WO2015100595A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2015100595A1
WO2015100595A1 PCT/CN2013/091060 CN2013091060W WO2015100595A1 WO 2015100595 A1 WO2015100595 A1 WO 2015100595A1 CN 2013091060 W CN2013091060 W CN 2013091060W WO 2015100595 A1 WO2015100595 A1 WO 2015100595A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
millimeter wave
measurement
user equipment
wave base
Prior art date
Application number
PCT/CN2013/091060
Other languages
English (en)
French (fr)
Inventor
黄磊
王艺
梁永明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380081070.8A priority Critical patent/CN105745894B/zh
Priority to JP2016543644A priority patent/JP6227793B2/ja
Priority to KR1020167020588A priority patent/KR101804480B1/ko
Priority to PCT/CN2013/091060 priority patent/WO2015100595A1/zh
Priority to EP13900791.8A priority patent/EP3079325B1/en
Publication of WO2015100595A1 publication Critical patent/WO2015100595A1/zh
Priority to US15/196,188 priority patent/US10111237B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a communication method, apparatus, and system.
  • BACKGROUND OF THE INVENTION With the increasing demand for mobile data services, most of the low-band spectrum resources suitable for mobile communication have been allocated (for example, bands below 3 GHz), but in the frequency band of 3-300 GHz, a large amount of spectrum resources have not been Assigned for use.
  • the 3-30 GHz band is called the Super High Frequency (SHF) band
  • the 30-300 GHz band is called the Extreme High Frequency (Extremely High). Frequency, hereinafter referred to as EHF) band.
  • SHF Super High Frequency
  • EHF Extreme High Frequency
  • the SHF and EHF bands have similar propagation characteristics, such as large propagation losses, and the wavelength range is between 1 mm and 100 mm
  • the 3-300 GHZ band is collectively referred to as the millimeter wave band.
  • the research on the use of the millimeter wave band for cellular mobile communication is still in the initial stage, the technology is not yet mature, and there are still many difficulties that have not yet been overcome.
  • the millimeter wave frequency band is used to provide high-speed data service
  • the millimeter wave base station is deployed in the coverage of the cellular base station
  • the user equipment needs to measure the cellular frequency band when accessing the cellular base station, and at the same time, the user equipment needs to access the millimeter.
  • the wave base station also needs to measure the millimeter wave band outside the traditional cellular frequency band. Even if the user equipment is not within the coverage of any millimeter wave base station, it still needs to continuously perform inter-frequency cell search and measurement, which is bound to accelerate the user. The energy consumption of the battery of the device causes unnecessary waste.
  • the embodiment of the invention provides a communication method, device and system, which can reduce unnecessary inter-carrier cell search and measurement of user equipment, reduce battery energy consumption of user equipment, and reduce The meter wave base station unnecessarily transmits measurement signals and pilot signals to avoid energy consumption, pilot pollution, and throughput reduction of the millimeter wave base station.
  • an embodiment of the present invention provides a communication method, including:
  • the cellular base station sends measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information to obtain a measurement result, where the millimeter wave base station Deployed within the coverage of the cellular base station;
  • the cellular base station acquires the measurement result, and determines, according to the measurement result, a millimeter wave base station to be accessed by the user equipment;
  • an embodiment of the present invention provides a communication method, including:
  • the millimeter wave base station receives the measurement indication information sent by the cellular base station;
  • the millimeter wave base station performs signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result and determines whether the millimeter wave base station is the user according to the measurement result.
  • the millimeter wave base station to be accessed by the device.
  • an embodiment of the present invention provides a communication method, including:
  • the user equipment receives the measurement indication information sent by the cellular base station on the cellular frequency band;
  • the user equipment performs signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires a measurement result, and determines, according to the measurement result, whether the millimeter wave base station is a a millimeter wave base station to be accessed by the user equipment;
  • millimeter wave band parameter configuration information of the millimeter wave base station to be accessed sent by the cellular base station, and awakening the millimeter wave band function according to the millimeter wave band parameter configuration information, and Accessing the millimeter wave base station to be accessed.
  • an embodiment of the present invention provides a cellular base station, including:
  • the indication information sending module is configured to send the measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information, to obtain a measurement result, where The millimeter wave base station is deployed within the coverage of the cellular base station;
  • An obtaining module configured to obtain the measurement result, and determine the use according to the measurement result a millimeter wave base station to be accessed by the user equipment;
  • a configuration information sending module configured to send, to the user equipment, millimeter wave band parameter configuration information of the millimeter wave base station to be accessed, so that the user equipment accesses the to-be-set according to the millimeter wave band parameter configuration information Access to the millimeter wave base station.
  • an embodiment of the present invention provides a millimeter wave base station, including:
  • An indication information receiving module configured to receive measurement indication information sent by the cellular base station
  • An interaction module configured to perform signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result, and determines, according to the measurement result, whether the millimeter wave base station is the user The millimeter wave base station to be accessed by the device.
  • an embodiment of the present invention provides a user equipment, including:
  • An indication information receiving module configured to receive measurement indication information sent by the cellular base station on a cellular frequency band
  • An interaction module configured to perform signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires a measurement result, and determines, according to the measurement result, whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment;
  • a configuration information receiving module configured to receive, on the cellular frequency band, millimeter wave band parameter configuration information of the millimeter wave base station to be accessed sent by the cellular base station, and wake up the millimeter wave according to the millimeter wave band parameter configuration information The band function and access to the millimeter wave base station to be accessed.
  • a seventh aspect of the present invention provides a cellular base station, including:
  • a transmitter configured to send measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information to obtain a measurement result, where
  • the millimeter wave base station is deployed in the coverage of the cellular base station;
  • the processor is configured to acquire the measurement result, and determine, according to the measurement result, the millimeter wave base station to be accessed by the user equipment;
  • the transmitter is further configured to send millimeter wave band parameter configuration information of the millimeter wave base station to be accessed to the user equipment, so that the user equipment accesses the millimeter wave band parameter configuration information according to the Millimeter wave base station to be accessed.
  • an embodiment of the present invention provides a millimeter wave base station, including:
  • a receiver configured to receive measurement indication information sent by the cellular base station
  • a cellular band processor configured to set a user frequency on the cellular frequency band according to the measurement indication information
  • the signal measurement interaction is performed to enable the cellular base station to acquire the measurement result and determine, according to the measurement result, whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment.
  • a ninth aspect, the embodiment of the present invention provides a user equipment, including:
  • a receiver configured to receive measurement indication information sent by the cellular base station on the cellular frequency band
  • a processor configured to perform signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular Obtaining, by the base station, a measurement result, and determining, according to the measurement result, whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment;
  • the receiver is further configured to receive, on the cellular frequency band, millimeter wave band parameter configuration information of the millimeter wave base station to be accessed sent by the cellular base station, and wake up millimeters according to the millimeter wave band parameter configuration information.
  • the wave band function and access to the millimeter wave base station to be accessed.
  • an embodiment of the present invention provides a millimeter wave communication system, including: a cellular base station and a millimeter wave base station, where the cellular base station uses the cellular base station in the fourth aspect, and the millimeter wave base station adopts the millimeter in the fifth aspect.
  • Wave base station a millimeter wave communication system, including: a cellular base station and a millimeter wave base station, where the cellular base station uses the cellular base station in the fourth aspect, and the millimeter wave base station adopts the millimeter in the fifth aspect.
  • Wave base station including: a cellular base station and a millimeter wave base station, where the cellular base station uses the cellular base station in the fourth aspect, and the millimeter wave base station adopts the millimeter in the fifth aspect.
  • an embodiment of the present invention provides a millimeter wave communication system, including: a cellular base station and a millimeter wave base station, where the cellular base station adopts the cellular base station in the seventh aspect, and the millimeter wave base station adopts the eighth aspect. Millimeter wave base station.
  • the communication method, the device and the system of the embodiment of the present invention realizes that the cellular base station controls the millimeter wave base station and the user equipment to perform measurement signal interaction on the cellular frequency band, and determines that the user equipment is to be accessed according to the measurement result.
  • the millimeter wave base station which in turn triggers to open or wake up the millimeter wave base station in the sleep state and the millimeter wave band transceiver of the user equipment, so that the user equipment accesses the millimeter wave base station to be accessed, and reduces the unnecessary carrier frequency between the user equipment.
  • FIG. 1 is a schematic diagram of a conventional cell site and a millimeter wave base station in a co-site manner
  • 2 is a schematic diagram of a conventional cellular base station and a millimeter wave base station in a non-co-located manner
  • FIG. 3 is a flowchart of Embodiment 1 of a communication method according to the present invention
  • Embodiment 4 is a flowchart of Embodiment 2 of a communication method according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 3 of a communication method according to the present invention.
  • FIG. 6 is a flowchart of Embodiment 4 of a communication method according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 6 of a communication method according to the present invention.
  • Embodiment 9 is a flowchart of Embodiment 7 of a communication method according to the present invention.
  • Embodiment 8 of a communication method according to the present invention.
  • FIG. 11 is a flowchart of Embodiment 9 of a communication method according to the present invention.
  • Embodiment 1 of a cellular base station is a schematic structural diagram of Embodiment 1 of a cellular base station according to the present invention.
  • Embodiment 13 is a schematic structural diagram of Embodiment 2 of a cellular base station according to the present invention.
  • Embodiment 14 is a schematic structural diagram of Embodiment 1 of a millimeter wave base station according to the present invention.
  • Embodiment 15 is a schematic structural diagram of Embodiment 2 of a millimeter wave base station according to the present invention.
  • Embodiment 3 of a millimeter wave base station is a schematic structural diagram of Embodiment 3 of a millimeter wave base station according to the present invention.
  • Embodiment 17 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • Embodiment 2 of a user equipment is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • Embodiment 3 of a cellular base station is a schematic structural diagram of Embodiment 3 of a cellular base station according to the present invention.
  • Embodiment 4 of a millimeter wave base station according to the present invention.
  • Embodiment 5 of a millimeter wave base station according to the present invention.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • FIG. 23 is a schematic structural diagram of an embodiment of a millimeter wave communication system according to the present invention. detailed description
  • Figure 1 is a schematic diagram of a conventional cell site and a millimeter wave base station in a co-site configuration.
  • a conventional cellular base station and a millimeter wave base station can share a single site, that is, a tower or a pole, and erect respective antennas, and even share a set of antenna systems.
  • the data exchange between the cellular base station and the millimeter wave base station can be considered as a high speed circuit. The exchange between the two does not need to consider the delay and capacity of the backhaul link between the cellular base station and the millimeter wave base station.
  • the coverage of the millimeter wave base station can be consistent with the coverage of the cellular base station, for example, as a hotspot area covering a radius ranging from 200 meters to 500 meters, but in more scenarios, the coverage of the millimeter wave base station is smaller than
  • the coverage of the cellular base station for example, the millimeter wave base station covers a radius ranging from 200 meters to 500 meters as a hot spot, and the cellular base station covers a wider range of frequencies ranging from 1 km to 2 km, and is within the coverage of the millimeter wave base station.
  • the equipment must be within the coverage of the traditional cellular base station of the co-site.
  • the user equipment in the coverage of the millimeter wave base station can interact with the millimeter wave base station through the millimeter wave frequency band, or interact with the traditional cellular base station through the traditional cellular frequency band; outside the coverage of the millimeter wave base station and in the traditional cellular base station coverage
  • the user equipment in the range can only interact with the traditional cellular base station through the traditional cellular frequency band.
  • a relatively straightforward physical feature of the network architecture is that the distance from the user equipment to the millimeter wave base station is the same as the distance from the user equipment to the cellular base station.
  • FIG. 2 is a schematic diagram of the configuration of the conventional cellular base station and the millimeter wave base station in a non-co-site manner.
  • the traditional cellular base station and the millimeter wave base station are erected at different sites, and the data exchange is performed between the cellular base station and the millimeter wave base station through the fiber-optic wired backhaul link or the millimeter wave wireless backhaul link.
  • one or more millimeter wave base stations are within the coverage of the traditional cellular base station, and the user equipments within the coverage of the millimeter wave base station can interact with the millimeter wave base station through the millimeter wave frequency band, or can pass the traditional cellular frequency band and the traditional cellular The base station interacts; the user equipment that is outside the coverage of the millimeter wave base station and is within the coverage of the traditional cellular base station can only interact with the traditional cellular base station through the traditional cellular frequency band.
  • the information of the user equipment control layer interacts with the cellular base station through the cellular frequency band
  • the information of the user equipment data layer can interact with the cellular base station through the cellular frequency band, or can pass the millimeter wave frequency band. Interact with millimeter wave base stations. Therefore, the mobility management of the user equipment and the transmission and reception of the Radio Resource Control (RRC) signaling are performed at the cellular base station.
  • RRC Radio Resource Control
  • FIG. 3 is a flowchart of Embodiment 1 of a communication method according to the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • Step 101 The cellular base station sends measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information to obtain a measurement result, where The millimeter wave base station is deployed within the coverage of the cellular base station;
  • the application scenario of this embodiment is described as follows:
  • the user equipment is at the edge of the millimeter wave base station coverage, and is in an RRC data connection (RRC_Connected) state with the traditional cellular base station.
  • RRC_Connected RRC data connection
  • the cell search and measurement of the user equipment is controlled and configured by the cellular base station.
  • the user equipment has not yet established a connection with the millimeter wave base station, and the millimeter wave base station will trigger the measurement operation of the user equipment in the millimeter wave frequency band according to the signal sent by the user equipment in the uplink cellular frequency band, so as to prepare the subsequent user equipment in the millimeter wave frequency band. Access on.
  • the millimeter wave base station that the user equipment needs to access is a millimeter wave base station deployed in the coverage of the cellular base station.
  • the cellular base station can use all the millimeter wave base stations in its coverage as the millimeter wave base station that the user needs to access; or a part of the millimeter wave base station in the coverage area can be used as the millimeter wave base station that the user needs to access, and the selection basis can be
  • the cellular base station determines the approximate orientation of the user equipment in the cellular base station according to the measurement information on the cellular frequency band fed back by the user equipment, and determines a plurality of millimeter wave base stations in the azimuth as the millimeter wave base station that the user needs to access.
  • the above-mentioned millimeter wave base station has a cellular band transceiver, and can interact with the user equipment on the cellular frequency band. Therefore, the millimeter wave base station can be in a dormant state when there is no service user equipment, and only the cellular band transceiver is processed on the cellular frequency band. Data reception and transmission.
  • the cellular base station sends measurement indication information to the millimeter wave base station through the backhaul link
  • the backhaul link between the cellular base station and the millimeter wave base station may be connected in the form of an optical fiber, or may be a millimeter wave wireless.
  • the interface of the backhaul link may be an X2 interface defined in Long Term Evolution (LTE) or a newly defined wireless interface.
  • the measurement indication information sent by the cellular base station to the millimeter wave base station may include information such as a transmission power of the measurement signal, a bandwidth size, a subframe configuration, a frequency domain position, an antenna configuration, and the like.
  • the millimeter wave base station may receive the measurement signal sent by the user equipment on the resource specified by the measurement indication information, or send the measurement signal to the user equipment.
  • the user equipment and the cellular base station are in an RRC_Connected state, so the cellular base station can be in the bee
  • the measurement indication information is sent to the user equipment by using the RRC signaling, and the measurement indication information may include information such as a bandwidth of the measurement signal, a subframe configuration, a frequency domain location, and an antenna configuration.
  • the user equipment may receive the measurement signal sent by the millimeter wave base station on the resource specified by the measurement indication information, or send the measurement signal to the millimeter wave base station.
  • the millimeter wave base station and the user equipment may perform signal measurement interaction on the cellular frequency band resource specified by the measurement indication information to obtain a measurement result according to the received measurement indication information, where the interaction process may be a millimeter wave base station at the designated
  • the measurement signal sent by the user equipment is received on the cellular frequency band resource, and then the measurement result is obtained according to a preset algorithm.
  • the user equipment may receive the measurement signal sent by the millimeter wave base station on the specified cellular frequency band resource, and then calculate and obtain according to a preset algorithm. Measurement results.
  • the specific implementation process will be described in the following embodiments.
  • Step 102 The cellular base station acquires the measurement result, and determines, according to the measurement result, a millimeter wave base station to be accessed by the user equipment;
  • the cellular base station obtains the measurement result, where the measurement result may be sent by the millimeter wave base station through the backhaul link, or may be sent by the user equipment on the cellular frequency band, and the cellular base station combines the millimeter wave according to the measurement result.
  • the information about the load and interference of the base station, and the link between the user equipment and the millimeter wave base station, etc. determine the millimeter wave base station to which the user equipment is to be accessed.
  • the millimeter wave base station to be accessed determined by the cellular base station may be one or more, because the cellular base station covers the millimeter wave base station according to the measurement result and the load and interference of the millimeter wave base station.
  • the millimeter wave base station in the range performs condition determination. There may be multiple qualified millimeter wave base stations.
  • the cellular base station can use all the qualified millimeter wave base stations as the millimeter wave base stations to be accessed by the user equipment.
  • the coverage of the cellular base station is a coarse screening process for the millimeter wave base station.
