electrode 21 and the second electrode 24 are provided with a metal layer having a passive characteristic in order to prevent deterioration due to oxidation of the electrode caused by a thermal process at the time of manufacturing a battery or aging.
 不動態とは、金属の電気化学列が卑(活性)な位置にあるにも関わらず、極めて遅い速度で腐食する金属の状態であり、金属材料の耐食性の根底となる。わずかなアノード電流によって大きく分極する金属が、電気化学的にかなり貴(非活性)な金属の挙動に近づくことで不動態化される。この場合、腐食生成物としての酸化皮膜が保護性を有するようになり、耐食性が付与されことになる。 Passivity is a state of a metal that corrodes at an extremely slow rate despite the fact that the metal electrochemical column is in a base (active) position, and is the basis of the corrosion resistance of the metal material. Metals that are highly polarized by a small anodic current are passivated by approaching the behavior of electrochemically fairly noble (inactive) metals. In this case, the oxide film as the corrosion product comes to have a protective property and is given corrosion resistance.
 腐食領域は、酸化反応が起きるように電極に電位を正方向に印加するアノード分極曲線で調べることができる。電位が低い場合は電位と共に電流が増加し、ある電位を越えると電流が急激に減少して一定の電位域で持続し、その後再び上昇する。初めの電流が上昇する電位域が活性態域、電流が低い値に保持される電位域が不動態域、そして、再び増加する電位域が過不動態域と呼ばれている。この不動態域で保護性に富む、数ナノメートルの不動態酸化皮膜が生成される。 The corrosion region can be examined by an anodic polarization curve in which a potential is applied to the electrode in the positive direction so that an oxidation reaction occurs. When the potential is low, the current increases with the potential, and when exceeding a certain potential, the current rapidly decreases and continues in a certain potential range, and then rises again. The potential region where the initial current rises is called the active state region, the potential region where the current is kept at a low value is called the passive region, and the potential region where the current increases again is called the overpassive region. In this passive region, a passive oxide film with a thickness of several nanometers, which is rich in protection, is produced.
 不動態域では、電流が減少する、即ち導電性が阻害されることになるが、通常、電極は大気との接触を防ぐように保護されており、電極の酸化が生ずるのは局所的な場合である。従って、酸化が局所的に抑えられて電極の劣化が防止され、繰り返し充放電しても長期間使用できる量子電池が可能となる。
 具体的な不動態特性を有する金属材料としては、クロム、ニッケル、チタン、モリブデン等があり、或いはこれらクロム、ニッケル、チタン、モリブデン等が少なくとも1種含まれた合金であってもよい。
In the passive zone, the current is reduced, i.e. the conductivity is disturbed, but usually the electrode is protected to prevent contact with the atmosphere, and the oxidation of the electrode occurs locally It is. Therefore, the oxidation is locally suppressed, the electrode is prevented from being deteriorated, and a quantum battery that can be used for a long time even after repeated charge and discharge is possible.
Specific examples of the metal material having passive characteristics include chromium, nickel, titanium, and molybdenum, or an alloy containing at least one kind of chromium, nickel, titanium, and molybdenum.
(充電層)
 次に、上述の量子電池20の充電層22の構成について説明する。図3に、量子電池の充電層22の構成を示す。
 図3に示す充電層22は、絶縁性被膜26で被覆されたn型金属酸化物半導体25が充填された構成である。この充電層22は、n型金属酸化物半導体25が紫外線照射されて光励起構造変化を生じさせることにより、エネルギーを蓄えることができる機能を有している。
(Charging layer)
Next, the configuration of the charging layer 22 of the above-described quantum battery 20 will be described. FIG. 3 shows the configuration of the charge layer 22 of the quantum battery.
The charging layer 22 shown in FIG. 3 has a configuration filled with an n-type metal oxide semiconductor 25 covered with an insulating coating 26. The charge layer 22 has a function of storing energy when the n-type metal oxide semiconductor 25 is irradiated with ultraviolet rays to cause a photoexcitation structure change.
 充電層22に使用されるn型金属酸化物半導体25の材料としては、二酸化チタン、酸化第二スズ、酸化亜鉛等がある。これらの金属酸化物は、金属の脂肪族酸塩を分解することにより製造が可能である。金属酸化物の製造には、酸化性雰囲気下での燃焼によって金属酸化物に変化する金属の脂肪族酸塩が使用される。 Examples of the material of the n-type metal oxide semiconductor 25 used for the charging layer 22 include titanium dioxide, stannic oxide, and zinc oxide. These metal oxides can be produced by decomposing metal aliphatic acid salts. For the production of metal oxides, metal aliphatic acid salts that are converted to metal oxides by combustion in an oxidizing atmosphere are used.
 絶縁性被膜26には、シリコーンの他、無機絶縁物として鉱油、酸化マグネシウム(MgO)、二酸化ケイ素(SiO)を使用してもよく、絶縁性樹脂としては、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂、フェノール樹脂、アミノ樹脂などの熱硬化性樹脂でもよい。 In addition to silicone, mineral oil, magnesium oxide (MgO), silicon dioxide (SiO 2 ) may be used for the insulating coating 26 as an inorganic insulator, and thermoplastic resins such as polyethylene and polypropylene are used as the insulating resin. Further, a thermosetting resin such as a phenol resin or an amino resin may be used.
