WO2015104291A1 - Planar antenna - Google Patents

Planar antenna Download PDF

Info

Publication number
WO2015104291A1
WO2015104291A1 PCT/EP2015/050167 EP2015050167W WO2015104291A1 WO 2015104291 A1 WO2015104291 A1 WO 2015104291A1 EP 2015050167 W EP2015050167 W EP 2015050167W WO 2015104291 A1 WO2015104291 A1 WO 2015104291A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
planar
plane
antenna
flat
Prior art date
Application number
PCT/EP2015/050167
Other languages
French (fr)
Inventor
Ihssen Masri
Tân-Phu VUONG
Serigne Bira GUEYE
Patrick Blanc
Original Assignee
Schneider Electric Industries Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries Sas filed Critical Schneider Electric Industries Sas
Priority to CN201580003294.6A priority Critical patent/CN105849972A/en
Priority to EP15701299.8A priority patent/EP3092680A1/en
Publication of WO2015104291A1 publication Critical patent/WO2015104291A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention lies in the field of antennas and relates more specifically to a method of manufacturing a planar antenna comprising at least one radiating source and at least one conductive plane associated with said radiating source.
  • the invention also relates to a planar antenna comprising at least one radiating source and at least one conducting plane associated with said radiating source.
  • the invention also relates to a transmitter / receiver comprising such a planar antenna.
  • FIG. 1 schematically illustrates a planar antenna 1 comprising a source 2 coupled to a conductive plane 4 comprising n superimposed layers, the source 2 being adapted to generate, when powered, an electric field and a magnetic field radiated around the conductive plane 4.
  • Antenna 1 may be for example an antenna printed on an electronic card, and in this case, the conductor plane 4 is the power plan of the electronic card. Due to the proximity of the antenna to the conductive plane 4, an induced current flow is generated on the surface of the different layers of the conductor plane 4 by the magnetic field radiated by the source 2. This current flow plays a role. important on the performance of the antenna.
  • the surface of the conductive plane 4 has an influence on both the impedance, the bandwidth, the efficiency and the shape of the radiation pattern of the antenna. More particularly, it has been found that for an operating wavelength antenna ⁇ , an area of the conductive plane 4 greater than ( ⁇ 2 / (16) causes a deformation of the radiation pattern and the gain of the antenna in one or more directions of space. An example of such a malfunction will be described in the case of an IFA type antenna (for Inverted-F Antenna) diagrammatically shown in FIG. 2.
  • the antenna illustrated in FIG. 2 has an operating frequency of 2.5 GHz, close to a rectangular conductor plane 4 of length 125 mm and width 50 mm.
  • the 3D radiation diagram of this antenna is illustrated in FIG. 3.
  • the radiation of the antenna 2 is essentially concentrated around the lower end of the conductive plane 4 with strong distortions. around the central part of this conductive plane.
  • the maximum gain is 4.7 dB and is measured at the lower end of the conductor plane 4 while at the central portion of the conductive plane 4, the measured gain is less than -6 dB. This results in a loss of 10 dB between the lower end and the central part.
  • Figures 4 and 5 are projections on a plane of Figure 3.
  • FIG. 6, illustrating the adaptation curve of the antenna of FIG. 2 shows a low bandwidth at 143 MHz, ie of the order of 5% at 2.5 GHz.
  • FIG. 7 schematically illustrates the distribution of the currents induced on the surface of the conductive plane 4 of the IFA antenna of FIG. 2. This FIG. 7 shows strong losses of the currents over the entire surface of this conductive plane 4. The current is distributed along the conductive plane 4 with a density of the order of -20 dB (A / m) relative to the maximum density.
  • a solution of the prior art for reducing the influence of the conductive plane 4 on the performance of the antenna is to separate the radiating source 2 and the conductive plane 4 by a distance to limit their mutual interaction. This solution does not take into account the mechanical constraints and the congestion encountered in the manufacture of integrated planar antennas on a printed circuit.
  • An object of the invention is to overcome the disadvantages of the prior art described above.
  • This object is achieved by means of a method of manufacturing a planar antenna comprising at least one source radiating an electromagnetic field of wavelength ⁇ and at least one conducting plane associated with said source.
  • the conductive plane is cut into a plurality of contiguous flat conductive surfaces so that the least the surface closest to the source has a shape and dimensions such that its area is between (k 2 / 16) and (3. ⁇ 2/8), and connects two conductor flat surfaces contiguous by a conductive blade having an area smaller than those of the conductive surfaces in order to reduce the induced leakage currents and the coupling between said planar surfaces .