  • the millimeter wave base station in the approximate orientation of the user equipment can be determined as the millimeter wave base station that the user needs to access, even within the coverage of the cellular base station.
  • All millimeter wave base stations can be determined as the millimeter wave base station that the user needs to access; further, in step 102, the millimeter wave base station is determined according to the measurement result obtained by the signal measurement interaction between the millimeter wave base station and the user equipment, combined Information such as load and interference of the millimeter wave base station, and the link between the user equipment and the millimeter wave base station.
  • Step 103 The cellular base station sends the millimeter wave band parameter configuration information of the millimeter wave base station to be accessed to the user equipment, so that the user equipment is configured according to the millimeter wave frequency band parameter. The information is accessed to the millimeter wave base station to be accessed.
  • the cellular base station sends the millimeter wave band parameter configuration information of the millimeter wave base station to be accessed determined in step 102 to the user equipment, where the millimeter wave band parameter configuration information may include the one or more to be accessed.
  • the user equipment After successfully receiving the millimeter wave band parameter configuration information sent by the cellular base station, the user equipment opens or wakes up the millimeter wave band transceiver of the user equipment, and receives or transmits the corresponding measurement pilot on the configured millimeter wave frequency band resource.
  • the end user equipment accesses one millimeter wave base station among all millimeter wave base stations to be accessed, and the accessed millimeter wave base station may be a millimeter wave base station to be accessed Any one of them is determined by the access process of the user equipment, and is not specifically limited herein.
  • the embodiment of the present invention is based on a cellular band transceiver of a millimeter wave base station, and implements a cellular base station to control a millimeter wave base station and a user equipment to perform measurement signal interaction on a cellular frequency band, and determines a millimeter wave base station to be accessed by the user equipment according to the measurement result, and further triggers Open or wake up the millimeter wave base station in the dormant state and the millimeter wave band transceiver of the user equipment, so that the user equipment accesses the millimeter wave base station to be accessed, reduces unnecessary cell search and measurement between carrier frequencies of the user equipment, and reduces the user
  • the battery energy consumption of the device, as well as the reduction of the millimeter wave base station unnecessary emission measurement signals and pilot signals avoids energy consumption, pilot pollution, and throughput reduction of the millimeter wave base station.
  • the cellular base station sends measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information to obtain
  • the specific implementation method may be: the cellular base station sends the first measurement indication information to the millimeter wave base station, and sends the second measurement indication information to the user equipment, where the first measurement indication information is used to indicate the location
  • the millimeter wave base station receives, according to the first measurement indication information, a measurement signal that is sent by the user equipment on the cellular frequency band, and the second measurement indication information is used to indicate that the user equipment is according to the first
  • the second measurement indication information transmits the measurement signal to the millimeter wave base station on the cellular frequency band.
  • the cellular base station sends the first measurement indication information to the determined millimeter wave base station, and sends the second measurement indication information to the user equipment, so that the millimeter wave base station receives the said radio frequency band according to the first measurement indication information.
  • a measurement signal sent by the user equipment on the cellular frequency band, the user equipment transmitting the measurement signal to the millimeter wave base station on the cellular frequency band according to the second measurement indication information, at this time, a millimeter wave base station and User equipment is uplink data transmission, so
  • the measurement indication information sent by the cellular base station is used to indicate the resource configuration of the millimeter wave base station and the user equipment on the uplink of the cellular frequency band, the user equipment uses the uplink resource to send the measurement signal, and the millimeter wave base station receives the measurement signal on the corresponding uplink resource.
  • the measurement signal can be a Sounding Reference Signal (SRS) defined in LTE.
  • SRS Sounding Reference Signal
  • the SRS can meet the design requirements of this patent and can avoid the additional work of redesigning the measurement signal.
  • the measurement signals of the user equipment to the millimeter wave base station need to be transmitted on other symbols.
  • the SRS cannot meet the design requirements, and a new measurement signal needs to be re-introduced.
  • the goal is to ensure a cellular base station.
  • the one or more millimeter wave base stations can detect and distinguish the measurement signals sent by different user equipments, and the implementation method of the new measurement signals is not limited in this embodiment.
  • the cellular base station of the embodiment of the present invention obtains the measurement result
  • the specific implementation method may be: the cellular base station receives the first measurement result sent by the millimeter wave base station, and the first measurement result Obtained by the millimeter wave base station according to the measurement signal sent by the user equipment.
  • the millimeter wave base station receives the measurement signal sent by the user equipment according to the measurement indication information sent by the cellular base station, and calculates and obtains the first measurement result according to the measurement signal.
  • the specific calculation method is described in the following embodiments.
  • the cellular base station sends measurement indication information to the millimeter wave base station and the user equipment, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information to obtain
  • the specific implementation method may be: the cellular base station sends the third measurement indication information to the millimeter wave base station, and sends the fourth measurement indication information to the user equipment, where the third measurement indication information is used to indicate the location
  • the millimeter wave base station sends a measurement signal to the user equipment on the cellular frequency band according to the third measurement indication information, where the fourth measurement indication information is used to indicate that the user equipment is configured according to the fourth measurement indication information.
  • the cellular base station receives, on a cellular frequency band, the measurement signal transmitted by the millimeter wave base station on the cellular frequency band. That is, the cellular base station sends the third measurement indication information to the determined millimeter wave base station, and sends the fourth measurement indication information to the user equipment, so that the user equipment receives the millimeter on the cellular frequency band according to the fourth measurement indication information.
  • the millimeter wave base station transmitting the measurement signal to the user equipment on the cellular frequency band according to the third measurement indication information, at this time, a millimeter wave base station and
  • the user equipment is downlink data transmission, so the measurement indication information sent by the cellular base station is used to indicate the millimeter wave base station and the user equipment in the cellular frequency band.
  • the resource configuration on the downlink, the millimeter wave base station transmits the measurement signal by using the downlink resource, and the user equipment receives the measurement signal on the corresponding downlink resource.
  • the measurement signal may be a channel state indication reference signal (Channel State Indication RS, hereinafter referred to as CSI-RS), a common reference signal (Common RS, hereinafter referred to as CRS) or a positioning reference signal (Positioning Reference Signal, hereinafter referred to as PRS). ).
  • CSI-RS Channel State Indication RS
  • CRS Common Reference Signal
  • PRS Positioning Reference Signal
  • the cellular base station of the embodiment of the present invention obtains the measurement result
  • the specific implementation method may be: the cellular base station receives the second measurement result sent by the user equipment, where the second measurement result is The user equipment is obtained according to the measurement signal sent by the millimeter wave base station. The user equipment receives the measurement signal sent by the millimeter wave base station according to the measurement indication information sent by the cellular base station, and calculates the second measurement result according to the measurement signal.
  • the specific calculation method is described in the following embodiments.
  • the difference between the second measurement signal and the first measurement signal is that the first measurement result further includes load information and/or interference indication of the millimeter wave base station, Therefore, the cellular base station determines, according to the measurement result, that the millimeter wave base station to be accessed by the user equipment is specifically implemented by the cellular base station according to the second measurement result, and the millimeter wave base station.
  • the load information and/or the interference indication determine the millimeter wave base station to which the user equipment is to be accessed.
  • FIG. 4 is a flowchart of a second embodiment of the communication method of the present invention. As shown in FIG. 4, on the basis of the method embodiment shown in FIG. 3, before the step 103, the method in this embodiment may further include:
  • Step 201 The cellular base station determines whether the millimeter wave base station to be accessed is in an active state.
  • the millimeter wave base station to be accessed may have two State: one is that the millimeter wave base station to be accessed is currently serving at least one user equipment, is already in an active state, periodically transmits a measurement pilot signal on a millimeter wave band; and the other is the to-be-connected
  • the incoming millimeter-wave base station does not currently serve the user equipment, is in the off or hibernation state, and does not transmit any signals in the millimeter wave band.
  • the cellular base station timely updates the state of all millimeter wave base stations in the coverage area, for example, it can maintain a state table of a millimeter wave base station. Once the state of a certain millimeter wave base station changes, for example, it can be changed from the working state to the working state.
  • the sleep state may also be changed from the sleep state to the working state, and the millimeter wave base station transmits the state change information to the cellular base station through the backhaul link, and the cellular base station updates the content of the state table according to the state change information.
  • the cellular base station determines, according to the description of the state table, whether the millimeter wave base station to be accessed by the user equipment is in an active state.
  • Step 202 If not, the cellular base station sends a wake-up command to the millimeter wave base station to be accessed, and sends a millimeter to the millimeter wave base station to be accessed after waking up the millimeter wave base station to be accessed.
  • the wave band parameter configuration information; or the cellular base station sends a wake-up command to the millimeter wave base station to be accessed, and receives the millimeter wave frequency band sent by the millimeter wave base station after waking up the millimeter wave base station to be accessed Parameter configuration information.
  • the millimeter wave band parameter configuration information corresponding to the millimeter wave base station is already stored in the cellular base station, so the millimeter wave base station can directly perform the method shown in FIG.
  • the millimeter wave band parameter configuration information of the millimeter wave base station to be accessed is sent to the user equipment, so that the user equipment accesses the to-be-connected according to the millimeter wave band parameter configuration information.
  • the millimeter wave base station to be accessed is sent to the user equipment, so that the user equipment accesses the to-be-connected according to the millimeter wave band parameter configuration information.
  • the cellular base station If the millimeter wave base station to be accessed is not in the working state, the cellular base station first sends a wake-up instruction to the millimeter wave base station, so that the millimeter wave base station changes state according to the wake-up instruction, wakes up from the sleep state, and turns to The operating state, that is, the millimeter wave base station starts transmitting the measurement signal and the pilot signal in the millimeter wave band.
  • the cellular base station sends millimeter wave band parameter configuration information to the millimeter wave base station to be accessed, or if the millimeter wave band parameter configuration information has been saved in the millimeter wave base station, the millimeter wave frequency band may be
  • the parameter configuration information is sent to the cellular base station, and the millimeter wave base station transmits and receives the measurement pilot signal on the corresponding resource according to the millimeter wave band parameter configuration information, so that the user equipment accesses the to-be-connected according to the millimeter wave band parameter configuration information.
  • the millimeter wave base station receives the measurement pilot signal on the corresponding resource according to the millimeter wave band parameter configuration information, so that the user equipment accesses the to-be-connected according to the millimeter wave band parameter configuration information.
  • the state of the millimeter wave base station to be accessed is determined by the cellular base station, and the millimeter wave base station in the dormant state is awakened, and the millimeter wave base station is changed to transmit the measurement signal and the pilot signal in the millimeter wave band, and the millimeter wave base station is reduced. Unnecessarily transmitting measurement signals and pilot signals to avoid energy consumption, pilot pollution, and throughput reduction of millimeter wave base stations.
  • FIG. 5 is a flowchart of Embodiment 3 of the communication method of the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • Step 301 The millimeter wave base station receives the measurement indication information sent by the cellular base station;
  • the millimeter wave base station receives the measurement indication information sent by the cellular base station through the backhaul link, and the backhaul link may be connected in the form of an optical fiber or may be connected in the form of a millimeter wave wireless link.
  • the interface of the road may be an X2 interface defined in LTE, or may be a newly defined wireless interface.
  • the measurement indication information may include a transmission power of the measurement signal, a bandwidth, and Sub-frame configuration, frequency domain location, antenna configuration, etc.
  • the millimeter-wave base station has a cellular band transceiver, which can interact with the user equipment on the cellular frequency band. Therefore, the millimeter-wave base station can be in a dormant state when there is no service user equipment, and only the cellular band transceiver can process the data on the cellular frequency band. Receive and send.
  • Step 302 The millimeter wave base station performs signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result, and determines, according to the measurement result, whether the millimeter wave base station is The millimeter wave base station to be accessed by the user equipment.
  • the millimeter wave base station may receive the measurement signal sent by the user equipment on the resource specified by the measurement indication information according to the measurement indication information, or may also send the measurement signal to the user equipment, the millimeter wave base station and the user equipment.
  • the signal measurement interaction is performed, so that the cellular base station obtains the measurement result to determine whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment.
  • the embodiment of the present invention is based on a cellular band transceiver of a millimeter wave base station, and the millimeter wave base station and the user equipment perform measurement signal interaction on the cellular frequency band to obtain a measurement result, so that the cellular base station determines whether the millimeter wave base station is based on the measurement result.
  • the millimeter wave base station For the millimeter wave base station to be accessed by the user equipment, reduce unnecessary inter-carrier cell search and measurement of the user equipment, reduce battery energy consumption of the user equipment, and reduce unnecessary measurement signals and pilot signals of the millimeter wave base station. , to avoid energy consumption, pilot pollution and throughput reduction of millimeter wave base stations.
  • the step 301 of the method embodiment shown in FIG. 5 receives the measurement indication information sent by the cellular base station
  • the specific implementation method may be: the millimeter wave base station receives the first measurement indication information sent by the cellular base station.
  • the first measurement indication information is used to indicate that the millimeter wave base station receives, according to the first measurement indication information, a measurement signal that is sent by the user equipment on the cellular frequency band, that is, a millimeter wave base station receives, on a cellular frequency band.
  • the measurement indication information is first measurement indication information, and the information is used to indicate that the millimeter wave base station receives the measurement signal sent by the user equipment on the cellular frequency band on a cellular frequency band.
  • FIG. 6 is a flowchart of Embodiment 4 of the communication method according to the present invention.
  • the millimeter is performed in step 302.
  • the wave base station performs signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result, and determines, according to the measurement result, whether the millimeter wave base station is waiting for the user equipment.
  • the specific implementation method may include: Step 401: The millimeter wave base station receives, according to the first measurement indication information, a first measurement signal sent by the user equipment on the cellular frequency band on a cellular frequency band;
  • the millimeter wave base station receives the measurement signal sent by the user equipment according to the first measurement indication information, that is, the first measurement indication information indicates that the millimeter wave base station receives the data on the corresponding uplink resource, and the data is the first measurement signal.
  • Step 402 The millimeter wave base station acquires a first measurement result according to the first measurement signal.
  • a method for calculating a measurement result by the millimeter wave base station is also different.
  • the corresponding acquired first measurement results are not completely identical.
  • the millimeter wave base station receives the first measurement signal according to the transmit power and the millimeter wave base station. Receive power, calculate a path loss value obtained by acquiring the user equipment to a cellular frequency band of the millimeter wave base station, and if the path loss value is less than or equal to a first preset path loss threshold, the millimeter wave base station The path loss value and load information and/or interference indication of the millimeter wave base station are used as the first measurement result.
  • the millimeter wave base station can calculate the cellular band path loss PL lc3W of the user equipment to the millimeter wave base station according to the transmit power of the first measurement signal sent by the user equipment and the received power of the first measurement signal, according to actual system design requirements.
  • the cellular band path loss PL lQW can be used as a basis for judging. If the PL lQW is less than or equal to the first preset path loss threshold value PL lc3W — th , the millimeter wave base station compares the path loss value with the millimeter wave base station.
  • the load information and/or interference indication is used as the first measurement result.
  • the millimeter wave band path loss PL hl can be estimated according to the cellular band path loss PL lQW , and then the millimeter wave band path loss PL h is used as a basis for judging.
  • the millimeter wave band path loss PL hl can be calculated by formula (1). :
  • PL hi b + 20 ⁇ og 10 (f) + PL low ( 1 )
  • PL hl the path loss of the millimeter wave band
  • b is a statistical constant, which can be pre-configured
  • f is the millimeter wave carrier frequency
  • the millimeter wave base station uses the path loss value and the load information and/or interference indication of the millimeter wave base station as the first Measurement results.
  • the millimeter wave base station calculates, according to the absolute transmission time and the absolute reception time of the millimeter wave base station receiving the first measurement signal, the cellular data obtained by acquiring the user equipment to the millimeter wave base station a transmission delay in the frequency band, if the transmission delay is less than or equal to a first preset transmission delay threshold, the millimeter wave base station transmits the transmission delay and load information of the millimeter wave base station and/or The interference indication is used as the first measurement result.
  • the absolute transmission time may be a Global Positioning System (GPS) time when the user equipment sends the first measurement signal, that is, the time acquired by the user equipment when the first measurement signal is sent by the user equipment, and the GPS time is acquired.
  • the first measurement signal is sent to the millimeter wave base station, and the millimeter wave base station can acquire the reception time from the GPS module when receiving the first measurement signal, and further obtain a propagation delay of the first measurement signal from the user equipment to the millimeter wave base station, if If the propagation delay is less than or equal to the first preset transmission delay threshold, the millimeter wave base station uses the transmission delay and load information and/or interference indication of the millimeter wave base station as the first measurement result. .
  • GPS Global Positioning System
  • the millimeter wave base station acquires geographical location information of the user equipment according to the positioning information, and calculates and obtains according to the geographical location information.
  • the distance from the user equipment to the millimeter wave base station if the distance is less than or equal to a preset distance threshold, the millimeter wave base station sets the distance and load information and/or interference indication of the millimeter wave base station As the first measurement result.
