WO2015100899A1 - 基于无线充电奇数轴飞行器的智能巡航机器人 - Google Patents

基于无线充电奇数轴飞行器的智能巡航机器人 Download PDF

Info

Publication number
WO2015100899A1
WO2015100899A1 PCT/CN2014/076752 CN2014076752W WO2015100899A1 WO 2015100899 A1 WO2015100899 A1 WO 2015100899A1 CN 2014076752 W CN2014076752 W CN 2014076752W WO 2015100899 A1 WO2015100899 A1 WO 2015100899A1
Authority
WO
WIPO (PCT)
Prior art keywords
odd
control module
module
axis aircraft
aircraft
Prior art date
Application number
PCT/CN2014/076752
Other languages
English (en)
French (fr)
Inventor
胡斌
王飞跃
熊刚
鲁沛
蒋剑
李逸岳
田秋常
Original Assignee
中国科学院自动化研究所
东莞中国科学院云计算产业技术创新与育成中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所, 东莞中国科学院云计算产业技术创新与育成中心 filed Critical 中国科学院自动化研究所
Publication of WO2015100899A1 publication Critical patent/WO2015100899A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • B64U50/35In-flight charging by wireless transmission, e.g. by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to the field of intelligent monitoring, hazardous area detection, and military applications, and more particularly to an intelligent cruise robot based on a wireless charging odd-axis aircraft.
  • Coaxial twin-rotor propellers use two blades, positive and negative, on the same shaft, the opposite directions of the two blades, and the resulting torque cancels each other out. It has the advantages of high work efficiency, better hovering effect and large efficiency utilization, but it is more complicated in the change of control direction.
  • a multi-axle aircraft is a common aircraft capable of smoothly controlling flight, which uses a inertial navigation technique for stable control flight and changes the flight direction by changing the rotational speed of the blades. Due to the compact structure of the multi-axis aircraft, strong resistance to harsh environments, and its flexible movement, it is relatively simple to change its flight direction. It is suitable for use in narrow and environmentally hazardous areas, but charging is troublesome and the duration of navigation is insufficient. It has always been a problem.
  • China has a wide geographical area and is a disaster-prone country with droughts, floods, typhoons, storm surges, frost damage, locust plagues, tsunamis, earthquakes, volcanoes, landslides, mudslides, forest fires, agricultural and forestry pests and diseases, etc. Some areas tend to be dangerous areas, making it difficult for people to conduct investigations or risk detection. In addition, unknown zones and military investigations are also important topics in the field of science and technology.
  • the present invention provides an intelligent cruise robot based on a wireless charging odd-axis aircraft, which utilizes wireless charging technology to solve the trouble of multi-axis aircraft charging and continuous navigation. Question. After installing the video system on the odd-axis aircraft, it can replace the people for monitoring patrol and monitoring, reduce the labor intensity of people; replace the person into the dangerous zone, detect the unknown zone, improve safety; can also be used for military investigation and application .
  • the intelligent cruise robot based on the wireless charging odd-axis aircraft proposed by the invention comprises: an odd-axis aircraft and a back-end control module as a main machine, wherein:
  • the odd-axis aircraft includes a lift providing module, a main control module, a pan/tilt image acquisition module, a wireless charging module, and a back-end flight mode control module, wherein:
  • the lift providing module is mounted on the odd-numbered-axis aircraft, and communicates with the rear-end flight mode control module, for providing the odd-axis aircraft according to flight mode control commands of the rear-end flight mode control module Lift
  • the main control module is mounted on the odd-numbered aircraft and in the middle of the aircraft boom for collecting environment and position data and feeding back to the back-end control module;
  • the back end flight mode control module is coupled to the lift providing module for controlling an airplane mode of an odd axis aircraft;
  • the pan/tilt image acquisition module is installed at a front lower side of the odd-numbered-axis aircraft, and is connected to the back-end control module, and is configured to collect video data according to a control instruction of the back-end control module, and collect the captured video. Data is sent to the backend control module;
  • the wireless charging module is configured to wirelessly charge each module of the odd-numbered-axis aircraft according to a control instruction of the back-end flight mode control module for continuous navigation power;
  • the backend control module is configured to communicate with odd axis aircraft and process or analyze the received data.
  • FIG. 1 is a front plan view of a smart cruise robot based on a wireless charging odd-axis aircraft, taking a five-axis aircraft as an example;
  • FIG. 2 is a schematic plan view of a smart cruise robot based on a wireless charging odd-axis aircraft, taking a five-axis aircraft as an example;
  • FIG. 3 is a rear plan view of a smart cruise robot based on a wireless charging odd-axis aircraft, taking a five-axis aircraft as an example;
  • FIG. 4 is a schematic structural view of a main control module of the present invention.
  • FIG. 5 is a schematic structural view of a wireless charging platform of the present invention.
  • FIG. 6 is a schematic diagram of a control flow of an intelligent cruise robot based on a wireless charging odd-axis aircraft
  • Figure 8 is a schematic plan view of a smart cruise robot based on a wireless charging seven-axis aircraft.
  • a smart cruise robot based on a wireless charging five-axis aircraft will be taken as an example, and a smart cruise robot based on a wireless charging odd-axis aircraft will be described in detail.
  • the present invention is merely an example of selecting a five-axis aircraft, but is not limited to a five-axis aircraft.
  • the odd-axis aircraft such as seven-axis and nine-axis are also within the protection scope of the present invention, and the illustrations in the drawings are not limited.
  • the protective orientation of the present invention is merely for the purpose of illustrating the invention.
  • FIG. 1 is a front plan view of a smart cruise robot based on a wireless charging odd-axis aircraft
  • FIG. 2 is a schematic plan view of a smart cruise robot based on a wireless charging odd-axis aircraft
  • FIG. 3 is a smart cruise robot based on a wireless charging odd-axis aircraft.
  • the rear view of the rear view is taken as an example.
  • the five-axis aircraft is taken as an example.
  • the intelligent cruise robot based on the wireless charging odd-axis aircraft adopts an odd-axis aircraft as a main machine.
  • the odd-numbered axis aircraft is the front end portion of the robot, and the rear end portion is a control module, and the back-end control module is, for example, software running on a PC or a smart phone, the odd-numbered axis
  • the aircraft includes a lift providing module, a main control module, a pan/tilt image acquisition module, a wireless charging module, and a back end flight mode control module, wherein:
  • the lift providing module is mounted on an odd-numbered-axis aircraft located at a front end of the robot, and communicates with the back-end flight mode control module using a wireless communication technology for the flight mode control command according to the back-end flight mode control module
  • the odd-numbered-axis aircraft provides lift;
  • the lift-providing module further includes a main shaft and an auxiliary shaft, wherein:
  • the main shaft is on a shaft where the center of gravity of the odd-numbered aircraft is located, which is two bearings nested inside and outside, and the inner bearing is an extension shaft of the first brushless motor 6 bearing with a large power, and the larger the size A positive paddle 1 is connected, the outer bearing is connected to the larger first counter-blade 2, and is connected to the first brushless motor 6 via a transmission gear, the first brushless motor 6 being located on the odd-numbered aircraft boom Center, the first positive blade 1 and the first reverse blade 2 are vertically mounted on the bearing of the first brushless motor 6 from top to bottom, wherein the inner bearing and the outer bearing rotate at opposite speeds;