  • said flat conductive surfaces and said planar conductive blades have a polygonal shape.
  • the flat conductive surfaces and the flat conductive blades have a rectangular shape.
  • the flat conductive surfaces and the flat conductive blades have a square shape.
  • planar conductive strips have a lower or area equal to ( ⁇ 2/100).
  • FIG. 1 previously described, schematically illustrates a general architecture of a planar antenna of the prior art
  • FIG. 2 previously described, schematically illustrates an antenna of the IFA (for Inverted-F Antenna) type of the prior art
  • FIG. 3 and 4-5 previously described, respectively illustrate the 3D radiation pattern and the 2D polar radiation patterns of the antenna of FIG. 2,
  • Figure 6 shows the adaptation curve of the antenna of Figure 2
  • FIG. 7 schematically illustrates the distribution of the surface currents on the conductive plane of the antenna of FIG. 2
  • FIG. 8 schematically illustrates a first example of an IFA-type antenna produced by the method according to the invention
  • FIG. 9 is a 3D radiation diagram of the antenna of FIG. 8,
  • Figures 10 and 11 show the 2D polar radiation pattern of the antenna of Figure 8.
  • Figure 12 shows the adaptation curve of the antenna of Figure 8.
  • FIG. 13 schematically illustrates the distribution of the surface currents on the conductive plane of the antenna of FIG. 8.
  • FIG. 14 schematically illustrates a second example of a monopole type antenna produced by the method according to the invention.
  • FIG. 8 diagrammatically shows a planar antenna 10 comprising a source 2 radiating an electromagnetic field of wavelength ⁇ , and a conductive plane 4, comprising n superimposed layers (not shown on FIG. this figure), associated with the source 2.
  • the conductive plane 4 comprises three contiguous flat conductive surfaces 10, 11 and 12 each having a rectangular shape.
  • the respective areas of conductor flat surfaces contiguous 10, 11 and 12 are between (k 2/16) and (3. ⁇ 2/8).
  • Two adjacent flat conductive surfaces 6 are connected by a conductive strip 8, obtained by cutting each layer of the conductive plane 4, and having a smaller area than the conductive surfaces 10, 11 and 12.
  • the antenna illustrated in FIG. 8 has an operating frequency of 2.5 GHz and comprises a rectangular conducting plane 4 of length 125 mm and width 50 mm.
  • the 3D radiation diagram of this antenna is illustrated in FIG. 9, on which a radiation uniformly distributed around the central part of the conductive plane 4 can be seen.
  • the maximum gain is 2 dB and is measured around the central part of the conductive plane 4, while the gain measured at both ends of the conductive plane 4, is 0 dB.
  • Figures 10 and 11 are projections on a plane of Figure 9.
  • FIG. 11 illustrating a projection on the xy plane, there are two main lobes respectively at + 170 ° with an opening of 123 ° (at -3 dB) and at 10 ° with an opening of 123 °.
  • the maximum gain of the lobe is 0.8 dB.
  • FIG. 12 illustrating the adaptation curve of the antenna of FIG. 8, it can be seen that the bandwidth has been significantly improved with respect to the antenna of FIG. 2 and is increased to 237 MHz, ie 10% at 2.5 GHz.
  • FIG. 13 schematically illustrates the distribution of the density of the currents induced on the surface of the conductive plane 4 of the IFA antenna of FIG. 8.
  • This density is maximum on the flat surface 10 closest to the source 2, reduced on the flat surface 11 central, and almost zero on the flat surface 12 farthest from the source.
  • the source 2 is arranged on a ground plane 20 independent of the plane surfaces 10, 11, 12 and 13 cut on the conductive plane.
  • the cutting of the conductive plane is carried out in the same way as for the antenna of FIG. 13 in which the source 2 is arranged directly on the first planar surface 10 of the conductive plane.
  • the antennas of FIGS. 13 and 14 may comprise more than three contiguous planar conducting surfaces having any polygonal shape optimized for, on the one hand, allowing its installation on the printed circuit, and on the other hand, for maintaining their respective areas between (k 2/16) and (3. ⁇ 2/8).
  • the planar conductive strip 8 may also be of any polygonal shape having an area smaller than ( ⁇ 2/100).
  • the antennas according to the invention can be integrated in a transmitter / receiver, such as a remote control for example or in a mobile phone, a tablet, a router or a microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention concerns a method for producing a planar antenna comprising at least one radiating source with a wavelength λ and at least one conducting plane combined with said radiating source. Said method involves cutting the conducting plane into a plurality of planar conductive surfaces in order for at least the surface closest to the source to have a shape and dimensions such that the area thereof is between (λ2/16) and (3.λ2/8), and connecting said planar conductive surfaces by means of a conductive blade having a surface area which is smaller than those of the conductive surfaces, such as to reduce the coupling between said planar surfaces and the induced current leakages.

