WO2015104815A1 - Combined air-conditioning and hot-water-supply system - Google Patents

Combined air-conditioning and hot-water-supply system Download PDF

Info

Publication number
WO2015104815A1
WO2015104815A1 PCT/JP2014/050214 JP2014050214W WO2015104815A1 WO 2015104815 A1 WO2015104815 A1 WO 2015104815A1 JP 2014050214 W JP2014050214 W JP 2014050214W WO 2015104815 A1 WO2015104815 A1 WO 2015104815A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
refrigerant
heat
heat exchanger
Prior art date
Application number
PCT/JP2014/050214
Other languages
French (fr)
Japanese (ja)
Inventor
智一 川越
博文 ▲高▼下
宏典 薮内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1601241.1A priority Critical patent/GB2537453A/en
Priority to PCT/JP2014/050214 priority patent/WO2015104815A1/en
Priority to JP2015556674A priority patent/JPWO2015104815A1/en
Publication of WO2015104815A1 publication Critical patent/WO2015104815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/136Defrosting or de-icing; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2064Arrangement or mounting of control or safety devices for air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to an air conditioning and hot water supply combined system capable of performing an air conditioning operation and a heating operation using cold water or hot water generated using a heat pump cycle.
  • the air conditioning and hot water supply combined system described in Patent Document 1 includes at least one heat source unit on which a compressor and a heat source side heat exchanger are mounted, and at least one on which an indoor side heat exchanger and an indoor side expansion device are mounted. At least one heating unit in which a water-refrigerant heat exchanger and a hot water supply side expansion device are mounted, and the indoor heat exchanger functions as a condenser or a radiator.
  • This is a system that enables simultaneous hot water supply operation (heating operation).
  • Patent Document 1 is not a system in which different refrigerant systems are connected in a complicated manner, an air conditioning and hot water supply complex system can be constructed at a very low cost.
  • the compressor is controlled so that the condensation temperature becomes constant to the target condensation temperature, and the subcooling degrees of the indoor unit and the hot water supply unit are respectively Supercooling degree control is performed to individually control the indoor side throttle device and the hot water supply side throttle device so as to achieve a corresponding target supercooling degree.
  • the target supercooling degree on the hot water supply unit side needs to be increased.
  • the hot water supply side throttle device is throttled in order to achieve the target degree of subcooling. As a result, the amount of refrigerant flowing through the hot water supply unit is reduced and heat cannot be transmitted to the water circuit side, and the hot water temperature is reduced. There was a problem of lowering.
  • the hot water supply unit is used as a capacity control, and the indoor unit is controlled to a supercooling degree (the indoor throttling device is controlled so that the target cooling temperature is kept constant and the supercooling degree becomes the target supercooling degree).
  • the indoor throttling device is controlled so that the target cooling temperature is kept constant and the supercooling degree becomes the target supercooling degree.
  • the present invention has been made to solve the above-described problems, and is an air-conditioning and hot water supply complex capable of suppressing a decrease in hot water temperature and a feeling of cold wind even when the inlet water temperature of the hot water supply unit is in a low water temperature range.
  • the purpose is to provide a system.
  • the combined air conditioning and hot water supply system includes at least one heat source unit on which a compressor and a heat source side heat exchanger are mounted, and at least one indoor unit on which an indoor side heat exchanger and an indoor expansion device are mounted. And at least one hot water supply unit on which a hot water supply side heat exchanger and a hot water supply side expansion device are mounted, and a refrigerant circuit that performs at least a heating operation in which the indoor heat exchanger functions as a condenser or a radiator,
  • An air-conditioning and hot-water supply complex system comprising a refrigerant in a refrigerant circuit and a hot water supply circuit that performs at least a heating operation for heating a heat medium by exchanging heat with a hot water supply side heat exchanger, and performing both a heating operation and a heating operation
  • the hot water supply side throttle device is controlled based on the required capacity of the hot water supply unit, and the hot water temperature priority mode for prohibiting the heating operation of the indoor unit is
  • the present invention even when the inlet water temperature of the hot water supply unit is in the low water temperature range, it is possible to suppress the decrease in the hot water temperature of the hot water supply unit and the feeling of cold air.
  • FIG. 1 shows an example of the mode switching threshold values A and B which switch between the hot water temperature priority mode and the continuation mode in the air-conditioning and hot water supply complex system according to Embodiment 1 of the present invention. It is a flowchart of control mode judgment of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. It is a flowchart of control mode judgment of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. It is a control-operation flowchart of the hot-water supply side throttle apparatus in the air-conditioning hot-water supply complex system according to Embodiment 1 of the present invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning and hot water supply complex system according to Embodiment 1 of the present invention. Based on FIG. 1, a structure and operation
  • the combined air conditioning and hot water supply system is installed in a building, condominium, hotel, etc., and can simultaneously supply an air conditioning load (cooling load, heating load) and a hot water supply load by using a refrigeration cycle that circulates refrigerant. It is.
  • the combined air conditioning and hot water supply system 100 includes at least a heat source unit (outdoor unit) 110, a load side unit (indoor unit) 210, and a hot water supply unit 310. Among these, the indoor unit 210 and the hot water supply unit 310 are connected to the heat source unit 110 in parallel.
  • the heat source unit 110 and the indoor unit 210 are connected by a liquid main pipe 1 that is a refrigerant pipe, a liquid branch pipe 4a that is a refrigerant pipe, a gas branch pipe 3a that is a refrigerant pipe, and a gas main pipe 2 that is a refrigerant pipe.
  • the heat source unit 110 and the hot water supply unit 310 are connected by a liquid main pipe 1 that is a refrigerant pipe, a liquid branch pipe 4b that is a refrigerant pipe, a gas branch pipe 3b that is a refrigerant pipe, and a gas main pipe 2 that is a refrigerant pipe.
  • the heat source unit 110 has a function of supplying hot or cold heat to the indoor unit 210 and the hot water supply unit 310.
  • the heat source unit 110 includes a compressor (heat source side compressor) 111, a flow path switching valve 112 as a flow path switching means, a heat source side heat exchanger 113, and an accumulator 115 connected in series.
  • the heat source unit 110 is provided with a blower 114 such as a fan for supplying air to the heat source side heat exchanger 113 in the vicinity of the heat source side heat exchanger 113.
  • the compressor 111 sucks the refrigerant flowing through the gas main pipe 2 and compresses the refrigerant to bring it into a high temperature / high pressure state.
  • the compressor 111 is not particularly limited as long as it can compress the sucked air-conditioning refrigerant to a high pressure state.
  • the compressor 111 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the compressor 111 may be of a type that can be variably controlled by an inverter.
  • the flow path switching valve 112 switches the flow of the air conditioning refrigerant according to the required operation mode (cooling or heating).
  • the heat source side heat exchanger 113 functions as a radiator (condenser) during the cooling cycle, and functions as an evaporator during the heating cycle, and performs heat exchange between the air supplied from the blower 114 and the refrigerant to condense or liquefy the refrigerant. Evaporative gasification.
  • the accumulator 115 is disposed on the suction side of the compressor 111 and stores excess refrigerant.
  • the accumulator 115 may be any container that can store excess refrigerant.
  • the indoor unit 210 has a function of receiving heating or cooling supply from the heat source unit 110 and taking charge of heating load or cooling load.
  • an indoor expansion device 212 and an indoor heat exchanger 211 are mounted connected in series.
  • FIG. 1 although the state in which the one indoor unit 210 is mounted is shown as an example, the number is not particularly limited.
  • the indoor unit 210 may be provided with a blower such as a fan for supplying air to the indoor heat exchanger 211 in the vicinity of the indoor heat exchanger 211.
  • the indoor expansion device 212 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the indoor throttle device 212 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • a gas pipe temperature detection sensor 213G and a liquid pipe temperature detection sensor 213L are installed in the front and rear pipes of the indoor heat exchanger 211. Based on the temperature data information obtained from these sensors, the control means 220 determines the control amount of the indoor expansion device 212 and controls the refrigerant flow rate of the indoor expansion device 212.
  • the indoor heat exchanger 211 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and performs heat exchange between the air supplied from a blower (not shown) and the refrigerant to condense the refrigerant. It is liquefied or vaporized gas.
  • the hot water supply unit 310 has a function of receiving a supply of hot or cold heat from the heat source unit 110 and taking charge of a hot water supply load or a cooling load.
  • the hot water supply unit 310 is equipped with a hot water supply side expansion device 312 and a hot water supply side heat exchanger (refrigerant-water heat exchanger) 311 connected in series.
  • a hot water supply side expansion device 312 and a hot water supply side heat exchanger (refrigerant-water heat exchanger) 311 connected in series.
  • FIG. 1 although the state in which one hot water supply unit 310 is mounted is shown as an example, the number is not particularly limited.
  • the hot water supply side throttle device 312 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by decompressing it.
  • the hot water supply side throttling device 312 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • a gas pipe temperature detection sensor 313G and a liquid pipe temperature detection sensor 313L are installed in the front and rear pipes of the refrigerant-water heat exchanger 311.
  • the control unit 320 determines the control amount of the hot water supply side expansion device 312 and performs the refrigerant flow rate control of the hot water supply side expansion device 312.
  • the refrigerant-water heat exchanger 311 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and is supplied with water supplied from the water pipes 11 (11a, 11b) of the water circuit 10 serving as a hot water supply circuit. Heat exchange is performed with the refrigerant, and the refrigerant is condensed or evaporated.
  • the hot water supply unit 310 further includes a bypass pipe 314 that bypasses the hot water supply side expansion device 312 and the refrigerant-water heat exchanger 311 and a bypass valve 315 that controls the flow rate of the bypass pipe 314.
  • the bypass pipe 314 and the bypass valve 315 are used in “standard defrosting operation” described later, and the bypass valve 315 is always closed in other operations.
  • the water circuit 10 includes a pump and a hot water storage tank (not shown). That is, the water circuit 10 is established by circulating the water heated or cooled by the refrigerant-water heat exchanger 311 with the pump.
  • the water pipe 11 constituting the water circuit 10 may be constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • water has been described as an example of the heat medium circulating in the water circuit 10, it is not limited to water and may be an antifreeze or the like.
  • the water circuit 10 includes an inlet water temperature detection sensor 10a that detects the inlet water temperature, and an outlet water temperature detection sensor 10b that detects an outlet water temperature (hereinafter also referred to as hot water temperature).
  • Each of the heat source unit 110, the indoor unit 210, and the hot water supply unit 310 has a control means 120, a control means 220, and a control means 320.
  • Each control means uses the communication means 400, and the information that each has. introduce.
  • the control means 120, the control means 220, and the control means 320 are each constituted by a microcomputer or a DSP.
  • the control means 120 of the heat source unit 110 has a function of controlling the refrigerant pressure state and the refrigerant temperature state in the air conditioning and hot water supply complex system 100. Specifically, the control unit 120 controls the operating frequency of the compressor 111, the heat source side heat exchanger 113 is divided into a plurality of heat exchangers, and is not shown on the primary side of the heat source side heat exchanger 113. If the on-off valve is configured for each heat exchanger, the on-off valve is controlled to change the heat exchange area of the heat source side heat exchanger 113, the fan rotation speed of the blower 114 is controlled, It has a function of switching the path switching valve 112.
  • the control means 220 of the indoor unit 210 uses the information obtained from the gas pipe temperature detection sensor 213G and the liquid pipe temperature detection sensor 213L to determine the degree of superheat during the cooling operation of the indoor unit 210 and the heating operation of the indoor unit 210.
  • the indoor heat exchanger 211 is divided into a plurality of heat exchangers, and an on-off valve (not shown) is installed on the primary side of the indoor heat exchanger 211 for each heat exchanger. If it is a structure, it controls the on-off valve to change the heat exchange area of the indoor heat exchanger 211, controls the fan rotation speed of a blower (not shown), and controls the opening of the indoor expansion device 212. It has a function to do.
  • the control means 320 of the hot water supply unit 310 is based on information obtained from the gas pipe temperature detection sensor 313G, the liquid pipe temperature detection sensor 313L, the inlet water temperature detection sensor 10a, and the outlet water temperature detection sensor 10b, during the cooling operation of the hot water supply unit 310. And the function of controlling the degree of supercooling during the heating operation of the hot water supply unit 310 or the hot water temperature.
  • the refrigerant-water heat exchanger 311 is divided into a plurality of heat exchangers, and an on-off valve (not shown) is installed on the primary side of the refrigerant-water heat exchanger 311 for each heat exchanger. With this configuration, the on-off valve is controlled to change the heat exchange area of the refrigerant-water heat exchanger 311 and to control the opening degree of the hot water supply side expansion device 312.
  • each unit has a control unit and transmits information to each other to perform a cooperative process.
  • a configuration in which a control unit for controlling the entire air conditioning and hot water supply complex system 100 is also provided. Good.
  • the air conditioning and hot water supply complex system 100 includes a sensor that detects the refrigerant discharge pressure, a sensor that detects the refrigerant suction pressure, a sensor that detects the refrigerant discharge temperature, and a refrigerant suction temperature.
  • a sensor a sensor for detecting the temperature of the refrigerant flowing into and out of the heat source side heat exchanger 113, a sensor for detecting the outside air temperature taken into the heat source unit 110, a sensor for detecting the temperature of the air sucked into or blown into the indoor side heat exchanger 211,
  • a sensor or the like for detecting the temperature of water stored in a hot water storage tank may be provided.
  • Information (measurement information such as temperature information and pressure information) detected by these various sensors is sent to the control means 120 via the communication means 400 and used for controlling each actuator.
  • the refrigerant that can be used in the air-conditioning and hot water supply complex system 100 will be described.
  • Examples of the refrigerant that can be used in the refrigeration cycle of the air conditioning and hot water supply complex system 100 include a non-azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, and a single refrigerant.
  • Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant.
  • this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • the pseudo azeotropic refrigerant mixture includes R410A (R32 / R125), R404A (R125 / R143a / R134a), which are HFC refrigerants, and the like.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle. In addition, carbon dioxide, propane, isobutane, ammonia, etc., which are natural refrigerants, can also be used.
  • R22 represents chlorodifluoromethane
  • R32 represents difluoromethane
  • R125 represents pentafluoromethane
  • R134a represents 1,1,1,2-tetrafluoromethane
  • R143a represents 1,1,1-trifluoroethane. ing. Therefore, it is good to use the refrigerant
  • an antifreezing agent (brine) may be added to the water.
  • the type of antifreeze is not particularly limited, and may be selected according to availability and use, such as ethylene glycol and propylene glycol.
  • the operation performed in the air conditioning and hot water supply complex system 100 includes a heating (heating) operation and a cooling (cooling) operation. Both operations will be described below.
  • the heating (heating) operation the flow path switching valve 112 is switched to the dotted line side in FIG. 1, and in the cooling (cooling) operation, the flow path switching valve 112 is switched to the solid line side in FIG.
  • the air conditioning and hot water supply combined system 100 is a system in which the hot water supply unit 310 and the indoor unit 210 are designed with one refrigerant system.
  • a high temperature and high pressure refrigerant from the compressor 111 is supplied to the hot water supply unit 310 side to boil water in a storage tank (not shown) of the hot water supply unit 310, and a high temperature from the compressor 111.
  • the high-pressure refrigerant is switched to one of the heating operation (air-conditioning operation) in which the high-pressure refrigerant is supplied to the indoor unit 210 and hot air is supplied indoors.
  • a heating operation is performed at midnight or a considerable 1 to 2 hours
  • an air-conditioning operation is performed from morning to midnight (an image of boiling hot water stored in a tank and used for one day).
  • the air-conditioning hot-water supply complex system 100 of the first embodiment can also perform simultaneous operation in which both the hot-water supply operation and the heating operation are performed.
  • the high-pressure gas refrigerant heated and compressed by the compressor 111 is conveyed to the indoor unit 210 (or the hot water supply unit 310) via the flow path switching valve 112, the gas main pipe 2, and the gas branch pipe 3.
  • the refrigerant transferred to the indoor unit 210 (or hot water supply unit 310) is condensed by releasing heat to the indoor air (or water of the water circuit 10) in the indoor heat exchanger 211 or the refrigerant-water heat exchanger 311.
  • the action changes to a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant changes into a low-pressure two-phase refrigerant (a refrigerant mixed with liquid and gas) by an expansion action in the indoor expansion device 212 (or the hot water supply-side expansion device 312) on the secondary side of the heat exchanger. .
  • the low-pressure two-phase refrigerant is changed into a low-pressure gas refrigerant by transferring heat from the air through the liquid branch pipe 4 and the liquid main pipe 1 in the heat source side heat exchanger 113 in the heat source unit 110.
  • the low-pressure gas refrigerant passes through the flow path switching valve 112 and the accumulator 115, is sucked in by the compressor 111, and changes to a high-pressure gas refrigerant.
  • the air conditioning and hot water supply combined system 100 can perform a heating (hot water supply) operation.
  • the refrigerant that has passed through the gas main pipe 2 is divided into each of the gas branch pipes 3a and 3b, and each refrigerant is divided into the indoor heat exchanger 211 and the indoor expansion device 212 of the indoor unit 210, and the hot water supply unit.
  • 310 passes through the refrigerant-water heat exchanger 311 and the hot water supply side expansion device 312 respectively, and flows into the liquid branch pipes 4a and 4b.
  • the refrigerants flowing into the liquid branch pipes 4a and 4b join the liquid main pipe 1 and then flow toward the heat source side heat exchanger 113.
  • the high-pressure gas refrigerant heated and compressed by the compressor 111 passes through the flow path switching valve 112 and is conveyed to the heat source side heat exchanger 113 in the heat source unit.
  • the heat source side heat exchanger 113 by releasing heat to the air, the high-pressure gas refrigerant is condensed and changed into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is conveyed to the indoor unit 210 (or the hot water supply unit 310) through the liquid main pipe 1 and the liquid branch pipe 4.
  • the high-pressure liquid refrigerant is expanded by the indoor side expansion device 212 (or the hot water supply side expansion device 312), and the low-pressure two-phase refrigerant (the refrigerant mixed with gas and liquid).
  • the indoor heat exchanger 211 or refrigerant-water heat exchanger 311), the heat is transferred from the load to the low pressure gas refrigerant (the load side is deprived of heat). Cooled).
  • the low-pressure gas refrigerant exiting the indoor unit 210 (or the hot water supply unit 310) returns to the heat source unit 110 via the gas branch pipe 3 and the gas main pipe 2.
  • the low-pressure gas refrigerant that has flowed into the heat source unit 110 passes through the flow path switching valve 112 and the accumulator 115, is sucked in by the compressor 111, and changes to a high-pressure gas refrigerant.
  • the air conditioning and hot water supply combined system 100 can perform a cooling (cooling) operation.
  • the refrigerant is stored in the accumulator 115 because the refrigerant is left in the heating operation.
  • the target condensation temperature is determined so that the heating capacity can be exhibited in all the indoor units 210 connected to the heat source unit 110, and the refrigerant condensation temperatures of the indoor unit 210 and the hot water supply unit 310 are determined. Is controlled to be constant at the target condensation temperature. Therefore, when performing the heating operation and the heating operation at the same time, it is also important to maintain the refrigerant condensing temperature. If it is attempted to keep the refrigerant condensing temperature constant at the target condensing temperature, the inlet water temperature of the hot water supply unit 310 and the hot water supplying unit 310 are maintained. The relationship with the degree of supercooling is as shown in FIG.
  • FIG. 2 is a diagram showing the relationship between the degree of supercooling of the hot water supply unit of FIG. 1 and the inlet water temperature of the hot water supply unit.
  • the degree of supercooling (hereinafter referred to as SC_H) of the hot water supply unit 310 can be expressed by the following equation.
  • SC_H CT_H-TRL_H here, CT_H: Refrigerant condensation temperature TRL_H: Refrigerant-water heat exchanger 311 outlet refrigerant liquid tube temperature
  • the refrigerant liquid tube temperature TRL_H becomes a value almost close to the water temperature in the refrigerant-water heat exchanger 311.
