WO2015100881A1 - 图像处理装置、图像处理方法、显示装置、计算机程序及计算机可读介质 - Google Patents

图像处理装置、图像处理方法、显示装置、计算机程序及计算机可读介质 Download PDF

Info

Publication number
WO2015100881A1
WO2015100881A1 PCT/CN2014/075580 CN2014075580W WO2015100881A1 WO 2015100881 A1 WO2015100881 A1 WO 2015100881A1 CN 2014075580 W CN2014075580 W CN 2014075580W WO 2015100881 A1 WO2015100881 A1 WO 2015100881A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
value
color
ratio
white
Prior art date
Application number
PCT/CN2014/075580
Other languages
English (en)
French (fr)
Inventor
曾思衡
宋丹娜
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/415,541 priority Critical patent/US10008148B2/en
Publication of WO2015100881A1 publication Critical patent/WO2015100881A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an image processing apparatus, an image processing method, a display apparatus, a computer program, and a computer readable medium.
  • the RGB color mode is a color standard in the industry, which is obtained by changing the three color channels of red (R), green (G), and blue (B) and superimposing them on each other. of. Due to the large power consumption of the RGB color mode, red, green, blue, and white (RGBW) modes have appeared. On the basis of the original RGB three primary colors, a white sub-pixel is added to increase the white area transmission area. , improve the effective profit of energy ffi, increase display brightness, reduce power consumption.
  • the AMOLED (Active Matrix Organic Light Emitting Diode) panel is an active matrix organic light emitting diode panel. Compared with the conventional liquid crystal panel, the AMOLED panel has the characteristics of faster response, higher contrast, and wider viewing angle.
  • the conventional white-light AMOLED panel is realized by an array substrate comprising an organic light-emitting diode that emits white light, and a color filter (CF) substrate of three colors of RGB.
  • CF color filter
  • the CF transmittance of the three colors of RGB is relatively low, and most of the white light emitted by the organic light emitting diode is absorbed by CF. To ensure the display brightness, the current through the organic light emitting diode needs to be increased, resulting in display.
  • the AMOLED panel is composed of white AMOLED plus red, green, blue and white CF.
  • the neutral color brightness will be provided by white sub-pixels.
  • the transmittance of the white sub-pixel is much higher than the transmittance of the RGB pixel, so that the display power consumption can be greatly reduced under the same brightness requirement.
  • the traditional method of converting RGB signals into RGBW signals is to replace the light emitted by RGB with a fixed proportion of white light.
  • the common algorithm is to output the value as the white data with the minimum value of the original RGB data values, and the original RGB.
  • the difference between the data value and the white data value is used as the RGB data output value, thereby achieving the purpose of low power consumption or high brightness.
  • the white sub-pixel When the display panel of the algorithm is displayed, only two sub-pixels of the three sub-pixels RGB are illuminated in each pixel, one of the sub-pixels does not emit light, and the white sub-pixel always emits light, as a whole, the white sub-pixel
  • the use of pixels is more serious than the use of RGB sub-pixels, and the use of four sub-pixels is very different, causing excessive ffi white sub-pixels, resulting in shortened lifetime of white sub-pixels, resulting in a shortened overall lifetime.
  • RGB sub-pixels are used excessively, the white sub-pixels are used less, which will cause the lifetime of the RGB sub-pixels to be shorter than that of the white sub-pixels, so the overall lifetime will also be shortened.
  • the RGB sub-pixel and the W sub-pixel use are greatly different, resulting in different lifetimes of the RGB sub-pixel and the W sub-pixel, which ultimately leads to a decrease in overall lifetime. technical problem.
  • An image processing apparatus including:
  • a receiving module configured to receive externally input three-color source data, and obtain a minimum value of the three-color source data
  • a data conversion module configured to convert the three color source data into four color data including a fourth color, and output the four color data; wherein, the value of the fourth color data in the four color data is based on Determining, by the minimum value of the three-color source data and the first ratio of the fourth color data, that the value of the other color data other than the fourth color in the four-color data is determined according to the value of the fourth color data. ;
  • the statistical module is used to count the displayed values of the four-color data
  • an adjustment module configured to control the data conversion module to adjust the first ratio of the fourth color data according to the display value of the four color data counted by the unified module.
  • the three color sources are red, green, and blue.
  • the fourth color is white.
  • the display value of the four color data is a brightness value or a gray level value.
  • the adjusting module further adjusts the first ratio of the white data according to an average value of the red, green, and blue data display values and a white data display value.
  • the adjustment module is further configured to compare an average value of the red, green, and blue data display values with a white data display value, where an average value of the red, green, and blue data display values is greater than the white data.
  • the first ratio of the white data is adjusted to the second ratio; when the average value of the red, green, and blue data display values is smaller than the display value of the white data, the first ratio of the white data is adjusted For the third ratio.
  • the value of the second example is greater than the value of the third example.
  • the second ratio is any value greater than 0.6 or less than 0.9
  • the third ratio is any value greater than or equal to 0.1 and less than or equal to 0.6.
  • An embodiment of the present invention further provides an image processing method, including:
  • the value of the fourth color data in the four color data is determined according to a minimum value of the three color source data and a first ratio of the fourth color data, except for the fourth color in the four color data.
  • the values of other color data are determined based on the values of the fourth color data;
  • the first ratio of the white data is adjusted according to the display value of the four color data of the system.
  • the three color sources are red, green, and blue.
  • the fourth color is white.
  • the display value of the four color data is a brightness value or a gray level value.
  • the step of adjusting the first ratio of the white data according to the display situation of the four color data further comprises: adjusting the average value of the red, green, and blue data display values and the white data display value The first ratio of white data.
  • the first ratio of the white data is adjusted every predetermined time or every predetermined number of frames.
  • the step of adjusting the first ratio of the white data according to the displayed value of the statistical four-color data further comprises: comparing an average value of the red, green, and blue data display values with a white data display value When the average value is greater than the display value of the white data, adjusting the first ratio of the white data to the second ratio; when the average value is smaller than the display value of the white data, the white The first ratio of the data is adjusted to the third ratio.
  • the value of the second ratio is greater than the value of the third ratio.
  • the second ratio is any value greater than 0.6 or less than 0.9
  • the third ratio is any value greater than or equal to 0.1 and less than or equal to 0.6.
  • Embodiments of the present invention also provide a display device including the image processing device as described above.
  • the embodiment of the invention further provides a computer program, wherein the processor executes the computer program to implement the image processing method.
  • the embodiment of the invention further provides a computer readable medium storing the above computer program.
  • the beneficial effects of the present invention are: adjusting the first ratio of the white data according to the statistical display value of the four color data, and further adjusting the output value of the subsequent four color data, so that the white subpixel usage is equivalent to that of other color subpixels. , reducing the difference between the white sub-pixel and the other color sub-pixels, which improves the lifetime of each color sub-pixel and improves the overall life compared with the prior art.
  • FIG. 1 is a flowchart of an image processing method according to an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the structure of an image processing apparatus according to an embodiment of the present invention. detailed description
  • a red color, a green color, and a blue color are taken as an example to describe a three-color source, and a white color is taken as an example to describe a fourth color in the four-color data, but is not limited thereto.
  • FIG. 1 it is a flowchart of an image processing method according to an embodiment of the present invention.
  • the image processing method includes the following steps:
  • Step S101 receiving externally input red, green, and blue three-color source data, and acquiring minimum values of the red, green, and blue three-color source data;
  • Step S102 converting the red, green, and blue color data into four colors of red, green, blue, and white, and outputting the four color data; wherein, the white data in the four color data The value is determined according to the minimum value of the red, green, and blue color data and the first ratio of the white data, and the values of the red, green, and blue data in the four color data are based on the value of the white data. Determining; Step S103: counting the display value of the four color data;
  • Step Adjust the first ratio of the white data based on the displayed value of the statistical four-color data.
  • the image processing method of the present invention adjusts the first ratio of the white data according to the displayed value of the statistical four-color data, and further adjusts the output value of the subsequent four-color data, so that the usage of the white sub-pixel is equivalent to that of other color sub-pixels, and is reduced.
  • the difference between the use of white sub-pixels and other color sub-pixels improves the lifetime of the ffi of each color sub-pixel, thereby improving the overall lifetime.
  • the externally input trichromatic source data may be red, green, and blue data, that is, RGB data.
  • the step needs to determine the minimum value of the three-color source data, and the commonly obtained three-color source data is generally a grayscale value. Therefore, obtaining the minimum value of the three-color source data is the minimum gray-scale value of the three-color source data.
  • the minimum gray level in the tri-color source data means the maximum gray level that the white data can replace without reducing the color saturation.
  • the acquisition of the minimum grayscale value can be taken by 3 ⁇ 4 existing techniques, such as the minimum extractor.
  • the grayscale value may be used to obtain the three color source data, and the grayscale value is only an exemplary embodiment, as long as the value of the three color source data can be determined, the 3 ⁇ 4 Other types of evaluation values.
