WO2015101160A1 - 一种基于预定场地的三维物体的投影制作方法 - Google Patents

一种基于预定场地的三维物体的投影制作方法 Download PDF

Info

Publication number
WO2015101160A1
WO2015101160A1 PCT/CN2014/093714 CN2014093714W WO2015101160A1 WO 2015101160 A1 WO2015101160 A1 WO 2015101160A1 CN 2014093714 W CN2014093714 W CN 2014093714W WO 2015101160 A1 WO2015101160 A1 WO 2015101160A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
virtual object
scene
horizontal plane
perspective
Prior art date
Application number
PCT/CN2014/093714
Other languages
English (en)
French (fr)
Inventor
张瀚宇
Original Assignee
张瀚宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张瀚宇 filed Critical 张瀚宇
Publication of WO2015101160A1 publication Critical patent/WO2015101160A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality

Definitions

  • the present application relates to the field of surveying, and in particular to a method for producing a three-dimensional object based on a predetermined site.
  • each reference object at the scene is Shape and size, calculate the size and shape of the shadow of each reference object in the field at different viewpoints, and accurately grasp the important position of the position of the building, the distance between the buildings, and the occlusion of the light according to the shape and size.
  • Adding a new object to an already-built site often requires consideration of the effect on the entire site after the object is added.
  • the object is too large or too small, the color shape and the position of the placement are inconsistent with the site, and the vision of the observation point is observed.
  • Sense has a certain impact, but the direct production of the object itself is often costly and difficult to modify.
  • the use of computers for synthetic production is often done only in the static frame state, and can not reflect the effect in the actual dynamic process, but in the dynamic The effect embodied in it is a more realistic effect.
  • the projection of the projection of the three-dimensional object based on the specific scene is mainly based on the measurement of the scene, recording the height, position of the camera, the distance from the laying screen, the angle and the like, and calculating the contour of the projection through a unique calculation formula. shape.
  • Conventional measurements often fail to accurately obtain the perspective shape of the site under the predetermined viewpoint, and manual measurement will inevitably have errors in angle and size, so that the final projected image will not achieve the expected effect, and can only be reworked, not only costly Manpower, material resources, and production time cannot be guaranteed.
  • the present application provides a projection method for a three-dimensional object based on a predetermined site, wherein , the method includes:
  • the three-dimensional scene includes a first dimension and a second dimension in two-point perspective and a third dimension perpendicular to a horizontal plane formed by the first dimension and the second dimension;
  • a projection of the virtual object is taken from directly above the projection parallel to the horizontal plane.
  • the three-dimensional scene of the venue under a predetermined viewpoint is constructed according to a fixed line on the field.
  • the predetermined viewpoint includes a location where the human eye is located or a position of a camera or a camera.
  • the step of simulating the three-dimensional scene of the venue under a predetermined viewpoint according to the fixed sign of the venue comprises determining a main reference line of the three-dimensional scene by acquiring a picture of the venue under a predetermined viewpoint.
  • the picture comprises a video screenshot or photo obtained under the predetermined viewpoint.
  • the perspective relationship of the three-dimensional scene is determined based on a plurality of points of different locations of the venue.
  • the plurality of points are at least 6 points.
  • the plurality of points are 12 points.
  • the step of determining a perspective relationship of the three-dimensional scene according to a plurality of points of different locations of the venue is performed by manual adjustment or computer matching software.
  • the step of simulating the three-dimensional scene of the site under a predetermined viewpoint according to the fixed sign of the site comprises:
  • the matched three-dimensional simulation scene is taken as the three-dimensional scene.
  • the picture comprises a video screenshot or photo obtained under the predetermined viewpoint.
  • the three-dimensional simulated scene and the picture are matched by a plurality of points of different locations of the venue.
  • the plurality of points are at least 6 points.
  • the plurality of points are 12 points.
  • the virtual object simulating the three-dimensional object is created on the horizontal plane, and the step of aligning the perspective relationship of the virtual object with the perspective relationship of the three-dimensional scene comprises:
  • the size and shape of the virtual object at the predetermined location is determined.
  • the method further includes:
  • a rectangular frame having the same perspective relationship as the three-dimensional scene is created on a horizontal plane below the virtual object, and the size of the frame is adjusted such that the edge line just wraps the outer contour of the virtual object on a horizontal plane.
  • the method further includes:
  • the step of simulating the virtual object from the predetermined viewpoint comprises:
  • the step of creating a virtual object simulating the three-dimensional object on the horizontal plane comprises creating the virtual object at a predetermined position on the horizontal plane.
  • the simulation before the step of projecting the virtual object from the predetermined viewpoint, the simulation further comprises: enlarging and rendering the virtual object.
  • the virtual object of the simulated three-dimensional object is formed by adding a planar object to a virtual three-dimensional object.
  • the shape of the virtual three-dimensional object is set according to the shape of the planar object.
  • the predetermined venue comprises a construction site, a stadium, a block.
  • the three-dimensional object comprises a building, a building model, a three-dimensional text, a stereoscopic advertisement or a three-dimensional painting.
  • the present application uses a computer to simulate a three-dimensional scene of a site under a predetermined viewpoint to determine a perspective relationship of the virtual object in the scene, which can ensure the accuracy of the virtual object perspective angle created in the scene.
  • a computer to simulate a three-dimensional scene of a site under a predetermined viewpoint to determine a perspective relationship of the virtual object in the scene, which can ensure the accuracy of the virtual object perspective angle created in the scene.
  • multiple virtual objects can be created efficiently, and the position and size of the virtual object can be quickly adjusted, so that the establishment of the virtual object is more intuitive and convenient.
  • the technical solution of the present application does not need to be measured in the field.
  • the final projected image can be produced, and the time, manpower, and cost of production are greatly improved.
  • FIG. 1 is a schematic diagram of a process of making a three-dimensional scene
  • FIG. 2 is a schematic diagram of obtaining a main reference line from a video screenshot
  • Figure 3 is a schematic illustration of the process of creating a podium in the same perspective relationship based on perspective points