Description

ANTENNE PLANAIRE  PLANAR ANTENNA
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
L'invention se situe dans le domaine des antennes et concerne plus spécifiquement un procédé de fabrication d'une antenne planaire comportant au moins une source rayonnante et au moins un plan conducteur associé à ladite source rayonnante. The invention lies in the field of antennas and relates more specifically to a method of manufacturing a planar antenna comprising at least one radiating source and at least one conductive plane associated with said radiating source.
L'invention concerne également une antenne planaire comportant au moins une source rayonnante et au moins un plan conducteur associé à ladite source rayonnante.  The invention also relates to a planar antenna comprising at least one radiating source and at least one conducting plane associated with said radiating source.
L'invention concerne également émetteur/récepteur comportant une telle une antenne planaire. ÉTAT DE LA TECHNIQUE ANTÉRIEURE  The invention also relates to a transmitter / receiver comprising such a planar antenna. STATE OF THE PRIOR ART
La figure 1 illustre schématiquement une antenne planaire 1 comportant une source 2 couplé à un plan conducteur 4 comportant n couches superposées, la source 2 étant adaptée pour générer, lorsqu'elle est alimentée, un champ électrique et un champ magnétique rayonné autour du plan conducteur 4. L'antenne 1 peut être par exem ple une antenne imprimée sur une carte électronique, et, dans ce cas, le plan de conducteur 4 est le plan d'alimentation de la carte électronique. Du fait de la proximité de l'antenne avec le plan conducteur 4, un flux de courant induit est généré à la surface des différentes couches du plan de conducteur 4 par le champ magnétique rayonné par la source 2. Ce flux de courant joue un rôle important sur les performances de l'antenne. En effet, il a été constaté que la surface du plan conducteur 4 a une influence à la fois sur l'impédance, la bande passante, l'efficacité et la forme du diagramme de rayonnement de l'antenne. Plus, particulièrement, il a été constaté que pour antenne de longueur d'onde de fonctionnement λ, une aire du plan conducteur 4 supérieure à (λ2/(16) provoque une déformation du diagramme de rayonnement et du gain de l'antenne dans une ou plusieurs directions de l'espace. Un exemple d'un tel dysfonctionnement sera décrit dans le cas d'une antenne de type IFA (pour Inverted-F Antenna) représenté schématiquement la figure 2. FIG. 1 schematically illustrates a planar antenna 1 comprising a source 2 coupled to a conductive plane 4 comprising n superimposed layers, the source 2 being adapted to generate, when powered, an electric field and a magnetic field radiated around the conductive plane 4. Antenna 1 may be for example an antenna printed on an electronic card, and in this case, the conductor plane 4 is the power plan of the electronic card. Due to the proximity of the antenna to the conductive plane 4, an induced current flow is generated on the surface of the different layers of the conductor plane 4 by the magnetic field radiated by the source 2. This current flow plays a role. important on the performance of the antenna. Indeed, it has been found that the surface of the conductive plane 4 has an influence on both the impedance, the bandwidth, the efficiency and the shape of the radiation pattern of the antenna. More particularly, it has been found that for an operating wavelength antenna λ, an area of the conductive plane 4 greater than (λ 2 / (16) causes a deformation of the radiation pattern and the gain of the antenna in one or more directions of space. An example of such a malfunction will be described in the case of an IFA type antenna (for Inverted-F Antenna) diagrammatically shown in FIG. 2.
L'antenne illustrée par la figure 2 a une fréquence de fonctionnement de 2.5 GHz, à proximité d'un plan conducteur 4 rectangulaire de longueur 125mm et de largeur 50mm. Le diagramme de rayonnement 3D de cette l'antenne est illustré par la figure 3. Comme on peut le constater sur cette figure, le rayonnement de l'antenne 2 est concentré essentiellement autour de l'extrémité inférieure du plan conducteur 4 avec de fortes distorsions autour de la partie centrale de ce plan conducteur. Le gain maximal est de 4,7 dB et est mesuré à l'extrémité inférieure du plan conducteur 4 tandis qu'au niveau de la partie centrale du plan conducteur 4, le gain mesuré est inférieur à -6dB. Ce qui entraine donc une perte de lOdB entre l'extrémité inférieure et la partie centrale.  The antenna illustrated in FIG. 2 has an operating frequency of 2.5 GHz, close to a rectangular conductor plane 4 of length 125 mm and width 50 mm. The 3D radiation diagram of this antenna is illustrated in FIG. 3. As can be seen in this figure, the radiation of the antenna 2 is essentially concentrated around the lower end of the conductive plane 4 with strong distortions. around the central part of this conductive plane. The maximum gain is 4.7 dB and is measured at the lower end of the conductor plane 4 while at the central portion of the conductive plane 4, the measured gain is less than -6 dB. This results in a loss of 10 dB between the lower end and the central part.
Les figures 4 et 5 sont des projections sur un plan de la figure 3.  Figures 4 and 5 are projections on a plane of Figure 3.