  • step S102 the red, green, and blue data are converted into four colors of red, green, blue, and white, thereby generating a mixed light.
  • the value of the white data in the four-color data is determined according to the minimum value of the three-color source data and the first ratio of the white data, and the data of the red, green, and blue data in the four-color data is based on the white data. The value is determined.
  • the initial value of the first ratio of white data is preset, and may be any value between 0-1.
  • the steps S103 and S104 the value of the first ratio of the white data is adjusted, and the first ratio of the white data is correspondingly modified according to the adjustment result, and the real-time modification of the first ratio may be adjusted in real time, thereby adjusting four.
  • the use of chrominated pixels Of course, it is also possible to perform an intermittent adjustment, making a modification every predetermined time, for example every 5 seconds, or once every predetermined number of frames.
  • the red, green, and blue color data are converted into four color numbers of red, green, blue, and white. According to the following equation of ffi:
  • R, G, B are the three-color source data before conversion
  • R, G, B', and W are the converted four-color data
  • WMR is the first ratio of white data
  • Min(R, G, B) is the minimum value of the three-color source data.
  • red, green, and blue data into red, green, blue, and white data.
  • Step 1 Determine the gray scale of the converted white data W
  • Li (i/GL) ⁇ ( ⁇ represents the gamma value, generally 2.2)
  • i is the minimum gray level in the three-color source data acquired in step S101, that is, i-Min( , G, B) ;
  • Li is the corresponding brightness value of the minimum gray level in the three-color source data (GL: WMR (White Mixing Ratio), which represents the first ratio of white data;
  • LW is the luminance value of white data, and the luminance value LW of white data is the smallest ratio of the first ratio WMR of white data and the three color source data.
  • the product of the luminance value U corresponding to the order is determined; then the luminance value LW of the white data is converted into the gray scale of the white data.
  • Step 2 Determine the gray scales R', G', B of the converted red, green, and blue data.
  • ⁇ LRJLQLB ⁇ is the brightness before RGB conversion (that is, the corresponding brightness of the three color source data); LW the brightness value of white data (ie the brightness replaced by white light); subtract the brightness before RGB conversion
  • the brightness value of the white data can be obtained by RGB converted brightness ⁇ LR', LG', LB' ⁇ , and then the RGB converted brightness value is converted into the converted RGB gray level m', G', B' ⁇ .
  • the first ratio of white data directly affects the output value of the final four-color data, which determines the ffi condition of the four sub-pixels in the display panel, so the first ratio of white data can be adjusted by control. Reduce the difference in usage of four sub-pixels and improve overall display life.
  • the display value of the four color data may be a grayscale value or a luminance value.
  • the display value of the four-color data reflects the display of the four sub-pixels, because the white-light AMOLED display panel of the RGBW display mode is required to control the white light of the desired light-emitting diode in the corresponding sub-pixel to emit the white light through the color film and mix it out through the color film. colour. Therefore, the light emitting units of each sub-pixel are identical, and both are white organic light emitting diodes.
  • the first proportional control of the subsequent white data can be adjusted according to the display condition of the previous four-color data.
  • the output value of the subsequent four-color data so as to avoid a large difference between the use of four sub-pixels in the long-time display, resulting in excessive use of a certain pixel in the sub-pixel, the lifespan correspondingly shortened, and ultimately the overall life of the panel is reduced. The situation.
  • the specific statistical method can directly obtain the brightness value or the gray level value of the four-color data output, and add and count the brightness value or the gray value of each color; or detect the brightness value of each color of the panel through a detecting device, such as a lighting machine. Or grayscale values, and add and count the luminance values or grayscale values of each color.
  • the method of acquiring the display value of the four-color data is not limited.
  • an adder can be used to count the four-color data display value, and the obtained four-color data display values are separately added and counted, and the statistical display value can be the display value of each of the red, green, and blue data or red. , green and blue display the average value of the value and the display value of the white data.
  • RGB the statistical value of the calculator and the white display value.
  • the statistic values RGB calculator and white of the RGB gray scale are separately counted.
  • Gray scale statistics W___caIc 1aior where,
  • RGB calculator ⁇ (Sum(R'(n)) + Sum(G'(n)) + Sum(B'(n))) / 3
  • Sum(R')) represents the gray scale sum of the converted red sub-pixels in n images ( n ⁇ 1)
  • Sum(G ' (n)) represents the total gray scale of the converted green sub-pixels in n images (n ⁇ 1)
  • Sum(B ' )) represents the gray scale sum of the converted blue sub-pixels in n images ( n ⁇ 1)
  • Sum(W(n)) represents the white sub-pixels in n images Gray scale total (n ⁇ 1)
  • the statistical value of RGB luminance is separately counted RGB.—the value of calculator and white luminance W.—cakulator, where
  • RGB calculator ⁇ (Sum(LR'(n)) + Sum(LG'(n)) + Sum(LB'(n))) / 3
  • SumfLR ' (n)) represents the sum of the luminances of the converted red sub-pixels in n images (n ⁇ 1)
  • Sum(LG ' (r ) represents the sum of the luminances of the converted green sub-pixels in the ⁇ image (n ⁇ 1)
  • Sum(LB ' (n)) represents the sum of the brightness of the converted blue sub-pixels in 11 images (n ⁇ 1)
  • Sum (LW (ii)) represents the total brightness of the white sub-pixels in n images Combination (n ⁇ 1)
  • RGB_ calculator represents the statistical average of the RGB data display values
  • W_ calculator represents the statistical value of the white data display value
  • the average value of the red, green, and blue display values (brightness or gray scale) and the display value of the white data (brightness or gray scale) can visually reflect the respective use of the red, green, blue sub-pixels, and white sub-pixels.
  • the data usage of the red, green, blue sub-pixels and white sub-pixels is adjusted.
  • the first ratio of the white data is adjusted according to the display value of the four color data, and specifically, the first ratio is adjusted according to the display value of the four color data.
  • the first ratio of the white data is adjusted based on an average of the red, green, and blue data display values and a display value of the white data. Specifically, comparing the average value of the red, green, and blue data display values with the white data display value, and adjusting the first ratio of the white data to the second ratio when the average value is greater than the display value of the white data; When the average value is smaller than the display value of the white data, the first ratio of the white data is adjusted to the third ratio. Wherein, the value of the second ratio is greater than the value of the third ⁇ : example.
  • the second ratio is greater than 0 6 and less than or equal to any value of 0 chiropractor9
  • the third The ratio is any value greater than or equal to 0.1 and less than or equal to 0.6.
  • the second ratio is 0.6 to 0.9, including 0, 9, and the third ratio is 0.1 to 0.6, including 0.1.
  • the values of the second ratio and the third ratio are obtained through a large number of standard image experiments, and have universality and accuracy.
  • the average value of the red, green, and blue data display values is greater than the display value of the white data (RGB_cakulator > W... calculator)
  • the statistical conclusion is that during the previous display process, red, green, and blue
  • the ffi case of the sub-pixel is larger than that of the white sub-pixel.
  • the red, green, and blue sub-pixels are prevented from being overused.
  • the first ratio of the white data is adjusted to the second.
  • the ratio, that is, the adjusted WMR is any value greater than 0.6 or less than 0.9.
  • the usage of the white sub-pixels is a higher ratio, and the red, green, and blue sub-pixels can be used too much before the white sub-pixels are used too much, resulting in the use of each color sub-pixel.
  • the service life of each color sub-pixel is improved, thereby improving the overall life; similarly, when the average value of the red, green, and blue data display values is greater than the display value of the white data (RGB) — calculator ⁇ W — calculator, that is, the statistical conclusion is that in the previous display process, the white sub-pixels are larger than the red, green, and blue sub-pixels, in order to balance the sub-pixels.
  • the first ratio of white data is adjusted to a third ratio, that is, the WMR is adjusted to any value greater than or equal to 0.1 or less than 0.6.
  • the usage of red, green, and blue sub-pixels is a higher ratio, which can balance the use of white sub-pixels too much, and the white sub-pixels make 3 ⁇ 4 too small to cause each color sub-pixel to be made) 3 ⁇ 4
  • the difference in the situation, compared with the prior art improves the life of each color sub-pixel, thereby improving the overall life.
  • RGB-calculator W_calculator
  • the statistical value of each display value in step S103 can be cleared.
  • the first ratio of white data WMR is not adjusted and remains unchanged.
  • the first ratio of the white data is adjusted to cover each frame after the display, according to the obtained red and green.
  • the average value of the blue data display value and the display value of the white data to adjust the first ratio of the white data that is, the average value of the red, green, and blue data display values and the display value of the white data after the display of each frame is adjusted from time to time
  • the first ratio of white data also covers every predetermined number of hours
  • FIG. 2 it is a structural block diagram of an image processing apparatus according to an embodiment of the present invention.
  • the image processing apparatus includes:
  • the receiving module 00 is configured to receive externally input red, green, and blue color data, and obtain a minimum value of the red, green, and blue color source data;
  • the data conversion module 200 is configured to convert the red, green, and blue color data into four colors of red, green, blue, and white, and output the four color data; wherein, the four color data
  • the value of the white data is determined according to the minimum value of the red, green, and blue color data and the first ratio of the white data, and the values of the red, green, and blue data in the four color data are based on the white data. Value to determine;
  • the UI module 300 is configured to count the display value of the four color data
  • the adjusting module 400 is configured to control the data conversion module to adjust the first ratio of the white data according to the display value of the four color data counted by the statistics module.