  • FIG. 4 is a schematic diagram of placing a stereoscopic text ABC in a created three-dimensional scene by using three-dimensional software
  • Figure 5 is a schematic diagram of a process of making a three-dimensional text ABC and its frame
  • FIG. 6 is a schematic diagram of a process of making a three-dimensional object podium and its frame
  • FIG. 7 is a schematic diagram of a projection process of a three-dimensional character ABC
  • Figure 8 is a schematic view showing a projection process of a three-dimensional object podium
  • Figure 9 is a schematic view of a checkerboard projected onto a three-dimensional sphere
  • Figure 10 is a schematic view of the projection of the text M into a three-dimensional cone
  • Figure 11 is a final projection of the text ABC
  • Figure 12 is a final projection of the podium.
  • the basic principle of the embodiment of the present application is that the light of the light source is linearly propagated, and forms a straight line with the three-dimensional object and the light and shadow, so the formation of the light and shadow is formed by the link line of the light source and the three-dimensional object being projected onto the surface of a certain three-dimensional object, if
  • our observation point is consistent with the position of the light source, then we must see that the outer contour of the light and shadow must also be the same as the contour of the three-dimensional object.
  • the application specifically applies the natural law to the field of surveying and mapping, simulates the relationship between a three-dimensional object and a light source through computer technology, and records a three-dimensional object projection with color information, and replaces the position of the light source with a predetermined viewpoint in a specific site, three-dimensional
  • the object replaces the final effect of the projected projection in the three-dimensional scene as the object being projected, and the projection is printed on the actual carrier surface, and the printed image is laid on the predetermined position of the field, so that we observe the print at the predetermined viewpoint. After the image, the effect can be completely consistent with the observation of the three-dimensional object itself.
  • the present application provides a method for fabricating a projection of a three-dimensional object based on a predetermined site having a fixed marker, such as one or more boundary lines of the venue, one or more boundary points; or, in the venue One or more zones divided, boundaries or boundary points of each zone; or a benchmark with a certain height on the site or a building of a certain length, width and height.
  • the site can be a construction site, a stadium, a block, etc., all of which have a certain level of horizontal ground.
  • the three-dimensional object may be a fixed building in the field, or a non-fixed object, for example, a three-dimensional object having a three-dimensional effect such as a three-dimensional text, a stereoscopic image, or a three-dimensional advertisement.
  • a correct three-dimensional perspective scene determines whether the virtual object created on the basis of the virtual object and the projection of the finally obtained three-dimensional object are correct.
  • the embodiment of the present application can be Production
  • Figure 1 takes the football field as an example to show the production process of the three-dimensional scene.
  • Shoot the actual venue under the predetermined viewpoint take a photo or directly obtain the video resources of the venue.
  • Get a video screenshot or photo basically covers the main logo of the venue or the complete main guide.
  • the human eye observes the site at different angles and the markers in the site, and the shape and size thereof are different.
  • the predetermined viewpoint that is, the position of the human eye to observe the entire actual site, is also in the embodiment of the present application. It can be the location of the camera or camera.
  • the main reference lines of the venue are re-drawn. If the main reference lines are incomplete, the maps are completed according to the angle of each reference line. Finally, the main reference line is determined, see Figure 2. Determining, according to the main reference lines, a three-dimensional perspective scene of the above-mentioned site under a predetermined viewpoint, the three-dimensional perspective scene comprising a first dimension and a second dimension in the two-point perspective, that is, an angle of a length and a width of the ground based ground. And a third dimension perpendicular to a horizontal plane formed by the first dimension and the second dimension, that is, an angle perpendicular to a vertical line of the horizontal ground.
  • the three-dimensional simulation scene is not for a predetermined viewpoint. Or the viewpoint is arbitrary.
  • the 3D fabrication software can be used to form a perspective view of the basic contour of the site according to the size of the site and/or the size and location of the important regional line, and then the main reference line of the site can be determined according to the size and position of the main reference object of the site.
  • the position and angle in the above-mentioned site perspective view are determined according to the angles and distances of the regions and reference objects from the site edge.
  • the size of the three-dimensional simulation scene is exactly the same as the size of the actual site, and is only a scene graph that is scaled down.
  • the three-dimensional simulation scene created in step C according to the actual size of the field is placed on the background to obtain a perspective of the three-dimensional perspective scene under the predetermined viewpoint.
  • the relationship is a reference, and the perspective relationship of the three-dimensional simulation scene is adjusted, so that the main reference line of the three-dimensional simulation scene created according to the actual size completely coincides with the three-dimensional perspective scene under the predetermined viewpoint to achieve the consistency of the perspective relationship, thereby obtaining the matched
  • the final 3D scene of the venue under the scheduled viewpoint is adjusted, so that the main reference line of the three-dimensional simulation scene created according to the actual size completely coincides with the three-dimensional perspective scene under the predetermined viewpoint to achieve the consistency of the perspective relationship, thereby obtaining the matched The final 3D scene of the venue under the scheduled viewpoint.
  • the process of matching the above two three-dimensional scenes it can be manually matched or can be made by using computer matching software, for example, 3D MAX software. If you use computer matching software, you can use the venue
  • the main marking position preset multiple points, for example, the intersection of the edge of the site, the intersection of the edge of the site area, the intersection of the outline of the main building, etc., select at least 6 points to adjust the perspective relationship, the more reference points the 3D scene The more closely the perspective relationship with the actual scene is, for example, 12 points of different positions in the field can be selected as reference for the perspective relationship, so that the three-dimensional simulation scene is consistent with the perspective relationship of the three-dimensional perspective scene under the predetermined viewpoint.
  • S102 Create a virtual object that simulates the three-dimensional object on the horizontal plane, and a perspective relationship of the virtual object is unified with a perspective relationship of the three-dimensional scene;
