WO2015101071A1 - 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法 - Google Patents

用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法 Download PDF

Info

Publication number
WO2015101071A1
WO2015101071A1 PCT/CN2014/087388 CN2014087388W WO2015101071A1 WO 2015101071 A1 WO2015101071 A1 WO 2015101071A1 CN 2014087388 W CN2014087388 W CN 2014087388W WO 2015101071 A1 WO2015101071 A1 WO 2015101071A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanate
silicon
composite adsorbent
silica
preparation
Prior art date
Application number
PCT/CN2014/087388
Other languages
English (en)
French (fr)
Inventor
吴艳
韦悦周
陈梓
三村均
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2015101071A1 publication Critical patent/WO2015101071A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Definitions

  • the invention belongs to the technical field of radioactive element treatment, and particularly relates to a silicon-based titanate composite adsorbent for removing radioactive cesium and a preparation method thereof.
  • Solvent extraction uses macrocyclic supramolecular compounds such as crown ethers to selectively separate hydrazine by molecular recognition.
  • macrocyclic supramolecular compounds such as crown ethers to selectively separate hydrazine by molecular recognition.
  • such compounds are expensive to synthesize and require a large amount of diluents and detergents when used, resulting in the production of a large amount of organic waste liquid, which increases the handling difficulty.
  • the ion exchange method treats hydrazine, has high efficiency, less secondary waste liquid, simple equipment and easy operation, and can be efficiently removed even for a small amount of radioactivity.
  • the ion exchanger includes an organic ion exchange resin and an inorganic ion exchanger. Compared with organic ion exchange resin, inorganic ion exchanger has obvious characteristics of large ion exchange capacity, radiation resistance and easy curing treatment.
  • a commonly used cerium-containing inorganic ion exchanger is a zeolite-based adsorbent. However, the adsorption rate of the adsorbent is slow, and the adsorption performance is greatly affected by the high acid and high salt environment, which increases the amount of secondary waste generated.
  • the inorganic ion exchangers of citrate and titanate have good adsorption effect on ruthenium, but since such materials are microcrystalline structures and have poor mechanical properties, they are not suitable for industrial-scale high-flow column operation. (Gao Xiaolei, Guo Xun, Zhang Huifang, Li Quan, Ye Xiushen, Wu Zhijian.Research progress in separation and extraction of ruthenium by adsorption method[J].China Mining,2011,20(12):103-107.).
  • an object of the present invention is to provide a silicon-based titanate composite adsorbent for removing radioactive cesium and a preparation method thereof.
  • the preparation method of the invention is simple, and the obtained composite adsorbent has the characteristics of good selectivity to bismuth, fast adsorption rate, large ion exchange capacity and high treatment efficiency.
  • the present invention provides a silicon-based titanate composite adsorbent for removing radioactive cesium, which is composed of porous silica and a supported inorganic ion exchanger; an inorganic ion exchanger is supported on the dioxide In the silicon micropores; the loading rate of the inorganic ion exchanger is 2 to 80%.
  • the inorganic ion exchanger is a titanate
  • the silica carrier is in the form of porous particles having a particle size of 30 to 600 ⁇ m, a pore size of 10 to 600 nm, and a porosity of 20 to 80%.
  • the titanate is K 2 Ti 6 O 13 , K 2 Ti 4 O 9 , K 2 Ti 2 O 5 , Na 2 Ti 6 O 13 , Na 2 Ti 4 O 9 or Na 2 Ti 2 O 5 One or several.
  • the silica carrier is in the form of porous particles having a particle diameter of 50 to 100 ⁇ m, a pore diameter of 50 nm, a porosity of 60 to 70%, and a loading ratio of the inorganic ion exchanger of 25 to 70%.
  • the invention also provides a preparation method of a silicon-based titanate composite adsorbent for removing radioactive cesium, which uses porous silica as a carrier to support the removal of barium titanate to oxidized by a sol-gel method.
  • a composite adsorbent is prepared. Specific steps are as follows:
  • the composite adsorbent is prepared by sintering at a high temperature of 1100 ° C; the weight ratio of silica to tetrabutyl titanate is 1: (0.5-50).
  • the molar ratio of the organic sodium salt or the organic potassium salt to the tetrabutyl titanate is 1: (1 to 10).
  • the molar ratio of the organic sodium salt or the organic potassium salt to the tetrabutyl titanate is 1: (1 to 3); the weight ratio of silica to tetrabutyl titanate is 1: (1.7 to 5.1).
  • the organic sodium salt is sodium acetate and potassium nitrate; the organic potassium salt is potassium acetate and sodium nitrate.
  • the diluent is selected from any one of ethylene glycol methyl ether, acetic acid or alcohol.
  • the silicon-based titanate-based composite adsorbent provided by the invention has a small particle diameter and a large pore diameter, so that the distance of ion exchange diffusion is greatly reduced, the adsorption speed is fast, and the treatment efficiency is high;
