WO2015101812A1 - 异形线管 - Google Patents

异形线管 Download PDF

Info

Publication number
WO2015101812A1
WO2015101812A1 PCT/IB2013/061452 IB2013061452W WO2015101812A1 WO 2015101812 A1 WO2015101812 A1 WO 2015101812A1 IB 2013061452 W IB2013061452 W IB 2013061452W WO 2015101812 A1 WO2015101812 A1 WO 2015101812A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
profiled
cross
pipe
holes
Prior art date
Application number
PCT/IB2013/061452
Other languages
English (en)
French (fr)
Inventor
许军
许显斌
谢晶
Original Assignee
南宁马许科技有限公司
许军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南宁马许科技有限公司, 许军 filed Critical 南宁马许科技有限公司
Priority to CN201380031343.8A priority Critical patent/CN104937797A/zh
Priority to PCT/IB2013/061452 priority patent/WO2015101812A1/zh
Publication of WO2015101812A1 publication Critical patent/WO2015101812A1/zh
Priority to GBGB1512745.9A priority patent/GB201512745D0/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0431Wall trunking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings
    • H02G3/34Installations of cables or lines on walls, floors or ceilings using separate protective tubing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/04Installations of electric cables or lines in or on the ground or water in surface ducts; Ducts or covers therefor