  • a shape of the virtual object having a predetermined size at a predetermined position of the three-dimensional scene may be determined by the perspective point.
  • Figure 3 illustrates the process of creating a virtual object of the same perspective relationship from perspective points, taking the podium on the football field as an example.
  • the three-dimensional scene mainly has a wide range of width B and depth A, and the height is not significantly changed because the span is small, so in this three-dimensional scene, we generally follow two-point perspective (ie, AB). The perspective of the two perspective points).
  • the basic rule of two-point perspective is that when we determine the perspective of the width and depth of a scene, we need to use the link lines of A depth perspective point and B width perspective point to create any new content in the scene. Because there is no significant change in height, the height in the two-point perspective is vertical.
  • 3D software for example, 3D MAX
  • the shape and size of the three-dimensional object in the field are determined, and then, according to the size, a virtual object is created, and the created virtual object is moved to a predetermined position in the three-dimensional scene, and FIG. 4 takes the text ABC as an example. Shows the virtual object directly added in the 3D software.
  • the size of the frame is the smallest size that can just wrap the outline of the virtual object.
  • the border helps us know the size of the final printed product in advance.
  • a rectangular frame having a fixed size and the same perspective relationship as the three-dimensional scene may be created on the horizontal plane of the three-dimensional scene according to the situation of the site and the size of the site that the projection of the three-dimensional object may occupy, and then Move the created virtual object into the border and adjust the size of the created virtual object so that the outer contour on the horizontal plane just touches the edge of the border.
  • FIG. 5 it is a schematic diagram of a process of making a three-dimensional text ABC and a frame; see FIG. 6 , which is a schematic diagram of a process of making a podium and a frame.
  • the virtual object When making a virtual object, you can also create a plane material, and then create a virtual 3D object in the 3D space to carry the plane material.
  • the shape of the virtual 3D object depends mainly on the content that the plane material needs to represent, such as the content of the plane material. Is a longer text, you can use a longer
  • the virtual object carries the text; if the content of the flat material is an object close to a circle, you can first create a circular bearing plane material, then add a thickness to the circle, and select the surface to which the plane material needs to be added, and the plane material Add to a round object.
  • the final two-dimensional image is formed, and then the virtual object in the two-dimensional image is simulated at the predetermined viewpoint in the three-dimensional scene.
  • the horizontal plane formed by the first dimension and the second dimension of the simulated ground in the three-dimensional scene in step S101 is introduced into the projection tool as a projection plane, and then the virtual object is projected to the projection plane at the camera or camera by computer software simulation.
  • Figure 7 shows the projection process of the text ABC.
  • Figure 8 shows the projection process of the podium.
  • the left camera is a preset camera
  • the middle is the final effect of the two-dimensional image after the virtual reality has been created
  • the right side is the projection plane that needs to carry the final projection.
  • the object that ultimately carries the projection is a three-dimensional object.
  • the three-dimensional object may be a rectangular plane in three-dimensional software according to actual needs, or may be a three-dimensional object of other shapes.
  • a rectangular plane in three-dimensional software is mainly used as a projection.
  • the object, but in this example, the image is more vivid, so a three-dimensional spherical and three-dimensional cone is used as the carrier of the projection.
  • the checkerboard in Figure 9 (that is, the final effect of the two-dimensional image after the virtual object rendering is completed) is projected onto the surface of the three-dimensional sphere (ie, the projection plane) on the right side by the projection of the camera position, which is caused by the curvature of the surface of the sphere.
  • the deformation of the image (the projection plane is also at an angle to the virtual object, so it will also produce the same effect of deformation).
  • This deformation is an irregular deformation effect at other angles, but it looks like a predetermined camera position.
  • the image is consistent with the pre-simulated effect.
  • ZBRUSH is a digital engraving software
  • the projection function to make projection is a digital engraving software.
  • step S101 is created.
  • the horizontal plane in the built 3D scene is imported into ZBRUSH as the projection plane, and then the projection master function in the software is opened, and the created 2D image containing the virtual object is added to the projection plane, and then clicked again after completion.
  • the projection master function in the software projects a virtual object in a two-dimensional image onto a projection plane.
  • the projection of the virtual object is obtained from directly above the virtual object parallel to the projection plane.
  • a final image for printing is then obtained, see Figure 9 for the final image of the projection of the text ABC; Figure 10 is the final image of the projection of the podium. Finally, it is necessary to cut out the portion without the image content and print the image according to the actual size of the reserved portion.
  • the structure of the site is complex and the area is large, and the camera position is far from the ground of the site.
  • the same three-dimensional object is placed at different positions on the same site, even if the difference is 1 meter, the difference in the content of the camera is not very large, that is to say, the shape of the deformation of the virtual object is not obvious, but the projection of the virtual object finally obtained is very different, that is, three-dimensional
  • the angle and size of the virtual object in the scene have a great influence on the projection of the resulting fluoroscopic image. Often, the slight deviation in the measurement will result in the final projection of the resulting three-dimensional object and the projection of the actual three-dimensional object in the direction, angle, etc.
  • the aspect is quite different, which brings a lot of obstacles to the actual mapping and drawing.
  • the embodiment of the present application determines the three-dimensional scene of the site by using the video screenshot or photo at the predetermined viewpoint, and uses the perspective relationship to determine the virtual in the scene.
  • the shape of the object and the shape of the projection, and accurate simulation using a computer can ensure The accuracy of the 3D scene of the venue and the projected shape of the virtual object created in this 3D scene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本申请涉及测绘领域,提供了一种基于预定场地的三维物体的投影的制作方法,其中,所述方法包括:根据所述场地的固定标志模拟所述场地在预定视点下的三维场景;所述三维场景包括两点透视中的第一维和第二维以及垂直于所述第一维与第二维形成的水平平面的第三维;在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一;模拟从所述预定视点处对所述虚拟实物进行投影;从与所述水平平面平行的所述投影的正上方处获取所述虚拟实物的投影。本申请的技术方案无需到现场测量即可制作出最终投影图像,在制作的时间,人力,成本上均得到了非常大的提高。