  • porous silica as a carrier makes the composite adsorbent have high mechanical strength and is suitable for use in an industrial scale process
  • silica is porous spherical particles, an average particle diameter of 50 ⁇ m, a pore diameter of 50 nm, a porosity of 60 to 70%, manufactured by Nippon Kogaku Co., Ltd.
  • 0.05 mol of potassium acetate is dissolved in ethylene glycol methyl ether, fully dissolved and stirred for 3 hours.
  • the surface of silica is washed with distilled water.
  • the pre-formed powder is sintered at a temperature of 1100 ° C in a muffle furnace. Crystallization in the nanopores of silica gives a composite adsorbent and is stored at room temperature.
  • the silicon-based titanate composite adsorbent obtained in the present example has a pore diameter of 10 to 25 nm.
  • the synthesized titanate is K 2 Ti 6 O 13 and its loading ratio is 50 to 70%.
  • silica is porous spherical particles, an average particle diameter of 50 ⁇ m, a pore diameter of 50 nm, a porosity of 60 to 70%, manufactured by Nippon Kogaku Co., Ltd.
  • 0.05 mol of sodium acetate is dissolved in alcohol, fully dissolved and stirred for 4 hours.
  • the surface of the silica is washed with ethanol.
  • the pre-formed powder is sintered in a muffle furnace at 800 ° C.
  • the titanate is in silica. Crystallization in the nanopore to obtain a composite adsorbent and storage at room temperature.
  • the silicon-based titanate composite adsorbent obtained in the present example has a pore diameter of 10 to 30 nm.
  • the synthesized titanate is Na 2 Ti 4 O 9 and its loading ratio is 40 to 60%.
  • silica is porous spherical particles, an average particle diameter of 100 ⁇ m, a pore diameter of 50 nm, a porosity of 60 to 70%, manufactured by Nippon Kogaku Co., Ltd.
  • 0.05 mol of potassium acetate is dissolved in acetic acid, fully dissolved and stirred for 4 hours. After evaporation and drying, the surface of the silica is washed with distilled water or ethanol.
  • the pre-formed powder is sintered at 400 ° C in a muffle furnace, and the titanate is oxidized. Silicon nano Crystallization in the channels gives a composite adsorbent and is stored at room temperature.
  • the silicon-based titanate composite adsorbent obtained in the present example has a pore diameter of 15 to 35 nm.
  • the synthesized titanate is K 2 Ti 2 O 5 and its loading ratio is 25 to 30%.
  • Example 1 0.1 g of the composite adsorbent prepared in Example 1 and 5 ml of a solution having a cerium concentration of 20 ppm were thoroughly mixed, placed in a constant temperature oscillator, and shaken for 2 min, 5 min, 10 min, 20 min, 30 min, 40 min, 60 min, respectively, and then solid-liquid separation. The concentration of the remaining ruthenium was measured by ICP, and the adsorption rate of ruthenium at different times was calculated.
  • Fig. 1 It can be seen from Fig. 1 that the adsorption rate of the composite adsorbent to the ruthenium is very fast, the adsorption kinetics is very good, and the equilibrium can be reached within 2 min, and the adsorption efficiency can reach 100%. It can be seen that the adsorbent is expected to be applied to the treatment process of radioactive waste water, improve the treatment efficiency, and reduce secondary waste.
  • Example 1 0.1 g of the sample prepared in Example 1 was thoroughly mixed with 5 ml of a solution containing different concentrations of strontium, barium, calcium and magnesium ions at a concentration of 20 ppm, and placed in a constant temperature oscillator to achieve adsorption equilibrium, solid-liquid separation, using ICP and atom
  • the absorbance photometer measures the concentrations of strontium, barium, calcium and magnesium ions in the remaining solution.
  • Antimony, calcium and magnesium are used to simulate the coexisting ions in the nuclear accident wastewater of seawater, so as to investigate the adsorption selectivity of the composite adsorbent to rhodium.
  • reaction equation is as follows: M 2+ + K 2 Ti 6 O 13 MTi 6 O 13 +2K + , M is a metal ion. It can be seen that the composite adsorbent has a better preferential adsorption capacity for hydrazine and is expected to achieve the removal of hydrazine in the radioactive waste water.
  • 0.1 g of the sample prepared in Example 2 and 5 ml of a solution having a concentration of 20 ppm of cerium were thoroughly mixed, placed in a constant temperature oscillator, and shaken for 5 min, 10 min, 20 min, 30 min, 40 min, 60 min, respectively, and then solid-liquid separation, and the remaining was measured by ICP.
  • the concentration of ruthenium is calculated at different times for the adsorption efficiency of ruthenium.
  • the titanate composite adsorbent can have superior adsorption and selection performance under low acidity, and has very superior adsorption kinetic performance, and can play a great advantage in the treatment of radioactive wastewater in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法,该吸附剂以多孔性的颗粒状二氧化硅为载体,钛酸盐负载于所述二氧化硅微孔道里,二氧化硅载体粒径为30-600μm,孔径为10-600 nm,孔隙率为20-80%,钛酸盐的负载率为2-80%。上述吸附剂的制备方法是将二氧化硅、有机钠盐或有机钾盐和钛酸四丁酯溶于稀释剂中,经搅拌、蒸发去除稀释剂后,用蒸馏水或乙醇清洗二氧化硅表面,高温煅烧制得复合吸附剂。