  • the refrigerant condensing temperature of the hot water supply unit 310 is kept constant at the target condensing temperature, if the inlet water temperature of the hot water supply unit 310 is a low water temperature (for example, 25 ° C. to 35 ° C.), the degree of supercooling (SC_H) As shown in FIG. 2, it is necessary to set the target value of 1 to a considerably large value. Therefore, the hot-water supply side expansion device 312 in the hot-water supply unit 310 performs a considerably squeezed operation in an attempt to achieve the target value of the degree of supercooling. Then, since the gas refrigerant does not flow to the hot water supply unit 310, the ability cannot be exhibited even though the hot water supply unit 310 is in the heating operation.
  • SC_H degree of supercooling
  • air conditioning control in the indoor unit 210 is a technique for avoiding a situation where the hot water supply unit 310 cannot perform its ability during simultaneous operation in which heating operation is performed simultaneously with heating operation.
  • a “hot-water temperature priority mode” in which priority is given to the performance of the hot water supply unit 310 is provided.
  • the simultaneous operation in addition to the “hot water temperature priority mode”, there is a “continuation mode” which is the same control as the conventional one.
  • FIG. 3 is a diagram showing control outlines of the hot water temperature priority mode and the continuation mode in the combined air-conditioning and hot water system according to Embodiment 1 of the present invention.
  • the combined air conditioning and hot water supply system 100 has the “hot water temperature priority mode” and the “continuation mode”, which is the same control as in the past, as the control mode in the heating operation (or heating operation).
  • the “hot water temperature priority mode” and the “continuation mode” have different control methods for the hot water supply side expansion device 312 of the hot water supply unit 310. Each mode will be described below.
  • the hot water supply unit 310 performs its own capacity control regardless of the refrigerant condensation temperature, and does not control the degree of supercooling.
  • the self capability control is control for controlling the hot water supply side throttle device 312 based on the required capability required for the hot water supply unit 310, and controls the hot water supply side throttle device 312 so that the hot water temperature becomes the target hot water temperature.
  • Control Specifically, the hot water supply side expansion device 312 is controlled in accordance with the temperature difference between the hot water temperature detected by the outlet water temperature detection sensor 10b and the target hot water temperature, and the hot water supply side expansion device increases as the temperature difference increases.
  • the opening value of 312 is determined to be a large value.
  • the “hot water temperature priority mode” is a control that prioritizes the hot water supply capacity on the hot water supply unit 310 side, and does not control the degree of supercooling, so the refrigerant condensing temperature of the air-conditioning hot water supply combined system 100 becomes a matter of course.
  • the “hot water temperature priority mode” when the outlet water temperature is in a low water temperature range, that is, when the load on the hot water supply unit 310 is high, a large amount of refrigerant is supplied to the refrigerant-water heat exchanger 311. The side diaphragm device 312 is opened.
  • the refrigerant condensation temperature does not increase. That is, in the “hot water temperature priority mode”, the refrigerant condensation temperature does not rise to the target condensation temperature.
  • the heating operation of the indoor unit 210 is permitted in the “hot water temperature priority mode”, cold air is blown out from the indoor unit 210, giving the user a feeling of cold air. Therefore, in the “hot water temperature priority mode”, the operation unit is restricted on the indoor unit 210 side. Specifically, the indoor side expansion device 212 is closed, and a blower (not shown) that blows air to the indoor side heat exchanger 211 is stopped. That is, in the “hot water temperature priority mode”, simultaneous operation is not permitted, and only heating operation is performed.
  • FIG. 4 is an explanatory diagram of control mode switching in the combined air-conditioning and hot water supply system according to Embodiment 1 of the present invention.
  • the air-conditioning and hot water supply combined system 100 two modes of the “hot water temperature priority mode” and the “continuation mode” are switched based on the inlet water temperature detected by the inlet water temperature detection sensor 10a. That is, during operation in the “hot water temperature priority mode”, when the inlet water temperature detected by the inlet water temperature detection sensor 10a becomes higher than the preset mode switching threshold A and the inlet water temperature is no longer in the low water temperature range, To "".
  • the “continuation mode” is set. continue.
  • the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or lower than the mode switching threshold A, that is, if the outlet water temperature is in the low water temperature range, during operation in the “continuation mode”, the mode is switched to the “hot water temperature priority mode”.
  • FIG. 5 is a diagram showing an example of mode switching thresholds A and B for switching between the hot water temperature priority mode and the continuous mode in the combined air-conditioning and hot water supply system according to Embodiment 1 of the present invention.
  • the mode switching thresholds A and B can be manually changed by, for example, a hot water supply unit installation switch (DipSW).
  • DipSW hot water supply unit installation switch
  • the mode switching threshold A is set to 30 ° C.
  • the mode switching threshold B is set to 35 ° C.
  • the switching threshold B can be changed to 40 ° C. Note that although manual switching has been described in this specification, it may be switched by a control signal from an external communication device.
  • the control mode can be switched flexibly according to the application at the site. For example, if the inlet water temperature is up to 40 ° C., if you want to activate the “hot water temperature priority mode”, change the DipSW setting from default to setting 3 to change the ratio of the “hot water temperature priority mode” to “continue” It is possible to increase compared to “mode”.
  • the threshold value can be changed in units of 5 ° C. so that the local service person or the installation contractor can finely set the local use.
  • this “5 ° C.” is an example. It is not limited to temperature.
  • Control mode judgment The control mode determination according to the first embodiment will be described with reference to flowcharts shown in FIGS. Note that FIG. 6 and FIG. 7 are separate logics, and the control may be arbitrarily changed according to the form and application of the unit.
  • FIG. 6 is a flowchart of control mode determination of the combined air-conditioning and hot water system according to Embodiment 1 of the present invention.
  • the control means 320 of the hot water supply unit 310 sets the control mode to the “hot water temperature priority mode” as an initial setting (S1) when the start of the heating operation is instructed or when the hot water temperature is lower than the target hot water temperature and the thermo is turned on.
  • the initial setting is set to the “hot water temperature priority mode”, but it may be set to the “continuation mode”.
  • the control unit 320 checks the setting of DipSW and confirms the mode switching thresholds A and B (S2). Thereafter, mode determination processing (S3, S4) is performed.
  • the mode determination process first, it is determined whether or not the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or higher than the mode switching threshold B (S3). If the inlet water temperature is equal to or higher than the mode switching threshold B, the mode is switched to “continuation mode” (S5). If the inlet water temperature is lower than the mode switching threshold B, it is subsequently determined whether the inlet water temperature is equal to or lower than the mode switching threshold A ( S4).
  • the “hot water temperature priority mode” is maintained (S6), and if the inlet water temperature is higher than the mode switching threshold A, the current The mode is maintained (S7).
  • the “hot water temperature priority mode” is set as the initial setting, the “hot water temperature priority mode” remains unchanged.
  • control unit 320 determines whether the hot water supply unit 310 has been turned off or an instruction to stop the operation of the hot water supply unit 310 is made (S8). If neither is satisfied, the process returns to step S3.
  • the processes from step S3 to step S7 are sequentially performed at arbitrarily set control time intervals until the hot water supply unit 310 is thermo-OFF or the operation stop of the hot water supply unit 310 is instructed.
  • the “hot water temperature priority mode” is executed. Since the inlet water temperature is a temperature that depends on the temperature environment of the outside air and is not a temperature that changes due to the operation of the hot water supply unit 310, once it is determined in step S4 that the inlet water temperature is equal to or lower than the mode switching threshold A, usually, for a while During this time, the “hot water temperature priority mode” is continuously performed. Thereby, the hot water temperature detected by the outlet water temperature detection sensor 10b gradually increases toward the target hot water temperature. Then, when the hot water temperature reaches the target hot water temperature and the hot water supply unit 310 is thermo-OFF, the control in FIG. 6 is terminated.
  • the air-conditioning and hot-water supply complex system determines switching between the “hot water temperature priority mode” and the “continuation mode”, but in FIG. 7, this determination is performed by an external communication device. .
  • FIG. 7 is a flowchart of control mode determination of the combined air-conditioning and hot-water supply system according to Embodiment 1 of the present invention.
  • the control means 320 of the hot water supply unit 310 sets the control mode to the “hot water temperature priority mode” as an initial setting when the start of the heating operation is instructed or when the hot water temperature is lower than the target hot water temperature and the thermostat is turned on (S11). .
  • the “hot water temperature priority mode” is set, but the “continuous mode” may be set.
  • the control means 320 implements confirmation (S12) whether the mode change signal is received.
  • the mode change signal is a signal transmitted from an external communication device outside the air conditioning and hot water supply complex system 100.
  • the external communication device is, for example, a monitoring device that monitors the operation state of the air conditioning and hot water supply complex system 100.
  • the control means 320 determines the mode change content (S13). If the received mode change signal instructs the “hot water temperature priority mode”, the control means 320 performs the “hot water temperature priority mode” (S14), and if it instructs the “continuation mode”, The “continuation mode” is executed (S15). On the other hand, when it is determined in step S12 that the mode change signal has not been received, the control means 320 maintains the current mode (S16).
  • control means 320 determines whether the hot water supply unit 310 is thermo-off or has been instructed to stop the operation of the hot water supply unit 310 (S17), and if neither is satisfied, the process returns to step S12.
  • the processes from step S12 to step S16 are sequentially performed at arbitrarily set control time intervals until the hot water supply unit 310 is thermo-OFF or the operation stop of the hot water supply unit 310 is instructed.
  • the external communication device outside the air conditioning and hot water supply combined system 100 is connected to the inlet water temperature detection sensor 10a or the control means 320 so that the detection signal of the inlet water temperature detection sensor 10a can be received. Then, when the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or lower than the mode switching threshold A, the external communication device transmits a mode change signal instructing the “hot water temperature priority mode” to the hot water supply unit 310. Further, when the inlet water temperature detected by the inlet water temperature detection sensor 10 a is equal to or higher than the mode switching threshold B, the external communication device transmits a mode change signal instructing “continuation mode” to the hot water supply unit 310.
  • FIG. 8 is a flowchart of the control operation of the hot water supply side throttle device in the combined air conditioning and hot water supply system according to Embodiment 1 of the present invention.
  • the control means 320 of the hot water supply unit 310 performs a process (S21) for confirming the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 subsequently checks the outlet water temperature (hot water temperature) detected by the outlet water temperature detection sensor 10b (S22), and sets the target hot water temperature. Confirmation (S23) is performed.
  • the hot water supply unit 310 determines the opening value of the hot water supply side expansion device 312 according to the temperature difference between the target hot water temperature and the hot water temperature, and controls the hot water supply side expansion device 312 so as to be the opening value (S24). ) Specifically, as described above, as the water temperature difference between the target hot water temperature and the hot water temperature is larger, the opening degree value of the hot water supply side expansion device 312 is determined to be a larger value, and the amount of refrigerant flowing into the refrigerant-water heat exchanger 311 is determined. Thus, the control for increasing the capacity of the hot water supply unit 310 is performed.
  • the hot water supply unit 310 subsequently checks the degree of supercooling (S25) and the target degree of supercooling (S26). Then, the hot water supply unit 310 determines the opening value of the hot water supply side expansion device 312 according to the difference between the target supercooling degree and the subcooling degree, and controls the hot water supply side expansion device 312 so as to be the opening value (S27). )
  • FIG. 9 is a control operation flowchart regarding the operation prohibition process of the indoor unit in the air conditioning and hot water supply complex system according to Embodiment 1 of the present invention.
  • the control means 320 of the hot water supply unit 310 performs processing (S31) for checking the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 performs a process of imposing a restriction on prohibition of operation on the indoor unit 210 (S32). Specifically, as described above, the indoor expansion device 212 is closed, and the blower (not shown) that blows air to the indoor heat exchanger 211 is stopped.
  • the hot water supply unit 310 performs a process (S33) for releasing the restriction on prohibition of operation for the indoor unit 210.
  • the hot water supply unit 310 has shown the form which imposes restrictions of a driving
  • running prohibition with respect to the indoor unit 210 in the above, you may make it as follows. That is, in the control system configuration, if the heat source unit 110 is a system responsible for the operation restriction of the indoor unit 210, the control means 120 of the heat source unit 110 is operated from the control means 320 of the hot water supply unit 310 to the operation restriction information of the indoor unit 210 (for example, The operation mode of the hot water supply unit 310 information of the hot water temperature priority mode) may be received, and the heat source unit 110 may implement the operation restriction of the indoor unit 210 based on the operation restriction information. Further, the communication means at that time may be implemented by the control means (120, 220, 320) possessed by each unit and the communication means 400.
  • a defrosting operation for melting and removing frost attached to the heat source side heat exchanger 113 is performed at an appropriate timing during the heating operation.
  • the defrosting operation will be described, and then the availability of the water sampling heat defrosting operation during the defrosting operation will be described.
  • the refrigerant flows in the order of the compressor 111 ⁇ the flow path switching valve 112 ⁇ the heat source side heat exchanger 113 ⁇ the liquid main pipe 1 ⁇ the liquid branch pipe 4a and the liquid branch pipe 4b ⁇ the indoor unit 210 and the hot water supply unit 310. Then, the refrigerant that has passed through the gas branch pipes 3 a and 3 b flows from the gas main pipe 2 ⁇ the flow path switching valve 112 ⁇ the accumulator 115 ⁇ the compressor 111.
  • the refrigerant passes through the indoor expansion device 212 ⁇ the indoor heat exchanger 211 and flows to the gas branch pipe 3a.
  • the defrosting operation is classified into “standard defrosting operation” and “water sampling heat defrosting operation”.
  • the “standard defrosting operation” is an operation for melting the frost formed on the heat source side heat exchanger 113 with only the heat amount (work amount) of the compressor 111, and the refrigerant in the hot water supply unit 310 in the “standard defrosting operation”.
  • the flow is as follows. That is, in the “standard defrosting operation”, the refrigerant flows from the bypass pipe 314 to the bypass valve 315 to the gas branch pipe 3b.
  • the “water sampling heat defrosting operation” uses the heat transferred from the water flowing through the water circuit 10 in the water heat exchanger 311 in addition to the amount of heat (work amount) of the compressor 111, and heat source side heat exchange.
  • the refrigerant flow in the hot water supply unit 310 in the “water sampling defrosting operation” is as follows. That is, the refrigerant in the “water sampling heat defrosting operation” passes through the hot water supply side expansion device 312 ⁇ the refrigerant-water heat exchanger 311 and flows to the gas branch pipe 3b.
  • the air conditioning and hot water supply combined system 100 switches the flow path switching valve 112 to the solid line side in FIG. It is determined whether the operation is “operation” or “water sampling / defrosting operation”. Then, the bypass valve 315 is controlled such that the determined operation is performed.
  • the “water sampling heat defrosting operation” has higher defrosting efficiency than the “standard defrosting operation” because the heat received from the water flowing on the water circuit 10 side is also used for defrosting.
  • the refrigerant-water heat exchanger 311 performs hydrothermal freezing freeze (specifically, In other words, the water in the water circuit of the refrigerant-water heat exchanger 311 freezes and expands in volume, which causes excessive stress on the inside of the refrigerant-water heat exchanger 311 and leads to breakage). is there.
  • control means 320 of the hot water supply unit 310 determines whether or not the “water sampling heat defrosting operation” is permitted based on the current operation state, and when it determines that the “water sampling heat defrosting operation” is permitted, When the “heat extraction defrosting operation” is performed and it is determined that the “water extraction heat defrosting operation” is not permitted, the “standard defrosting operation” is performed.
  • FIG. 10 is a control operation flowchart in the water sampling / defrosting operation availability in the combined air conditioning and hot water supply system according to Embodiment 1 of the present invention.
  • the control means 320 of the hot water supply unit 310 performs processing (S41) for confirming the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 subsequently has an inlet water temperature detected by the inlet water temperature detection sensor 10a greater than or equal to a preset water sampling defrost setting value.
  • the hot water supply unit 310 determines that the inlet water temperature is equal to or higher than the water sampling heat defrosting set value, it determines that the “water sampling heat defrosting operation” is permitted, and performs the “water sampling heat defrosting operation” (S43). Specifically, the hot water supply unit 310 closes the bypass valve 315 so that the refrigerant flows into the refrigerant-water heat exchanger 311. In addition, when it is determined in step S41 that the currently set control mode is the “continuation mode”, the “water sampling heat defrosting operation” is similarly performed (S43).
  • step S42 determines that the inlet water temperature is less than the water sampling heat defrosting set value
  • the hot water supply unit 310 determines that the “water sampling heat defrosting operation” is not permitted and performs the “standard defrosting operation”.
  • Implement (S44) Specifically, the hot water supply unit 310 opens the bypass valve 315 so that the refrigerant flows through the bypass pipe 314.
  • the control mode during the simultaneous operation controls the hot water supply side expansion device 312 for the purpose of securing the hot water temperature of the hot water supply unit 310, and the hot water that prohibits the operation of the indoor unit 210.
  • the temperature priority mode and the continuous mode in which the simultaneous operation is continued are switched according to the inlet water temperature of the hot water supply unit 310. For this reason, the operation according to the inlet water temperature of the hot water supply unit 310 is possible, the decrease in the hot water temperature when the inlet water temperature is in the low water temperature range can be suppressed, and the operation without causing the user to feel the cold air in the room is possible. Become.
  • Cooling and radiator in an indoor unit heating is performed with hot water conveyed from a hot water supply unit
  • the role is shared by each device such as heating. Therefore, it is very rare to simultaneously perform the heating operation of the indoor unit and the heating operation of the hot water supply unit.
  • the operation restriction of the indoor unit 210 in the “hot water temperature priority mode” does not become a problem by introducing the present invention.
  • the indoor heating is performed not by the indoor unit 210 but by a water-air heat exchanger (not shown) provided in the water circuit 10. Can be heated with warm water and heated. Therefore, the operation restriction of the indoor unit 210 in the “hot water temperature priority mode” does not become a problem, and the protection function as the air conditioning and hot water supply complex system 100 can be exhibited correctly.
  • control unit 320 of the hot water supply unit 310 operates in a self-distributed manner.
  • control unit 120 of the heat source unit 110 acquires necessary information via the communication unit 400, and the hot water supply unit 310 may be controlled. That is, the processing of the flowcharts shown in FIGS. 7 to 10 may be performed on the control means 120 side.
  • the connected hot water supply unit 310 Capacity may also be added to the criteria. For example, if “inlet water temperature ⁇ B or the capacity ratio between the heat source unit 110 and the hot water supply unit 310 is larger than an arbitrarily determined value” in S3 of FIG. 6, the continuation mode (S5) is determined. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Provided is a control means (320) that includes, as a control mode during a simultaneous operation in which both a heating operation and a water heating operation are performed, the following: a tapping temperature priority mode in which a hot-water supply side throttle device (312) is controlled on the basis of the required capacity of a hot-water supply unit (310), and the heating operation of an indoor unit (210) is prohibited; and a continuation mode in which the simultaneous operation is continued. The control means (320) switches the control mode during the simultaneous operation to the tapping temperature priority mode or the continuation mode in accordance with the inlet temperature of a heat medium in a refrigerant-to-water heat exchanger (311).