  • the auxiliary shaft includes four second brushless motors 7 having a smaller power, two pairs of smaller second blades 3 and 4, and four arms, wherein the four arms are radially placed in a center of gravity, They are in the same plane and form a Cartesian two-dimensional coordinate axis; four second brushless motors 7 are respectively installed at the ends of the four booms; four blades are respectively mounted on the four second brushless motors 7 At a glance, the two pairs of second blades are divided into a pair of positive blades 3 and a pair of opposing blades 4, the blades of the same coordinate axis are the same and the corresponding second brushless motors have the same direction of rotation.
  • the lift providing module further includes a plurality of prototype protection frames for protecting the blades, and a plurality of hollow mounts for supporting the odd-numbered aircraft.
  • the first brushless motor 6 and the second brushless motor 7 are connected with a brushless ESC for controlling the steering and rotating speed of the first brushless motor 6 and the second brushless motor 7.
  • the brushless ESC is mounted motorized near the motor, under the boom, or under the main control module, and is connected to the ARM Cortex series main control chip 10.
  • FIG. 4 is a schematic diagram of a main control module of an intelligent cruise robot based on a wireless charging odd-axis aircraft according to the present invention.
  • the main control module 5 is mounted on the odd-axis aircraft and is in an aircraft. In the middle of the boom, it is used to collect environmental and position data and feed back to the backend control module.
  • the main control module 5 includes an ARM Cortex The series main control chip 10, the micro range finder 11, the 2.4G wireless communication chip 12, the positioning navigation chip 13, the three-in-one gyro chip 14, the electronic compass 15, wherein:
  • the ARM Cortex series main control chip 10, the three-in-one gyroscope chip 14 and the electronic compass 15 constitute an attitude control module, which are horizontally connected to the circuit board of the main control module 5, wherein the three-in-one gyroscope chip The thermometer sensor, the three-axis acceleration sensor and the three-axis gyro sensor are integrated in the 14th.
  • the ARM Cortex series main control chip 10 reads the sensor values of the three-in-one gyroscope chip 14 and the electronic compass 15, and calculates the flight attitude of the odd-axis aircraft. And feeding back the calculated flight attitude information to the backend control module.
  • the ARM Cortex series main control chip 10, the micro range finder 11 and the positioning navigation chip 13 constitute a position control module, wherein the positioning navigation chip 13 is a GPS navigation chip or a Beidou navigation chip, which is connected to the circuit board of the main control module.
  • the feedback is made on the spatial position of the odd-numbered-axis aircraft;
  • the micro-range finder 11 is an infrared range finder, an ultrasonic range finder or a laser range finder installed on the front, rear, left and right, and upper and lower six of the odd-axis aircraft.
  • the orientation is used to perform ranging after the odd-axis aircraft is flying smoothly, and the obtained values are fed back to the ARM Cortex series main control chip 10 to guide the odd-axis aircraft to avoid obstacles and perform 3D modeling.
  • the rear end flight mode control module is coupled to the lift providing module for controlling the flight mode of the odd axis aircraft.
  • a back-end flight mode control module supports a remote flight mode and an autonomous flight mode.
  • the backend control module sends a control command to artificially control the odd-axis aircraft flight.
  • the odd-axis aircraft itself integrates an autonomous flight algorithm and autonomously flies.
  • the pan/tilt image acquisition module is installed in front of the odd-numbered aircraft, and is connected to the back-end control module, configured to collect video data according to the control instruction of the back-end control module, and send the collected video data. Giving the backend control module;
  • the pan/tilt image acquisition module comprises a front end video information collection system 8, a wireless communication system and a backend intelligent video system, wherein:
  • the front end video information collecting system 8 is installed on the front lower side of the five-axis aircraft for Video data, including a steering gear and a camera connected to the steering gear, the camera can be miniature
  • CCD or CMOS camera can rotate 180° angle of view, and the captured video information can reach 720P original video information;
  • the wireless communication system is installed on the main control module 5 in the middle of the five-axis aircraft, and is configured to wirelessly transmit the video data collected by the front-end video information collection system 8 to the back-end control module, in an embodiment of the present invention.
  • the wireless communication system uses the 2.4G wireless communication chip 12 for wireless communication.
  • the 2.4G wireless communication chip 12 can set the communication rate and the communication distance according to actual application requirements.
  • the back-end intelligent video system is configured to perform monitoring and intelligent analysis according to the collected video data, and the back-end intelligent video system integrates various intelligent algorithms, such as: face recognition, passenger flow detection, behavior analysis, etc.
  • the video data transmitted from the front-end video information collecting system 8 is monitored and analyzed.
  • the wireless charging module is configured to wirelessly charge each module of the odd-numbered aircraft according to a control instruction of the back-end flight mode control module for continuous navigation power; the wireless charging module includes a bottom mounted on an odd-axis aircraft.
  • An intermediate wireless charging battery 9 and a wireless charging platform 16 for charging the battery the schematic diagram of the wireless charging platform 16 is as shown in FIG. 5, the wireless rechargeable battery 9 includes a rechargeable lithium battery and a first induction coil, The wireless charging platform 16 includes a second induction coil and an external charging power source.
  • the back-end flight mode control module and the back-end control module communicate with odd-numbered-axis aircraft via wireless communication technology, send data to odd-axis aircraft or receive data from odd-axis aircraft, send flight control commands to odd-axis aircraft or to odd-axis aircraft The data passed back for intelligent analysis.
  • the working flow chart of the pan/tilt camera module is shown in FIG. 7.
  • the front-end CCD or CMOS camera collects video raw data, and sends it to the back-end control module through wireless communication technology, and the back-end control module receives the original video data, and the original Video data is encoded and decoded, intelligently monitored, intelligently analyzed, intelligently identified, and intelligent image processed.
  • the backend control module can be connected to an external storage device to store raw video information and processed video information.
  • the above intelligent cruise robot of the present invention can control the odd-axis aircraft to stably fly, so that Positioning with accurate navigation, using wireless charging technology to provide navigational power, using intelligent video systems to patrol people, accessing places that are difficult to reach, or entering dangerous areas for investigation and search, reducing human patrols and monitoring Work intensity increases the safety of detection, search and rescue in hazardous areas, and can therefore be used for patrol monitoring, detection of dangerous, unknown areas, and intelligent farming and animal husbandry monitoring and military investigation.
  • Figure 8 is a schematic plan view of a smart cruise robot based on a wireless charging seven-axis aircraft.
  • the intelligent cruise robot based on the wireless charging odd-axis aircraft is not limited to a five-axis aircraft, a five-axis aircraft, and seven.
  • Axle aircraft, nine-axis aircraft, all odd-axis aircraft are within the scope of the present invention.