Sur la figure 4 illustrant une projection sur le plan yz, on constate deux lobes principaux respectivement à -135° avec une ouverture de 38° (à -3dB) et à -45°avec une ouverture de 38°. Le gain maximum du lobe est de 4,4 dB. Sur la partie centrale, le gain maximum est de -6dB, tandis que les lobes latéraux présentent un gain de -3, 9 dB.  In Figure 4 illustrating a projection on the yz plane, there are two main lobes at -135 ° respectively with an opening of 38 ° (-3 dB) and -45 ° with an opening of 38 °. The maximum gain of the lobe is 4.4 dB. On the central part, the maximum gain is -6dB, while the side lobes have a gain of -3.9 dB.
Sur la figure 5, illustrant une projection sur le plan xy, on constate deux lobes principaux respectivement à -50° avec une ouverture de 30°(à -3dB) et à -130°avec une ouverture de 40°. Le gain maximum du lobe est de 4,7 dB. Sur la partie centrale, le gain maximum est de -6dB, tandis que les lobes latéraux présentent un gain de -2 dB.  In Figure 5, showing a projection on the xy plane, there are two main lobes at -50 ° respectively with an opening of 30 ° (-3dB) and -130 ° with an opening of 40 °. The maximum gain of the lobe is 4.7 dB. On the central part, the maximum gain is -6 dB, while the side lobes have a gain of -2 dB.
La figure 6, illustrant la courbe d'adaptation de l'antenne de la figure 2 montre une faible bande passante à 143 MHz, soit de l'ordre de 5% à 2.5 GHz.  FIG. 6, illustrating the adaptation curve of the antenna of FIG. 2, shows a low bandwidth at 143 MHz, ie of the order of 5% at 2.5 GHz.
La figure 7 illustre schématiquement la distribution des courants induits sur la surface du plan conducteur 4 de l'antenne IFA de la figure 2. Cette figure 7 montre de fortes pertes des courants sur toute la surface de ce plan conducteur 4. Le courant est distribué tout au long du plan conducteur 4 avec une densité de l'ordre de -20 dB (A/m) par rapport à la densité maximale.  FIG. 7 schematically illustrates the distribution of the currents induced on the surface of the conductive plane 4 of the IFA antenna of FIG. 2. This FIG. 7 shows strong losses of the currents over the entire surface of this conductive plane 4. The current is distributed along the conductive plane 4 with a density of the order of -20 dB (A / m) relative to the maximum density.
Une solution de l'art antérieur pour réduire l'influence du plan conducteur 4 sur les performances de l'antenne consiste à séparer la source rayonnante 2 et le plan conducteur 4 d'une distance permettant de limiter leur mutuelle interaction. Cette solution ne tient pas compte des contraintes mécaniques et de l'encombrement rencontrés dans la fabrication des antennes planaires intégrées sur un circuit imprimé. A solution of the prior art for reducing the influence of the conductive plane 4 on the performance of the antenna is to separate the radiating source 2 and the conductive plane 4 by a distance to limit their mutual interaction. This solution does not take into account the mechanical constraints and the congestion encountered in the manufacture of integrated planar antennas on a printed circuit.
Un but de l'invention est de pallier les inconvénients de l'art antérieur décrits ci-dessus.  An object of the invention is to overcome the disadvantages of the prior art described above.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
Ce but est atteint au moyen d'un procédé de fabrication d'une antenne planaire comportant au moins une source rayonnant un champ électromagnétique de longueur d'onde λ et au moins un plan conducteur associé à ladite source. This object is achieved by means of a method of manufacturing a planar antenna comprising at least one source radiating an electromagnetic field of wavelength λ and at least one conducting plane associated with said source.
Selon le procédé de l'invention, on découpe le plan conducteur en une pluralité de surfaces conductrices planes contiguës de sorte qu' moins la surface la plus proche de la source présente une forme et des dimensions telles que son aire soit comprise entre (k2/16) et (3.λ2/8), et on relie deux surfaces conductrices planes contiguës par une lame conductrice ayant une aire inférieure à celles des surfaces conductrices de manière à réduire les fuites de courants induits et le couplage entre lesdites surfaces planes. According to the method of the invention, the conductive plane is cut into a plurality of contiguous flat conductive surfaces so that the least the surface closest to the source has a shape and dimensions such that its area is between (k 2 / 16) and (3.λ 2/8), and connects two conductor flat surfaces contiguous by a conductive blade having an area smaller than those of the conductive surfaces in order to reduce the induced leakage currents and the coupling between said planar surfaces .
Préférentiellement, lesdites surfaces conductrices planes et lesdites lames conductrice planes présentent une forme polygonale.  Preferably, said flat conductive surfaces and said planar conductive blades have a polygonal shape.
Selon un premier mode de réalisation, les surfaces conductrices planes et les lames conductrice planes présentent une forme rectangulaire.  According to a first embodiment, the flat conductive surfaces and the flat conductive blades have a rectangular shape.
Selon un deuxième mode de réalisation, les surfaces conductrices planes et les lames conductrice planes présentent une forme carrée.  According to a second embodiment, the flat conductive surfaces and the flat conductive blades have a square shape.