Definitions

  • the present invention relates to a cable tube that is laid in a building.
  • the present invention relates to the construction of a profiled conduit above a floor concrete layer of a building.
  • This invention solves the problem that the cable ducts in the building achieve a bending radius of more than 10 times the diameter of the pipe under the constraints of severe construction conditions.
  • the cumulative turning angle of the cable conduit can be reduced to some extent.
  • a new method of reducing the cumulative turning angle of a cable conduit is proposed.
  • the piping path design in Figure 1 employs the method disclosed in the aforementioned PCT/CN2012/001 172 and its family of patent documents.
  • the socket 101 is located on one wall, and the sockets 102 and 103 are located on the opposite wall; g1 and g2 are the intersections of the two walls and the ground; these sockets are installed with a vertical inclination angle of ⁇ 1.
  • the pipe between the sockets 101 and 102 comprises two sections of a curved elbow 82 having a bending radius R and a straight pipe 81 laid on the ground, the cumulative turning angle being 180° + 2 ⁇ 1; the tube between the sockets 101 and 103
  • the cumulative turning angle of the road is 2 ⁇ 1, ten ⁇ , 31 ⁇ , and 32.
  • Figure 2 is a schematic cross-sectional view of a PVC cable tube most commonly used in a building.
  • the common diameter of the pipe diameter d is 20mm, 25mm and 32mm.
  • Many cable ducts are laid and installed during the renovation phase after the main body of the building is completed. At this time, it is common practice to directly lay the pipe on the concrete floor, and then use the cement mortar to level the ground in the subsequent process, and then lay the floor tile or the wooden floor. As shown in FIG. 3, the conduit 20 is directly laid on the concrete floor 2. Subsequent construction workers typically use a trolley to transport cement mortar to various areas of the room. In this scenario, it is inevitable that a trolley weighing 100-200kg will directly run over the already laid PVC pipe. At this point, the conduit 20 will in turn receive continuous positive pressure from above and above the sides: F1, F2 and F3.
  • Figure 4 shows the fatal damage that can occur in a line under such pressure.
  • the force analysis is performed from the mechanical point of view:
  • the pressure F2 acts on the top of the pipe, and the ground generates a corresponding reaction force F2'.
  • the stress concentration is first generated by the contact point 202 of the wire tube 20 and the concrete floor 2, and then the stress concentration region is expanded upward.
  • the 201 points with the largest free path on the left and right sides will be broken under shear stress.
  • a cable is usually laid with multiple cables. Typically, the power cable requires three lines of live, neutral, and ground. Tubes with a 20 mm diameter can be difficult when dealing with three or more cables; especially when these cables are entangled.
  • the present invention proposes a novel cable tube structure.
  • the utility model is characterized in that the cross-sectional shape of the wire pipe is an upper arc shape, the upper bottom straight letter “D” has a height of 20 mm, the bottom width is 30 mm, and the inner space cross section of the wire pipe is a flat bottom circle.
  • Figure 5 shows a comparison of the cross sections of the three tubes.
  • the upper two are round tubes (20 and 25) with a diameter of 20 mm and a diameter of 25 mm.
  • the internal space of tube 20, tube 25 and tube 30 Compare the internal space of tube 20, tube 25 and tube 30. Assuming that the tube wall thickness of the tube 20 is 3 mm, the internal space is calculated as follows by area: 7 2 * ⁇ ⁇ 154 mm 2 . Assuming that the tube wall thickness of the tube 25 is 4 mm, the internal space is calculated as follows by area: 8.5 2 * ⁇ ⁇ 227 mm 2 . Assuming that the pipe wall thickness of the pipe 30 is 4 mm in the upper half and 3 mm in the lower bottom, the internal space is estimated by the area as: 1 1 2 * 3i / 2 10 2 * 18 226 mm 2 .
  • each of the two corners of the special-shaped tube 30 has a corner arc 301 having a radius of curvature of not less than 3 mm, which is called an inner arc; this inner arc structure makes the inner shape of the line tube Continuous, thus eliminating the stress concentration at the corners, significantly enhancing the resistance to deformation of the sides and corners.
  • the positive pressure F2 from above is conducted downward by the curved tube wall, acting on the contact surface of the tube bottom with the concrete 2.
  • Ff F/S, ⁇ -stress, F-force, S-force surface)
  • Traditional rectangular conduits will stress concentrate at both corners (due to geometric singularities).
  • the positive pressure (or partial shearing force) from F2 is continuously transmitted to the contact surface without causing stress concentration.