Abstract

一种基于无线充电奇数轴飞行器的智能巡航机器人该机器人包括:奇数轴飞行器和后端控制模块,奇数轴飞行器包括:升力提供模块,根据后端飞行控制模式模块的飞行模式控制指令为奇数轴飞行器提供升力;主控制模块,采集环境和位置数据;后端飞行控制模式模块,对于奇数轴飞行器的飞行模式进行控制;云台摄像头模块,采集视频数据;无线充电模块为奇数轴飞行器进行无线充电;后端控制模块,对接收到的数据进行处理或分析。本发明使用导航定位和无线充电技术,通过控制奇数轴飞行器飞行,代替人巡逻、进入人难以到达的地方监控或者进入危险地带进行侦査和搜寻,减轻了人为巡逻、监控的工作强度,提高了危险地带侦査、搜寻和营救的安全性。

Description

基于无线充电奇数轴飞行器的智能巡航机器人
技术领域 本发明涉及智能监控、 危险地带侦查和军事应用领域, 特别涉及一 种基于无线充电奇数轴飞行器的智能巡航机器人。
背景技术 共轴双旋翼的螺旋桨在用同一个轴上使用正反两个桨叶, 两个桨叶 的转向相反, 产生的扭矩互相抵消。 它具有较高的工作效率, 较好的悬 停效果和较大的效能利用率等优点, 但是在控制方向的转变时较为复杂。
多轴飞行器是一种常见的能进行平稳控制飞行的飞行器, 其通过使 用惯性导航技术进行稳定控制飞行, 通过改变桨叶的转速来改变飞行方 向。 由于多轴飞行器构造紧密, 有较强的抵抗恶劣环境能力, 加上其运 动灵活, 较为简单的改变自身飞行方向, 适宜运用于狭窄和环境危险恶 劣的地带,但充电较为麻烦,持续航行时间不足一直是其所存在的问题。
视频监控行业一直是我国重要的行业之一, 传统的视频监控一般为 监控器固定不动, 缺乏灵活性, 且存在固定监控器存在监控死角, 需要 人为巡逻搭配进行监控。
我国地域较广, 是一个灾害多发的国家, 有旱灾、 洪涝、 台风、 风 暴潮、 冻害、 雹灾、 海啸、 地震、 火山、 滑坡、 泥石流、 森林火灾、 农 林病虫害等灾害, 在灾害发生之时, 一些地带往往会成为危险地带, 人 很难进行侦查或冒着危险侦查。 此外, 未知地带和军事侦查也是科技领 域的重要课题。
发明内容 在此背景之下, 本发明提供一种基于无线充电奇数轴飞行器的智能 巡航机器人, 运用无线充电技术解决多轴飞行器充电麻烦、 持续航行的 问题。 在奇数轴飞行器上装上视频系统后, 就可以代替人进行监控巡逻 和监控, 减轻人的劳动强度; 代替人进入危险地带、 未知地带侦查, 提 高安全性; 亦可将其用于军事侦查运用领域。
本发明提出的基于无线充电奇数轴飞行器的智能巡航机器人包括: 作为主体机的奇数轴飞行器和后端控制模块, 其中:
所述奇数轴飞行器包括升力提供模块、 主控制模块、 云台图像采集 模块、 无线充电模块和后端飞行模式控制模块, 其中:
所述升力提供模块安装在所述奇数轴飞行器上, 其与所述后端飞行 模式控制模块进行通讯, 用于根据所述后端飞行模式控制模块的飞行模 式控制指令为所述奇数轴飞行器提供升力;
所述主控制模块安装在所述奇数轴飞行器上, 并且处于飞行器臂架 的中间, 用于采集环境和位置数据并反馈给所述后端控制模块;
所述后端飞行模式控制模块与所述升力提供模块连接, 用于对于奇 数轴飞行器的飞行模式进行控制;
所述云台图像采集模块安装在所述奇数轴飞行器的前下方, 其与所 述后端控制模块连接, 用于根据所述后端控制模块的控制指令采集视频 数据, 并将采集到的视频数据发送给所述后端控制模块;
所述无线充电模块用于根据所述后端飞行模式控制模块的控制指 令为所述奇数轴飞行器的各模块进行无线充电, 供持续航行动力;
所述后端控制模块用于与奇数轴飞行器进行通信, 并对接收到的数 据进行处理或分析。
本发明的有益效果在于, 使用无线充电技术, 简化多轴飞行器的充 电问题和优化多轴飞行器的持续航行问题, 利用多轴飞行器的灵活、 稳 定飞行的特点, 运用于危险、 未知地带的侦查, 提高了侦查的安全性, 可运用于智能巡逻、 智能监控、 智能农牧业等新兴领域, 减轻了人为劳 动强度, 此外, 亦可将其运用于军事领域。 附图说明 图 1是基于无线充电奇数轴飞行器的智能巡航机器人的正面俯视示 意图, 图中以五轴飞行器为例;
图 2是基于无线充电奇数轴飞行器的智能巡航机器人的平视示意图, 图中以五轴飞行器为例;
图 3是基于无线充电奇数轴飞行器的智能巡航机器人的背面俯视示 意图, 图中以五轴飞行器为例;
图 4是本发明主控制模块的结构示意图;
图 5是本发明无线充电平台的结构示意图;