(エネルギー準位)
 充電層22では、紫外線照射されたn型金属酸化物半導体25が光励起構造変化によって新たなエネルギー準位を形成している。光励起構造変化とは、光の照射により励起された物質の格子間距離が変化する現象であり、非晶質の金属酸化物であるn型金属酸化物半導体25には、この光励起構造変化を生ずる性質を有した物質を用いる。
 以下、光励起構造変化による充電層22の新たなエネルギー準位の形成状態について、n型金属酸化物半導体25を二酸化チタン、絶縁皮膜の材料をシリコーンとした例でのバンド図を用いて説明する。
(Energy level)
In the charging layer 22, the n-type metal oxide semiconductor 25 irradiated with ultraviolet rays forms a new energy level due to the change of the photoexcitation structure. The photoexcited structure change is a phenomenon in which the interstitial distance of a substance excited by light irradiation changes, and this photoexcited structure change occurs in the n-type metal oxide semiconductor 25 which is an amorphous metal oxide. Use materials with properties.
Hereinafter, the formation state of the new energy level of the charge layer 22 due to the change in the photoexcitation structure will be described using a band diagram in an example in which the n-type metal oxide semiconductor 25 is titanium dioxide and the material of the insulating film is silicone.
 図4及び図5は、第1電極21としての金属の銅30と、n型金属酸化物半導体25としての二酸化チタン32との間に、絶縁性被膜26としてのシリコーン34が存在する構成において、光励起構造変化により新たなエネルギー準位44が形成された状態を説明するバンド図である。このバンド図では、二酸化チタン32の光励起構造変化現象により、n型金属酸化物半導体25のバンドギャップ内に、新たなエネルギー準位44が形成される。また、伝導帯36には、シリコーン34による絶縁層により障壁が存在する。 4 and FIG. 5, in a configuration in which a silicone 34 as an insulating coating 26 exists between a copper metal 30 as the first electrode 21 and a titanium dioxide 32 as the n-type metal oxide semiconductor 25. It is a band figure explaining the state in which the new energy level 44 was formed by the photoexcitation structure change. In this band diagram, a new energy level 44 is formed in the band gap of the n-type metal oxide semiconductor 25 due to the photoexcited structure change phenomenon of the titanium dioxide 32. The conduction band 36 has a barrier due to an insulating layer made of silicone 34.
 図4は、二酸化チタン32と銅30の間にシリコーン34による絶縁層を有する構成に、紫外線38が照射された状態を示している。絶縁被膜された二酸化チタン32に紫外線38が照射されると、二酸化チタン32の価電子帯40にある電子42が、伝導帯36に励起される。銅30との界面付近では、この電子42がある確率でシリコーン34の絶縁層を通り抜けて一時的に銅30に移動する。 FIG. 4 shows a state in which an ultraviolet ray 38 is irradiated on a structure having an insulating layer made of silicone 34 between titanium dioxide 32 and copper 30. When the ultraviolet rays 38 are irradiated to the titanium dioxide 32 coated with an insulating film, the electrons 42 in the valence band 40 of the titanium dioxide 32 are excited to the conduction band 36. In the vicinity of the interface with the copper 30, the electrons 42 pass through the insulating layer of the silicone 34 with a certain probability and temporarily move to the copper 30.
 二酸化チタン32の光励起構造変化は、電子42の不在中に起こり、価電子帯40の電子42が抜けた部位の原子間距離が変化する。このときのエネルギー準位44は、フェルミレベル46内のバンドギャップに移動している。これによりフェルミレベル46内のバンドギャップに、エネルギー準位44が形成される。
 二酸化チタン32の光励起構造変化によるエネルギー準位44の形成は、紫外線38が照射されている間は連続して発生する。
The photoexcited structural change of the titanium dioxide 32 occurs in the absence of the electrons 42, and the interatomic distance of the site from which the electrons 42 of the valence band 40 are removed changes. At this time, the energy level 44 has moved to the band gap in the Fermi level 46. As a result, an energy level 44 is formed in the band gap in the Fermi level 46.
Formation of the energy level 44 due to the photoexcitation structure change of the titanium dioxide 32 occurs continuously while the ultraviolet ray 38 is irradiated.
 図5は、紫外線38が照射されている間に上述した現象が繰り返し起こり、バンドギャップ内に多数のエネルギー準位44が形成された状態である。しかし、これらエネルギー準位44に捕らえられるべき電子42は紫外線38により励起されて銅30に移動している。こうして生じた電子不在のバンドギャップ内のエネルギー準位44は、紫外線照射を終えた後も残存する。 FIG. 5 shows a state in which the above-described phenomenon occurs repeatedly while the ultraviolet ray 38 is irradiated, and a large number of energy levels 44 are formed in the band gap. However, the electrons 42 to be trapped in these energy levels 44 are excited by the ultraviolet rays 38 and moved to the copper 30. The energy level 44 in the band gap in the absence of electrons thus generated remains even after the ultraviolet irradiation is finished.