  • the pressure resistance of the shaped tube 30 will be greatly improved compared to the conventional round tube 20 or other rectangular tubes (in theory, the increase is greater than 200%).
  • FIG. 7 is a schematic representation of two common porous tubes.
  • These air-to-air tubes are generally used in urban backbone communication pipes and can provide separate cable channels for different operators.
  • there are also multiple cables in parallel in the pipeline leading to the common socket in the building such as the example of three power cables.
  • a pipe is used, several cables are required to be laid together and replaced together, and cannot be installed or replaced one by one.
  • multiple cables are connected in parallel, which is prone to entanglement, which causes the conduit to be blocked and affects the construction.
  • the separation of the cables can be achieved, and the spacing between the channels creates a perfect triangular support column.
  • Figure 1 shows a schematic view of the internal piping layout of a building being flattened along the foot line.
  • 101, 102, 103 are sockets
  • 81 is a straight pipe, and 82 is a three-dimensional curved pipe;
  • Gl , g2 is the intersection of the wall and the ground (commonly known as the foot line);
  • R is the bending radius (or turning radius) of the three-dimensional elbow 82
  • Figure 2 is a common PVC conduit.
  • Figure 3 is a schematic view of the external impact force encountered during the construction of the PVC pipe.
  • Figure 4 is a schematic diagram of the pressure failure analysis of the PVC pipe during construction.
  • Figure 5 shows a comparison of the circular pipe and the special-shaped pipe of two typical pipe diameters.
  • Figure 6 further showing the local details of the profiled tube and performing a force analysis.
  • Figure 7. Schematic diagram of a porous tube.
  • Figure 8. Cross-sectional view of three three-hole shaped tubes.
  • Figure 9. Schematic diagram of two three-hole shaped tubes with high elastic internal ribs.
  • Figure 10. A three-hole shaped tube that rotates at 90°.
  • Figure 1 1. Force analysis of a three-hole shaped tube with internal ribs.
  • Figure 12 two three-hole shaped tubes with an aspect ratio of 2:1.
  • the basic mechanism of the shaped tube to be protected by the present invention is a circle having a radius of curvature of not less than 3 mm at both corners of the tube having a capital letter "D" in cross section. arc. Since the shearing force of the bottom edge is significantly smaller than that of the upper circular arc, the thickness of the wall of the upper circular portion should be greater than the thickness of the lower base. Preferably, the upper circular portion has a thickness of 4 mm, and the lower bottom portion has a thickness of 3 mm.
  • the holes on the left and right sides are symmetrical, and the holes in the middle are smaller than the holes on both sides.
  • the area ratio of large holes to small holes is 1.5:1 to 2:1 by area.
  • the shape of the holes has a direct impact on the size of the space and the strength of the tube. Hole 1 1 (rounded trapezoid) and 12
  • FIG. 9 shows two nearly widened three-hole shaped tubes with a width of 35 mm.
  • a flat steel strip 6 is embedded in the middle of the pipe.
  • the flat steel strip is embedded in the bearing area in the center of the line tube. Since the strength and toughness of the steel strip are excellent (such as spring steel), the addition of the steel strip 6 can significantly improve the pressure resistance of the line tube.
  • This flat steel strip has a thickness of 2 mm and a width of 4 to 5 mm.
  • the flat steel strip is easy to use spring steel; preferably, the spring steel material is 60Si2Mn.
  • This flat steel strip can be embedded directly inside a PVC pipe or pressed through a card slot reserved along the middle of the pipe.
  • the hole 17 in the drawing is similar in shape to the hole 15 in Fig. 8, and the hole 18 is elliptical; and the holes 19 and 14 are circular in size.
  • FIG. 1 is a force analysis diagram of a three-hole shaped tube in which the steel strip 6 is embedded.
  • Figure 12 shows two other three-hole shaped tubes with an aspect ratio of 2:1. Where the tube holes on both sides Still symmetrically distributed, but the aperture is much smaller than the large hole in the middle. Because the width is greatly increased, the large hole in the middle can make full use of the height of the tube, and its effective aperture (diameter) can reach 12mm. The tube holes on both sides can still have many shape options.
  • the tube hole 33 is a rounded triangle.
  • the arc of the upper portion of the profiled tube becomes a three-section arc. The three arcs respectively wrap three tube holes, and the intersection of the arcs is located on the dividing column between the tube holes. There is no geometric singularity between the three arcs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Floor Finish (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