  • the millimeter wave base station acquires the physical location of the user equipment according to the first measurement signal received, using a positioning technique such as Timing Of Arrival (hereinafter referred to as TOA) or Timing Difference Of Arrival (TDOA), and then calculates The distance between the user equipment and the millimeter wave base station. If the distance between the user equipment and the millimeter wave base station is less than or equal to a preset distance threshold, the millimeter wave base station uses the distance and load information and/or interference indication of the millimeter wave base station as the first Measurement results.
  • TOA Timing Of Arrival
  • TDOA Timing Difference Of Arrival
  • Step 403 The millimeter wave base station sends the first measurement result to the cellular base station, so that the cellular base station determines, according to the first measurement result, whether the millimeter wave base station is to be accessed by the user equipment. Millimeter wave base station.
  • the millimeter wave base station compares the calculated result with a preset threshold according to the information included in the specific first measurement signal, and the qualified millimeter wave base station calculates the result and the load information and/or the interference indication.
  • the first measurement result is sent to the cellular base station, so that the cellular base station determines whether the millimeter wave base station is used according to the first measurement result.
  • the millimeter wave base station to be accessed by the user equipment.
  • the step 301 of the method embodiment shown in FIG. 5 receives the measurement indication information sent by the cellular base station
  • the specific implementation method may be: the millimeter wave base station receives the third measurement indication information sent by the cellular base station.
  • the third measurement indication information is used to indicate that the millimeter wave base station sends a measurement signal to the user equipment on the cellular frequency band according to the third measurement indication information, that is, the measurement indication information received by the millimeter wave base station is the third measurement.
  • the indication information is used to indicate that the millimeter wave base station sends a measurement signal to the user equipment on a cellular frequency band, and the measurement signal may include: a transmission power, an absolute transmission time, or positioning indication information.
  • the millimeter wave base station of the method embodiment shown in FIG. 5 performs signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result and according to the The measurement result determines whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment, and the specific implementation method may be: the millimeter wave base station according to the third measurement indication information, on the cellular frequency band
  • the user equipment sends a second measurement signal, so that the user equipment calculates the second measurement result according to the second measurement signal.
  • FIG. 7 is a flowchart of Embodiment 5 of the communication method of the present invention. As shown in FIG. 7, on the basis of the method embodiment shown in FIG. 5, after the step 302, the method in this embodiment may further include:
  • Step 501 The millimeter wave base station receives a wake-up instruction sent by the cellular base station, and changes from a sleep state to an active state according to the wake-up instruction.
  • the millimeter wave base station if the millimeter wave base station is in a dormant state, only the cellular band transceiver of the millimeter wave base station is in an active state, and if the cell base station determines the millimeter wave base station as the millimeter wave base station to be accessed by the user equipment,
  • the wake-up command is first sent to the millimeter wave base station, and after receiving the wake-up command, the millimeter wave base station changes from the sleep state to the working state according to the instruction, that is, the start of the millimeter wave base station transmits the pilot information on the millimeter wave frequency band.
  • Step 502 The millimeter wave base station receives millimeter wave band parameter configuration information sent by the cellular base station in the working state; or, the millimeter wave base station sends a millimeter wave band parameter configuration to the cellular base station in the working state. information.
  • the millimeter wave base station may receive the millimeter wave band parameter configuration information sent by the cellular base station in an active state, or may set the millimeter wave band parameter configuration information if the millimeter wave base station has prestored related configuration information.
  • the signal is sent to the cellular base station, and the millimeter wave band parameter configuration information is sent by the cellular base station to the user equipment.
  • the millimeter wave base station in the sleep state receives the wake-up command, and changes from the sleep state to the working state, so that the user equipment accesses the millimeter wave base station in the millimeter wave frequency band, and reduces unnecessary transmission measurement signals and pilots of the millimeter wave base station. Signals, avoiding energy consumption, pilot pollution, and throughput reduction of millimeter-wave base stations.
  • FIG. 8 is a flowchart of Embodiment 6 of the communication method of the present invention. As shown in FIG. 8, the method in this embodiment may include:
  • Step 601 The user equipment receives the measurement indication information sent by the cellular base station on the cellular frequency band.
  • the user equipment receives the measurement indication information sent by the cellular base station, where the information may be RRC signaling, and may include the measurement signal.
  • Information such as bandwidth size, subframe configuration, frequency domain location, antenna configuration, etc.
  • Step 602 The user equipment performs signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result, and determines the millimeter wave base station according to the measurement result. Whether it is the millimeter wave base station to be accessed by the user equipment; in this embodiment, the user equipment may receive the measurement signal sent by the millimeter wave base station on the cellular frequency band resource specified by the measurement indication information according to the measurement indication information, Alternatively, the measurement signal may be sent to the millimeter wave base station on the cellular frequency band resource, and the millimeter wave base station and the user equipment perform signal measurement interaction, so that the cellular base station obtains the measurement result to determine whether the millimeter wave base station is a millimeter wave to be accessed by the user equipment. Base station.
  • Step 603 The user equipment receives, on the cellular frequency band, millimeter wave band parameter configuration information of the millimeter wave base station to be accessed sent by the cellular base station, and wakes up the millimeter wave according to the millimeter wave frequency band parameter configuration information.
  • the band function and access to the millimeter wave base station to be accessed.
  • the user equipment receives the millimeter wave band parameter configuration information of the millimeter wave base station transmitted by the cellular base station on the cellular frequency band, and according to the information, the user equipment can wake up the millimeter wave band function, and send the measurement signal on the designated resource to receive Into the millimeter wave base station.
  • the user equipment and the millimeter wave base station perform the measurement signal interaction on the cellular frequency band to obtain the measurement result, so that the cellular base station determines, according to the measurement result, whether the millimeter wave base station is the millimeter to be accessed by the user equipment.
  • the wave base station realizes that the user equipment accesses the millimeter wave base station according to the millimeter wave band parameter configuration information, reduces the unnecessary inter-carrier frequency cell search and measurement of the user equipment, reduces the battery energy consumption of the user equipment, and reduces unnecessary transmission of the millimeter wave base station.
  • the signal and pilot signals are measured to avoid energy consumption, pilot pollution, and throughput degradation of the millimeter wave base station. Further, in step 601 of the method embodiment shown in FIG.
  • the user equipment receives the measurement indication information sent by the cellular base station on the cellular frequency band
  • the specific implementation method may be: the user equipment receives the cellular base station in the cellular frequency band.
  • a fourth measurement indication information that is sent on the cellular frequency band, where the fourth measurement indication information is used to indicate that the user equipment receives the millimeter wave base station in the cellular frequency band on a cellular frequency band according to the fourth measurement indication information.
  • the measurement signal that is sent, that is, the measurement indication information received by the user equipment is the fourth measurement indication information, where the information is used to indicate that the user equipment receives the measurement signal sent by the millimeter wave base station on the cellular frequency band on the cellular frequency band.
  • FIG. 9 is a flowchart of Embodiment 7 of the communication method of the present invention.
  • the device performs signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result, and determines, according to the measurement result, whether the millimeter wave base station is the user equipment.
  • the specific implementation method may include:
  • Step 701 The user equipment receives, according to the fourth measurement indication information, a second measurement signal sent by the millimeter wave base station on the cellular frequency band on the cellular frequency band.
  • the user equipment receives the measurement signal sent by the millimeter wave base station according to the fourth measurement indication information, that is, the fourth measurement indication information indicates that the user equipment receives data on the corresponding downlink resource, and the data is the second measurement signal.
  • Step 702 The user equipment obtains a second measurement result according to the second measurement signal.
  • the method for calculating, by the user equipment, the measurement result is also different.
  • the information obtained by the second measurement result is not exactly the same.
  • the user equipment receives the second measurement signal according to the transmit power and the user equipment.
  • Receiving a power calculating a path loss value obtained by acquiring the millimeter wave base station to a cellular frequency band of the user equipment, and if the path loss value is less than or equal to a second preset path loss threshold value, the user equipment The path loss value is taken as the second measurement result.
  • the user equipment may calculate the cellular band path loss PL lc3W of the millimeter wave base station to the user equipment according to the transmit power of the second measurement signal sent by the millimeter wave base station and the received power of the second measurement signal, according to actual system design requirements.
  • the user equipment can use the cellular band path loss PL lQW as the basis for judging, If the PL lc3W is less than or equal to the second preset path loss threshold PL lc3W ⁇ ⁇ , the user equipment uses the path loss value as the second measurement result. In order to save the overhead of the cellular band uplink, the user equipment can periodically report the second measurement result of the M millimeter wave base stations with the smallest PA band path loss PL lQW .
  • PL hi b + 20 ⁇ og w (f) + PL low ( 1 )
  • PL hl the path loss of the millimeter wave band
  • b is a statistical constant, which can be pre-configured
  • f is the millimeter wave carrier frequency
  • the user equipment uses the path loss value as the second measurement result.
  • the user equipment can periodically report the second measurement result of the M millimeter wave base stations with the smallest millimeter wave band path loss PL hl .
  • the user equipment acquires a reference signal of the second measurement signal according to the second measurement signal.
  • Receiving power if the reference signal received power is greater than or equal to a preset reference signal received power threshold, the user equipment uses the reference signal received power as the second measurement result.
  • the user equipment can learn the reference signal receiving power (hereinafter referred to as RSRP) of the second measurement signal according to the received power of the second measurement signal, and if the RSRP is greater than or equal to the preset reference signal receiving power threshold, then The user equipment uses the RSRP as the second measurement result.
  • the user equipment can periodically report the second measurement result of the M millimeter wave base stations with the largest RSRP.
  • the user equipment receives the second measurement according to the absolute transmission time and the user equipment.
  • the absolute transmission time may be a GPS that the millimeter wave base station transmits the second measurement signal, that is, the time that the millimeter wave base station acquires from the GPS module when transmitting the second measurement signal, and uses the GPS time as the second measurement.
  • the quantity signal is sent to the user equipment, and the user equipment can obtain the receiving time from the GPS module when receiving the second measurement signal, and further obtain the propagation delay of the second measurement signal from the millimeter wave base station to the user equipment, if the propagation delay is less than And equal to the second preset transmission delay threshold, the user equipment uses the transmission delay as the second measurement result.
  • the user equipment may periodically report the second measurement of the M millimeter wave base stations with the smallest transmission delay, if the second measurement signal includes the positioning sent by the millimeter wave base station.
  • the user equipment acquires the relevant positioning parameters according to the measurement indication information sent by the millimeter wave base station, that is, acquires the TOA parameter and/or the relative time difference (RTD) parameter corresponding to the plurality of millimeter wave base stations, and the user equipment
  • the TOA parameter and/or the RTD parameter are used as the second measurement result.
  • the cellular base station can calculate the physical location of the user equipment according to the TOA parameter and/or the RTD parameter sent by the user equipment, and according to the physical location information, it can determine whether the subsequent millimeter wave frequency band measurement and access process needs to be triggered, if yes, Then, one or more millimeter wave base stations are selected as the millimeter wave base station to be connected to establish a connection with the user equipment.
  • Step 703 The user equipment sends the second measurement result to the cellular base station on the cellular frequency band, so that the cellular base station determines, according to the second measurement result, whether the millimeter wave base station is the user.
  • the millimeter wave base station to be accessed by the device.
  • the user equipment compares the calculation result with the preset threshold according to the information included in the specific second measurement signal, and uses the measurement result corresponding to the qualified millimeter wave base station as the second measurement result, and The cellular base station sends the second measurement result, so that the cellular base station determines, according to the second measurement result, whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment.
  • the user equipment receives the measurement indication information sent by the cellular base station on the cellular frequency band
  • the specific implementation method may be: the user equipment receives the cellular base station in the cellular frequency band. a second measurement indication information that is sent on the cellular frequency band, where the second measurement indication information is used to indicate that the user equipment sends the measurement signal to the millimeter wave base station on a cellular frequency band according to the second measurement indication information.
  • the measurement indication information received by the user equipment is the second measurement indication information, where the information is used to indicate that the user equipment is on the cellular frequency band.
  • the millimeter wave base station transmits a measurement signal, and the measurement signal may include: a transmission power, an absolute transmission time, or positioning information.
  • the user equipment performs signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result.
  • the specific implementation method may be: the user equipment, according to the second measurement indication information, on a cellular frequency band
  • the millimeter wave base station transmits a first measurement signal, so that the millimeter wave base station calculates and acquires the first measurement result according to the first measurement signal.
  • FIG. 10 is a flowchart of Embodiment 8 of the communication method of the present invention. As shown in FIG. 10, the method in this embodiment may include:
  • the cellular base station sends the first measurement indication information to the millimeter wave base station.
  • the cellular base station sends the first measurement indication information to all or part of the millimeter wave base stations in the coverage area, where the first measurement indication information is used to indicate that the millimeter wave base station receives the measurement signal on the designated uplink resource.
  • the cellular base station sends the second measurement indication information to the user equipment.
  • the cellular base station sends the second measurement indication information to the user equipment on the cellular frequency band, where the second measurement indication information is used to indicate that the user equipment sends the measurement signal on the specified uplink resource.
  • S803 The user equipment sends the first measurement signal to the millimeter wave base station.
  • the user equipment sends the first measurement signal on the specified cellular frequency band uplink resource according to the second measurement indication information, where the first measurement signal may include the transmit power of the user equipment and the absolute sending time of the measurement signal sent by the user equipment. Or location information of the user equipment.
  • the millimeter wave base station has a cellular band receiver, so it can receive the first measurement signal sent by the user equipment on the cellular frequency band.
  • the millimeter wave base station acquires the first measurement result
  • the process of obtaining the first measurement result by the millimeter wave base station is similar to the step 402 of the embodiment shown in FIG. 6, and details are not described herein again.
  • the millimeter wave base station sends the first measurement result to the cellular base station.
  • the cellular base station obtains the first measurement result, and determines, according to the first measurement result, the millimeter wave base station to be accessed by the user equipment;
  • the cellular base station determines, according to the first measurement result, the calculation result according to the first measurement information, the load of the millimeter wave base station, the interference, and the like, and the link between the user equipment and the millimeter wave base station, etc., determining one or A plurality of millimeter wave base stations are used as millimeter wave base stations to be accessed by the user equipment.
  • the cellular base station sends a wake-up command to the millimeter wave base station.
  • the cellular base station determines, according to the maintained state table of the millimeter wave base station in its coverage, whether the millimeter wave base station to be accessed by the user equipment is in a working state, and if not, sends a wakeup command to the millimeter wave base station.
  • the measurement signal and the pilot signal are transmitted on the millimeter wave band.
  • the cellular base station sends millimeter wave band parameter configuration information to the millimeter wave base station.
  • the cellular base station sends millimeter wave band parameter configuration information to the user equipment.
  • the cellular base station sends the millimeter wave band parameter configuration information to the user equipment, and the user equipment opens or wakes up the millimeter wave band transceiver of the user equipment after successfully receiving the millimeter wave band parameter configuration information sent by the cellular base station. And receiving or transmitting the corresponding measurement pilot signal on the configured millimeter wave frequency band resource, and performing measurement and access process of the millimeter wave frequency band.
  • the embodiment of the present invention is based on a cellular band transceiver of a millimeter wave base station, and implements a cellular base station to control a millimeter wave base station and a user equipment to perform measurement signal interaction on a cellular frequency band, and determines a millimeter wave base station to be accessed by the user equipment according to the measurement result, and further triggers Open or wake up the millimeter wave base station in the dormant state and the millimeter wave band transceiver of the user equipment, so that the user equipment accesses the millimeter wave base station to be accessed, reduces unnecessary cell search and measurement between carrier frequencies of the user equipment, and reduces the user
  • the battery energy consumption of the device, as well as the reduction of the millimeter wave base station unnecessary emission measurement signals and pilot signals avoids energy consumption, pilot pollution, and throughput reduction of the millimeter wave base station.
  • FIG. 11 is a flowchart of Embodiment 9 of the communication method of the present invention. As shown in FIG. 11, the method in this embodiment may include:
  • the cellular base station sends third measurement indication information to the millimeter wave base station.
  • the cellular base station sends the third measurement indication information to all or part of the millimeter wave base stations in the coverage area, where the third measurement indication information is used to indicate that the millimeter wave base station sends the measurement signal on the specified downlink resource. S902.
  • the cellular base station sends fourth measurement indication information to the user equipment.
  • the cellular base station sends the fourth measurement indication information to the user equipment on the cellular frequency band, where the fourth measurement indication information is used to indicate that the user equipment receives the measurement signal on the specified downlink resource.
  • the millimeter wave base station sends a second measurement signal to the user equipment.
  • the millimeter wave base station sends, according to the second measurement indication information, the second measurement signal on the specified downlink resource of the cellular frequency band, where the second measurement signal may include the transmit power of the millimeter wave base station and the measurement signal sent by the millimeter wave base station.
  • the millimeter wave base station has a cellular band transmitter so that a second measurement signal can be sent to the user equipment on the cellular frequency band.
  • the user equipment acquires a second measurement result.
  • the process of obtaining the first measurement result by the millimeter wave base station is similar to the step 702 of the embodiment shown in FIG. 9, and details are not described herein again.
  • S905 The user equipment sends the second measurement result to the cellular base station.
  • the cellular base station acquires a second measurement result, and determines, according to the second measurement result, the millimeter wave base station to which the user equipment is to be accessed.