 絶縁層としてのシリコーン34の役割は銅30と二酸化チタン32との間に障壁を作り、励起された電子42をトンネル効果により通過させ、電子不在のバンドギャップ内のエネルギー準位44を形成することである。銅30に移動した電子42は、シリコーン34周辺の帯電電位により銅30に留まる。 The role of the silicone 34 as an insulating layer is to create a barrier between the copper 30 and the titanium dioxide 32 and allow the excited electrons 42 to pass through the tunnel effect to form an energy level 44 in the band gap in the absence of electrons. It is. The electrons 42 that have moved to the copper 30 remain on the copper 30 due to the charging potential around the silicone 34.
 量子電池20では、さらに充電層22に重ねてp型金属酸化物半導体層23を積層することでブロッキング層を形成し、その上に第2電極24を設けている。このような構造による二次電池の原理については、図6及び図7に示すバンド図で説明する。 In the quantum battery 20, the p-type metal oxide semiconductor layer 23 is further stacked on the charging layer 22 to form a blocking layer, and the second electrode 24 is provided thereon. The principle of the secondary battery having such a structure will be described with reference to band diagrams shown in FIGS.
 以下の説明では、銅30からなる第1電極21と銅48からなる第2電極24とに挟まれた、シリコーン34と二酸化チタン32とからなる充電層22、及び、酸化ニッケル50からなるp型金属酸化物半導体層23を備える構成の量子電池20を例に説明する。 In the following description, the charging layer 22 made of silicone 34 and titanium dioxide 32 and the p-type made of nickel oxide 50 sandwiched between the first electrode 21 made of copper 30 and the second electrode 24 made of copper 48. The quantum battery 20 having a configuration including the metal oxide semiconductor layer 23 will be described as an example.
 図6は、第2電極24を構成する銅48にマイナス電圧を印加し、第1電極21を構成する銅30を接地して0Vとした場合のバンド図である。
 バンドギャップ内にエネルギー準位44を有する二酸化チタン32に、バイアス電界(-)を印加すると、銅30の電子42が、シリコーン34による障壁を通過(トンネリング)して二酸化チタン32に移動する。この移動した電子42は、酸化ニッケル50により銅48への更なる移動がブロックされるため、二酸化チタン32のバンドギャップ間に存在するエネルギー準位44に捕獲される。つまり、二酸化チタン32からなる充電層22にエネルギーが蓄えられ、充電層22に電子42が充満した充電状態になる。この状態は、バイアス電界の印加を解除しても維持されるから、この構成の量子電池が二次電池としての機能を有することになる。
FIG. 6 is a band diagram when a negative voltage is applied to the copper 48 constituting the second electrode 24 and the copper 30 constituting the first electrode 21 is grounded to 0V.
When a bias electric field (−) is applied to the titanium dioxide 32 having the energy level 44 in the band gap, the electrons 42 of the copper 30 pass through the barrier due to the silicone 34 (tunneling) and move to the titanium dioxide 32. The moved electrons 42 are captured by the energy level 44 existing between the band gaps of the titanium dioxide 32 because the nickel oxide 50 blocks further movement to the copper 48. That is, energy is stored in the charging layer 22 made of titanium dioxide 32, and the charging layer 22 is charged with electrons 42. Since this state is maintained even after the application of the bias electric field is canceled, the quantum battery having this configuration has a function as a secondary battery.
 図7は、負荷(図示せず)を銅30と銅48に接続して、放電する場合のバンド図である。二酸化チタン32のバンドギャップに捕獲されていた電子42は、伝導帯36の自由電子となる。この自由電子は銅30に移動し、負荷に流れる。この現象がエネルギーの出力状態であり、放電状態である。そして、最終的にはバンドギャップ内のエネルギー準位44に電子42がない状態となり、充電層22内のエネルギーが全て使用された状態となる。 FIG. 7 is a band diagram when a load (not shown) is connected to the copper 30 and the copper 48 and discharged. The electrons 42 trapped in the band gap of the titanium dioxide 32 become free electrons in the conduction band 36. The free electrons move to the copper 30 and flow to the load. This phenomenon is an energy output state and a discharge state. Finally, there is no electron 42 at the energy level 44 in the band gap, and all the energy in the charge layer 22 is used.
 以上説明したように、外部から電圧を印加することにより、二酸化チタンのバンドギャップに形成されたエネルギー準位に電子を充満させることができる。そして、電極に負荷を接続することで、電子が放出してエネルギーを取り出すことができる。従って、電池として機能させることができる。また、この現象を繰り返し行うことで、二次電池として使用できる。これが、有機ELデバイス10の駆動電源11を構成する量子電池の基本的な原理である。 As described above, by applying a voltage from the outside, the energy level formed in the band gap of titanium dioxide can be filled with electrons. Then, by connecting a load to the electrode, electrons can be emitted to extract energy. Therefore, it can function as a battery. Moreover, it can be used as a secondary battery by repeating this phenomenon. This is the basic principle of the quantum battery constituting the drive power supply 11 of the organic EL device 10.
