WO2015101167A1 - 电晕放电组件、离子迁移谱仪、计算机程序及存储介质 - Google Patents

电晕放电组件、离子迁移谱仪、计算机程序及存储介质 Download PDF

Info

Publication number
WO2015101167A1
WO2015101167A1 PCT/CN2014/093833 CN2014093833W WO2015101167A1 WO 2015101167 A1 WO2015101167 A1 WO 2015101167A1 CN 2014093833 W CN2014093833 W CN 2014093833W WO 2015101167 A1 WO2015101167 A1 WO 2015101167A1
Authority
WO
WIPO (PCT)
Prior art keywords
corona
ion
corona discharge
needle
metal
Prior art date
Application number
PCT/CN2014/093833
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
陈志强
王燕春
赵自然
刘以农
刘耀红
邹湘
马秋峰
王钧效
常建平
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP14876784.1A priority Critical patent/EP3091564B1/en
Publication of WO2015101167A1 publication Critical patent/WO2015101167A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/168Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission field ionisation, e.g. corona discharge

Definitions

  • the invention relates to the technical field of safety detection, in particular to an easy-to-manufacture, multi-needle long-life corona discharge assembly, and an ion mobility spectrometer, computer program and storage using the same as an ionization source for detecting drugs and explosives. medium.
  • the ion mobility spectrometer realizes the resolution of ions according to different drift speeds of different ions under a uniform weak electric field. It has the advantages of fast resolution, high sensitivity, no need for vacuum environment, and easy miniaturization. Therefore, it has been widely used in the detection of drugs and explosives.
  • a typical ion mobility spectrometer typically consists of an injection section, an ionization section, an ion gate, a migration zone, a collection zone, a readout circuit, data acquisition and processing, a control section, and the like.
  • the main function of the ionization part is to convert the sample molecules into ions that can be separated by migration, so the effect of ionization has a very direct influence on the performance of the spectrometer.
  • the most common and widely used ionization module is a 63Ni radioactive source, which has the advantages of small volume, high stability, and no external circuit, but also has a narrow linear range, low conversion ion concentration and radiation.
  • the problem of pollution In particular, the problem of radiation pollution brings many inconveniences to the operation, transportation and management of equipment.
  • corona discharge ion source technology is used instead of radioactive source technology.
  • Corona discharge refers to a phenomenon in which gas molecules are ionized due to a local strong electric field in a spatially inhomogeneous electric field.
  • the ions directly generated by corona discharge are generally referred to as reactant ions, and when a sample molecule having a higher proton or electron affinity passes through the ionization region, it traps the charge of the reactant ions and is ionized.
  • the corona discharge structure is relatively simple, and thus the cost is low.
  • the concentration of the charge generated by the corona discharge is much higher than that of the radioactive source, thereby facilitating the sensitivity of the ion mobility spectrometer and obtaining a large dynamic range.
  • Foreign patents US5485016, CA2124344, and Chinese patent CN1950698A report the application examples of corona discharge as ionization source of ion mobility spectrometer.
  • Corona discharge structure has a needle tip - Plate or tip-cylinder discharge form, as shown in Figures 1A, 1B.
  • the corona needle that realizes discharge usually has a fixed tail end mounted on the support base, and the tail end is connected to the high voltage power supply; the other end of the corona needle is a free end (ie, a needle tip), which usually has a very small radius of curvature (0.1 mm or less). ) the tip.
  • An uneven electrostatic field is formed in the space between the flat plate or the cylindrical electrode and the tip, so that the electric field strength near the tip of the needle is high, and the electric field strength in the space farther from the tip is decreasing.
  • the corona discharge voltage threshold reduces the stability of its corona discharge, leading to end of life; and, in order to achieve a small radius of curvature, the diameter of the needle is generally fine, its strength is low, and the product remains in manufacturing and assembly. Higher position accuracy is more difficult. In order to improve this situation, a structure of a multi-needle corona discharge has been developed.
  • U.S. Patent No. 7,326,926 B2 describes a typical multi-needle cluster corona discharge ion source, see Figure 1C.
  • the utility model adopts a parallel corona needle to replace the single corona needle of the classical corona discharge ion source; the design of the multi-needle bundle multiple tips simultaneously loading the high voltage discharge, to some extent alleviates the failure caused by the single corona needle discharge failure. The life of the ionization source is reduced.
  • multi-needle simultaneous loading of high-voltage discharge also has significant shortcomings.
  • the inventor realized that if a plurality of needle-wheel corona discharges can be realized, that is, only one needle tip can have a corona discharge threshold at a certain moment, and the other needle tips have a low field strength or a zero field strength, and can simultaneously Solve the problem of multi-needle simultaneous high-voltage corona ion source instability and short life of single-needle corona ion source.
  • the object of the present invention is to provide a stable and easy to operate, turntable control multi-needle rotary corona discharge component design, which can effectively increase the overall service life of the ionization component, is beneficial to improve ion pass rate, and reduce ion power.
  • the loss in the halo cavity increases the stability of the ion source corona discharge and improves the performance of the mobility spectrometer.
  • a corona discharge assembly includes: an ionization discharge chamber including a metal corona cylinder having a gas inlet to be analyzed and a corona The needle forms an ion outlet with a circular hole in the middle of the uneven electric field; a rotating shaft is insulated from the cylinder wall of the metal corona cylinder, the rotating shaft is perpendicular to the axis of the metal corona cylinder, and the rotating shaft The end is fitted with a turntable with a plurality of corona needles on the outer edge, the axis of which is parallel to the plane of rotation of the turntable.
  • multiple corona discharge corona discharges can be realized, that is, the electric field intensity of only one needle tip can reach the corona discharge threshold at a certain moment, and the field strength of the other needle tip is low or zero field strength, and multiple needles can be simultaneously solved.
  • the instability of the high-voltage corona ion source and the short life of the single-needle corona ion source are added.
  • the turntable is contained within a closed metal shielded cylinder that includes a flared focusing pole for forming a concentrated electrostatic field.
  • the metal corona tube is coaxially arranged with the metal shielding tube
  • the focusing pole is provided with a slit to pass when the vibrating needle is rotated.
  • the corona needle is called "main corona needle” at this time
  • the corona needle is called "main corona needle” at this time
  • the needle coincides with the axis of the corona tube port and the axis of the focusing pole, at which time the corona tip is closest to the ion outlet of the corona tube, and a corona discharge occurs; and the remaining needles are shielded by the metal contained at the same potential Corona discharge cannot occur inside the cylinder.
  • the plurality of corona needles are electrically connected to each other.
  • the plurality of corona needles are electrically connected to each other.
  • the corona discharge assembly further includes an ion reaction and storage ring, the ion reaction and storage ring being a trumpet-like internal passage, wherein the ion reaction and storage ring are not in electrical contact with the metal corona tube
  • the ion reaction and the large end of the storage ring are in contact with the first grid of the ion gate, so that an equipotential region is formed between the large mouth end and the first grid of the ion gate for ion storage.
  • ions generated by the corona discharge can enter the ion reaction and storage ring under the traction of the electric field.
  • the main function of the ion reaction and the storage ring is to fully react and recombine the primary reactive ions with the sample gas when the ion gate is closed, to generate and store the characteristic ion cluster to be detected; and to enable the composite ion when the ion gate is opened
  • the cluster focuses and enters the ion transport chamber through the ion gate.
  • an ion mobility spectrometer comprising: the corona discharge component described above; an ion gate, the ion gate being composed of two opposing grids; a migration zone, wherein the migration zone comprises a drift electrode, the drift electrode is a coaxially equidistant ring electrode, and the difference between the potential of the ring electrode is changed to form a traction electric field to move the ion to the Faraday disk direction;