Description

用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法 技术领域
本发明属于放射性元素处理技术领域,具体涉及一种去除放射性锶用硅基钛酸盐复合吸附剂及其制备方法。
背景技术
中国的核电事业正处于一个高速发展的时期,在享受核电给社会经济进步带来巨大贡献的同时,能够有效处理其产生的放射性废水是迫切需要解决的问题。90Sr是存在于放射性废水中的一种高释热核素,其半衰期为28.6年,放射强度大,是放射性废水中主要放射性和释热的来源之一。在放射性废液最终处置之前,必须针对性地将其去除。
对于放射性废水中90Sr的去除,主要的技术手段有溶剂萃取法和离子交换法。溶剂萃取法采用大环超分子化合物如冠醚类,通过分子识别作用选择性的分离锶。然而,此类化合物合成成本高,使用时需要大量的稀释剂和洗涤剂,导致大量有机废液的产生,增大处理难度。
离子交换方法处理锶,效率高,二次废液少,设备简单且便于操作,即使对于微量的放射性,也能够高效的去除。离子交换剂包括有机离子交换树脂和无机离子交换剂。与有机离子交换树脂相比较无机离子交换剂,具有明显的离子交换容量大,耐辐照,易于固化处理等特点。常用除锶无机离子交换剂是沸石类吸附剂。然而,该类吸附剂的吸附速率慢,吸附性能受高酸高盐分环境的影响大,会增大二次废物的产生量。此外,锑酸盐、钛酸盐类的无机离子交换剂对锶的吸附效果好,但由于这类材料是微晶状结构,机械性能较差,不适合应用于工业规模的高流速柱子操作。(高晓雷,郭探,张慧芳,李权,叶秀深,吴志坚.吸附法分离提取锶的研究进展[J].中国矿业,2011,20(12):103-107.)。
发明内容
针对上述的技术难点,本发明的目的是提供一种去除放射性锶用硅基钛酸盐复合吸附剂及其制备方法。本发明制备方法简单,得到的复合吸附剂具有对锶的选择性好,吸附速率快,离子交换容量大和处理效率高等特点。
本发明采用的技术方案具体描述如下。
本发明提供一种用于去除放射性锶的硅基钛酸盐复合吸附剂,该复合吸附剂由多孔二氧化硅和负载的无机离子交换剂复合而成;无机离子交换剂负载于所述二氧化硅微孔道里;无机离子交换剂的负载率为2~80%。本发明中,无机离子交换剂为钛酸盐,所述的二氧化硅载体为多孔性颗粒状,粒径大小为30~600μm,孔径大小为10~600nm,孔隙率为20~80%。
所述的钛酸盐为K2Ti6O13,K2Ti4O9,K2Ti2O5,Na2Ti6O13,Na2Ti4O9或Na2Ti2O5中的一种或几种。
所述的二氧化硅载体为多孔性颗粒状,粒径为50~100μm,孔径为50nm,孔隙率为60~70%;所述的无机离子交换剂的负载率为25~70%。
本发明还提供一种用于去除放射性锶的硅基钛酸盐类复合吸附剂的制备方法,其以多孔二氧化硅为载体,通过溶胶凝胶法将去除锶的钛酸盐负载到二氧化硅微孔道里,制得复合吸附剂。具体步骤如下:
将二氧化硅载体、有机钠盐或有机钾盐和钛酸四丁酯溶解于稀释剂中,搅拌3~4小时,蒸发去除稀释剂后,用蒸馏水或乙醇清洗二氧化硅表面,在400~1100℃高温下烧结制得复合吸附剂;二氧化硅与钛酸四丁酯的重量比为1:(0.5~50)。
所述的有机钠盐或有机钾盐和钛酸四丁酯的摩尔比为1:(1~10)。
所述的有机钠盐或有机钾盐和钛酸四丁酯的摩尔比为1:(1~3);二氧化硅与钛酸四丁酯的重量比为1:(1.7~5.1)。
所述的有机钠盐为醋酸钠和硝酸钾;所述的有机钾盐为醋酸钾和硝酸钠。
所述的稀释剂选自乙二醇甲醚、乙酸或酒精中任一种。
本发明的有益效果在于:
(1)本发明提供的硅基钛酸盐类复合吸附剂,粒径小孔径大,使得离子交换扩散的距离大大缩小,吸附速度快,处理效率高;
(2)使用多孔性的二氧化硅作为载体,使得复合吸附剂的机械强度高,适合使用工业规模的处理流程;
(3)合成方法简单,步骤少,可在通用设备中完成,具有良好的经济效益。
附图说明
图1在不同时间下K2Ti6O13硅基钛酸盐复合吸附剂对锶的吸附。
图2在不同pH下K2Ti6O13硅基钛酸盐复合吸附剂对锶、铯、钙和镁的吸附。
图3在不同时间下Na2Ti4O9硅基钛酸盐复合吸附剂对锶的吸附。
图4在不同pH下Na2Ti4O9硅基钛酸盐复合吸附剂对锶、铯、钙和镁的吸附。
具体的实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
将10g二氧化硅(二氧化硅为多孔性球状颗粒,平均粒径为50μm,孔径为50nm,孔隙率为60~70%,日本理工科学株式会社生产)、0.05mol的醋酸钾、0.15mol的钛酸四丁酯溶于乙二醇甲醚中,充分溶解搅拌3小时,蒸发干燥后,用蒸馏水清洗二氧化硅表面,预制的粉末在马弗炉中1100℃温度下烧结,钛酸盐在二氧化硅的纳米孔道中结晶,得到复合吸附剂,并在室温保存。
本实例得到的硅基钛酸盐复合吸附剂,孔径为10~25nm。合成的钛酸盐为K2Ti6O13,其负载率为50~70%。
实施例2
将10g二氧化硅(二氧化硅为多孔性球状颗粒,平均粒径为50μm,孔径为50nm,孔隙率为60~70%,日本理工科学株式会社生产)、0.05mol的醋酸钠、0.1mol的钛酸四丁酯溶于酒精中,充分溶解搅拌4小时,蒸发干燥后,用乙醇清洗二氧化硅表面,预制的粉末在马弗炉中800℃温度下烧结,钛酸盐在二氧化硅的纳米孔道中结晶,得到复合吸附剂,并在室温保存。
本实例得到的硅基钛酸盐复合吸附剂,孔径为10~30nm。合成的钛酸盐为Na2Ti4O9,其负载率为40~60%。
实施例3
将10g二氧化硅(二氧化硅为多孔性球状颗粒,平均粒径为100μm,孔径为50nm,孔隙率为60~70%,日本理工科学株式会社生产)、0.05mol的醋酸钾、0.05mol的钛酸四丁酯溶于乙酸中,充分溶解搅拌4小时,蒸发干燥后,用蒸馏水或乙醇清洗二氧化硅表面,预制的粉末在马弗炉中400℃温度下烧结,钛酸盐在二氧化硅的纳米 孔道中结晶,得到复合吸附剂,并在室温保存。