Dans une variante, lesdites lames conductrices planes ont une aire inférieure ou égale à (λ2/100). BRÈVE DESCRIPTION DES DESSINS Alternatively, said planar conductive strips have a lower or area equal to (λ 2/100). BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, prise à titre d'exemple non limitatif, en référence aux figures annexées dans lesquelles: la figure 1, décrite précédemment, illustre schématiquement une architecture générale d'une antenne planaire de l'art antérieur ; la figure 2, décrite précédemment, illustre schématiquement une antenne du type IFA (pour Inverted-F Antenna) de l'art antérieur ; La figure 3 et 4-5, décrites précédemment, illustrent respectivement le diagramme de rayonnement 3D et les diagrammes de rayonnement polaires 2D de l'antenne de la figure 2, Other features and advantages of the invention will emerge from the description which follows, taken by way of non-limiting example, with reference to the appended figures in which: FIG. 1, previously described, schematically illustrates a general architecture of a planar antenna of the prior art; FIG. 2, previously described, schematically illustrates an antenna of the IFA (for Inverted-F Antenna) type of the prior art; FIG. 3 and 4-5, previously described, respectively illustrate the 3D radiation pattern and the 2D polar radiation patterns of the antenna of FIG. 2,
La figure 6 représente la courbe d'adaptation de l'antenne de la figure 2;  Figure 6 shows the adaptation curve of the antenna of Figure 2;
la figure 7 illustre schématiquement la répartition des courants de surface sur le plan conducteur de l'antenne de la de la figure 2, la figure 8 illustre schématiquement un premier exemple d'antenne du type IFA réalisée par le procédé selon l'invention,  FIG. 7 schematically illustrates the distribution of the surface currents on the conductive plane of the antenna of FIG. 2, FIG. 8 schematically illustrates a first example of an IFA-type antenna produced by the method according to the invention;
la figure 9 est un diagramme de rayonnement 3D de l'antenne de la figure 8,  FIG. 9 is a 3D radiation diagram of the antenna of FIG. 8,
les figures 10 et 11 représentent le diagramme de rayonnement polaire 2D de l'antenne de la figure 8.  Figures 10 and 11 show the 2D polar radiation pattern of the antenna of Figure 8.
La figure 12 représente la courbe d'adaptation de l'antenne de la figure 8;  Figure 12 shows the adaptation curve of the antenna of Figure 8;
la figure 13 illustre schématiquement la répartition des courants de surface sur le plan conducteur de l'antenne de la de la figure 8. la figure 14 illustre schématiquement un deuxième exemple d'antenne du type monopole réalisée par le procédé selon l'invention.  FIG. 13 schematically illustrates the distribution of the surface currents on the conductive plane of the antenna of FIG. 8. FIG. 14 schematically illustrates a second example of a monopole type antenna produced by the method according to the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Dans la description qui suit, des références identiques désigneront les caractéristiques communes aux antennes de l'art antérieur et à celles de l'invention.  In the description which follows, identical references will designate the characteristics common to antennas of the prior art and to those of the invention.
Sur la figure 8 est représentée schématiquement une antenne planaire 10 comportant une source 2 rayonnant un champ électromagnétique de longueur d'onde λ, et un plan conducteur 4, comportant n couches superposées (non représentées sur cette figure), associé à la source 2. Le plan conducteur 4 comporte trois surfaces conductrices planes contigues 10, 11 et 12 ayant chacune une forme rectangulaire. Les aires respectives des surfaces conductrices planes contigues 10, 11 et 12 sont comprises entre (k2/16) et (3.λ2/8). Deux surfaces conductrices planes 6 contigus sont reliées par une lame conductrice 8, obtenue par découpage de chaque couche du plan conducteur 4, et ayant une aire inférieure à celles des surfaces conductrices 10, 11 et 12. FIG. 8 diagrammatically shows a planar antenna 10 comprising a source 2 radiating an electromagnetic field of wavelength λ, and a conductive plane 4, comprising n superimposed layers (not shown on FIG. this figure), associated with the source 2. The conductive plane 4 comprises three contiguous flat conductive surfaces 10, 11 and 12 each having a rectangular shape. The respective areas of conductor flat surfaces contiguous 10, 11 and 12 are between (k 2/16) and (3.λ 2/8). Two adjacent flat conductive surfaces 6 are connected by a conductive strip 8, obtained by cutting each layer of the conductive plane 4, and having a smaller area than the conductive surfaces 10, 11 and 12.
L'antenne illustrée par la figure 8 a une fréquence de fonctionnement de 2.5 GHz et comporte un plan conducteur 4 rectangulaire de longueur 125mm et de largeur 50mm. Le diagramme de rayonnement 3D de cette antenne est illustré par la figure 9 sur laquelle on peut voir un rayonnement uniformément réparti autour de la partie centrale du plan conducteur 4  The antenna illustrated in FIG. 8 has an operating frequency of 2.5 GHz and comprises a rectangular conducting plane 4 of length 125 mm and width 50 mm. The 3D radiation diagram of this antenna is illustrated in FIG. 9, on which a radiation uniformly distributed around the central part of the conductive plane 4 can be seen.
Le gain maximal est de 2 dB et est mesuré autour de la partie centrale du plan conducteur 4, tandis que le gain mesuré aux deux extrémités du plan conducteur 4, est de 0 dB.  The maximum gain is 2 dB and is measured around the central part of the conductive plane 4, while the gain measured at both ends of the conductive plane 4, is 0 dB.
