WO2015104987A1 - 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置 - Google Patents

導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
WO2015104987A1
WO2015104987A1 PCT/JP2014/083931 JP2014083931W WO2015104987A1 WO 2015104987 A1 WO2015104987 A1 WO 2015104987A1 JP 2014083931 W JP2014083931 W JP 2014083931W WO 2015104987 A1 WO2015104987 A1 WO 2015104987A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
film adhesive
weight
adhesive
conductive
Prior art date
Application number
PCT/JP2014/083931
Other languages
English (en)
French (fr)
Inventor
悠樹 菅生
謙司 大西
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480072196.3A priority Critical patent/CN105900223A/zh
Priority to KR1020167013717A priority patent/KR20160106553A/ko
Publication of WO2015104987A1 publication Critical patent/WO2015104987A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Definitions

  • the present invention relates to a conductive film adhesive, a method for manufacturing a semiconductor device, and a semiconductor device.
  • a method of bonding a semiconductor element to a metal lead frame or the like has started from a conventional gold-silicon eutectic, and has changed to a method using solder and resin paste. At present, a method using a conductive resin paste is used.
  • thermosetting the adhesive When manufacturing a semiconductor device using a conductive film adhesive as described in Patent Document 1, it often includes a step of thermosetting the adhesive. However, if the time for thermosetting is long, the number of semiconductor devices that can be manufactured per unit time decreases, which may cause an increase in cost.
  • the present invention has been made in view of the above-described problems, and an object thereof is obtained by a film adhesive capable of improving manufacturing efficiency, a method for manufacturing a semiconductor device, and a method for manufacturing the semiconductor device.
  • An object is to provide a semiconductor device.
  • the conductive film adhesive according to the present invention after the step of die-bonding the semiconductor chip on the adherend and the step of die-bonding the semiconductor chip on the adherend via the conductive film-like adhesive,
  • the conductive film adhesive is used for a method of manufacturing a semiconductor device including a step of thermosetting by heating at 100 ° C. to 260 ° C. for 3 minutes to 300 minutes.
  • the conductive film adhesive is thermally cured by heating at 100 ° C. to 260 ° C. for 3 minutes to 300 minutes.
  • the heating time is set to a relatively short time of 3 minutes to 300 minutes, the number of semiconductor devices that can be manufactured per unit time can be increased.
  • the storage elastic modulus at 175 ° C. after heat curing at 200 ° C. for 180 minutes is 1 ⁇ Pa to 3000 ⁇ Pa.
  • thermosetting resin a thermosetting resin
  • a curing agent that cures the thermosetting resin an accelerator that promotes thermosetting
  • the storage elastic modulus at 175 ° C. after thermosetting can be within a suitable range.
  • the conductive film adhesive can be imparted with conductivity by including conductive particles.
  • the content of conductive particles in the conductive film adhesive is preferably 30% to 95% by weight. If it is less than 30% by weight, it tends to be difficult to form a conductive path. On the other hand, when it exceeds 95% by weight, it tends to be difficult to form a film. Moreover, there exists a tendency for the adhesive force with respect to a metal layer to fall.
  • the conductive particles are preferably at least one selected from the group consisting of gold particles, silver particles, copper particles and coated particles.
  • the coated particle includes a core particle and a coating film that coats the core particle.
  • the coating film preferably contains at least one selected from the group consisting of gold, silver and copper.
  • the conductive particles preferably include plate-like particles having an aspect ratio of 5 or more, and the content of the plate-like particles in 100% by weight of the conductive particles is preferably 5% by weight to 100% by weight.
  • the plate-like particles are brought into surface contact with each other to form a conductive path.
  • a conductive path is formed by point contact between the spherical particles. Therefore, the conductive film-like adhesive containing plate-like particles can have superior conductivity compared to the adhesive containing only spherical particles.
  • the conductive particles preferably include spherical spherical particles.
  • peak A exists in the particle size range of 0.2 ⁇ m to 0.8 ⁇ m
  • peak B exists in the particle size range of 3 ⁇ m to 15 ⁇ m
  • the ratio of the particle diameter to the particle diameter of peak A is preferably 5-15.
  • the spherical particles forming the peak A are filled between the spherical particles forming the peak B (gap). Many contact points are formed. Therefore, excellent conductivity can be obtained.
  • the present invention also provides the conductive film adhesive after the steps of die-bonding the semiconductor chip on the adherend and the steps of die-bonding the semiconductor chip on the adherend via the conductive film-like adhesive. And a step of thermosetting by heating at 100 to 260 ° C. for 3 to 300 minutes.
  • the conductive film adhesive is thermally cured by heating at 100 ° C. to 260 ° C. for 3 minutes to 300 minutes.
  • the heating time is set to a relatively short time of 3 minutes to 300 minutes, the number of semiconductor devices that can be manufactured per unit time can be increased.
  • the present invention also relates to a semiconductor device obtained by the method for manufacturing a semiconductor device.
  • the present invention it is possible to provide a film adhesive capable of improving manufacturing efficiency, a semiconductor device manufacturing method, and a semiconductor device obtained by the semiconductor device manufacturing method.
  • the form of the film adhesive 3 of Embodiment 1 is a film form.
  • the film adhesive 3 has conductivity and thermosetting.
  • the film adhesive 3 is used in a semiconductor device manufacturing method including the following steps.
  • the conductive film-like adhesive is added at 100 ° C. to A step of thermosetting by heating at 260 ° C. for 3 minutes to 300 minutes.
  • the film adhesive 3 is thermally cured in a relatively short time of 3 to 300 minutes in the heat curing step, the number of semiconductor devices that can be manufactured per unit time can be increased. Note that details of the method of manufacturing the semiconductor device will be described later.
  • the film adhesive 3 preferably has a storage elastic modulus at 175 ° C. of 1 ⁇ Pa to 3000 ⁇ Pa after heat curing at 200 ° C. for 180 minutes.
  • the storage elastic modulus at 175 ° C. after being heat-cured at 200 ° C. for 180 minutes is 1 ⁇ Pa or more, good wire bonding properties can be obtained. Moreover, the chip
  • the storage elastic modulus is 3000 ⁇ Pa or less, it is not too hard even when an impact is applied to the semiconductor device, so that the conductive film adhesive and the chip are hardly peeled off.
  • the storage elastic modulus at 175 ° C. after the film-like adhesive 3 is heat-cured at 200 ° C. for 180 minutes should be controlled by the content of the accelerator that promotes thermosetting and the type and amount of the functional group of the compounding material. Can do.
  • the film adhesive 3 preferably contains a thermoplastic resin.
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Examples thereof include polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.
  • the acrylic resin is not particularly limited, and one or more of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, is used as a component. And a polymer (acrylic copolymer).
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic
  • acrylic resins those having a weight average molecular weight of 100,000 or more are preferable, those having 300,000 to 3,000,000 are more preferable, and those having 500,000 to 2,000,000 are more preferable. It is because it is excellent in adhesiveness and heat resistance in the said numerical range.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the glass transition temperature of the thermoplastic resin is preferably ⁇ 40 ° C. or higher, more preferably ⁇ 35 ° C. or higher, and further preferably ⁇ 25 ° C. or higher.
  • the glass transition temperature of the thermoplastic resin is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and further preferably ⁇ 11 ° C. or lower.
  • the glass transition temperature of the thermoplastic resin is ⁇ 5 ° C. or lower, the fluidity of the film-like adhesive 3 near the thermosetting temperature can be increased, and voids can be easily eliminated by heating under pressure. It becomes.
  • the glass transition temperature of a thermoplastic resin means the theoretical value calculated
  • the glass transition temperature As another method for obtaining the glass transition temperature, there is a method for obtaining the glass transition temperature of the thermoplastic resin from the temperature at the maximum heat absorption peak measured by a differential scanning calorimeter (DSC). Specifically, a differential scanning calorimeter (“Q-2000” manufactured by TA Instruments Inc.) is used as a sample to be measured, and is about 50 ° C. higher than the predicted glass transition temperature (predicted temperature) of the sample. After heating at a temperature for 10 minutes, the sample is cooled to a temperature lower by 50 ° C. than the predicted temperature, pre-treated, and then heated at a rate of temperature increase of 5 ° C./min in a nitrogen atmosphere to measure the endothermic start point temperature, This is the glass transition temperature.
  • DSC differential scanning calorimeter
  • the film adhesive 3 preferably contains a curable resin such as a thermosetting resin and a curing agent. Thereby, thermal stability can be improved.
  • the curable resin examples include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, thermosetting polyimide resin, and the like.
  • an epoxy resin containing a small amount of ionic impurities that corrode semiconductor elements is preferable.
  • curing agent of an epoxy resin a phenol resin and an imidazole type compound are preferable.
  • the epoxy resin is not particularly limited.
  • bisphenol A type bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, phenol novolac type.
  • Bifunctional epoxy resins such as ortho-cresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., and epoxy resins such as hydantoin type, trisglycidyl isocyanurate type, or glycidylamine type are used.
  • novolac type epoxy resins novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance.
  • the phenol resin acts as a curing agent for the epoxy resin.
  • a novolac type phenol resin such as a phenol novolak resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, a nonylphenol novolak resin, or a resol type phenol resin.
  • polyoxystyrene such as polyparaoxystyrene.
  • phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
  • imidazole compounds examples include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z), 2-heptadecylimidazole (trade name; C17Z), and 1,2-dimethylimidazole.
  • the mixing ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured product are likely to deteriorate.
  • the film adhesive 3 preferably contains a curable resin that is solid at 25 ° C. and a curable resin that is liquid at 25 ° C. Thereby, favorable low-temperature sticking property is obtained.
  • the liquid state at 25 ° C. means that the viscosity at 25 ° C. is less than 5000 Pa ⁇ s.
  • solid at 25 ° C. means that the viscosity at 25 ° C. is 5000 Pa ⁇ s or more.
  • the viscosity can be measured using a model number HAAKE Roto VISCO1 manufactured by Thermo Scientific.
  • the content of the curable resin solid at 25 ° C. in 100% by weight of the curable resin is preferably 10% by weight or more, more preferably 12% by weight or more. If it is less than 10% by weight, the film-like adhesive 3 becomes sticky and tends to stick to the dicing tape, resulting in poor pick-up properties.
  • the content of the curable resin solid at 25 ° C. in 100% by weight of the curable resin is preferably 60% by weight or less, more preferably 30% by weight or less, and further preferably 20% by weight or less. If it exceeds 60% by weight, it tends to be difficult to attach the film adhesive 3 to the semiconductor wafer at a low temperature of about 40 ° C. (low temperature sticking property is lowered).
  • the total content of the thermoplastic resin and the curable resin in the film adhesive 3 is preferably 5% by weight or more, more preferably 10% by weight or more. When it is 5% by weight or more, it is easy to maintain the shape as a film. Further, the total content of the thermoplastic resin and the curable resin is preferably 70% by weight or less, more preferably 60% by weight or less. When the content is 70% by weight or less, the conductive particles suitably exhibit conductivity.
  • the weight of the thermoplastic resin / the weight of the curable resin is preferably 50/50 to 10/90, and more preferably 40/60 to 15/85.
  • the ratio of the thermoplastic resin increases from 50/50, the thermal stability tends to deteriorate.
  • the ratio of the thermoplastic resin is less than 10/90, it tends to be difficult to form a film.
  • the film adhesive 3 preferably contains conductive particles. Thereby, electroconductivity can be provided.
  • the conductive particles include gold particles, silver particles, copper particles, and coated particles.
  • the coated particle includes a core particle and a coating film that coats the core particle.
  • the core particles may be either conductive or non-conductive, and for example, glass particles can be used.
  • the coating film include a film containing gold, a film containing silver, and a film containing copper.