Description

一种基于预定场地的三维物体的投影制作方法 技术领域
本申请涉及测绘领域,特别涉及一种基于预定场地的三维物体的投影制作方法。
背景技术
在建筑施工之前,往往需要根据施工现场的尺寸,构造,来构建二维图像纸和三维场景模拟图,在三维场景模拟图中,需要清晰标示出,在不同视点处,现场每个参考物的形状和尺寸,计算出场地中每个参考物的阴影在不同视点下的尺寸和形状,根据上述形状和尺寸准确的把握建筑物的位置,之间的距离,以及光线遮挡情况等重要信息。
在已经建造好的场地中添加新的物体,往往需要考虑该物体添加之后对于整个场地的影响,物体过大或过小,颜色形状以及放置的位置与场地不协调等均会对观测点的视觉感产生一定的影响,但直接制作物体本身往往成本较高且不易修改,使用计算机进行合成制作往往又只是在静帧状态下完成的,无法在实际的动态的过程中体现出效果,而在动态中体现的效果才是更接近真实的效果体现。因此我们可以将一种带有能产生视觉错觉的平面铺设到该场地,也就是该物体的投影图像,使之在预定视点处观测时,能够产生与需要添加的物体同样的效果,从而更直观清晰的在动态效果中观测出其最终效果。
目前基于特定现场的三维物体的投影的制作,主要是通过对现场的测量,记录场地摄像机的高度,位置,与铺设画面的距离,角度等信息,通过特有的计算公式,计算出投影的外轮廓形状。常规的测量往往无法准确的获得场地在预定视点下的透视形状,并且人工测量难免会存在角度和尺寸上的误差,使最终的投影图像达不到预期的效果,只能重新返工制作,不仅耗费人力、物力,制作时间也不能够得到保证。
发明内容
为了制作特定场地中的三维物体在预定视点下的投影,使之精确地反映出投影在该场地中的实际位置和形状,本申请提供了一种基于预定场地的三维物体的投影制作方法,其中,所述方法包括:
根据所述场地的固定标志模拟所述场地在预定视点下的三维场景;
所述三维场景包括两点透视中的第一维和第二维以及垂直于所述第一维与第二维形成的水平平面的第三维;
在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一;
模拟从所述预定视点处对所述虚拟实物进行投影;
从与所述水平平面平行的所述投影的正上方处获取所述虚拟实物的投影。
优选地,根据所述场地上固定的线构建所述场地在预定视点下的三维场景。
优选地,所述预定视点包括人眼所在的位置或摄像机或照相机的位置。
优选地,所述根据所述场地的固定标志模拟所述场地在预定视点下的三维场景的步骤包括,通过在预定视点下获取所述场地的画面,确定所述三维场景的主要参考线。
优选地,所述画面包括,在所述预定视点下获得的视频截图或照片。
优选地,根据所述场地的不同位置的多个点来确定所述三维场景的透视关系。
优选地,所述多个点为至少6个点。
优选地,所述多个点为12个点。
优选地,所述根据所述场地的不同位置的多个点来确定所述三维场景的透视关系的步骤,是通过手动调整或计算机匹配软件执行的。
优选地,所述根据所述场地的固定标志模拟所述场地在预定视点下的三维场景的步骤包括:
根据所述场地的尺寸信息创建所述场地的三维模拟场景;
在所述预定视点下获取所述场地的画面,所述画面包括两点透视中的第一维和第二维以及垂直于所述第一维和第二维所形成的水平平面的第三维;
匹配所述三维模拟场景与所述画面,使所述三维模拟场景的透视关系与所述画面相一致;
将匹配后的三维模拟场景作为所述三维场景。
优选地,所述画面包括,在所述预定视点下获得的视频截图或照片。
优选地,通过所述场地的不同位置的多个点来匹配所述三维模拟场景与所述画面。
优选地,所述多个点为至少6个点。
优选地,所述多个点为12个点。
优选地,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤包括:
获取所述场地在所述预定视点下的画面,根据所述画面确定所述三维场景在所述预定视点下的两点透视点,
确定所述虚拟实物的尺寸和该虚拟实物在所述三维场景中的预定位置;
根据所述透视点,确定在所述预定位置处的虚拟实物的大小和形状。
优选地,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤之后,还包括:
在所述虚拟实物下方的水平平面上创建一个与所述三维场景的透视关系相同的长方形边框,调整该边框的大小,使其边线刚好包裹住所述虚拟实物在水平平面上的外轮廓。
优选地,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤之后,还包括:
在所述三维场景的水平平面上创建一个与所述三维场景的透视关系相同的具有固定尺寸的长方形边框,然后将创建好的虚拟实物移动到该边框中,调整所创建的虚拟实物的尺寸,使其在水平平面上的外轮廓线刚好碰触边框的边线。
优选地,所述模拟从所述预定视点处对所述虚拟实物进行投影的步骤包括:
获取所述三维场景中所述第一维与第二维形成的水平平面;
模拟在所述预定视点处将所述虚拟实物投影到所述水平平面上。
优选地,所述在所述水平平面上创建模拟所述三维物体的虚拟实物的步骤包括,在所述水平平面上的预定位置处创建所述虚拟实物。
优选地,所述模拟从所述预定视点处对所述虚拟实物进行投影的步骤之前,还包括,将所述虚拟实物放大和渲染。
优选地,所述模拟三维物体的虚拟实物是将一平面物体添加到一个虚拟的三维物体上形成的。
优选地,所述虚拟的三维物体的形状根据所述平面物体的形状而设定。
优选地,所述预定场地包括建筑工地,体育场,街区。
优选地,所述三维物体包括建筑物、建筑物模型、立体文字、立体广告或立体画。
本申请使用计算机模拟预定视点下场地的三维场景,来确定该场景中虚拟实物的透视关系,可以确保在此场景创建的虚拟实物透视角度的精确性。在调整好的三维场景中可以高效地创建出多个需要的虚拟实物,快速调整虚拟实物的位置,大小,使得虚拟实物的确立更加直观,便捷;另外,本申请的技术方案无需到现场测量即可制作出最终投影图像,在制作的时间,人力,成本上均得到了非常大的提高。
附图说明
图1是三维场景的制作过程示意图;
图2是从视频截图获取主要参考线的示意图;
图3是根据透视点创建相同透视关系的领奖台的过程示意图;