Les figures 10 et 11 sont des projections sur un plan de la figure 9.  Figures 10 and 11 are projections on a plane of Figure 9.
Sur la figure 10, illustrant une projection sur le plan yz, on constate deux lobes principaux respectivement à +4° avec une ouverture de 103° (-3dB) et à 177° avec une ouverture de 103°. Le gain maximum du lobe est de 2,3 dB. Ce qui montre l'homogénéité du rayonnement sur le plan yz.  In Figure 10, illustrating a projection on the yz plane, there are two main lobes at + 4 ° respectively with an opening of 103 ° (-3 dB) and 177 ° with an opening of 103 °. The maximum gain of the lobe is 2.3 dB. This shows the homogeneity of the radiation on the yz plane.
Sur la figure 11, illustrant une projection sur le plan xy, on constate deux lobes principaux respectivement à +170° avec une ouverture de 123° (à -3dB) et à 10° avec une ouverture de 123°. Le gain maximum du lobe est de 0,8 dB.  In FIG. 11, illustrating a projection on the xy plane, there are two main lobes respectively at + 170 ° with an opening of 123 ° (at -3 dB) and at 10 ° with an opening of 123 °. The maximum gain of the lobe is 0.8 dB.
Sur la figure 12, illustrant la courbe d'adaptation de l'antenne de la figure 8, on voit que la bande passante a été nettement améliorée par rapport à l'antenne de la figure 2 et est augmentée à 237 MHz, soit de l'ordre de 10% à 2.5 GHz.  In FIG. 12, illustrating the adaptation curve of the antenna of FIG. 8, it can be seen that the bandwidth has been significantly improved with respect to the antenna of FIG. 2 and is increased to 237 MHz, ie 10% at 2.5 GHz.
La figure 13 illustre schématiquement la répartition de la densité des courants induits sur la surface du plan conducteur 4 de l'antenne IFA de la figure 8. Sur cette figure, on constate une forte réduction des courants sur toute la surface du plan conducteur 4. Cette densité est maximale sur la surface plane 10 la plus proche de la source 2, réduite sur la surface plane 11 centrale, et quasiment nulle sur la surface plane 12 la plus éloignée de la source. FIG. 13 schematically illustrates the distribution of the density of the currents induced on the surface of the conductive plane 4 of the IFA antenna of FIG. 8. In this figure, there is a strong reduction of the currents on the entire surface of the conductive plane 4. This density is maximum on the flat surface 10 closest to the source 2, reduced on the flat surface 11 central, and almost zero on the flat surface 12 farthest from the source.
Sur l'antenne illustrée par figure 14, la source 2 est agencée sur un plan de masse 20 indépendant des surfaces planes 10, 11, 12 et 13 découpées sur le plan conducteur. Le découpage du plan conducteur est dans ce cas réalisé de la même façon que pour l'antenne de la figure 13 dans laquelle la source 2 est agencée directement sur la première surface plane 10 du plan conducteur.  On the antenna illustrated in FIG. 14, the source 2 is arranged on a ground plane 20 independent of the plane surfaces 10, 11, 12 and 13 cut on the conductive plane. In this case, the cutting of the conductive plane is carried out in the same way as for the antenna of FIG. 13 in which the source 2 is arranged directly on the first planar surface 10 of the conductive plane.
Il est à noter que les antennes des figures 13 et 14 peuvent comporter plus de trois surfaces conductrices planes contigues présentant une forme polygonale quelconque optimisée pour, d'une part, permettre son installation sur le circuit imprimé, et d'autre part, pour maintenir leurs aires respectives comprises entre (k2/16) et (3.λ2/8). La lame conductrice plane 8 peut également présenter une forme polygonale quelconque ayant une aire inférieure à (λ2/100). It should be noted that the antennas of FIGS. 13 and 14 may comprise more than three contiguous planar conducting surfaces having any polygonal shape optimized for, on the one hand, allowing its installation on the printed circuit, and on the other hand, for maintaining their respective areas between (k 2/16) and (3.λ 2/8). The planar conductive strip 8 may also be of any polygonal shape having an area smaller than (λ 2/100).
Les antennes selon l'invention peuvent être intégrées dans un émetteur/récepteur, telle qu'une télécommande par exemple ou encore dans téléphone portable, une tablette, un routeur ou un microordinateur.  The antennas according to the invention can be integrated in a transmitter / receiver, such as a remote control for example or in a mobile phone, a tablet, a router or a microcomputer.
Il apparaît clairement que le découpage du plan conducteur 4 selon l'invention améliore nettement l'impédance, la bande passante, l'efficacité et la forme du diagramme de rayonnement de l'antenne.  It is clear that the cutting of the conductive plane 4 according to the invention clearly improves the impedance, the bandwidth, the efficiency and the shape of the radiation pattern of the antenna.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une antenne planaire comportant au moins une source (2) rayonnant avec une longueur d'onde λ et au moins un plan conducteur (4) associé à ladite source rayonnante (2), procédé caractérisé en ce que l'on découpe le plan conducteur en une pluralité de surfaces conductrices planes (10, 11, 12) de sorte qu'au moins la surface la plus proche de la source présente une forme et des dimensions telles que son aire soit comprise entre (k2/16) et (3.