  • the cellular base station determines one or more millimeter wave base stations as user equipments according to the second measurement result, combining the information of the load and interference of the millimeter wave base station, and the link between the user equipment and the millimeter wave base station. Access to the millimeter wave base station.
  • the cellular base station sends a wake-up instruction to the millimeter wave base station.
  • the cellular base station determines, according to the maintained state table of the millimeter wave base station in its coverage, whether the millimeter wave base station to be accessed by the user equipment is in a working state, and if not, sends a wakeup command to the millimeter wave base station.
  • the measurement signal and the pilot signal are transmitted on the millimeter wave band.
  • the cellular base station receives the millimeter wave band parameter configuration information sent by the millimeter wave base station.
  • the parameter configuration information on the millimeter wave band is pre-stored in the millimeter wave base station, the information may be sent to the cellular base station.
  • the cellular base station sends millimeter wave band parameter configuration information to the user equipment.
  • the cellular base station sends millimeter wave band parameter configuration information to the user equipment, and the user equipment successfully opens the millimeter wave band parameter configuration information sent by the cellular base station, or The user wakes up the millimeter wave band transceiver of the user equipment, and receives or transmits a corresponding measurement pilot signal on the configured millimeter wave frequency band resource, and performs measurement and access process of the millimeter wave frequency band.
  • the embodiment of the present invention is based on a cellular band transceiver of a millimeter wave base station, and implements a cellular base station to control a millimeter wave base station and a user equipment to perform measurement signal interaction on a cellular frequency band, and determines a millimeter wave base station to be accessed by the user equipment according to the measurement result, and further triggers Open or wake up the millimeter wave base station in the dormant state and the millimeter wave band transceiver of the user equipment, so that the user equipment accesses the millimeter wave base station to be accessed, reduces unnecessary cell search and measurement between carrier frequencies of the user equipment, and reduces the user
  • the battery energy consumption of the device, as well as the reduction of the millimeter wave base station unnecessary emission measurement signals and pilot signals avoids energy consumption, pilot pollution, and throughput reduction of the millimeter wave base station.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a cellular base station according to the present invention.
  • the apparatus in this embodiment may include: an indication information sending module 11, an obtaining module 12, and a configuration information sending module 13, wherein the indication information sending module And transmitting, by the millimeter wave base station and the user equipment, measurement indication information, so that the millimeter wave base station and the user equipment perform signal measurement interaction on the cellular frequency band according to the measurement indication information, to obtain a measurement result, where the millimeter The wave base station is deployed in the coverage of the cellular base station; the acquiring module 12 is configured to acquire the measurement result, and determine, according to the measurement result, a millimeter wave base station to be accessed by the user equipment; and a configuration information sending module 13, The millimeter wave band parameter configuration information of the millimeter wave base station to be accessed is sent to the user equipment, so that the user equipment accesses the millimeter wave to be accessed according to the millimeter wave band parameter configuration information.
  • Base station is
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 3, and the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a cellular base station according to the present invention. As shown in FIG. 13, the apparatus of this embodiment is further configured to include: determining module 21 and sending a wake-up command according to the apparatus structure shown in FIG.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a millimeter wave base station according to the present invention.
  • the apparatus in this embodiment may include: an indication information receiving module 31 and an interaction module 32, where the indication information receiving module 31 is configured to receive The measurement indication information sent by the cellular base station; the interaction module 32 is configured to perform signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result and determines the location according to the measurement result. Whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 5.
  • the principle and the technical effect are similar, and details are not described herein again.
  • Embodiment 2 of a millimeter wave base station is a schematic structural diagram of Embodiment 2 of a millimeter wave base station according to the present invention.
  • the apparatus of this embodiment is based on the apparatus structure shown in FIG. 14.
  • the information receiving module 31 is specifically configured for receiving.
  • the first measurement indication information sent by the cellular base station, where the first measurement indication information is used to indicate that the millimeter wave base station receives the user equipment on the cellular frequency band on a cellular frequency band according to the first measurement indication information.
  • the measurement signal is transmitted.
  • the interaction module 32 can include: a measurement signal receiving unit 321 , an obtaining unit 322 , and a sending unit 323 , where the measuring signal receiving unit 321 is configured to receive the received signal on the cellular frequency band according to the first measurement indication information.
  • a first measurement signal sent by the user equipment on the cellular frequency band configured to acquire a first measurement result according to the first measurement signal, and a sending unit 323, configured to send the a first measurement result, so that the cellular base station determines the millimeter according to the first measurement result Whether the wave base station is a millimeter wave base station to be accessed by the user equipment.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the principle and technical effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 3 of a millimeter wave base station according to the present invention.
  • the apparatus of this embodiment is based on the apparatus structure shown in FIG. 14, and further includes: a wakeup instruction receiving module 41 and The configuration information processing module 42 is configured to receive the wake-up instruction sent by the cellular base station, and switch from the sleep state to the working state according to the wake-up instruction.
  • the configuration information processing module 42 is configured to The working state receives millimeter wave band parameter configuration information sent by the cellular base station; or, in the working state, sends millimeter wave band parameter configuration information to the cellular base station.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 7. The implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the apparatus in this embodiment may include: an indication information receiving module 51, an interaction module 52, and a configuration information receiving module 53, wherein the indication information receiving module
  • the receiving module 52 is configured to receive the measurement indication information sent by the cellular base station on the cellular frequency band
  • the interaction module 52 is configured to perform signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular Obtaining, by the base station, the measurement result, and determining, according to the measurement result, whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment
  • the configuration information receiving module 53 configured to receive, by using the cellular frequency band, the cellular base station to send And millimeter wave band parameter configuration information of the millimeter wave base station to be accessed, and waking up the millimeter wave band function according to the millimeter wave band parameter configuration information and accessing
  • the device of this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 8.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the apparatus in this embodiment is based on the apparatus structure shown in FIG. 17.
  • the information receiving module 51 is specifically used in the cellular. Receiving, on a frequency band, fourth measurement indication information that is sent by the cellular base station on the cellular frequency band, where the fourth measurement indication information is used to indicate that the user equipment receives the information on a cellular frequency band according to the fourth measurement indication information.