本发明涉及一种建筑内部地板混凝土层之上的异形线管的结构。所述异形线管敷设于建筑内地板砖或木地板之下,地板混凝土层之上,其特征在于,所述异形线管的横截面外形是一个上面弧线形,底部平直的大写字母"D",或者上面为三段弧形,底部平直的"弓"形;横截面的高度为20mm,底部宽度为30mm-35mm;所述线管内部有左、中、右三个管孔,左右两个管孔靠近底部,大小相同,形状对称,中间管孔与左右两个管孔之间各有一个分隔柱。

Description

异形线管
技术领域 本发明涉及敷设于建筑内的线缆管。特别地,本发明涉及一种建筑内部地板混凝 土层之上的异形线管的结构。
背景技术 建筑内线缆管路的畅通与否, 受两个重要参数影响: 一是管路在转弯变向时的弯 曲半径; 二是管路上的累积转弯角度。 另外, 大部分的线缆管采用 PVC材料制 成。 在施工过程中, 经常会发生两种严重影响管路畅通的情况: 1 ) 弯管冷弯质 量不达标, 弯管局部形变严重; 2) 后续施工工序对已经敷设好的管路的破坏。 一件 PCT申请, PCT/CN2007/001 172,及其同族的英国专利, GB 2450851 A, 和中国专利, CN 101427433 A, 公开了一种使线缆管路畅通的方法。 这项发明 解决了建筑内的线缆管路在苛刻施工条件限制下实现弯曲半径达到管径的 10倍 以上的难题。 同时, 通过对该发明所述 "伪立体弯管"进行 "旋转"操作, 可以 在一定程度上减小线缆管路的累积转弯角度。 与本发明同日提交的另一份 PCT申请中, 提出了一种减小线缆管路的累积转弯 角度的新方法。 图 1 中的管路路径设计采用了前述 PCT/CN2012/001 172及其同族专利文件所 披露的方法。 图中, 插座 101位于一面墙上, 插座 102和 103位于对面的另一 面墙上; g1和 g2是这两个墙面与地面的交线; 这几个插座采用了垂直倾斜角度 为 Ω1的安装方法。 插座 101与 102之间的管路包含两段弯曲半径为 R 的立体 弯管 82和铺设在地面上的直管 81, 其累积转弯角度为 180° +2 Ω1 ; 插座 101 与 103之间的管路的累积转弯角度则为 2Ω1 十 Ω31 十 Ω32。 图 2是一种建筑内最常使用的 PVC线缆管横截面示意图。 管径 d常见规格为 20mm, 25mm禾口 32mm。 很多线缆管道是在建筑主体完工以后的装修阶段敷设安装的。此时,通常的做法 是直接把线管敷设在混凝土地板上,然后在后续工序中用水泥砂浆找平地面,再 铺设地面瓷砖或木地板。 如图 3所示, 线管 20直接敷设在混凝土地板 2上。 后续的施工人员一般使用手 推车将水泥砂浆运到房间的各个区域。在此场景下,难免会发生重达 100 - 200kg 的手推车直接碾过已经敷设好的 PVC线管。 此时, 线管 20会依次受到来自侧 上方和正上方的连续正压力: F1, F2和 F3。 图 4显示了线管在这样一个压力作用下会发生的致命损坏。从力学角度来进行受 力分析: 压力 F2作用在管子的上方, 地面会产生一个相应的反作用力 F2'。 此 时, 应力集中首先在线管 20与混凝土地板 2的接触点 202产生, 随后应力集中 区向上扩展。 最后, 在这两个力的共同作用下, 会导致左右两侧自由程最大的 201点在剪切应力作用下破裂。 另外, 在实际工程中, 一条线缆管路通常要敷设多条线缆。 典型的情况是: 供电 线缆需要火线、 零线和地线三条。 管径 20mm 的管在应对三条或更多线缆时, 会很困难; 特别是当这些线缆纠缠在一起时。 为此, 内部空间更大的管(如管径 25mm ) 就是更好的选择。 但是, 这里就出现了一对矛盾。 从管径 20mm增大到管径 25mm, 使给后续 的地面找平工序带来两个问题: 1 ) 由于最终地面的高度是有限制的, 留给水泥 砂浆找平的高度有限, 很可能无法提供 25mm高的空间; 2)多出来的 5mm, 意味着多出来的水泥砂浆材料成本。 因此, 从线缆敷设的难易程度出发, 希望管径大点; 从后续施工条件出发, 又希 望管径小点。 现有的 PVC线缆管明显无法做到两全其美。 发明内容 针对上述问题, 本发明提出一种新型线缆管结构。其特征在于, 线管的横截面外 形是一个上面弧线形, 底部平直的大写字母 " D", 其高度为 20mm, 底部宽度 为 30mm, 线管内部空间横截面为一个底部平直的圆角大写字母 " D "。 图 5显示了三种管子横截面的比较。 上方两个分别是管径 20mm和管径 25mm 的圆管 (20和 25)。左下侧是我们发明的异形管 30的横截面,其中高度 d = 20mm, 宽度为 1.5d = 30mm。 对比一下管 20、 管 25和管 30的内部空间大小。 假设管 20 的管壁厚度为 3mm, 则其内部空间, 按面积计算如下: 7 2 * π ^ 154mm2。 假设管 25的管壁厚度为 4mm, 则其内部空间, 按面积计算如下: 8.5 2 * π ^ 227mm2。 假设管 30的管壁厚度, 上半圆弧部分为 4mm, 下底为 3mm, 则其内部空间, 按面积估算为: 1 1 2 * 3i / 2 十 2 * 18 226mm2