  • the Faraday disk is a circular plate, and the Faraday disk is followed by a charge sensitive amplifier to read an ion signal.
  • the structural feature of the corona discharge assembly according to the present invention is such that at any one time, only one corona needle is rotated to the position closest to the ion outlet of the corona tube, and the electric field strength of the tip reaches the corona discharge threshold and corona discharge occurs. And the remaining needles do not discharge due to the electric field strength of the needle tip not reaching the threshold of the corona discharge, and the plurality of needles are in the corona discharge position under the rotation of the turntable to perform the discharge work, so the structure is relative to the single needle structure.
  • the service life of the high overall corona discharge component at the same time, due to the focusing effect of the focusing pole, the ion passing rate can be increased, the loss of ions in the corona cylinder and the ion reaction and the storage ring can be reduced, and the ions generated per unit time can be further More into the ion drift region; is conducive to improve the sensitivity of the ion mobility spectrometer; multi-corona needle is fixed on the turntable, the electrode position can be accurately and stably installed, which makes it easier to mass-produce.
  • FIG. 1A, 1B and 1C are schematic views of a conventional corona discharge structure
  • FIG. 2A is a schematic structural view of a corona discharge ion source ion mobility spectrometer using a multi-corona needle turntable according to an embodiment of the present invention
  • FIG. 2B is a schematic diagram showing the potential of each electrode in the positive mode of the ion mobility spectrometer of FIG. 2A;
  • 3A is a top plan view of a multi-corona needle turntable and a focusing electrode structure according to an embodiment of the present invention
  • 3B is a schematic view and a side view of a multi-corona needle turntable and a focusing electrode structure according to an embodiment of the present invention
  • 4A is a simulation diagram of an electric field direction of an ion source when there is no focus electrode
  • 4B is a simulation diagram of an electric field direction of an ion source when a focusing electrode is provided;
  • Figure 4C is an isometric diagram of the ion source when there is no focus pole
  • Figure 4D is an isometric diagram of the ion source with a focusing pole.
  • the non-uniform electric field for achieving corona discharge is mainly composed of a main corona needle 303, a focusing electrode 308, a metal corona tube 300, and an ion on the axis of the metal corona cylinder 300.
  • the reaction is formed with the storage ring 320.
  • the ion mobility spectrometer comprises: a corona discharge component; an ion gate, the ion gate is composed of two opposite grids 205, 206; a migration zone, the migration zone comprises a drift electrode 207, and the drift electrode 207 is a coaxially equidistant ring.
  • Electrode; and Faraday disk 209, Faraday disk 209 followed by charge sensitive The device is used to read the ion signal.
  • the corona discharge assembly comprises: an ionization discharge chamber comprising a metal corona cylinder 300 having a gas inlet to be analyzed and an inhomogeneous electric field formed with the corona needle 303 An ion outlet having a circular hole in the middle; a rotating shaft 304 is insulated from the wall of the metal corona cylinder 300, the rotating shaft 304 is perpendicular to the axis of the metal corona cylinder 300, and the end of the rotating shaft 304 is mounted with a plurality of outer edges.
  • the turntable 301 of the corona needle The axis of the metal corona tube 300 passes through the plane of rotation of the turntable 301 in parallel.
  • a plurality of needle-wheel corona discharges can be realized, that is, the electric field intensity at the tip of the corona needle 303 can reach the corona discharge threshold at a certain moment, and the field strength at the other needle tip is low or zero field strength, and simultaneously Solve the problem of multi-needle simultaneous high-voltage corona ion source instability and short life of single-needle corona ion source.
  • FIG. 2B is a schematic diagram showing the potential of each electrode in the positive mode of the ion mobility spectrometer of FIG. 2A.
  • 3A is a top plan view of a multi-corona needle turntable and a focusing electrode structure according to an embodiment of the present invention; and
  • FIG. 3B is a schematic view and a side view of a multi-corona needle turntable and a focusing electrode structure according to an embodiment of the present invention.
  • a metal shield cylinder 305 is also disposed in the metal corona cylinder 300.
  • the metal corona cylinder 300 is disposed coaxially with the metal shield cylinder 305.
  • the turntable 301 is contained in the closed metal shield cylinder 305, and the metal shield cylinder
  • the 305 includes a flared focusing electrode 308 for forming a concentrated electrostatic field.
  • the focusing electrode 308 is provided with a slit 306 to pass through when the power supply vibrating needle 303 is rotated.
  • the rotating shaft 304 drives the turntable 301 to rotate a certain corona needle 303 to expose the slit 306 (the corona needle is referred to as a "main corona needle” at this time), and is located at the ion outlet electrode of the metal corona cylinder 300.
  • the position of the mating (the main corona needle coincides with the axis of the metal corona tube 300 and the bell axis of the focusing electrode 308, at which time the corona tip is closest to the ion outlet of the metal corona tube 300), and corona discharge occurs;
  • the remaining needles cannot be corona-discharged because they are contained in the metal shield cylinder 305 of the same potential.
  • the plurality of corona needles 303 are electrically connected to each other.
  • Using multiple corona needles that are electrically connected to each other eliminates the need to individually set individual current paths for multiple corona needles, simplifying The fabrication process; and, since the remaining corona needles are located within the metal shield barrel 305 except for the "primary corona needle", such an arrangement will not cause the remaining corona needle to produce an undesirable corona discharge.
  • the corona discharge assembly further includes an ion reaction and storage ring 320.
  • the ion reaction and storage ring 320 is a trumpet-like internal passage, wherein the ion reaction and storage ring 320 are not in electrical contact with the metal corona tube 300, and the ion reaction is The large end of the storage ring 320 is in contact with the ion gate first grid 205 such that an equipotential region is formed between the large mouth end and the ion gate first grid 205 for ion storage.
  • the ions generated by the corona discharge can enter the ion reaction and storage ring 320 under the traction of the electric field.
  • the main function of the ion reaction and the storage ring is to fully react and recombine the primary reactive ions with the sample gas when the ion gate is closed, to generate and store the characteristic ion cluster to be detected; and to focus the composite ion cluster when the ion gate is opened. And through the ion gate into the ion migration chamber.
  • the corona discharge pulse interference can be effectively shielded, the number of ions caused by the corona pulse is shielded, and the ion passing rate at the ion gate is increased to achieve the effect of stabilizing the ion mobility line.
  • the corona needle 303 When the ion mobility spectrometer is in operation, the corona needle 303 is at the same potential as the metal shield cylinder 305, and their voltage is higher than the voltage of the metal corona cylinder 300 by about 700V to 3000V (depending on the tip radius of the corona needle and the corona needle). Length, different geometries will have different corona voltages) to generate corona, which produces ions.
  • the voltage reaction of the ion reaction with the storage ring 320 and the first ion gate 205, as shown in FIG. 2B, when it is at a low voltage, may be referred to as a "storage state" (ie, a solid line portion), and is located at a corresponding high voltage.
  • the ions generated by the corona at the corona needle 303 stop entering the first ion gate 205 (preventing the first due to the corona pulse)
  • the number of ions in the ion gate 205 fluctuates), and the ions in the first ion gate 205 rapidly enter the ion migration through the second ion gate 206 under the electric field force between the first ion gate 205 and the second ion gate 206.
  • the ions reach a symmetrical motion state under the combined action of the electric field traction force and the reverse moving migrating gas flow, and experience a long period of time.
  • ions having different mobility are separated due to the difference in speed, and finally collected by the Faraday disk 209 via the suppression gate 208, and recorded by the back-end circuit.
  • the gas in the ion mobility spectrometer is discharged from the gas outlet shown at the bottom of Fig. 2A.
  • the turntable 301 is fixed to the rotating shaft 304, and the rotating shaft 304 is mounted on the wall of the metal corona cylinder 300 through the insulating sleeve 307.