  • the measurement signal sent by the millimeter wave base station on the cellular frequency band; the interaction module 52 may include: a measurement signal receiving unit 521, an obtaining unit 522, and a transmitting unit 523, wherein the measurement signal receiving unit 521 is configured to be used according to the a measurement information indicating that the second measurement signal sent by the millimeter wave base station on the cellular frequency band is received on the cellular frequency band; and the obtaining unit 322 is configured to obtain a second measurement result according to the second measurement signal; a sending unit 323, configured to send the second measurement node to the cellular base station on the cellular frequency band , So that the second base station based on the measurement result of the determination whether the millimeter wave to the millimeter wave base station to be accessed by a user of said apparatus.
  • the device of this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 9.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 3 of a cellular base station according to the present invention.
  • the device in this embodiment may include: a processor 11 and a transmitter 12, where the transmitter 12 is configured to transmit to a millimeter wave base station and a user.
  • the device sends measurement indication information to enable the millimeter wave base station and the user equipment according to The measurement indication information is performed on the cellular frequency band to obtain a measurement result, where the millimeter wave base station is deployed in the coverage of the cellular base station;
  • the processor 11 is configured to acquire the measurement result, and according to the Determining, by the measurement result, the millimeter wave base station to be accessed by the user equipment;
  • the transmitter 12 is further configured to send the millimeter wave band parameter configuration information of the millimeter wave base station to be accessed to the user equipment, so as to enable the The user equipment accesses the millimeter wave base station to be accessed according to the millimeter wave band parameter configuration information.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 20 is a schematic structural diagram of Embodiment 4 of a millimeter wave base station according to the present invention.
  • the device in this embodiment may include: a receiver 21 and a cellular band processor 22, wherein the receiver 21 is configured to receive a cellular base station.
  • the measurement indicator information is sent; the cellular band processor 22 is configured to perform signal measurement interaction with the user equipment on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result and determines the location according to the measurement result.
  • the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 5.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 21 is a schematic structural diagram of Embodiment 5 of a millimeter wave base station according to the present invention.
  • the device in this embodiment is further configured to include: a millimeter wave band processor 31.
  • the millimeter wave band processor 31 is configured to receive millimeter wave band parameter configuration information sent by the cellular base station in the working state; or send millimeter wave band parameter configuration information to the cellular base station in the working state.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 7.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the device in this embodiment may include: a receiver 41 and a processor 42, where the receiver 41 is configured to receive a cell on a cellular frequency band.
  • the processor 42 is configured to perform signal measurement interaction with the millimeter wave base station on the cellular frequency band according to the measurement indication information, so that the cellular base station acquires the measurement result and according to the measurement result Determining whether the millimeter wave base station is a millimeter wave base station to be accessed by the user equipment; and further configured to receive, on the cellular frequency band, a millimeter wave band parameter of the millimeter wave base station to be accessed sent by the cellular base station Configuration information, and according to the millimeter wave
  • the band parameter configuration information wakes up the millimeter wave band function and accesses the millimeter wave base station to be accessed.
  • FIG. 23 is a schematic structural diagram of an embodiment of a millimeter wave communication system according to the present invention.
  • the system of this embodiment includes: a cellular base station 11 and a millimeter wave base station 12, wherein the cellular base station 11 can adopt the apparatus of FIG. 12 or FIG.
  • the technical solution of the method embodiment of FIG. 3 or FIG. 4 can be performed correspondingly, and the implementation principle and the technical effect are similar, and details are not described herein; the millimeter wave base station 12 can adopt any of FIG. 14 to FIG.
  • the technical solution of any of the method embodiments in FIG. 5 to FIG. 7 is implemented, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the physical device of the millimeter wave communication system of the present invention may include: a cellular base station and a millimeter wave base station, wherein the cellular base station may adopt the structure of the device embodiment of FIG. 19, and correspondingly, the method embodiment of FIG. 3 or FIG. 4 may be performed.
  • the cellular base station may adopt the structure of the device embodiment of FIG. 19, and correspondingly, the method embodiment of FIG. 3 or FIG. 4 may be performed.
  • the millimeter wave base station can adopt the structure of the device embodiment of FIG. 20 or FIG. 21, and correspondingly, any method of FIG. 5 to FIG. 7 can be implemented.
  • the technical solution of the example is similar to the technical effect, and will not be described here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or hardware plus software. The form of the functional unit is implemented.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the method of various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

本发明实施例提供一种通信方法、装置及系统。本发明通信方法,包括:蜂窝基站向毫米波基站和用户设备发送测量指示信息;所述蜂窝基站获取所述测量结果,并根据所述测量结果,确定所述用户设备待接入的毫米波基站;所述蜂窝基站向所述用户设备发送所述待接入的毫米波基站的毫米波频段参数配置信息。本发明实施例减少用户设备不必要的载频间小区搜索和测量,降低用户设备电池能量的消耗,以及减少毫米波基站不必要的发射测量信号和导频信号,避免毫米波基站的能量消耗、导频污染以及吞吐量降低。

Description

通信方法、 装置及系统 技术领域
本发明实施例涉及通信技术, 尤其涉及一种通信方法、 装置及系统。 背景技术 伴随移动数据业务需求的日益增长, 大部分适用于移动通信的低频段频 谱资源已经被分配完 (例如, 3GHz以下频段) , 但在 3-300GHZ的频段上, 大量的频谱资源还未被分配使用。 根据国际电信联盟 (International Telecommunication Union, 以下简称 ITU)的定义, 3-30GHz频段被称为超高 频 (Super High Frequency, 以下简称 SHF) 频段, 30-300GHz频段被称为极 高频 (Extremely High Frequency, 以下简称 EHF) 频段。 由于 SHF和 EHF 频段具有相似的传播特性,例如较大的传播损耗,且波长范围在 1毫米至 100 毫米之间, 因此 3-300GHZ 频段又被统称为毫米波频段。 目前, 对于采用毫 米波频段用于蜂窝移动通信的研究还处于初始阶段, 技术尚未成熟, 仍有许 多难点还未攻克。
在现有的实现方案中, 利用毫米波频段提供高速的数据服务, 将毫米波 基站部署在蜂窝基站的覆盖范围内, 用户设备接入蜂窝基站需要测量蜂窝频 段, 同时, 用户设备要接入毫米波基站还需要测量传统蜂窝频段之外的毫米 波频段, 即使用户设备不在任何毫米波基站的覆盖范围内, 仍然需要不断地 进行载频间 (inter-frequency) 小区搜索和测量, 这势必加速用户设备电池能 量的消耗, 造成不必要的浪费; 同样的, 当毫米波基站中没有任何服务用户 的时候, 仍然需要不断地发射测量信号和导频信号, 这也会浪费毫米波基站 侧的能量, 同时还会造成导频污染, 对周边的其他毫米波基站造成干扰从而 降低系统的吞吐量。 发明内容
本发明实施例提供一种通信方法、 装置及系统, 以实现减少用户设备不 必要的载频间小区搜索和测量, 降低用户设备电池能量的消耗, 以及减少毫 米波基站不必要的发射测量信号和导频信号, 避免毫米波基站的能量消耗、 导频污染以及吞吐量降低。
第一方面, 本发明实施例提供一种通信方法, 包括:
蜂窝基站向毫米波基站和用户设备发送测量指示信息, 以使所述毫米波 基站和用户设备根据所述测量指示信息在蜂窝频段上进行信号测量交互以获 取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范围内;
所述蜂窝基站获取所述测量结果, 并根据所述测量结果, 确定所述用户 设备待接入的毫米波基站;
所述蜂窝基站向所述用户设备发送所述待接入的毫米波基站的毫米波频 段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信息接入 所述待接入的毫米波基站。
第二方面, 本发明实施例提供一种通信方法, 包括:
毫米波基站接收蜂窝基站发送的测量指示信息;
所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站。
第三方面, 本发明实施例提供一种通信方法, 包括:
用户设备在蜂窝频段上接收蜂窝基站发送的测量指示信息;
所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
所述用户设备在所述蜂窝频段上接收所述蜂窝基站发送的所述待接入的 毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段参数配置信 息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
第四方面, 本发明实施例提供一种蜂窝基站, 包括:
指示信息发送模块, 用于向毫米波基站和用户设备发送测量指示信息, 以使所述毫米波基站和用户设备根据所述测量指示信息在蜂窝频段上进行信 号测量交互以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆 盖范围内;
获取模块, 用于获取所述测量结果, 并根据所述测量结果, 确定所述用 户设备待接入的毫米波基站;
配置信息发送模块, 用于向所述用户设备发送所述待接入的毫米波基站 的毫米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配 置信息接入所述待接入的毫米波基站。
第五方面, 本发明实施例提供一种毫米波基站, 包括:
指示信息接收模块, 用于接收蜂窝基站发送的测量指示信息;
交互模块, 用于根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站。
第六方面, 本发明实施例提供一种用户设备, 包括:
指示信息接收模块, 用于在蜂窝频段上接收蜂窝基站发送的测量指示信 息;
交互模块, 用于根据所述测量指示信息, 在所述蜂窝频段上与毫米波基 站进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果 确定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
配置信息接收模块, 用于在所述蜂窝频段上接收所述蜂窝基站发送的所 述待接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段 参数配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
第七方面, 本发明实施例提供一种蜂窝基站, 包括:
发送器, 用于向毫米波基站和用户设备发送测量指示信息, 以使所述毫 米波基站和用户设备根据所述测量指示信息在蜂窝频段上进行信号测量交互 以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范围内; 处理器, 用于获取所述测量结果, 并根据所述测量结果, 确定所述用户 设备待接入的毫米波基站;
所述发送器, 还用于向所述用户设备发送所述待接入的毫米波基站的毫 米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信 息接入所述待接入的毫米波基站。
第八方面, 本发明实施例提供一种毫米波基站, 包括:
接收器, 用于接收蜂窝基站发送的测量指示信息;
蜂窝频段处理器, 用于根据所述测量指示信息, 在蜂窝频段上与用户设 备进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果 确定所述毫米波基站是否为所述用户设备待接入的毫米波基站。
第九方面, 本发明实施例提供一种用户设备, 包括:
接收器, 用于在蜂窝频段上接收蜂窝基站发送的测量指示信息; 处理器, 用于根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
所述接收器, 还用于在所述蜂窝频段上接收所述蜂窝基站发送的所述待 接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段参数 配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
第十方面, 本发明实施例提供一种毫米波通信系统, 包括: 蜂窝基站和 毫米波基站, 所述蜂窝基站采用第四方面中的蜂窝基站, 所述毫米波基站采 用第五方面中的毫米波基站。
第十一方面, 本发明实施例提供一种毫米波通信系统, 包括: 蜂窝基站 和毫米波基站, 所述蜂窝基站采用第七方面中的蜂窝基站, 所述毫米波基站 采用第八方面中的毫米波基站。
本发明实施例通信方法、 装置及系统, 基于毫米波基站的蜂窝频段收发 机, 实现蜂窝基站控制毫米波基站和用户设备在蜂窝频段上进行测量信号交 互, 并根据测量结果确定用户设备待接入的毫米波基站, 进而触发打开或唤 醒处于休眠状态的毫米波基站以及用户设备的毫米波频段收发机, 以使用户 设备接入待接入的毫米波基站, 减少用户设备不必要的载频间小区搜索和测 量, 降低用户设备电池能量的消耗, 以及减少毫米波基站不必要的发射测量 信号和导频信号, 避免毫米波基站的能量消耗、 导频污染以及吞吐量降低。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为传统蜂窝基站和毫米波基站采用共站址方式配置示意图; 图 2为传统蜂窝基站和毫米波基站采用不共站址方式配置示意图; 图 3为本发明通信方法实施例一的流程图;