图4是通过三维软件将立体文字ABC放在制作好的三维场景中的示意图;
图5是三维文字ABC及其边框的制作过程示意图;
图6是三维物体领奖台及其边框制作过程示意图;
图7是三维文字ABC的投影过程示意图;
图8是三维物体领奖台的投影过程示意图;
图9是棋盘投影到三维球体的示意图;
图10是文字M投影到三维圆锥体的示意图;
图11为文字ABC最终投影图;
图12是领奖台的最终投影图。
具体实施方式
本申请实施例遵循的基本原理是光源的光线延直线传播,与三维物体,光影形成同一条直线,所以光影的形成是由光源与三维物体的链接线投射到某一三维物体表面形成的,如果当我们的观测点与光源的位置一致,那么我们看到光影的外轮廓也一定是和三维物体的轮廓一样的。本申请正是将该自然规律具体应用在测绘领域,通过计算机技术模拟三维物体与光源的关系,并且记录下带有颜色信息的三维物体投影,在具体场地中,将预定视点代替光源位置,三维物体代替作为被投影物体,记录形成的投影在三维场景中的最终效果,将得到投影打印在实际的载体表面,将打印的图像铺设在场地的既定位置上,这样我们通过在预定视点处观测打印后的图像,其效果便可与观测三维物体本身完全一致了。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
本申请提供了一种基于预定场地的三维物体的投影的制作方法,该预定场地上具有固定的标志物,例如,场地的一条或多条边界线,一个或多个边界点;或者,场地中划分的一个或多个区域,每个区域的边界线或边界点;或者,场地上的具有一定高度的标杆或具有一定长度、宽度和高度的建筑物。该场地可以是建筑工地,体育场,街区等所有具有一定区域的水平地面。所述的三维物体可以是场地中的固定的建筑物,或非固定的摆放物,例如,立体文字、立体图像、立体广告等具有三维效果的三维物体。
S101、根据所述场地的固定标志模拟所述场地在预定视点下的三维场景;所述三维场景包括两点透视中的第一维、第二维以及垂直于所述第一维与第二维形成的水平平面的第三维;
一个正确的三维透视场景决定了在其基础上创建的虚拟实物以及最终得到的三维物体的投影是否正确,为了得到一个与实际场地透视关系一致的三维模拟场景,本申请实施例可以通过以下方法来制作,图1以足球场为例,示出了三维场景的制作过程。
A、在预定视点下对该实际场地进行拍摄,拍照或直接获取该场地的视频资 料得到视频截图或照片,上述的视频截图或者照片基本涵盖场地的主要标识或完整的主要参考线。人眼在不同的角度观测场地以及场地中的标识物,其形状和尺寸均是不同的,上述所说的预定视点,也就是人眼观测整个实际场地的位置,在本申请实施例中,还可以是摄像机或照相机的位置。
B、然后,以上述的照片和视频截图中场地的主要标识线条为基准,对场地的主要参考线进行重新描绘,如果主要参考线不完整,则根据每条参考线的角度将其补画完整,最终得到确定的主要参考线,参见图2。根据该些主要参考线,确定上述场地在预定视点下的三维透视场景,该三维透视场景包括两点透视中的第一维和第二维,也就是基于水平地面的场地的长和宽的角度,以及垂直于所述第一维与第二维形成的水平平面的第三维,也就是垂直于水平地面的铅垂线的角度。
C、在通过视频截图或照片制作出三维透视场景之前或者之后,可以需要根据已确定的场地的主要参考标志的尺寸和位置,制作出三维模拟场景,该三维模拟场景不针对某一预定视点,或者说视点是随意的。可以根据场地的边线和/或重要的区域线的尺寸和位置,通过3D制作软件来形成该场地的基本轮廓的立体图,然后根据该场地的主要参考物的尺寸、位置确定场地的主要参考线,例如,如果该场地划分有多个区域,有些固定参考物,则根据上述区域和参考物与场地边线的角度,距离,确定其在上述场地立体图中的位置和角度。该三维模拟场景的尺寸与实际场地的尺寸是完全一致的,仅仅是按比例尺缩小的场景图。
D、然后,将步骤B中得到的预定视点下的三维透视场景作为背景,将步骤C中根据场地实际尺寸创建的三维模拟场景放在该背景之上,以预定视点下的三维透视场景的透视关系为基准,调整这个三维模拟场景的透视关系,使根据实际尺寸创建的三维模拟场景的主要参考线与在预定视点下的三维透视场景完全重合以达到透视关系的一致性,从而得到匹配后的预定视点下的场地的最终的三维场景。
在匹配上述两个三维场景过程中,可以手动匹配,也可以使用计算机匹配软件来制作,例如,3D MAX软件。如果使用计算机匹配软件,可以根据场地 的主要标识位,预先设定多个点,例如,场地的边线交点,场地区域边线的交点,主要建筑物的轮廓线交点等,选取至少6个点来调整透视关系,参考点越多三维场景与实际场景的透视关系就越吻合,例如可以选取场地中不同位置的12个点作为透视关系的参考,使得三维模拟场景与预定视点下的三维透视场景的透视关系一致。
S102、在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一;
创建好了场地的三维场景,就可以在该透视场景中创建虚拟实物来模拟实际场地中的三维物体,同一个虚拟实物放在具有不同透视关系的三维场景中,其形状是不同的,所以必须保证该虚拟实物与该三维场景的透视关系相一致,才能使之准确地反映出实际场地中的三维物体的形状。
方式一:
为了使虚拟实物与三维场景的透视关系保持一致,可以通过透视点来确定一个在三维场景的预定位置处的具有预定尺寸的虚拟实物的形状。图3以足球场上的领奖台为例,示出了根据透视点创建相同透视关系的虚拟实物的过程。
首先需要确定场地的透视点,例如该三维场景主要是宽度B和深度A范围较广,高度上因为跨度小所以没有明显变化,所以在这种三维场景中,我们一般遵循两点透视(即AB两个透视点)的透视基本法则。
两点透视的基本法则即当我们确定好一个场景的宽度和深度的透视点以后,在绘制场景中任何新的内容的时候都需要使用A深度透视点和B宽度透视点的链接线来进行制作,因为高度上没有明显变化,所以两点透视法中的高度都是垂直的。