λ2/8), et on relie deux surfaces conductrices planes (10, 11, 12) contiguës par une lame conductrice (8) ayant une aire inférieure à celles des surfaces conductrices (10, 11, 12) de manière à réduire les fuites de courants induits et le couplage entre lesdites surfaces planes (10, 11, 12). 1. A method of manufacturing a planar antenna comprising at least one source (2) radiating with a wavelength λ and at least one conductive plane (4) associated with said radiating source (2), characterized in that the the conductive plane is cut into a plurality of plane conductive surfaces (10, 11, 12) so that at least the surface closest to the source has a shape and dimensions such that its area is between (k 2 / 16) and (3.λ 2/8), and connects two conductor flat surfaces (10, 11, 12) contiguous with a conducting lamina (8) having an area smaller than those of the conductive surfaces (10, 11, 12 ) in order to reduce induced current leakage and coupling between said planar surfaces (10, 11, 12).
2. Procédé selon la revendication 1 dans lequel lesdites surfaces conductrices planes (10, 11, 12) et lesdites lames conductrice planes (8) présentent une forme polygonale. 2. The method of claim 1 wherein said flat conductive surfaces (10, 11, 12) and said planar conductive blades (8) have a polygonal shape.
3. Procédé selon la revendication 1 dans lequel les surfaces conductrices planes (10, 11, 12) et les lames conductrice planes (8) présentent une forme rectangulaire. 3. The method of claim 1 wherein the planar conductive surfaces (10, 11, 12) and the planar conductive blades (8) have a rectangular shape.
4. Procédé selon la revendication 1 dans lequel les surfaces conductrices planes (10, 11, 12) et les lames conductrice planes (8) présentent une forme carrée. 4. The method of claim 1 wherein the flat conductive surfaces (10, 11, 12) and the planar conductive blades (8) have a square shape.
5. Procédé selon la revendication 3 dans lequel lesdites lames conductrices planes (8) ont une aire inférieure ou égale à (λ2/100). 5. The method of claim 3 wherein said planar conductive strips (8) are less than or equal to area (λ 2/100).
6. Procédé selon l'une des revendications 4 ou 5 dans lequel on découpe les surfaces conductrices planes (10, 11, 12) et les lames conductrice planes (8) sur une pluralité de plans conducteurs (4) superposés. 6. Method according to one of claims 4 or 5 wherein is cut the flat conductive surfaces (10, 11, 12) and the flat conductive blades (8) on a plurality of conductive planes (4) superimposed.
7. Antenne planaire comportant au moins une source rayonnante (2) et au moins un plan conducteur (4) associé à ladite source rayonnante (2), caractérisée en ce que ledit plan conducteur (4) comporte une pluralité de surfaces conductrices planes (10, 11, 12) contiguës dont au moins la surface la plus proche de la source présente une forme et des dimensions telles que son aire soit comprise entre (k2/16) et (3.λ2/8), , et en ce que deux surfaces conductrices planes (10, 11, 12) contiguës sont reliées par une lame conductrice (8) ayant une aire inférieure à celles des surfaces conductrices (10, 11, 12). 7. Planar antenna comprising at least one radiating source (2) and at least one conducting plane (4) associated with said radiating source (2), characterized in that said conductive plane (4) comprises a plurality of plane conductive surfaces (10). , 11, 12) contiguous with at least the nearest surface of the source has a shape and dimensions such that its range is between (k 2/16) and (3.λ 2/8), and in that two adjoining flat conductive surfaces (10, 11, 12) are connected by a conductive blade (8) having a smaller area than the conductive surfaces (10, 11, 12).
8. Antenne selon la revendication 7 caractérisée en ce que chaque surface conductrice plane (10, 11, 12) et chaque la lame conductrice plane (10, 11, 12) présentent une forme polygonale. 8. Antenna according to claim 7 characterized in that each flat conductive surface (10, 11, 12) and each flat conductive plate (10, 11, 12) have a polygonal shape.
9. Antenne selon la revendication 7 dans laquelle chaque surface conductrice plane (10, 11, 12) et chaque la lame conductrice plane (10, 11, 12) présentent une forme carrée. 9. Antenna according to claim 7 wherein each flat conductive surface (10, 11, 12) and each flat conductive plate (10, 11, 12) have a square shape.
10. Antenne selon la revendication 7 dans lequel chaque surface conductrice plane (10, 11, 12) et chaque la lame conductrice plane (10, 11, 12) présentent une forme rectangulaire. 10. Antenna according to claim 7 wherein each planar conductive surface (10, 11, 12) and each planar conductive plate (10, 11, 12) have a rectangular shape.
11. Antenne selon la revendication 7 dans comportant au moins deux plans conducteurs superposés. 11. Antenna according to claim 7 in having at least two superimposed conductive planes.
12. Emetteur/récepteur caractérisé en ce qu'il comporte une antenne selon l'une des revendications 7 à 11. 12. Transmitter / receiver characterized in that it comprises an antenna according to one of claims 7 to 11.
PCT/EP2015/050167 2014-01-10 2015-01-07 Planar antenna WO2015104291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580003294.6A CN105849972A (en) 2014-01-10 2015-01-07 Planar antenna
EP15701299.8A EP3092680A1 (en) 2014-01-10 2015-01-07 Planar antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450175 2014-01-10
FR1450175A FR3016480B1 (en) 2014-01-10 2014-01-10 PLANAR ANTENNA