 以上、量子電池の基本的な二次電池としての原理を説明したが、原理的に絶縁性被膜26を介してトンネリング効果により電子42が第1電極21に移動して滞留するため、充電層22と第1電極21との密着性が極めて重要となる。このため、電池の製造時の熱工程及び経年変化によって生じる電極の酸化による密着性低下を防止することが重要となる。この様な理由から、電極の酸化による劣化が量子電池に大きな影響を及ぼす。このため、不動態特性を有する金属で電極を形成し、電極の劣化を部分的な表面の酸化にとどめることにより、電極の酸化を防止して長寿命の量子電池を実現することが可能となる。 Although the principle of the quantum battery as a basic secondary battery has been described above, in principle, the electrons 42 move and stay in the first electrode 21 due to the tunneling effect through the insulating coating 26, and thus the charging layer 22. And the first electrode 21 are extremely important. For this reason, it is important to prevent deterioration in adhesion due to oxidation of the electrode caused by a thermal process and aging during the manufacture of the battery. For this reason, deterioration due to electrode oxidation has a great influence on the quantum battery. For this reason, it is possible to prevent the electrode from being oxidized and to realize a long-life quantum cell by forming the electrode with a metal having passive characteristics and limiting the deterioration of the electrode to partial surface oxidation. .
 第2電極24については、p型金属酸化物半導体層23を介しての積層であり、第1電極21における密着性の観点からの問題は小さいが、電極の劣化による影響は第2電極24においても重要な問題である。このため、第2電極24も、不動態特性を有する金属材料で構成することが、量子電池の長寿命化に有効な手段となる。 The second electrode 24 is a laminate through the p-type metal oxide semiconductor layer 23, and the problem from the viewpoint of adhesion in the first electrode 21 is small. Is also an important issue. For this reason, it is an effective means for extending the lifetime of the quantum battery that the second electrode 24 is also made of a metal material having passive characteristics.
 上述の構成の量子電池は、単層のセルでは1.2~1.5V程度の出力電圧しか得られないが、少なくとも2つ以上の量子電池セルを直列に接続することにより、有機EL素子を発光するために必要な2.5V以上の出力電圧を得ることができる。 The quantum battery having the above-described configuration can obtain only an output voltage of about 1.2 to 1.5 V in a single-layer cell. However, by connecting at least two or more quantum battery cells in series, an organic EL element can be obtained. An output voltage of 2.5 V or more necessary for light emission can be obtained.
[量子電池(バイポーラ型)]
 次に、単一セルで、有機EL素子13を発光するために必要な出力電圧を有する量子電池の構成について説明する。
 図8に示すようなバイポーラ型の量子電池を形成することにより、複数の量子電池のセルを直列接続する方法以外でも、有機EL素子13の発光に必要な出力電圧を確保することができる。
[Quantum battery (bipolar type)]
Next, the configuration of a quantum battery having an output voltage necessary for emitting light from the organic EL element 13 in a single cell will be described.
By forming a bipolar quantum battery as shown in FIG. 8, an output voltage necessary for light emission of the organic EL element 13 can be ensured in addition to a method of connecting a plurality of quantum battery cells in series.
 図8に示すバイポーラ型量子電池60は、第1電極61、第1充電層62、第1p型金属酸化物半導体層63、第2電極64、第2充電層65、第2p型金属酸化物半導体層66、及び、第3電極67がこの順に積層された構成である。 A bipolar quantum cell 60 shown in FIG. 8 includes a first electrode 61, a first charge layer 62, a first p-type metal oxide semiconductor layer 63, a second electrode 64, a second charge layer 65, and a second p-type metal oxide semiconductor. The layer 66 and the third electrode 67 are stacked in this order.
 バイポーラ型量子電池60において第1電極61、第2電極64、及び、第3電極67は、上述の図2に示す量子電池20における第1電極21、第2電極24と同様の構成とすることができる。同様に、第1充電層62、及び、第2充電層65は、上述の図2に示す量子電池20における充電層22と同様の構成とすることができる。第1p型金属酸化物半導体層63、及び、第2p型金属酸化物半導体層66は、上述の図2に示す量子電池20におけるp型金属酸化物半導体層23と同様の構成とすることができる。 In the bipolar quantum battery 60, the first electrode 61, the second electrode 64, and the third electrode 67 have the same configuration as the first electrode 21 and the second electrode 24 in the quantum battery 20 shown in FIG. Can do. Similarly, the 1st charge layer 62 and the 2nd charge layer 65 can be set as the structure similar to the charge layer 22 in the quantum battery 20 shown in the above-mentioned FIG. The first p-type metal oxide semiconductor layer 63 and the second p-type metal oxide semiconductor layer 66 can have the same configuration as the p-type metal oxide semiconductor layer 23 in the quantum battery 20 shown in FIG. .