本实例得到的硅基钛酸盐复合吸附剂,孔径为15~35nm。合成的钛酸盐为K2Ti2O5,其负载率为25~30%。
应用实例1
将实例1中制备的复合吸附剂0.1g与5ml锶浓度为20ppm的溶液充分混合,置于恒温振荡器中,分别振荡2min,5min,10min,20min,30min,40min,60min后,固液分离,用ICP测试剩余锶的浓度,计算在不同时间下,锶的吸附率。
由图1可知,复合吸附剂对锶的吸附速率非常快,吸附动力学非常好,基本上在2min之内就可以达到平衡,同时吸附效率可达到100%。由此可见,此吸附剂有望应用于放射性废水的处理工艺,提高处理效率,减少二次废物。
应用实例2
将实例1中制备的样品0.1g与5ml含锶、铯、钙、镁离子浓度为20ppm不同pH的溶液充分混合,置于恒温振荡器中,达到吸附平衡后,固液分离,用ICP和原子吸收光度计测试剩余溶液中的锶、铯、钙和镁离子浓度。铯、钙、镁是为了模拟海水系的核事故废水中的共存离子,从而考察此复合吸附剂对锶的吸附选择性。
由图2可知,复合吸附剂在不同pH的锶、铯、钙、镁离子混合体系中,随着pH的升高,复合吸附剂对各离子的吸附性能增强。在pH 5~6的范围下,对各离子吸附性能的顺序为锶>>铯,钙>镁,复合吸附剂对锶的吸附远远大于其他离子,对锶的吸附选择性好,且吸附效率几乎达到100%。上述反应是通过离子交换反应进行,反应方程式如下:M2++K2Ti6O13
Figure PCTCN2014087388-appb-000001
MTi6O13+2K+,M为金属离子。由此可见,此复合吸附剂对锶有着较好的优先吸附能力,有望实现放射性废水中的锶的去除。
应用实例3
将实例2中制备的样品0.1g与5ml锶浓度为20ppm的溶液充分混合,置于恒温振荡器中,分别振荡5min,10min,20min,30min,40min,60min后,固液分离,用ICP测试剩余锶的浓度,计算在不同时间下,锶的吸附效率。
由图3可知,实例2中制备的样品对锶的吸附速率同样也是非常快,吸附动力学非常好,基本上在5min之内就可以达到平衡。
应用实例4
将实例2中制备的样品0.1g与5ml含锶、铯、钙、镁离子浓度为20ppm不同pH 的溶液充分混合,置于恒温振荡器中,达到吸附平衡后,固液分离,用ICP和原子吸收光度计测试剩余溶液中的锶、铯、钙和镁离子浓度。考察了不同形态的钛酸盐在模拟海水系的核事故中,吸附剂对锶的吸附性能。实验结果如图3所示。
图3可知,复合吸附剂在不同pH的锶、铯、钙、镁离子混合体系中,随着pH的升高,复合吸附剂对各离子的吸附性能增强。在pH 5~6的范围下,同样的,对各离子吸附效率的顺序为锶>铯,钙>镁,此吸附剂同样也表现出对锶较好的选择性。
综上所述,钛酸盐复合吸附剂在低酸度下能够比较优异的吸附和选择性能,非常优越的吸附动力学性能,未来可以在处理放射性的废水中发挥极大的优势。