图 6是基于无线充电奇数轴飞行器的智能巡航机器人的控制流程示 意图;
图 7是本发明云台摄像模块的工作流程图;
图 8是基于无线充电七轴飞行器的智能巡航机器人的平视示意图。
具体实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 以基于无线充 电五轴飞行器的智能巡航机器人为例, 对于本发明基于无线充电奇数轴 飞行器的智能巡航机器人进行详细的说明。 需要说明的是, 本发明只是 选取五轴飞行器为例, 但不局限于五轴飞行器, 七轴、 九轴等奇数轴飞 行器亦在本发明的保护范围内, 附图中的图示并不是限制本发明的保护 方位, 仅仅是为了说明本发明。
图 1是本发明基于无线充电奇数轴飞行器的智能巡航机器人的正面 俯视示意图, 图 2是基于无线充电奇数轴飞行器的智能巡航机器人的平 视示意图, 图 3是基于无线充电奇数轴飞行器的智能巡航机器人的背面 俯视示意图, 图 1-3中均以五轴飞行器为例,如图 1、 图 2和图 3所示, 所述基于无线充电奇数轴飞行器的智能巡航机器人以奇数轴飞行器为 主体机, 奇数轴飞行器为机器人的前端部分, 后端部分为控制模块, 所 述后端控制模块例如为在 PC或者智能手机上运行的软件, 所述奇数轴 飞行器包括升力提供模块、 主控制模块、 云台图像采集模块、 无线充电 模块和后端飞行模式控制模块, 其中:
所述升力提供模块安装在位于机器人前端的奇数轴飞行器上, 其使 用无线通讯技术与后端飞行模式控制模块进行通讯, 用于根据所述后端 飞行模式控制模块的飞行模式控制指令为所述奇数轴飞行器提供升力; 所述升力提供模块进一歩包括主轴和辅助轴, 其中:
所述主轴处于奇数轴飞行器重心所在的轴上, 其为内外嵌套的两个 轴承, 所述内轴承为功率较大的第一无刷电机 6轴承的延长轴, 其与尺 寸较大的第一正桨叶 1相连, 外轴承与尺寸较大的第一反桨叶 2相连, 并通过传动齿轮与第一无刷电机 6相连, 所述第一无刷电机 6位于奇数 轴飞行器臂架的中心, 第一正桨叶 1和第一反桨叶 2从上至下依次垂直 安装于所述第一无刷电机 6的轴承上, 其中, 内轴承与外轴承的转速相 反;
所述辅助轴包括四个功率较小的第二无刷电机 7、 两对尺寸较小的 第二桨叶 3和 4、 四个臂架, 其中, 四个臂架向着重心呈放射形放置, 其处于同一平面内, 组成笛卡尔二维坐标轴; 四个第二无刷电机 7分别 安装在四个臂架的末端; 四个桨叶分别安装在四个第二无刷电机 7 上, 进一歩地, 所述两对第二桨叶分为一对正桨叶 3和一对反桨叶 4, 处于 同一坐标轴的桨叶相同且对应的第二无刷电机的旋转方向相同。
进一歩地, 所述升力提供模块还包括多个保护桨叶的原型保护框, 和多个支起所述奇数轴飞行器的空心垫架。
在本发明一实施例中, 第一无刷电机 6和第二无刷电机 7连接有无 刷电调, 用于控制第一无刷电机 6和第二无刷电机 7的转向和转速, 所 述无刷电调机动地安装在电机附近、 臂架、 或主控制模块底下, 并与 ARM Cortex系列主控制芯片 10相连。
图 4为本发明基于无线充电奇数轴飞行器的智能巡航机器人的主控 制模块的示意图, 结合图 1、 图 2和图 3, 所述主控制模块 5安装在所 述奇数轴飞行器上, 并且处于飞行器的臂架中间, 用于采集环境和位置 数据并反馈给所述后端控制模块。 所述主控制模块 5包括 ARM Cortex 系列主控制芯片 10, 微型测距仪 11, 2.4G无线通信芯片 12, 定位导航 芯片 13, 三合一陀螺仪芯片 14, 电子罗盘 15, 其中:
ARM Cortex系列主控制芯片 10、三合一陀螺仪芯片 14和电子罗盘 15组成姿态控制模块, 它们水平悍接在所述主控制模块 5的电路板上, 其中, 所述三合一陀螺仪芯片 14 中集成有温度计传感器、 三轴加速度 传感器和三轴陀螺仪传感器, ARM Cortex系列主控制芯片 10读取三合 一陀螺仪芯片 14和电子罗盘 15的传感器数值后, 计算出奇数轴飞行器 的飞行姿态, 并将计算得到的飞行姿态信息反馈给后端控制模块。
ARM Cortex系列主控制芯片 10、 微型测距仪 11和定位导航芯片 13组成位置控制模块, 其中, 所述定位导航芯片 13为 GPS导航芯片或 北斗导航芯片, 其悍接在主控制模块的电路板上, 对奇数轴飞行器所处 的空间位置做出反馈; 微型测距仪 11 为红外测距仪、 超声波测距仪或 激光测距仪, 其安装在所述奇数轴飞行器的前后左右和上下六个方位, 用于在奇数轴飞行器平稳飞行后进行测距,并将得到的数值反馈给 ARM Cortex系列主控制芯片 10, 以指导所述奇数轴飞行器避障及进行 3D建 模。