  • the three color source data received by the receiving module 100 is red, green, and blue data, and g RGB data.
  • the step needs to determine the minimum value of the three-color source data, and the commonly obtained three-color source data is generally a grayscale value. Therefore, obtaining the minimum value of the three-color source data is the minimum grayscale value of the three-color source data.
  • the minimum gray level in the tri-color source data means the maximum gray level that the white data can replace without reducing the color saturation.
  • the acquisition of the minimum grayscale value may employ an existing technique such as a minimum value extractor or the like.
  • the data conversion module 200 is configured to convert red, green, and blue data into four colors of red, green, blue, and white, and output them to generate a mixed light.
  • the value of the white data in the four-color data is determined according to the minimum value of the three-color source data and the first ratio of white data, and red, green, and blue in the four-color data.
  • the data of the color data is determined based on the value of the white data.
  • the initial value of the first ratio of white data is preset, and may be any value between 0-].
  • the value of the first ratio is adjusted, and the first ratio is correspondingly modified according to the adjustment result, which may be modified in real time, and the first ratio of white data is adjusted in real time, thereby adjusting four
  • the adjustment result which may be modified in real time
  • the first ratio of white data is adjusted in real time, thereby adjusting four
  • chrominated pixels it is also possible to perform an intermittent adjustment, making a modification every predetermined time, for example every 5 seconds, or making a modification every predetermined number of frames.
  • the algorithm used to convert the red, green, and blue data into red, green, blue, and white data may refer to step S102 in the image processing method of the foregoing embodiment, and details are not described herein again.
  • the statistic module 300 is configured to count the display value of the four color data and supply the display value of the four color data to the adjustment module 400, and the display value of the four color data may be a grayscale value or a brightness value.
  • the display value of the four-color data reflects the display of the four sub-pixels, because the white-light AMOLED display panel of the RGBW display mode is required to control the white light that needs brightness by the organic light-emitting diode in the corresponding sub-pixel and mix it through the color film. colour. Therefore, the light-emitting units of each sub-pixel are identical, and both are white organic light-emitting diodes.
  • the statistic module 300 can directly obtain the brightness value or the gray level value of the four color data output, and add and statistic the brightness values of the colors; the statistic module can also detect the brightness of each color display of the panel through a detecting device, such as a lighting machine. Value or grayscale value, and sum and count the luminance values or grayscale values of each color.
  • the method of acquiring the display value of the four-color data is not limited.
  • the statistic module 300 can use an adder to count the four-color data display value, and add the acquired four-color data display values respectively, and the statistical display values can be red, green, and blue data respectively.
  • the statistical data is divided into the RGB value of the RGB display value RGB_calculator and the statistical value of the white display value W_calculator.
  • step S103 refer to the image processing method of the foregoing embodiment, step S103.
  • the adjustment module 400 is configured to control the data conversion module 200 to adjust the first ratio of the white data according to the display value of the four color data of the statistical module, optionally, according to red, green, and blue.
  • the data displays an average of the values and a display value of the white data to adjust the first ratio of the white data.
  • the adjustment module 400 first obtains an average value of the red, green, and blue data display values and a white data display value of the statistical module, and then compares the sizes of the two, when the average value is greater than the white data.
  • the control data conversion module 200 adjusts the first ratio of the white data to the second ratio, and the second ratio will be used as the subsequent single frame (or multiple frames as needed).
  • the images are red, green, and blue.
  • the ratio is adjusted to the third ratio. Wherein, the value of the second ratio is greater than the value of the third ratio.
  • the second ratio is any value greater than 0.6 or less than 0.9
  • the third ratio is any value greater than or equal to 0.1 and less than or equal to 0.6.
  • the image processing apparatus of the present invention adjusts the first ratio of the white data according to the statistical display value of the four-color data, and further adjusts the output values of the subsequent four-color data so that the white sub-pixels are made with other color sub-pixels.
  • the situation is similar.
  • the difference between the usage of white sub-pixels and other color sub-pixels is reduced, and the service life of each color sub-pixel is improved compared with the prior art, thereby improving the overall life.
  • S101 Determine the minimum gray level of the input three color source data
  • Get three-color source data including red, green, and blue data, and ffi is the RGB data.
  • the minimum gray level Hmm(R, QB) of the three-color source data is determined, which represents the maximum gray level that the white data can replace without lowering the color saturation.
  • Li (i/GL) ⁇ ( ⁇ represents the gamma value, generally 2.2)
  • 1 is the minimum gray level in the three-color source data acquired in step S101, that is, i-min(R, G, B); Li is the corresponding brightness value of the minimum gray level in the three-color source data (GL) : total gray scale); WMR (White Mixing Ratio) , which represents the first ratio of white data; LW is the luminance value of white data, and the luminance value LW of white data is the first ratio WMR and trichromatic source of white data The product of the luminance value U corresponding to the minimum gray scale in the data is determined; then the luminance value LW of the white data is converted into the gray scale 1 ⁇ of the white data.
  • WMR White Mixing Ratio
  • ⁇ LR GLB ⁇ is the brightness before RGB conversion (ie, the corresponding brightness of the three-color source data); LW the brightness value of white data (ie, the brightness replaced by white light); the brightness before RGB conversion minus the brightness of white data
  • the value, the RGB converted luminance ⁇ LR', LG', LB' ⁇ can be obtained, and then the RGB converted luminance value is converted into the converted RGB grayscale ⁇ R', G'JB' ⁇ .
  • 5104 Acquire a display value of the four-color data, and adjust a first ratio of the white data according to a display value of the four-color data.
  • the first ratio of the white data is adjusted according to the display value of the four color data, and the first aspect of how to adjust the white data is described in detail below in conjunction with the embodiment:
  • Embodiment 1 Adjusting the mixing ratio of white data according to the display value of RGBW Theoretically, the usage probability of RGB should be the same, as in the long-term statistical data in the standard image IEC62087, so the statistical data can be divided into RGB gray scales.
  • Sum( ' (n)) represents the gray scale sum of the converted red sub-pixels in n images (n ⁇ 1)
  • Sum(G' (n)) represents the gray scale of the converted green sub-pixels in n images Total (n ⁇ 1)
  • Sum(B' ( ⁇ represents the total gray scale of the converted blue sub-pixels in n images ( ⁇ ⁇ 1)
  • Sum(W(n)) represents the gray scale sum of n sub-pixels in n images (n ⁇ 1)
  • RGB calculator ⁇ (Sum(LR' (n)) + Sum(LG ' (n)) + Sum(LB ' (n))) / 3 W— .calculator Sum(LW (n))
  • Sum(LR' )) represents the sum of the luminances of the converted red sub-pixels in n images (n ⁇ 1)
  • SumfLG ' (n)) represents the sum of the luminances of the converted green sub-pixels in n images (n ⁇ 1)
  • Sum(LB ' )) represents the sum of the luminances of the converted blue sub-pixels in n images (n ⁇ 1)
  • Sum(LW (n)) represents the sum of the luminances of the white sub-pixels in n images (n ⁇ 1)
  • the first ratio of white data is adjusted to the second ratio, and the second ratio may be greater than 0.6 and less than or equal to 0.9. Any one of the values; when the RGB-calculator is less than the display value of the W-calculator, the first ratio of the white data is adjusted to a third ratio, and the third ratio may be any one of 0.1 or more and 0.6 or less.
  • ffi can count any of the 11 display screens, and then adjust the first ratio of white data according to the display values counted by the n display screens.
  • the prior art generally makes the first instance of white data fixed, if long In the case of such pictures, the life of white sub-pixels is much lower than that of other color sub-pixels, resulting in a shortened overall life.
  • the first ratio of the white data is adjustable, and the first ratio can be adjusted according to the display value of the four color data.
  • the above technical solution is described by taking the subsequent display of the same screen as an example.
  • the first ratio is adjusted to the third ratio of white data. At this ratio, the usage of the white sub-pixel is a lower ratio, which is also beneficial for balancing the difference in the usage of the four-color pixel and improving the overall display life.
  • the image processing apparatus of the present invention adjusts the first ratio of the white data according to the statistical display value of the four-color data, and further adjusts the output values of the subsequent four-color data so that the white sub-pixels are made with other color sub-pixels.
  • the situation is similar.
  • the difference between the usage of white sub-pixels and other color sub-pixels is reduced, and the service life of each color sub-pixel is improved compared with the prior art, thereby improving the overall life.
  • Embodiments of the present invention also provide a display device including the image processing device as described above.
  • the display device can be applied to the following electronic products, including but not limited to: liquid crystal panel, electronic paper, organic light emitting diode panel, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc.
  • An electronic product or component that displays functionality including but not limited to: liquid crystal panel, electronic paper, organic light emitting diode panel, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc.
  • the embodiment of the invention further provides a computer program, which is executed by a processor to implement the image processing method.
  • the embodiment of the invention further provides a computer readable medium storing the above computer program.
  • the above is a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make various modifications and changes without departing from the spirit and scope of the invention. It is the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Color Image Communication Systems (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Control Of El Displays (AREA)