226 / 154 ^ 1 .47 = 147% 也就是说, 管 25和异形管 30的内部空间大小基本一样。两者都比管 20的内部 空间多出大约 47%。 图 6进一步显示了异形管 30的局部细节, 并进行了受力分析。 相对于截面为半圆形的管, 异形管 30内部两个边角处各有易个曲率半径不小于 3mm的角部圆弧 301, 称为内弧; 这个内弧构造使得线管内部几何形状连续, 从而消除了边角处的应力集中, 显著增强了两侧边角的抗变形能力。 实际上, 来自上面的正压力 F2由弧形的管壁向下传导, 作用在管底部与混凝土 2的接触面。 此时, 在接触面上的应力 (ff=F/S, σ—应力, F—力, S—受力面 积)受接触面提高的影响, 将大幅减少。传统矩形线管会在两个边角发生应力集 中 (由于几何奇点)。 而对于异形管 30, 由于独特的内弧 301设计, 由 F2而来 的正压力 (或部分剪切力) 会连续地传导向接触面, 不会造成应力集中。 最终, 异形管 30的抗压能力相比传统圆管 20或其他矩形管,都将大幅提高 (理论上, 提高幅度大于 200%)。 更进一步的改进思路来自于现有技术, 多孔管。 图 7 是常见的两种多孔管的示 意图。这些多空管一般应用于城市主干通信管道内, 能够为不同的运营商提供单 独的线缆通道。 事实上, 建筑内通向普通插座的管道内也会存在多条线缆并行的情况,典型如三 条供电线缆的例子。 通常情况下, 使用一条管道, 就需要几条线缆一起敷设, 一 起更换, 而无法逐一安装或更换。 而且, 多条线缆并行, 容易发生缠绕, 导致阻塞线管, 影响施工。 通过将异形管内部分隔为三个独立的孔道空间, 可以实现线缆的分离, 同时孔道 之间的间隔又形成了一个完美的三角形支撑柱。显著增加了管子的整体强度和抗 压能力。
附图说明 图 1显示的是建筑内部管路布局沿地脚线展平后的示意图。
图中, 101, 102, 103为插座;
81为直管, 82为立体弯管;
gl , g2为墙面和地面的交线 (俗称地脚线);
R为立体弯管 82的弯曲半径 (或称转弯半径);
Ω1, Ω31, Ω32分别为立体弯管 82在墙面或地面部分的转弯角度。 图 2是常见的 PVC线管。 图 3是 PVC线管在施工中遇到外部冲击力示意图。 图 4是 PVC线管在施工中受到压力破坏分析示意图 图 5显示了两种典型管径的圆形线管和异形管对比示意图。 图 6, 进一步显示了异形管的局部细节, 并进行了受力分析。 图 7, 多孔管示意图。 图 8, 三种三孔异形管横截面图。 图 9, 两种增加了高弹内筋的三孔异形管示意图。 图 10, 90° 旋转的三孔异形管。 图 1 1, 带内筋的三孔异形管受力分析图。 图 12, 两种宽高比为 2: 1 的三孔异形管。
实施方式 本发明所要保护的异形管的基本机构,如图 6中细节放大部分所示,在于横截面 为大写字母" D "的管子内两个边角处分别为一个曲率半径不小于 3mm的圆弧。 由于底边所受剪切力要明显小于上面的圆弧形结构,所以上面圆弧部分的管壁厚 度应该大于下面的底边厚度。 优选方案为: 上面圆弧部分的厚度为 4mm, 下面 底边的厚度为 3mm。 图 8是三种三孔异形管的实施例。 其中 d = 20mm。 其中左右两侧管孔对称, 中间孔要比两边的孔小。按面积衡量, 大孔和小孔的面 积比为 1.5: 1至 2:1。 孔的形状对空间大小以及管子的强度都有直接的影响。 孔 1 1 (圆角梯形)和 12
(圆角三角形)的形状尽可能多地利用了可用空间;孔 13和 14是简单地圆形; 孔 15的形状相当于图 5中线管 30内孔的缩小版本, 而孔 16还是一个圆形。 图 9显示了两种近一步加宽的三孔异形管, 其宽度到达了 35mm。 同时, 为了 增加管子的强度和韧性, 在管子中部嵌入了一条扁平的钢带 6。这种扁平钢带所 嵌入位置为线管中央的承力区域。由于钢带的强度和韧性都非常优异(如弹簧钢), 加入钢带 6可以显著提高线管的抗压能力。当线管在水平方向进行弯曲时,钢带 6又可以大量吸收弹塑性变形能量, 使得线管的整体韧性提高, 不易发生脆断。 这条扁平钢带的厚度为 2mm, 宽度为 4一 5mm。 所述扁平钢带易采用弹簧钢; 优选地, 所述弹簧钢材料为 60Si2Mn。 这条扁平钢带, 既可以直接嵌入包裹在 PVC管子内部, 也可以通过管子下沿中 部预留的卡槽压进去。 图中的孔 17和图 8中的孔 15形状类似, 孔 18是个椭圆形; 而孔 19和 14则 是大小不一的圆形。 这种异形管在制作立体弯管时, 需要以径向为轴做 90° 的旋转。 而这种旋转操 作很难通过手工实施。 图 10显示了一种预制的 90° 旋转管。 在长度为 L的范围内, 逐步完成 90° 的 旋转。 图右面显示了在旋转前、 中、 后三个地段的截面视图。 考虑实际需求, 旋 转区的长度 L宜为 20 - 30 cm。 图 1 1是内嵌钢带 6的三孔异形管受力分析图。当来自上侧方的力 F1, 或来自上 方的力 F2作用于异形管时, 通过两侧的管壁和中间分隔柱的传导, 与来自地面 2的支撑力交汇到底部平面。 整体来看, 线管结构稳定, 压力传导通常, 没有局 部应力集中。 图 12显示的是另外两种三孔异形管, 其宽高比达到了 2: 1。 其中, 两侧的管孔 仍然对称分布, 但是孔径远小于中间的大孔。 因为宽度大幅度增加, 中间的大孔 得以充分利用管子的高度, 其有效孔径(直径)可以达到 12mm。两侧的管孔依 然可以有很多形状选择。 其中一个实施例中, 管孔 33为圆角三角形。 在前述图 9、 图 10、 图 1 1和图 12中的实施例中, 异形管上部的弧线变成了三 段弧线。所述三段弧线分别包裹三个管孔,弧线相交处位于管孔之间的分隔柱上。 三段弧之间平滑连接, 不存在几何奇点。