Description

空調給湯複合システムAir conditioning and hot water supply complex system
 本発明は、ヒートポンプサイクルを利用して生成された冷水又は温水を用いて、空調運転及び加熱運転が可能な空調給湯複合システムに関するものである。 The present invention relates to an air conditioning and hot water supply combined system capable of performing an air conditioning operation and a heating operation using cold water or hot water generated using a heat pump cycle.
 ヒートポンプサイクルを搭載し、熱源(空気又は水)から温熱を授受し、複数台の室内ユニット又は給湯ユニットに供給する空調給湯複合システムが提案されている(例えば、特許文献1参照)。 There has been proposed an air-conditioning and hot-water supply combined system that is equipped with a heat pump cycle, receives heat from a heat source (air or water), and supplies the heat to a plurality of indoor units or hot water supply units (see, for example, Patent Document 1).
 特許文献1に記載されている空調給湯複合システムは、圧縮機及び熱源側熱交換器が搭載された少なくとも1台の熱源ユニットと、室内側熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、水-冷媒熱交換器及び給湯側絞り装置が搭載された少なくとも1台の給湯ユニットとが接続され、室内側熱交換器が凝縮器又は放熱器として機能する暖房運転を少なくとも行う冷媒回路と、冷媒回路の冷媒と水-冷媒熱交換器にて熱交換して水を加熱する加熱運転を少なくとも行う水回路とを備えており、1冷媒系統で空調運転(暖房運転)と給湯運転(加熱運転)とを同時に行うことを可能としたシステムである。 The air conditioning and hot water supply combined system described in Patent Document 1 includes at least one heat source unit on which a compressor and a heat source side heat exchanger are mounted, and at least one on which an indoor side heat exchanger and an indoor side expansion device are mounted. At least one heating unit in which a water-refrigerant heat exchanger and a hot water supply side expansion device are mounted, and the indoor heat exchanger functions as a condenser or a radiator. A refrigerant circuit to be performed, and a water circuit to perform at least a heating operation of heating water by exchanging heat with the refrigerant of the refrigerant circuit and a water-refrigerant heat exchanger, and air conditioning operation (heating operation) with one refrigerant system; This is a system that enables simultaneous hot water supply operation (heating operation).
 このように、特許文献1は異冷媒系統が複雑に接続されたシステムではないため、非常に安価で空調給湯複合システムを構築することができる。 Thus, since Patent Document 1 is not a system in which different refrigerant systems are connected in a complicated manner, an air conditioning and hot water supply complex system can be constructed at a very low cost.
国際公開第2013/046269号(図1等)International Publication No. 2013/046269 (Fig. 1 etc.)
 前述のシステムにおいて暖房運転と加熱運転とを同時に行う同時運転では、凝縮温度が目標凝縮温度に一定となるように圧縮機を制御すると共に、室内ユニット及び給湯ユニットのそれぞれの過冷却度が、それぞれ対応の目標過冷却度となるように室内側絞り装置、給湯側絞り装置を個別に制御する過冷却度制御が行われる。この制御では、給湯ユニットの入口水温が低水温域(例えば、25℃~35℃)にある場合、給湯ユニット側の目標過冷却度を大きくする必要がある。この場合、その目標過冷却度を達成するために給湯側絞り装置が絞られることになり、その結果、給湯ユニットに流れる冷媒量が少なくなって水回路側に温熱を伝えられなくなり、出湯温度が低下するという問題があった。 In the simultaneous operation in which the heating operation and the heating operation are performed simultaneously in the above-described system, the compressor is controlled so that the condensation temperature becomes constant to the target condensation temperature, and the subcooling degrees of the indoor unit and the hot water supply unit are respectively Supercooling degree control is performed to individually control the indoor side throttle device and the hot water supply side throttle device so as to achieve a corresponding target supercooling degree. In this control, when the inlet water temperature of the hot water supply unit is in a low water temperature range (for example, 25 ° C. to 35 ° C.), the target supercooling degree on the hot water supply unit side needs to be increased. In this case, the hot water supply side throttle device is throttled in order to achieve the target degree of subcooling. As a result, the amount of refrigerant flowing through the hot water supply unit is reduced and heat cannot be transmitted to the water circuit side, and the hot water temperature is reduced. There was a problem of lowering.
 また、別のシステムとして、給湯ユニットを能力制御とし、室内ユニットを過冷却度制御(目標凝縮温度に一定に保ち、且つ過冷却度が目標過冷却度となるように室内側絞り装置を制御する制御)としたシステムがある。このシステムでは、給湯ユニットの入口水温が低水温域にあり給湯側の負荷が高い場合、室内ユニット側の暖房能力が一時的に著しく低下し、室内ユニット側において吹き出し温度が低下して冷風感を招くという問題があった。 As another system, the hot water supply unit is used as a capacity control, and the indoor unit is controlled to a supercooling degree (the indoor throttling device is controlled so that the target cooling temperature is kept constant and the supercooling degree becomes the target supercooling degree). System). In this system, when the inlet water temperature of the hot water supply unit is in a low water temperature range and the load on the hot water supply side is high, the heating capacity on the indoor unit side temporarily decreases significantly, and the blowout temperature decreases on the indoor unit side, resulting in a feeling of cold wind. There was a problem of inviting.
 本発明は、上記のような課題を解決するためになされたもので、給湯ユニットの入口水温が低水温域にあっても、出湯温度の低下及び冷風感を抑制することが可能な空調給湯複合システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and is an air-conditioning and hot water supply complex capable of suppressing a decrease in hot water temperature and a feeling of cold wind even when the inlet water temperature of the hot water supply unit is in a low water temperature range. The purpose is to provide a system.
 本発明に係る空調給湯複合システムは、圧縮機及び熱源側熱交換器が搭載された少なくとも1台の熱源ユニットと、室内側熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、給湯側熱交換器及び給湯側絞り装置が搭載された少なくとも1台の給湯ユニットとが接続され、室内側熱交換器が凝縮器又は放熱器として機能する暖房運転を少なくとも行う冷媒回路と、冷媒回路の冷媒と給湯側熱交換器にて熱交換して熱媒体を加熱する加熱運転を少なくとも行う給湯回路とを備えた空調給湯複合システムであって、暖房運転と加熱運転との両方を行う同時運転中の制御モードとして、給湯ユニットの必要能力に基づいて給湯側絞り装置を制御すると共に、室内ユニットの暖房運転を禁止する出湯温度優先モードと、同時運転を継続する継続モードとを有する制御手段を備え、制御手段は、同時運転中の制御モードを、給湯側熱交換器における熱媒体の入口温度に応じて出湯温度優先モード又は継続モードに切り替えるものである。 The combined air conditioning and hot water supply system according to the present invention includes at least one heat source unit on which a compressor and a heat source side heat exchanger are mounted, and at least one indoor unit on which an indoor side heat exchanger and an indoor expansion device are mounted. And at least one hot water supply unit on which a hot water supply side heat exchanger and a hot water supply side expansion device are mounted, and a refrigerant circuit that performs at least a heating operation in which the indoor heat exchanger functions as a condenser or a radiator, An air-conditioning and hot-water supply complex system comprising a refrigerant in a refrigerant circuit and a hot water supply circuit that performs at least a heating operation for heating a heat medium by exchanging heat with a hot water supply side heat exchanger, and performing both a heating operation and a heating operation As a control mode during the simultaneous operation, the hot water supply side throttle device is controlled based on the required capacity of the hot water supply unit, and the hot water temperature priority mode for prohibiting the heating operation of the indoor unit is performed simultaneously. Control means having a continuation mode for continuing the rotation, and the control means switches the control mode during simultaneous operation to the hot water temperature priority mode or the continuation mode according to the inlet temperature of the heat medium in the hot water supply side heat exchanger. It is.
 本発明によれば、給湯ユニットの入口水温が低水温域にあっても、給湯ユニットの出湯温度の低下及び冷風感を抑制することができる。 According to the present invention, even when the inlet water temperature of the hot water supply unit is in the low water temperature range, it is possible to suppress the decrease in the hot water temperature of the hot water supply unit and the feeling of cold air.
本発明の実施の形態1に係る空調給湯複合システムの冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerant circuit structure of the air conditioning hot-water supply complex system which concerns on Embodiment 1 of this invention. 図1の給湯ユニットの過冷却度と給湯ユニットの入口水温との関係性を示した図である。It is the figure which showed the relationship between the supercooling degree of the hot water supply unit of FIG. 1, and the inlet water temperature of a hot water supply unit. 本発明の実施の形態1に係る空調給湯複合システムにおける出湯温度優先モードと継続モードのそれぞれの制御概要を示す図である。It is a figure which shows the control outline | summary of each in the hot water temperature priority mode and continuation mode in the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調給湯複合システムにおける制御モードの切り替えの説明図である。It is explanatory drawing of switching of the control mode in the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調給湯複合システムにおける出湯温度優先モードと継続モードとの切り替えを行うモード切替閾値A、Bの一例を示す図である。It is a figure which shows an example of the mode switching threshold values A and B which switch between the hot water temperature priority mode and the continuation mode in the air-conditioning and hot water supply complex system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空調給湯複合システムの制御モード判断のフローチャートである。It is a flowchart of control mode judgment of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調給湯複合システムの制御モード判断のフローチャートである。It is a flowchart of control mode judgment of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調給湯複合システムにおける給湯側絞り装置の制御動作フローチャートである。It is a control-operation flowchart of the hot-water supply side throttle apparatus in the air-conditioning hot-water supply complex system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空調給湯複合システムにおける室内ユニットの運転制約処理に関する制御動作フローチャートである。It is a control-operation flowchart regarding the driving | running | working restrictions process of the indoor unit in the air-conditioning / hot-water supply complex system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調給湯複合システムにおける水採熱霜取運転使用可否における制御動作フローチャートである。It is a control-operation flowchart in the water sampling defrosting operation availability in the air-conditioning / hot-water supply complex system according to Embodiment 1 of the present invention.
(回路構成)
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態1に係る空調給湯複合システムの冷媒回路構成の一例を示す冷媒回路図である。図1に基づいて、空気調和機の構成及び動作について説明する。
(Circuit configuration)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning and hot water supply complex system according to Embodiment 1 of the present invention. Based on FIG. 1, a structure and operation | movement of an air conditioner are demonstrated.
 本実施の形態に係る空調給湯複合システムは、ビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクルを利用することで空調負荷(冷房負荷、暖房負荷)及び給湯負荷を同時に供給できるものである。 The combined air conditioning and hot water supply system according to the present embodiment is installed in a building, condominium, hotel, etc., and can simultaneously supply an air conditioning load (cooling load, heating load) and a hot water supply load by using a refrigeration cycle that circulates refrigerant. It is.
(構成)
 空調給湯複合システム100は、熱源ユニット(室外機)110と、負荷側ユニット(室内ユニット)210と、給湯ユニット310と、を少なくとも有している。このうち、室内ユニット210及び給湯ユニット310は、熱源ユニット110に対して並列となるように接続されている。
(Constitution)
The combined air conditioning and hot water supply system 100 includes at least a heat source unit (outdoor unit) 110, a load side unit (indoor unit) 210, and a hot water supply unit 310. Among these, the indoor unit 210 and the hot water supply unit 310 are connected to the heat source unit 110 in parallel.
 熱源ユニット110と室内ユニット210とは、冷媒配管である液主管1、冷媒配管である液枝管4a、冷媒配管であるガス枝管3a、冷媒配管であるガス主管2で接続されている。熱源ユニット110及び給湯ユニット310とは、冷媒配管である液主管1、冷媒配管である液枝管4b、冷媒配管であるガス枝管3b、冷媒配管であるガス主管2で接続されている。 The heat source unit 110 and the indoor unit 210 are connected by a liquid main pipe 1 that is a refrigerant pipe, a liquid branch pipe 4a that is a refrigerant pipe, a gas branch pipe 3a that is a refrigerant pipe, and a gas main pipe 2 that is a refrigerant pipe. The heat source unit 110 and the hot water supply unit 310 are connected by a liquid main pipe 1 that is a refrigerant pipe, a liquid branch pipe 4b that is a refrigerant pipe, a gas branch pipe 3b that is a refrigerant pipe, and a gas main pipe 2 that is a refrigerant pipe.
(熱源ユニット110)
 熱源ユニット110は、室内ユニット210及び給湯ユニット310に温熱又は冷熱を供給する機能を有している。この熱源ユニット110には、圧縮機(熱源側圧縮機)111と、流路切替手段である流路切替弁112と、熱源側熱交換器113と、アキュムレーター115とが直列に接続されて搭載されている。また、熱源ユニット110には、熱源側熱交換器113に空気を供給するためのファン等の送風機114が熱源側熱交換器113の近傍位置に設置されている。
(Heat source unit 110)
The heat source unit 110 has a function of supplying hot or cold heat to the indoor unit 210 and the hot water supply unit 310. The heat source unit 110 includes a compressor (heat source side compressor) 111, a flow path switching valve 112 as a flow path switching means, a heat source side heat exchanger 113, and an accumulator 115 connected in series. Has been. Further, the heat source unit 110 is provided with a blower 114 such as a fan for supplying air to the heat source side heat exchanger 113 in the vicinity of the heat source side heat exchanger 113.
 圧縮機111は、ガス主管2を流れる冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。圧縮機111は、吸入した空調用冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。例えば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機111を構成することができる。この圧縮機111は、インバーターにより回転数が可変に制御可能なタイプのもので構成するとよい。 The compressor 111 sucks the refrigerant flowing through the gas main pipe 2 and compresses the refrigerant to bring it into a high temperature / high pressure state. The compressor 111 is not particularly limited as long as it can compress the sucked air-conditioning refrigerant to a high pressure state. For example, the compressor 111 can be configured using various types such as reciprocating, rotary, scroll, or screw. The compressor 111 may be of a type that can be variably controlled by an inverter.
 流路切替弁112は、要求される運転モード(冷房又は暖房)に応じて空調用冷媒の流れを切り替えるものである。熱源側熱交換器113は、冷房サイクル時には放熱器(凝縮器)、暖房サイクル時には蒸発器として機能し、送風機114から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。アキュムレーター115は、圧縮機111の吸入側に配置され、余剰冷媒を貯留するものである。なお、アキュムレーター115は、余剰冷媒を貯留できる容器であればよい。 The flow path switching valve 112 switches the flow of the air conditioning refrigerant according to the required operation mode (cooling or heating). The heat source side heat exchanger 113 functions as a radiator (condenser) during the cooling cycle, and functions as an evaporator during the heating cycle, and performs heat exchange between the air supplied from the blower 114 and the refrigerant to condense or liquefy the refrigerant. Evaporative gasification. The accumulator 115 is disposed on the suction side of the compressor 111 and stores excess refrigerant. The accumulator 115 may be any container that can store excess refrigerant.
(室内ユニット210)
 室内ユニット210は、熱源ユニット110からの温熱又は冷熱の供給を受けて暖房負荷又は冷房負荷を担当する機能を有している。室内ユニット210には、室内側絞り装置212と、室内側熱交換器211とが、直列に接続されて搭載されている。なお、図1では、1台の室内ユニット210が搭載されている状態を例に示しているが、台数を特に限定するものではない。また、室内ユニット210には、室内側熱交換器211に空気を供給するためのファン等の送風機を室内側熱交換器211の近傍に設けるとよい。
(Indoor unit 210)
The indoor unit 210 has a function of receiving heating or cooling supply from the heat source unit 110 and taking charge of heating load or cooling load. In the indoor unit 210, an indoor expansion device 212 and an indoor heat exchanger 211 are mounted connected in series. In addition, in FIG. 1, although the state in which the one indoor unit 210 is mounted is shown as an example, the number is not particularly limited. The indoor unit 210 may be provided with a blower such as a fan for supplying air to the indoor heat exchanger 211 in the vicinity of the indoor heat exchanger 211.
 室内側絞り装置212は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この室内側絞り装置212は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内側熱交換器211の前後配管にはガス管温度検知センサー213G、液管温度検知センサー213Lが設置されている。これらのセンサーから得られた温度データ情報を基に、制御手段220は室内側絞り装置212の制御量を決定し、室内側絞り装置212の冷媒流量制御を実施する。室内側熱交換器211は、暖房サイクル時には放熱器(凝縮器)、冷房サイクル時には蒸発器として機能し、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。 The indoor expansion device 212 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure. The indoor throttle device 212 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. A gas pipe temperature detection sensor 213G and a liquid pipe temperature detection sensor 213L are installed in the front and rear pipes of the indoor heat exchanger 211. Based on the temperature data information obtained from these sensors, the control means 220 determines the control amount of the indoor expansion device 212 and controls the refrigerant flow rate of the indoor expansion device 212. The indoor heat exchanger 211 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and performs heat exchange between the air supplied from a blower (not shown) and the refrigerant to condense the refrigerant. It is liquefied or vaporized gas.
(給湯ユニット310)
 給湯ユニット310は、熱源ユニット110からの温熱又は冷熱の供給を受けて給湯負荷又は冷却負荷を担当する機能を有している。給湯ユニット310には、給湯側絞り装置312と、給湯側熱交換器(冷媒-水熱交換器)311とが、直列に接続されて搭載されている。なお、図1では、1台の給湯ユニット310が搭載されている状態を例に示しているが、台数を特に限定するものではない。
(Hot water supply unit 310)
The hot water supply unit 310 has a function of receiving a supply of hot or cold heat from the heat source unit 110 and taking charge of a hot water supply load or a cooling load. The hot water supply unit 310 is equipped with a hot water supply side expansion device 312 and a hot water supply side heat exchanger (refrigerant-water heat exchanger) 311 connected in series. In addition, in FIG. 1, although the state in which one hot water supply unit 310 is mounted is shown as an example, the number is not particularly limited.
 給湯側絞り装置312は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この給湯側絞り装置312は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-水熱交換器311の前後配管にはガス管温度検知センサー313G、液管温度検知センサー313Lが設置されている。これらのセンサーから得られた温度データ情報を基に、制御手段320は給湯側絞り装置312の制御量を決定し、給湯側絞り装置312の冷媒流量制御を実施する。冷媒-水熱交換器311は、暖房サイクル時には放熱器(凝縮器)、冷房サイクル時には蒸発器として機能し、給湯回路である水回路10の水配管11(11a、11b)から供給される水と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。 The hot water supply side throttle device 312 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by decompressing it. The hot water supply side throttling device 312 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. A gas pipe temperature detection sensor 313G and a liquid pipe temperature detection sensor 313L are installed in the front and rear pipes of the refrigerant-water heat exchanger 311. Based on the temperature data information obtained from these sensors, the control unit 320 determines the control amount of the hot water supply side expansion device 312 and performs the refrigerant flow rate control of the hot water supply side expansion device 312. The refrigerant-water heat exchanger 311 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and is supplied with water supplied from the water pipes 11 (11a, 11b) of the water circuit 10 serving as a hot water supply circuit. Heat exchange is performed with the refrigerant, and the refrigerant is condensed or evaporated.
 給湯ユニット310は更に、給湯側絞り装置312及び冷媒-水熱交換器311をバイパスするバイパス管314とバイパス管314の流量を制御するバイパス弁315とを備えている。バイパス管314及びバイパス弁315は後述の「標準霜取運転」で使用されるものであり、その他の運転ではバイパス弁315は常に閉じられている。 The hot water supply unit 310 further includes a bypass pipe 314 that bypasses the hot water supply side expansion device 312 and the refrigerant-water heat exchanger 311 and a bypass valve 315 that controls the flow rate of the bypass pipe 314. The bypass pipe 314 and the bypass valve 315 are used in “standard defrosting operation” described later, and the bypass valve 315 is always closed in other operations.
 水回路10は、図示省略のポンプ及び貯湯タンクを備えている。つまり、水回路10は、冷媒-水熱交換器311で加熱又は冷却された水をポンプで循環させることで成立している。なお、水回路10を構成している水配管11は、銅管、ステンレス管、鋼管、塩化ビニル系配管などによって構成するとよい。また、水回路10を循環する熱媒体として水を例に説明しているが、水に限られず、不凍液等としてもよい。また、水回路10は入口水温を検出する入口水温検知センサー10aと、出口水温(以下、出湯温度という場合もある)を検出する出口水温検知センサー10bとを備えている。 The water circuit 10 includes a pump and a hot water storage tank (not shown). That is, the water circuit 10 is established by circulating the water heated or cooled by the refrigerant-water heat exchanger 311 with the pump. Note that the water pipe 11 constituting the water circuit 10 may be constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like. Further, although water has been described as an example of the heat medium circulating in the water circuit 10, it is not limited to water and may be an antifreeze or the like. Further, the water circuit 10 includes an inlet water temperature detection sensor 10a that detects the inlet water temperature, and an outlet water temperature detection sensor 10b that detects an outlet water temperature (hereinafter also referred to as hot water temperature).