在图3中我们可以看到场景中的场地区域边线因为透视关系的影响产生了一定的变型,该变型是基于透视关系而产生的结果,所以我们可以通过延长区域边线的宽度与深度的场地线而找到透视点A和B,这样我们便确定了两个透视点。然后我们便可以以A为链接线绘制出领奖台的横线,以B为链接线绘制出领奖台的厚度,高度均以直线绘制。待所有内容绘制完成之后我们去掉不需 要的参考线,便得到了与整个三维场景透视关系完全一致的虚拟实物。
方式二:
如果使用计算机三维软件,例如,3D MAX,可以直接在创建好的三维场景中添加虚拟实物,添加的虚拟实物即符合其所在的三维场景中的透视关系。
首先,根据实际情况,确定场地中的三维物体的形状,尺寸,然后,根据该尺寸,创建虚拟实物,将创建好的虚拟实物移动到三维场景中的既定的位置,图4以文字ABC为例,示出了在三维软件中直接添加的虚拟实物。
在创建好虚拟实物后,可以在虚拟实物下方创建一个大于其范围的任意形状和尺寸的水平平面。还可以在虚拟实物下方的水平平面上创建一个与三维场景的透视关系相同的长方形边框,调整该边框的大小,使其长和宽刚好略大于或等于虚拟实物在水平平面上的外轮廓,也就是说,该边框的尺寸是刚好能够包裹住虚拟实物外轮廓的最小尺寸。边框可以帮助我们提前得知最终印刷产品的尺寸。
当然,也可以预先根据场地情况,以及三维物体的投影可能占用的场地的尺寸,在所述三维场景的水平平面上创建一个与所述三维场景的透视关系相同的具有固定尺寸的长方形边框,然后将创建好的虚拟实物移动到该边框中,调整所创建的虚拟实物的尺寸,使其在水平平面上的外轮廓线刚好碰触边框的边线。
例如,如果是立体文字,可以先创建需要的文字,然后为字体添加合适的厚度,将字体移动到三维场景中既定的位置,然后在字体下方创建一个大于其字体范围的任意大小的水平平面。或者,在字体下方创建一个刚好能包裹住上述文字的边框,将文字与水平平面(或者文字与边框)分别在三维软件中进行放大和/或渲染,形成最终的二维图像,该二维图像就像照片一样,是一个看上去有一个虚拟实物效果,但实际上是一个普通平面的图像。该二维图像中的虚拟实物与实际三维物体的规格和要求相统一。参见图5,是三维文字ABC以及边框的制作过程示意图;参见图6,是领奖台以及边框制作过程示意图。
在制作虚拟实物时,也可以先创建平面素材,然后在三维空间创建一个虚拟的三维物体以承载平面素材,虚拟的三维物体的形状主要根据平面素材需要表现的内容而定,如平面素材的内容是一个较长的文字,则可以使用一个较长 的虚拟实物承载文字;如果平面素材的内容是一个接近圆形的物体,就可以先创建一个圆形承载平面素材,然后给该圆形添加厚度,并选中需要添加平面素材的面,将平面素材添加到圆形物体上面。然后在创建好的虚拟实物下面创建一个大于该三维物体范围的水平平面或上述的边框,将虚拟实物与水平平面(或虚拟实物和边框)进行放大和渲染,形成最终的二维图像,使其明亮清晰,符合尺寸和分辨率的要求。
S103、模拟从所述预定视点处对所述虚拟实物进行投影;
在三维场景中创建了相同透视关系的虚拟实物并进行渲染后,形成最终的二维图像,然后,就可以在三维场景中模拟在预定视点处对该二维图像中的虚拟实物进行投影。首先,将步骤S101中的三维场景中模拟场地地面的第一维与第二维形成的水平平面导入投影工具中作为投影平面,然后通过计算机软件模拟在摄像机或照相机处将虚拟实物投影到投影平面上。图7示出了文字ABC的投影过程。图8示出了领奖台的投影过程。从图中可以看出,在预定视点摄像机处,我们看到投影图就如同看到虚拟实物本身一样。
参见图9和图10,左侧摄像机为预先设定好位置的摄像机,中间为已经制作好的虚拟实物渲染完成后的二维图像最终效果,右侧为需要承载最终投影的投影物体即投影平面,最终承载投影的物体是一个三维物体,该三维物体根据实际需要可以是一个三维软件中的长方形平面,也可以是一些其他形状的三维物体,一般情况下主要使用三维软件中的长方形平面作为投影物体,但本示例中为较形象的体现出投影的特点,故使用一个三维球形及三维圆锥体作为投影的承载体。图9中的棋盘格(即虚拟实物渲染完成后的二维图像最终效果)通过摄像机位置的投影,将其投射到了右侧的三维球体(即投影平面)表面,因球体表面的弯曲而产生了图像的变形(投影平面因与虚拟实物呈一定的角度,所以也会产生同样效果的变形),此变形在其他角度看是一个不规则的变形效果,但是在预定的摄像机位置看上去即为一个与预先模拟效果一致的图像效果了。
关于投影工具,可以选择使用ZBRUSH软件进行制作,ZBRUSH是一款数字雕刻类软件,我们可以利用其中的投影功能制作投影。首先将步骤S101中创 建的三维场景中的水平平面导入到ZBRUSH中作为投影平面,然后打开该软件中的投影大师功能,将制作好的包含有虚拟实物的二维图像添加到该投影平面上,完成后再次点击该软件中的投影大师功能,将二维图像中的虚拟实物投射到投影平面上。
S104、从与所述水平平面平行的所述投影的正上方处获取所述虚拟实物的投影。
投影后,从与投影平面平行的虚拟实物的正上方处,获取虚拟实物的投影。然后便得到了可供印刷的最终图像,参见图9为文字ABC的投影的最终图像;图10是领奖台的投影的最终图像。最终需要将没有图像内容的部分裁切掉,按照保留部分的实际尺寸打印出图。
在制作模拟特定场地中的实际三维物体的虚拟实物时,由于场地的结构复杂,面积较大,而摄像机机位距离场地地面又很远,同一个三维物体放在同一场地的不同位置,即使相差1米,在摄像机机位处看到内容差别并不是很大,也就是说该虚拟实物的变形的形状区别并不明显,但最终得到的虚拟实物的投影却差别非常大,也就是说,三维场景中虚拟实物的角度和尺寸对于最终形成的透视图像的投影的影响非常大,往往在测量中很细微的偏差便会导致最终的得到的三维物体投影和实际三维物体的投影在方向、角度等方面相差甚远,这给实际的测绘和制图带来了很多的阻碍,本申请实施例通过利用在预定视点处的视频截图或照片,确定场地的三维场景,利用透视关系确定该场景中的虚拟实物的形状和投影的形状,并使用计算机进行精确的模拟,可以确保该场地的三维场景以及在此三维场景中创建的虚拟实物的投影形状的精确性。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域的技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为根据本申请,某些步骤可以采用其他顺去或同时执行;其次,本领域技术人员也应该知悉,上述方法实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于系统实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上对本申请所提供的一种基于预定场地的三维物体的投影的制作方法,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种基于预定场地的三维物体的投影制作方法,其中,所述方法包括:
    根据所述场地的固定标志模拟所述场地在预定视点下的三维场景;
    所述三维场景包括两点透视中的第一维和第二维以及垂直于所述第一维与第二维形成的水平平面的第三维;
    在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一;
    模拟从所述预定视点处对所述虚拟实物进行投影;
    从与所述水平平面平行的所述投影的正上方处获取所述虚拟实物的投影。
  2. 根据权利要求1所述的方法,其中,根据所述场地上固定的线构建所述场地在预定视点下的三维场景。
  3. 根据权利要求1所述的方法,其中,所述预定视点包括人眼所在的位置或摄像机或照相机的位置。
  4. 根据权利要求1所述的方法,其中,所述根据所述场地的固定标志模拟所述场地在预定视点下的三维场景的步骤包括,通过在预定视点下获取所述场地的画面,确定所述三维场景的主要参考线。
  5. 根据权利要求4所述的方法,其中,所述画面包括,在所述预定视点下获得的视频截图或照片。
  6. 根据权利要求1-5中任一权利要求所述的方法,其中,根据所述场地的不同位置的多个点来确定所述三维场景的透视关系。
  7. 根据权利要求6所述的方法,其中,所述多个点为至少6个点。
  8. 根据权利要求7所述的方法,其中,所述多个点为12个点。
  9. 根据权利要求6,7,8中的任一权利要求所述的方法,其中,所述根据所述场地的不同位置的多个点来确定所述三维场景的透视关系的步骤,是通过手动调整或计算机匹配软件执行的。
  10. 根据权利要求1所述的方法,其中,所述根据所述场地的固定标志模拟所述场地在预定视点下的三维场景的步骤包括:
    根据所述场地的尺寸信息创建所述场地的三维模拟场景;
    在所述预定视点下获取所述场地的画面,所述画面包括两点透视中的第一 维和第二维以及垂直于所述第一维和第二维所形成的水平平面的第三维;
    匹配所述三维模拟场景与所述画面,使所述三维模拟场景的透视关系与所述画面相一致;
    将匹配后的三维模拟场景作为所述三维场景。
  11. 根据权利要求10所述的方法,其中,所述画面包括,在所述预定视点下获得的视频截图或照片。
  12. 根据权利要求10或11所述的方法,其中,通过所述场地的不同位置的多个点来匹配所述三维模拟场景与所述画面。
  13. 根据权利要求12所述的方法,其中,所述多个点为至少6个点。
  14. 根据权利要求13所述的方法,其中,所述多个点为12个点。
  15. 根据权利要求1所述的方法,其中,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤包括:
    获取所述场地在所述预定视点下的画面,根据所述画面确定所述三维场景在所述预定视点下的两点透视点,
    确定所述虚拟实物的尺寸和该虚拟实物在所述三维场景中的预定位置;
    根据所述透视点,确定在所述预定位置处的虚拟实物的大小和形状。
  16. 根据权利要求1所述的方法,其中,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤之后,还包括:
    在所述虚拟实物下方的水平平面上创建一个与所述三维场景的透视关系相同的长方形边框,调整该边框的大小,使其边线刚好包裹住所述虚拟实物在水平平面上的外轮廓。
  17. 根据权利要求1所述的方法,其中,在所述水平平面上创建模拟所述三维物体的虚拟实物,所述虚拟实物的透视关系与所述三维场景的透视关系相统一的步骤之后,还包括:
    在所述三维场景的水平平面上创建一个与所述三维场景的透视关系相同的具有固定尺寸的长方形边框,然后将创建好的虚拟实物移动到该边框中,调整所创建的虚拟实物的尺寸,使其在水平平面上的外轮廓线刚好碰触边框的边线。
  18. 根据权利要求1所述的方法,其中,所述模拟从所述预定视点处对所述虚拟实物进行投影的步骤包括:
    获取所述三维场景中所述第一维与第二维形成的水平平面;
    模拟在所述预定视点处将所述虚拟实物投影到所述水平平面上。
  19. 根据权利要求1所述的方法,其中,所述在所述水平平面上创建模拟所述三维物体的虚拟实物的步骤包括,在所述水平平面上的预定位置处创建所述虚拟实物。
  20. 根据权利要求1所述的方法,其中,所述模拟从所述预定视点处对所述虚拟实物进行投影的步骤之前,还包括,将所述虚拟实物放大和渲染。
  21. 根据权利要求1所述的方法,其中,所述模拟三维物体的虚拟实物是将一平面物体添加到一个虚拟的三维物体上形成的。
  22. 根据权利要求21所述的方法,其中,所述虚拟的三维物体的形状根据所述平面物体的形状而设定。
  23. 根据权利要求1-22任一权利要求所述的方法,其中,所述预定场地包括建筑工地,体育场,街区。
  24. 根据权利要求1-23任一权利要求所述的方法,其中,所述三维物体包括建筑物、建筑物模型、立体文字、立体广告或立体画。
PCT/CN2014/093714 2013-12-30 2014-12-12 一种基于预定场地的三维物体的投影制作方法 WO2015101160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310738357.5 2013-12-30
CN201310738357.5A CN103686140A (zh) 2013-12-30 2013-12-30 一种基于预定场地的三维物体的投影制作方法