图 4为本发明通信方法实施例二的流程图;
图 5为本发明通信方法实施例三的流程图;
图 6为本发明通信方法实施例四的流程图;
图 7为本发明通信方法实施例五的流程图;
图 8为本发明通信方法实施例六的流程图;
图 9为本发明通信方法实施例七的流程图;
图 10为本发明通信方法实施例八的流程图;
图 11为本发明通信方法实施例九的流程图;
图 12为本发明蜂窝基站实施例一的结构示意图;
图 13为本发明蜂窝基站实施例二的结构示意图;
图 14为本发明毫米波基站实施例一的结构示意图;
图 15为本发明毫米波基站实施例二的结构示意图;
图 16为本发明毫米波基站实施例三的结构示意图;
图 17为本发明用户设备实施例一的结构示意图;
图 18为本发明用户设备实施例二的结构示意图;
图 19为本发明蜂窝基站实施例三的结构示意图;
图 20为本发明毫米波基站实施例四的结构示意图;
图 21为本发明毫米波基站实施例五的结构示意图;
图 22为本发明用户设备实施例三的结构示意图;
图 23为本发明毫米波通信系统实施例的结构示意图。 具体实施方式
为了更清楚的说明本发明的内容, 在描述本发明详细实施例前, 先介绍 本发明涉及的两种网络架构。
第一种网络架构如图 1所示, 图 1为传统蜂窝基站和毫米波基站采用共 站址方式配置示意图。 在这种网络结构中, 传统蜂窝基站和毫米波基站可以 共用一个站址, 即发射塔或者抱杆等, 架设各自的天线, 甚至可以共用一套 天线系统。 蜂窝基站与毫米波基站之间的数据交换可以认为是高速的电路之 间的交换, 无需考虑蜂窝基站与毫米波基站间回程链路的延时和容量问题。 在该网络构架中, 毫米波基站的覆盖范围可以与蜂窝基站的覆盖范围一致, 例如作为热点地区覆盖 200米至 500米的半径范围, 但是更多的场景中, 毫 米波基站的覆盖范围要小于蜂窝基站的覆盖范围, 例如, 毫米波基站作为热 点覆盖 200米至 500米的半径范围, 而蜂窝基站覆盖更广的范围达到 1公里 到 2公里的半径范围, 处于毫米波基站覆盖范围内的用户设备, 一定处于共 站址的传统蜂窝基站覆盖范围内。 处于毫米波基站覆盖范围内的用户设备, 可以通过毫米波频段与毫米波基站进行交互, 也可以通过传统蜂窝频段与传 统蜂窝基站进行交互; 处于毫米波基站覆盖范围之外并处于传统蜂窝基站覆 盖范围内的用户设备, 只可以通过传统蜂窝频段与传统蜂窝基站交互。 该网 络架构的一个比较直观的物理特性为, 用户设备到毫米波基站的距离和用户 设备到蜂窝基站的距离相同。
第二种网络构架如图 2所示, 图 2为传统蜂窝基站和毫米波基站采用不 共站址方式配置示意图。 在这种网络结构中, 传统蜂窝基站和毫米波基站架 设在不同的站址, 蜂窝基站与毫米波基站之间通过光纤有线回程链路或者毫 米波无线回程链路进行数据交换, 在该网络构架下, 一个或者多个毫米波基 站处于传统蜂窝基站的覆盖范围内,处于毫米波基站覆盖范围内的用户设备, 可以通过毫米波频段与毫米波基站进行交互, 也可以通过传统蜂窝频段与传 统蜂窝基站进行交互; 处于毫米波基站覆盖范围之外并处于传统蜂窝基站覆 盖范围内的用户设备, 只可以通过传统蜂窝频段与传统蜂窝基站交互。
进一步的, 在上述两种网络架构中, 用户设备控制层面的信息均通过蜂 窝频段与蜂窝基站进行交互, 而用户设备数据层面的信息可通过蜂窝频段与 蜂窝基站进行交互, 也可以通过毫米波频段与毫米波基站进行交互。 因此用 户设备的移动性管理、无线资源控制协议(Radio Resource Control, 以下简称 RRC) 信令的传输与接收均在蜂窝基站进行。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 图 3为本发明通信方法实施例一的流程图, 如图 3所示, 本实施例的方 法可以包括:
步骤 101、 蜂窝基站向毫米波基站和用户设备发送测量指示信息, 以使 所述毫米波基站和用户设备根据所述测量指示信息在蜂窝频段上进行信号测 量交互以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范 围内;
本实施例应用场景描述如下: 用户设备处于毫米波基站覆盖边缘, 与传 统蜂窝基站处于 RRC数据连接 (RRC_Connected) 状态, 在这种情况下, 用 户设备的小区搜索和测量是由蜂窝基站控制和配置的; 用户设备还没有与毫 米波基站建立连接,毫米波基站将根据用户设备在上行蜂窝频段发送的信号, 判决触发用户设备在毫米波频段上的测量操作, 以备后续用户设备在毫米波 频段上的接入。
本实施例中, 用户设备需要接入的毫米波基站为部署在蜂窝基站的覆盖 范围内的毫米波基站。 蜂窝基站可以将其覆盖范围内的所有毫米波基站作为 为用户需要接入的毫米波基站; 也可以将其覆盖范围内的部分毫米波基站作 为用户需要接入的毫米波基站, 选择依据可以是蜂窝基站根据用户设备反馈 的蜂窝频段上的测量信息, 判断用户设备在蜂窝基站的大概的方位, 并确定 该方位上的多个毫米波基站作为用户需要接入的毫米波基站。 上述毫米波基 站具备蜂窝频段收发机, 可以和用户设备在蜂窝频段上进行交互, 因此, 毫 米波基站可以在无服务用户设备的时候, 处于休眠状态, 只留蜂窝频段收发 机处理蜂窝频段上的数据接收和发送。
本实施例中, 蜂窝基站通过回程链路向毫米波基站发送测量指示信息, 所述蜂窝基站与所述毫米波基站之间的回程链路可以是以光纤的形式连接, 也可以以毫米波无线链路的形式连接, 所述回程链路的接口可以是长期演进 (Long Term Evolution, 以下简称 LTE) 中定义的 X2接口, 也可以为新定义 的无线接口。 蜂窝基站发送给毫米波基站的测量指示信息可以包括测量信号 的发射功率、 带宽大小、 子帧配置、 频域位置、 天线配置等信息。 毫米波基 站接收到所述测量指示信息后, 即可在所述测量指示信息指定的资源上接收 用户设备发送的测量信号, 或者向用户设备发送测量信号。
用户设备与蜂窝基站处于 RRC_Connected状态, 因此蜂窝基站可以在蜂 窝频段上向用户设备发送测量指示信息,其发送方式可以是通过 RRC信令发 送, 该测量指示信息可以包括测量信号的带宽大小、 子帧配置、 频域位置、 天线配置等信息。 用户设备接收到所述测量指示信息后, 即可在所述测量指 示信息指定的资源上接收毫米波基站发送的测量信号, 或者向毫米波基站发 送测量信号。
所述毫米波基站和用户设备根据接收到的测量指示信息, 即可在测量指 示信息指定的蜂窝频段资源上进行信号测量交互以获取测量结果, 所述交互 的过程可以是毫米波基站在指定的蜂窝频段资源上接收用户设备发送的测量 信号, 然后根据预设算法计算获取测量结果; 还可以是用户设备在指定的蜂 窝频段资源上接收毫米波基站发送的测量信号, 然后根据预设算法计算获取 测量结果。 具体的实现过程, 在后续的实施例中进行说明。
步骤 102、 所述蜂窝基站获取所述测量结果, 并根据所述测量结果, 确 定所述用户设备待接入的毫米波基站;
本实施例中, 蜂窝基站获取测量结果, 所述测量结果可以是毫米波基站 通过回程链路发送的, 还可以是用户设备在蜂窝频段上发送的, 蜂窝基站根 据所述测量结果, 结合毫米波基站的负载、 干扰等信息, 以及用户设备与毫 米波基站间的链路等情况, 确定用户设备待接入的毫米波基站。 需要说明的 是, 这里蜂窝基站确定出来的待接入的毫米波基站可以是一个, 还可以是多 个, 这是由于蜂窝基站根据测量结果, 结合毫米波基站的负载、 干扰等信息 对其覆盖范围内的毫米波基站进行条件判定, 可能存在多个符合条件的毫米 波基站, 蜂窝基站可以将所有符合条件的毫米波基站都作为用户设备待接入 的毫米波基站。
蜂窝基站的覆盖范围是对毫米波基站的一个粗筛过程, 只要是用户设备 的大概方位上的毫米波基站即可以被确定为用户需要接入的毫米波基站, 甚 至是蜂窝基站覆盖范围内的所有毫米波基站都可以被确定为用户需要接入的 毫米波基站; 进一步的, 在步骤 102中确定毫米波基站是根据毫米波基站和 用户设备之间经过信号测量交互获的取测量结果, 结合毫米波基站的负载、 干扰等信息, 以及用户设备与毫米波基站间的链路等情况得到的。
步骤 103、 所述蜂窝基站向所述用户设备发送所述待接入的毫米波基站 的毫米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配 置信息接入所述待接入的毫米波基站。
本实施例中, 蜂窝基站向用户设备发送在步骤 102中确定的待接入的毫 米波基站的毫米波频段参数配置信息, 该毫米波频段参数配置信息可以包括 所述一个或者多个待接入的毫米波基站标识信息, 各待接入的毫米波基站的 毫米波频段测量导频配置等信息。 用户设备在成功接收到蜂窝基站发送的所 述毫米波频段参数配置信息后, 打开或者唤醒该用户设备的毫米波频段收发 机, 并在配置的毫米波频段资源上接收或者发送相应的测量导频信号, 进行 毫米波频段的测量和接入过程, 最终用户设备接入所有待接入的毫米波基站 中的一个毫米波基站, 该接入的毫米波基站可以是待接入的毫米波基站中的 任意一个, 具体情况由用户设备的接入过程而定, 此处不做具体限定。
本发明实施例基于毫米波基站的蜂窝频段收发机, 实现蜂窝基站控制毫 米波基站和用户设备在蜂窝频段上进行测量信号交互, 并根据测量结果确定 用户设备待接入的毫米波基站, 进而触发打开或唤醒处于休眠状态的毫米波 基站以及用户设备的毫米波频段收发机, 以使用户设备接入待接入的毫米波 基站, 减少用户设备不必要的载频间小区搜索和测量, 降低用户设备电池能 量的消耗, 以及减少毫米波基站不必要的发射测量信号和导频信号, 避免毫 米波基站的能量消耗、 导频污染以及吞吐量降低。
进一步的, 本发明实施例的步骤 101蜂窝基站向毫米波基站和用户设备 发送测量指示信息, 以使所述毫米波基站和用户设备根据所述测量指示信息 在蜂窝频段上进行信号测量交互以获取测量结果, 具体的实施方法可以是: 所述蜂窝基站向所述毫米波基站发送第一测量指示信息并向所述用户设备发 送第二测量指示信息, 所述第一测量指示信息用于指示所述毫米波基站根据 所述第一测量指示信息在蜂窝频段上接收所述用户设备在所述蜂窝频段上发 送的测量信号, 所述第二测量指示信息用于指示所述用户设备根据所述第二 测量指示信息在所述蜂窝频段上向所述毫米波基站发送所述测量信号。 即蜂 窝基站分别向确定的毫米波基站发送第一测量指示信息, 向用户设备发送第 二测量指示信息, 目的是使所述毫米波基站根据所述第一测量指示信息在蜂 窝频段上接收所述用户设备在所述蜂窝频段上发送的测量信号, 所述用户设 备根据所述第二测量指示信息在所述蜂窝频段上向所述毫米波基站发送所述 测量信号, 此时, 毫米波基站和用户设备之间是上行链路的数据发送, 因此 蜂窝基站发送的测量指示信息是用于指示毫米波基站和用户设备在蜂窝频段 的上行链路上的资源配置, 用户设备利用上行资源发送测量信号, 毫米波基 站在相应的上行资源上接收测量信号。 该测量信号可以为 LTE中定义的探测 参考信号 (Sounding Reference Signal, 以下简称 SRS) , 在共站址的网络架 构下, SRS 能够满足本专利设计要求, 并能够避免额外的重新设计测量信号 的工作; 而对于不共站址的网络架构, 需要在其它的符号上传输用户设备到 毫米波基站的测量信号, SRS无法满足设计要求, 需要重新引入新的测量信 号, 目标是能确保一个蜂窝基站内的一个或者多个毫米波基站能够检测并分 辨出不同用户设备发出的测量信号, 所述新的测量信号的实现方法本实施例 不做限定。
相应的, 本发明实施例的步骤 102所述蜂窝基站获取所述测量结果, 具 体的实施方法可以是: 所述蜂窝基站接收所述毫米波基站发送的第一测量结 果, 所述第一测量结果为所述毫米波基站根据所述用户设备发送的所述测量 信号得到的。 根据上述蜂窝基站发送的测量指示信息, 毫米波基站接收用户 设备发送的测量信号, 并根据该测量信号计算获取第一测量结果, 具体的计 算方法由后续的实施例说明。
进一步的, 本发明实施例的步骤 101蜂窝基站向毫米波基站和用户设备 发送测量指示信息, 以使所述毫米波基站和用户设备根据所述测量指示信息 在蜂窝频段上进行信号测量交互以获取测量结果, 具体的实施方法可以是: 所述蜂窝基站向所述毫米波基站发送第三测量指示信息并向所述用户设备发 送第四测量指示信息, 所述第三测量指示信息用于指示所述毫米波基站根据 所述第三测量指示信息在蜂窝频段上向所述用户设备发送测量信号, 所述第 四测量指示信息用于指示所述用户设备根据所述第四测量指示信息在所述蜂 窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测量信号。 即蜂 窝基站分别向确定的毫米波基站发送第三测量指示信息, 向用户设备发送第 四测量指示信息, 目的是使所述用户设备根据所述第四测量指示信息在蜂窝 频段上接收所述毫米波基站在所述蜂窝频段上发送的测量信号, 所述毫米波 基站根据所述第三测量指示信息在所述蜂窝频段上向所述用户设备发送所述 测量信号, 此时, 毫米波基站和用户设备之间是下行链路的数据发送, 因此 蜂窝基站发送的测量指示信息是用于指示毫米波基站和用户设备在蜂窝频段 的下行链路上的资源配置, 毫米波基站利用下行资源发送测量信号, 用户设 备在相应的下行资源上接收测量信号。 该测量信号可以为 LTE中定义的信道 状态指示参考信号 (Channel State Indication RS , 以下简称 CSI-RS ) 、 公共 参考信号 (Common RS , 以下简称 CRS ) 或者定位参考信号 (Positioning Reference Signal, 以下简称 PRS ) 。
相应的, 本发明实施例的步骤 102所述蜂窝基站获取所述测量结果, 具 体的实施方法可以是:所述蜂窝基站接收所述用户设备发送的第二测量结果, 所述第二测量结果为所述用户设备根据所述毫米波基站发送的所述测量信号 得到的。 根据上述蜂窝基站发送的测量指示信息, 用户设备接收毫米波基站 发送的测量信号, 并根据该测量信号计算获取第二测量结果, 具体的计算方 法由后续的实施例说明。由于所述第二测量结果由用户设备发送给蜂窝基站, 因此第二测量信号和第一测量信号的差别在于, 所述第一测量结果中还包括 毫米波基站的负载信息和 /或干扰指示, 因此, 所述蜂窝基站根据所述测量结 果, 确定所述用户设备待接入的毫米波基站在此具体的实现方法是所述蜂窝 基站根据所述第二测量结果、 以及所述毫米波基站的负载信息和 /或干扰指 示, 确定所述用户设备待接入的毫米波基站。
图 4为本发明通信方法实施例二的流程图, 如图 4所示, 在图 3所示的 方法实施例的基础上, 在步骤 103之前, 本实施例的方法还可以包括:
步骤 201、 蜂窝基站判断待接入的毫米波基站是否处于工作状态; 本实施例中, 蜂窝基站在确定用户设备待接入的毫米波基站后, 所述待 接入的毫米波基站可能有两种状态: 一种是所述待接入的毫米波基站目前正 在为至少一个用户设备服务, 已经处于工作状态, 在毫米波频段上周期的发 送测量导频信号;另一种是所述待接入的毫米波基站目前没有服务用户设备, 处于关闭或者休眠状态, 在毫米波频段上不会发送任何信号。 蜂窝基站会及 时更新覆盖范围内的所有毫米波基站所处的状态, 例如可以是维护一张毫米 波基站的状态表, 一旦某一个毫米波基站的状态发生变化, 例如可以是从工 作状态转为休眠状态, 还可以是从休眠状态转为工作状态, 毫米波基站将这 一状态改变信息通过回程链路发送给蜂窝基站, 蜂窝基站根据该状态改变信 息更新状态表的内容。 蜂窝基站根据状态表的记载, 确定用户设备待接入的 毫米波基站是否处于工作状态。 步骤 202、 若否, 则所述蜂窝基站向所述待接入的毫米波基站发送唤醒 指令, 并在唤醒所述待接入的毫米波基站后向所述待接入的毫米波基站发送 毫米波频段参数配置信息; 或者, 所述蜂窝基站向所述待接入的毫米波基站 发送唤醒指令, 并在唤醒所述待接入的毫米波基站后接收所述毫米波基站发 送的毫米波频段参数配置信息。
本实施例中, 如果待接入的毫米波基站处于工作状态, 则在蜂窝基站内 已经保存了该毫米波基站对应的毫米波频段参数配置信息, 因此毫米波基站 可以直接执行图 3所示的实施例的步骤 103, 向所述用户设备发送所述待接 入的毫米波基站的毫米波频段参数配置信息, 以使所述用户设备根据所述毫 米波频段参数配置信息接入所述待接入的毫米波基站。
如果待接入的毫米波基站没有处于工作状态, 则蜂窝基站要先向所述毫 米波基站发送唤醒指令, 以使所述毫米波基站根据该唤醒指令改变状态, 从 休眠状态中唤醒, 转为工作状态, 即所述毫米波基站开始在毫米波频段发射 测量信号和导频信号。 然后蜂窝基站向所述待接入的毫米波基站发送毫米波 频段参数配置信息, 或者, 如果所述毫米波基站中已经保存了所述毫米波频 段参数配置信息, 则可以将所述毫米波频段参数配置信息发送给蜂窝基站, 毫米波基站根据所述毫米波频段参数配置信息在相应的资源上收发测量导频 信号, 以使用户设备根据所述毫米波频段参数配置信息接入所述待接入的毫 米波基站。
本发明实施例由蜂窝基站判断待接入的毫米波基站的状态, 并将休眠状 态的毫米波基站唤醒, 实现毫米波基站改变状态在毫米波频段发射测量信号 和导频信号, 减少毫米波基站不必要的发射测量信号和导频信号, 避免毫米 波基站的能量消耗、 导频污染以及吞吐量降低。
图 5为本发明通信方法实施例三的流程图, 如图 5所示, 本实施例的方 法可以包括:
步骤 301、 毫米波基站接收蜂窝基站发送的测量指示信息;
本实施例中, 毫米波基站通过回程链路接收蜂窝基站发送的测量指示信 息, 所述回程链路可以是以光纤的形式连接, 也可以以毫米波无线链路的形 式连接, 所述回程链路的接口可以是 LTE中定义的 X2接口, 也可以为新定 义的无线接口。所述测量指示信息可以包括测量信号的发射功率、带宽大小、 子帧配置、 频域位置、 天线配置等信息。 毫米波基站具备蜂窝频段收发机, 可以和用户设备在蜂窝频段上进行交互, 因此, 毫米波基站可以在无服务用 户设备的时候, 处于休眠状态, 只留蜂窝频段收发机处理蜂窝频段上的数据 接收和发送。
步骤 302、 所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用 户设备进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量 结果确定所述毫米波基站是否为所述用户设备待接入的毫米波基站。
本实施例中, 毫米波基站根据所述测量指示信息, 可以在所述测量指示 信息指定的资源上接收用户设备发送的测量信号, 或者还可以向用户设备发 送测量信号, 毫米波基站和用户设备进行信号测量交互, 目的是使蜂窝基站 获取测量结果以确定毫米波基站是否为用户设备待接入的毫米波基站。
本发明实施例基于毫米波基站的蜂窝频段收发机, 实现毫米波基站和用 户设备在蜂窝频段上进行测量信号交互, 以获取测量结果, 使蜂窝基站根据 所述测量结果确定所述毫米波基站是否为所述用户设备待接入的毫米波基 站, 减少用户设备不必要的载频间小区搜索和测量, 降低用户设备电池能量 的消耗, 以及减少毫米波基站不必要的发射测量信号和导频信号, 避免毫米 波基站的能量消耗、 导频污染以及吞吐量降低。
进一步的, 图 5所示的方法实施例的步骤 301毫米波基站接收蜂窝基站 发送的测量指示信息, 具体的实施方法可以是: 所述毫米波基站接收所述蜂 窝基站发送的第一测量指示信息, 所述第一测量指示信息用于指示所述毫米 波基站根据所述第一测量指示信息在蜂窝频段上接收所述用户设备在所述蜂 窝频段上发送的测量信号, 即毫米波基站接收的测量指示信息为第一测量指 示信息, 该信息用于指示所述毫米波基站在蜂窝频段上接收所述用户设备在 所述蜂窝频段上发送的测量信号。
相应的, 图 6为本发明通信方法实施例四的流程图, 如图 6所示, 基于 上述步骤 301的具体实施方法,在图 5所示的方法实施例的基础上,步骤 302 所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行信号 测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所述毫 米波基站是否为所述用户设备待接入的毫米波基站, 具体的实施方法可以包 括: 步骤 401、 所述毫米波基站根据所述第一测量指示信息, 在蜂窝频段上 接收所述用户设备在所述蜂窝频段上发送的第一测量信号;
本实施例中, 毫米波基站根据第一测量指示信息, 接收用户设备发送的 测量信号, 即第一测量指示信息指示毫米波基站在相应的上行资源上接收数 据, 该数据即第一测量信号。
步骤 402、 所述毫米波基站根据所述第一测量信号, 获取第一测量结果; 本实施例中, 根据第一测量信号包括的具体信息不同, 毫米波基站计算 获取测量结果的方法也有差别, 相应的获取的第一测量结果包括的信息也不 是完全相同的。
具体的, 如果所述第一测量信号包括所述用户设备发送所述第一测量信 号的发射功率, 则所述毫米波基站根据所述发射功率以及所述毫米波基站接 收所述第一测量信号的接收功率, 计算获取所述用户设备到所述毫米波基站 的蜂窝频段上的路径损耗值, 若所述路径损耗值小于等于第一预设路径损耗 门限值, 则所述毫米波基站将所述路径损耗值以及所述毫米波基站的负载信 息和 /或干扰指示作为所述第一测量结果。 毫米波基站可以根据用户设备发送 的第一测量信号的发射功率, 以及接收第一测量信号的接收功率计算出用户 设备到所述毫米波基站的蜂窝频段路径损耗 PLlc3W, 根据实际的系统设计需 求, 可以利用蜂窝频段路径损耗 PLlQW作为判断依据, 如果 PLlQW小于等于第 一预设路径损耗门限值 PLlc3Wth, 则所述毫米波基站将所述路径损耗值以及所 述毫米波基站的负载信息和 /或干扰指示作为所述第一测量结果。 另外, 还可 以先根据蜂窝频段路径损耗 PLlQW预估毫米波频段路径损耗 PLhl,再根据毫米 波频段路径损耗 PLh 为判断依据,毫米波频段路径损耗 PLhl可以由公式(1 ) 计算得到:
PLhi = b + 20 \og10 (f) + PLlow ( 1 ) 其中, PLhl为毫米波频段路径损耗, b为统计值常量, 可预先配置, f为 毫米波载波频率。
如果 PLhl小于等于一个特定的毫米波频段门限路径损耗 PLhlώ, 则所述 毫米波基站将所述路径损耗值以及所述毫米波基站的负载信息和 /或干扰指 示作为所述第一测量结果。