  • the average particle diameter of the conductive particles is not particularly limited, but is preferably 0.001 times or more (thickness of the film adhesive 3 ⁇ 0.001 or more) with respect to the thickness of the film-like adhesive 3, and 0.1 times The above is more preferable. If it is less than 0.001, it is difficult to form a conductive path and the conductivity tends to be unstable. Further, the average particle diameter of the conductive particles is preferably 1 times or less (the thickness of the film adhesive 3 or less), more preferably 0.8 times or less with respect to the thickness of the film adhesive 3. If it exceeds 1 time, there is a risk of cracking the chip.
  • the average particle diameter of the conductive particles is a value obtained by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
  • the specific gravity of the conductive particles is preferably 0.7 or more, more preferably 1 or more. If it is less than 0.7, the conductive particles float when the adhesive composition solution (varnish) is produced, and the dispersion of the conductive particles may be uneven.
  • the specific gravity of the conductive particles is preferably 22 or less, and more preferably 21 or less. If it exceeds 22, the conductive particles are likely to sink, and the dispersion of the conductive particles may be uneven.
  • the conductive particles may include plate-like particles, spherical particles, needle-like particles, filament-like particles, and the like. Especially, it is preferable that electroconductive particle contains a plate-shaped particle and a spherical particle.
  • the plate-like particles include plate-like particles having an aspect ratio of 5 or more. When it is 5 or more, the plate-like particles are easily brought into surface contact with each other, and a conductive path is easily formed.
  • the aspect ratio is preferably 8 or more, more preferably 10 or more.
  • the aspect ratio is preferably 10,000 or less, more preferably 100 or less, still more preferably 70 or less, and particularly preferably 50 or less.
  • the aspect ratio of the plate-like particles is the ratio of the average major axis to the average thickness (average major axis / average thickness).
  • the average major axis of the plate-like particles is obtained by observing the cross section of the film-like adhesive 3 with a scanning electron microscope (SEM) and measuring the major axis of 100 randomly selected plate-like particles. Is the average value.
  • the average thickness of the plate-like particles is an average value obtained by observing the cross section of the film adhesive 3 with a scanning electron microscope (SEM) and measuring the thickness of 100 randomly selected plate-like particles. It is.
  • the average major axis of the plate-like particles is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more.
  • the thickness is 0.5 ⁇ m or more, the contact probability of the plate-like particles is increased, and conduction is easily obtained.
  • the average major axis of the plate-like particles is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. When the thickness is 50 ⁇ m or less, particles are hardly precipitated at the coating varnish stage, and a stable coating varnish can be produced.
  • the content of plate-like particles in 100% by weight of conductive particles is preferably 5% by weight or more, more preferably 10% by weight or more.
  • the content of the plate-like particles in 100% by weight of the conductive particles may be 100% by weight, but is preferably 50% by weight or less, more preferably 20% by weight or less.
  • the conductive particles preferably include spherical spherical particles.
  • the peak A exists in the particle size range of 0.2 ⁇ m to 0.8 ⁇ m and the peak B exists in the particle size range of 3 ⁇ m to 15 ⁇ m.
  • the film adhesive 3 a large number of contact points between the spherical particles are formed by filling the spherical particles forming the peak A between the spherical particles forming the peak B. Therefore, excellent conductivity can be obtained.
  • the peak A When the peak A is present in a particle size range of 0.2 ⁇ m or more, aggregation of spherical particles is difficult to occur.
  • the peak A is preferably present in a particle size range of 0.5 ⁇ m or more.
  • the peak A exists in a particle size range of 0.8 ⁇ m or less, the spherical particles forming the peak A are filled between the spherical particles forming the peak B.
  • the peak A is preferably present in a particle size range of 0.75 ⁇ m or less.
  • the peak B exists in a particle size range of 3 ⁇ m or more, the spherical particles forming the peak A are filled between the spherical particles forming the peak B.
  • the peak B is preferably present in a particle size range of 3.5 ⁇ m or more.
  • the peak B exists in a particle size range of 15 ⁇ m or less, the surface roughness when the film is formed can be suppressed, and can be stably adhered to the adherend.
  • the peak B is preferably present in a particle size range of 10 ⁇ m or less, more preferably in a particle size range of 8 ⁇ m or less, and further preferably in a particle size range of 6 ⁇ m or less.
  • the ratio of the peak B particle size to the peak A particle size is preferably 5 or more, more preferably 7 or more. When it is 5 or more, spherical particles forming the peak A are filled between the spherical particles forming the peak B.
  • the ratio of the particle size of peak B to the particle size of peak A is preferably 15 or less, more preferably 10 or less. When it is 15 or less, spherical particles can be highly filled.
  • peaks other than peak A and peak B may exist.
  • the average particle diameter of the spherical particles is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more. When the thickness is 1 ⁇ m or more, good unevenness followability can be obtained.
  • the average particle diameter of the spherical particles is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and further preferably 5 ⁇ m or less. Film moldability is favorable in it being 10 micrometers or less.
  • the particle size distribution and average particle size of the spherical particles can be measured by the following method.
  • the film adhesive 3 is placed in a crucible and ignited to ash the film adhesive 3.
  • the obtained ash was dispersed in pure water and subjected to ultrasonic treatment for 10 minutes, and the particle size distribution (volume basis) using a laser diffraction / scattering particle size distribution analyzer (“LS 13 320” manufactured by Beckman Coulter, Inc .; wet method). ) And average particle size.
  • the content of spherical particles in 100% by weight of the conductive particles is preferably 5% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more, and particularly preferably 100% by weight.
  • the content of the conductive particles in the film adhesive 3 is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 60% by weight or more, and particularly preferably 70% by weight or more. If it is less than 30% by weight, it tends to be difficult to form a conductive path. Further, the content of the conductive particles is preferably 95% by weight or less, more preferably 94% by weight or less. If it exceeds 95% by weight, film formation tends to be difficult. Moreover, there exists a tendency for adhesive force to fall.
  • the film adhesive 3 preferably contains an accelerator that promotes thermosetting. Thereby, thermal curing with a curing agent such as an epoxy resin and a phenol resin can be promoted.
  • the accelerator is not particularly limited.
  • tetraphenylphosphonium tetraphenylborate (trade name; TPP-K), tetraphenylphosphonium dicyanamide (trade name; TPP-DCA), tetraphenylphosphonium tetra-p-triborate
  • Examples thereof include phosphorus-boron curing accelerators (trade name: TPP-MK) and triphenylphosphine triphenylborane (trade name: TPP-S) (all manufactured by Hokuko Chemical Co., Ltd.).
  • Examples of the accelerator include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z), 2-heptadecylimidazole (trade name; C17Z), 1, 2 -Dimethylimidazole (trade name; 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl-2-undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl -2-Phenylimidazolium trim
  • tetraphenylphosphonium tetraphenylborate (trade name: TPP-K) and tetraphenylphosphonium dicyanamide (trade name: TPP-DCA) are preferred from the viewpoint of storage stability of the film adhesive.
  • the content of the accelerator can be appropriately set, but it is preferably 0.05 to 10 parts by weight, preferably 0.1 to 5 parts by weight based on 100 parts by weight of the material excluding the conductive particles from the constituent material of the film adhesive. Part by weight is more preferred.
  • the film adhesive 3 may appropriately contain a compounding agent generally used in film production, for example, a crosslinking agent, in addition to the above components.
  • the film adhesive 3 can be manufactured by a usual method. For example, an adhesive composition solution containing each of the above components is prepared, and the adhesive composition solution is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried. Thereby, the film adhesive 3 can be manufactured.
  • the solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
  • the application method is not particularly limited. Examples of the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing. Of these, a die coater is preferable in terms of high uniformity of coating thickness.
  • polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
  • a method for producing the film adhesive 3 for example, a method of producing the film adhesive 3 by mixing the above components with a mixer and press-molding the obtained mixture is also suitable.
  • a planetary mixer etc. are mentioned as a mixer.
  • the thickness of the film adhesive 3 is not specifically limited, 5 micrometers or more are preferable and 15 micrometers or more are more preferable. When the thickness is less than 5 ⁇ m, a portion where the warped semiconductor wafer or the semiconductor chip does not adhere may occur, and the adhesion area may become unstable.
  • the thickness of the film adhesive 3 is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less. If it exceeds 100 ⁇ m, the film adhesive 3 may protrude excessively due to the load of die attachment, and the pad may be contaminated.
  • the surface roughness (Ra) of the film adhesive 3 is preferably 0.1 to 5000 nm. If it is less than 0.1 nm, it is difficult to blend. On the other hand, if it exceeds 5000 nm, the adherence to the adherend during die attachment may be reduced.
  • the electrical resistivity of the film adhesive 3 is preferably as low as possible, for example, 9 ⁇ 10 ⁇ 2 ⁇ ⁇ m or less. When it is 9 ⁇ 10 ⁇ 2 ⁇ ⁇ m or less, the electroconductivity is good and it is possible to cope with small size and high density mounting. On the other hand, the electrical resistivity is preferably 1 ⁇ 10 ⁇ 6 ⁇ ⁇ m or more.
  • it is 0.5 W / m ⁇ K or more, the heat dissipation is good, and it is possible to cope with small and high-density mounting.
  • it is less than 0.5 W / m ⁇ K, heat dissipation is poor, heat is accumulated, and the conductivity may be deteriorated.
  • the tensile storage elastic modulus at 120 ° C. of the film adhesive 3 is preferably 10 MPa or less, more preferably 5 MPa or less. When it is 10 MPa or less, the fluidity of the film adhesive 3 in the vicinity of the thermosetting temperature is high, and it is easy to eliminate voids by heating under pressure.
  • the tensile storage modulus at 120 ° C. is preferably 0.01 MPa or more, more preferably 0.05 MPa or more. When it is 0.01 MPa or more, the film adhesive 3 is difficult to protrude.
  • the tensile storage elastic modulus at 120 ° C. can be measured by the following method.
  • a strip-shaped measurement piece having a length of 30 mm, a width of 10 mm, and a thickness of 400 ⁇ m is cut out from the film adhesive 3.
  • RSA-II fixed viscoelasticity measuring apparatus
  • the measurement piece was measured for a chuck storage width of 22.6 mm, a tensile storage elastic modulus at 0 ° C. to 200 ° C. with a frequency of 1 Hz, and a temperature increase rate of 10 Measure under conditions of ° C / min.
  • the tensile storage modulus at 120 ° C. can be controlled by the glass transition temperature of the thermoplastic resin, the blending amount of conductive particles, and the like. For example, by blending a thermoplastic resin having a low glass transition temperature, the tensile storage elastic modulus at 120 ° C. can be lowered.
  • the film adhesive 3 is used for manufacturing semiconductor devices. Especially, it can be used especially suitably for manufacture of a power semiconductor device. Specifically, it is used as a die attach film that adheres (die attaches) an adherend such as a lead frame and a semiconductor chip. Examples of the adherend include a lead frame, an interposer, and a semiconductor chip. Of these, a lead frame is preferable.
  • the film adhesive 3 is preferably used in the form of a dicing tape with a film adhesive.
  • the semiconductor wafer in a state of being attached to the dicing tape with a film adhesive can be handled, so that the opportunity to handle the semiconductor wafer alone can be reduced and the handling property is good. Therefore, even a recent thin semiconductor wafer can be handled well.
  • the dicing tape 10 with a film adhesive includes a dicing tape 1 and a film adhesive 3 disposed on the dicing tape 1.
  • the dicing tape 1 includes a base material 11 and an adhesive layer 12 arranged on the base material 11.
  • the film adhesive 3 is disposed on the pressure-sensitive adhesive layer 12.
  • the dicing tape 10 with a film adhesive may have a configuration in which the film adhesive 3 is formed only on a work (semiconductor wafer 4 or the like) affixing portion.
  • the substrate 11 is a strength base of the dicing tape 10 with a film adhesive, and preferably has ultraviolet transparency.
  • the base material 11 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, and polymethylpentene.
  • polyesters such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimi
  • the surface of the base material 11 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the thickness of the substrate 11 is not particularly limited and can be appropriately determined, but is generally about 5 to 200 ⁇ m.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 12 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive
  • acrylic adhesives based on acrylic polymers are used as the base polymer from the standpoint of cleanability of electronic components that are difficult to contaminate such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. preferable.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Pentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester, Straight chain or branched chain alkyl esters having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, such as octadecyl ester and ei
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. May be.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Sti Contains sulfonic acid groups such as ethylene sulfonic acid, allyl s
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer.
  • additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary,
  • the pressure-sensitive adhesive layer 12 can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays.
  • a difference in adhesive strength with respect to the other portions 12b can be provided by irradiating only the portion 12a corresponding to the workpiece pasting portion of the pressure-sensitive adhesive layer 12 shown in FIG.
  • the portion 12b formed of the uncured radiation curable pressure-sensitive adhesive sticks to the film adhesive 3 and can secure a holding force when dicing.
  • the portion 12a having a significantly reduced adhesive force can be formed.
  • the wafer ring can be fixed to the portion 12b formed of an uncured radiation curable adhesive.
  • the portion 12a is irradiated with radiation so that the pressure-sensitive adhesive force of the portion 12a in the pressure-sensitive adhesive layer 12 ⁇ the pressure-sensitive adhesive strength of the other portion 12b. It is preferable.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure-sensitive adhesive include an addition-type radiation curable pressure-sensitive adhesive in which a radiation-curable monomer component or oligomer component is blended with a general pressure-sensitive pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or rubber-based pressure-sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. It is preferable because an adhesive layer having a layered structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • acrylic polymer those obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, based on 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the radiation curable pressure-sensitive adhesive examples include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And rubber-based pressure-sensitive adhesives and acrylic pressure-sensitive adhesives containing photopolymerization initiators such as carbonyl compounds, organic sulfur compounds, peroxides, amines, and onium salt-based compounds.
  • a compound that is colored by irradiation with radiation may be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation By including a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation, only the irradiated portion can be colored.
  • the compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes.
  • the use ratio of the compound colored by radiation irradiation can be set as appropriate.
  • the thickness of the pressure-sensitive adhesive layer 12 is not particularly limited, but is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the film adhesive 3.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the film adhesive 3 of the dicing tape 10 with a film adhesive is preferably protected by a separator (not shown).
  • the separator has a function as a protective material for protecting the film adhesive 3 until it is put into practical use.
  • the separator is peeled off when the workpiece is stuck on the film adhesive 3.
  • As the separator it is also possible to use polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper whose surface is coated with a release agent such as a fluorine release agent or a long-chain alkyl acrylate release agent.
  • the dicing tape 10 with a film adhesive can be manufactured by a normal method.
  • the dicing tape 10 with a film adhesive can be manufactured by bonding the adhesive layer 12 of the dicing tape 1 and the film adhesive 3 together.
  • the peeling force when the film adhesive 3 is peeled from the dicing tape 1 under the conditions of a peeling temperature of 25 ° C. and a peeling speed of 300 mm / min is preferably 0.01 to 3.00 N / 20 mm. If it is less than 0.01 N / 20 mm, there is a risk of chip jumping during dicing. On the other hand, if it exceeds 3.00 N / 20 mm, the pickup tends to be difficult.
  • a dicing tape 10 with a film adhesive is pressure-bonded to the semiconductor wafer 4.
  • the semiconductor wafer 4 include a silicon wafer, a silicon carbide wafer, and a compound semiconductor wafer.
  • compound semiconductor wafers include gallium nitride wafers.
  • Examples of the crimping method include a method of pressing with a pressing means such as a crimping roll.
  • the pressure bonding temperature (sticking temperature) is preferably 35 ° C. or higher, and more preferably 37 ° C. or higher.
  • the upper limit of the pressure bonding temperature is preferably lower, preferably 50 ° C. or lower, more preferably 45 ° C. or lower.
  • the pressure is preferably 1 ⁇ 10 5 Pa to 1 ⁇ 10 7 Pa, and more preferably 2 ⁇ 10 5 Pa to 8 ⁇ 10 6 Pa.
  • the semiconductor wafer 4 is diced. That is, the semiconductor wafer 4 is cut into a predetermined size and separated into pieces, and the semiconductor chip 5 is cut out. Dicing is performed according to a conventional method. Further, in this step, for example, a cutting method called full cut in which cutting is performed up to the dicing tape 10 with a film adhesive can be employed. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used. Moreover, since the semiconductor wafer 4 is bonded and fixed by the dicing tape 10 with a film adhesive, chip chipping and chip jump can be suppressed, and damage to the semiconductor wafer 4 can also be suppressed.
  • the semiconductor chip 5 is picked up in order to peel off the semiconductor chip 5 adhered and fixed to the dicing tape 10 with film adhesive.
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor chip 5 is pushed up by a needle from the dicing tape 10 with film adhesive, and the pushed-up semiconductor chip 5 is picked up by a pickup device.
  • the pickup is performed after the pressure-sensitive adhesive layer 12 is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the film adhesive 3 of the adhesive layer 12 falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • the picked-up semiconductor chip 5 is bonded and fixed to the adherend 6 via the film adhesive 3 to obtain an adherend 61 with a semiconductor chip.
  • the adherend 61 with a semiconductor chip includes an adherend 6, a film adhesive 3 disposed on the adherend 6, and a semiconductor chip 5 disposed on the film adhesive 3.
  • the die attach temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher.
  • the die attach temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower. By setting the temperature to 150 ° C. or lower, it is possible to prevent warping after die attachment.
  • the film-like adhesive 3 is thermally cured by heating the adherend 61 with a semiconductor chip, and the semiconductor chip 5 and the adherend 6 are fixed.
  • the temperature condition during the thermosetting is in the range of 100 ° C. to 260 ° C., preferably in the range of 110 ° C. to 230 ° C., and more preferably in the range of 120 ° C. to 200 ° C.
  • the time condition for maintaining the temperature at the time of thermosetting is within a range of 3 minutes to 300 minutes, preferably within a range of 10 minutes to 240 minutes, and within a range of 30 minutes to 180 minutes. It is more preferable that Since the heating time is relatively short, 3 minutes to 300 minutes, the number of semiconductor devices that can be manufactured per unit time can be increased.
  • Thermosetting is preferably performed under pressure.
  • the film adhesive 3 is heat-cured under pressure, voids existing between the film adhesive 3 and the adherend 6 can be eliminated, and the film adhesive 3 is bonded to the adherend 6.
  • the contact area can be secured.
  • Examples of a method of heating under pressure include a method of heating the adherend 61 with a semiconductor chip disposed in a chamber filled with an inert gas.
  • the pressure of the pressurized atmosphere is preferably 0.5 kg / cm 2 (4.9 ⁇ 10 ⁇ 2 MPa) or more, more preferably 1 kg / cm 2 (9.8 ⁇ 10 ⁇ 2 MPa) or more, and further preferably 5 kg. / Cm 2 (4.9 ⁇ 10 ⁇ 1 MPa) or more. If it is 0.5 kg / cm 2 or more, voids existing between the film adhesive 3 and the adherend 6 can be easily eliminated.
  • the pressure of the pressurized atmosphere is preferably 20kg / cm 2 (1.96MPa), more preferably 18kg / cm 2 (1.77MPa) or less, more preferably not more than 15kg / cm 2 (1.47MPa).
  • the protrusion of the film adhesive 3 due to excessive pressurization can be suppressed as it is 20 kg / cm 2 or less.
  • the heating temperature when heating under pressure is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 170 ° C. or higher.
  • the film adhesive 3 can have an appropriate hardness, and voids can be effectively eliminated by pressure curing.
  • the heating temperature is preferably 260 ° C. or lower, more preferably 200 ° C. or lower, more preferably 180 ° C. or lower. It can prevent decomposition
  • the heating time when heating under pressure is preferably 3 minutes or more, more preferably 15 minutes or more, and even more preferably 30 minutes or more. When it is 3 minutes or more, the effect of pressurization can be sufficiently obtained.
  • the heating time is preferably 300 minutes or less, more preferably 180 minutes or less, still more preferably 120 minutes or less, and even more preferably 60 minutes or less.
  • a wire bonding step of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor chip 5 with the bonding wire 7 is performed.
  • the bonding wire 7 for example, a gold wire, an aluminum wire or a copper wire is used.
  • the temperature during wire bonding is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, and the temperature is preferably 250 ° C. or lower, more preferably 175 ° C. or lower.
  • the heating time is several seconds to several minutes (for example, 1 second to 1 minute).
  • the connection is performed by a combination of vibration energy by ultrasonic waves and pressure energy by pressurization while being heated so as to be within the temperature range.
  • a sealing process for sealing the semiconductor chip 5 with the sealing resin 8 is performed.
  • This step is performed to protect the semiconductor chip 5 and the bonding wire 7 mounted on the adherend 6.
  • This step is performed by molding a sealing resin with a mold.
  • the sealing resin 8 for example, an epoxy resin is used.
  • the heating temperature at the time of resin sealing is preferably 165 ° C. or higher, more preferably 170 ° C. or higher, and the heating temperature is preferably 185 ° C. or lower, more preferably 180 ° C. or lower.
  • the sealing material may be further heated (post-curing step). Thereby, the sealing resin 8 which is insufficiently cured in the sealing process can be completely cured.
  • the heating temperature can be set as appropriate.
  • the film is formed after the step of die-bonding the semiconductor chip 5 on the adherend 6 and the step of die-bonding the semiconductor chip 5 on the adherend 6 via the film adhesive 3.
  • a semiconductor device is manufactured by a method including a step of thermally curing the adhesive 3 under pressure.
  • the method of Embodiment 1 includes the steps of placing the semiconductor wafer 4 on the film adhesive 3 of the dicing tape 10 with film adhesive, and the semiconductor wafer disposed on the film adhesive 3.
  • the semiconductor chip 5 is die-bonded onto the adherend 6 via the step of dicing 4 to form the semiconductor chip 5, the step of picking up the semiconductor chip 5 together with the film adhesive 3, and the film adhesive 3.
  • a step of thermally curing the film adhesive 3 by heating under pressure is included.
  • Teisan resin SG-280 EK23 Teisan resin SG-280 EK23 manufactured by Nagase ChemteX Corporation (thermoplastic resin, Mw: 900,000, acid value: 30 mgKOH / g)
  • Teisan Resin SG-70L Teisan Resin SG-70L manufactured by Nagase ChemteX Corporation (acrylic copolymer containing a carboxyl group, Mw: 900,000, acid value: 5 mgKOH / g, glass transition temperature: ⁇ 13 ° C.)
  • Alfon UC-3510 Alfon UC-3510 manufactured by Toa Gosei Co., Ltd.
  • JER828 JER828 manufactured by Mitsubishi Chemical Corporation
  • thermosetting resin, epoxy equivalents 184 to 194 EPICLON EXA-4850-150: EPICLON EXA-4850-150 (thermosetting resin, epoxy equivalent 450) manufactured by DIC Corporation
  • EPICLON HP-4700 EPICLON HP-4700D
  • thermosetting resin, epoxy equivalent 160 manufactured by DIC Corporation
  • EPICLON HP-4032D EPICLON HP-4032D manufactured by DIC Corporation
  • EPPN-501HY EPPN-501HY (Nippon Kayaku Co., Ltd.) (thermosetting resin, epoxy equivalents 163 to 175)
  • MEH-8400 MEH-8400 manufactured by Meiwa Kasei Co., Ltd.
  • EHD EHD manufactured by Mitsui Mining & Smelting Co., Ltd. (silver powder, spherical, average particle size 0.7 ⁇ m, specific gravity 10.5)
  • Example 1 Teisan Resin SG-280 EK23 and Alfon UC-3510 are used as the thermoplastic resin.
  • Alfon UC-3510 has a low molecular weight (Mw (molecular weight) is 2000) and has a large number of functional groups (carboxyl groups) to react (acid value indicating the amount of carboxyl groups is 70), so that it crosslinks with an epoxy resin.
  • Teisan Resin SG-280 EK23 also has many reactive functional groups and thus crosslinks with the epoxy resin. That is, Example 1 is an example in which a greater amount of cross-linking between the thermoplastic resin and the thermosetting resin is caused than in Examples 2 and 3.
  • Example 1 2-phenyl-4,5-dihydroxymethylimidazole (trade name: 2PHZ-PW) is classified as a curing agent.
  • the imidazole-based material functions both as a curing agent that cures the epoxy resin and as a curing accelerator that accelerates the reaction between the epoxy resin and the curing agent.
  • phenol resin since phenol resin was not included, it classified into the hardening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Die Bonding (AREA)