所述后端飞行模式控制模块与所述升力提供模块连接, 用于对于奇 数轴飞行器的飞行模式进行控制。
图 6是本发明基于无线充电奇数轴飞行器的智能巡航机器人的控制 流程示意图, 如图 6所示, 根据本发明的一实施例, 后端飞行模式控制 模块支持遥控飞行模式和自主飞行模式, 在遥控飞行模式中, 后端控制 模块发送控制指令人为地控制所述奇数轴飞行器飞行, 在自主飞行模式 中, 所述奇数轴飞行器自身集成自主飞行算法, 自主飞行。
所述云台图像采集模块安装在所述奇数轴飞行器的前下方, 其与后 端控制模块连接, 用于根据所述后端控制模块的控制指令采集视频数据, 并将采集到的视频数据发送给所述后端控制模块;
所述云台图像采集模块包括前端视频信息采集系统 8, 无线通信系 统和后端智能视频系统, 其中:
所述前端视频信息采集系统 8安装于五轴飞行器的前下方, 用于采 集视频数据, 其包括舵机和与舵机相连的摄像头, 所述摄像头可为微型
CCD或 CMOS摄像头,可进行 180° 视角旋转,其采集到的视频信息可 达 720P原始视频信息以上;
所述无线通信系统安装于五轴飞行器的中间的主控制模块 5上, 用 于将前端视频信息采集系统 8采集到的视频数据无线发送给所述后端控 制模块, 在本发明一实施例中, 所述无线通信系统采用 2.4G无线通信 芯片 12进行无线通信, 另外, 所述 2.4G无线通信芯片 12可根据实际 应用的需要, 设置通信的速率以及通信的距离;
所述后端智能视频系统用于根据采集得到的视频数据进行监控和 智能分析, 所述后端智能视频系统中集成有各种智能算法, 如: 人脸识 别, 客流检测, 行为分析等, 以对前端视频信息采集系统 8传回来的视 频数据进行监控和分析。
所述无线充电模块用于根据所述后端飞行模式控制模块的控制指 令为所述奇数轴飞行器的各模块进行无线充电, 供持续航行动力; 所述 无线充电模块包括安装在奇数轴飞行器底部正中间的无线充电电池 9和 提供给电池充电的无线充电平台 16, 所述无线充电平台 16的结构示意 图如图 5所示, 所述无线充电电池 9包括充电锂电池与第一感应线圈, 所述无线充电平台 16包括第二感应线圈和外界充电电源。
后端飞行模式控制模块和后端控制模块通过无线通信技术与奇数 轴飞行器进行通信, 发送数据给奇数轴飞行器或从奇数轴飞行器上接受 数据, 发送飞行控制命令给奇数轴飞行器或对奇数轴飞行器传回来的数 据进行智能分析。
所述云台摄像模块的工作流程图如图 7所示, 前端 CCD或 CMOS 摄像头采集视频原始数据, 通过无线通信技术发送给后端控制模块, 后 端控制模块接收原始视频数据, 对所述原始视频数据进行编解码处理、 智能监控, 智能分析、 智能识别和智能图像处理等。 此外, 后端控制模 块还可连接外部存储设备, 以将原始视频信息和处理后的视频信息存储 下来。
本发明的上述智能巡航机器人能够控制奇数轴飞行器稳定飞行, 使 用准确的导航进行定位, 使用无线充电技术为其提供持航动力, 使用智 能视频系统代替人进行巡逻、 进入人难以到达的地方监控或者进入危险 地带进行侦查和搜寻, 减轻了人为巡逻、 监控的工作强度, 提高了危险 地带侦查、 搜寻和营救的安全性, 因此可用于巡逻监控, 危险、 未知地 带的侦查, 以及智能农牧业监控和军事侦查等领域。
图 8 是基于无线充电七轴飞行器的智能巡航机器人的平视示意图, 如图 2和图 8所示, 基于无线充电奇数轴飞行器的智能巡航机器人并不 仅仅局限于五轴飞行器, 五轴飞行器、 七轴飞行器、 九轴飞行器, 所有 的奇数轴飞行器都落入本发明的保护范围内。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种基于无线充电奇数轴飞行器的智能巡航机器人, 其特征在 于,该机器人包括:作为主体机的奇数轴飞行器和后端控制模块,其中: 所述奇数轴飞行器包括升力提供模块、 主控制模块、 云台图像采集 模块、 无线充电模块和后端飞行模式控制模块, 其中:
所述升力提供模块安装在所述奇数轴飞行器上, 其与所述后端飞行 模式控制模块进行通讯, 用于根据所述后端飞行模式控制模块的飞行模 式控制指令为所述奇数轴飞行器提供升力;
所述主控制模块安装在所述奇数轴飞行器上, 并且处于飞行器臂架 的中间, 用于采集环境和位置数据并反馈给所述后端控制模块;