  • the rotating shaft shank outside the corona chamber is twisted (as indicated by the rotating arrow in FIG. 3B), and the turntable 301 is rotated by the rotating shaft 304; the turntable is evenly distributed in a central symmetrical form (generally 4- 8 is suitable for the corona needle mount 302, all of the corona needle mounts 302 are at the same potential, and each corona needle mount 302 has a socket formed therein, and a corona needle 303 is welded in the jack.
  • a corona needle When rotated to an angle, a corona needle is located at the axis of the metal corona tube 300.
  • a primary corona needle On the outside of the turntable 301, the metal corona tube 300 is insulated.
  • the material is fixedly mounted with a metal shielding cylinder 305 having the same potential as the corona needle 303.
  • the metal shielding cylinder 305 has a vent hole 309 at the inlet end and a horn-shaped focusing pole 308 at the other end.
  • the metal shielding cylinder 305 functions to shield the other.
  • the corona needle avoids forming a corona electric field with the metal corona tube 300, and the ion outlets of the horn-shaped focusing electrode 308 and the metal corona tube 300 form a converging electric field, making it easier to generate ions by corona discharge at the main corona needle. Entering the ion reaction and storage ring 320, reducing the distance The ion corona tube 300 is lost at the ion outlet and the ion reaction and the storage ring port colliding with the port.
  • the focusing electrode 308 is characterized in that the cone axis and the axis of the metal corona tube 300 and the ion reaction coincide with the central axis of the storage ring.
  • the opening angle is 120-150 degrees, and the focusing pole 308 has the same potential as the corona needle 303.
  • the metal shielding cylinder 305 has a slit 306 at a position intersecting the plane of rotation of the corona needle of the turntable 301.
  • the width of the slit 306 cannot be too large, and should be only slightly larger than the diameter of the corona needle. This will not guarantee It will block the smooth passage of the corona needle 303 when it rotates, and will not cause the focus electric field to break at the narrow slit 306.
  • the turntable 301 and the insulating sleeve 307 are made of polytetrafluoroethylene; the rotating shaft 304 is made of stainless steel; the corona needle mount 302 is made of oxygen-free copper, and a corona needle 303 is welded thereon by high temperature solder;
  • the length of the extension seat is 3mm, the tip radius of the needle is 0.05mm, and it is made of metal platinum rod with a diameter of 0.5mm.
  • the metal shielding cylinder 305 is made of stainless steel, and the edges of both ends are rounded to reduce the electric field on the surface. Intensity, avoiding discharge, the horn angle is 125 degrees, the extended corona needle 303 is located on the metal shield cylinder 305 at the conical axis position of the focusing pole 308, and the metal shielding cylinder 305 and the metal corona cylinder 300 are made of polytetrafluoroethylene. The ethylene insulation material is supported and fixed.
  • the metal shield cylinder 305 has a narrow strip slit 306 having a width of 1 mm at a position intersecting the plane in which the corona needle rotates.
  • the electric field at the corona tip and the airflow direction is directed to the ion of the metal corona tube 300.
  • the outlet, and the direction of the electric field in the ion reaction and the partial region of the storage ring are directed to the annular wall. It can be seen that the ions generated by the corona tip will have a greater number of collisions with the nozzle 310 of the metal corona tube 300, and/or the ion reaction and the inner wall of the storage ring.
  • the direction of the electric field near the tip of the needle and the direction in which the ion gas flows is parallel to the direction of the gas flow, and the direction of the electric field in the ion reaction and the storage ring is also substantially parallel to the ion gas flow. It will facilitate the smooth flow of the ion gas stream through the metal corona tube 300, reduce the collision loss, and allow more ions to enter the ion drift region, thereby improving the sensitivity of the ion mobility spectrometer when the corona discharge ionization intensity is the same.
  • the structural feature of the present ionization assembly according to the present invention is such that at any one time, only one corona needle is rotated to the position closest to the ion outlet of the metal corona tube 300, and the electric field strength of the tip reaches the corona discharge threshold and corona occurs. Discharge while the rest of the needle is due to the electric field of the tip The intensity does not reach the threshold of corona discharge without discharge, and the plurality of needles are placed in the corona discharge position under the rotation of the turntable to perform the discharge work, so the structure can improve the overall corona discharge assembly relative to the single needle structure.
  • the ion passing rate can be increased, the loss of ions in the metal corona tube 300 and the ion reaction and the storage ring can be reduced, and the ions generated per unit time can enter more.
  • the ion drift region is beneficial to improve the sensitivity of the ion mobility spectrometer; since the multi-corona needle is fixed on the turntable, the position of the electrode can be accurately and stably installed, thereby making it easier to manufacture in batches.
  • the present invention also provides a computer program for controlling a corona discharge component for corona discharge, the computer program controlling the corona discharge component to perform corona discharge, and performing the following steps: wherein at any one time, only one corona needle is rotated To the position closest to the ion outlet of the metal corona tube 300, the electric field strength of the tip reaches the corona discharge threshold and corona discharge occurs, and the remaining corona needle does not occur because the electric field strength of the tip does not reach the threshold of corona discharge. Discharge; a plurality of corona needles are placed in a corona discharge position to perform a discharge operation under the rotation of the turntable.
  • the present invention also provides a computer storage medium for storing the computer program described above.
  • the corona discharge assembly, the ion mobility spectrometer, the computer program and the storage medium provided by the present invention can improve the service life of the overall corona discharge assembly relative to the single needle structure; and at the same time, due to the focusing effect of the focus electrode 308,
  • the ion passing rate can be increased, the loss of ions in the metal corona tube 300 and the ion reaction and the storage ring can be reduced, and the ions generated per unit time can enter the ion drift region more; the ion mobility spectrometer is improved.
  • Sensitivity because the multi-corona needle is fixed on the turntable, the position of the electrode can be accurately and stably installed, which makes it easier to manufacture in batches.
  • the invention can be implemented in any suitable form including hardware, software, firmware or any combination of these.
  • the invention may be implemented, at least in part, as computer software running on one or more data processors and/or digital signal processors.
  • the elements and components of an embodiment of the invention may be physically, functionally and logically in any suitable manner. Implementation. In fact, the functionality can be implemented in a single unit, in multiple units, or as part of other functional units. As such, the invention may be implemented in a single unit or may be physically and functionally distributed between different units and processors.
  • the corona discharge assembly, the ion mobility spectrometer, the computer program and the storage medium provided by the invention enable only one corona needle to rotate to the position closest to the ion outlet of the metal corona tube at any moment, and the electric field strength of the needle tip reaches The corona discharge threshold occurs and corona discharge occurs, and the remaining needles do not discharge due to the electric field strength of the needle tip failing to reach the threshold of the corona discharge.
  • the plurality of needles are placed in the corona discharge position for discharge operation under the rotation of the turntable. .
  • the structure can improve the service life of the overall corona discharge component relative to the single-needle structure; at the same time, due to the focusing effect of the focus, the ion passage rate can be increased, and the loss of ions in the metal corona cylinder and the ion reaction and the storage ring can be reduced.
  • the ions generated per unit time can enter the ion drift region more; it is beneficial to improve the sensitivity of the ion mobility spectrometer; since the multi-corona needle is fixed on the turntable, the position of the electrode can be accurately and stably installed, thereby It is easier to manufacture in batches.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