 熱源ユニット110、室内ユニット210、給湯ユニット310はそれぞれ、制御手段120、制御手段220、制御手段320を有しており、それぞれの制御手段は通信手段400を用い、それぞれが有している情報を伝達する。なお、制御手段120、制御手段220及び制御手段320はそれぞれ、マイクロコンピュータ又はDSPなどで構成されている。 Each of the heat source unit 110, the indoor unit 210, and the hot water supply unit 310 has a control means 120, a control means 220, and a control means 320. Each control means uses the communication means 400, and the information that each has. introduce. The control means 120, the control means 220, and the control means 320 are each constituted by a microcomputer or a DSP.
 熱源ユニット110の制御手段120は、空調給湯複合システム100における冷媒の圧力状態及び冷媒の温度状態を制御する機能を有している。具体的には、制御手段120は、圧縮機111の運転周波数を制御したり、熱源側熱交換器113が複数の熱交換器に分割され、熱源側熱交換器113の一次側に図示省略の開閉弁が熱交換器ごとに設置された構成であれば、開閉弁を制御して熱源側熱交換器113の熱交換する面積を変化させたり、送風機114のファン回転数を制御したり、流路切替弁112を切り替えたりする機能を有している。 The control means 120 of the heat source unit 110 has a function of controlling the refrigerant pressure state and the refrigerant temperature state in the air conditioning and hot water supply complex system 100. Specifically, the control unit 120 controls the operating frequency of the compressor 111, the heat source side heat exchanger 113 is divided into a plurality of heat exchangers, and is not shown on the primary side of the heat source side heat exchanger 113. If the on-off valve is configured for each heat exchanger, the on-off valve is controlled to change the heat exchange area of the heat source side heat exchanger 113, the fan rotation speed of the blower 114 is controlled, It has a function of switching the path switching valve 112.
 室内ユニット210の制御手段220は、ガス管温度検知センサー213G及び液管温度検知センサー213Lから得られた情報を基に、室内ユニット210の冷房運転時における過熱度と、室内ユニット210の暖房運転時における過冷却度とを制御する機能を有している。具体的には、制御手段220は、室内側熱交換器211が複数の熱交換器に分割され、室内側熱交換器211の一次側に図示省略の開閉弁が熱交換器ごとに設置された構成であれば、開閉弁を制御して室内側熱交換器211の熱交換面積を変化させたり、図示省略の送風機のファン回転数を制御したり、室内側絞り装置212の開度を制御したりする機能を有している。 The control means 220 of the indoor unit 210 uses the information obtained from the gas pipe temperature detection sensor 213G and the liquid pipe temperature detection sensor 213L to determine the degree of superheat during the cooling operation of the indoor unit 210 and the heating operation of the indoor unit 210. Has a function of controlling the degree of supercooling. Specifically, in the control means 220, the indoor heat exchanger 211 is divided into a plurality of heat exchangers, and an on-off valve (not shown) is installed on the primary side of the indoor heat exchanger 211 for each heat exchanger. If it is a structure, it controls the on-off valve to change the heat exchange area of the indoor heat exchanger 211, controls the fan rotation speed of a blower (not shown), and controls the opening of the indoor expansion device 212. It has a function to do.
 給湯ユニット310の制御手段320は、ガス管温度検知センサー313G、液管温度検知センサー313L、入口水温検知センサー10a及び出口水温検知センサー10bから得られた情報を基に、給湯ユニット310の冷却運転時における過熱度、給湯ユニット310の加熱運転時における過冷却度又は出湯温度を制御する機能を有している。具体的には、制御手段320は、冷媒-水熱交換器311が複数の熱交換器に分割され、冷媒-水熱交換器311の一次側に図示省略の開閉弁が熱交換器ごとに設置された構成であれば、開閉弁を制御して冷媒-水熱交換器311の熱交換面積を変化させたり、給湯側絞り装置312の開度を制御したりする機能を有している。 The control means 320 of the hot water supply unit 310 is based on information obtained from the gas pipe temperature detection sensor 313G, the liquid pipe temperature detection sensor 313L, the inlet water temperature detection sensor 10a, and the outlet water temperature detection sensor 10b, during the cooling operation of the hot water supply unit 310. And the function of controlling the degree of supercooling during the heating operation of the hot water supply unit 310 or the hot water temperature. Specifically, in the control means 320, the refrigerant-water heat exchanger 311 is divided into a plurality of heat exchangers, and an on-off valve (not shown) is installed on the primary side of the refrigerant-water heat exchanger 311 for each heat exchanger. With this configuration, the on-off valve is controlled to change the heat exchange area of the refrigerant-water heat exchanger 311 and to control the opening degree of the hot water supply side expansion device 312.
 なお、図1には各ユニットがそれぞれ制御手段を持ち、互いに情報を伝達して連携処理を行う構成を図示しているが、空調給湯複合システム100全体を制御する制御手段を設けた構成としてもよい。 1 illustrates a configuration in which each unit has a control unit and transmits information to each other to perform a cooperative process. However, a configuration in which a control unit for controlling the entire air conditioning and hot water supply complex system 100 is also provided. Good.
 また、図示していないが、空調給湯複合システム100には、冷媒の吐出圧力を検知するセンサー、冷媒の吸入圧力を検知するセンサー、冷媒の吐出温度を検知するセンサー、冷媒の吸引温度を検知するセンサー、熱源側熱交換器113に流出入する冷媒の温度を検知するセンサー、熱源ユニット110に取り込まれる外気温を検知するセンサー、室内側熱交換器211に吸込又は吹き出す空気温度を検知するセンサー、図示省略の貯湯タンク内に貯留される水の温度を検知するセンサー等を設けておくとよい。これらの各種センサーで検知された情報(温度情報や圧力情報等の計測情報)は、通信手段400を経て、制御手段120に送られ、各アクチュエーターの制御に利用されることになる。 Although not shown, the air conditioning and hot water supply complex system 100 includes a sensor that detects the refrigerant discharge pressure, a sensor that detects the refrigerant suction pressure, a sensor that detects the refrigerant discharge temperature, and a refrigerant suction temperature. A sensor, a sensor for detecting the temperature of the refrigerant flowing into and out of the heat source side heat exchanger 113, a sensor for detecting the outside air temperature taken into the heat source unit 110, a sensor for detecting the temperature of the air sucked into or blown into the indoor side heat exchanger 211, A sensor or the like for detecting the temperature of water stored in a hot water storage tank (not shown) may be provided. Information (measurement information such as temperature information and pressure information) detected by these various sensors is sent to the control means 120 via the communication means 400 and used for controlling each actuator.
 ここで、空調給湯複合システム100に使用可能な冷媒について説明する。空調給湯複合システム100の冷凍サイクルに使用できる冷媒には、非共沸混合冷媒、擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)、R404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。 Here, the refrigerant that can be used in the air-conditioning and hot water supply complex system 100 will be described. Examples of the refrigerant that can be used in the refrigeration cycle of the air conditioning and hot water supply complex system 100 include a non-azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, and a single refrigerant. Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different. The pseudo azeotropic refrigerant mixture includes R410A (R32 / R125), R404A (R125 / R143a / R134a), which are HFC refrigerants, and the like. This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
 また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22、HFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。その他、自然冷媒である二酸化炭素やプロパン、イソブタン、アンモニア等を使用することもできる。なお、R22はクロロジフルオロメタン、R32はジフルオロメタンを、R125はペンタフルオロメタンを、R134aは1,1,1,2-テトラフルオロメタンを、R143aは1,1,1-トリフルオロエタンをそれぞれ示している。したがって、空調給湯複合システム100の用途や目的に応じた冷媒を使用するとよい。 Further, the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle. In addition, carbon dioxide, propane, isobutane, ammonia, etc., which are natural refrigerants, can also be used. R22 represents chlorodifluoromethane, R32 represents difluoromethane, R125 represents pentafluoromethane, R134a represents 1,1,1,2-tetrafluoromethane, and R143a represents 1,1,1-trifluoroethane. ing. Therefore, it is good to use the refrigerant | coolant according to the use and purpose of the air-conditioning / hot-water supply complex system 100.
 冷媒-水熱交換器311の水回路10が低水温になる環境下で水配管11の凍結がある場合には、水に不凍剤(ブライン)を入れてもよい。不凍剤は特に種類を限定するものでもなく、エチレングリコール、プロプレングリコール等、入手性や用途に応じて選定すればよい。 When the water pipe 11 is frozen in an environment where the water circuit 10 of the refrigerant-water heat exchanger 311 has a low water temperature, an antifreezing agent (brine) may be added to the water. The type of antifreeze is not particularly limited, and may be selected according to availability and use, such as ethylene glycol and propylene glycol.
(運転モードにおける制御動作説明)
 空調給湯複合システム100で行う運転には、暖房(加熱)運転及び冷房(冷却)運転が存在する。以下に両運転について説明する。なお、暖房(加熱)運転では流路切替弁112は図1の点線側に切り替えられ、冷房(冷却)運転では流路切替弁112は図1の実線側に切り替えられる。
(Explanation of control operation in operation mode)
The operation performed in the air conditioning and hot water supply complex system 100 includes a heating (heating) operation and a cooling (cooling) operation. Both operations will be described below. In the heating (heating) operation, the flow path switching valve 112 is switched to the dotted line side in FIG. 1, and in the cooling (cooling) operation, the flow path switching valve 112 is switched to the solid line side in FIG.
 なお、空調給湯複合システム100は、給湯ユニット310と室内ユニット210とを1冷媒系統で設計したシステムである。この種のシステムでは、圧縮機111からの高温高圧冷媒を給湯ユニット310側に供給して給湯ユニット310の貯蔵タンク(図示せず)内の水を沸き上げる加熱運転と、圧縮機111からの高温高圧冷媒を室内ユニット210側に供給して室内に温風を供給する暖房運転(空調運転)とのどちらか一方に切り替えて使用することが通常である。例えば、深夜又は相当の1、2時間、加熱運転(沸き上げ運転)を実施し、朝~深夜まで空調運転を実施する(沸き上げたお湯はタンクに貯蔵され、1日かけて使うイメージ)。なお、本実施の形態1の空調給湯複合システム100は、給湯運転と暖房運転との両方を実施する同時運転も可能である。 Note that the air conditioning and hot water supply combined system 100 is a system in which the hot water supply unit 310 and the indoor unit 210 are designed with one refrigerant system. In this type of system, a high temperature and high pressure refrigerant from the compressor 111 is supplied to the hot water supply unit 310 side to boil water in a storage tank (not shown) of the hot water supply unit 310, and a high temperature from the compressor 111. Usually, the high-pressure refrigerant is switched to one of the heating operation (air-conditioning operation) in which the high-pressure refrigerant is supplied to the indoor unit 210 and hot air is supplied indoors. For example, a heating operation (boiling operation) is performed at midnight or a considerable 1 to 2 hours, and an air-conditioning operation is performed from morning to midnight (an image of boiling hot water stored in a tank and used for one day). In addition, the air-conditioning hot-water supply complex system 100 of the first embodiment can also perform simultaneous operation in which both the hot-water supply operation and the heating operation are performed.
 以下ではまず、暖房運転(又は加熱運転)を行う場合の動作について説明し、続いて同時運転の場合の動作について説明する。その後、冷房運転(又は冷却運転)について説明する。 Hereinafter, first, the operation in the case of performing the heating operation (or heating operation) will be described, and then the operation in the case of the simultaneous operation will be described. Thereafter, the cooling operation (or cooling operation) will be described.
(暖房運転(又は加熱運転))
 圧縮機111にて加熱圧縮された高圧のガス冷媒は流路切替弁112、ガス主管2、ガス枝管3を経て、室内ユニット210(又は給湯ユニット310)へ搬送される。室内ユニット210(又は給湯ユニット310)に搬送された冷媒は、室内側熱交換器211又は冷媒-水熱交換器311において室内空気(又は水回路10の水)に熱を放熱することで、凝縮作用により高圧の液冷媒へと変化する。高圧の液冷媒は熱交換器二次側にある室内側絞り装置212(又は給湯側絞り装置312)にて膨張作用により低圧の二相冷媒(液、ガスが入り混じった冷媒)へと変化する。
(Heating operation (or heating operation))
The high-pressure gas refrigerant heated and compressed by the compressor 111 is conveyed to the indoor unit 210 (or the hot water supply unit 310) via the flow path switching valve 112, the gas main pipe 2, and the gas branch pipe 3. The refrigerant transferred to the indoor unit 210 (or hot water supply unit 310) is condensed by releasing heat to the indoor air (or water of the water circuit 10) in the indoor heat exchanger 211 or the refrigerant-water heat exchanger 311. The action changes to a high-pressure liquid refrigerant. The high-pressure liquid refrigerant changes into a low-pressure two-phase refrigerant (a refrigerant mixed with liquid and gas) by an expansion action in the indoor expansion device 212 (or the hot water supply-side expansion device 312) on the secondary side of the heat exchanger. .
 低圧の二相冷媒は液枝管4及び液主管1を経由して、熱源ユニット110内の熱源側熱交換器113にて空気から熱を授受することで、低圧のガス冷媒へと変化する。低圧のガス冷媒は流路切替弁112、アキュムレーター115を経て、圧縮機111にて吸入され、高圧のガス冷媒へと変化する。上述したサイクルにより、空調給湯複合システム100は暖房(給湯)運転を実施することが可能である。 The low-pressure two-phase refrigerant is changed into a low-pressure gas refrigerant by transferring heat from the air through the liquid branch pipe 4 and the liquid main pipe 1 in the heat source side heat exchanger 113 in the heat source unit 110. The low-pressure gas refrigerant passes through the flow path switching valve 112 and the accumulator 115, is sucked in by the compressor 111, and changes to a high-pressure gas refrigerant. Through the above-described cycle, the air conditioning and hot water supply combined system 100 can perform a heating (hot water supply) operation.
 同時運転の場合は、ガス主管2を通過した冷媒がガス枝管3a、3bのそれぞれに分流され、各冷媒は、室内ユニット210の室内側熱交換器211及び室内側絞り装置212と、給湯ユニット310の冷媒-水熱交換器311及び給湯側絞り装置312とをそれぞれ通過して液枝管4a、4bに流入する。液枝管4a、4bに流入した各冷媒は液主管1で合流した後、熱源側熱交換器113に向かう流れとなる。 In the case of simultaneous operation, the refrigerant that has passed through the gas main pipe 2 is divided into each of the gas branch pipes 3a and 3b, and each refrigerant is divided into the indoor heat exchanger 211 and the indoor expansion device 212 of the indoor unit 210, and the hot water supply unit. 310 passes through the refrigerant-water heat exchanger 311 and the hot water supply side expansion device 312 respectively, and flows into the liquid branch pipes 4a and 4b. The refrigerants flowing into the liquid branch pipes 4a and 4b join the liquid main pipe 1 and then flow toward the heat source side heat exchanger 113.
(冷房運転(又は冷却運転))
 圧縮機111にて加熱圧縮された高圧のガス冷媒は流路切替弁112を経て、熱源ユニット内の熱源側熱交換器113に搬送される。熱源側熱交換器113において、熱を空気へ放出することで、高圧のガス冷媒は凝縮され、高圧の液冷媒へと変化する。高圧の液冷媒は液主管1及び液枝管4を経て、室内ユニット210(又は給湯ユニット310)へ搬送される。
(Cooling operation (or cooling operation))
The high-pressure gas refrigerant heated and compressed by the compressor 111 passes through the flow path switching valve 112 and is conveyed to the heat source side heat exchanger 113 in the heat source unit. In the heat source side heat exchanger 113, by releasing heat to the air, the high-pressure gas refrigerant is condensed and changed into a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is conveyed to the indoor unit 210 (or the hot water supply unit 310) through the liquid main pipe 1 and the liquid branch pipe 4.
 室内ユニット210(又は給湯ユニット310)においては、室内側絞り装置212(又は給湯側絞り装置312)にて膨張作用で高圧の液冷媒は低圧の二相冷媒(ガスと液が入り混じった冷媒)へと変化し、室内側熱交換器211(又は冷媒-水熱交換器311)にて、負荷から熱を授受することで低圧のガス冷媒へと変化する(負荷側は熱が奪われることで冷却される)。室内ユニット210(又は給湯ユニット310)を出た低圧のガス冷媒は、ガス枝管3、ガス主管2を経て、熱源ユニット110へ返る。熱源ユニット110内に流入した低圧のガス冷媒は、流路切替弁112、アキュムレーター115を経て、圧縮機111にて吸入され、高圧のガス冷媒へと変化する。上述したサイクルにより、空調給湯複合システム100は冷房(冷却)運転を実施することが可能である。 In the indoor unit 210 (or the hot water supply unit 310), the high-pressure liquid refrigerant is expanded by the indoor side expansion device 212 (or the hot water supply side expansion device 312), and the low-pressure two-phase refrigerant (the refrigerant mixed with gas and liquid). In the indoor heat exchanger 211 (or refrigerant-water heat exchanger 311), the heat is transferred from the load to the low pressure gas refrigerant (the load side is deprived of heat). Cooled). The low-pressure gas refrigerant exiting the indoor unit 210 (or the hot water supply unit 310) returns to the heat source unit 110 via the gas branch pipe 3 and the gas main pipe 2. The low-pressure gas refrigerant that has flowed into the heat source unit 110 passes through the flow path switching valve 112 and the accumulator 115, is sucked in by the compressor 111, and changes to a high-pressure gas refrigerant. With the above-described cycle, the air conditioning and hot water supply combined system 100 can perform a cooling (cooling) operation.
 また冷房(冷却)、暖房(加熱)運転が可能なヒートポンプにおいては、暖房運転において冷媒が余るため、その余剰冷媒はアキュムレーター115に保管される。 Further, in the heat pump capable of cooling (cooling) and heating (heating) operation, the refrigerant is stored in the accumulator 115 because the refrigerant is left in the heating operation.
(図2に関する説明:給湯ユニットの加熱運転)
 上述したように、単一冷媒系統の空調給湯複合システム100では、加熱運転と空調運転とを切り替えて行うことが前提であるが、給湯ユニット310の加熱運転中に室内ユニット210の暖房運転も同時に実施することが求められることがある(例えば、給湯ユニットの水回路10に図示未記載のお湯を貯めるためのタンクが接続されたシステムにおいて、日中にお湯を使用した後にタンクの追い炊きをする場合等)。ビル用マルチエアコン(VRF)においては、熱源ユニット110に接続される全ての室内ユニット210において暖房能力が発揮できるように目標凝縮温度が決定され、室内ユニット210及び給湯ユニット310のそれぞれの冷媒凝縮温度が目標凝縮温度に一定となるように制御される。よって、加熱運転と暖房運転を同時に実施する場合、冷媒凝縮温度の維持も重要であり、仮に冷媒凝縮温度を目標凝縮温度に一定に維持しようとした場合、給湯ユニット310の入口水温と給湯ユニット310の過冷却度との関係は次の図2に示すようになる。
(Explanation regarding FIG. 2: Heating operation of hot water supply unit)
As described above, in the single refrigerant system air-conditioning and hot-water supply combined system 100, it is premised that the heating operation and the air-conditioning operation are switched. However, the heating operation of the indoor unit 210 is simultaneously performed during the heating operation of the hot-water supply unit 310. (For example, in a system in which a tank for storing hot water (not shown) is connected to the water circuit 10 of the hot water supply unit, the tank is reheated after the hot water is used during the day.) Case). In the building multi-air conditioner (VRF), the target condensation temperature is determined so that the heating capacity can be exhibited in all the indoor units 210 connected to the heat source unit 110, and the refrigerant condensation temperatures of the indoor unit 210 and the hot water supply unit 310 are determined. Is controlled to be constant at the target condensation temperature. Therefore, when performing the heating operation and the heating operation at the same time, it is also important to maintain the refrigerant condensing temperature. If it is attempted to keep the refrigerant condensing temperature constant at the target condensing temperature, the inlet water temperature of the hot water supply unit 310 and the hot water supplying unit 310 are maintained. The relationship with the degree of supercooling is as shown in FIG.
 図2は、図1の給湯ユニットの過冷却度と給湯ユニットの入口水温との関係性を示した図である。
 給湯ユニット310の過冷却度(以下、SC_H)は、以下の数式で表現できる。
 SC_H=CT_H-TRL_H
 ここで、
 CT_H:冷媒凝縮温度
 TRL_H:冷媒-水熱交換器311出口の冷媒液管温度
FIG. 2 is a diagram showing the relationship between the degree of supercooling of the hot water supply unit of FIG. 1 and the inlet water temperature of the hot water supply unit.
The degree of supercooling (hereinafter referred to as SC_H) of the hot water supply unit 310 can be expressed by the following equation.
SC_H = CT_H-TRL_H
here,
CT_H: Refrigerant condensation temperature TRL_H: Refrigerant-water heat exchanger 311 outlet refrigerant liquid tube temperature
 冷媒-水熱交換器311は冷媒-空気熱交換器に比べて熱搬送における効率がよいため、冷媒液管温度TRL_Hが冷媒-水熱交換器311内の水温にほぼ近い値となる。 Since the refrigerant-water heat exchanger 311 is more efficient in heat transfer than the refrigerant-air heat exchanger, the refrigerant liquid tube temperature TRL_H becomes a value almost close to the water temperature in the refrigerant-water heat exchanger 311.