所述后端飞行模式控制模块与所述升力提供模块连接, 用于对于奇 数轴飞行器的飞行模式进行控制;
所述云台图像采集模块安装在所述奇数轴飞行器的前下方, 其与所 述后端控制模块连接, 用于根据所述后端控制模块的控制指令采集图像 数据, 并将采集到的图像数据发送给所述后端控制模块;
所述无线充电模块用于根据所述后端飞行模式控制模块的控制指 令为所述奇数轴飞行器的各模块进行无线充电, 供持续航行动力;
所述后端控制模块用于与奇数轴飞行器进行通信, 并对接收到的数 据进行处理或分析。
2、 根据权利要求 1 所述的机器人, 其特征在于, 所述升力提供模 块进一歩包括主轴和辅助轴, 其中:
所述主轴处于奇数轴飞行器重心所在的轴上, 所述主轴包括内外嵌 套的两个轴承, 所述内轴承为第一无刷电机轴承的延长轴, 其与第一正 桨叶相连; 所述外轴承与第一反桨叶相连, 并通过传动齿轮与第一无刷 电机相连, 所述第一无刷电机位于奇数轴飞行器臂架的中心, 第一正桨 叶和第一反桨叶从上至下依次垂直安装于所述第一无刷电机的轴承上; 所述辅助轴包括四个第二无刷电机、 两对第二桨叶、 四个臂架, 其 中, 四个臂架向着重心呈放射形放置, 处于同一平面内, 组成笛卡尔二 维坐标轴; 四个第二无刷电机分别安装在四个臂架的末端; 两对桨叶分 别安装在四个第二无刷电机上。
3、 根据权利要求 2所述的机器人, 其特征在于, 所述内轴承与外 轴承的转速相反。
4、 根据权利要求 2所述的机器人, 其特征在于, 所述两对第二桨 叶分为一对正桨叶和一对反桨叶, 处于同一坐标轴的桨叶相同且对应的 第二无刷电机的旋转方向相同。
5、 根据权利要求 1 所述的机器人, 其特征在于, 所述升力提供模 块还包括多个保护桨叶的原型保护框, 和多个支起所述奇数轴飞行器的 空心垫架。
6、 根据权利要求 2所述的机器人, 其特征在于, 第一无刷电机和 第二无刷电机连接有无刷电调, 用于控制第一无刷电机和第二无刷电机 的转向和转速。
7、 根据权利要求 1 所述的机器人, 其特征在于, 所述主控制模块 包括主控制芯片, 微型测距仪, 无线通信芯片, 定位导航芯片, 三合一 陀螺仪芯片, 电子罗盘, 其中:
主控制芯片、 三合一陀螺仪芯片和电子罗盘组成姿态控制模块, 它 们水平悍接在所述主控制模块的电路板上, 主控制芯片读取三合一陀螺 仪芯片和电子罗盘的传感器数值后, 计算出奇数轴飞行器的飞行姿态, 并将计算得到的飞行姿态信息反馈给后端控制模块;
主控制芯片、微型测距仪和定位导航芯片组成位置控制模块,其中, 所述定位导航芯片悍接在主控制模块的电路板上, 对奇数轴飞行器所处 的空间位置做出反馈; 所述微型测距仪用于在奇数轴飞行器平稳飞行后 进行测距, 并将得到的数值反馈给主控制芯片, 以指导所述奇数轴飞行 器避障及进行 3D建模。
8、 根据权利要求 1 所述的机器人, 其特征在于, 所述飞行模式包 括遥控飞行模式和自主飞行模式。
9、 根据权利要求 1 所述的机器人, 其特征在于, 所述云台图像采 集模块包括前端视频信息采集系统, 无线通信系统和后端智能视频系统, 其中:
所述前端视频信息采集系统安装于奇数轴飞行器的前下方, 用于采 集视频数据;
所述无线通信系统安装于奇数轴飞行器中间的主控制模块上, 用于 将前端视频信息采集系统采集到的视频数据无线发送给所述后端控制 模块;
所述后端智能视频系统用于根据采集得到的视频数据进行监控和 智能分析。
10、 根据权利要求 1所述的机器人, 其特征在于, 所述无线充电模 块包括安装在奇数轴飞行器底部正中间的无线充电电池和提供给电池 充电的无线充电平台, 其中:
所述无线充电电池包括充电锂电池与第一感应线圈;
所述无线充电平台包括第二感应线圈和外界充电电源。
PCT/CN2014/076752 2013-12-30 2014-05-05 基于无线充电奇数轴飞行器的智能巡航机器人 WO2015100899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310746177.1A CN103645740B (zh) 2013-12-30 2013-12-30 基于无线充电奇数轴飞行器的智能巡航机器人
CN201310746177.1 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015100899A1 true WO2015100899A1 (zh) 2015-07-09