Abstract

 導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、半導体チップを被着体上にダイボンドする工程の後に、導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程とを含む半導体装置の製造方法に使用するための導電性フィルム状接着剤。

Description

導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置
 本発明は、導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置に関する。
 半導体装置の製造において半導体素子を金属リードフレームなどに接着する方法(いわゆるダイボンディング法)は、従来の金-シリコン共晶に始まり、半田、樹脂ペーストによる方法に推移してきた。現在では、導電性の樹脂ペーストを使用する方法が用いられている。
 しかしながら、樹脂ペーストを用いる方法では、ボイドにより導電性が低下したり、樹脂ペーストの厚さが不均一であったり、樹脂ペーストのはみ出しによりパッドが汚染されるという問題があった。これらの問題を解決するために、樹脂ペーストに代えて、ポリイミド樹脂を含有するフィルム状の接着剤を用いる場合がある(例えば、特許文献1参照)。
特開平6-145639号公報
 特許文献1に記載されているような導電性のフィルム状接着剤を用いて半導体装置を製造する場合、接着剤を熱硬化させる工程を含むことが多い。しかしながら、熱硬化させる時間が長いと単位時間あたりに製造できる半導体装置の数量が減り、コスト増大の原因と成り得る。
 本発明は、前記問題点に鑑みなされたものであり、その目的は、製造効率を向上させることが可能なフィルム状接着剤、半導体装置の製造方法、及び、当該半導体装置の製造方法により得られる半導体装置を提供することを目的とする。
 本発明に係る導電性フィルム状接着剤は、導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、前記半導体チップを被着体上にダイボンドする工程の後に、前記導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程とを含む半導体装置の製造方法に使用するためのものである。
 前記構成によれば、導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる。加熱時間を3分間~300分間と比較的短い時間とすることにより、単位時間あたりに製造できる半導体装置の数量を多くすることができる。
 前記構成において、200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率が、1МPa~3000МPaであることが好ましい。
 200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率が、1МPa以上であると、良好なワイヤーボンディング性が得られる。また、樹脂封止時のチップ流れを防ぐことが出来る。一方、前記貯蔵弾性率が、3000МPa以下であると、半導体装置に衝撃が加わったときも硬すぎないため、導電性フィルム状接着剤とチップの剥離が発生し難くなる。従って、当該導電性フィルム状接着剤を用いて製造される半導体装置の歩留りが向上する。
 前記構成においては、熱硬化性樹脂と、熱硬化性樹脂を硬化させる硬化剤と、熱硬化を促進させる促進剤とを含むことが好ましい。熱硬化性樹脂と、熱硬化性樹脂を硬化させる硬化剤と、熱硬化を促進する促進剤とを含むと、熱硬化後の175℃における貯蔵弾性率を好適な範囲内とすることができる。
 導電性フィルム状接着剤は、導電性粒子を含ませることにより、導電性を付与することができる。導電性フィルム状接着剤中の導電性粒子の含有量は、30重量%~95重量%であることが好ましい。30重量%未満であると、導電パスの形成が難しい傾向がある。一方、95重量%を超えると、フィルム化が難しい傾向がある。また、金属層に対する密着力が低下する傾向がある。
 導電性に優れるという理由から、導電性粒子は、金粒子、銀粒子、銅粒子及び被覆粒子からなる群より選択される少なくとも1種であることが好ましい。被覆粒子は、コア粒子及びコア粒子を被覆する被覆膜を備える。被覆膜は、金、銀及び銅からなる群より選択される少なくとも1種を含むことが好ましい。
 導電性粒子は、アスペクト比が5以上のプレート状粒子を含み、導電性粒子100重量%中のプレート状粒子の含有量が5重量%~100重量%であることが好ましい。
 プレート状粒子を含む導電性フィルム状接着剤では、プレート状粒子同士が面接触することにより導電パスが形成される。一方、球状粒子のみを配合すると、球状粒子同士の点接触により導電パスが形成される。したがって、プレート状粒子を含む導電性フィルム状接着剤は、球状粒子のみを含む接着剤に比べて、優れた導電性が得られる。
 導電性粒子は、球状の球状粒子を含むことが好ましい。球状粒子の粒度分布において、ピークが2つ以上存在し、0.2μm~0.8μmの粒径範囲にピークAが存在し、3μm~15μmの粒径範囲にピークBが存在し、ピークBの粒径のピークAの粒径に対する比が5~15であることが好ましい。
 粒度分布においてピークA及びピークBが存在する導電性フィルム状接着剤では、ピークBを形成する球状粒子の間(隙間)に、ピークAを形成する球状粒子が充填されるため、球状粒子同士の接触点が多数形成される。したがって、優れた導電性が得られる。
 本発明はまた、導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、半導体チップを被着体上にダイボンドする工程の後に、前記導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程とを含む半導体装置の製造方法に関する。
 前記構成によれば、導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる。加熱時間を3分間~300分間と比較的短い時間とすることにより、単位時間あたりに製造できる半導体装置の数量を多くすることができる。
 また、本発明は、前記半導体装置の製造方法により得られる半導体装置に関する。
 本発明によれば、製造効率を向上させることが可能なフィルム状接着剤、半導体装置の製造方法、及び、当該半導体装置の製造方法により得られる半導体装置を提供することができる。
フィルム状接着剤の概略断面図である。 フィルム状接着剤付きダイシングテープの概略断面図である。 変形例に係るフィルム状接着剤付きダイシングテープの概略断面図である。 フィルム状接着剤付きダイシングテープ上に半導体ウエハを配置した様子の概略を示す断面図である。 半導体ウエハを個片化した様子の概略を示す断面図である。 半導体チップ付き被着体の概略断面図である。 半導体装置の概略断面図である。
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
[フィルム状接着剤]
 図1に示すように、実施形態1のフィルム状接着剤3の形態は、フィルム状である。フィルム状接着剤3は導電性及び熱硬化性を備える。
 フィルム状接着剤3は、以下の工程を含む半導体装置の製造方法に使用される。
 導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、前記半導体チップを被着体上にダイボンドする工程の後に、前記導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程。
 フィルム状接着剤3は、前記熱硬化させる工程において、3分間~300分間と比較的短い時間で熱硬化されるため、単位時間あたりに製造できる半導体装置の数量を多くすることができる。
 なお、半導体装置の製造方法の詳細については、後に説明する。
 フィルム状接着剤3は、200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率が、1МPa~3000МPaであることが好ましい。200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率が、1МPa以上であると、良好なワイヤーボンディング性が得られる。また、樹脂封止時のチップ流れを防ぐことが出来る。一方、前記貯蔵弾性率が、3000МPa以下であると、半導体装置に衝撃が加わったときも硬すぎないため、導電性フィルム状接着剤とチップの剥離が発生し難くなる。
 フィルム状接着剤3の200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率は、熱硬化を促進させる促進剤の含有量や、配合材料の官能基の種類や量によりコントロールすることができる。
 フィルム状接着剤3は、熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、又はフッ素樹脂などが挙げられる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体素子の信頼性を確保できるアクリル樹脂が特に好ましい。
 アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。
 また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。
 アクリル樹脂のなかでも、重量平均分子量が10万以上のものが好ましく、30万~300万のものがより好ましく、50万~200万のものがさらに好ましい。上記数値範囲内であると、接着性及び耐熱性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 熱可塑性樹脂のガラス転移温度は、好ましくは-40℃以上、より好ましくは-35℃以上、さらに好ましくは-25℃以上である。-40℃未満であると、フィルム状接着剤3がベタベタになり、ダイシングテープとくっつき過ぎてピックアップ性が悪くなる傾向がある。また、熱可塑性樹脂のガラス転移温度は、好ましくは-5℃以下、より好ましくは-10℃以下、さらに好ましくは-11℃以下である。-10℃を超えると、弾性率が高くなり、40℃程度の低温でフィルム状接着剤3を半導体ウエハに張り付けることが困難になる(低温貼りつき性が低下する)傾向がある。また、熱可塑性樹脂のガラス転移温度が-5℃以下であると、熱硬化温度付近におけるフィルム状接着剤3の流動性を高めることができ、圧力下での加熱によりボイドを消滅させることが容易となる。
 本明細書において、熱可塑性樹脂のガラス転移温度は、Fox式により求めた理論値をいう。
 また、ガラス転移温度を求める他の方法として、示差走査熱量計(DSC)によって測定される最大熱吸収ピーク時の温度により、熱可塑性樹脂のガラス転移温度を求める方法もある。具体的には、測定する試料を示差走査熱量計(ティー・エイ・インスツルメント社製の「Q-2000」)を用い、予測される試料のガラス転移温度(予測温度)より約50℃高い温度で10分加熱した後、予測温度より50℃低い温度まで冷却して前処理し、その後、窒素雰囲気下、昇温速度5℃/分にて昇温して吸熱開始点温度を測定し、これをガラス転移温度とする。
 フィルム状接着剤3は、熱硬化性樹脂などの硬化性樹脂と、硬化剤とを含むことが好ましい。これにより、熱安定性を向上できる。
 硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。特に、半導体素子を腐食させるイオン性不純物などの含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂やイミダゾール系化合物が好ましい。
 エポキシ樹脂としては特に限定されず、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型などの二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型などのエポキシ樹脂が用いられる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性などに優れるからである。
 フェノール樹脂は、エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどのポリオキシスチレンなどが挙げられる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。
 イミダゾール系化合物は、例えば、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)などが挙げられる(いずれも四国化成工業(株)製)。
 エポキシ樹脂とフェノール樹脂との配合割合は、例えば、エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは、0.8~1.2当量である。即ち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、硬化物の特性が劣化し易くなるからである。
 フィルム状接着剤3は、25℃で固形の硬化性樹脂及び25℃で液状の硬化性樹脂を含むことが好ましい。これにより、良好な低温貼りつき性が得られる。
 本明細書において、25℃において液状とは、25℃において粘度が5000Pa・s未満であることをいう。一方、25℃において固形とは、25℃において粘度が5000Pa・s以上であることをいう。
 なお、粘度は、Thermo Scientific社製の型番HAAKE Roto VISCO1を用いて測定できる。
 フィルム状接着剤3において、硬化性樹脂100重量%中の25℃で固形の硬化性樹脂の含有量は、好ましくは10重量%以上、より好ましくは12重量%以上である。10重量%未満であると、フィルム状接着剤3がベタベタになり、ダイシングテープとくっつき過ぎてピックアップ性が悪くなる傾向がある。
 一方、硬化性樹脂100重量%中の25℃で固形の硬化性樹脂の含有量は、好ましくは60重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下である。60重量%を越えると、40℃程度の低温でフィルム状接着剤3を半導体ウエハに張り付けることが困難になる(低温貼りつき性が低下する)傾向がある。
 フィルム状接着剤3中の熱可塑性樹脂及び硬化性樹脂の合計含有量は、好ましくは5重量%以上、より好ましくは10重量%以上である。5重量%以上であると、フィルムとしての形状を保ちやすい。また、熱可塑性樹脂及び硬化性樹脂の合計含有量は、好ましくは70重量%以下、より好ましくは60重量%以下である。70重量%以下であると、導電性粒子が好適に導電性が発現する。
 フィルム状接着剤3において、熱可塑性樹脂の重量/硬化性樹脂の重量が、50/50~10/90であることが好ましく、40/60~15/85であることがより好ましい。50/50より、熱可塑性樹脂の比率が多くなると、熱安定性が悪くなる傾向がある。一方、10/90より、熱可塑性樹脂の比率が少なくなると、フィルム化が難しくなる傾向がある。
 フィルム状接着剤3は、導電性粒子を含むことが好ましい。これにより、導電性を付与できる。導電性粒子としては、金粒子、銀粒子、銅粒子、被覆粒子などが挙げられる。
 被覆粒子は、コア粒子及びコア粒子を被覆する被覆膜を備える。コア粒子は、導電性、非導電性のいずれでもよく、例えば、ガラス粒子などを使用できる。被覆膜としては、金を含む膜、銀を含む膜、銅を含む膜などが挙げられる。
 導電性粒子の平均粒径は特に限定されないが、フィルム状接着剤3の厚みに対して、0.001倍以上(フィルム状接着剤3の厚み×0.001以上)が好ましく、0.1倍以上がより好ましい。0.001倍未満であると、導電パスの形成が難しく、導電性が安定しない傾向がある。また、導電性粒子の平均粒径はフィルム状接着剤3の厚みに対して、1倍以下(フィルム状接着剤3の厚み以下)が好ましく、0.8倍以下がより好ましい。1倍を超えると、チップ割れを起こす危険性がある。
 なお、導電性粒子の平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA-910)により求めた値である。
 導電性粒子の比重は0.7以上が好ましく、1以上がより好ましい。0.7未満であると、接着剤組成物溶液(ワニス)の作製時に導電性粒子が浮いてしまい、導電性粒子の分散が不均一になるおそれがある。また、導電性粒子の比重は22以下が好ましく、21以下がより好ましい。22を超えると、導電性粒子が沈みやすく、導電性粒子の分散が不均一になるおそれがある。
 導電性粒子は、プレート状粒子、球状粒子、針状粒子、フィラメント状粒子などを含んでもよい。なかでも、導電性粒子は、プレート状粒子、球状粒子を含むことが好ましい。
 プレート状粒子としては、例えば、アスペクト比が5以上のプレート状の粒子が挙げられる。5以上であると、プレート状粒子同士が面接触し易く、導電パスが容易に形成される。
 アスペクト比は、好ましくは8以上、より好ましくは10以上である。一方、アスペクト比は、好ましくは10000以下、より好ましくは100以下、さらに好ましくは70以下、特に好ましくは50以下である。
 プレート状粒子のアスペクト比は、平均長径の平均厚みに対する比(平均長径/平均厚み)である。
 本明細書において、プレート状粒子の平均長径は、フィルム状接着剤3の断面を走査型電子顕微鏡(SEM)により観察し、ランダムに選んだ100個のプレート状粒子の長径を測定することで得られる平均値である。
 また、プレート状粒子の平均厚みは、フィルム状接着剤3の断面を走査型電子顕微鏡(SEM)により観察し、ランダムに選んだ100個のプレート状粒子の厚みを測定することで得られる平均値である。
 プレート状粒子の平均長径は、好ましくは0.5μm以上、より好ましくは1.0μm以上である。0.5μm以上であると、プレート状粒子の接触確率が高くなり導通が取りやすくなる。
 一方、プレート状粒子の平均長径は、好ましくは50μm以下、より好ましくは30μm以下である。50μm以下であると、塗布ワニス段階での粒子の沈降が生じ難く、安定な塗布ワニスを作製できる。
 導電性粒子100重量%中のプレート状粒子の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上である。導電性粒子100重量%中のプレート状粒子の含有量は、100重量%であってもよいが、好ましくは50重量%以下、より好ましくは20重量%以下である。
 導電性粒子は、球状の球状粒子を含むことが好ましい。
 球状粒子の粒度分布において、ピークA及びピークBが少なくとも存在することが好ましい。例えば、0.2μm~0.8μmの粒径範囲にピークAが存在し、3μm~15μmの粒径範囲にピークBが存在することが好ましい。フィルム状接着剤3では、ピークBを形成する球状粒子の間に、ピークAを形成する球状粒子が充填されることにより、球状粒子同士の接触点が多数形成される。したがって、優れた導電性が得られる。
 ピークAが0.2μm以上の粒径範囲に存在すると、球状粒子同士の凝集が発生し難い。
 ピークAは0.5μm以上の粒径範囲に存在することが好ましい。
 ピークAは0.8μm以下の粒径範囲に存在すると、ピークBを形成する球状粒子の間に、ピークAを形成する球状粒子が充填される。ピークAは0.75μm以下の粒径範囲に存在することが好ましい。
 ピークBは3μm以上の粒径範囲に存在すると、ピークBを形成する球状粒子の間に、ピークAを形成する球状粒子が充填される。ピークBは3.5μm以上の粒径範囲に存在することが好ましい。
 ピークBが15μm以下の粒径範囲に存在すると、フィルム状にした際の表面粗さが抑えられ、被着体に対して安定的に接着させることができる。ピークBは10μm以下の粒径範囲に存在することが好ましく、8μm以下の粒径範囲に存在することがより好ましく、6μm以下の粒径範囲に存在することがさらに好ましい。
 ピークBの粒径のピークAの粒径に対する比(ピークBの粒径/ピークAの粒径)が、好ましくは5以上、より好ましくは7以上である。5以上であると、ピークBを形成する球状粒子の間に、ピークAを形成する球状粒子が充填される。
 一方、ピークBの粒径のピークAの粒径に対する比が、好ましくは15以下、より好ましくは10以下である。15以下であると、球状粒子を高充填できる。
 球状粒子の粒度分布において、ピークA及びピークB以外のピークが存在してもよい。
 球状粒子の平均粒径は好ましくは1μm以上であり、より好ましくは1.5μm以上である。1μm以上であると、良好な凹凸追従性が得られる。また、球状粒子の平均粒径は好ましくは10μm以下であり、より好ましくは8μm以下、さらに好ましくは5μm以下である。10μm以下であると、フィルム成形性が良好である。
 なお、球状粒子の粒度分布及び平均粒径は、下記方法で測定できる。
 球状粒子の粒度分布及び平均粒径の測定
 フィルム状接着剤3をるつぼに入れ、強熱してフィルム状接着剤3を灰化させる。得られた灰分を純水中に分散させて10分間超音波処理し、レーザー回折散乱式粒度分布測定装置(ベックマンコールター社製、「LS 13 320」;湿式法)を用いて粒度分布(体積基準)及び平均粒径を求める。
 導電性粒子100重量%中の球状粒子の含有量は、好ましくは5重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは100重量%である。
 フィルム状接着剤3中の導電性粒子の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上である。30重量%未満であると、導電パスの形成が難しい傾向がある。また、導電性粒子の含有量は、好ましくは95重量%以下、より好ましくは94重量%以下である。95重量%を超えると、フィルム化が難しい傾向がある。また、密着力が低下する傾向がある。
 フィルム状接着剤3は、熱硬化を促進する促進剤を含むことが好ましい。これにより、エポキシ樹脂とフェノール樹脂等の硬化剤との熱硬化を促進できる。
 前記促進剤としては特に限定されないが、例えば、テトラフェニルホスホニウムテトラフェニルボレート(商品名;TPP-K)、テトラフェニルホスホニウムジシアナミド(商品名;TPP-DCA)、テトラフェニルホスホニウムテトラ-p-トリボレート(商品名;TPP-MK)、トリフェニルホスフィントリフェニルボラン(商品名;TPP-S)などのリン-ホウ素系硬化促進剤が挙げられる(いずれも北興化学工業(株)製)。
 また、前記促進剤としては、例えば、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)などのイミダゾール系硬化促進剤が挙げられる(いずれも四国化成工業(株)製)。
 なかでも、フィルム状接着剤の保存性の観点から、潜在性に優れるテトラフェニルホスホニウムテトラフェニルボレート(商品名;TPP-K)や、テトラフェニルホスホニウムジシアナミド(商品名;TPP-DCA)が好ましい。