Publications (1)

Publication Number Publication Date
WO2015104291A1 true WO2015104291A1 (en) 2015-07-16

Family

ID=50624747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050167 WO2015104291A1 (en) 2014-01-10 2015-01-07 Planar antenna

Country Status (5)

Country Link
EP (1) EP3092680A1 (en)
CN (1) CN105849972A (en)
FR (1) FR3016480B1 (en)
TW (1) TW201532340A (en)
WO (1) WO2015104291A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032455A1 (en) * 2004-09-21 2006-03-30 Fractus, S.A. Multilevel ground-plane for a mobile device
US20060250310A1 (en) * 2005-05-05 2006-11-09 Shih-Huang Yeh Wireless apparatus capable of controlling radiation patterns of antenna
WO2007039071A2 (en) * 2005-09-19 2007-04-12 Fractus, S.A. Antenna set, portable wireless device, and use of a conductive element for tuning the ground-plane of the antenna set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039352A (en) * 2001-09-13 2004-05-10 프레이투스, 에스.에이. Multilevel and space-filling ground-planes for miniature and multiband antennas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032455A1 (en) * 2004-09-21 2006-03-30 Fractus, S.A. Multilevel ground-plane for a mobile device
US20060250310A1 (en) * 2005-05-05 2006-11-09 Shih-Huang Yeh Wireless apparatus capable of controlling radiation patterns of antenna
WO2007039071A2 (en) * 2005-09-19 2007-04-12 Fractus, S.A. Antenna set, portable wireless device, and use of a conductive element for tuning the ground-plane of the antenna set

Also Published As

Publication number Publication date
EP3092680A1 (en) 2016-11-16
FR3016480A1 (en) 2015-07-17
TW201532340A (en) 2015-08-16
FR3016480B1 (en) 2016-02-19
CN105849972A (en) 2016-08-10

Similar Documents

Publication Publication Date Title
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP2795724B1 (en) Basic antenna, and corresponding one- or two-dimensional array antenna
FR2826185A1 (en) Antenna for operation with mobile phone includes parallel conductive surface, one cut into inner and outer zones linked to two generator terminals
FR2811479A1 (en) CONDUCTIVE LAYER ANTENNA AND DUAL BAND TRANSMISSION DEVICE INCLUDING THIS ANTENNA
EP2625741B1 (en) Large-area broadband surface-wave antenna
EP3298651B1 (en) Surface wave antenna system
EP1042845B1 (en) Antenna
EP1225654A1 (en) Multiband antenna for portable devices
EP1225655B1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP1346442A1 (en) Printed patch antenna
EP3227960B1 (en) Self-complementary multilayer array antenna
EP3175509B1 (en) Log-periodic antenna with wide frequency band
FR2950745A1 (en) RADIANT ELEMENT OF ANTENNA WITH DUAL POLARIZATION
EP1516393A1 (en) Double polarization dual-band radiating device
WO2015104291A1 (en) Planar antenna
EP3692598B1 (en) Antenna with partially saturated dispersive ferromagnetic substrate
EP2409361A1 (en) Dual fin antenna
EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
EP1949496A1 (en) Flat antenna system with a direct waveguide access
EP2449623B1 (en) Modular band extension device for a very-wide-band omnidirectional antenna
WO2008040807A1 (en) Slot/ellipsoid pad coupling device for direct supply by the waveguide of a planar antenna
FR2958805A1 (en) Compact planar antenna for e.g. nomad or mobile terminals, has slot supplied with power by supply line, and variable capacitance elements mounted between supply line and end of slot radiator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15701299

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015701299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015701299

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016013153

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016013153

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160608