一种电晕放电组件,该电晕放电组件包括:电离放电腔室,该电离放电腔室包括金属电晕筒(300),该金属电晕筒(300)具有待分析气体入口以及与电晕针(303)形成不均匀电场的中间有圆孔的环片状端口;该金属电晕筒(300)的筒壁上绝缘安装一根旋转轴(304),该旋转轴(304)垂直于金属电晕筒(300)的轴线,旋转轴(304)端部安装有在外缘带有多根电晕针(303)的转盘(301),金属电晕筒(300)的轴线平行穿过转盘(301)的旋转平面。以及一种使用该电晕放电组件的离子迁移谱仪。

Description

电晕放电组件、离子迁移谱仪、计算机程序及存储介质 技术领域
本发明涉及安全检测技术领域,具体涉及一种便于制造的,多针长寿命电晕放电组件,以及用于检测毒品和爆炸物的采用该组件作为电离源的离子迁移谱仪、计算机程序及存储介质。
背景技术
离子迁移谱仪根据不同离子在均匀弱电场下漂移速度不同而实现对离子的分辨。它具有分辨速度快,灵敏度高,不需要真空环境,便于小型化的优点,因此在毒品和爆炸物的探测领域得到了广泛的应用。典型的离子迁移谱仪通常由进样部分、电离部分、离子门、迁移区、收集区、读出电路、数据采集和处理、控制部分等构成。其中电离部分主要功能是将样品分子转化成可供迁移分离的离子,因此电离的效果对谱仪的性能具有非常直接的影响。目前的技术中,最常见和应用最广的电离组件是采用63Ni放射源,它具有体积小,稳定性高、不需要外加电路的优点,但同时也存在线性范围窄、转化离子浓度低和辐射污染的问题。尤其是辐射污染问题为设备的操作、运输和管理上带来诸多不便。为了克服上述问题,采用电晕放电离子源技术代替放射源技术。电晕放电是指在空间不均匀电场中由于局部的强电场引起气体分子电离的一种现象。电晕放电直接产生的离子一般称为反应物离子,当具有更高的质子或电子亲和势的样品分子通过电离区时,俘获反应物离子的电荷而被电离。通常电晕放电结构较为简单,因而成本低廉,同时电晕放电产生的电荷的浓度相比于放射源要高得多,因此有利于提高离子迁移谱仪的灵敏度,并得到较大的动态范围。国外专利US5485016、CA2124344、中国专利CN1950698A中报道电晕放电作为离子迁移谱仪电离源的应用实例。常见的电晕放电结构有针尖 -平板或针尖-圆筒放电形式,如图1A、1B所示。实现放电的电晕针通常有固定尾端安装于支撑基体上,尾端导通高压电源;电晕针的另一端为自由端(即,针尖),通常是具有曲率半径非常小(0.1mm以下)的尖端。平板或圆筒电极与针尖之间的空间内形成不均匀静电场,使靠近针尖的附近电场强度很高,而距针尖较远的空间的电场强度递减。气体电离只发生在电极自由尖端近表面空间,电离区域很小,从而产生的离子浓度也较小;若增大电离区域,则需要较高的电压,对高压电源要求较高。另外,在只有一个尖端放电的情况下,电晕放电对电晕电极会产生氧化,长期运行后,气体中的水蒸气等引起的化学反应会严重腐蚀尖端,使其曲率半径增大,增大了电晕放电电压阈值,降低了其电晕放电的稳定性,导致寿命终结;并且,为了达到较小的曲率半径,针的直径一般很细,其强度较低,产品在制造和装配时保持较高位置精度难度大。为了改善这种情况,开发了多针电晕放电的结构。
美国专利US7326926B2描述了一个典型的多针簇电晕放电离子源,见图1C。其采用一束平行的电晕针代替经典电晕放电离子源的单根电晕针;多针束多个尖端同时加载高压放电的设计,在一定程度上缓解了单电晕针放电失效引起的电离源的寿命降低问题。但是多针同时加载高压放电也存在显著的缺点,首先,多针同时加载高压,各针所形成的电场会相互影响,使针尖处的电场强度降低,需要提高电晕电压,对高压电源提出了更高的要求;另外,各针由于加工的不一致性导致各自尖端的形状和表面情况并不相同,并不能保证所有针尖均满足电晕放电的条件,而是曲率半径相对较小的针先发生放电,并逐渐耗蚀使其曲率半径逐渐变大后不再满足电晕放电的条件,其余满足条件的针开始放电,这样某一时刻有几根针发生电晕放电不能得到保证,有很大的随机性,因此电离产生的离子数量也变化很大,导致电晕放电不稳定,从而不利于离子迁移谱仪的稳定工作。
发明内容
发明人意识到,若能够实现多根针轮流电晕放电,即某一个时刻只能有一根针针尖处电场强度达到电晕放电阈值,其余针针尖处场强较低或零场强,可以同时解决多针同时加高压电晕离子源的不稳定性以及单针电晕离子源寿命短的问题。
本发明的目的是提供一种稳定的,便于操作的,转盘控制多针轮流电晕放电组件设计方案,该设计能够有效增加电离组件的整体使用寿命,有利于提高离子通过率,减少离子在电晕腔内的损耗,增加离子源电晕放电的稳定性,提高迁移谱仪性能。
为了达到上述目的,根据本发明的实施例,电晕放电组件包括:电离放电腔室,所述电离放电腔室包括金属电晕筒,所述金属电晕筒具有待分析气体入口以及与电晕针形成不均匀电场的中间有圆孔的离子出口;所述金属电晕筒的筒壁上绝缘安装一根旋转轴,所述旋转轴垂直于所述金属电晕筒的轴线,所述旋转轴端部安装有在外缘带有多根电晕针的转盘,所述金属电晕筒的轴线平行穿过所述转盘的旋转平面。由此,能够实现多根针轮流电晕放电,即某一个时刻只能有一根针针尖处电场强度达到电晕放电阈值,其余针针尖处场强较低或零场强,可以同时解决多针同时加高压电晕离子源的不稳定性以及单针电晕离子源寿命短的问题。
优选地,所述转盘被包含在封闭的金属屏蔽筒内,所述金属屏蔽筒包括喇叭状的聚焦极,用于形成汇聚的静电场。
优选地,所述金属电晕筒与所述金属屏蔽筒同轴设置
优选地,所述聚焦极上开有窄缝,以供电晕针旋转时通过。通过旋转轴带动转盘使某一根电晕针旋转露出窄缝(此时将该根电晕针称为“主电晕针”),位于与电晕筒离子出口电极配合的位置(主电晕针与电晕筒端口轴线、聚焦极喇叭口轴线重合,此时该电晕针尖距离电晕筒离子出口最近),发生电晕放电;而其余针由于被包含于与其同电位的所述金属屏蔽筒内而无法发生电晕放电。
优选地,所述多根电晕针是相互电连接的。使用相互电连接在一起的多根电晕针,无需为多根电晕针单独设置各自的电流通路,简化了制作工艺;并且,由于除了“主电晕针”之外,其余的电晕针均位于金属屏蔽筒内,这样的设置将不会导致其余的电晕针产生不期望的电晕放电。
优选地,所述电晕放电组件还包括离子反应与存储环,所述离子反应与存储环为形似喇叭状的内部通道,其中所述离子反应与存储环不与所述金属电晕筒电接触,所述离子反应与存储环的大口端与离子门第一栅网接触,使在大口端内与离子门第一栅网之间形成等电势区,用于离子存储。由此,电晕放电产生的离子能够在电场的牵引下进入到所述离子反应与存储环。所述离子反应与存储环的主要作用是在离子门关闭时,使初级反应离子与样品气体发生充分反应、复合,生成并存储待检测的特征离子团;在离子门打开时使上述复合的离子团聚焦并通过离子门进入离子迁移腔。通过该设计,可有效的屏蔽电晕放电脉冲干扰,屏蔽电晕脉冲带来的离子数量起伏,增大离子在离子门处的通过率,达到使离子迁移谱线稳定的效果。