Abstract

一种图像处理装置、图像处理方法及显示装置。所述装置包括:接收模块(100),用于接收输入的三色源数据,并获取三色源数据的最小值;数据转换模块(200),用于将三色源数据转换成包括第四颜色的四色数据,并将四色数据输出;其中,所述第四颜色数据的数值是根据三色源数据的最小值和第四颜色数据的第一比例来确定;统计模块(300),用于统计四色数据的显示值;调节模块(400),用于根据统计模块(300)统计的四色数据的显示值,控制数据转换模块(200)调整所述第四颜色数据的第一比例。根据统计出的四色数据的显示值来调节第四颜色数据的第一比例,进而调整后续四色数据的输出值,使得第四颜色子像素的使用情况与其他颜色子像素使用情况相当。

Description

本发明涉及显示技术领域, 特别是涉及一种图像处理装置、 图像处理方 法、 显示装置、 计算机程序及计算机可读介质。
RGB色彩模式是工业界的一种颜色标准, 是通过对红 (R)、 绿 (G)、 蓝 (B) 三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的。 由 于 RGB色彩模式功耗较大, 目前出现了红、 绿、 蓝、 白 (RGBW)模式, 在 原有的 RGB三原色组成像素的基础上, 再增加一个白色的子像素, 增加了白 色区域透过区域, 提高了对能源的有效利 ffi , 增加显示亮度, 降低功耗。
AMOLED (Active Matrix Organic Light Emitting Diode) 面板是有源矩阵 有机发光二极管面板, 相比传统的液晶面板, AMOLED面板具有反应速度较 快、 对比度更高、 视角更广等特点。 传统的白光 AMOLED 面板是由包含发 射白光的有机发光二级管的阵列基板加上 RGB三种颜色的彩膜 (color filter, CF)基板实现的。 然而这种面板结构中, RGB三种颜色的 CF透过率比较低, 有机发光二极管发射的白光大部分能量都被 CF 吸收, 为保证显示亮度, 需 增大通过有机发光二极管的电流, 导致显示面板功耗增加, OLED 的寿命也 变短。 RGBW显示模式的白光 AMOLED面板是由白光 AMOLED加上红绿 蓝白四种颜色 CF 组成的, 在这种结构中, 中性色亮度将由白色子像素来提 供。 而白色子像素的透过率远远高于 RGB 像素的透过率, 因此, 在相同的 亮度要求下, 可大幅度的降低显示功耗。
传统的将 RGB信号转换为 RGBW信号的方法是利用固定比例的白光取 代一定程度 RGB所发的光, 如, 常见的算法是以原始 RGB数据数值中的最 小值作为白色数据输出数值,将原始 RGB数据数值与白色数据数值的差值作 为 RGB的数据输出数值, 藉此达成低功耗或者高亮度的目的。应 ^此种算法 的显示面板进行显示时, 每个像素中, 三个子像素 RGB中只有两个子像素发 光, 其中的一个子像素不发光, 而白色子像素始终会发光, 整体上, 白色子 像素的使用情况比 RGB子像素的使用情况严重,四个子像素使用情况存在很 大差异, 造成过度使 ffi白色子像素, 使得白色子像素的寿命缩短, 因而造成 整体的寿命缩短。同样地,如果过度使用 RGB子像素, 白色子像素使用较少, 将造成 RGB 子像素的寿命较白色子像素的寿命短, 因此整体的寿命也将缩 短。
(一) 要解决的技术问题
本发明实施例为了解决现有的 RGBW显示模式的白光 AMOLED面板 中, RGB子像素与 W子像素使用情况存在较大差异, 导致 RGB子像素与 W 子像素寿命不相同, 最终导致整体寿命降低的技术问题。
(二) 技术方案
本发明实施例采 的技术方案是: 一种图像处理装置, 包括:
接收模块, 用于接收外部输入的三色源数据, 并获取所述三色源数据的 最小值;
数据转换模块,用于将所述三色源数据转换成包括第四颜色的四色数据, 并将所述四色数据输出; 其中, 所述四色数据中的第四颜色数据的数值是根 据所述三色源数据的最小值和第四颜色数据的第一比例来确定, 所述四色数 据中的除第四颜色之外的其他颜色数据的数值是根据第四颜色数据的数值来 确定;
统计模块, )¾于统计四色数据的显示值;
调节模块, 用于根据统 i†模块统计的四色数据的显示值, 控制所述数据 转换模块调整所述第四颜色数据的第一比例。
可选地, 所述三色源是红色、 绿色、 蓝色。
可选地, 所述第四颜色是白色。
可选地, 所述四色数据的显示值为亮度值或者灰阶值。
可选地, 所述调节模块进一步] ¾于根据红、 绿、 蓝数据显示值的平均值 和白色数据显示值来调整所述白色数据的第一比例。
可选地, 每隔预定的时间或者每隔预定的帧数调整所述白色数据的第一 比例。
可选地, 所述调节模块还用于比较所述红、 绿、 蓝数据显示值的平均值 与白色数据显示值, 当所述红、 绿、 蓝数据显示值的平均值大于所述白色数 据的显示值时, 将白色数据的第一比例调整为第二比例; 当所述红、 绿、 蓝 数据显示值的平均值小于所述白色数据的显示值时, 将白色数据的第一比例 调整为第三比例。
可选地, 所述第二 例的数值大于所述第三 例的数值。
可选地, 所述第二比例为大于 0.6小于等于 0.9中的任一数值, 所述第三 比例为大于等于 0.1小于等于 0.6中的任一数值。
本发明实施例还提供了一种图像处理方法, 包括:
接收外部输入的三色源数据, 并获取所述三色源数据的最小值; 将所述三色源数据转换成包括第四颜色的四色数据, 并将所述四色数据 输出; 其中, 所述四色数据中的第四颜色数据的数值是根据所述三色源数据 的最小值和第四颜色数据的第一比例来确定, 所述四色数据中的除第四颜色 之外的其他颜色数据的数值是根据第四颜色数据的数值来确定;
统 i†四色数据的显示值;
根据统 i†的四色数据的显示值, 调整所述白色数据的第一比例。
可选地, 所述三色源是红色、 绿色、 蓝色。
可选地, 所述第四颜色是白色。
可选地, 所述四色数据的显示值为亮度值或者灰阶值。
可选地, 所述根据四色数据的显示情况, 来调整所述白色数据的第一比 例的歩骤进一步包括: 根据红、 绿、 蓝数据显示值的平均值和白色数据显示 值来调整所述白色数据的第一比例。
可选地, 每隔预定的时间或者每隔预定的帧数调整所述白色数据的第一 比例。
可选地, 所述根据统计的四色数据的显示值, 调整所述白色数据的第一 比例的歩骤进一步包括: 比较所述红、 绿、 蓝数据显示值的平均值与白色数 据显示值, 当所述平均值大于所述白色数据的显示值时, 将白色数据的第一 比例调整为第二比例; 当所述平均值小于所述白色数据的显示值时, 将白色 数据的第一比例调整为第三比例。
可选地, 所述第二比例的数值大于所述第三比例的数值。
可选地, 所述第二比例为大于 0.6小于等于 0.9中的任一数值, 所述第三 比例为大于等于 0.1小于等于 0.6中的任一数值。
本发明实施例还提供了一种显示装置, 该显示装置包括如上所述的图像 处理装置。
本发明实施例还提供了一种计算机程序, 由处理器执行所述†算机程序 来实现上述图像处理方法。
本发明实施例还提供了一种计算机可读介质, 存储有上述计算机程序。 (三) 有益效果
本发明的有益效果是: 根据统计出的四色数据的显示值来调节白色数据 的第一比例, 进而调整后续四色数据的输出值, 使得白色子像素使用情况与 其他颜色子像素使用情况相当, 降低白色子像素与其他颜色子像素使) ¾情况 的差异, 较现有技术, 提高了各个颜色子像素的使用寿命, 进而提高整体寿
图 1为本发明 种实施例的图像处理方法的流程图; 以及
图 2为本发明 种实施例的图像处理装置的结构框图。 具体实施方式
为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下 面将结合險图及具体实施例进行详细描述。
本实施例中以红色、 绿色、 蓝色为例描述三色源、 以白色为例描述四色 数据中的第四颜色, 但是不限于此。
如图 1所示, 为本发明一种实施例的图像处理方法的流程图, 该图像处 理方法包括如下歩骤:
歩骤 S101 : 接收外部输入的红、 绿、 蓝三色源数据, 并获取所述红、 绿、 蓝三色源数据的最小值; 步骤 S 102 : 将所述红、 绿、 蓝三色源数据转换成红、 绿、 蓝、 白色的四 色数据, 并将所述四色数据输出; 其中, 所述四色数据中的白色数据的数值 是根据所述红、 绿、 蓝三色源数据的最小值和白色数据的第一比例来确定, 所述四色数据中的红、 绿、 蓝色数据的数值是根据白色数据的数值来确定; 步骤 S 103 : 统计四色数据的显示值;
步骤 根据统计的四色数据的显示值, 调整所述白色数据的第一比 例。
本发明图像处理方法根据统计出的四色数据的显示值来调节白色数据的 第一比例, 进而调整后续四色数据的输出值, 使得白色子像素使用情况与其 他颜色子像素使用情况相当, 降低白色子像素与其他颜色子像素使用情况的 差异, 较现有技术, 提高了各个颜色子像素的使 ffi寿命, 进而提高整体寿命。
步骤 S 101 中, 外部输入的三色源数据可以为红、 绿、 蓝数据, 即 RGB 数据。 该步骤在获取到三色源数据后, 需要确定三色源数据的最小值, 通常 获取的三色源数据一般是灰阶值。 因此, 获取三色源数据的最小值即获取三 色源数据的最小灰阶值。 三色源数据中的最小灰阶意味着在不降低色彩饱和 度下, 白色数据可替代的最大灰阶。最小灰阶值的获取可以采) ¾现有的技术, 例如最小值提取器等。 在本发明的一个实施例中, 可以采用灰阶值来获取三 色源数据, 而灰阶值仅是一种示例性的实施方式, 只要能够确定三色源数据 的数值, 还可使) ¾其他类型的评价值。
步骤 S 102中, 将红、 绿、 蓝数据转换为红、 绿、 蓝、 白四色数据, 从而 产生混光。 所述四色数据中的白色数据的数值是根据所述三色源数据最小值 和白色数据第一比例来确定, 所述四色数据中的红、 绿、 蓝色数据的数据是 根据白色数据数值来确定。 白色数据的第一比例的初始值是预先设定的, 可 以是 0-1之间的任意值。 在经过步骤 S103、 S 104之后, 白色数据的第一比例 的数值进行了调整, 白色数据的第一比例是根据调整结果进行对应修改的, 可以是实时调整第一比例的实时修改, 从而调整四色子像素的使用情况。 当 然, 还可以是间歇式调整, 每隔预定的时间进行一次修改, 例如每隔 5秒, 或者每隔预定的帧数进行一次修改。
其中, 将所述红、 绿、 蓝三色源数据转换成红、 绿、 蓝、 白色的四色数 据采 ffi如下等式进行:
R,=R- W, G':G W, B'=B W, W-WMR x Min(R, G, B),
其中, R、 G、 B、 为转换前的三色源数据, R,、 G,、 B'、 W为转换后的 四色数据, WMR为白色数据的第一比例, Min(R, G, B)为三色源数据的最 小值。
具体地, 将红、 绿、 蓝数据转换为红、 绿、 蓝、 白四色数据可采 ffi如下 算法进行:
步骤 1: 决定转换后的白色数据灰阶 W
其中, Li = (i/GL) Γ ( Γ表示伽马值, 一般为 2.2)
LW = WMR X Li
W-LW(l/r)xGL