 バイポーラ型量子電池60は、上述の図2に示す量子電池20が、一方の電極を共有して、2つ積層された構成である。つまり、図8に示すバイポーラ型量子電池60の第2電極64が、第1p型金属酸化物半導体層63と第2充電層65とに挟まれることで、一方が負極面、他方が正極面として機能するバイポーラ電極となる。 The bipolar quantum battery 60 has a configuration in which two quantum batteries 20 shown in FIG. 2 are stacked while sharing one electrode. That is, the second electrode 64 of the bipolar quantum cell 60 shown in FIG. 8 is sandwiched between the first p-type metal oxide semiconductor layer 63 and the second charge layer 65, so that one is a negative electrode surface and the other is a positive electrode surface. It becomes a functioning bipolar electrode.
 図8に示す構成のバイポーラ型量子電池60によれば、上述の図2に示す量子電池20の2つセルを直列接続した場合と同様の機能を有する。このため、出力電圧が1.2~1.5V程度である単層の量子電池20のセルを、バイポーラ型量子電池60とすることで、1つの量子電池のセルで有機EL素子13を発光するために必要な出力電圧を確保することができる。 The bipolar quantum battery 60 having the configuration shown in FIG. 8 has the same function as when two cells of the quantum battery 20 shown in FIG. 2 are connected in series. For this reason, the cell of the single-layer quantum battery 20 having an output voltage of about 1.2 to 1.5 V is used as the bipolar quantum battery 60, so that the organic EL element 13 emits light with one quantum battery cell. Therefore, it is possible to secure an output voltage necessary for this.
 また、例えば、図8に示すバイポーラ型量子電池60において、第3電極67上にさらに充電層、p型金属酸化物半導体層、及び、電極を積層することにより、第3電極67をもバイポーラ電極として機能させ、さらに高出力の量子電池セルを構成することもできる。このように、バイポーラ型量子電池60では、必要な出力に応じて例えば充電層が3層以上積層された構成の量子電池セルを形成することもできる。
 駆動電源11に用いる量子電池をバイポーラ型の構造とすることにより、単一セルでより高い出力が得られるだけでなく、電極の省略やパッケージ材の省略等により、量子電池セルの小型化、高密度化が可能となる。
Further, for example, in the bipolar quantum battery 60 shown in FIG. 8, the third electrode 67 is also formed as a bipolar electrode by further stacking a charge layer, a p-type metal oxide semiconductor layer, and an electrode on the third electrode 67. And a higher output quantum battery cell can be configured. As described above, in the bipolar quantum battery 60, for example, a quantum battery cell having a configuration in which three or more charging layers are stacked may be formed according to a required output.
By making the quantum battery used for the drive power supply 11 have a bipolar structure, not only can a higher output be obtained with a single cell, but also the size and height of the quantum battery cell can be reduced due to omission of electrodes and omission of packaging materials. Densification is possible.
(給電方法)
 有機ELデバイス10に適用される駆動電源11への給電方法は、容量結合型、電磁誘導型、電場・磁場共鳴型、及び、電波受信型等のワイヤレス給電を用いることもできる。有機ELデバイス10において、駆動電源11へワイヤレス給電を行う場合には、上述の量子電池に接続する給電用の構成を設けてもよい。
(Power supply method)
As a power supply method to the drive power supply 11 applied to the organic EL device 10, wireless power supply of a capacitive coupling type, an electromagnetic induction type, an electric field / magnetic field resonance type, a radio wave reception type, or the like can be used. In the organic EL device 10, when wireless power feeding is performed to the drive power source 11, a power feeding configuration connected to the above-described quantum battery may be provided.
[効果]
 有機EL素子の非発光面側に、薄型でフレキシブル性の高い平面状の量子電池を用いた駆動電源を設けることにより、フレキシブル性の高い有機ELデバイスを構成することができる。さらに、駆動電源に用いる量子電池のセルを直列接続する構成や、バイポーラ構造の構成とすることにより、駆動電源からの出力電圧を、有機EL素子の発光が可能となる程度に高めることができる。従って、フレキシブル性の高い有機ELデバイスを実現することができる。
[effect]
By providing a driving power source using a thin and highly flexible planar quantum battery on the non-light emitting surface side of the organic EL element, an organic EL device with high flexibility can be configured. Furthermore, by adopting a configuration in which the cells of the quantum battery used for the driving power source are connected in series or a bipolar structure, the output voltage from the driving power source can be increased to such an extent that the organic EL element can emit light. Therefore, a highly flexible organic EL device can be realized.
 また、一般的にフレキシブルなリチウムイオン二次電池では、発熱温度が45℃以上となる。このリチウムイオン二次電池の発熱温度は、有機EL素子を発光させる適温範囲よりも高い温度である。このため、有機ELデバイスにおいて薄型化を実現するために、有機EL素子とリチウムイオン二次電池とを近接させて積層した場合等では、有機EL素子の発光効率の低下や、寿命への悪影響、表示品質の劣化等の性能の低下が起こる。従って、有機ELデバイスにリチウムイオン二次電池を用いた場合には、有機EL素子と駆動電源との距離を離す等の設計が必要となり、薄型化、フレキシブル性を低下させる要因となる。 In general, a flexible lithium ion secondary battery has an exothermic temperature of 45 ° C. or higher. The exothermic temperature of this lithium ion secondary battery is higher than an appropriate temperature range in which the organic EL element emits light. For this reason, in order to achieve thinning in the organic EL device, when the organic EL element and the lithium ion secondary battery are stacked close to each other, the reduction in the luminous efficiency of the organic EL element, the adverse effect on the life, Performance degradation such as display quality degradation occurs. Therefore, when a lithium ion secondary battery is used for the organic EL device, a design such as increasing the distance between the organic EL element and the drive power supply is required, which causes a reduction in thickness and flexibility.