 前記促進剤の含有量は適宜設定できるが、フィルム状接着剤の構成材料から導電性粒子を除いた材料の100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましい。
 フィルム状接着剤3は、前記成分以外にも、フィルム製造に一般に使用される配合剤、例えば、架橋剤などを適宜含有してよい。
 フィルム状接着剤3は、通常の方法で製造できる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させることで、フィルム状接着剤3を製造できる。
 接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。
 フィルム状接着剤3の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形してフィルム状接着剤3を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。
 フィルム状接着剤3の厚みは特に限定されないが、5μm以上が好ましく、15μm以上がより好ましい。5μm未満であると、反りが生じた半導体ウエハや半導体チップと接着しない箇所が発生し、接着面積が不安定となる場合がある。また、フィルム状接着剤3の厚みは100μm以下が好ましく、50μm以下がより好ましい。100μmを超えると、ダイアタッチの荷重によってフィルム状接着剤3が過度にはみ出し、パッドを汚染する場合がある。
 フィルム状接着剤3の表面粗さ(Ra)は、0.1~5000nmが好ましい。0.1nm未満は、配合上難しい。一方、5000nmを超えると、ダイアタッチ時の被着体への張りつき性が低下するおそれがある。
 フィルム状接着剤3の電気抵抗率は低いほど好ましく、例えば、9×10-2Ω・m以下である。9×10-2Ω・m以下であると、導電性がよく、小型・高密度実装に対応できる。一方、電気抵抗率は、好ましくは1×10-6Ω・m以上である。
 フィルム状接着剤3の熱伝導率は高いほど好ましく、例えば、0.5W/m・K以上である。0.5W/m・K以上であると、放熱性がよく、小型・高密度実装に対応できる。一方、0.5W/m・K未満であると、放熱性が悪く、熱がたまり、導電性を悪化させるおそれがある。
 フィルム状接着剤3の120℃の引張貯蔵弾性率は、好ましくは10MPa以下、より好ましくは5MPa以下である。10MPa以下であると、熱硬化温度付近におけるフィルム状接着剤3の流動性が高く、圧力下での加熱によりボイドを消滅させることが容易である。120℃の引張貯蔵弾性率は、好ましくは0.01MPa以上、より好ましくは0.05MPa以上である。0.01MPa以上であると、フィルム状接着剤3がはみ出し難い。
 120℃の引張貯蔵弾性率は、以下の方法で測定できる。
 120℃の引張貯蔵弾性率の測定
 フィルム状接着剤3から、縦30mm、幅10mm、厚さ400μmの短冊状の測定片を切り出す。測定片について、固定粘弾性測定装置(RSA-II、レオメトリックサイエンティフィック社製)を用いてチャック幅22.6mm、0℃~200℃での引張貯蔵弾性率を周波数1Hz、昇温速度10℃/分の条件下にて測定する。
 120℃の引張貯蔵弾性率は、熱可塑性樹脂のガラス転移温度、導電性粒子の配合量などによりコントロールできる。例えば、ガラス転移温度が低い熱可塑性樹脂を配合することで、120℃の引張貯蔵弾性率を低下させることができる。
 フィルム状接着剤3は、半導体装置の製造に使用される。なかでも、パワー半導体装置の製造に特に好適に使用できる。具体的には、リードフレームなどの被着体と半導体チップとを接着する(ダイアタッチする)ダイアタッチフィルムとして使用される。被着体としては、リードフレーム、インターポーザ、半導体チップなどが挙げられる。なかでも、リードフレームが好ましい。
 フィルム状接着剤3は、フィルム状接着剤付きダイシングテープの形態で使用することが好ましい。この形態で使用すると、フィルム状接着剤付きダイシングテープに貼り付けられた状態の半導体ウエハをハンドリングできるので、半導体ウエハ単体でハンドリングする機会を減らすことができ、ハンドリング性が良好である。したがって、近年の薄型の半導体ウエハであっても良好にハンドリングできる。
[フィルム状接着剤付きダイシングテープ]
 フィルム状接着剤付きダイシングテープについて説明する。
 図2に示すように、フィルム状接着剤付きダイシングテープ10は、ダイシングテープ1、及びダイシングテープ1上に配置されたフィルム状接着剤3を備える。ダイシングテープ1は、基材11及び基材11上に配置された粘着剤層12を備える。フィルム状接着剤3は粘着剤層12上に配置されている。
 図3に示すように、フィルム状接着剤付きダイシングテープ10は、ワーク(半導体ウエハ4など)貼り付け部分にのみフィルム状接着剤3を形成した構成であってもよい。
 基材11は、フィルム状接着剤付きダイシングテープ10の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材11としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙などが挙げられる。
 基材11の表面は、隣接する層との密着性、保持性などを高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。
 基材11の厚さは、特に制限されず適宜に決定できるが、一般的には5~200μm程度である。
 粘着剤層12の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。感圧性接着剤としては、半導体ウエハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
 アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。
 アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどが挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。
 更に、アクリル系ポリマーは、架橋させる為、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。
 アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万~300万程度である。
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1~5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。
 粘着剤層12は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができる。
 図2に示す粘着剤層12のワーク貼り付け部分に対応する部分12aのみを放射線照射することにより他の部分12bとの粘着力の差を設けることができる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bはフィルム状接着剤3と粘着し、ダイシングする際の保持力を確保できる。
 また、図3に示すフィルム状接着剤3に合わせて放射線硬化型の粘着剤層12を硬化させることにより、粘着力が著しく低下した前記部分12aを形成できる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bにウエハリングを固定できる。
 つまり、粘着剤層12を放射線硬化型粘着剤により形成する場合には、粘着剤層12における前記部分12aの粘着力<その他の部分12bの粘着力、となるように前記部分12aを放射線照射することが好ましい。
 放射線硬化型粘着剤は、炭素-炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどが挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などが挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどが挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。
 前記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどが挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05~20重量部程度である。
 また放射線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシランなどの光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物などの光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤などが挙げられる。
 前記放射線硬化型の粘着剤層12中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層12に含ませることによって、放射線照射された部分のみを着色することができる。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。
 粘着剤層12の厚さは、特に限定されないが、チップ切断面の欠け防止やフィルム状接着剤3の固定保持の両立性などの点よりは、1~50μm程度であるのが好ましい。好ましくは2~30μm、更には5~25μmが好ましい。
 フィルム状接着剤付きダイシングテープ10のフィルム状接着剤3は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまでフィルム状接着剤3を保護する保護材としての機能を有している。セパレータはフィルム状接着剤3上にワークを貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙なども使用可能である。
 フィルム状接着剤付きダイシングテープ10は、通常の方法で製造できる。例えば、ダイシングテープ1の粘着剤層12とフィルム状接着剤3とを貼り合わせることで、フィルム状接着剤付きダイシングテープ10を製造できる。
 剥離温度25℃、剥離速度300mm/minの条件下で、フィルム状接着剤3をダイシングテープ1から引き剥がしたときの剥離力が0.01~3.00N/20mmであることが好ましい。0.01N/20mm未満であると、ダイシング時にチップ飛びが発生するおそれがある。一方、3.00N/20mmを超えると、ピックアップが困難になる傾向がある。
[半導体装置の製造方法]
 半導体装置の製造方法について説明する。
 図4に示すように、半導体ウエハ4にフィルム状接着剤付きダイシングテープ10を圧着する。半導体ウエハ4としては、シリコンウエハ、シリコンカーバイドウエハ、化合物半導体ウエハなどが挙げられる。化合物半導体ウエハとしては、窒化ガリウムウエハなどが挙げられる。
 圧着方法としては、例えば、圧着ロールなどの押圧手段により押圧する方法などが挙げられる。
 圧着温度(貼り付け温度)は、35℃以上が好ましく、37℃以上がより好ましい。圧着温度の上限は低い方が好ましく、好ましくは50℃以下、より好ましくは45℃以下である。低温で圧着することにより、半導体ウエハ4への熱影響を防止することが可能で、半導体ウエハ4の反りを抑制できる。