 つまり、給湯ユニット310の冷媒凝縮温度を目標凝縮温度に一定に維持しようとした場合において給湯ユニット310の入口水温が低水温(例えば、25℃~35℃)であると、過冷却度(SC_H)の目標値は、図2から明らかなようにかなり大きな値とする必要がある。よって、その過冷却度の目標値を達成しようとして給湯ユニット310内の給湯側絞り装置312がかなり絞り気味の動作となる。そうすると、ガス冷媒が給湯ユニット310に流れなくなるため、給湯ユニット310が加熱運転中であるのにも関わらず、能力が発揮できないこととなる。 That is, when the refrigerant condensing temperature of the hot water supply unit 310 is kept constant at the target condensing temperature, if the inlet water temperature of the hot water supply unit 310 is a low water temperature (for example, 25 ° C. to 35 ° C.), the degree of supercooling (SC_H) As shown in FIG. 2, it is necessary to set the target value of 1 to a considerably large value. Therefore, the hot-water supply side expansion device 312 in the hot-water supply unit 310 performs a considerably squeezed operation in an attempt to achieve the target value of the degree of supercooling. Then, since the gas refrigerant does not flow to the hot water supply unit 310, the ability cannot be exhibited even though the hot water supply unit 310 is in the heating operation.
 このような課題を踏まえ、本実施の形態1では、加熱運転中に暖房運転も同時に行う同時運転中に、給湯ユニット310で能力を発揮できないといった事態を回避できる技術として、室内ユニット210における空調制御よりも給湯ユニット310における能力発揮を優先した「出湯温度優先モード」を設けている。なお、同時運転では、「出湯温度優先モード」の他に、従来と同様の制御である「継続モード」も有している。
In view of such a problem, in the first embodiment, air conditioning control in the indoor unit 210 is a technique for avoiding a situation where the hot water supply unit 310 cannot perform its ability during simultaneous operation in which heating operation is performed simultaneously with heating operation. In addition, a “hot-water temperature priority mode” in which priority is given to the performance of the hot water supply unit 310 is provided. In addition, in the simultaneous operation, in addition to the “hot water temperature priority mode”, there is a “continuation mode” which is the same control as the conventional one.
(図3に関する説明)
 図3は、本発明の実施の形態1に係る空調給湯複合システムにおける出湯温度優先モードと継続モードのそれぞれの制御概要を示す図である。
 空調給湯複合システム100では、暖房運転(又は加熱運転)における制御モードとして、上述したように「出湯温度優先モード」と、従来と同様の制御である「継続モード」とを有している。「出湯温度優先モード」と「継続モード」とでは、給湯ユニット310の給湯側絞り装置312についての制御手法が異なる。以下、それぞれのモードについて説明する。
(Explanation regarding FIG. 3)
FIG. 3 is a diagram showing control outlines of the hot water temperature priority mode and the continuation mode in the combined air-conditioning and hot water system according to Embodiment 1 of the present invention.
As described above, the combined air conditioning and hot water supply system 100 has the “hot water temperature priority mode” and the “continuation mode”, which is the same control as in the past, as the control mode in the heating operation (or heating operation). The “hot water temperature priority mode” and the “continuation mode” have different control methods for the hot water supply side expansion device 312 of the hot water supply unit 310. Each mode will be described below.
(1)「出湯温度優先モード」
(a)給湯ユニット310は、冷媒凝縮温度に関係無く自己の能力制御を行い、過冷却度の制御は行わない。自己の能力制御とは、給湯ユニット310に対して求められる必要能力に基づいて給湯側絞り装置312を制御する制御であり、出湯温度が目標出湯温度となるように給湯側絞り装置312を制御する制御である。具体的には、出口水温検知センサー10bにより検知された出湯温度と目標出湯温度との温度差に応じて給湯側絞り装置312を制御するものであり、この温度差が大きい程、給湯側絞り装置312の開度値は大きい値に決定される。
(1) "Tapping temperature priority mode"
(A) The hot water supply unit 310 performs its own capacity control regardless of the refrigerant condensation temperature, and does not control the degree of supercooling. The self capability control is control for controlling the hot water supply side throttle device 312 based on the required capability required for the hot water supply unit 310, and controls the hot water supply side throttle device 312 so that the hot water temperature becomes the target hot water temperature. Control. Specifically, the hot water supply side expansion device 312 is controlled in accordance with the temperature difference between the hot water temperature detected by the outlet water temperature detection sensor 10b and the target hot water temperature, and the hot water supply side expansion device increases as the temperature difference increases. The opening value of 312 is determined to be a large value.
 また、上述したように「出湯温度優先モード」は、給湯ユニット310側の給湯能力を優先した制御であり過冷却度の制御は行わないため、空調給湯複合システム100の冷媒凝縮温度は成り行きとなる。ここで、「出湯温度優先モード」では、出口水温が低水温域にある場合、つまり給湯ユニット310側の負荷が高い場合、多くの冷媒が冷媒-水熱交換器311に供給されるように給湯側絞り装置312が開かれる制御となる。しかし、多くの冷媒が冷媒-水熱交換器311から冷媒回路の低圧側へ流れ出るため、高圧が高くならない(冷媒凝縮温度が高くならない)。つまり、「出湯温度優先モード」では冷媒凝縮温度が目標凝縮温度まで上がらない。 In addition, as described above, the “hot water temperature priority mode” is a control that prioritizes the hot water supply capacity on the hot water supply unit 310 side, and does not control the degree of supercooling, so the refrigerant condensing temperature of the air-conditioning hot water supply combined system 100 becomes a matter of course. . Here, in the “hot water temperature priority mode”, when the outlet water temperature is in a low water temperature range, that is, when the load on the hot water supply unit 310 is high, a large amount of refrigerant is supplied to the refrigerant-water heat exchanger 311. The side diaphragm device 312 is opened. However, since a large amount of refrigerant flows from the refrigerant-water heat exchanger 311 to the low pressure side of the refrigerant circuit, the high pressure does not increase (the refrigerant condensation temperature does not increase). That is, in the “hot water temperature priority mode”, the refrigerant condensation temperature does not rise to the target condensation temperature.
 このため、「出湯温度優先モード」において室内ユニット210の暖房運転を許可すると、室内ユニット210から冷風が吹き出され、ユーザに冷風感を与えてしまう。したがって、「出湯温度優先モード」では室内ユニット210側に運転禁止の制約をかける。具体的には、室内側絞り装置212を閉状態とし、且つ、室内側熱交換器211に送風する送風機(図示せず)を停止する。つまり、「出湯温度優先モード」では同時運転は許可せず、加熱運転のみを行うこととする。 For this reason, when the heating operation of the indoor unit 210 is permitted in the “hot water temperature priority mode”, cold air is blown out from the indoor unit 210, giving the user a feeling of cold air. Therefore, in the “hot water temperature priority mode”, the operation unit is restricted on the indoor unit 210 side. Specifically, the indoor side expansion device 212 is closed, and a blower (not shown) that blows air to the indoor side heat exchanger 211 is stopped. That is, in the “hot water temperature priority mode”, simultaneous operation is not permitted, and only heating operation is performed.
(b)「水採熱霜取運転」:高水温のみ許可する。
 「水採熱霜取運転」については、後述の図10のフローチャートにて説明する。
(B) "Water sampling heat defrosting operation": Only high water temperature is permitted.
The “water sampling heat defrosting operation” will be described with reference to the flowchart of FIG.
(2)「継続モード」
(a)先述した従来どおりの制御動作であり、同時運転を継続するモードである。つまり、「継続モード」は凝縮温度が目標凝縮温度に一定となるように圧縮機111を制御すると共に、給湯ユニット310及び室内ユニット210のそれぞれの過冷却度が、それぞれ対応の目標過冷却度となるように給湯側絞り装置312及び室内側絞り装置212を個別に制御するモードである。
(2) “Continuous mode”
(A) It is a control operation as described above and is a mode in which simultaneous operation is continued. That is, in the “continuation mode”, the compressor 111 is controlled so that the condensing temperature becomes the target condensing temperature, and the subcooling degrees of the hot water supply unit 310 and the indoor unit 210 are respectively set to the corresponding target subcooling degrees. In this mode, the hot water supply side expansion device 312 and the indoor side expansion device 212 are individually controlled.
(b)「水採熱霜取運転」:許可する。
 「水採熱霜取運転」については、後述の図10のフローチャートにて説明する。
(B) “Water sampling heat defrosting operation”: Permitted.
The “water sampling heat defrosting operation” will be described with reference to the flowchart of FIG.
 図4は、本発明の実施の形態1に係る空調給湯複合システムにおける制御モードの切り替えの説明図である。
 空調給湯複合システム100では、「出湯温度優先モード」及び「継続モード」の2つのモードを、入口水温検知センサー10aで検知された入口水温に基づいて切り替える。すなわち、「出湯温度優先モード」で運転中、入口水温検知センサー10aで検知された入口水温が予め設定されたモード切替閾値Aより高くなり、入口水温が低水温域でなくなった場合、「継続モード」に切り替える。また、「継続モード」で運転中、入口水温検知センサー10aで検知された入口水温が予め設定されたモード切替閾値Aより高く且つモード切替閾値B(>A)未満であれば「継続モード」を継続する。一方、「継続モード」で運転中、入口水温検知センサー10aで検知された入口水温がモード切替閾値A以下、つまり出口水温が低水温域にあれば「出湯温度優先モード」に切り替える。
FIG. 4 is an explanatory diagram of control mode switching in the combined air-conditioning and hot water supply system according to Embodiment 1 of the present invention.
In the air-conditioning and hot water supply combined system 100, two modes of the “hot water temperature priority mode” and the “continuation mode” are switched based on the inlet water temperature detected by the inlet water temperature detection sensor 10a. That is, during operation in the “hot water temperature priority mode”, when the inlet water temperature detected by the inlet water temperature detection sensor 10a becomes higher than the preset mode switching threshold A and the inlet water temperature is no longer in the low water temperature range, To "". Further, during operation in the “continuation mode”, if the inlet water temperature detected by the inlet water temperature detection sensor 10a is higher than the preset mode switching threshold A and lower than the mode switching threshold B (> A), the “continuation mode” is set. continue. On the other hand, if the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or lower than the mode switching threshold A, that is, if the outlet water temperature is in the low water temperature range, during operation in the “continuation mode”, the mode is switched to the “hot water temperature priority mode”.
 図5は、本発明の実施の形態1に係る空調給湯複合システムにおける出湯温度優先モードと継続モードとの切り替えを行うモード切替閾値A、Bの一例を示す図である。
 モード切替閾値A、Bは、例えば給湯ユニット据付のスイッチ(DipSW)により手動で変更できるようにする。つまり、設定1(default)では、モード切替閾値Aが30℃、モード切替閾値Bが35℃に設定されているが、DipSWを設定2に変更することで、モード切替閾値Aを35℃、モード切替閾値Bが40℃に変更できる。なお、本明細書では手動切替について説明しているが、外部通信機器からの制御信号でも切り替えられるようにしてもよい。
FIG. 5 is a diagram showing an example of mode switching thresholds A and B for switching between the hot water temperature priority mode and the continuous mode in the combined air-conditioning and hot water supply system according to Embodiment 1 of the present invention.
The mode switching thresholds A and B can be manually changed by, for example, a hot water supply unit installation switch (DipSW). In other words, in setting 1 (default), the mode switching threshold A is set to 30 ° C. and the mode switching threshold B is set to 35 ° C. However, by changing DipSW to setting 2, the mode switching threshold A is set to 35 ° C. The switching threshold B can be changed to 40 ° C. Note that although manual switching has been described in this specification, it may be switched by a control signal from an external communication device.
 このようにモード切替閾値A、Bを変更できるようにすることで、現場の用途に応じて制御モードを柔軟に切り替えて運用することができるようになる。例えば、入口水温が40℃までであれば「出湯温度優先モード」が作動するようにしたい場合は、DipSW設定をdefaultから設定3に変更することで、「出湯温度優先モード」の比率を「継続モード」に比べて高めることが可能である。なお、図5では、現地サービスマン又は据付業者が現地の用途に対し、細かく設定できるように閾値を5℃単位で変更できるようにしているが、この「5℃」は一例であって、この温度に限られたものではない。 By making it possible to change the mode switching thresholds A and B in this way, the control mode can be switched flexibly according to the application at the site. For example, if the inlet water temperature is up to 40 ° C., if you want to activate the “hot water temperature priority mode”, change the DipSW setting from default to setting 3 to change the ratio of the “hot water temperature priority mode” to “continue” It is possible to increase compared to “mode”. In FIG. 5, the threshold value can be changed in units of 5 ° C. so that the local service person or the installation contractor can finely set the local use. However, this “5 ° C.” is an example. It is not limited to temperature.
(制御モード判断)
 本実施の形態1に係る制御モード判断を図6、図7に示すフローチャートにて述べる。なお、図6と図7はそれぞれ別々のロジックであり、ユニットの形態及び用途に応じて制御を任意に変更してもよい。
(Control mode judgment)
The control mode determination according to the first embodiment will be described with reference to flowcharts shown in FIGS. Note that FIG. 6 and FIG. 7 are separate logics, and the control may be arbitrarily changed according to the form and application of the unit.
(図6に示すフローチャート)
 図6は、本発明の実施の形態1に係る空調給湯複合システムの制御モード判断のフローチャートである。
 給湯ユニット310の制御手段320は、加熱運転の開始が指示されるか又は出湯温度が目標出湯温度未満となりサーモONとなると、初期設定として制御モードを「出湯温度優先モード」に設定(S1)する。なお、ここでは初期設定を「出湯温度優先モード」に設定するとしたが「継続モード」に設定してもよい。そして、制御手段320は、DipSWの設定をチェックし、モード切替閾値A、Bを確認(S2)する。その後、モード判断処理(S3、S4)を実施する。
(Flowchart shown in FIG. 6)
FIG. 6 is a flowchart of control mode determination of the combined air-conditioning and hot water system according to Embodiment 1 of the present invention.
The control means 320 of the hot water supply unit 310 sets the control mode to the “hot water temperature priority mode” as an initial setting (S1) when the start of the heating operation is instructed or when the hot water temperature is lower than the target hot water temperature and the thermo is turned on. . Here, the initial setting is set to the “hot water temperature priority mode”, but it may be set to the “continuation mode”. Then, the control unit 320 checks the setting of DipSW and confirms the mode switching thresholds A and B (S2). Thereafter, mode determination processing (S3, S4) is performed.
 モード判断処理では、まず、入口水温検知センサー10aで検知された入口水温がモード切替閾値B以上か否かを判断(S3)する。入口水温がモード切替閾値B以上であれば、「継続モード」に切り替え(S5)、入口水温がモード切替閾値B未満であれば、続いて入口水温がモード切替閾値A以下か否かを判断(S4)する。入口水温がモード切替閾値A以下であれば(すなわち入口水温が低水温域にあれば)、「出湯温度優先モード」(S6)のままとし、入口水温がモード切替閾値Aより高ければ、現在のモードを維持(S7)する。ここでは初期設定として「出湯温度優先モード」が設定されているため、「出湯温度優先モード」のままとなる。 In the mode determination process, first, it is determined whether or not the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or higher than the mode switching threshold B (S3). If the inlet water temperature is equal to or higher than the mode switching threshold B, the mode is switched to “continuation mode” (S5). If the inlet water temperature is lower than the mode switching threshold B, it is subsequently determined whether the inlet water temperature is equal to or lower than the mode switching threshold A ( S4). If the inlet water temperature is equal to or lower than the mode switching threshold A (that is, if the inlet water temperature is in the low water temperature range), the “hot water temperature priority mode” is maintained (S6), and if the inlet water temperature is higher than the mode switching threshold A, the current The mode is maintained (S7). Here, since the “hot water temperature priority mode” is set as the initial setting, the “hot water temperature priority mode” remains unchanged.
 そして、制御手段320は、給湯ユニット310がサーモOFFとなるか又は給湯ユニット310の運転停止が指示されたかを判断(S8)し、どちらも満たしていなければ、ステップS3に戻る。以上のステップS3からステップS7の処理は、給湯ユニット310がサーモOFFとなるか又は給湯ユニット310の運転停止が指示されるまでの間、任意に設定された制御時間間隔毎に逐次実施される。 Then, the control unit 320 determines whether the hot water supply unit 310 has been turned off or an instruction to stop the operation of the hot water supply unit 310 is made (S8). If neither is satisfied, the process returns to step S3. The processes from step S3 to step S7 are sequentially performed at arbitrarily set control time intervals until the hot water supply unit 310 is thermo-OFF or the operation stop of the hot water supply unit 310 is instructed.
 ここで、具体例を挙げて説明する。入口水温検知センサー10aで検知された入口水温がモード切替閾値A以下の場合、「出湯温度優先モード」が実行されることになる。入口水温は外気の温度環境に依存する温度であり、給湯ユニット310の運転によって変化する温度ではないため、ステップS4で一旦、入口水温がモード切替閾値A以下と判断されれば、通常、しばらくの間、「出湯温度優先モード」が継続して行われることになる。これにより、出口水温検知センサー10bで検知される出湯温度が目標出湯温度に向かって徐々に上昇していく。そして、出湯温度が目標出湯温度に達して給湯ユニット310がサーモOFFとなると、図6の制御を終了する。 Here, a specific example will be described. When the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or lower than the mode switching threshold A, the “hot water temperature priority mode” is executed. Since the inlet water temperature is a temperature that depends on the temperature environment of the outside air and is not a temperature that changes due to the operation of the hot water supply unit 310, once it is determined in step S4 that the inlet water temperature is equal to or lower than the mode switching threshold A, usually, for a while During this time, the “hot water temperature priority mode” is continuously performed. Thereby, the hot water temperature detected by the outlet water temperature detection sensor 10b gradually increases toward the target hot water temperature. Then, when the hot water temperature reaches the target hot water temperature and the hot water supply unit 310 is thermo-OFF, the control in FIG. 6 is terminated.
(図7に示すフローチャート)
 上記図6では、空調給湯複合システムが「出湯温度優先モード」と「継続モード」との切り替えの判断を行っていたが、図7では、この判断を外部通信機器が行うようにしたものである。
(Flowchart shown in FIG. 7)
In FIG. 6 described above, the air-conditioning and hot-water supply complex system determines switching between the “hot water temperature priority mode” and the “continuation mode”, but in FIG. 7, this determination is performed by an external communication device. .
 図7は、本発明の実施の形態1に係る空調給湯複合システムの制御モード判断のフローチャートである。
 給湯ユニット310の制御手段320は、加熱運転の開始が指示されるか又は出湯温度が目標出湯温度未満となりサーモONとなると、初期設定として制御モードを「出湯温度優先モード」に設定(S11)する。なお、ここでは「出湯温度優先モード」に設定するとしたが「継続モード」に設定してもよい。そして、制御手段320は、モード変更信号を受信しているかどうかの確認(S12)を実施する。なお、モード変更信号は空調給湯複合システム100外の外部通信機器から送信される信号である。外部通信機器は、具体的には例えば、空調給湯複合システム100の運転状態を監視する監視装置等である。
FIG. 7 is a flowchart of control mode determination of the combined air-conditioning and hot-water supply system according to Embodiment 1 of the present invention.
The control means 320 of the hot water supply unit 310 sets the control mode to the “hot water temperature priority mode” as an initial setting when the start of the heating operation is instructed or when the hot water temperature is lower than the target hot water temperature and the thermostat is turned on (S11). . Here, the “hot water temperature priority mode” is set, but the “continuous mode” may be set. And the control means 320 implements confirmation (S12) whether the mode change signal is received. The mode change signal is a signal transmitted from an external communication device outside the air conditioning and hot water supply complex system 100. Specifically, the external communication device is, for example, a monitoring device that monitors the operation state of the air conditioning and hot water supply complex system 100.
 そして、制御手段320は、モード変更信号を受信した場合、そのモード変更内容を判断(S13)する。制御手段320は、受信したモード変更信号が「出湯温度優先モード」を指令するものであれば、「出湯温度優先モード」を実施(S14)し、「継続モード」を指令するものであれば、「継続モード」を実施(S15)する。一方、制御手段320は、ステップS12において、モード変更信号が未受信であると判断した場合、現在のモードを維持(S16)する。 Then, when receiving the mode change signal, the control means 320 determines the mode change content (S13). If the received mode change signal instructs the “hot water temperature priority mode”, the control means 320 performs the “hot water temperature priority mode” (S14), and if it instructs the “continuation mode”, The “continuation mode” is executed (S15). On the other hand, when it is determined in step S12 that the mode change signal has not been received, the control means 320 maintains the current mode (S16).
 そして、制御手段320は、給湯ユニット310がサーモOFFとなるか又は給湯ユニット310の運転停止が指示されたかを判断(S17)し、どちらも満たしていなければ、ステップS12に戻る。以上のステップS12からステップS16の処理は、給湯ユニット310がサーモOFFとなるか又は給湯ユニット310の運転停止が指示されるまでの間、任意に設定された制御時間間隔毎に逐次実施される。 Then, the control means 320 determines whether the hot water supply unit 310 is thermo-off or has been instructed to stop the operation of the hot water supply unit 310 (S17), and if neither is satisfied, the process returns to step S12. The processes from step S12 to step S16 are sequentially performed at arbitrarily set control time intervals until the hot water supply unit 310 is thermo-OFF or the operation stop of the hot water supply unit 310 is instructed.
 なお、空調給湯複合システム100外の外部通信機器は、入口水温検知センサー10aの検知信号を受信することができるように入口水温検知センサー10a又は制御手段320に接続されている。そして、外部通信機器は、入口水温検知センサー10aで検知された入口水温がモード切替閾値A以下の場合、「出湯温度優先モード」を指示するモード変更信号を給湯ユニット310に送信する。また、外部通信機器は、入口水温検知センサー10aで検知された入口水温がモード切替閾値B以上の場合、「継続モード」を指示するモード変更信号を給湯ユニット310に送信する。 It should be noted that the external communication device outside the air conditioning and hot water supply combined system 100 is connected to the inlet water temperature detection sensor 10a or the control means 320 so that the detection signal of the inlet water temperature detection sensor 10a can be received. Then, when the inlet water temperature detected by the inlet water temperature detection sensor 10a is equal to or lower than the mode switching threshold A, the external communication device transmits a mode change signal instructing the “hot water temperature priority mode” to the hot water supply unit 310. Further, when the inlet water temperature detected by the inlet water temperature detection sensor 10 a is equal to or higher than the mode switching threshold B, the external communication device transmits a mode change signal instructing “continuation mode” to the hot water supply unit 310.