 これに対し、上述の量子電池では、発熱温度が20℃程度である。このため、この量子電池を駆動電源として備える有機ELデバイスでは、リチウムイオン二次電池を用いた場合に発生する性能低下や、設計への悪影響がない。
 さらに、量子電池の発熱温度である20℃程度は、有機EL素子を発光効率が良好となる、好適な温度範囲である。このため、量子電池に接するように有機EL素子を配置することにより、有機EL素子の温度を発光効率の良好な好適な温度範囲に導き、有機EL素子の温度を発光効率の良好な温度域で安定させることができる。
 従って、量子電池に近接して積層するように有機EL素子を配置することにより、有機EL素子の発光効率を良好にすることができ、有機ELデバイスの性能を向上させることができる。
On the other hand, in the above-described quantum battery, the heat generation temperature is about 20 ° C. For this reason, in an organic EL device provided with this quantum battery as a drive power supply, there is no performance degradation or adverse effect on the design that occurs when a lithium ion secondary battery is used.
Furthermore, the heat generation temperature of the quantum battery of about 20 ° C. is a suitable temperature range in which the organic EL element has good light emission efficiency. For this reason, by arranging the organic EL element so as to be in contact with the quantum battery, the temperature of the organic EL element is led to a suitable temperature range where the luminous efficiency is good, and the temperature of the organic EL element is set within a temperature range where the luminous efficiency is good. It can be stabilized.
Therefore, by disposing the organic EL element so as to be stacked close to the quantum battery, the light emission efficiency of the organic EL element can be improved, and the performance of the organic EL device can be improved.
〈2.有機エレクトロルミネセンスデバイスの実施形態(第2実施形態)〉
 本発明の第2実施形態の有機エレクトロルミネセンス(有機EL)デバイスの概略構成図(断面図)を、図9に示す。
 図9に示す有機ELデバイス70は、駆動電源71の上に有機EL素子72が積層され、全体が封止材73によって封止された構成を有している。
 そして、有機ELデバイス70では、駆動電源71上に有機EL素子72が直接積層されることで、有機EL素子72と駆動電源71とが近接して積層された配置を有している。また、有機ELデバイス70は、有機EL素子72の非発光面側に駆動電源71が積層され、有機EL素子72の駆動電源71と近接する側と反対側の面(上面)から発光する構成となっている。
 なお、有機ELデバイス70は、有機EL素子72を駆動、制御するための図示しない駆動回路等、このデバイスの実現に必要なその他の構成を備えていてもよい。
<2. Embodiment of Organic Electroluminescence Device (Second Embodiment)>
FIG. 9 shows a schematic configuration diagram (cross-sectional view) of an organic electroluminescence (organic EL) device according to the second embodiment of the present invention.
An organic EL device 70 shown in FIG. 9 has a configuration in which an organic EL element 72 is stacked on a drive power supply 71 and the whole is sealed with a sealing material 73.
The organic EL device 70 has an arrangement in which the organic EL element 72 and the drive power supply 71 are stacked close to each other by directly stacking the organic EL element 72 on the drive power supply 71. The organic EL device 70 has a configuration in which a drive power supply 71 is stacked on the non-light emitting surface side of the organic EL element 72 and emits light from a surface (upper surface) opposite to the side adjacent to the drive power supply 71 of the organic EL element 72. It has become.
The organic EL device 70 may include other configurations necessary for realizing this device, such as a drive circuit (not shown) for driving and controlling the organic EL element 72.
 駆動電源71は、上述の第1実施形態で説明した有機ELデバイス10と同様の構成を適用することができる。また、駆動電源71を構成する量子電池についても、上述の第1実施形態で説明した種々の量子電池の構成を適宜用いることができる。 The drive power supply 71 can apply the same configuration as that of the organic EL device 10 described in the first embodiment. In addition, for the quantum battery constituting the drive power supply 71, the various quantum battery configurations described in the first embodiment can be used as appropriate.
 有機EL素子72は、従来から提案されている、シート状のフレキシブル性を有する有機エレクトロルミネセンス素子(OLED)から成る発光素子によって構成することができる。
 封止材73には、フレキシブル性を有する、従来公知の封止用の材料を使用することができる。また、封止材73自体がガスバリア性を有する材料を含有してもよく、封止材73の内側にガスバリア性を有する膜が形成されていてもよい。
 駆動電源71と有機EL素子72とは、図示しないが、電気的に接続されている。
The organic EL element 72 can be constituted by a light-emitting element composed of an organic electroluminescence element (OLED) having a sheet-like flexibility that has been conventionally proposed.