根据本发明的实施例,还公开了一种离子迁移谱仪,所述离子迁移谱仪包括:以上所述的电晕放电组件;离子门,所述离子门由两张相对的栅网构成;迁移区,所述迁移区包括漂移电极,所述漂移电极为同轴心等间距的圆环电极,圆环电极电势等差值变化,以形成牵引电场,使离子运动向法拉第盘方向;以及,所述法拉第盘为圆形平板,所述法拉第盘后接电荷灵敏放大器以读取离子信号。
根据本发明的电晕放电组件的结构特征使得在任一时刻,只有一根电晕针旋转到离电晕筒的离子出口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余针由于针尖的电场强度达不到电晕放电的阈值而不发生放电,多根针在转盘的转动下,轮流位于电晕放电位置而进行放电工作,因此该结构相对于单针结构可以提 高整体电晕放电组件的使用寿命;同时由于聚焦极的聚焦作用,可以增加离子的通过率,减少离子在电晕筒内及离子反应与存储环内的损耗,单位时间内产生的离子可以更多的进入到离子漂移区;有利于提高离子迁移谱仪的灵敏度;多电晕针由于固定在转盘上,安装时可以做到电极位置的精确稳定,从而更易于批量制造。
附图说明
图1A、1B和1C为传统的电晕放电结构示意图;
图2A为使用根据本发明实施例的多电晕针转盘电晕放电离子源离子迁移谱仪结构示意图;
图2B为图2A中的离子迁移谱仪在正模式下各电极电势示意图;
图3A为根据本发明实施例的多电晕针转盘及聚焦极结构俯视图;
图3B为根据本发明实施例的多电晕针转盘及聚焦极结构的示意图和侧视图;
图4A为无聚焦极时,离子源的电场方向模拟图;
图4B为有聚焦极时,离子源的电场方向模拟图;
图4C为无聚焦极时,离子源的等势线模拟图;以及
图4D为有聚焦极时,离子源的等势线模拟图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图2A所示电晕放电离子迁移谱仪中,实现电晕放电的不均匀电场主要由转盘位于金属电晕筒300轴线上的主电晕针303、聚焦极308,金属电晕筒300以及离子反应与存储环320形成。离子迁移谱仪包括:电晕放电组件;离子门,离子门由两张相对的栅网205、206构成;迁移区,迁移区包括漂移电极207,漂移电极207为同轴心等间距的圆环电极;以及法拉第盘209,法拉第盘209后接电荷灵敏放 大器以读取离子信号。
根据本发明的实施例,电晕放电组件包括:电离放电腔室,电离放电腔室包括金属电晕筒300,金属电晕筒300具有待分析气体入口以及与电晕针303形成不均匀电场的中间有圆孔的离子出口;金属电晕筒300的筒壁上绝缘安装一根旋转轴304,旋转轴304垂直于金属电晕筒300的轴线,旋转轴304端部安装有在外缘带有多根电晕针的转盘301。金属电晕筒300的轴线平行穿过所述转盘301的旋转平面。
由此,能够实现多根针轮流电晕放电,即某一个时刻只能有一根电晕针303针尖处电场强度达到电晕放电阈值,其余针针尖处场强较低或零场强,可以同时解决多针同时加高压电晕离子源的不稳定性以及单针电晕离子源寿命短的问题。
图2B为图2A中的离子迁移谱仪在正模式下各电极电势示意图。图3A为根据本发明实施例的多电晕针转盘及聚焦极结构俯视图;图3B为根据本发明实施例的多电晕针转盘及聚焦极结构的示意图和侧视图。金属电晕筒300内还设置有封闭的金属屏蔽筒305,金属电晕筒300与所述金属屏蔽筒305同轴设置优选地,转盘301被包含在封闭的金属屏蔽筒305内,金属屏蔽筒305包括喇叭状的聚焦极308,用于形成汇聚的静电场。
优选地,聚焦极308上开有窄缝306,以供电晕针303旋转时通过。通过旋转轴304带动转盘301使某一根电晕针303旋转露出窄缝306(此时将该根电晕针称为“主电晕针”),位于与金属电晕筒300的离子出口电极配合的位置(主电晕针与金属电晕筒300的轴线、聚焦极308的喇叭口轴线重合,此时该电晕针尖距离金属电晕筒300的离子出口最近),发生电晕放电;而其余针由于被包含于与其同电位的金属屏蔽筒305内而无法发生电晕放电。
优选地,多根电晕针303是相互电连接的。使用相互电连接在一起的多根电晕针,无需为多根电晕针单独设置各自的电流通路,简化 了制作工艺;并且,由于除了“主电晕针”之外,其余的电晕针均位于金属屏蔽筒305内,这样的设置将不会导致其余的电晕针产生不期望的电晕放电。
优选地,电晕放电组件还包括离子反应与存储环320,离子反应与存储环320为形似喇叭状的内部通道,其中离子反应与存储环320不与金属电晕筒300电接触,离子反应与存储环320的大口端与离子门第一栅网205接触,使在大口端内与离子门第一栅网205之间形成等电势区,用于离子存储。由此,电晕放电产生的离子能够在电场的牵引下进入到离子反应与存储环320。离子反应与存储环的主要作用是在离子门关闭时,使初级反应离子与样品气体发生充分反应、复合,生成并存储待检测的特征离子团;在离子门打开时使上述复合的离子团聚焦并通过离子门进入离子迁移腔。通过该设计,可有效的屏蔽电晕放电脉冲干扰,屏蔽电晕脉冲带来的离子数量起伏,增大离子在离子门处的通过率,达到使离子迁移谱线稳定的效果。
离子迁移谱仪在工作时,电晕针303与金属屏蔽筒305同电位,它们的电压比金属电晕筒300的电压高700V到3000V左右(取决于电晕针的尖端半径以及电晕针的长度,不同的几何尺寸会有不同的起晕电压)以发生电晕,从而产生离子。离子反应与存储环320及第一离子门205的电压周期跳变,见图2B,当其位于低电压时可称为“存储态”(即实线部分),位于相应的高电压时称为“牵引态”(即虚线部分)。当离子反应与存储环320及第一离子门205的电压处于“存储态”时,该电压比金属电晕筒300的电压低60V-150V,比第二离子门206低5V-60V左右,离子进入第一离子门205后,受到的电场力较弱,在第一离子门205腔体内主要做热运动;经过一定时间,第一离子门205内离子积累到一定数目后,离子反应与存储环320及第一离子门205的电压跳变到“牵引态”,这时,电晕针303处电晕产生的离子停止进入第一离子门205(防止此次由于电晕脉冲导致第一 离子门205内离子数量的起伏),而处在第一离子门205内的离子在第一离子门205与第二离子门206之间的电场力作用下迅速通过第二离子门206进入离子迁移区207。在通过迁移气体入口(如图2A右侧所示)充有迁移气体的离子迁移区207内,离子在电场牵引力和反向运动的迁移气流的共同作用下达到匀称运动状态,在经历较长的迁移距离后,具有不同迁移率的离子由于速度的不同被分开,最后经抑制栅208后被法拉第盘209收集,被后端电路记录。由图2A下方所示的出气口排出离子迁移谱仪内的气体。