Publications (1)

Publication Number Publication Date
WO2015101160A1 true WO2015101160A1 (zh) 2015-07-09

Family

ID=50322234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093714 WO2015101160A1 (zh) 2013-12-30 2014-12-12 一种基于预定场地的三维物体的投影制作方法

Country Status (2)

Country Link
CN (1) CN103686140A (zh)
WO (1) WO2015101160A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686140A (zh) * 2013-12-30 2014-03-26 张瀚宇 一种基于预定场地的三维物体的投影制作方法
EP3268780A4 (en) * 2015-03-09 2018-11-14 Ventana 3D LLC Three-dimensional image source for enhanced pepper's ghost illusion
CN106067967B (zh) * 2016-06-29 2018-02-09 汇意设计有限公司 变形立体全息影像实现方法
CN106345118B (zh) * 2016-08-24 2019-07-30 网易(杭州)网络有限公司 一种渲染方法及装置
CN107527335A (zh) * 2017-09-11 2017-12-29 广东欧珀移动通信有限公司 图像处理方法和装置、电子装置和计算机可读存储介质
CN108257215A (zh) * 2017-12-06 2018-07-06 石化盈科信息技术有限责任公司 信息展板展示方法和装置
CN110866793A (zh) * 2018-08-27 2020-03-06 阿里健康信息技术有限公司 虚拟对象展示、生成和提供方法
CN111179407A (zh) * 2018-11-09 2020-05-19 上海云绅智能科技有限公司 虚拟场景的创建方法、投影方法及系统、智能设备
TWI758787B (zh) * 2020-07-16 2022-03-21 江俊昇 於單一軟體介面進行土木設計之方法
CN112269263A (zh) * 2020-11-06 2021-01-26 苏州金螳螂文化发展股份有限公司 一种展厅多屏折幕影片投射方法
CN114252063B (zh) * 2021-12-22 2023-06-23 内蒙古工业大学 一种基于几何透视法的古建筑测绘装置及其测绘方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102467756A (zh) * 2010-10-29 2012-05-23 国际商业机器公司 用于三维场景的透视方法及装置
CN102870146A (zh) * 2010-03-11 2013-01-09 株式会社吉奥技术研究所 三维地图绘制系统
CN103413354A (zh) * 2013-08-26 2013-11-27 张瀚宇 一种赛场三维立体广告的制作方法
CN103686140A (zh) * 2013-12-30 2014-03-26 张瀚宇 一种基于预定场地的三维物体的投影制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870146A (zh) * 2010-03-11 2013-01-09 株式会社吉奥技术研究所 三维地图绘制系统
CN102467756A (zh) * 2010-10-29 2012-05-23 国际商业机器公司 用于三维场景的透视方法及装置
CN103413354A (zh) * 2013-08-26 2013-11-27 张瀚宇 一种赛场三维立体广告的制作方法
CN103686140A (zh) * 2013-12-30 2014-03-26 张瀚宇 一种基于预定场地的三维物体的投影制作方法

Also Published As

Publication number Publication date
CN103686140A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015101160A1 (zh) 一种基于预定场地的三维物体的投影制作方法
CN101872492B (zh) 三维仿真城市的多角度地图实现方法
CN107705241B (zh) 一种基于瓦片地形建模和投影校正的沙盘构建方法
CN103426195B (zh) 生成裸眼观看三维虚拟动画场景的方法
CN101383055B (zh) 一种三维人脸模型的构造方法和系统
CN102163340A (zh) 计算机系统中实现三维动态几何图形数据信息标注的方法
CN108735052A (zh) 一种基于slam的增强现实自由落体实验方法
CN103971414A (zh) 一种可视化真三维图的制作方法及系统
CN110310367A (zh) 基于大场景实景三维多角度2.5d影像轻量级浏览方法
CN110489897A (zh) 一种基于bim和gis的三维施工场布vr全景沙盘制作方法
CN104463969A (zh) 一种对航空倾斜拍摄的地理照片的模型的建立方法
CN100369062C (zh) 三维图像的生成方法及其显示系统
KR20140029732A (ko) 가상 공간 시뮬레이션 방법
CN106067160B (zh) 大屏幕融合投影方法
CN116310188B (zh) 基于实例分割及建筑重构的虚拟城市生成方法及存储介质
JP5492343B1 (ja) 写真計測図化方法、及び写真計測図化装置
CN104680578A (zh) 基于bim的轴线标示方法和系统
Criminisi et al. Bringing pictorial space to life: computer techniques for the analysis of paintings
CN103763495A (zh) 一种l型垂直幕地幕3d投影显示方法
CN110610011B (zh) 具实景三维空间模型的建筑设计系统
JP6253834B1 (ja) 仮想作業表示方法、仮想作業データ作成方法、及び3次元空間けがきデータ作成方法
TWI541671B (zh) Method of outdoor design
CN109405807A (zh) 一种大场景倾斜影像三维重建的分区方法
CN103413354B (zh) 一种赛场三维立体广告的制作方法
CN111311745B (zh) 一种模型的放置方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876258

Country of ref document: EP

Kind code of ref document: A1