上述公式中, i 为步骤 S101 中获取的三色源数据中的最小灰阶, 即 i-Min( , G, B); Li为三色源数据中最小灰阶的对应的亮度值(GL: 灰阶总 数); WMR (White Mixing Ratio), 表示白色数据的第一比例; LW为白色数 据的亮度值, 白色数据的亮度值 LW由白色数据的第一比例 WMR和三色源 数据中最小灰阶对应的亮度值 U的乘积确定; 然后将白色数据的亮度值 LW 转换成白色数据的灰阶 。
步骤 2: 决定转换后的红、 绿、 蓝三色数据的灰阶 R'、 G'、 B,
LR - (R/GL) Γ
LG - (G/GL) Γ
LB - (B/GL) Γ
LR'- LR - LW
LG'- LG - LW
LB'- LB - LW
R' - (LR -LW)(1/ ) x GL
G, -(LG-LW)(l/r)xGL
B' -(Le-LW)(l/r)xGL
{LRJLQLB}为 RGB转换前的亮度 (即三色源数据的各自对应的亮度); LW 白色数据的亮度值 (即白光所取代的亮度); 将 RGB转换前的亮度减去 白色数据的亮度值, 可求得 RGB转换后的亮度 {LR',LG',LB'}, 然后将 RGB 转换后的亮度值转换成转换后的 RGB的灰阶 m',G',B' }。
从上述算法中不难看出, 白色数据的第一比例直接影响最终四色数据的 输出值, 也就决定了显示面板中四个子像素的使 ffi情况, 因此通过控制调整 白色数据的第一比例可以降低四个子像素使用情况的差异, 提高整体显示寿 命。
步骤 S 103中, 四色数据的显示值可以是灰阶值或者亮度值。 四色数据的 显示值反映了四个子像素的显示情况,因为 RGBW显示模式的白光 AMOLED 显示面板都是通过控制相应子像素中有机发光二极管发射出需要亮度的白光 并通过彩膜后混合出所需要的颜色。 因此, 每个子像素的发光单元是一致的, 都为白光有机发光二极管。 因此对四色数据的显示值进行统计, 可以直接获 得四个子像素在之前显示过程中各自的使 ffi情况, 丛而可以根据之前四色数 据的显示情况, 通过调节后续白色数据的第一比例控制后续四色数据的输出 值, 这样可避免四个子像素在长时间显示中使用情况有较大差异丛而导致子 像素中某个像素使用过多, 其寿命相应的缩短, 最终降低面板的整体寿命的 情形。 具体统计方法可以直接获取四色数据输出的亮度值或灰阶值, 并将各 色亮度值或灰度值进行加和统计; 也可以通过检测装置, 如点灯机等, 检测 面板各色显示的亮度值或灰阶值, 并将各色亮度值或灰阶值进行加和统计。 在此, 对获取四色数据显示值的方法不做限定。 具体地, 本实施例可采用一 加法器统计四色数据显示值, 将获取的四色数据显示值分别进行加和统计, 统计的显示值可以是红、 绿、 蓝数据各自的显示值或者红、 绿、 蓝显示值的 平均值和白色数据的显示值。
理论上 RGB 的使用情况应大致相同, 如同我们在实验中用标准图像 IEC62087中长期下来所统计的数据一样, 基于上述理论和实验结果, 结合本 发明实施例采用的转换算法,我们将 RGB三色数据的显示值作为一个整体来 反映 RGB子像素的使) ¾情况,将白色数据的显示值来反映白色子像素的使用 情况。 因此将统†数据分为 RGB显示值的统†值 RGB— calculator和白色显 示值的统计值 W— calculator
在一种实施例中, 分别统计 RGB灰阶的统计值 RGB calculator和白色 灰阶的统计值 W___caIc 1aior, 其中,
RGB calculator ^ (Sum(R'(n)) + Sum(G'(n)) + Sum(B'(n))) / 3
W— .calculator Sum(W(n))
Sum(R' ))代表转换后的红色子像素在 n个图像的灰阶总合 (n≥ 1) Sum(G ' (n))代表转换后的绿色子像素在 n个图像的灰阶总合 (n≥ 1) Sum(B ' ))代表转换后的蓝色子像素在 n个图像的灰阶总合 (n≥ 1) Sum(W(n))代表白色子像素在 n个图像的灰阶总合 (n≥ 1)
在另一种实施例中, 分别统计 RGB亮度的统计值 RGB.— calculator和白 色亮度的统什值 W.— cakulator, 其中,
RGB calculator ^ (Sum(LR'(n)) + Sum(LG'(n)) + Sum(LB'(n))) / 3
W— .calculator Sum(LW(n))
SumfLR ' (n))代表转换后的红色子像素在 n个图像的亮度总合 (n≥ 1) Sum(LG ' (r )代表转换后的绿色子像素在 ιι个图像的亮度总合 (n≥ 1) Sum(LB ' (n))代表转换后的蓝色子像素在 11个图像的亮度总合 (n≥ 1) Sum(LW (ii))代表白色子像素在 n个图像的亮度总合 (n≥ 1)
其中, RGB— calculator表示 RGB数据显示值的统计平均值; W— calculator 表示白色数据显示值的统计值。
上述实施例中, 红、 绿、 蓝显示值 (亮度或灰阶) 的平均值和白色数据 的显示值 (亮度或灰阶) 可以直观反映红、 绿、 蓝子像素和白色子像素各自 的使用情况, 进而为提高各子像素寿命, 调整红、 绿、 蓝子像素和白色子像 素各自的使用情况提供了数据参考。
步骤 S104中,根据四色数据的显示值,来调整所述白色数据的第一比倒, 具体是根据四色数据的显示值来调整第一比例。 可选地, 是根据红、 绿、 蓝 数据显示值的平均值和白色数据的显示值来调整所述白色数据的第一比例。 具体是比较所述红、 绿、 蓝数据显示值的平均值与白色数据显示值, 当所述 平均值大于所述白色数据的显示值时, 将白色数据的第一比例调整为第二比 例; 当所述平均值小于所述白色数据的显示值时, 将白色数据的第一比例调 整为第三比例。 其中, 第二比例的数值大于第三 ί:匕例的数值。
可选地, 所述第二比例为大于 0 6小于等于 0„9中的任一数值, 所述第三 比例为大于等于 0.1小于等于 0.6中的任一数值。 第二比例为 0.6〜0.9, 包括 0,9, 第三比例为 0.1〜0.6, 包括 0.1。
本发明实施例中, 第二比例和第三比例的数值是通过大量的标准图像实 验测试得到的, 具有普适性和准确性。 当红、 绿、 蓝数据显示值的平均值大 于所述白色数据的显示值时 (RGB— cakulator > W... calculator),即统计得出的结 论为在之前显示过程中, 红、 绿、 蓝子像素的使 ffi情况大于白色子像素的使 ^情况, 为了平衡各子像素的使用情况, 避免红、 绿、 蓝子像素过度使用, 在后续显示中, 将白色数据第一比例调整为第二比例, 即调整 WMR为大于 0.6小于等于 0.9中的任一数值。 这样, 在后续的显示中, 白色子像素的使用 情况为一较高的比例, 可以平衡之前红、 绿、 蓝子像素使用过多, 白色子像 素使用过少从而导致各颜色子像素使用情况存在的差异情形, 较现有技术, 提高了各个颜色子像素的使用寿命, 进而提高了整体寿命; 同理, 当红、 绿、 蓝数据显示值的平均值大于所述白色数据的显示值时 (RGB— calculator < W— calculator), 即统计得出的结论为在之前的显示过程中, 白色子像素的使 )¾情况大于红、 绿、 蓝子像素的使) ¾情况, 为了平衡各子像素的使用情况, 避免白色子像素过度使用, 在后续显示中, 将白色数据第一比例调整为第三 比例, 即调整 WMR为大于等于 0.1小于等于 0.6中的任一数值。 这样, 在后 续的显示中, 红、 绿、 蓝子像素的使用情况为一较高比例, 可以平衡之前白 色子像素使用过多, 白色子像素使) ¾过少导致各颜色子像素使) ¾情况存在的 差异, 较现有技术, 提高了各个颜色子像素的使 寿命, 进而提高了整体寿 命。
在实际应) ¾上, 考虑到统计四色数据的显示值过程中, RGB— calculator 与 W— calculator的存储量是有限的, 可能需要适时的归零 (release), 以免产 生溢位 (overflow)导致的判断错误。 例如, 当 (RGB—calculator = W— calculator) 时, 白色子像素的使) ¾情况与红、 绿、 蓝子像素的使用情况相当时, 可以清 空步骤 S103中的各显示值的统计值, 使 RGB—calculator 0 ; W— calculator 0, 此时白色数据的第一比例 WMR不做调整, 维持不变。 当然根据需要(如 加法器存储量的大小), 也可以设定每隔预定的 i吋间或帧数对 RGB— calculator 与 W calculator归零处理。 这里需要说明的是, 所述根据红、 绿、 蓝数据显示值的平均值和白色数 据的显示值来调整所述白色数据的第一比例涵盖了每帧画面显示后, 根据获 得的红、 绿、 蓝数据显示值的平均值和白色数据的显示值来调整白色数据的 第一比例 (即根据每帧画面显示后的红、 绿、 蓝数据显示值的平均值和白色 数据的显示值时时调整白色数据的第一比例); 也涵盖了每隔预定的 ^数后
(例如】0帧) 或每隔预定的时间后 (如 5秒), 根据获得的红、 绿、 蓝数据 显示值的平均值和白色数据的显示值来调整白色数据的第一比例的情形, 这 里不做限定。
如图 2所示, 为本发明一种实施例的图像处理装置的结构框图, 该图像 处理装置包括:
接收模块 】00, 用于接收外部输入的红、 绿、 蓝三色源数据, 并获取所 述红、 绿、 蓝三色源数据的最小值;
数据转换模块 200, 于将所述红、 绿、 蓝三色源数据转换成红、 绿、 蓝、 白色的四色数据, 并将所述四色数据输出; 其中, 所述四色数据中的白 色数据的数值是根据所述红、 绿、 蓝三色源数据的最小值和白色数据的第一 比例来确定, 所述四色数据中的红、 绿、 蓝色数据的数值是根据白色数据的 数值来确定;
统 i†模块 300, 用于统计四色数据的显示值;
调节模块 400, 用于根据统计模块统计的四色数据的显示值, 控制所述 数据转换模块调整所述白色数据的第一比例。
其中, 接收模块 100接收到的三色源数据为红、 绿、 蓝数据, g卩 RGB数 据。 该步骤在获取到三色源数据后, 需要确定三色源数据的最小值, 通常获 取的三色源数据一般是灰阶值。 因此, 获取三色源数据的最小值即获取三色 源数据的最小灰阶值。 三色源数据中的最小灰阶意味着在不降低色彩饱和度 下, 白色数据可替代的最大灰阶。 最小灰阶值的获取可以采用现有的技术, 例如最小值提取器等。
数据转换模块 200用于将红、 绿、 蓝数据转换为红、 绿、 蓝、 白四色数 据并输出, 从而产生混光。 所述四色数据中的白色数据的数值是根据所述三 色源数据最小值和白色数据第一比例来确定, 所述四色数据中的红、 绿、 蓝 色数据的数据是根据白色数据数值来确定。 白色数据的第一比例的初始值是 预先设定的, 可以是 0-】之间的任意值。在经过统计模块 300和调节模块 400 后, 对第一比例的数值进行了调整, 第一比例是根据调整结果进行对应修改 的, 可以是实时修改, 实时调整白色数据的第一比例, 从而调整四色子像素 的使用情况。 当然, 还可以是间歇式调整, 每隔预定的时间进行一次修改, 例如每隔 5秒, 或者每隔预定的帧数进行一次修改。 具体地, 将红、 绿、 蓝 数据转换为红、 绿、 蓝、 白四色数据采用的算法可参照前述实施例图像处理 方法中步骤 S102, 此处不再赘述。