 また、圧力は、1×10Pa~1×10Paであることが好ましく、2×10Pa~8×10Paであることがより好ましい。
 次に、図5に示すように、半導体ウエハ4のダイシングを行う。つまり、半導体ウエハ4を所定のサイズに切断して個片化し、半導体チップ5を切り出す。ダイシングは、常法に従い行われる。また、本工程では、例えばフィルム状接着剤付きダイシングテープ10まで切込みを行なうフルカットと呼ばれる切断方式などを採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウエハ4は、フィルム状接着剤付きダイシングテープ10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウエハ4の破損も抑制できる。
 フィルム状接着剤付きダイシングテープ10に接着固定された半導体チップ5を剥離する為に、半導体チップ5のピックアップを行う。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をフィルム状接着剤付きダイシングテープ10側からニードルによって突き上げ、突き上げられた半導体チップ5をピックアップ装置によってピックアップする方法などが挙げられる。
 ここでピックアップは、粘着剤層12が紫外線硬化型である場合、該粘着剤層12に紫外線を照射した後に行う。これにより、粘着剤層12のフィルム状接着剤3に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間などの条件は特に限定されず、適宜必要に応じて設定すればよい。
 図6に示すように、ピックアップした半導体チップ5を、フィルム状接着剤3を介して被着体6に接着固定して、半導体チップ付き被着体61を得る。半導体チップ付き被着体61は、被着体6、被着体6上に配置されたフィルム状接着剤3、及びフィルム状接着剤3上に配置された半導体チップ5を備える。
 ダイアタッチ温度は、好ましくは80℃以上、より好ましくは90℃以上である。また、ダイアタッチ温度は、好ましくは150℃以下、より好ましくは130℃以下である。150℃以下とすることにより、ダイアタッチ後の反りの発生を防止できる。
 続いて、半導体チップ付き被着体61を加熱することによりフィルム状接着剤3を熱硬化させて、半導体チップ5と被着体6とを固着させる。熱硬化の際の温度条件は、100℃~260℃の範囲内であり、110℃~230℃の範囲内であることが好ましく、120℃~200℃の範囲内であることがより好ましい。また、熱硬化の際に前記温度下に維持する時間条件は、3分間~300分間の範囲内であり、10分間~240分間の範囲内であることが好ましく、30分間~180分間の範囲内であることがより好ましい。加熱時間が3分間~300分間と比較的短い時間であるため、単位時間あたりに製造できる半導体装置の数量を多くすることができる。
 熱硬化は、加圧下にて行なうことが好ましい。加圧下でフィルム状接着剤3を熱硬化させると、フィルム状接着剤3と被着体6との間に存在するボイドを消滅させることが可能で、フィルム状接着剤3が被着体6と接触する面積を確保できる。
 加圧下で加熱する方法としては、例えば、不活性ガスが充填されたチャンバー内に配置された半導体チップ付き被着体61を加熱する方法などが挙げられる。
 加圧雰囲気の圧力は、好ましくは0.5kg/cm(4.9×10-2MPa)以上、より好ましくは1kg/cm(9.8×10-2MPa)以上、さらに好ましくは5kg/cm(4.9×10-1MPa)以上である。0.5kg/cm以上であると、フィルム状接着剤3と被着体6との間に存在するボイドを容易に消滅させることができる。加圧雰囲気の圧力は、好ましくは20kg/cm(1.96MPa)以下、より好ましくは18kg/cm(1.77MPa)以下、さらに好ましくは15kg/cm(1.47MPa)以下である。20kg/cm以下であると、過度な加圧によるフィルム状接着剤3のはみ出しを抑制できる。
 加圧下で加熱する際の加熱温度は、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは170℃以上である。100℃以上であると、フィルム状接着剤3を適度な硬さとすることが可能で、加圧キュアによりボイドを効果的に消失させることができる。
 加熱温度は、好ましくは260℃以下、より好ましくは200℃以下、より好ましくは180℃以下である。260℃以下であると、硬化前のフィルム状接着剤3の分解を防ぐことができる。
 加圧下で加熱する際の加熱時間は、好ましくは3分間以上、より好ましくは15分間以上、さらに好ましくは30分間以上である。3分間以上であると、加圧の効果を充分に得ることができる。加熱時間は、好ましくは300分間以下、より好ましくは180分間以下、さらに好ましくは120分間以下、さらにより好ましくは60分間以下である。
 次に、被着体6の端子部(インナーリード)の先端と半導体チップ5上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線などが用いられる。ワイヤーボンディングを行う際の温度は、好ましくは80℃以上、より好ましくは120℃以上であり、該温度は、好ましくは250℃以下、より好ましくは175℃以下である。また、その加熱時間は数秒~数分間(例えば、1秒~1分間)行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着エネルギーの併用により行われる。
 続いて、封止樹脂8により半導体チップ5を封止する封止工程を行う。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護する為に行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、好ましくは165℃以上、より好ましくは170℃以上であり、該加熱温度は、好ましくは185℃以下、より好ましくは180℃以下である。
 必要に応じて、封止物を更に加熱をしてもよい(後硬化工程)。これにより、封止工程で硬化不足の封止樹脂8を完全に硬化できる。加熱温度は適宜設定できる。
 以上のとおり、実施形態1では、フィルム状接着剤3を介して、半導体チップ5を被着体6上にダイボンドする工程と、半導体チップ5を被着体6上にダイボンドする工程の後に、フィルム状接着剤3を加圧下で加熱することにより熱硬化させる工程とを含む方法により、半導体装置を製造する。
 より具体的には、実施形態1の方法は、フィルム状接着剤付きダイシングテープ10のフィルム状接着剤3上に半導体ウエハ4を配置する工程と、フィルム状接着剤3上に配置された半導体ウエハ4をダイシングして半導体チップ5を形成する工程と、半導体チップ5をフィルム状接着剤3とともにピックアップする工程と、フィルム状接着剤3を介して、半導体チップ5を被着体6上にダイボンドする工程と、半導体チップ5を被着体6上にダイボンドする工程の後に、フィルム状接着剤3を加圧下で加熱することにより熱硬化させる工程とを含む。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 実施例で使用した成分について説明する。
 テイサンレジンSG-280 EK23:ナガセケムテックス(株)製のテイサンレジンSG-280 EK23(熱可塑性樹脂、Mw:90万、酸価:30mgKOH/g)
 テイサンレジンSG-70L:ナガセケムテックス(株)製のテイサンレジンSG-70L(カルボキシル基を含むアクリル共重合体、Mw:90万、酸価:5mgKOH/g、ガラス転移温度:-13℃)
 アルフォン UC-3510:東亜合成(株)製のアルフォン UC-3510(熱可塑性樹脂、Mw:2000、酸価:70mgKOH/g)
 JER828:三菱化学(株)製のJER828(熱硬化性樹脂、エポキシ当量184~194)
 EPICLON EXA-4850-150:DIC(株)製のEPICLON EXA-4850-150(熱硬化性樹脂、エポキシ当量450)
 EPICLON HP-4700:DIC(株)製のEPICLON HP-4700D(熱硬化性樹脂、エポキシ当量160)
 EPICLON HP-4032D:DIC(株)製のEPICLON HP-4032D(熱硬化性樹脂、エポキシ当量136~148)
 EPPN-501HY:日本化薬(株)のEPPN-501HY(熱硬化性樹脂、エポキシ当量163~175)
 MEH-8400:明和化成(株)製のMEH-8400(硬化剤、水酸基当量111)
 MEH-8000H:明和化成(株)製のMEH-8000(硬化剤、水酸基当量139~143)
 2PHZ-PW:四国化成工業(株)製の2PHZ-PW(硬化剤)
 TPP-K:北興化学(株)のTPP-K(硬化促進剤)
 TPP-DCA:北興化学(株)のTPP-DCA(硬化促進剤)
 1200YP:三井金属鉱業(株)製の1200YP(フレーク状銅粉、平均粒径3.5μm、アスペクト比:10、比重8.9)
 EHD:三井金属鉱業(株)製のEHD(銀粉、球状、平均粒径0.7μm、比重10.5)
[フィルム状接着剤及びフィルム状接着剤付きダイシングテープの作製]
(実施例1~3及び比較例1)
 表1に記載の配合比に従い、表1に記載の各成分及び溶媒(メチルエチルケトン)を、ハイブリッドミキサー(キーエンス製 HM-500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA50)にダイコーターにて塗布した後、130℃で2分間乾燥させて、厚さ30μmのフィルム状接着剤を作製した。
 なお、実施例1に関しては、導電性粒子の0.2μm~0.8μmの粒径範囲のピークAと、3μm~15μmの粒径範囲のピークBとの比も合わせて表1に示した。
 実施例1では、熱可塑性樹脂として、テイサンレジンSG-280 EK23と、アルフォンUC-3510とを使用している。アルフォンUC-3510は、分子量が小さく(Mw(分子量)が2000)、反応する官能基(カルボキシル基)が多い(カルボキシル基の量を示す酸価が70)ことから、エポキシ樹脂と架橋する。また、テイサンレジンSG-280 EK23も反応する官能基が多いため、エポキシ樹脂と架橋する。
 すなわち、実施例1は、熱可塑性樹脂と熱硬化性樹脂との架橋を実施例2、3に比較して多めに起こさせた場合の例である。
 なお、実施例1では、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)を硬化剤として区分している。イミダゾール系の材料は、エポキシ樹脂を硬化させる硬化剤としての働き、及び、エポキシ樹脂と硬化剤との反応を促進する硬化促進剤としての働き、の両方の働きをする。実施例1では、フェノール樹脂を含んでいないため、記載上、硬化剤に区分した。
[評価]
 得られたフィルム状接着剤について、以下の評価を行った。結果を表1に示す。
[熱硬化後の175℃における貯蔵弾性率]
 厚みが300μmになるまでフィルム状接着剤を重ね合わせて、フィルム状接着剤からなる積層体を作製した。この積層体を表1記載の硬化温度、硬化時間にて熱硬化させた。この熱硬化させた積層体から幅10mmの短冊状のサンプルを切り出した。
 このサンプルについて、動的粘弾性測定装置(レオメトリクスサイエンティフィク社製のRSAIII)を用いて、チャック間距離20mm、昇温速度10℃/分、引張測定モードにて0~200℃で測定し、175℃時の貯蔵弾性率を求めた。
Figure JPOXMLDOC01-appb-T000001
 