As the sealing material 73, a conventionally known sealing material having flexibility can be used. Further, the sealing material 73 itself may contain a material having gas barrier properties, and a film having gas barrier properties may be formed inside the sealing material 73.
Although not shown, the drive power supply 71 and the organic EL element 72 are electrically connected.
 本実施形態の有機ELデバイス70は、有機EL素子72と駆動電源71とが積層され、かつ、駆動電源71と有機EL素子72とが電気的に接続されているので、駆動電源71によって有機EL素子72を駆動して、発光させることができる。
 また、駆動電源71と有機EL素子72が、いずれもシート状でフレキシブル性を有しているため、フレキシブル性を有する有機ELデバイス70を実現することができる。そして、有機ELデバイス70を曲げた状態でも発光させることが可能になる。
In the organic EL device 70 of the present embodiment, the organic EL element 72 and the drive power supply 71 are laminated, and the drive power supply 71 and the organic EL element 72 are electrically connected. The element 72 can be driven to emit light.
Moreover, since the drive power supply 71 and the organic EL element 72 are both sheet-like and have flexibility, the organic EL device 70 having flexibility can be realized. Further, it is possible to emit light even when the organic EL device 70 is bent.
[効果]
 第2実施形態の有機ELデバイスは、第1実施形態と同じ効果を有する。さらに、有機EL素子と駆動電源とが積層されることにより、さらなる薄型化が可能となる。
 また、有機EL素子と駆動電源とが直接積層されることにより、駆動電源を構成する量子電池からの熱が、より有機EL素子に伝わりやすい構成となる。このため、量子電池の発熱による有機EL素子の発光効率を良好にする効果をより得ることができる。
[effect]
The organic EL device of the second embodiment has the same effect as that of the first embodiment. Further, the organic EL element and the driving power source are stacked, so that the thickness can be further reduced.
In addition, by directly stacking the organic EL element and the driving power source, heat from the quantum battery constituting the driving power source is more easily transmitted to the organic EL element. For this reason, the effect which makes the luminous efficiency of the organic EL element favorable by the heat_generation | fever of a quantum battery can be acquired more.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,70・・・有機ELデバイス、11,71・・・駆動電源、12,14,73・・・封止材、13,72・・・有機EL素子、15・・・接着層、20・・・量子電池、21,61・・・第1電極、22・・・充電層、23・・・p型金属酸化物半導体層、24,64・・・第2電極、25・・・n型金属酸化物半導体、26・・・絶縁性被膜、30,48・・・銅、32・・・二酸化チタン、34・・・シリコーン、36・・・伝導帯、38・・・紫外線、40・・・価電子帯、42・・・電子、44・・・エネルギー準位、46・・・フェルミレベル、50・・・酸化ニッケル、60・・・バイポーラ型量子電池、62・・・第1充電層、63・・・第1p型金属酸化物半導体層、65・・・第2充電層、66・・・第2p型金属酸化物半導体層、67・・・第3電極 DESCRIPTION OF SYMBOLS 10,70 ... Organic EL device 11, 71 ... Drive power supply 12, 14, 73 ... Sealing material 13, 72 ... Organic EL element, 15 ... Adhesive layer, 20. ..Quantum battery, 21, 61 ... first electrode, 22 ... charge layer, 23 ... p-type metal oxide semiconductor layer, 24,64 ... second electrode, 25 ... n-type Metal oxide semiconductor, 26 ... insulating coating, 30, 48 ... copper, 32 ... titanium dioxide, 34 ... silicone, 36 ... conduction band, 38 ... ultraviolet light, 40 .. Valence band, 42 ... electron, 44 ... energy level, 46 ... Fermi level, 50 ... nickel oxide, 60 ... bipolar quantum cell, 62 ... first charge layer 63 ... first p-type metal oxide semiconductor layer, 65 ... second charge layer, 66 ... second p-type gold The oxide semiconductor layer, 67 ... third electrode

Claims (8)

  1.  一方の面に発光面を有する有機エレクトロルミネッセンス素子と、
     前記有機エレクトロルミネッセンス素子の他方の面に設けられた駆動電源と、を備え、
     前記駆動電源が、フレキシブル性を有する量子電池を含む
     有機エレクトロルミネッセンスデバイス。
    An organic electroluminescence device having a light emitting surface on one surface;
    A driving power source provided on the other surface of the organic electroluminescence element,
    The organic electroluminescent device in which the driving power source includes a quantum battery having flexibility.
  2.  前記駆動電源が2.5V以上の出力電圧を有する請求項1に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to claim 1, wherein the driving power source has an output voltage of 2.5V or more.
  3.  前記量子電池がバイポーラ電極を有する請求項2に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to claim 2, wherein the quantum battery has a bipolar electrode.
  4.  前記量子電池のセルが直列接続されている請求項2に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to claim 2, wherein the cells of the quantum battery are connected in series.