Claims

权利要求书
1 . 一种异形线管, 所述异形线管敷设于建筑内地板砖或木地板之下, 地板混凝 土层之上, 其特征在于, 所述异形线管的横截面外形是一个上面弧线形, 底 部平直的大写字母 " D", 或者上面为三段弧形, 底部平直的 "弓 "形; 横截 面的高度为 20mm, 底部宽度为 30mm— 35mm ; 所述线管内部有左、 中、 右三个管孔, 左右两个管孔靠近底部, 大小相同, 形状对称, 中间管孔与左 右两个管孔之间各有一个分隔柱。
2. 如权利要求 1所述的异形线管, 其特征在于, 所述具有 "弓"形横截面的异 形线管的所述三段弧线分别包裹三个管孔, 弧线相交处位于管孔之间的分隔 柱上。
3. 如权利要求 2所述的异形线管, 其特征在于, 所述三段弧之间平滑连接, 不 存在几何奇点。
4. 如权利要求 1、 2或 3所述的异形线管, 其特征在于, 所述左侧管孔与中间 管孔的横截面面积比为 1 .5: 1至 2: 1。
5. 如权利要求 4所述的异形线管, 其特征在于, 在所述左右两个管孔之间内嵌 有一条扁平钢带。
6. 如权利要求 5所述的异形线管,其特征在于,在所述扁平钢带的厚度为 2mm, 宽度为 4一 5mm。
7. 如权利要求 6所述的异形线管, 其特征在于, 在所述扁平钢带为弹簧钢; 优 选地, 所述弹簧钢为 60Si2Mn。
8. 如权利要求 5所述的异形线管, 其特征在于, 在所述异形线管的下沿中央有 一个预留的卡槽, 用于固定所述的扁平钢带。
9. 如权利要求 5所述的异形线管,其特征在于,所述异形线管为预制的旋转管, 即以径向为轴做 90° 的旋转, 所述的 90° 旋转在长度为 20— 30cm的范围 内逐步完成。
10.如权利要求 1、 2或 3所述的异形线管, 其特征在于, 所述左右两个管孔的 横截面为圆形、 圆角梯形 (1 1 )、 圆角 " D"形 (15) 或圆角三角形 (33); 所述中间管孔的横截面为圆形、 椭圆形 (18) 或圆角三角形 (12)。
1 1 .一种异形线管, 所述异形线管敷设于建筑内地板砖或木地板之下, 地板混凝 土层之上, 其特征在于, 所述异形线管的横截面外形是一个上面弧线形, 底 部平直的大写字母 " D", 其高度为 20mm, 底部宽度为 30mm, 其内部空间 横截面为一个角部圆弧状的大写字母 "D";除两个角部外,管壁的厚度为 3mm 至 4mm。
12.如权利要求 1 1 所述的异形线管, 其特征在于, 所述内部空间的两个角部圆 弧 (301 ) 的曲率半径不小于 3mm。
13.如权利要求 1 1或 12所述的异形线管, 其特征在于, 所述异形线管上部弧线 形部分的管壁厚度为 4mm, 下部平直部分的管壁厚度为 3mm。
PCT/IB2013/061452 2013-12-31 2013-12-31 异形线管 WO2015101812A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031343.8A CN104937797A (zh) 2013-12-31 2013-12-31 异形线管
PCT/IB2013/061452 WO2015101812A1 (zh) 2013-12-31 2013-12-31 异形线管
GBGB1512745.9A GB201512745D0 (en) 2013-12-31 2015-07-21 Irregularly-shaped wiring conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/061452 WO2015101812A1 (zh) 2013-12-31 2013-12-31 异形线管