Family

ID=50250969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076752 WO2015100899A1 (zh) 2013-12-30 2014-05-05 基于无线充电奇数轴飞行器的智能巡航机器人

Country Status (2)

Country Link
CN (1) CN103645740B (zh)
WO (1) WO2015100899A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539825A (zh) * 2015-12-30 2016-05-04 天津皓新艺科技有限公司 一种监控用飞行器
CN107600417A (zh) * 2017-09-29 2018-01-19 华南理工大学 一种携带冗余度机械臂的飞行机器人硬件系统设计方法
CN107942348A (zh) * 2017-12-29 2018-04-20 苏州融萃特种机器人有限公司 一种基于无人机与机器人技术的道路执法系统
CN108563165A (zh) * 2018-03-21 2018-09-21 成都优孚达信息技术有限公司 一种基于2.4GHz的无线测距定位模块
CN109436351A (zh) * 2018-11-19 2019-03-08 浙江云来集科技有限公司 一种长距离等高地表用无人机自主巡检装置
CN110076748A (zh) * 2019-05-15 2019-08-02 沈阳航空航天大学 一种基于北斗定位的校园自主巡逻机器人
US10821608B2 (en) 2017-10-23 2020-11-03 International Business Machines Corporation Method of robot arm fleet position control with wireless charging time
CN114322921A (zh) * 2021-11-22 2022-04-12 天津大学 一种基于激光和陀螺仪的共轴旋翼桨间距测量系统及方法
CN109436351B (zh) * 2018-11-19 2024-04-26 浙江云来集科技有限公司 一种长距离等高地表用无人机自主巡检装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645740B (zh) * 2013-12-30 2016-02-17 中国科学院自动化研究所 基于无线充电奇数轴飞行器的智能巡航机器人
WO2015165036A1 (zh) * 2014-04-29 2015-11-05 中国科学院自动化研究所 基于自然能蓄电的无线充电平台
US10434885B2 (en) * 2014-08-05 2019-10-08 Telecom Italia S.P.A. Landing platform for an unmanned aerial vehicle
CN105518488B (zh) 2014-11-19 2017-03-15 深圳市大疆创新科技有限公司 定位机构及采用该定位机构的uav基站、uav补给方法
CN105083543A (zh) * 2015-06-06 2015-11-25 昆山玖趣智能科技有限公司 一种ar增强现实3d视觉智能四翼飞行器
CN106809388A (zh) * 2017-03-01 2017-06-09 张琛 一种无线监控飞行器
CN109108935A (zh) * 2018-10-16 2019-01-01 金陵科技学院 一种陆空全方位侦查机器人及侦查控制系统
CN113734432A (zh) * 2021-09-28 2021-12-03 淮南师范学院 一种自主巡航四旋翼飞行器及控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667032B (zh) * 2008-09-03 2012-09-05 中国科学院自动化研究所 基于视觉的无人直升机目标跟踪系统
CN103070699A (zh) * 2012-12-27 2013-05-01 天津理工大学 一种微小型肠道机器人无线智能充电器
CN203012513U (zh) * 2013-01-05 2013-06-19 滨州学院 一种无线航模控制系统
CN203038113U (zh) * 2012-12-28 2013-07-03 南京工程学院 一种四轴探测飞行器
US20130204463A1 (en) * 2004-07-07 2013-08-08 Irobot Corporation Celestial navigation system for an autonomous vehicle
CN103645740A (zh) * 2013-12-30 2014-03-19 中国科学院自动化研究所 基于无线充电奇数轴飞行器的智能巡航机器人