(制御動作フローチャート)
 以下に、本発明に係る空調給湯複合システムの制御動作フローチャートを説明する。ここでは、空調給湯複合システム100で行われる制御を、図8(給湯ユニット310の給湯側絞り装置312の制御)、図9(室内ユニット210の運転禁止)、図10(霜取運転時における水採熱霜取運転の使用可否)の3つに分けて記載しており、それぞれの処理が同時に動作する。また、図8~図10の各フローチャートの処理は、制御時間間隔毎に実施される。
(Control operation flowchart)
Below, the control operation | movement flowchart of the air-conditioning hot-water supply complex system which concerns on this invention is demonstrated. Here, the control performed by the air conditioning and hot water supply complex system 100 is shown in FIG. 8 (control of the hot water supply side throttle device 312 of the hot water supply unit 310), FIG. 9 (inhibition of the operation of the indoor unit 210), and FIG. The use of the heat collection defrosting operation) is divided into three, and each process operates simultaneously. Further, the processes of the flowcharts of FIGS. 8 to 10 are performed at each control time interval.
(給湯側絞り装置312の制御動作フローチャート)
 図8は、本発明の実施の形態1に係る空調給湯複合システムにおける給湯側絞り装置の制御動作フローチャートである。
 給湯ユニット310の制御手段320は、現在設定されている制御モードを確認する処理(S21)を行う。現在設定されている制御モードが「出湯温度優先モード」であれば、給湯ユニット310は、続いて出口水温検知センサー10bにより検知された出口水温(出湯温度)の確認(S22)、目標出湯温度の確認(S23)を行う。そして、給湯ユニット310は、目標出湯温度と出湯温度との温度差に応じて給湯側絞り装置312の開度値を決定し、その開度値となるように給湯側絞り装置312を制御(S24)する。具体的には、上述したように目標出湯温度と出湯温度との水温差が大きい程、給湯側絞り装置312の開度値は大きい値に決定され、冷媒-水熱交換器311に流れる冷媒量を増やして給湯ユニット310の能力を上昇させる制御が行われることになる。
(Control operation flowchart of hot water supply side throttle device 312)
FIG. 8 is a flowchart of the control operation of the hot water supply side throttle device in the combined air conditioning and hot water supply system according to Embodiment 1 of the present invention.
The control means 320 of the hot water supply unit 310 performs a process (S21) for confirming the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 subsequently checks the outlet water temperature (hot water temperature) detected by the outlet water temperature detection sensor 10b (S22), and sets the target hot water temperature. Confirmation (S23) is performed. Then, the hot water supply unit 310 determines the opening value of the hot water supply side expansion device 312 according to the temperature difference between the target hot water temperature and the hot water temperature, and controls the hot water supply side expansion device 312 so as to be the opening value (S24). ) Specifically, as described above, as the water temperature difference between the target hot water temperature and the hot water temperature is larger, the opening degree value of the hot water supply side expansion device 312 is determined to be a larger value, and the amount of refrigerant flowing into the refrigerant-water heat exchanger 311 is determined. Thus, the control for increasing the capacity of the hot water supply unit 310 is performed.
 一方、ステップS21で、現在設定されている制御モードが「継続モード」であれば、給湯ユニット310は、続いて過冷却度の確認(S25)、目標過冷却度の確認(S26)を行う。そして、給湯ユニット310は、目標過冷却度と過冷却度の差異に応じて給湯側絞り装置312の開度値を決定し、その開度値となるように給湯側絞り装置312を制御(S27)する。 On the other hand, if the currently set control mode is “continuation mode” in step S21, the hot water supply unit 310 subsequently checks the degree of supercooling (S25) and the target degree of supercooling (S26). Then, the hot water supply unit 310 determines the opening value of the hot water supply side expansion device 312 according to the difference between the target supercooling degree and the subcooling degree, and controls the hot water supply side expansion device 312 so as to be the opening value (S27). )
(室内ユニット210の運転禁止処理)
 図9は、本発明の実施の形態1に係る空調給湯複合システムにおける室内ユニットの運転禁止処理に関する制御動作フローチャートである。
 給湯ユニット310の制御手段320は、現在設定されている制御モードを確認する処理(S31)を行う。現在設定されている制御モードが「出湯温度優先モード」であれば、給湯ユニット310は、室内ユニット210に対し、運転禁止の制約を課す処理(S32)を実施する。具体的には、上述したように、室内側絞り装置212を閉状態とし、且つ、室内側熱交換器211に送風する送風機(図示せず)を停止する。
(Operation prohibition processing of indoor unit 210)
FIG. 9 is a control operation flowchart regarding the operation prohibition process of the indoor unit in the air conditioning and hot water supply complex system according to Embodiment 1 of the present invention.
The control means 320 of the hot water supply unit 310 performs processing (S31) for checking the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 performs a process of imposing a restriction on prohibition of operation on the indoor unit 210 (S32). Specifically, as described above, the indoor expansion device 212 is closed, and the blower (not shown) that blows air to the indoor heat exchanger 211 is stopped.
 一方、現在設定されている制御モードが「継続モード」であれば、給湯ユニット310は、室内ユニット210に対し、運転禁止の制約を解除する処理(S33)を実施する。 On the other hand, if the currently set control mode is the “continuation mode”, the hot water supply unit 310 performs a process (S33) for releasing the restriction on prohibition of operation for the indoor unit 210.
 なお、上記では、給湯ユニット310が室内ユニット210に運転禁止の制約を課す形態を示しているが、次のようにしてもよい。すなわち、制御システム構成上、熱源ユニット110が室内ユニット210の運転制約を担うシステムであれば、熱源ユニット110の制御手段120が給湯ユニット310の制御手段320から室内ユニット210の運転制約情報(例えば、給湯ユニット310の運転モード=出湯温度優先モードの情報)を受け取り、熱源ユニット110がその運転制約情報に基づいて室内ユニット210の運転制約を実施する形態であってもよい。また、その際の通信手段としては、各々のユニットが所持している制御手段(120、220、320)と通信手段400でもって実施するとよい。 In addition, although the hot water supply unit 310 has shown the form which imposes restrictions of a driving | running prohibition with respect to the indoor unit 210 in the above, you may make it as follows. That is, in the control system configuration, if the heat source unit 110 is a system responsible for the operation restriction of the indoor unit 210, the control means 120 of the heat source unit 110 is operated from the control means 320 of the hot water supply unit 310 to the operation restriction information of the indoor unit 210 (for example, The operation mode of the hot water supply unit 310 = information of the hot water temperature priority mode) may be received, and the heat source unit 110 may implement the operation restriction of the indoor unit 210 based on the operation restriction information. Further, the communication means at that time may be implemented by the control means (120, 220, 320) possessed by each unit and the communication means 400.
(霜取運転時における水採熱霜取運転の使用可否)
 空調給湯複合システム100では、暖房運転中、熱源側熱交換器113に付いた霜を融解して除去する霜取運転が適宜のタイミングで行われる。ここでまず、霜取運転について説明し、続いて霜取運転時における水採熱霜取運転の使用可否について説明する。
(Use of water sampling heat defrosting operation during defrosting operation)
In the air conditioning and hot water supply complex system 100, a defrosting operation for melting and removing frost attached to the heat source side heat exchanger 113 is performed at an appropriate timing during the heating operation. Here, first, the defrosting operation will be described, and then the availability of the water sampling heat defrosting operation during the defrosting operation will be described.
 霜取運転では、圧縮機111→流路切替弁112→熱源側熱交換器113→液主管1→液枝管4a及び液枝管4b→室内ユニット210及び給湯ユニット310の順に冷媒が流れる。そして、ガス枝管3a、3bを通過した冷媒はガス主管2→流路切替弁112→アキュムレーター115→圧縮機111へと流れる。 In the defrosting operation, the refrigerant flows in the order of the compressor 111 → the flow path switching valve 112 → the heat source side heat exchanger 113 → the liquid main pipe 1 → the liquid branch pipe 4a and the liquid branch pipe 4b → the indoor unit 210 and the hot water supply unit 310. Then, the refrigerant that has passed through the gas branch pipes 3 a and 3 b flows from the gas main pipe 2 → the flow path switching valve 112 → the accumulator 115 → the compressor 111.
 ここで、室内ユニット210内において冷媒は、室内側絞り装置212→室内側熱交換器211を通過し、ガス枝管3aへ流れる。一方、給湯ユニット310では、霜取運転は「標準霜取運転」と「水採熱霜取運転」とに分類される。 Here, in the indoor unit 210, the refrigerant passes through the indoor expansion device 212 → the indoor heat exchanger 211 and flows to the gas branch pipe 3a. On the other hand, in hot water supply unit 310, the defrosting operation is classified into “standard defrosting operation” and “water sampling heat defrosting operation”.
「標準霜取運転」は、圧縮機111の熱量(仕事量)のみで熱源側熱交換器113に着霜した霜を融解する運転であり、「標準霜取運転」における給湯ユニット310内の冷媒の流れは以下のようになっている。すなわち、「標準霜取運転」において冷媒は、バイパス管314→バイパス弁315→ガス枝管3bへと流れる。 The “standard defrosting operation” is an operation for melting the frost formed on the heat source side heat exchanger 113 with only the heat amount (work amount) of the compressor 111, and the refrigerant in the hot water supply unit 310 in the “standard defrosting operation”. The flow is as follows. That is, in the “standard defrosting operation”, the refrigerant flows from the bypass pipe 314 to the bypass valve 315 to the gas branch pipe 3b.
 一方、「水採熱霜取運転」は圧縮機111の熱量(仕事量)に加え、水熱交換器311にて水回路10側を流れる水から授受した熱も使用して、熱源側熱交換器113の霜の融解に用いる運転であり、「水採熱霜取運転」における給湯ユニット310内の冷媒の流れは以下のようになっている。すなわち、「水採熱霜取運転」における冷媒は、給湯側絞り装置312→冷媒-水熱交換器311を通過し、ガス枝管3bへと流れる。 On the other hand, the “water sampling heat defrosting operation” uses the heat transferred from the water flowing through the water circuit 10 in the water heat exchanger 311 in addition to the amount of heat (work amount) of the compressor 111, and heat source side heat exchange. The refrigerant flow in the hot water supply unit 310 in the “water sampling defrosting operation” is as follows. That is, the refrigerant in the “water sampling heat defrosting operation” passes through the hot water supply side expansion device 312 → the refrigerant-water heat exchanger 311 and flows to the gas branch pipe 3b.
 空調給湯複合システム100は、暖房運転中に霜取運転が必要と判断すると、流路切替弁112を図1の実線側に切り替えて上述のように冷媒が流れるようにすると共に、「標準霜取運転」又は「水採熱霜取運転」のどちらの運転とするかを判断する。そして、判断された側の運転が行われるようにバイパス弁315を制御する。 When it is determined that the defrosting operation is necessary during the heating operation, the air conditioning and hot water supply combined system 100 switches the flow path switching valve 112 to the solid line side in FIG. It is determined whether the operation is “operation” or “water sampling / defrosting operation”. Then, the bypass valve 315 is controlled such that the determined operation is performed.
 「水採熱霜取運転」は水回路10側を流れる水から授受した熱も除霜に使う分、「標準霜取運転」に比べて除霜効率がよい。しかし、常に「水採熱霜取運転」を行うこととすると、低水温時に「水採熱霜取運転」を実施した場合、冷媒-水熱交換器311が水熱交凍結パンクする(具体的には、冷媒-水熱交換器311の水回路内にある水が凍結し、体積膨張することで、冷媒-水熱交換器311の内部に過剰な応力が加わり、破壊に至る)という不都合がある。よって、給湯ユニット310の制御手段320は、現在の運転状態に基づいて「水採熱霜取運転」の可否を判断し、「水採熱霜取運転」を許可すると判断した場合には「水採熱霜取運転」を行い、「水採熱霜取運転」を許可しないと判断した場合は「標準霜取運転」を行うようにする。 The “water sampling heat defrosting operation” has higher defrosting efficiency than the “standard defrosting operation” because the heat received from the water flowing on the water circuit 10 side is also used for defrosting. However, if the “water sampling heat defrosting operation” is always performed, when the “water sampling heat defrosting operation” is performed at a low water temperature, the refrigerant-water heat exchanger 311 performs hydrothermal freezing freeze (specifically, In other words, the water in the water circuit of the refrigerant-water heat exchanger 311 freezes and expands in volume, which causes excessive stress on the inside of the refrigerant-water heat exchanger 311 and leads to breakage). is there. Therefore, the control means 320 of the hot water supply unit 310 determines whether or not the “water sampling heat defrosting operation” is permitted based on the current operation state, and when it determines that the “water sampling heat defrosting operation” is permitted, When the “heat extraction defrosting operation” is performed and it is determined that the “water extraction heat defrosting operation” is not permitted, the “standard defrosting operation” is performed.
 図10は、本発明の実施の形態1に係る空調給湯複合システムにおける水採熱霜取運転使用可否における制御動作フローチャートである。
 給湯ユニット310の制御手段320は、現在設定されている制御モードを確認する処理(S41)を行う。現在設定されている制御モードが「出湯温度優先モード」であれば、給湯ユニット310は、続いて入口水温検知センサー10aにより検知された入口水温が予め設定された水採熱霜取設定値以上であるかどうかを判断する処理(S42)を行う。
FIG. 10 is a control operation flowchart in the water sampling / defrosting operation availability in the combined air conditioning and hot water supply system according to Embodiment 1 of the present invention.
The control means 320 of the hot water supply unit 310 performs processing (S41) for confirming the currently set control mode. If the currently set control mode is the “hot water temperature priority mode”, the hot water supply unit 310 subsequently has an inlet water temperature detected by the inlet water temperature detection sensor 10a greater than or equal to a preset water sampling defrost setting value. A process of determining whether or not there is (S42).
 給湯ユニット310は、入口水温が水採熱霜取設定値以上と判断した場合、「水採熱霜取運転」を許可すると判断して「水採熱霜取運転」を実施する(S43)。具体的には、給湯ユニット310はバイパス弁315を閉じて冷媒-水熱交換器311に冷媒が流れるようにする。また、ステップS41において現在設定されている制御モードが「継続モード」であると判断した場合も同様に「水採熱霜取運転」を実施する(S43)。 When the hot water supply unit 310 determines that the inlet water temperature is equal to or higher than the water sampling heat defrosting set value, it determines that the “water sampling heat defrosting operation” is permitted, and performs the “water sampling heat defrosting operation” (S43). Specifically, the hot water supply unit 310 closes the bypass valve 315 so that the refrigerant flows into the refrigerant-water heat exchanger 311. In addition, when it is determined in step S41 that the currently set control mode is the “continuation mode”, the “water sampling heat defrosting operation” is similarly performed (S43).
 一方、給湯ユニット310は、ステップS42の判断において入口水温が水採熱霜取設定値未満と判断した場合、「水採熱霜取運転」を許可しないと判断して「標準霜取運転」を実施(S44)する。具体的には、給湯ユニット310はバイパス弁315を開いてバイパス管314に冷媒が流れるようにする。 On the other hand, if it is determined in step S42 that the inlet water temperature is less than the water sampling heat defrosting set value, the hot water supply unit 310 determines that the “water sampling heat defrosting operation” is not permitted and performs the “standard defrosting operation”. Implement (S44). Specifically, the hot water supply unit 310 opens the bypass valve 315 so that the refrigerant flows through the bypass pipe 314.
 以上説明したように、本実施の形態1では、同時運転中の制御モードを、給湯ユニット310の出湯温度の確保を目的として給湯側絞り装置312を制御すると共に室内ユニット210の運転を禁止する出湯温度優先モードと、同時運転を継続する継続モードとを、給湯ユニット310の入口水温に応じて切り替えるようにした。このため、給湯ユニット310の入口水温に応じた運転が可能となり、入口水温が低水温域にあるときの出湯温度の低下を抑制でき、また、室内の冷風感をユーザに感じさせない運転が可能となる。 As described above, in the first embodiment, the control mode during the simultaneous operation controls the hot water supply side expansion device 312 for the purpose of securing the hot water temperature of the hot water supply unit 310, and the hot water that prohibits the operation of the indoor unit 210. The temperature priority mode and the continuous mode in which the simultaneous operation is continued are switched according to the inlet water temperature of the hot water supply unit 310. For this reason, the operation according to the inlet water temperature of the hot water supply unit 310 is possible, the decrease in the hot water temperature when the inlet water temperature is in the low water temperature range can be suppressed, and the operation without causing the user to feel the cold air in the room is possible. Become.
 ところで、一般論として欧州市場では、一つの空調機器(例えば室内ユニット)で冷房と暖房とを賄う考えはとても少なく、室内ユニットで冷房、ラジエータ(給湯ユニットから搬送された温水で暖房を実施する)で暖房、といったように機器毎に役割分担ができている。よって室内ユニットの暖房運転と給湯ユニットの加熱運転とを同時実施することはとても稀なケースである。 By the way, as a general theory, in the European market, there is very little thought of cooling and heating with a single air conditioner (for example, an indoor unit). Cooling and radiator in an indoor unit (heating is performed with hot water conveyed from a hot water supply unit) The role is shared by each device such as heating. Therefore, it is very rare to simultaneously perform the heating operation of the indoor unit and the heating operation of the hot water supply unit.
 このような背景があるため、機器毎に役割分担ができている場合には、本発明を導入することで「出湯温度優先モード」での室内ユニット210の運転制約が問題になることはない。つまり、空調給湯複合システム100が「出湯温度優先モード」で運転している際、室内暖房は室内ユニット210ではなく、水回路10に設けた水-空気熱交換器(図示せず)で室内空気を温水で温めて暖房すればよい。よって、「出湯温度優先モード」での室内ユニット210の運転制約が問題になることはなく、空調給湯複合システム100としての保護機能を正しく発揮できる。 Because of such a background, when the roles are divided for each device, the operation restriction of the indoor unit 210 in the “hot water temperature priority mode” does not become a problem by introducing the present invention. In other words, when the air conditioning and hot water supply complex system 100 is operating in the “hot water temperature priority mode”, the indoor heating is performed not by the indoor unit 210 but by a water-air heat exchanger (not shown) provided in the water circuit 10. Can be heated with warm water and heated. Therefore, the operation restriction of the indoor unit 210 in the “hot water temperature priority mode” does not become a problem, and the protection function as the air conditioning and hot water supply complex system 100 can be exhibited correctly.
 なお、上記では、給湯ユニット310の制御手段320が自立分散して動作するロジックについて説明しているが、熱源ユニット110の制御手段120が必要な情報を通信手段400を介して取得し、給湯ユニット310を制御するようにしてもよい。つまり、図7~図10に示したフローチャートの処理を制御手段120側で行うようにしてもよい。 In the above description, the control unit 320 of the hot water supply unit 310 operates in a self-distributed manner. However, the control unit 120 of the heat source unit 110 acquires necessary information via the communication unit 400, and the hot water supply unit 310 may be controlled. That is, the processing of the flowcharts shown in FIGS. 7 to 10 may be performed on the control means 120 side.
 また、「出湯温度優先モード」と「継続モード」のどちらの制御モードとするかを判断する際、熱源容量が極端に給湯ユニット310の容量よりも大きい場合には、接続された給湯ユニット310の容量も判断基準に加えてもよい。例えば、図6のS3にて「入口水温≧B、又は、熱源ユニット110と給湯ユニット310との容量比が任意に定めた値より大きい」場合には継続モード(S5)と判断するようにしてもよい。 Further, when determining whether to select the control mode of “hot water temperature priority mode” or “continuation mode”, if the heat source capacity is extremely larger than the capacity of the hot water supply unit 310, the connected hot water supply unit 310 Capacity may also be added to the criteria. For example, if “inlet water temperature ≧ B or the capacity ratio between the heat source unit 110 and the hot water supply unit 310 is larger than an arbitrarily determined value” in S3 of FIG. 6, the continuation mode (S5) is determined. Also good.
 1 液主管、2 ガス主管、3(3a、3b) ガス枝管、4(4a、4b) 液枝管、10 水回路、10a 入口水温検知センサー、10b 出口水温検知センサー、11(11a、11b) 水配管、100 空調給湯複合システム、110 熱源ユニット、111 圧縮機、112 流路切替弁、113 熱源側熱交換器、114 送風機、115 アキュムレーター、120 制御手段、210 室内ユニット、211 室内側熱交換器、212 室内側絞り装置、213G ガス管温度検知センサー、213L 液管温度検知センサー、220 制御手段、310 給湯ユニット、311 冷媒-水熱交換器、312 給湯側絞り装置、313G ガス管温度検知センサー、313L 液管温度検知センサー、314 バイパス管、315 バイパス弁、320 制御手段、400 通信手段。 1 liquid main pipe, 2 gas main pipe, 3 (3a, 3b) gas branch pipe, 4 (4a, 4b) liquid branch pipe, 10 water circuit, 10a inlet water temperature detection sensor, 10b outlet water temperature detection sensor, 11 (11a, 11b) Water piping, 100 Air-conditioning hot-water supply complex system, 110 Heat source unit, 111 compressor, 112 Channel switching valve, 113 Heat source side heat exchanger, 114 Blower, 115 Accumulator, 120 Control means, 210 Indoor unit, 211 Indoor heat exchange 212, indoor throttle device, 213G gas pipe temperature detection sensor, 213L liquid pipe temperature detection sensor, 220 control means, 310 hot water supply unit, 311 refrigerant-water heat exchanger, 312 hot water supply side throttle device, 313G gas pipe temperature detection sensor 313L Liquid tube temperature detection sensor, 314 Viper Tube, 315 bypass valve, 320 control unit, 400 communication unit.