转盘301固定在旋转轴304上,旋转轴304通过绝缘套307安装在金属电晕筒300的壁上。扭转电晕腔外部的旋转轴柄(如图3B中的旋转箭头所示),转盘301在旋转轴304的带动下做旋转运动;转盘上以中心对称形式均匀分布着若干个(一般以4-8个为宜)电晕针安装座302,所有电晕针安装座302均同电位,每个电晕针安装座302上开有一个插孔,插孔内焊接安装一根电晕针303,当旋转到某一角度时,有一根电晕针位于金属电晕筒300的轴心处的我们将其称作“主电晕针”;在转盘301的外部,金属电晕筒300上以绝缘材料固定安装一个与电晕针303同电位的金属屏蔽筒305,金属屏蔽筒305的进气端开有一个通气孔309,另一端为喇叭状聚焦极308,金属屏蔽筒305的作用是屏蔽其它电晕针,避免与金属电晕筒300之间形成电晕电场,喇叭状聚焦极308和金属电晕筒300的离子出口形成汇聚电场,使主电晕针处电晕放电产生的离子更易于进入到离子反应与存储环320,减少在离子金属电晕筒300的离子出口处和离子反应与存储环端口处撞向端口而损失,聚焦极308的特征在于其锥轴与金属电晕筒300的轴线及离子反应与存储环中心轴重合,张角为120-150度,聚焦极308与电晕针303同电位。金属屏蔽筒305在与转盘301的电晕针旋转平面相交的位置开有一个窄缝306,供电晕针旋转时通过,窄缝306的宽度不能过大,应仅比电晕针直径稍大,这样既能保证不 会阻挡电晕针303旋转时顺利通过,又不会使聚焦电场在此窄缝306处发生破坏。
实例:
本实例中,描述了采用聚焦结构的多针转盘电晕针轮流放电离子源组件的一个具体设计。如图3A所示的具有6根电晕针的聚焦极308转盘多针结构。转盘301和绝缘套筒307采用聚四氟乙烯制成;旋转轴304采用不锈钢制成;电晕针安装座302采用无氧铜制成,其上采用高温焊料焊接一根电晕针303;针伸出安装座长度为3mm,针尖端圆角半径0.05mm,由直径0.5mm金属铂杆磨制而成;金属屏蔽筒305采用不锈钢制成,两端棱边倒圆角以降低其表面的电场强度,避免发生放电,喇叭顶角为125度,伸出的电晕针303位于金属屏蔽筒305上聚焦极308的圆锥轴位置,金属屏蔽筒305与金属电晕筒300之间采用聚四氟乙烯绝缘材料支撑固定。金属屏蔽筒305在与电晕针旋转的平面相交的位置开有一个宽度为1mm的窄条状窄缝306。
根据电场模拟计算结果,见图4A-4D,在离子门施加开门电压时,在没有聚焦极308的电晕放电结构中,电晕针尖处及气流前进方向的电场指向金属电晕筒300的离子出口,而且离子反应与存储环内部分区域电场方向指向环壁,可知电晕针尖产生的离子将有较多数量与金属电晕筒300的筒口310、和/或离子反应与存储环内壁碰撞而损失掉;在具有聚焦极308的电晕放电结构中,其针尖附近及离子气流前进方向的电场方向为平行于气流方向,且离子反应与存储环内的电场方向也基本与离子气流平行,这将有利于离子气流平稳通过金属电晕筒300,减少碰撞损耗,使更多离子进入到离子漂移区,从而在电晕放电电离强度相同的情况下,提高离子迁移谱仪的灵敏度。
根据本发明的本电离组件的结构特征使得在任一时刻,只有一根电晕针旋转到离金属电晕筒300的离子出口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余针由于针尖的电场 强度达不到电晕放电的阈值而不发生放电,多根针在转盘的转动下,轮流位于电晕放电位置而进行放电工作,因此该结构相对于单针结构可以提高整体电晕放电组件的使用寿命;同时由于聚焦极308的聚焦作用,可以增加离子的通过率,减少离子在金属电晕筒300内及离子反应与存储环内的损耗,单位时间内产生的离子可以更多的进入到离子漂移区;有利于提高离子迁移谱仪的灵敏度;多电晕针由于固定在转盘上,安装时可以做到电极位置的精确稳定,从而更易于批量制造。
本发明还提供一种控制电晕放电组件进行电晕放电的计算机程序,该计算机程序控制上述的电晕放电组件进行电晕放电,执行如下步骤:其中在任一时刻,只有一根电晕针旋转到离金属电晕筒300离子出口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余电晕针由于针尖的电场强度达不到电晕放电的阈值而不发生放电;多根电晕针在转盘的转动下,轮流位于电晕放电位置而进行放电工作。
本发明还提供一种计算机存储介质,计算机存储介质用于存储权上述的计算机程序。
综上所述,本发明提供的电晕放电组件、离子迁移谱仪、计算机程序及存储介质,相对于单针结构可以提高整体电晕放电组件的使用寿命;同时由于聚焦极308的聚焦作用,可以增加离子的通过率,减少离子在金属电晕筒300内及离子反应与存储环内的损耗,单位时间内产生的离子可以更多的进入到离子漂移区;有利于提高离子迁移谱仪的灵敏度;多电晕针由于固定在转盘上,安装时可以做到电极位置的精确稳定,从而更易于批量制造。
本发明可以以任何适当的形式实现,包括硬件、软件、固件或者这些的任意组合。可选地,本发明可以至少部分地实现为运行在一个或多个数据处理器和/或数字信号处理器上的计算机软件。本发明的实施例的元件和部件可以在物理上、功能上和逻辑上以任何适当的方 式实现。事实上,功能可以在单个单元中、在多个单元中或者作为其他功能单元的一部分而实现。同样地,本发明可以在单个单元中实现,或者可以在物理上和功能上分布在不同单元和处理器之间。
尽管已经结合一些实施例描述了本发明,但是本发明并不预期限于本文阐述的特定形式。相反地,本发明的范围仅由所附权利要求书限制。此外,虽然特征可能看起来结合特定实施例而被描述,但是本领域技术人员应当认识到,依照本发明可以组合所描述的实施例的各种不同的特征。在权利要求书中,措词包括/包含并没有排除其他元件或步骤的存在。
此外,尽管单独地被列出,但是多个装置、元件或方法步骤可以由例如单个单元或处理器实现。此外,尽管单独的特征可以包含于不同的权利要求中,但是这些特征可能地可以有利地加以组合,并且包含于不同的权利要求中并不意味着特征的组合不可行和/或不是有利的。此外,特征包含于一种权利要求类别中并不意味着限于该类别,而是表示该特征同样可适当地应用于其他权利要求类别。此外,权利要求中特征的顺序并不意味着其中特征必须起作用的任何特定顺序。
工业实用性
本发明提供的电晕放电组件、离子迁移谱仪、计算机程序及存储介质,使得在任一时刻,只有一根电晕针旋转到离金属电晕筒离子出口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余针由于针尖的电场强度达不到电晕放电的阈值而不发生放电,多根针在转盘的转动下,轮流位于电晕放电位置而进行放电工作。因此该结构相对于单针结构可以提高整体电晕放电组件的使用寿命;同时由于聚焦的聚焦作用,可以增加离子的通过率,减少离子在金属电晕筒内及离子反应与存储环内的损耗,单位时间内产生的离子可以更多的进入到离子漂移区;有利于提高离子迁移谱仪的灵敏度;多电晕针由于固定在转盘上,安装时可以做到电极位置的精确稳定,从而 更易于批量制造。