10   フィルム状接着剤付きダイシングテープ
1    ダイシングテープ
11   基材
12   粘着剤層
3    フィルム状接着剤
4    半導体ウエハ
5    半導体チップ
6    被着体
61   半導体チップ付き被着体
7    ボンディングワイヤー
8    封止樹脂

Claims (9)

  1.  導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、前記半導体チップを被着体上にダイボンドする工程の後に、前記導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程とを含む半導体装置の製造方法に使用するための導電性フィルム状接着剤。
  2.  200℃で180分間加熱硬化させた後の175℃における貯蔵弾性率が、1МPa~3000МPaである請求項1に記載の導電性フィルム状接着剤。
  3.  熱硬化性樹脂と、熱硬化性樹脂を硬化させる硬化剤と、熱硬化を促進させる促進剤とを含む請求項1又は2に記載の導電性フィルム状接着剤。
  4.  導電性粒子を含み、
     前記導電性粒子は、金粒子、銀粒子、銅粒子及び被覆粒子からなる群より選択される少なくとも1種であり、
     前記被覆粒子は、コア粒子及び前記コア粒子を被覆する被覆膜を備え、
     前記被覆膜は、金、銀及び銅からなる群より選択される少なくとも1種を含み、
     前記導電性粒子は、アスペクト比が5以上のプレート状粒子を含み、
     前記導電性粒子100重量%中の前記プレート状粒子の含有量が5重量%~100重量%である請求項1~3のいずれか1に記載の導電性フィルム状接着剤。
  5.  前記導電性フィルム状接着剤中の前記導電性粒子の含有量が30重量%~95重量%である請求項4に記載の導電性フィルム状接着剤。
  6.  導電性粒子を含み、
     前記導電性粒子は、金粒子、銀粒子、銅粒子及び被覆粒子からなる群より選択される少なくとも1種であり、
     前記被覆粒子は、コア粒子及び前記コア粒子を被覆する被覆膜を備え、
     前記被覆膜は、金、銀及び銅からなる群より選択される少なくとも1種を含み、
     前記導電性粒子は、球状の球状粒子を含み、
     前記球状粒子の粒度分布において、ピークが2つ以上存在し、
     0.2μm~0.8μmの粒径範囲にピークAが存在し、3μm~15μmの粒径範囲にピークBが存在し、
     前記ピークBの粒径の前記ピークAの粒径に対する比が5~15である請求項1~3のいずれか1に記載の導電性フィルム状接着剤。
  7.  前記導電性フィルム状接着剤中の前記導電性粒子の含有量が30重量%~95重量%である請求項6に記載の導電性フィルム状接着剤。
  8.  導電性フィルム状接着剤を介して、半導体チップを被着体上にダイボンドする工程と、
     前記半導体チップを被着体上にダイボンドする工程の後に、前記導電性フィルム状接着剤を、100℃~260℃で3分間~300分間加熱することにより熱硬化させる工程とを含む半導体装置の製造方法。
  9.  請求項8に記載の製造方法により得られる半導体装置。
PCT/JP2014/083931 2014-01-08 2014-12-22 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置 WO2015104987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480072196.3A CN105900223A (zh) 2014-01-08 2014-12-22 导电性膜状粘接剂、半导体装置的制造方法、以及半导体装置
KR1020167013717A KR20160106553A (ko) 2014-01-08 2014-12-22 도전성 필름형 접착제, 반도체 장치의 제조 방법 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-001538 2014-01-08
JP2014001538A JP2015130419A (ja) 2014-01-08 2014-01-08 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置

Publications (1)

Publication Number Publication Date
WO2015104987A1 true WO2015104987A1 (ja) 2015-07-16

Family

ID=53523824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083931 WO2015104987A1 (ja) 2014-01-08 2014-12-22 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置

Country Status (5)

Country Link
JP (1) JP2015130419A (ja)
KR (1) KR20160106553A (ja)
CN (1) CN105900223A (ja)
TW (1) TW201533214A (ja)
WO (1) WO2015104987A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066838A (ja) * 2019-10-25 2021-04-30 昭和電工マテリアルズ株式会社 接着剤組成物、フィルム状接着剤及びダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142370A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp ダイシング・ダイボンドフィルム及び半導体素子
JP2012142368A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp ダイシング・ダイボンドフィルム及び半導体素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288146B2 (ja) 1992-09-16 2002-06-04 日立化成工業株式会社 導電性接着フィルム、接着法、導電性接着フィルム付き支持部材及び半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142370A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp ダイシング・ダイボンドフィルム及び半導体素子
JP2012142368A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp ダイシング・ダイボンドフィルム及び半導体素子

Also Published As

Publication number Publication date
JP2015130419A (ja) 2015-07-16
TW201533214A (zh) 2015-09-01
CN105900223A (zh) 2016-08-24
KR20160106553A (ko) 2016-09-12

Similar Documents

Publication Publication Date Title
JP6396189B2 (ja) 導電性フィルム状接着剤、フィルム状接着剤付きダイシングテープ及び半導体装置の製造方法
WO2015105028A1 (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP6542504B2 (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP6033734B2 (ja) フィルム状接着剤、ダイシングテープ一体型フィルム状接着剤、及び、半導体装置の製造方法
JP6289104B2 (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP6431343B2 (ja) 接着シート、ダイシングシート付き接着シート、積層シート及び半導体装置の製造方法
TWI742020B (zh) 接著片、切割膠帶一體型接著片及半導體裝置之製造方法
JP6366228B2 (ja) 接着シート、及びダイシング・ダイボンディングフィルム
TWI656189B (zh) Substrate, subsequent sheet with dicing sheet, and method of manufacturing semiconductor device
WO2015104988A1 (ja) 導電性フィルム状接着剤及びフィルム状接着剤付きダイシングテープ
JP2015130420A (ja) 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置
JP2017092365A (ja) ダイシングテープ一体型接着シート、及び、半導体装置の製造方法
WO2015104987A1 (ja) 導電性フィルム状接着剤、半導体装置の製造方法、及び、半導体装置
JP2015129225A (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP6259665B2 (ja) フィルム状接着剤、及びフィルム状接着剤付きダイシングテープ
JP2017098316A (ja) ダイシングテープ一体型接着シート
WO2015104986A1 (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP2015130418A (ja) 導電性フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013717

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878336

Country of ref document: EP

Kind code of ref document: A1