Claims (8)

  1.  圧縮機及び熱源側熱交換器が搭載された少なくとも1台の熱源ユニットと、室内側熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、給湯側熱交換器及び給湯側絞り装置が搭載された少なくとも1台の給湯ユニットとが接続され、前記室内側熱交換器が凝縮器又は放熱器として機能する暖房運転を少なくとも行う冷媒回路と、前記冷媒回路の冷媒と前記給湯側熱交換器にて熱交換して熱媒体を加熱する加熱運転を少なくとも行う給湯回路とを備えた空調給湯複合システムであって、
     前記暖房運転と前記加熱運転との両方を行う同時運転中の制御モードとして、前記給湯ユニットの必要能力に基づいて前記給湯側絞り装置を制御すると共に、前記室内ユニットの暖房運転を禁止する出湯温度優先モードと、前記同時運転を継続する継続モードとを有する制御手段を備え、
     前記制御手段は、前記同時運転中の前記制御モードを、前記給湯側熱交換器における前記熱媒体の入口温度に応じて前記出湯温度優先モード又は前記継続モードに切り替える
    ことを特徴とする空調給湯複合システム。
    At least one heat source unit on which a compressor and a heat source side heat exchanger are mounted, at least one indoor unit on which an indoor side heat exchanger and an indoor expansion device are mounted, a hot water supply side heat exchanger and a hot water supply side A refrigerant circuit that is connected to at least one hot water supply unit on which an expansion device is mounted, and that performs the heating operation in which the indoor heat exchanger functions as a condenser or a radiator, the refrigerant of the refrigerant circuit, and the hot water supply side An air conditioning and hot water supply combined system including a hot water supply circuit that performs at least a heating operation of heating the heat medium by exchanging heat with a heat exchanger,
    As a control mode during simultaneous operation in which both the heating operation and the heating operation are performed, the hot water temperature is controlled while controlling the hot water supply side expansion device based on the required capacity of the hot water supply unit and prohibiting the heating operation of the indoor unit. Comprising control means having a priority mode and a continuation mode for continuing the simultaneous operation;
    The control means switches the control mode during the simultaneous operation to the hot water temperature priority mode or the continuous mode according to the inlet temperature of the heat medium in the hot water supply side heat exchanger. system.
  2.  前記制御手段は、前記給湯側熱交換器における前記熱媒体の入口温度に応じて前記制御モードの変更を指示するモード変更信号を外部から受信した場合、前記制御モードを、前記モード変更信号で指示されたモードに切り替える
    ことを特徴とする請求項1記載の空調給湯複合システム。
    When the control means receives a mode change signal for instructing the change of the control mode according to the inlet temperature of the heat medium in the hot water supply side heat exchanger, the control mode is indicated by the mode change signal. The air-conditioning and hot-water supply complex system according to claim 1, wherein the system is switched to the selected mode.
  3.  前記制御手段は、前記出湯温度優先モードでは、前記給湯側熱交換器における前記熱媒体の入口温度が目標出湯温度となるように前記給湯側絞り装置を制御する
    ことを特徴とする請求項1又は請求項2記載の空調給湯複合システム。
    The control means controls the hot water supply side squeezing device so that an inlet temperature of the heat medium in the hot water supply side heat exchanger becomes a target hot water temperature in the hot water temperature priority mode. The combined air conditioning and hot water supply system according to claim 2.
  4.  前記制御手段は、前記給湯側熱交換器における前記熱媒体の入口温度と前記目標出湯温度との温度差が大きい程、前記給湯側絞り装置の開度を大きくする
    ことを特徴とする請求項3記載の空調給湯複合システム。
    The said control means enlarges the opening degree of the said hot water supply side expansion device, so that the temperature difference of the inlet temperature of the said heat medium in the said hot water supply side heat exchanger and the said target hot water temperature is large. The air conditioning and hot water supply combined system described.
  5.  前記制御手段は、前記継続モードでは、前記室内ユニット及び前記給湯ユニットのそれぞれにおいて、過冷却度が、それぞれ対応の目標過冷却度となるように前記室内側絞り装置及び前記給湯側絞り装置を個別に制御する
    ことを特徴とする請求項1~請求項4の何れか一項に記載の空調給湯複合システム。
    In the continuation mode, the control means separately sets the indoor-side throttling device and the hot-water supply-side throttling device so that the degree of subcooling becomes the corresponding target subcooling degree in each of the indoor unit and the hot water supply unit. The combined air-conditioning and hot-water supply system according to any one of claims 1 to 4, wherein
  6.  冷媒の流れ方向を切り換えて前記圧縮機から吐出された冷媒を前記熱源側熱交換器に流し、前記熱源側熱交換器に付いた霜を除去する霜取運転を可能にする流路切替弁を更に備え、
     前記制御手段は、前記霜取運転として、前記圧縮機から吐出された冷媒の熱に加えて更に、前記給湯ユニットの前記熱媒体から授受した熱を用いて霜取りを行う熱媒体採熱霜取運転と、前記給湯ユニットの前記熱媒体から授受した熱は用いず、前記圧縮機から吐出された冷媒の熱で霜取りを行う標準霜取運転とを有し、
     前記暖房運転中に前記霜取運転を行う際、前記流路切替弁を切り替えると共に、現在の前記制御モードが前記出湯温度優先モードであれば、前記熱媒体採熱霜取運転の可否を前記給湯側熱交換器における前記熱媒体の入口温度に基づいて判断し、判断結果に応じて前記熱媒体採熱霜取運転又は前記標準霜取運転を選択して前記熱源側熱交換器の霜取りを行う
    ことを特徴とする請求項1~請求項5の何れか一項に記載の空調給湯複合システム。
    A flow path switching valve that enables a defrosting operation for switching the flow direction of the refrigerant and flowing the refrigerant discharged from the compressor to the heat source side heat exchanger and removing frost attached to the heat source side heat exchanger. In addition,
    The control means, as the defrosting operation, in addition to the heat of the refrigerant discharged from the compressor, in addition to the heat transferred from the heat medium of the hot water supply unit, the heat medium defrosting operation that performs defrosting And a standard defrosting operation in which the heat transferred from the heat medium of the hot water supply unit is not used, and defrosting is performed with the heat of the refrigerant discharged from the compressor,
    When the defrosting operation is performed during the heating operation, the flow path switching valve is switched, and if the current control mode is the hot water temperature priority mode, whether the heat medium heat defrosting operation is possible or not is determined. Judgment is made based on the inlet temperature of the heat medium in the side heat exchanger, and the heat source heat defrosting operation or the standard defrosting operation is selected according to the determination result to defrost the heat source side heat exchanger. 6. The combined air conditioning and hot water supply system according to any one of claims 1 to 5, wherein
  7.  前記制御手段は、前記給湯側熱交換器における前記熱媒体の入口温度が予め設定された設定値以上の場合、前記熱媒体採熱霜取運転を許可すると判断し、前記給湯側熱交換器における前記熱媒体の入口温度が前記設定値未満の場合、前記熱媒体採熱霜取運転を許可しないと判断する
    ことを特徴とする請求項6記載の空調給湯複合システム。
    When the inlet temperature of the heat medium in the hot water supply side heat exchanger is equal to or higher than a preset set value, the control means determines that the heat medium heat defrosting operation is permitted, and in the hot water supply side heat exchanger The combined air conditioning and hot water supply system according to claim 6, wherein when the inlet temperature of the heat medium is lower than the set value, it is determined that the heat medium heat defrosting operation is not permitted.
  8.  前記給湯側絞り装置及び前記給湯側熱交換器をバイパスするバイパス管と、
     前記バイパス管に流れる流量を制御するバイパス弁とを更に備え、
     前記制御手段は、前記熱媒体採熱霜取運転では前記バイパス弁を閉じ、前記標準霜取運転では、前記バイパス弁を開く制御を行う
    ことを特徴とする請求項6又は請求項7記載の空調給湯複合システム。
    A bypass pipe for bypassing the hot water supply side expansion device and the hot water supply side heat exchanger;
    A bypass valve for controlling the flow rate of the bypass pipe,
    The air conditioning according to claim 6 or 7, wherein the control means performs control to close the bypass valve in the heat medium heat extraction defrosting operation and open the bypass valve in the standard defrosting operation. Hot water supply complex system.
PCT/JP2014/050214 2014-01-09 2014-01-09 Combined air-conditioning and hot-water-supply system WO2015104815A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1601241.1A GB2537453A (en) 2014-01-09 2014-01-09 Combined air-conditioning and hot-water supply system
PCT/JP2014/050214 WO2015104815A1 (en) 2014-01-09 2014-01-09 Combined air-conditioning and hot-water-supply system
JP2015556674A JPWO2015104815A1 (en) 2014-01-09 2014-01-09 Air conditioning and hot water supply complex system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050214 WO2015104815A1 (en) 2014-01-09 2014-01-09 Combined air-conditioning and hot-water-supply system