  5.  前記駆動電源が6V以上の出力電圧を有する請求項2に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to claim 2, wherein the driving power source has an output voltage of 6V or more.
  6.  前記有機エレクトロルミネセンス素子と、前記駆動電源とが近接して積層されている請求項1に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescence device according to claim 1, wherein the organic electroluminescence element and the driving power source are laminated close to each other.
  7.  全体の厚さが3mm以下である請求項2に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescent device according to claim 2, wherein the total thickness is 3 mm or less.
  8.  屈曲半径Rが100mm以下である請求項2に記載の有機エレクトロルミネセンスデバイス。 The organic electroluminescence device according to claim 2, wherein the bending radius R is 100 mm or less.
PCT/JP2014/084494 2014-01-07 2014-12-26 Organic electroluminescent device WO2015105022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015556774A JPWO2015105022A1 (en) 2014-01-07 2014-12-26 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014000788 2014-01-07
JP2014-000788 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015105022A1 true WO2015105022A1 (en) 2015-07-16

Family

ID=53523856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084494 WO2015105022A1 (en) 2014-01-07 2014-12-26 Organic electroluminescent device

Country Status (2)

Country Link
JP (1) JPWO2015105022A1 (en)
WO (1) WO2015105022A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618260B (en) * 2016-10-28 2018-03-11 行政院原子能委員會核能研究所 Method for making quantum battery with core-shell structure and the product thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027662A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Secondary battery
JP2008157986A (en) * 2006-12-20 2008-07-10 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display, and organic el display manufactured by the manufacturing method
WO2012046325A1 (en) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 Secondary cell
JP2012079484A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Organic electroluminescent element and manufacturing method thereof
JP2012150900A (en) * 2011-01-17 2012-08-09 Nippon Shokubai Co Ltd Seal material for bipolar secondary battery and bipolar secondary battery
WO2013048925A2 (en) * 2011-09-30 2013-04-04 Apple Inc. Flexible electronic devices
JP2013200989A (en) * 2012-03-23 2013-10-03 Seiko Instruments Inc Fuel cell device
WO2013153603A1 (en) * 2012-04-09 2013-10-17 株式会社日本マイクロニクス Secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841362B1 (en) * 2006-11-10 2008-06-26 삼성에스디아이 주식회사 Organic Light Emitting Diode Display Device and Fabrication method for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027662A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Secondary battery
JP2008157986A (en) * 2006-12-20 2008-07-10 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display, and organic el display manufactured by the manufacturing method
JP2012079484A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Organic electroluminescent element and manufacturing method thereof
WO2012046325A1 (en) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 Secondary cell
JP2012150900A (en) * 2011-01-17 2012-08-09 Nippon Shokubai Co Ltd Seal material for bipolar secondary battery and bipolar secondary battery
WO2013048925A2 (en) * 2011-09-30 2013-04-04 Apple Inc. Flexible electronic devices
JP2013200989A (en) * 2012-03-23 2013-10-03 Seiko Instruments Inc Fuel cell device
WO2013153603A1 (en) * 2012-04-09 2013-10-17 株式会社日本マイクロニクス Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618260B (en) * 2016-10-28 2018-03-11 行政院原子能委員會核能研究所 Method for making quantum battery with core-shell structure and the product thereof

Also Published As

Publication number Publication date
JPWO2015105022A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
TWI530007B (en) Quantum battery for repeatable charge and discharge
WO2016090749A1 (en) Flexible oled display device and manufacturing method therefor
JP5894843B2 (en) Light emitting device
TWI220239B (en) Self-charged organic electro-luminescence display
US9030098B2 (en) Wireless electric power supply type light-emitting element and light-emitting device
EP2765626A1 (en) Organic light-emitting element, and method for manufacturing same
TW201526329A (en) Organic light emitting diode and method for preparing the same
EP4044262A1 (en) WAVELENGTH DOWN-CONVERSION-BASED µLED LIGHT-EMITTING DEVICE WITHOUT ELECTRICAL CONTACT
JP6264375B2 (en) Flexible secondary batteries, electronic devices
WO2015105022A1 (en) Organic electroluminescent device
JP6493210B2 (en) Flexible secondary batteries, electronic devices
TWI604601B (en) Organic light emitting device and method for preparing the same
KR101708177B1 (en) Solar cell integrated self-sustained display system
JP6070565B2 (en) Organic EL lighting device and manufacturing method thereof
TWI555189B (en) Organic light emitting display apparatus
US20130299812A1 (en) Organic electroluminescent element and illumination device
JP2015015143A (en) Flexible battery and electronic apparatus
KR101883322B1 (en) An assembly comprising aa light emitting module and a manufacturing method thereof
JP2011216238A (en) Self-light-emitting road rivet
CN104576963A (en) Organic LED of multilayer structure
CN111916576A (en) Quantum dot light-emitting diode and display panel
CN113363280A (en) Display device
TW201324844A (en) Light emitting device
CN117794298A (en) Luminous screen body and preparation method thereof
JP2006269265A (en) Field induced light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877838

Country of ref document: EP

Kind code of ref document: A1