Claims (8)

  1. 一种用于去除放射性锶的硅基钛酸盐复合吸附剂,其特征在于:其以多孔性的颗粒状二氧化硅为载体,钛酸盐负载于所述二氧化硅微孔道里;其中:所述二氧化硅载体粒径为30~600μm,孔径为10~600nm,孔隙率为20~80%;钛酸盐的负载率为2~80%。
  2. 根据权利要求1所述的硅基钛酸盐复合吸附剂,其特征在于:所述钛酸盐为K2Ti6O13,K2Ti4O9,K2Ti2O5,Na2Ti6O13,Na2Ti4O9或Na2Ti2O5中的一种或者几种。
  3. 根据权利要求1所述的硅基钛酸盐复合吸附剂,其特征在于:所述二氧化硅载体粒径为50~100μm,孔径为50nm,孔隙率为60~70%。
  4. 根据权利要求1所述的硅基钛酸盐复合吸附剂,其特征在于:所述钛酸盐的负载率为25~70%。
  5. 一种用于去除放射性锶的硅基钛酸盐复合吸附剂的制备方法,其特征在于,具体步骤如下:将二氧化硅载体、有机钠盐或有机钾盐和钛酸四丁酯溶解于稀释剂中,搅拌3~4小时,蒸发去除稀释剂后,用蒸馏水或乙醇清洗二氧化硅表面,在400~1100℃高温烧结制得复合吸附剂;其中有机钠盐或有机钾盐和钛酸四丁酯的摩尔比为1:(1~10),二氧化硅与钛酸四丁酯的重量比为1:(0.5~50)。
  6. 根据权利要求5所述的制备方法,其特征在于:所述有机钠盐或有机钾盐和钛酸四丁酯的摩尔比为1:(1~3),二氧化硅与钛酸四丁酯的重量比为1:(1.7~5.1)。
  7. 根据权利要求5所述的制备方法,其特征在于:所述的有机钠盐为醋酸钠和硝酸钾;所述的有机钾盐为醋酸钾和硝酸钠。
  8. 根据权利要求5所述的制备方法,其特征在于:所述的稀释剂为乙二醇甲醚、乙酸或酒精中任一种。
PCT/CN2014/087388 2014-01-03 2014-09-25 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法 WO2015101071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410002637.4A CN103752259B (zh) 2014-01-03 2014-01-03 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法
CN201410002637.4 2014-01-03

Publications (1)

Publication Number Publication Date
WO2015101071A1 true WO2015101071A1 (zh) 2015-07-09

Family

ID=50519666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087388 WO2015101071A1 (zh) 2014-01-03 2014-09-25 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法

Country Status (2)

Country Link
CN (1) CN103752259B (zh)
WO (1) WO2015101071A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752259B (zh) * 2014-01-03 2016-08-17 上海交通大学 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法
CN105139910A (zh) * 2015-09-07 2015-12-09 南京理工大学 多孔有序二氧化硅泡沫材料在处理废水中放射性核素铀中的应用
CN110193350A (zh) * 2019-06-27 2019-09-03 中国科学院青海盐湖研究所 负载钛酸盐的生物质碳气凝胶吸附剂及其制备方法与应用
CN110193349A (zh) * 2019-06-27 2019-09-03 中国科学院青海盐湖研究所 负载钛硅酸盐的生物质碳气凝胶吸附剂及其制法与应用
CN113000013B (zh) * 2021-03-01 2022-04-12 厦门大学 一种锰硅酸钠吸附剂处理放射性锶的方法
CN114870811B (zh) * 2022-06-24 2023-07-14 吕梁学院 一种对空气中放射性核污染物的吸附沉降材料
CN115155540B (zh) * 2022-07-11 2023-06-16 沈阳理工大学 树脂吸附模板-气热催化制备多孔纳米钛酸盐微球方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011446A1 (en) * 1998-11-24 2002-01-31 Minnesota Mining And Manufacturing Company Process for modifying the metal ion sorption capacity of a medium and modified medium
CN102247796A (zh) * 2011-06-28 2011-11-23 中国原子能科学研究院 无机锶选择性吸附剂的制备方法
JP2013076628A (ja) * 2011-09-30 2013-04-25 Kurita Water Ind Ltd 放射性物質吸着材
JP2013244481A (ja) * 2012-05-29 2013-12-09 Kurita Water Ind Ltd ストロンチウム含有排水の処理方法、処理装置及びストロンチウム吸着剤スラリー
CN103752259A (zh) * 2014-01-03 2014-04-30 上海交通大学 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480328A (zh) * 2013-09-05 2014-01-01 上海交通大学 用于分离放射性铯元素的复合吸附剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011446A1 (en) * 1998-11-24 2002-01-31 Minnesota Mining And Manufacturing Company Process for modifying the metal ion sorption capacity of a medium and modified medium
CN102247796A (zh) * 2011-06-28 2011-11-23 中国原子能科学研究院 无机锶选择性吸附剂的制备方法
JP2013076628A (ja) * 2011-09-30 2013-04-25 Kurita Water Ind Ltd 放射性物質吸着材
JP2013244481A (ja) * 2012-05-29 2013-12-09 Kurita Water Ind Ltd ストロンチウム含有排水の処理方法、処理装置及びストロンチウム吸着剤スラリー
CN103752259A (zh) * 2014-01-03 2014-04-30 上海交通大学 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法