Publications (1)

Publication Number Publication Date
WO2015104815A1 true WO2015104815A1 (en) 2015-07-16

Family

ID=53523666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050214 WO2015104815A1 (en) 2014-01-09 2014-01-09 Combined air-conditioning and hot-water-supply system

Country Status (3)

Country Link
JP (1) JPWO2015104815A1 (en)
GB (1) GB2537453A (en)
WO (1) WO2015104815A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240994A (en) * 2015-09-18 2016-01-13 广东美的制冷设备有限公司 Drying and mould-proof control method and device for air conditioner
CN107144015A (en) * 2017-05-05 2017-09-08 广东美的暖通设备有限公司 Water heater control method, water heater control system and Teat pump boiler
EP3299732A1 (en) * 2016-09-23 2018-03-28 Daikin Industries, Limited System for air-conditioning and hot-water supply
WO2018100729A1 (en) * 2016-12-02 2018-06-07 三菱電機株式会社 Refrigeration cycle device
CN113551398A (en) * 2021-03-23 2021-10-26 珠海格力电器股份有限公司 Control method of multi-split system, multi-split system and storage medium
WO2023207648A1 (en) * 2022-04-25 2023-11-02 艾欧史密斯(中国)热水器有限公司 Combined supply system, and controller and control method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443934B (en) * 2019-09-05 2021-11-02 青岛海尔空调电子有限公司 Total heat recovery defrosting control method, control system and air conditioning device
CN111692705B (en) * 2020-06-08 2021-06-18 广东美的制冷设备有限公司 Control method, control device, air conditioning system, and computer-readable storage medium
US11739952B2 (en) * 2020-07-13 2023-08-29 Rheem Manufacturing Company Integrated space conditioning and water heating/cooling systems and methods thereto
CN111775657B (en) * 2020-07-13 2021-09-28 安徽江淮汽车集团股份有限公司 Air conditioner condenser fan control circuit, device and car
US11781760B2 (en) 2020-09-23 2023-10-10 Rheem Manufacturing Company Integrated space conditioning and water heating systems and methods thereto
CN114413362B (en) * 2022-01-21 2023-04-28 宁波奥克斯电气股份有限公司 Coupling system of air conditioner and heat pump water heater and control method thereof
CN115095964B (en) * 2022-07-01 2023-07-25 广东开利暖通空调股份有限公司 Heat recovery multi-split system and operation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468544B2 (en) * 1987-01-30 1992-11-02 Daikin Ind Ltd
JPH0633914B2 (en) * 1986-06-06 1994-05-02 ダイキン工業株式会社 Heat pump system
JP2004044946A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Air conditioner
JP2004218944A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat pump air conditioning and water heater
JP2010196955A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JP2012225619A (en) * 2011-04-22 2012-11-15 Hitachi Appliances Inc Heat pump hot-water supply air conditioner
WO2013046269A1 (en) * 2011-09-29 2013-04-04 三菱電機株式会社 Combined air-conditioning/hot water supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633914B2 (en) * 1986-06-06 1994-05-02 ダイキン工業株式会社 Heat pump system
JPH0468544B2 (en) * 1987-01-30 1992-11-02 Daikin Ind Ltd
JP2004044946A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Air conditioner
JP2004218944A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat pump air conditioning and water heater
JP2010196955A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JP2012225619A (en) * 2011-04-22 2012-11-15 Hitachi Appliances Inc Heat pump hot-water supply air conditioner
WO2013046269A1 (en) * 2011-09-29 2013-04-04 三菱電機株式会社 Combined air-conditioning/hot water supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240994B (en) * 2015-09-18 2018-09-11 广东美的制冷设备有限公司 The drying mildew-proof control method and device of air conditioner
CN105240994A (en) * 2015-09-18 2016-01-13 广东美的制冷设备有限公司 Drying and mould-proof control method and device for air conditioner
CN109716032A (en) * 2016-09-23 2019-05-03 大金工业株式会社 System for air conditioning and hot water supply
WO2018056179A1 (en) * 2016-09-23 2018-03-29 Daikin Industries, Ltd. System for air-conditioning and hot-water supply
EP3299732A1 (en) * 2016-09-23 2018-03-28 Daikin Industries, Limited System for air-conditioning and hot-water supply
CN109716032B (en) * 2016-09-23 2021-07-27 大金工业株式会社 System for air conditioning and hot water supply
US11867414B2 (en) 2016-09-23 2024-01-09 Daikin Industries, Ltd. System for air-conditioning and hot-water supply
WO2018100729A1 (en) * 2016-12-02 2018-06-07 三菱電機株式会社 Refrigeration cycle device
JPWO2018100729A1 (en) * 2016-12-02 2019-06-27 三菱電機株式会社 Refrigeration cycle device
CN107144015A (en) * 2017-05-05 2017-09-08 广东美的暖通设备有限公司 Water heater control method, water heater control system and Teat pump boiler
CN113551398A (en) * 2021-03-23 2021-10-26 珠海格力电器股份有限公司 Control method of multi-split system, multi-split system and storage medium
CN113551398B (en) * 2021-03-23 2022-07-15 珠海格力电器股份有限公司 Control method of multi-split system, multi-split system and storage medium
WO2023207648A1 (en) * 2022-04-25 2023-11-02 艾欧史密斯(中国)热水器有限公司 Combined supply system, and controller and control method therefor

Also Published As

Publication number Publication date
GB201601241D0 (en) 2016-03-09
JPWO2015104815A1 (en) 2017-03-23
GB2537453A (en) 2016-10-19

Similar Documents

Publication Publication Date Title
WO2015104815A1 (en) Combined air-conditioning and hot-water-supply system
EP2878902B1 (en) Air-conditioning device
EP2653805B1 (en) Combined air-conditioning and hot water supply system
JP5759017B2 (en) Air conditioner
JP5409715B2 (en) Air conditioner
JP5893151B2 (en) Air conditioning and hot water supply complex system
JP6289668B2 (en) Air conditioning and hot water supply complex system
US9080778B2 (en) Air-conditioning hot-water supply combined system
JP2010236817A (en) Combined system of air conditioning device and hot-water supply device
JP6289734B2 (en) Air conditioning and hot water supply complex system
JP5908183B1 (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
WO2013046269A1 (en) Combined air-conditioning/hot water supply system
WO2020194435A1 (en) Air-conditioning device
JP2019184207A (en) Air conditioner
WO2017109905A1 (en) Air-conditioning/hot-water supplying combined system
WO2022118841A1 (en) Refrigeration cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201601241

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140109

ENP Entry into the national phase

Ref document number: 2015556674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877919

Country of ref document: EP

Kind code of ref document: A1