Claims (11)

  1. 一种电晕放电组件,其特征在于,所述电晕放电组件包括:
    电离放电腔室,所述电离放电腔室包括金属电晕筒,所述金属电晕筒具有待分析气体入口以及与电晕针形成不均匀电场的中间有圆孔的离子出口;
    所述金属电晕筒的筒壁上绝缘安装一根旋转轴,所述旋转轴垂直于所述金属电晕筒的轴线,所述旋转轴端部安装有在外缘带有多根电晕针的转盘,所述金属电晕筒的轴线平行穿过所述转盘的旋转平面。
  2. 根据权利要求1所述的电晕放电组件,其特征在于,所述金属电晕筒内还设置有封闭的金属屏蔽筒,所述转盘被包含在所述金属屏蔽筒内,所述金属屏蔽筒包括喇叭状的聚焦极,用于形成汇聚的静电场;
    发生电晕放电的电晕针伸入所述聚焦极内。
  3. 根据权利要求2所述的电晕放电组件,其特征在于,所述金属电晕筒与所述金属屏蔽筒同轴设置。
  4. 根据权利要求3所述的电晕放电组件,其特征在于,所述电晕针位于所述聚焦极圆锥轴位置。
  5. 根据权利要求3所述的电晕放电组件,其特征在于,所述聚焦极上开有窄缝,以供电晕针旋转时通过。
  6. 根据权利要求1所述的电晕放电组件,其特征在于,所述多根电晕针是相互电连接的。
  7. 根据权利要求1-6之一所述的电晕放电组件,其特征在于,所述电晕放电组件还包括离子反应与存储环,所述离子反应与存储环为形似喇叭状的内部通道,其中所述离子反应与存储环不与所述金属电晕筒电接触,所述离子反应与存储环的大口端与离子门第一栅网接触,使在大口端内与离子门第一栅网之间形成等电势区,用于离子存储。
  8. 一种离子迁移谱仪,其特征在于,所述离子迁移谱仪包括:
    权利要求1-7之一所述的电晕放电组件;
    离子门,所述离子门由两张相对的栅网构成;
    迁移区,所述迁移区包括漂移电极,所述漂移电极为同轴心等间距的圆环电极;以及
    法拉第盘,所述法拉第盘后接电荷灵敏放大器以读取离子信号。
  9. 一种利用如权利要求1-7之一所述的电晕放电组件进行电晕放电的方法,其中在任一时刻,只有一根电晕针旋转到离金属电晕筒环片状端口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余电晕针由于针尖的电场强度达不到电晕放电的阈值而不发生放电;所述多根电晕针在转盘的转动下,轮流位于电晕放电位置而进行放电工作。
  10. 一种控制电晕放电组件进行电晕放电的计算机程序,其特征在于,控制权力要求1-7任意一项所述的电晕放电组件进行电晕放电,执行如下步骤:
    其中在任一时刻,只有一根电晕针旋转到离金属电晕筒离子出口最近的位置,其针尖的电场强度达到电晕放电阈值而发生电晕放电,而其余电晕针由于针尖的电场强度达不到电晕放电的阈值而不发生放电;所述多根电晕针在转盘的转动下,轮流位于电晕放电位置而进行放电工作。
  11. 一种计算机存储介质,其特征在于,所述计算机存储介质用于存储权利要求10所述的计算机程序。
PCT/CN2014/093833 2013-12-30 2014-12-15 电晕放电组件、离子迁移谱仪、计算机程序及存储介质 WO2015101167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14876784.1A EP3091564B1 (en) 2013-12-30 2014-12-15 Corona discharge assembly, ion mobility spectrometer, computer program, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310742038.1A CN104752149B (zh) 2013-12-30 2013-12-30 电晕放电组件和包括该电晕放电组件的离子迁移谱仪
CN201310742038.1 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015101167A1 true WO2015101167A1 (zh) 2015-07-09