统计模块 300用于统计四色数据的显示值并将四色数据的显示值输送给 调节模块 400, 四色数据的显示值可以是灰阶值或者亮度值。 四色数据的显 示值反映了四个子像素的显示情况, 因为 RGBW显示模式的白光 AMOLED 显示面板都是通过控制相应子像素中有机发光二极管发射出需要亮度的白光 并通过彩膜后混合出所需要的颜色。 因此, 每个子像素的发光单元是一致的, 都为白光有机发光二极管, 因此, 若四个子像素在长时间显示中使用情况有 较大差异, 将会导致子像素中某个像素使) ¾过多, 其寿命也相应的缩短, 从 而降低面板的整体寿命。 具体地, 统计模块 300可以直接获取四色数据输出 的亮度值或灰阶值, 并将各色亮度值进行加和统计; 统计模块也可以通过检 测装置, 如点灯机等, 检测面板各色显示的亮度值或灰阶值, 并将各色亮度 值或灰阶值进行加和统计。 在此, 对获取四色数据显示值的方法不做限定。 具体地, 本实施例中, 统计模块 300可采用一加法器统计四色数据显示值, 将获取的四色数据显示值分别进行加和统计, 统计的显示值可以是红、 绿、 蓝数据各自的显示值或者红、 绿、 蓝显示值的平均值和白色数据的显示值。 参考前述实施例图像处理方法,我们将 RGB三色数据的显示值作为一个整体 来反映 RGB子像素的使用情况,白色数据的显示值来反映白色子像素的使) ¾ 情况。 因此将统计数据分为 RGB显示值的统 i†值 RGB— calculator和白色显 示值的统计值 W— calculator,具体统计方法参照前述实施例图像处理方法中歩 骤 S 103 ο
调节模块 400用于根据统计模块统†的四色数据的显示值, 控制所述数 据转换模块 200调整所述白色数据的第一比例, 可选地, 是根据红、 绿、 蓝 数据显示值的平均值和白色数据的显示值来调整所述白色数据的第一比例。 具体地, 调节模块 400首先获取统计模块统什的所述红、 绿、 蓝数据显示值 的平均值与白色数据显示值, 进而比较二者的大小, 当所述平均值大于所述 白色数据的显示值时, 控制数据转换模块 200将白色数据的第一比例调整为 第二比例, 所述第二比例将作为此后单帧 (根据需要, 也可以为多帧) 图像 红、 绿、 蓝三色源数据转换成红、 绿、 蓝、 白色的四色数据时的第一比例; 同理, 当所述平均值小于所述白色数据的显示值时, 控制数据转换模块 200 将白色数据的第一比例调整为第三比例。 其中, 第二比例的数值大于第三比 例的数值。
可选地, 所述第二比例为大于 0.6小于等于 0.9中的任一数值, 所述第三 比例为大于等于 0.1小于等于 0.6中的任一数值。
本发明的图像处理装置是根据统计出的四色数据的显示值来调节白色数 据的第一比例, 进而调整后续四色数据的输出值, 使得白色子像素使) ¾情况 与其他颜色子像素使 情况相当, 降低白色子像素与其他颜色子像素使用情 况的差异, 较现有技术, 提高了各个颜色子像素的使用寿命, 进而提高整体 寿命。
以下结合实施例对本发明的技术方案进行详细描述: S101:求得输入三色源数据的最小灰阶;
获取三色源数据,包括红色、绿色、蓝色数据, ffi就是通 的 RGB数据。 在获取三色源数据之后, 确定三色源数据的最小灰阶 Hmm(R,QB), 这代表 在不降低色彩饱和度下, 白色数据可替代的最大灰阶。
S102 : 决定白色数据的灰阶 W;
其中, Li = (i/GL) Γ ( Γ表示伽马值, 一般为 2.2 )
LW - WMR Li
W - LW(1/ Γ ) X GL
上述公式中, 1 为步骤 S101 中获取的三色源数据中的最小灰阶, 即 i-min(R, G, B); Li为三色源数据中最小灰阶的对应的亮度值(GL: 灰阶总 数); WMR (White Mixing Ratio) , 表示白色数据的第一比例; LW为白色数 据的亮度值, 白色数据的亮度值 LW由白色数据的第一比例 WMR和三色源 数据中最小灰阶对应的亮度值 U的乘积确定; 然后将白色数据的亮度值 LW 转换成白色数据的灰阶1^。
5103: 决定 RGB转换后的灰阶 R'G'B';
LR - (R/GL) Γ
LG二(G/GL) Γ
LB - (B/GL) Γ
LR'- LR LW
LG'-LG LW
LB'- LB -LW
R, -(LR ~LW)(l/r)xGL
G' -(LG-LW)(i/r)xGL
B' -(LB~LW)(l/r)xGL
{LR GLB}为 RGB转换前的亮度 (即三色源数据的各自对应的亮度); LW 白色数据的亮度值 (即白光所取代的亮度); 将 RGB转换前的亮度减去 白色数据的亮度值, 可求得 RGB转换后的亮度 {LR',LG',LB'}, 然后将 RGB 转换后的亮度值转换成转换后的 RGB的灰阶 {R',G'JB'}。
5104: 获取四色数据的显示值, 并根据四色数据的显示值, 来调整所述 白色数据的第一比例。
所述白色数据的第一比例是根据四色数据的显示值来调整, 以下结合实 施例详细描述如何调整白色数据的第一比例:
实施例一: 根据 RGBW的显示值进行调整白色数据的混合比例 理论上 RGB的使用机率应相同, 如同在标准图像 IEC62087中长期下来 所统计的数据一样, 所以可以将统计数据分为 RGB 灰阶的统计值 RGB— calculator和白色数据灰阶的统计值 W__calculator。 其中,
RGB— calculator - (Sum(R'(n)) + Sum(G'(n)) + Sum(B'(n))) I 3
W— calculator Sum(W(n))
Sum( ' (n))代表转换后的红色子像素在 n个图像的灰阶总合 (n≥ 1) Sum(G' (n))代表转换后的绿色子像素在 n个图像的灰阶总合 (n≥ 1) Sum(B' (η 代表转换后的蓝色子像素在 η个图像的灰阶总合 (η≥ 1) Sum(W(n))代表白色子像素在 n个图像的灰阶总合 (n≥ 1 )
当然, 还可以将统什数据分为 RGB亮度的统计值 RGB.— cakuktor和白 色数据亮度的统计值 W— calcidator。 其中,
RGB calculator ^ (Sum(LR' (n)) + Sum(LG ' (n)) + Sum(LB ' (n))) / 3 W— .calculator Sum(LW (n))
苴 Φ ,
Sum(LR' ))代表转换后的红色子像素在 n个图像的亮度总合 (n≥ 1) SumfLG ' (n))代表转换后的绿色子像素在 n个图像的亮度总合 (n≥ 1) Sum(LB ' ))代表转换后的蓝色子像素在 n个图像的亮度总合 (n≥ 1) Sum(LW (n))代表白色子像素在 n个图像的亮度总合 (n≥1 )
其中, RGB—calculator - (Sum(R) + Sum(G) + Sum(B)) I 3, 表示 RGB数 据显示值的统计平均值; W— calculator = Sum(W), 表示白色数据的统计值。
比较 RGB— calculator与 W— calculator的显示值, 当 RGB— calculator大于 W— calculator的显示数量时,将白色数据第一比例调整为第二比例,所述第二 比例可以为大于 0.6 小于等于 0.9 中的任一数值; 当 RGB—calculator小于 W— calculator的显示值时,将白色数据第一比例调整为第三比例,所述第三比 例可以为大于等于 0.1小于等于 0.6中的任一数值。 当然, ffi可以统计任意 11 个显示画面, 然后根据 n个显示画面统计的显示值对白色数据的第一比例进 行调整。 在适当的时候重置这两个变数 (例如 RGB—calcuktor - W— calculator 时, 可将此两个变量都归零 (release parameter), 重新计算), 此时白色数据的 第一比例 WMR不做调整, 维持不变。
在实际操作上, 考虑到 RGB— calculator与 W—calculator的存储量是有限 的, 可能需要适时的归零 (release) , 以免产生溢位 (overflow)导致的判断错 误。
在对一标准图像的实验中, 预设的白色数据的第一比例 WMR = 1, 代表 白光会尽可能的取代 RGB , 此方式可节省 63%的功耗, 经过统计模块统计四 色显示值,得到 RGBW的使用情况分别为 R: G: B: W = 0.044: 0.053: 0.081: 1, 这意味着, 白色子像素像素的平均衰减速度至少会是其他颜色子像素平均 衰减速度的 12信。而现有技术一般会使白色数据的第一 例固定不变, 若长 期点亮此类图片, 白色子像素的寿命会远低于其他颜色子像素的寿命, 导致 整体寿命缩短。
当利用本发明的技术方案时, 白色数据的第一比例是可调的, 此时可以 将第一比例根据四色数据的显示值进行调整, 按照本发明的技术方案, 此时 红、 绿、 蓝显示值的平均值小于白色子像素的显示值, 将白色数据的第一比 例调整为第三比例, 第三比例为大于等于 0.1小于等于 0.6中的任意数值, 例 如若将第一比例 WMR 调整为 0.5, 此时可节省 31%功耗, 而 RGBW的使用 情况为 R: G: B: W = 1: 1.1: 1.2: 1, 因此可知将第一比例调整为 0.5时白色 子像素和其他颜色的子像素的使用情况相当, 较现有技术固定 WMR 的情 形, 提高了白色子像素的寿命, 从而提高整体寿命。 上述技术方案是以后续 显示同样画面为例进行的说明, 需要说明的是, 本发明实施例不限于同样的 画面显示的情形, 由于之前 GBW的使^情况分别为 R: G: B: W = 0.044: 0.053: 0.081: 1,丛而已经造成红绿蓝子像素和白色子像素使用情况的较大差 异, 因此后续显示其他画面时, 应 本发明实施例提供的技术方案, 同样可 以将白色数据的第一比例调整为白色数据第三比例, 此比例下, 白色子像素 的使用情况为一较低的比例, 同样有利于平衡四色像素使用情况的差异, 提 高整体显示寿命。
本发明的图像处理装置是根据统计出的四色数据的显示值来调节白色数 据的第一比例, 进而调整后续四色数据的输出值, 使得白色子像素使) ¾情况 与其他颜色子像素使 情况相当, 降低白色子像素与其他颜色子像素使用情 况的差异, 较现有技术, 提高了各个颜色子像素的使用寿命, 进而提高整体 寿命。
本发明实施例还提供了一种显示装置, 该显示装置包括如上所述的图像 处理装置。 该显示装置可以应用于如下的电子产品当中, 包括但不限于为: 液晶面板、 电子纸、 有机发光二极管面板、 手机、 平板电脑、 电视机、 显示 器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的电子产品或部件。
本发明实施例还提供了一种计算机程序, 由处理器执行所述什算机程序 来实现上述图像处理方法。
本发明实施例还提供了一种计算机可读介质, 存储有上述计算机程序。 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明精神的范围内, 还可以作出若干修改和变形, 这些修改和变形也应视为本发明的保护范围。