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928761B1 (fr) * 2008-03-17 2012-06-01 Eurocopter France Appareil a suivi automatise de configuration, procede et systeme pour ce suivi.
CN109319109B (zh) * 2011-03-29 2021-01-12 郑鹏 牵引输能源式涵道旋翼飞吊器及其控制方法
CN102707725B (zh) * 2012-06-12 2014-10-29 桂林飞宇电子科技有限公司 固定翼自动导航飞行控制系统及其使用方法
CN202771262U (zh) * 2012-06-12 2013-03-06 桂林飞宇电子科技有限公司 固定翼自动导航飞行控制系统
KR101204720B1 (ko) * 2012-06-14 2012-11-26 (주)아모스텍 플래핑 날개짓 회전자의 진폭제어와 플래핑 날개짓 속도제어를 통해 자율적 비행자세와 자동항법비행이 가능한 무선원격 지능형 무인 플래핑 비행체 및 비행 방법
CN202929383U (zh) * 2012-09-11 2013-05-08 深圳一电科技有限公司 无人机及其自动充电系统
CN102941920A (zh) * 2012-12-05 2013-02-27 南京理工大学 一种基于多旋翼飞行器的高压输电线路巡检机器人及其方法
CN103318406A (zh) * 2013-06-27 2013-09-25 长源动力(北京)科技有限公司 一种复合式旋翼飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130204463A1 (en) * 2004-07-07 2013-08-08 Irobot Corporation Celestial navigation system for an autonomous vehicle
CN101667032B (zh) * 2008-09-03 2012-09-05 中国科学院自动化研究所 基于视觉的无人直升机目标跟踪系统
CN103070699A (zh) * 2012-12-27 2013-05-01 天津理工大学 一种微小型肠道机器人无线智能充电器
CN203038113U (zh) * 2012-12-28 2013-07-03 南京工程学院 一种四轴探测飞行器
CN203012513U (zh) * 2013-01-05 2013-06-19 滨州学院 一种无线航模控制系统
CN103645740A (zh) * 2013-12-30 2014-03-19 中国科学院自动化研究所 基于无线充电奇数轴飞行器的智能巡航机器人

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539825A (zh) * 2015-12-30 2016-05-04 天津皓新艺科技有限公司 一种监控用飞行器
CN107600417A (zh) * 2017-09-29 2018-01-19 华南理工大学 一种携带冗余度机械臂的飞行机器人硬件系统设计方法
CN107600417B (zh) * 2017-09-29 2024-04-12 华南理工大学 一种携带冗余度机械臂的飞行机器人硬件系统设计方法
US10821608B2 (en) 2017-10-23 2020-11-03 International Business Machines Corporation Method of robot arm fleet position control with wireless charging time
CN107942348A (zh) * 2017-12-29 2018-04-20 苏州融萃特种机器人有限公司 一种基于无人机与机器人技术的道路执法系统
CN107942348B (zh) * 2017-12-29 2024-02-23 苏州融萃特种机器人有限公司 一种基于无人机与机器人技术的道路执法系统
CN108563165A (zh) * 2018-03-21 2018-09-21 成都优孚达信息技术有限公司 一种基于2.4GHz的无线测距定位模块
CN109436351A (zh) * 2018-11-19 2019-03-08 浙江云来集科技有限公司 一种长距离等高地表用无人机自主巡检装置
CN109436351B (zh) * 2018-11-19 2024-04-26 浙江云来集科技有限公司 一种长距离等高地表用无人机自主巡检装置
CN110076748A (zh) * 2019-05-15 2019-08-02 沈阳航空航天大学 一种基于北斗定位的校园自主巡逻机器人
CN114322921A (zh) * 2021-11-22 2022-04-12 天津大学 一种基于激光和陀螺仪的共轴旋翼桨间距测量系统及方法
CN114322921B (zh) * 2021-11-22 2023-09-22 天津大学 一种基于激光和陀螺仪的共轴旋翼桨间距测量系统及方法

Also Published As

Publication number Publication date
CN103645740B (zh) 2016-02-17
CN103645740A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2015100899A1 (zh) 基于无线充电奇数轴飞行器的智能巡航机器人
US11697411B2 (en) Apparatus and methods for obstacle detection
EP3158255B1 (en) Systems and methods for payload stabilization
US20200148352A1 (en) Portable integrated uav
CN203038113U (zh) 一种四轴探测飞行器
CN104777847A (zh) 基于机器视觉和超宽带定位技术的无人机目标追踪系统
CN103399577A (zh) 一种远程操作救援机器人的探测感知系统
CN105539037A (zh) 一种能在地面滚动的陆空四旋翼无人飞行器
CN206833250U (zh) 一种基于激光雷达的无人驾驶侦查小车
KR101519954B1 (ko) 수직 이착륙 무인 항공기
CN107624171A (zh) 无人机及控制无人机姿态的控制方法、控制装置
CN107450556A (zh) 一种基于ros的自主导航智能轮椅
CN108614572A (zh) 一种基于飞行器的目标识别追踪方法、设备及存储设备
CN105549609A (zh) 微型六轴飞行器及其构成的机群控制系统和控制方法
CN206494135U (zh) 一种无人机
CN110488857A (zh) 一种太阳能的四旋翼无人飞行器的控制系统
CN108062051A (zh) 一种灾害现场可飞行的多功能机器人
Li et al. Design and implementation of a new jet-boat based unmanned surface vehicle
CN208165258U (zh) 一种激光雷达定位功能的agv无人机
CN213814412U (zh) 一种双云台无人机
Li et al. Development of a remote-controlled mobile robot with binocular vision for environment monitoring
Moiz et al. QuadSWARM: A Real-Time Autonomous Surveillance System using Multi-Quadcopter UAVs
CN106527460A (zh) 飞行器智能控制系统
CN211163955U (zh) 一种陆空两用球形机器人控制系统
CN105988476A (zh) 基于六轴飞行器的搜救系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877511

Country of ref document: EP

Kind code of ref document: A1