Publications (1)

Publication Number Publication Date
WO2015101812A1 true WO2015101812A1 (zh) 2015-07-09

Family

ID=53493319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/061452 WO2015101812A1 (zh) 2013-12-31 2013-12-31 异形线管

Country Status (3)

Country Link
CN (1) CN104937797A (zh)
GB (1) GB201512745D0 (zh)
WO (1) WO2015101812A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855773B1 (fr) * 1997-01-24 2002-05-02 Segic Ingénierie Gaine ou conduit pour la mise en place de câbles et analogues dans des ouvrages souterrains
DE10118088C2 (de) * 2001-04-11 2003-04-10 Funke Kunststoffe Gmbh Mehrfachkanalrohrsystem und Mehrfachkanalrohr und Verbindungseinheit hierfür
CN202678870U (zh) * 2012-06-29 2013-01-16 南安市华益塑胶制造有限公司 一种改进型电缆护套管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2429944Y (zh) * 2000-06-29 2001-05-09 郑晓群 一种用于地板上的导线槽
JP2006115642A (ja) * 2004-10-15 2006-04-27 Jefcom Kk 線樋
JP4324738B2 (ja) * 2004-11-30 2009-09-02 ジェフコム株式会社 線樋
CN102947898A (zh) * 2010-06-23 2013-02-27 3M创新有限公司 用于建筑物内无线应用的背胶布线系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855773B1 (fr) * 1997-01-24 2002-05-02 Segic Ingénierie Gaine ou conduit pour la mise en place de câbles et analogues dans des ouvrages souterrains
DE10118088C2 (de) * 2001-04-11 2003-04-10 Funke Kunststoffe Gmbh Mehrfachkanalrohrsystem und Mehrfachkanalrohr und Verbindungseinheit hierfür
CN202678870U (zh) * 2012-06-29 2013-01-16 南安市华益塑胶制造有限公司 一种改进型电缆护套管

Also Published As

Publication number Publication date
CN104937797A (zh) 2015-09-23
GB201512745D0 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
CN203821688U (zh) 一种两端开口砌块
CN105735522A (zh) 逆作业装配式剪力墙及施工方法
WO2015101812A1 (zh) 异形线管
CN207419729U (zh) 一种全预制坡屋顶的拼缝结构
CN210685433U (zh) 一种用于泵管竖向加固的楔子
CN103464539B (zh) 转角接地扁铁专用折弯装置
JP2016192850A (ja) 管路およびその施工方法
CN107217687A (zh) 一种综合管廊及具有该综合管廊的道路结构
CN203459472U (zh) 转角接地扁铁专用折弯装置
CN208777584U (zh) 一种倒置式屋面烟囱出屋面节点防水结构
CN207331980U (zh) 一种砌体预留预埋施工结构
CN205976102U (zh) 装配式建筑用墙板
CN112283446A (zh) 一种钢筋混凝土顶管及其加工工艺
CN210917827U (zh) 一种轻钢龙骨轻混凝土隔墙结构
CN202852233U (zh) 金属波纹软管
CN220134805U (zh) 带冷凝水管的架空蒸汽管道
WO2015101811A1 (zh) 减小管路累积转弯角度的方法
CN204781354U (zh) 一种建筑变形缝的型钢抗剪键连接结构
JP2925644B2 (ja) コンクリートスラブ内への合成樹脂製電線管埋設配管方法
CN218386650U (zh) 一种建筑墙体管线敷设装置
CN204226957U (zh) 聚乙烯燃气管道的保温隔热设施
JP4536236B2 (ja) 排水管
JP4891047B2 (ja) 排水管の施工構造
CN201629520U (zh) 竖向电缆安装速度控制装置
CN207719786U (zh) 电缆头隔离套

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1512745.9

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900655

Country of ref document: EP

Kind code of ref document: A1