进一步的, 如果所述第一测量信号包括所述用户设备发送所述第一测量 信号的绝对发送时间, 则所述毫米波基站根据所述绝对发送时间以及所述毫 米波基站接收所述第一测量信号的绝对接收时间, 计算获取所述用户设备到 所述毫米波基站的蜂窝频段上的传输时延, 若所述传输时延小于等于第一预 设传输时延门限值, 则所述毫米波基站将所述传输时延以及所述毫米波基站 的负载信息和 /或干扰指示作为所述第一测量结果。 所述绝对发送时间可以是 用户设备发送第一测量信号的全球定位系统 (Global Positioning System, 以 下简称 GPS )时间,即用户设备发送第一测量信号时从 GPS模块获取的时间, 并将该 GPS时间作为第一测量信号发送给毫米波基站, 毫米波基站可以在接 收第一测量信号时从 GPS模块获取接收时间, 进一步的可以得到第一测量信 号从用户设备到达毫米波基站的传播时延, 如果该传播时延小于等于第一预 设传输时延门限值, 则所述毫米波基站将所述传输时延以及所述毫米波基站 的负载信息和 /或干扰指示作为所述第一测量结果。
进一步的, 如果所述第一测量信号包括所述用户设备的定位信息, 则所 述毫米波基站根据所述定位信息, 获取所述用户设备的地理位置信息, 并根 据所述地理位置信息计算获取所述用户设备到所述毫米波基站的距离, 若所 述距离小于等于预设距离门限值, 则所述毫米波基站将所述距离以及所述毫 米波基站的负载信息和 /或干扰指示作为所述第一测量结果。 毫米波基站根据 接收到的第一测量信号, 采用到达时间 (Timing Of Arrival, 以下简称 TOA) 或者到达时间差 (Timing Difference Of Arrival, 以下简称 TDOA) 等定位技 术, 获取用户设备的物理位置, 然后计算用户设备到毫米波基站之间的距离。 如果用户设备与该毫米波基站之间的距离小于等于预设距离门限值, 则所述 毫米波基站将所述距离以及所述毫米波基站的负载信息和 /或干扰指示作为 所述第一测量结果。
步骤 403、 所述毫米波基站向所述蜂窝基站发送所述第一测量结果, 以 使所述蜂窝基站根据所述第一测量结果确定所述毫米波基站是否为所述用户 设备待接入的毫米波基站。
本实施例中, 毫米波基站根据具体的第一测量信号包括的信息, 将计算 的结果和预设门限值进行比较, 符合条件的毫米波基站将计算结果及其负载 信息和 /或干扰指示作为第一测量结果, 并向蜂窝基站发送该第一测量结果, 以使所述蜂窝基站根据所述第一测量结果确定所述毫米波基站是否为所述用 户设备待接入的毫米波基站。
进一步的, 图 5所示的方法实施例的步骤 301毫米波基站接收蜂窝基站 发送的测量指示信息, 具体的实施方法可以是: 所述毫米波基站接收所述蜂 窝基站发送的第三测量指示信息, 所述第三测量指示信息用于指示所述毫米 波基站根据所述第三测量指示信息在蜂窝频段上向所述用户设备发送测量信 号, 即毫米波基站接收的测量指示信息为第三测量指示信息, 该信息用于指 示所述毫米波基站在蜂窝频段上向所述用户设备发送测量信号, 该测量信号 可以包括: 发送功率、 绝对发送时间或者定位指示信息。
相应的, 图 5所示的方法实施例的步骤 302所述毫米波基站根据所述测 量指示信息, 在蜂窝频段上与用户设备进行信号测量交互, 以使所述蜂窝基 站获取测量结果并根据所述测量结果确定所述毫米波基站是否为所述用户设 备待接入的毫米波基站, 具体的实施方法可以是: 所述毫米波基站根据所述 第三测量指示信息, 在蜂窝频段上向所述用户设备发送第二测量信号, 以使 所述用户设备根据所述第二测量信号计算获取第二测量结果。
图 7为本发明通信方法实施例五的流程图, 如图 7所示, 在图 5所示的 方法实施例的基础上, 在步骤 302之后, 本实施例的方法还可以包括:
步骤 501、 所述毫米波基站接收所述蜂窝基站发送的唤醒指令, 并根据 所述唤醒指令, 从休眠状态转为工作状态;
本实施例中, 毫米波基站如果是处于休眠状态, 则只有毫米波基站的蜂 窝频段收发机处于工作状态, 蜂窝基站如果将所述毫米波基站确定为用户设 备待接入的毫米波基站, 则要先向该毫米波基站发送唤醒指令, 所述毫米波 基站接收到唤醒指令后, 根据该指令从休眠状态转为工作状态, 即毫米波基 站的开始在毫米波频段上发送导频信息。
步骤 502、 所述毫米波基站在所述工作状态接收所述蜂窝基站发送的毫 米波频段参数配置信息; 或者, 所述毫米波基站在所述工作状态向所述蜂窝 基站发送毫米波频段参数配置信息。
本实施例中, 所述毫米波基站在工作状态, 可以接收蜂窝基站发送的毫 米波频段参数配置信息, 或者如果毫米波基站已经预存的了相关配置信息, 可以将所述毫米波频段参数配置信息发送给蜂窝基站, 由蜂窝基站将毫米波 频段参数配置信息发送给用户设备。 本发明实施例通过休眠状态的毫米波基站接收唤醒指令, 从休眠状态转 为工作状态, 实现用户设备在毫米波频段上接入毫米波基站, 减少毫米波基 站不必要的发射测量信号和导频信号, 避免毫米波基站的能量消耗、 导频污 染以及吞吐量降低。
图 8为本发明通信方法实施例六的流程图, 如图 8所示, 本实施例的方 法可以包括:
步骤 601、 用户设备在蜂窝频段上接收蜂窝基站发送的测量指示信息; 本实施例中,用户设备在蜂窝频段上接收蜂窝基站发送的测量指示信息, 该信息可以是 RRC信令, 可以包括测量信号的带宽大小、 子帧配置、 频域位 置、 天线配置等信息。
步骤 602、 所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与 毫米波基站进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述 测量结果确定所述毫米波基站是否为所述用户设备待接入的毫米波基站; 本实施例中, 用户设备根据所述测量指示信息, 可以在所述测量指示信 息指定的蜂窝频段资源上接收毫米波基站发送的测量信号, 或者还可以在蜂 窝频段资源上向毫米波基站发送测量信号, 毫米波基站和用户设备进行信号 测量交互, 目的是使蜂窝基站获取测量结果以确定毫米波基站是否为用户设 备待接入的毫米波基站。
步骤 603、 所述用户设备在所述蜂窝频段上接收所述蜂窝基站发送的所 述待接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段 参数配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
本实施例中, 用户设备在蜂窝频段上接收蜂窝基站发送的毫米波基站的 毫米波频段参数配置信息, 根据该信息用户设备可以唤醒毫米波频段功能, 并在指定的资源上发送测量信号以接入毫米波基站。
本发明实施例通过用户设备和毫米波基站在蜂窝频段上进行测量信号交 互, 以获取测量结果, 使蜂窝基站根据所述测量结果确定所述毫米波基站是 否为所述用户设备待接入的毫米波基站, 实现用户设备根据毫米波频段参数 配置信息接入毫米波基站, 减少用户设备不必要的载频间小区搜索和测量, 降低用户设备电池能量的消耗, 以及减少毫米波基站不必要的发射测量信号 和导频信号, 避免毫米波基站的能量消耗、 导频污染以及吞吐量降低。 进一步的, 图 8所示的方法实施例的步骤 601用户设备在蜂窝频段上接 收蜂窝基站发送的测量指示信息, 具体的实施方法可以是: 所述用户设备在 蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第四测量指示信息, 所述第四测量指示信息用于指示所述用户设备根据所述第四测量指示信息在 蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测量信号, 即 用户设备接收的测量指示信息为第四测量指示信息, 该信息用于指示用户设 备在蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的测量信号。
相应的, 图 9为本发明通信方法实施例七的流程图, 如图 9所示, 基于 上述步骤 601的具体实施方法,在图 8所示的方法实施例的基础上,步骤 602 所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站, 具体的实施方法可 以包括:
步骤 701、 所述用户设备根据所述第四测量指示信息, 在所述蜂窝频段 上接收所述毫米波基站在所述蜂窝频段上发送的第二测量信号;
本实施例中, 用户设备根据第四测量指示信息, 接收毫米波基站发送的 测量信号,即第四测量指示信息指示用户设备在相应的下行资源上接收数据, 该数据即第二测量信号。
步骤 702、 所述用户设备根据所述第二测量信号, 获取第二测量结果; 本实施例中, 根据第二测量信号包括的具体信息不同, 用户设备计算获 取测量结果的方法也有差别, 相应的获取的第二测量结果包括的信息也不是 完全相同的。
具体的, 如果所述第二测量信号包括所述毫米波基站发送所述第二测量 信号的发射功率, 则所述用户设备根据所述发射功率以及所述用户设备接收 所述第二测量信号的接收功率, 计算获取所述毫米波基站到所述用户设备的 蜂窝频段上的路径损耗值, 若所述路径损耗值小于等于第二预设路径损耗门 限值, 则所述用户设备将所述路径损耗值作为所述第二测量结果。 用户设备 可以根据毫米波基站发送的第二测量信号的发射功率, 以及接收第二测量信 号的接收功率计算出所述毫米波基站到用户设备的蜂窝频段路径损耗 PLlc3W, 根据实际的系统设计需求, 可以利用蜂窝频段路径损耗 PLlQW作为判断依据, 如果 PLlc3W小于等于第二预设路径损耗门限值 PLlc3Wώ, 则所述用户设备将所 述路径损耗值作为所述第二测量结果。 为了节省蜂窝频段上行链路的开销, 用户设备可以周期性的上报蜂窝频段路路径损耗 PLlQW最小的 M个毫米波基 站的第二测量结果。
另外, 还可以先根据蜂窝频段路径损耗 PLlQW预估毫米波频段路径损耗
PLhl, 再根据毫米波频段路径损耗 PLh 为判断依据, 毫米波频段路径损耗
PLhl可以由公式 (1 ) 计算得到:
PLhi = b + 20 \ogw (f) + PLlow ( 1 ) 其中, PLhl为毫米波频段路径损耗, b为统计值常量, 可预先配置, f为 毫米波载波频率。
如果 PLhl小于等于一个特定的毫米波频段门限路径损耗 PLhlώ, 则所述 用户设备将所述路径损耗值作为所述第二测量结果。 为了节省蜂窝频段上行 链路的开销, 用户设备可以周期性的上报毫米波频段路径损耗 PLhl最小的 M 个毫米波基站的第二测量结果。
进一步的, 如果所述第二测量信号包括所述毫米波基站发送所述第二测 量信号的发射功率, 则所述用户设备根据所述第二测量信号, 获取所述第二 测量信号的参考信号接收功率, 若所述参考信号接收功率大于等于预设参考 信号接收功率门限值, 则所述用户设备将所述参考信号接收功率作为所述第 二测量结果。 用户设备根据接收第二测量信号的接收功率, 可以获知第二测 量信号的参考信号接收功率 (Reference Signal Receiving Power, 以下简称 RSRP) , 如果 RSRP大于等于预设参考信号接收功率门限值, 则所述用户设 备将所述 RSRP作为所述第二测量结果。为了节省蜂窝频段上行链路的开销, 用户设备可以周期性的上报 RSRP最大的 M个毫米波基站的第二测量结果。
进一步的, 如果所述第二测量信号包括所述毫米波基站发送所述第二测 量信号的绝对发送时间, 则所述用户设备根据所述绝对发送时间以及所述用 户设备接收所述第二测量信号的绝对接收时间, 计算获取所述毫米波基站到 所述用户设备的蜂窝频段上的传输时延, 若所述传输时延小于等于第二预设 传输时延门限值, 则所述用户设备将所述传输时延作为所述第二测量结果。 所述绝对发送时间可以是毫米波基站发送第二测量信号的 GPS, 即毫米波基 站发送第二测量信号时从 GPS模块获取的时间,并将该 GPS时间作为第二测 量信号发送给用户设备, 用户设备可以在接收第二测量信号时从 GPS模块获 取接收时间, 进一步的可以得到第二测量信号从毫米波基站到达用户设备的 传播时延, 如果该传播时延小于等于第二预设传输时延门限值, 则所述用户 设备将所述传输时延作为所述第二测量结果。 为了节省蜂窝频段上行链路的 开销, 用户设备可以周期性的上报传输时延最小的 M个毫米波基站的第二测 进一步的, 如果所述第二测量信号包括所述毫米波基站发送的定位指示 信息, 则所述用户设备根据所述定位指示信息, 获取所述用户设备对应于所 述毫米波基站的定位信息, 所述用户设备将所述定位信息作为所述第二测量 结果。 用户设备根据毫米波基站发送的测量指示信息, 获取相关定位参数, 即获取多个毫米波基站对应的的 TOA参数和 /或相对时间差 (Relative Time Difference, 以下简称 RTD) 参数, 用户设备将所述 TOA参数和 /或 RTD参 数作为第二测量结果。蜂窝基站根据用户设备发送的 TOA参数和 /或 RTD参 数, 可以计算出用户设备所处的物理位置, 根据该物理位置信息可以判断是 否需要触发后续毫米波频段测量和接入过程, 如果是的话, 则选择一个或者 多个毫米波基站作为与用户设备建立连接的待接入的毫米波基站。
步骤 703、 所述用户设备在所述蜂窝频段上向所述蜂窝基站发送所述第 二测量结果, 以使所述蜂窝基站根据所述第二测量结果确定所述毫米波基站 是否为所述用户设备待接入的毫米波基站。
本实施例中, 用户设备根据具体的第二测量信号包括的信息, 将计算结 果和预设门限值进行比较, 并将符合条件的毫米波基站对应的测量结果作为 第二测量结果, 并向蜂窝基站发送该第二测量结果, 以使所述蜂窝基站根据 所述第二测量结果确定所述毫米波基站是否为所述用户设备待接入的毫米波 基站。
进一步的, 图 8所示的方法实施例的步骤 601用户设备在蜂窝频段上接 收蜂窝基站发送的测量指示信息, 具体的实施方法可以是: 所述用户设备在 蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第二测量指示信息, 所述第二测量指示信息用于指示所述用户设备根据所述第二测量指示信息在 蜂窝频段上向所述毫米波基站发送所述测量信号, 即用户设备接收的测量指 示信息为第二测量指示信息, 该信息用于指示所述用户设备在蜂窝频段上向 所述毫米波基站发送测量信号, 该测量信号可以包括: 发送功率、 绝对发送 时间或者定位信息。
相应的, 图 8所示的方法实施例的步骤 602所述用户设备根据所述测量 指示信息, 在所述蜂窝频段上与毫米波基站进行信号测量交互, 以使所述蜂 窝基站获取测量结果并根据所述测量结果确定所述毫米波基站是否为所述用 户设备待接入的毫米波基站, 具体的实施方法可以是: 所述用户设备根据所 述第二测量指示信息, 在蜂窝频段上向所述毫米波基站发送第一测量信号, 以使所述毫米波基站根据所述第一测量信号计算获取第一测量结果。
下面采用两个具体的实施例, 对上述方法实施例的技术方案进行详细说 明。
图 10为本发明通信方法实施例八的流程图, 如图 10所示, 本实施例的 方法可以包括:
5801、 蜂窝基站向毫米波基站发送第一测量指示信息;
本实施例中, 蜂窝基站向其覆盖范围内的全部或者部分毫米波基站发送 第一测量指示信息, 其中, 第一测量指示信息用于指示毫米波基站在指定的 上行资源上接收测量信号。
5802、 蜂窝基站向用户设备发送第二测量指示信息;
本实施例中,蜂窝基站在蜂窝频段上向用户设备发送第二测量指示信息, 其中, 第二测量指示信息用于指示用户设备在指定的上行资源上发送测量信 号。
5803、 用户设备向毫米波基站发送第一测量信号;
本实施例中, 用户设备根据第二测量指示信息, 在指定的蜂窝频段上行 资源上发送第一测量信号, 该第一测量信号可以包括用户设备的发射功率、 用户设备发送测量信号的绝对发送时间或者用户设备的定位信息。 毫米波基 站具备蜂窝频段接收机, 因此可以在蜂窝频段上接收用户设备发送的第一测 量信号。
5804、 毫米波基站获取第一测量结果;
本实施例中, 毫米波基站获取第一测量结果的过程和图 6所示的实施例 的步骤 402类似, 此处不再赘述。
S805、 毫米波基站向蜂窝基站发送第一测量结果; 5806、 蜂窝基站获取第一测量结果, 并根据第一测量结果确定用户设备 待接入的毫米波基站;
本实施例中, 蜂窝基站根据第一测量结果, 其中包括根据第一测量信息 计算结果、 毫米波基站的负载、 干扰等信息, 以及用户设备与毫米波基站间 的链路等情况, 确定一个或者多个毫米波基站作为用户设备待接入的毫米波 基站。
5807、 蜂窝基站向毫米波基站发送唤醒指令;
本实施例中,蜂窝基站根据维护的其覆盖范围内的毫米波基站的状态表, 判断用户设备待接入的毫米波基站是否处于工作状态, 如果不是, 则向该毫 米波基站发送唤醒指令, 以使所述毫米波基站从休眠状态转为工作状态, 开 始在毫米波频段上发射测量信号和导频信号。
5808、 蜂窝基站向毫米波基站发送毫米波频段参数配置信息;
5809、 蜂窝基站向用户设备发送毫米波频段参数配置信息。
本实施例中, 蜂窝基站向用户设备发送毫米波频段参数配置信息, 用户 设备在成功接收到蜂窝基站发送的所述毫米波频段参数配置信息后, 打开或 者唤醒该用户设备的毫米波频段收发机, 并在配置的毫米波频段资源上接收 或者发送相应的测量导频信号, 进行毫米波频段的测量和接入过程。
本发明实施例基于毫米波基站的蜂窝频段收发机, 实现蜂窝基站控制毫 米波基站和用户设备在蜂窝频段上进行测量信号交互, 并根据测量结果确定 用户设备待接入的毫米波基站, 进而触发打开或唤醒处于休眠状态的毫米波 基站以及用户设备的毫米波频段收发机, 以使用户设备接入待接入的毫米波 基站, 减少用户设备不必要的载频间小区搜索和测量, 降低用户设备电池能 量的消耗, 以及减少毫米波基站不必要的发射测量信号和导频信号, 避免毫 米波基站的能量消耗、 导频污染以及吞吐量降低。
图 11为本发明通信方法实施例九的流程图, 如图 11所示, 本实施例的 方法可以包括:
S901、 蜂窝基站向毫米波基站发送第三测量指示信息;
本实施例中, 蜂窝基站向其覆盖范围内的全部或者部分毫米波基站发送 第三测量指示信息, 其中, 第三测量指示信息用于指示毫米波基站在指定的 下行资源上发送测量信号。 S902、 蜂窝基站向用户设备发送第四测量指示信息;
本实施例中,蜂窝基站在蜂窝频段上向用户设备发送第四测量指示信息, 其中, 第四测量指示信息用于指示用户设备在指定的下行资源上接收测量信 号。
S903、 毫米波基站向用户设备发送第二测量信号;
本实施例中, 毫米波基站根据第二测量指示信息, 在指定的蜂窝频段下 行资源上发送第二测量信号, 该第二测量信号可以包括毫米波基站的发射功 率、 毫米波基站发送测量信号的绝对发送时间或者毫米波基站的定位指示信 息。 毫米波基站具备蜂窝频段发射机, 因此可以在蜂窝频段上向用户设备发 送的第二测量信号。
5904、 用户设备获取第二测量结果;
本实施例中, 毫米波基站获取第一测量结果的过程和图 9所示的实施例 的步骤 702类似, 此处不再赘述。
5905、 用户设备向蜂窝基站发送第二测量结果;
S906、 蜂窝基站获取第二测量结果, 并根据第二测量结果确定用户设备 待接入的毫米波基站;
本实施例中, 蜂窝基站根据第二测量结果, 结合毫米波基站的负载、 干 扰等信息, 以及用户设备与毫米波基站间的链路等情况, 确定一个或者多个 毫米波基站作为用户设备待接入的毫米波基站。
S907、 蜂窝基站向毫米波基站发送唤醒指令;
本实施例中,蜂窝基站根据维护的其覆盖范围内的毫米波基站的状态表, 判断用户设备待接入的毫米波基站是否处于工作状态, 如果不是, 则向该毫 米波基站发送唤醒指令, 以使所述毫米波基站从休眠状态转为工作状态, 开 始在毫米波频段上发射测量信号和导频信号。
S908、 蜂窝基站接收毫米波基站发送的毫米波频段参数配置信息; 本实施例中, 如果毫米波基站中预先保存了毫米波频段上的参数配置信 息, 可以将该信息发送给蜂窝基站。
S909、 蜂窝基站向用户设备发送毫米波频段参数配置信息。
本实施例中, 蜂窝基站向用户设备发送毫米波频段参数配置信息, 用户 设备在成功接收到蜂窝基站发送的所述毫米波频段参数配置信息后, 打开或 者唤醒该用户设备的毫米波频段收发机, 并在配置的毫米波频段资源上接收 或者发送相应的测量导频信号, 进行毫米波频段的测量和接入过程。
本发明实施例基于毫米波基站的蜂窝频段收发机, 实现蜂窝基站控制毫 米波基站和用户设备在蜂窝频段上进行测量信号交互, 并根据测量结果确定 用户设备待接入的毫米波基站, 进而触发打开或唤醒处于休眠状态的毫米波 基站以及用户设备的毫米波频段收发机, 以使用户设备接入待接入的毫米波 基站, 减少用户设备不必要的载频间小区搜索和测量, 降低用户设备电池能 量的消耗, 以及减少毫米波基站不必要的发射测量信号和导频信号, 避免毫 米波基站的能量消耗、 导频污染以及吞吐量降低。
图 12为本发明蜂窝基站实施例一的结构示意图, 如图 12所示, 本实施 例的装置可以包括: 指示信息发送模块 11、 获取模块 12 以及配置信息发送 模块 13, 其中, 指示信息发送模块 11, 用于向毫米波基站和用户设备发送测 量指示信息, 以使所述毫米波基站和用户设备根据所述测量指示信息在蜂窝 频段上进行信号测量交互以获取测量结果, 其中, 所述毫米波基站部署在所 述蜂窝基站覆盖范围内; 获取模块 12, 用于获取所述测量结果, 并根据所述 测量结果, 确定所述用户设备待接入的毫米波基站; 配置信息发送模块 13, 用于向所述用户设备发送所述待接入的毫米波基站的毫米波频段参数配置信 息, 以使所述用户设备根据所述毫米波频段参数配置信息接入所述待接入的 毫米波基站。
本实施例的装置, 可以用于执行图 3所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 13为本发明蜂窝基站实施例二的结构示意图, 如图 13所示, 本实施 例的装置在图 12所示装置结构的基础上, 进一步地, 还可以包括: 判断模块 21和唤醒指令发送模块 22, 其中, 判断模块 21, 用于判断所述待接入的毫 米波基站是否处于工作状态; 唤醒指令发送模块 22, 用于若所述判断模块判 断所述待接入的毫米波基站没有处于工作状态, 则向所述待接入的毫米波基 站发送唤醒指令, 并在唤醒所述待接入的毫米波基站后向所述待接入的毫米 波基站发送毫米波频段参数配置信息; 或者, 向所述待接入的毫米波基站发 送唤醒指令, 并在唤醒所述待接入的毫米波基站后接收所述毫米波基站发送 的毫米波频段参数配置信息。 本实施例的装置, 可以用于执行图 4所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 14为本发明毫米波基站实施例一的结构示意图, 如图 14所示, 本实 施例的装置可以包括: 指示信息接收模块 31和交互模块 32, 其中, 指示信 息接收模块 31, 用于接收蜂窝基站发送的测量指示信息; 交互模块 32, 用于 根据所述测量指示信息, 在蜂窝频段上与用户设备进行信号测量交互, 以使 所述蜂窝基站获取测量结果并根据所述测量结果确定所述毫米波基站是否为 所述用户设备待接入的毫米波基站。