Claims

1. 一种图像处理装置, 包括:
接收模块, 用于接收外部输入的三色源数据, 并获取所述三色源数据的 最小值;
数据转换模块,用于将所述三色源数据转换成包括第四颜色的四色数据, 并将所述四色数据输出; 其中, 所述四色数据中的第四颜色数据的数值是根 据所述三色源数据的最小值和第四颜色数据的第一比例来确定, 所述四色数 据中的除第四颜色之外的其他颜色数据的数值是根据第四颜色数据的数值来 确定;
统计模块, 用于统计四色数据的显示值;
调节模块, 用于根据统 i†模块统计的四色数据的显示值, 控制所述数据 转换模块调整所述第四颜色数据的第一比例。
2. 根据权利要求 1所述的图像处理装置, 其中所述三色源是红色、绿色、 蓝色。
3. 根据权利要求 1或 2所述的图像处理装置, 其中所述第四颜色是白色。
4. 根据权利要求 1-3任一项所述的图像处理装置, 其中所述四色数据的 显示值为亮度值或者灰阶值。
5. 根据权利要求 3所述的图像处理装置, 其中所述调节模块进一步用于 根据红、 绿、 蓝数据显示值的平均值和白色数据显示值来调整所述白色数据 的第一比例。
6. 根据权利要求 3或 5所述的图像处理装置,其中每隔预定的时间或者每 隔预定的帧数调整所述白色数据的第一比例。
7. 根据权利要求 5所述的图像处理装置, 其中所述调节模块还用于比较 所述红、 绿、 蓝数据显示值的平均值与白色数据显示值,
当所述红、 绿、 蓝数据显示值的平均值大于所述白色数据的显示值时, 将白色数据的第一比例调整为第二比例;
当所述红、 绿、 蓝数据显示值的平均值小于所述白色数据的显示值时, 将白色数据的第一比例调整为第三比例。
8. 根据权利要求 7所述的图像处理装置, 其中所述第二比例的数值大于 所述第三比例的数值。
9.根据权利要求 7或 8所述的图像处理装置,其中所述第二比例为大于 0. 6 小于等于 0. 9中的任一数值,所述第三比例为大于等于 ( 1小于等于 0. 6中的任 一数值。
10. —种图像处理方法, 包括:
接收外部输入的三色源数据, 并获取所述三色源数据的最小值; 将所述三色源数据转换成包括第四颜色的四色数据, 并将所述四色数据 输出; 其中, 所述四色数据中的第四颜色数据的数值是根据所述三色源数据 的最小值和第四颜色数据的第一比例来确定, 所述四色数据中的除第四颜色 之外的其他颜色数据的数值是根据第四颜色数据的数值来确定;
统 i†四色数据的显示值;
根据统 i†的四色数据的显示值, 调整所述第四颜色数据的第一比例。
11. 根据权利要求 10所述的图像处理方法, 其中所述三色源是红色、 绿 、
12. 根据权利要求 10或 1 1所述的图像处理方法, 其中所述第四颜色是白 色
13. 根据权利要求 10- 12任一项所述的图像处理方法, 其中所述四色数据 的显示值为亮度值或者灰阶值。
14. 根据权利要求 12所述的图像处理方法, 其中所述根据四色数据的显 示情况, 来调整所述白色数据的第一比例的歩骤进一步包括:
根据红、 绿、 蓝数据显示值的平均值和白色数据显示值来调整所述白色 数据的第一比例。
15. 根据权利要求 12或 14所述的图像处理方法, 其中每隔预定的时间或 者每隔预定的帧数调整所述白色数据的第一比例。
16. 根据权利要求 14所述的图像处理方法, 其中所述根据统计的四色数 据的显示值, 调整所述白色数据的第一比例的步骤进一步包括: 比较所述红、 绿、 蓝数据显示值的平均值与白色数据显示值,
当所述平均值大于所述白色数据的显示值时, 将白色数据的第一比例调 整为第二比例;
当所述平均值小于所述白色数据的显示值时, 将白色数据的第一比例调 整为第三比例。
17. 根据权利要求 16所述的图像处理方法, 其中所述第二比例的数值大 于所述第三比例的数值。
18. 根据权利要求 16或 17所述的图像处理方法, 其中所述第二比例为大 于 0. 6小于等于 0. 9中的任一数值, 所述第三比例为大于等于 0. 1小于等于 0. 6 中的任一数值。
1 9. 一种显示装置, 包括权利要求 1 9任一项所述的图像处理装置。
20. 一种 i†算机程序, 由处理器执行所述计算机程序来实现如权利要求 10- 18中任一项所述的图像处理方法。
21.一种计算机可读介质, 存储有如权利要求 20所述的计算机程序。
PCT/CN2014/075580 2013-12-31 2014-04-17 图像处理装置、图像处理方法、显示装置、计算机程序及计算机可读介质 WO2015100881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/415,541 US10008148B2 (en) 2013-12-31 2014-04-17 Image processing apparatus, image processing method, display device, computer program and computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310752316.1 2013-12-31
CN201310752316.1A CN103680413B (zh) 2013-12-31 2013-12-31 一种图像处理装置及方法