Family

ID=53482962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093833 WO2015101167A1 (zh) 2013-12-30 2014-12-15 电晕放电组件、离子迁移谱仪、计算机程序及存储介质

Country Status (4)

Country Link
US (1) US9231383B2 (zh)
EP (1) EP3091564B1 (zh)
CN (1) CN104752149B (zh)
WO (1) WO2015101167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632872B (zh) * 2016-03-11 2017-09-05 北京理工大学 一种基于电晕放电的离子迁移谱装置
CN110289203B (zh) * 2019-06-03 2021-03-09 清华大学深圳研究生院 一种电晕放电电离源结构及离子迁移谱仪
CN113394661B (zh) * 2021-06-23 2022-06-14 长安大学 一种环形刀-平板电极的电晕稳定开关及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2124344A1 (en) 1991-12-03 1993-06-10 Stephen John Taylor Corona discharge ionisation source
US5485016A (en) 1993-04-26 1996-01-16 Hitachi, Ltd. Atmospheric pressure ionization mass spectrometer
CN1950698A (zh) 2004-07-27 2007-04-18 工程吸气公司 包括电晕放电电离元件的离子迁移率谱仪
US7326926B2 (en) 2005-07-06 2008-02-05 Yang Wang Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species
CN103137417A (zh) * 2011-12-02 2013-06-05 同方威视技术股份有限公司 电晕放电装置以及具有该电晕放电装置的离子迁移谱仪
CN103339708A (zh) * 2011-03-18 2013-10-02 株式会社日立高新技术 质量分析装置及其使用的离子源
CN203774248U (zh) * 2013-12-30 2014-08-13 同方威视技术股份有限公司 电晕放电组件和包括该电晕放电组件的离子迁移谱仪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873835A (en) * 1973-11-02 1975-03-25 Vladimir Ignatjev Ionizer
JPS5142245B2 (zh) * 1974-07-08 1976-11-15
US4363072A (en) * 1980-07-22 1982-12-07 Zeco, Incorporated Ion emitter-indicator
JPH0273040U (zh) * 1988-11-24 1990-06-04
US5726447A (en) * 1996-07-12 1998-03-10 Hewlett-Packard Company Ionization chamber and mass spectrometer having a corona needle which is externally removable from a closed ionization chamber
IT1284596B1 (it) 1996-09-27 1998-05-21 Luigi Goglio Contenitore di prodotti granulari in particolare caffe' e relativo supporto per lo svuotamento in una macina da bar
US5768087A (en) * 1996-11-05 1998-06-16 Ion Systems, Inc. Method and apparatus for automatically cleaning ionizing electrodes
US6349668B1 (en) * 1998-04-27 2002-02-26 Msp Corporation Method and apparatus for thin film deposition on large area substrates
US6690005B2 (en) * 2000-08-02 2004-02-10 General Electric Company Ion mobility spectrometer
WO2002053993A1 (fr) * 2000-12-27 2002-07-11 Sharp Kabushiki Kaisha Unite de stockage et refrigerateur
US6649907B2 (en) * 2001-03-08 2003-11-18 Wisconsin Alumni Research Foundation Charge reduction electrospray ionization ion source
JP3787549B2 (ja) * 2002-10-25 2006-06-21 株式会社日立ハイテクノロジーズ 質量分析装置及び質量分析方法
US7212393B2 (en) * 2004-09-30 2007-05-01 Ion Systems, Inc. Air ionization module and method
WO2007056704A2 (en) * 2005-11-03 2007-05-18 Mks Instruments, Inc. Ac ionizer with enhanced ion balance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2124344A1 (en) 1991-12-03 1993-06-10 Stephen John Taylor Corona discharge ionisation source
US5485016A (en) 1993-04-26 1996-01-16 Hitachi, Ltd. Atmospheric pressure ionization mass spectrometer
CN1950698A (zh) 2004-07-27 2007-04-18 工程吸气公司 包括电晕放电电离元件的离子迁移率谱仪
US7326926B2 (en) 2005-07-06 2008-02-05 Yang Wang Corona discharge ionization sources for mass spectrometric and ion mobility spectrometric analysis of gas-phase chemical species
CN103339708A (zh) * 2011-03-18 2013-10-02 株式会社日立高新技术 质量分析装置及其使用的离子源
CN103137417A (zh) * 2011-12-02 2013-06-05 同方威视技术股份有限公司 电晕放电装置以及具有该电晕放电装置的离子迁移谱仪
CN203774248U (zh) * 2013-12-30 2014-08-13 同方威视技术股份有限公司 电晕放电组件和包括该电晕放电组件的离子迁移谱仪

Also Published As

Publication number Publication date
EP3091564B1 (en) 2019-11-06
CN104752149B (zh) 2017-04-05
US9231383B2 (en) 2016-01-05
EP3091564A1 (en) 2016-11-09
CN104752149A (zh) 2015-07-01
EP3091564A4 (en) 2017-07-26
US20150188296A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
CA2857186C (en) Corona discharge device and ion mobility spectrometer having corona discharge device
WO2015101165A1 (zh) 电晕放电组件、离子迁移谱仪、计算机程序及存储介质
JP4382708B2 (ja) 真空計
CN101937824B (zh) 离子迁移谱仪及利用离子迁移谱仪的检测方法
WO2015101167A1 (zh) 电晕放电组件、离子迁移谱仪、计算机程序及存储介质
JP2015507334A (ja) 質量分析計における改良された感度のための方法および装置
CN203774248U (zh) 电晕放电组件和包括该电晕放电组件的离子迁移谱仪
WO2008129039A2 (en) Improved coupling between axisymmetric differential mobility analyzers and mass spectrometers or other analyzers and detectors
CN201508347U (zh) 离子迁移谱仪
JP4497925B2 (ja) サイクロイド状質量分析器
CN108155084B (zh) 一种线性离子阱组件
CN109887826B (zh) 一种空间聚焦的圆锥形离子迁移管
US2825833A (en) Electron tube for magnetic induction accelerator
CN111243935A (zh) 一种介质阻挡放电电离源的离子迁移谱仪
CN203774247U (zh) 离子传输装置及质谱分析系统
CN103824748A (zh) 离子传输装置及方法
Kolomiets et al. Vortex focusing of ions produced in corona discharge
CN106847660A (zh) 一种中高能电子枪
CN103578908A (zh) 分立式碳纳米管阵列放电电离源
WO2021003888A1 (zh) 宽动态范围离子检测系统及装置
CN102543649A (zh) 离子迁移谱仪及利用离子迁移谱仪的检测方法
CN109884167A (zh) 电离室及螺旋路微型光离子化检测装置
CN115172138A (zh) 一种离子传输多极杆系统、质谱分析仪及其应用
CN109884165A (zh) 光离子化检测器电离室及光电离检测器
CN102592941A (zh) 离子迁移谱仪及利用离子迁移谱仪的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014876784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014876784

Country of ref document: EP