Also Published As

Publication number Publication date
CN103752259A (zh) 2014-04-30
CN103752259B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015101071A1 (zh) 用于去除放射性锶的硅基钛酸盐复合吸附剂及其制备方法
CN108160048B (zh) 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
Al-Mamoori et al. Development of bismuth-mordenite adsorbents for iodine capture from off-gas streams
Huang et al. Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets
Mao et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution
De Decker et al. Carbamoylmethylphosphine oxide-functionalized MIL-101 (Cr) as highly selective uranium adsorbent
CN109589933B (zh) 一种磁性纳米复合材料UiO-66/Fe3O4/GO的制备方法及应用
Zhang et al. Enhanced removal of iodide ions by nano Cu2O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption
CN113877517B (zh) 一种用于去除放射性碘的硫化铋气凝胶吸附剂及其制备方法和应用
WO2019134437A1 (zh) 颗粒态Sb2O5吸附剂及其制备方法以及去除放射性90Sr和100mAg的应用
CN105854744A (zh) 一种磁性纳米颗粒/SiO2气凝胶及其制备方法以及处理高放废液的方法
Zhou et al. Covalent organic framework membrane with turing structures for deacidification of highly acidic solutions
Zhang et al. Selective removal of U (VI) from low concentration wastewater by functionalized HKUST-1@ H 3 PW 12 O 40
JP2018524149A (ja) 顆粒状のセシウム除去用の無機イオン吸着剤の製造方法及び製品、並びに応用
JP5967748B2 (ja) セシウムイオン吸着性化合物を担持したメソポーラスシリカおよびそれを用いたセシウムコレクター、セシウム回収方法、セシウムイオン収集剤、セシウムイオン濃度センサおよびセシウム除去フィルター
Lv et al. Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate
Liu et al. Efficient capture of radioactive iodine by ZIF-8 derived porous carbon
Wan et al. Silver-doped MIL-101 (Cr) for rapid and effective capture of iodide in water environment: exploration on adsorption mechanism
CN108671901A (zh) 一种水体除铯用表面改性膜的制备方法及应用
CA3007617C (en) Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
Zhang et al. Preparation of calcium titanate based on the cotton template method and its simultaneous removal performance to heavy metals and organic pollutants in water
CN103877926A (zh) 含有Sb2O5的吸附剂的制备方法及其产品与应用
CN105921113A (zh) 一种用于脱除水中邻苯二甲酸的吸附剂及其制备方法
Tang et al. Adsorption Characteristics and Charge Transfer Kinetics of Fluoride in Water by Different Adsorbents
Wang et al. Cu-BTC derived CuO and CuO/Cu2O composite: an efficient adsorption material to iodide ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSSOF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 05-12-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14876363

Country of ref document: EP

Kind code of ref document: A1