Publications (1)

Publication Number Publication Date
WO2015100881A1 true WO2015100881A1 (zh) 2015-07-09

Family

ID=50317785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075580 WO2015100881A1 (zh) 2013-12-31 2014-04-17 图像处理装置、图像处理方法、显示装置、计算机程序及计算机可读介质

Country Status (3)

Country Link
US (1) US10008148B2 (zh)
CN (1) CN103680413B (zh)
WO (1) WO2015100881A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550593B (zh) * 2013-08-14 2016-09-21 友達光電股份有限公司 顯示裝置
CN103680413B (zh) 2013-12-31 2015-07-01 京东方科技集团股份有限公司 一种图像处理装置及方法
KR102204674B1 (ko) * 2014-04-03 2021-01-20 삼성디스플레이 주식회사 표시 장치
CN104023219B (zh) * 2014-05-30 2015-09-09 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
CN104078026B (zh) * 2014-07-17 2016-06-08 深圳市华星光电技术有限公司 液晶显示装置及其驱动方法
CN104299568B (zh) * 2014-10-23 2016-08-17 京东方科技集团股份有限公司 一种woled显示装置的图像显示控制方法及装置、显示装置
CN104269138B (zh) * 2014-10-24 2017-04-05 京东方科技集团股份有限公司 白光oled显示装置及其显示控制方法、显示控制装置
CN104778929B (zh) * 2015-03-27 2017-11-03 深圳市华星光电技术有限公司 一种显示面板的驱动数据的转换方法及转换系统
CN105679235A (zh) * 2016-03-31 2016-06-15 广东欧珀移动通信有限公司 一种像素调用方法及装置
CN105895027B (zh) * 2016-06-12 2018-11-20 深圳市华星光电技术有限公司 Amoled显示装置的数据驱动电路
CN106791755B (zh) * 2016-12-27 2018-11-23 武汉华星光电技术有限公司 一种rgbw像素渲染装置及方法
CN107316609B (zh) 2017-08-21 2019-05-24 京东方科技集团股份有限公司 一种woled显示装置的补色方法、woled显示装置
CN108711396B (zh) * 2018-05-30 2020-03-31 京东方科技集团股份有限公司 像素数据的处理方法及处理装置、显示装置及显示方法
CN109147712B (zh) * 2018-10-08 2020-06-26 惠州市华星光电技术有限公司 一种改善显示面板的视角色偏的方法及系统
CN109410889B (zh) * 2018-12-20 2020-08-04 惠州市华星光电技术有限公司 一种白平衡调整方法、装置及电子设备
KR102586677B1 (ko) * 2019-07-18 2023-10-11 엘지전자 주식회사 디스플레이 장치
KR20220058157A (ko) * 2020-10-30 2022-05-09 엘지디스플레이 주식회사 사색 부화소를 포함하는 표시장치 및 그 구동방법
CN115239732B (zh) * 2022-09-23 2022-12-09 成都数之联科技股份有限公司 点灯机显示不均判断方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658046A (zh) * 2007-04-13 2010-02-24 伊斯曼柯达公司 用于rgbw显示器的输入信号变换
EP2178072A2 (en) * 2008-10-14 2010-04-21 Samsung Electronics Co., Ltd. Four color display device and method of converting image signal thereof
US7982693B2 (en) * 2004-06-15 2011-07-19 Global Oled Technology Llc OLED display apparatus
CN102483898A (zh) * 2009-09-17 2012-05-30 全球Oled科技有限责任公司 显示装置
CN103680413A (zh) * 2013-12-31 2014-03-26 京东方科技集团股份有限公司 一种图像处理装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012790B1 (ko) * 2003-12-30 2011-02-08 삼성전자주식회사 4색 표시 장치의 영상 신호 변환 장치 및 방법, 그리고이를 포함하는 표시 장치
CN100423063C (zh) * 2004-06-25 2008-10-01 三洋电机株式会社 自发光型显示器的信号处理电路和信号处理方法
KR100716976B1 (ko) * 2004-07-15 2007-05-10 삼성전자주식회사 순차 구동 방식의 화상 표시 장치의 영상 표시 방법
EP1694055B1 (en) * 2005-02-21 2017-11-01 Harman Becker Automotive Systems GmbH Method for improving the subjective impression of a digitized image displayed with a low amplitude resolution, and video apparatus for carrying out the method
JP2006267148A (ja) * 2005-03-22 2006-10-05 Sanyo Electric Co Ltd 表示装置
US7477778B2 (en) * 2006-12-26 2009-01-13 Texas Instruments Incorporated Sequential color reproduction method
KR101329125B1 (ko) * 2007-08-13 2013-11-14 삼성전자주식회사 RGB-to-RGBW 컬러 분해 방법 및 시스템
JP5190731B2 (ja) * 2007-10-23 2013-04-24 Nltテクノロジー株式会社 画像表示装置、該画像表示装置に用いられる画像表示方法、及び液晶表示装置
US8169389B2 (en) * 2008-07-16 2012-05-01 Global Oled Technology Llc Converting three-component to four-component image
US8184112B2 (en) * 2008-09-24 2012-05-22 Global Oled Technology Llc Increasing dynamic range of display output
KR101588336B1 (ko) * 2009-12-17 2016-01-26 삼성디스플레이 주식회사 데이터 처리 방법 및 이를 수행하기 위한 표시 장치
KR101609255B1 (ko) * 2010-05-25 2016-04-05 삼성전자주식회사 명도 조절 방법 및 명도 조절 신호 처리 장치와 이를 적용한 영상 표시 시스템
CN101887681B (zh) * 2010-07-16 2012-07-25 友达光电股份有限公司 红绿蓝白显示装置及其控制方法
JP4724801B1 (ja) * 2010-07-30 2011-07-13 株式会社シフト 二次元コードリーダおよびプログラム
KR101987383B1 (ko) * 2011-11-11 2019-06-10 엘지디스플레이 주식회사 4원색 표시장치 및 그의 픽셀데이터 랜더링 방법
TW201407579A (zh) * 2012-08-09 2014-02-16 Sony Corp 色信號處理電路、色信號處理方法、顯示裝置及電子機器
KR101384993B1 (ko) * 2012-09-27 2014-04-14 삼성디스플레이 주식회사 유기 발광 표시 장치의 구동 방법 및 유기 발광 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982693B2 (en) * 2004-06-15 2011-07-19 Global Oled Technology Llc OLED display apparatus
CN101658046A (zh) * 2007-04-13 2010-02-24 伊斯曼柯达公司 用于rgbw显示器的输入信号变换
EP2178072A2 (en) * 2008-10-14 2010-04-21 Samsung Electronics Co., Ltd. Four color display device and method of converting image signal thereof
CN102483898A (zh) * 2009-09-17 2012-05-30 全球Oled科技有限责任公司 显示装置
CN103680413A (zh) * 2013-12-31 2014-03-26 京东方科技集团股份有限公司 一种图像处理装置及方法

Also Published As

Publication number Publication date
CN103680413A (zh) 2014-03-26
US10008148B2 (en) 2018-06-26
CN103680413B (zh) 2015-07-01
US20150364081A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015100881A1 (zh) 图像处理装置、图像处理方法、显示装置、计算机程序及计算机可读介质
TWI447704B (zh) 將輸入影像之像素的色彩輸入值進行色域映射為rgbw輸出值,以應用於rgbw顯示的方法,以及使用該方法的顯示模組、顯示控制器與設備
WO2016061944A1 (zh) 白光oled显示装置及其显示控制方法、显示控制装置
RU2660628C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
US20170301275A1 (en) Display devices capable of adjusting the display color gamut and methods of adjusting the color gamut thereof
RU2483362C2 (ru) Жидкокристаллическое устройство отображения
US20210158766A1 (en) Driving method, driving apparatus, display device and computer readable medium
JP2018520445A (ja) 三色データから四色データへの変換方法及び変換システム
US10347198B2 (en) Image displaying methods and display devices
RU2654349C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
US10685610B2 (en) Display driving method and computer apparatus
US20110285738A1 (en) Rgbw display system and method for displaying images thereof
JPWO2009041574A1 (ja) 表示装置
US9691317B2 (en) Image display control method and image display control device
CN101968956B (zh) 显示单元颜色校准方法
WO2020103244A1 (zh) 像素驱动方法、像素驱动装置和计算机设备
CN108780626A (zh) 有机发光二极管显示装置及其操作方法
TWI463476B (zh) 使用畫素顯示影像之方法
JP2016505884A5 (zh)
WO2019054178A1 (ja) 表示装置、及び信号処理装置
CN109215602B (zh) 像素信号转换方法及装置
CN106098009B (zh) 一种液晶显示面板的驱动方法及装置
US20160225323A1 (en) Display Device and Method of Adjusting Backlight Brightness of Display Device
US20180033838A1 (en) Method and apparatus for image processing
RU2656700C1 (ru) Жидкокристаллическое устройство отображения и способ управления им

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14415541

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/10/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14877396

Country of ref document: EP

Kind code of ref document: A1