本实施例的装置, 可以用于执行图 5所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 15为本发明毫米波基站实施例二的结构示意图, 如图 15所示, 本实 施例的装置在图 14 所示装置结构的基础上, 进一步地, 指示信息接收模块 31, 具体用于接收所述蜂窝基站发送的第一测量指示信息, 所述第一测量指 示信息用于指示所述毫米波基站根据所述第一测量指示信息在蜂窝频段上接 收所述用户设备在所述蜂窝频段上发送的测量信号; 交互模块 32可以包括: 测量信号接收单元 321、 获取单元 322以及发送单元 323, 其中, 测量信号接 收单元 321, 用于根据所述第一测量指示信息, 在蜂窝频段上接收所述用户 设备在所述蜂窝频段上发送的第一测量信号; 获取单元 322, 用于根据所述 第一测量信号, 获取第一测量结果; 发送单元 323, 用于向所述蜂窝基站发 送所述第一测量结果, 以使所述蜂窝基站根据所述第一测量结果确定所述毫 米波基站是否为所述用户设备待接入的毫米波基站。
本实施例的装置, 可以用于执行图 6所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 16为本发明毫米波基站实施例三的结构示意图, 如图 16所示, 本实 施例的装置在图 14所示装置结构的基础上, 进一步地, 还可以包括: 唤醒指 令接收模块 41和配置信息处理模块 42, 其中, 唤醒指令接收模块 41, 用于 接收所述蜂窝基站发送的唤醒指令, 并根据所述唤醒指令, 从休眠状态转为 工作状态; 配置信息处理模块 42, 用于在所述工作状态接收所述蜂窝基站发 送的毫米波频段参数配置信息; 或者, 在所述工作状态向所述蜂窝基站发送 毫米波频段参数配置信息。 本实施例的装置, 可以用于执行图 7所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 17为本发明用户设备实施例一的结构示意图, 如图 17所示, 本实施 例的装置可以包括: 指示信息接收模块 51、 交互模块 52 以及配置信息接收 模块 53, 其中, 指示信息接收模块 51, 用于在蜂窝频段上接收蜂窝基站发送 的测量指示信息; 交互模块 52, 用于根据所述测量指示信息, 在所述蜂窝频 段上与毫米波基站进行信号测量交互, 以使所述蜂窝基站获取测量结果并根 据所述测量结果确定所述毫米波基站是否为所述用户设备待接入的毫米波基 站; 配置信息接收模块 53, 用于在所述蜂窝频段上接收所述蜂窝基站发送的 所述待接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频 段参数配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
本实施例的装置, 可以用于执行图 8所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 18为本发明用户设备实施例二的结构示意图, 如图 18所示, 本实施 例的装置在图 17所示装置结构的基础上, 进一步地, 指示信息接收模块 51, 具体用于在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第四测量 指示信息, 所述第四测量指示信息用于指示所述用户设备根据所述第四测量 指示信息在蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测 量信号; 交互模块 52可以包括: 测量信号接收单元 521、 获取单元 522以及 发送单元 523, 其中, 测量信号接收单元 521, 用于根据所述第四测量指示信 息, 在所述蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的第二测 量信号; 获取单元 322, 用于根据所述第二测量信号, 获取第二测量结果; 发送单元 323, 用于在所述蜂窝频段上向所述蜂窝基站发送所述第二测量结 果, 以使所述蜂窝基站根据所述第二测量结果确定所述毫米波基站是否为所 述用户设备待接入的毫米波基站。
本实施例的装置, 可以用于执行图 9所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 19为本发明蜂窝基站实施例三的结构示意图, 如图 19所示, 本实施 例的设备可以包括: 处理器 11和发送器 12, 其中, 发送器 12, 用于向毫米 波基站和用户设备发送测量指示信息, 以使所述毫米波基站和用户设备根据 所述测量指示信息在蜂窝频段上进行信号测量交互以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范围内; 处理器 11, 用于获取所述 测量结果, 并根据所述测量结果, 确定所述用户设备待接入的毫米波基站; 发送器 12, 还用于向所述用户设备发送所述待接入的毫米波基站的毫米波频 段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信息接入 所述待接入的毫米波基站。
本实施例的设备, 可以用于执行图 3所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 20为本发明毫米波基站实施例四的结构示意图, 如图 20所示, 本实 施例的设备可以包括: 接收器 21和蜂窝频段处理器 22, 其中, 接收器 21, 用于接收蜂窝基站发送的测量指示信息; 蜂窝频段处理器 22, 用于根据所述 测量指示信息, 在蜂窝频段上与用户设备进行信号测量交互, 以使所述蜂窝 基站获取测量结果并根据所述测量结果确定所述毫米波基站是否为所述用户 设备待接入的毫米波基站。
本实施例的设备, 可以用于执行图 5所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 21为本发明毫米波基站实施例五的结构示意图, 如图 21所示, 本实 施例的设备在图 20所示设备结构的基础上, 进一步地, 还可以包括: 毫米波 频段处理器 31, 该毫米波频段处理器 31, 用于在所述工作状态接收所述蜂窝 基站发送的毫米波频段参数配置信息; 或者, 在所述工作状态向所述蜂窝基 站发送毫米波频段参数配置信息。
本实施例的设备, 可以用于执行图 7所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 22为本发明用户设备实施例三的结构示意图, 如图 22所示, 本实施 例的设备可以包括: 接收器 41和处理器 42, 其中, 接收器 41, 用于在蜂窝 频段上接收蜂窝基站发送的测量指示信息; 处理器 42, 用于根据所述测量指 示信息, 在所述蜂窝频段上与毫米波基站进行信号测量交互, 以使所述蜂窝 基站获取测量结果并根据所述测量结果确定所述毫米波基站是否为所述用户 设备待接入的毫米波基站; 还用于在所述蜂窝频段上接收所述蜂窝基站发送 的所述待接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波 频段参数配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。 本实施例的设备, 可以用于执行图 8所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 23为本发明毫米波通信系统实施例的结构示意图, 如图 23所示, 本 实施例的系统包括: 蜂窝基站 11和毫米波基站 12, 其中, 蜂窝基站 11可以 采用图 12或图 13装置实施例的结构, 其对应地, 可以执行图 3或图 4方法 实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述; 毫米波基 站 12可以采用图 14~图 16中任一装置实施例的结构, 其对应地, 可以执行 图 5~图 7中任一方法实施例的技术方案, 其实现原理和技术效果类似, 此处 不再赘述。
进一步的, 本发明毫米波通信系统的实体设备可以包括: 蜂窝基站和毫 米波基站, 其中, 蜂窝基站可以采用图 19设备实施例的结构, 其对应地, 可 以执行图 3或图 4方法实施例的技术方案, 其实现原理和技术效果类似, 此 处不再赘述; 毫米波基站可以采用图 20或图 21设备实施例的结构, 其对应 地, 可以执行图 5~图 7中任一方法实施例的技术方案, 其实现原理和技术效 果类似, 此处不再赘述。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外 的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。
所述该作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明各个实施例所述方法的部分步骤。 而前述 的存储介质包括: U盘、移动硬盘、只读存储器(Read-Only Memory, ROM )、 随机存取存储器(Random Access Memory, RAM) 、 磁碟或者光盘等各种可 以存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种通信方法, 其特征在于, 包括:
蜂窝基站向毫米波基站和用户设备发送测量指示信息, 以使所述毫米波 基站和用户设备根据所述测量指示信息在蜂窝频段上进行信号测量交互以获 取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范围内;
所述蜂窝基站获取所述测量结果, 并根据所述测量结果, 确定所述用户 设备待接入的毫米波基站;
所述蜂窝基站向所述用户设备发送所述待接入的毫米波基站的毫米波频 段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信息接入 所述待接入的毫米波基站。
2、 根据权利要求 1所述的方法, 其特征在于, 所述蜂窝基站向毫米波基 站和用户设备发送测量指示信息, 以使所述毫米波基站和用户设备根据所述 测量指示信息在蜂窝频段上进行信号测量交互以获取测量结果, 包括:
所述蜂窝基站向所述毫米波基站发送第一测量指示信息并向所述用户设 备发送第二测量指示信息, 所述第一测量指示信息用于指示所述毫米波基站 根据所述第一测量指示信息在蜂窝频段上接收所述用户设备在所述蜂窝频段 上发送的测量信号, 所述第二测量指示信息用于指示所述用户设备根据所述 第二测量指示信息在所述蜂窝频段上向所述毫米波基站发送所述测量信号; 所述蜂窝基站获取所述测量结果, 包括:
所述蜂窝基站接收所述毫米波基站发送的第一测量结果, 所述第一测量 结果为所述毫米波基站根据所述用户设备发送的所述测量信号得到的。
3、 根据权利要求 1所述的方法, 其特征在于, 所述蜂窝基站向毫米波基 站和用户设备发送测量指示信息, 以使所述毫米波基站和用户设备根据所述 测量指示信息在蜂窝频段上进行信号测量交互以获取测量结果, 包括:
所述蜂窝基站向所述毫米波基站发送第三测量指示信息并向所述用户设 备发送第四测量指示信息, 所述第三测量指示信息用于指示所述毫米波基站 根据所述第三测量指示信息在蜂窝频段上向所述用户设备发送测量信号, 所 述第四测量指示信息用于指示所述用户设备根据所述第四测量指示信息在所 述蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测量信号; 所述蜂窝基站获取所述测量结果, 包括: 所述蜂窝基站接收所述用户设备发送的第二测量结果, 所述第二测量结 果为所述用户设备根据所述毫米波基站发送的所述测量信号得到的。
4、 根据权利要求 1~3中任一项所述的方法, 其特征在于, 所述蜂窝基站 根据所述测量结果, 确定所述用户设备待接入的毫米波基站, 包括:
所述蜂窝基站根据所述测量结果、 以及所述毫米波基站的负载信息, 确 定所述用户设备待接入的毫米波基站。
5、 根据权利要求 1~4中任一项所述的方法, 其特征在于, 所述蜂窝基站 向所述用户设备发送所述待接入的毫米波基站的毫米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信息接入所述待接入的毫米 波基站之前, 还包括:
所述蜂窝基站判断所述待接入的毫米波基站是否处于工作状态; 若否, 则所述蜂窝基站向所述待接入的毫米波基站发送唤醒指令, 并在 唤醒所述待接入的毫米波基站后向所述待接入的毫米波基站发送毫米波频段 参数配置信息; 或者, 所述蜂窝基站向所述待接入的毫米波基站发送唤醒指 令, 并在唤醒所述待接入的毫米波基站后接收所述毫米波基站发送的毫米波 频段参数配置信息。
6、 一种通信方法, 其特征在于, 包括:
毫米波基站接收蜂窝基站发送的测量指示信息;
所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站。
7、 根据权利要求 6所述的方法, 其特征在于, 所述毫米波基站接收蜂窝 基站发送的测量指示信息, 包括:
所述毫米波基站接收所述蜂窝基站发送的第一测量指示信息, 所述第一 测量指示信息用于指示所述毫米波基站根据所述第一测量指示信息在蜂窝频 段上接收所述用户设备在所述蜂窝频段上发送的测量信号;
所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站, 包括:
所述毫米波基站根据所述第一测量指示信息, 在蜂窝频段上接收所述用 户设备在所述蜂窝频段上发送的第一测量信号;
所述毫米波基站根据所述第一测量信号, 获取第一测量结果;
所述毫米波基站向所述蜂窝基站发送所述第一测量结果, 以使所述蜂窝 基站根据所述第一测量结果确定所述毫米波基站是否为所述用户设备待接入 的毫米波基站。
8、 根据权利要求 7所述的方法, 其特征在于, 所述第一测量信号包括所 述用户设备在蜂窝频段上发送所述第一测量信号的发射功率;
所述毫米波基站根据所述第一测量信号, 获取第一测量结果, 包括: 所述毫米波基站根据所述用户设备在蜂窝频段上的所述发射功率以及所 述毫米波基站在蜂窝频段上接收所述第一测量信号的接收功率, 计算获取所 述用户设备到所述毫米波基站的蜂窝频段上的路径损耗值;
若所述路径损耗值小于等于第一预设路径损耗门限值, 则所述毫米波基 站将所述路径损耗值以及所述毫米波基站的负载信息作为所述第一测量结 果。
9、 根据权利要求 7所述的方法, 其特征在于, 所述第一测量信号包括所 述用户设备发送所述第一测量信号的绝对发送时间;
所述毫米波基站根据所述第一测量信号, 获取第一测量结果, 包括: 所述毫米波基站根据所述绝对发送时间以及所述毫米波基站接收所述第 一测量信号的绝对接收时间, 计算获取所述用户设备到所述毫米波基站的蜂 窝频段上的传输时延;
若所述传输时延小于等于第一预设传输时延门限值, 则所述毫米波基站 将所述传输时延以及所述毫米波基站的负载信息作为所述第一测量结果。
10、 根据权利要求 7所述的方法, 其特征在于, 所述第一测量信号包括 所述用户设备的定位信息;
所述毫米波基站根据所述第一测量信号, 获取第一测量结果, 包括: 所述毫米波基站根据所述定位信息,获取所述用户设备的地理位置信息, 并根据所述地理位置信息计算获取所述用户设备到所述毫米波基站的距离; 若所述距离小于等于预设距离门限值, 则所述毫米波基站将所述距离以 及所述毫米波基站的负载信息作为所述第一测量结果。
11、 根据权利要求 6所述的方法, 其特征在于, 所述毫米波基站接收蜂 窝基站发送的测量指示信息, 包括:
所述毫米波基站接收所述蜂窝基站发送的第三测量指示信息, 所述第三 测量指示信息用于指示所述毫米波基站根据所述第三测量指示信息在蜂窝频 段上向所述用户设备发送测量信号;
所述毫米波基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站, 包括:
所述毫米波基站根据所述第三测量指示信息, 在蜂窝频段上向所述用户 设备发送第二测量信号, 以使所述用户设备根据所述第二测量信号计算获取 第二测量结果。
12、 根据权利要求 6~11中任一项所述的方法, 其特征在于, 所述毫米波 基站根据所述测量指示信息, 在蜂窝频段上与用户设备进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所述毫米波基站是 否为所述用户设备待接入的毫米波基站之后, 还包括:
所述毫米波基站接收所述蜂窝基站发送的唤醒指令, 并根据所述唤醒指 令, 从休眠状态转为工作状态;
所述毫米波基站在所述工作状态接收所述蜂窝基站发送的毫米波频段参 数配置信息; 或者, 所述毫米波基站在所述工作状态向所述蜂窝基站发送毫 米波频段参数配置信息。
13、 一种通信方法, 其特征在于, 包括:
用户设备在蜂窝频段上接收蜂窝基站发送的测量指示信息;
所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
所述用户设备在所述蜂窝频段上接收所述蜂窝基站发送的所述待接入的 毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段参数配置信 息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
14、 根据权利要求 13所述的方法, 其特征在于, 所述用户设备在蜂窝频 段上接收蜂窝基站发送的测量指示信息, 包括:
所述用户设备在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的 第四测量指示信息, 所述第四测量指示信息用于指示所述用户设备根据所述 第四测量指示信息在蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送 的所述测量信号;
所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站, 包括:
所述用户设备根据所述第四测量指示信息, 在所述蜂窝频段上接收所述 毫米波基站在所述蜂窝频段上发送的第二测量信号;
所述用户设备根据所述第二测量信号, 获取第二测量结果;
所述用户设备在所述蜂窝频段上向所述蜂窝基站发送所述第二测量结 果, 以使所述蜂窝基站根据所述第二测量结果确定所述毫米波基站是否为所 述用户设备待接入的毫米波基站。
15、 根据权利要求 14所述的方法, 其特征在于, 所述第二测量信号包括 所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率;
所述用户设备根据所述第二测量信号, 获取第二测量结果, 包括: 所述用户设备根据所述发射功率以及所述用户设备接收所述第二测量信 号的接收功率, 计算获取所述毫米波基站到所述用户设备的蜂窝频段上的路 径损耗值;
若所述路径损耗值小于等于第二预设路径损耗门限值, 则所述用户设备 将所述路径损耗值作为所述第二测量结果。
16、 根据权利要求 14所述的方法, 其特征在于, 所述第二测量信号包括 所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率;
所述用户设备根据所述第二测量信号, 获取第二测量结果, 包括: 所述用户设备根据所述第二测量信号, 获取所述第二测量信号的参考信 号接收功率;
若所述参考信号接收功率大于等于预设参考信号接收功率门限值, 则所 述用户设备将所述参考信号接收功率作为所述第二测量结果。
17、 根据权利要求 14所述的方法, 其特征在于, 所述第二测量信号包括 所述毫米波基站发送所述第二测量信号的绝对发送时间;
所述用户设备根据所述第二测量信号, 获取第二测量结果, 包括: 所述用户设备根据所述绝对发送时间以及所述用户设备接收所述第二测 量信号的绝对接收时间, 计算获取所述毫米波基站到所述用户设备的蜂窝频 段上的传输时延;
若所述传输时延小于等于第二预设传输时延门限值, 则所述用户设备将 所述传输时延作为所述第二测量结果。
18、 根据权利要求 14所述的方法, 其特征在于, 所述第二测量信号包括 所述毫米波基站发送的定位指示信息;
所述用户设备根据所述第二测量信号, 获取第二测量结果, 包括: 所述用户设备根据所述定位指示信息, 获取所述用户设备对应于所述毫 米波基站的定位信息;
所述用户设备将所述定位信息作为所述第二测量结果。
19、 根据权利要求 13所述的方法, 其特征在于, 所述用户设备在蜂窝频 段上接收蜂窝基站发送的测量指示信息, 包括:
所述用户设备在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的 第二测量指示信息, 所述第二测量指示信息用于指示所述用户设备根据所述 第二测量指示信息在蜂窝频段上向所述毫米波基站发送所述测量信号;
所述用户设备根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站, 包括:
所述用户设备根据所述第二测量指示信息, 在所述蜂窝频段上向所述毫 米波基站发送第一测量信号, 以使所述毫米波基站根据所述第一测量信号计 算获取第一测量结果。
20、 一种蜂窝基站, 其特征在于, 包括:
指示信息发送模块, 用于向毫米波基站和用户设备发送测量指示信息, 以使所述毫米波基站和用户设备根据所述测量指示信息在蜂窝频段上进行信 号测量交互以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆 盖范围内;
获取模块, 用于获取所述测量结果, 并根据所述测量结果, 确定所述用 户设备待接入的毫米波基站;
配置信息发送模块, 用于向所述用户设备发送所述待接入的毫米波基站 的毫米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配 置信息接入所述待接入的毫米波基站。
21、 根据权利要求 20所述的蜂窝基站, 其特征在于, 所述指示信息发送 模块, 具体用于:
向所述毫米波基站发送第一测量指示信息并向所述用户设备发送第二测 量指示信息, 所述第一测量指示信息用于指示所述毫米波基站根据所述第一 测量指示信息在蜂窝频段上接收所述用户设备在所述蜂窝频段上发送的测量 信号, 所述第二测量指示信息用于指示所述用户设备根据所述第二测量指示 信息在所述蜂窝频段上向所述毫米波基站发送所述测量信号;
所述获取模块, 具体用于接收所述毫米波基站发送的第一测量结果, 所 述第一测量结果为所述毫米波基站根据所述用户设备发送的所述测量信号得 到的, 并根据所述第一测量结果, 确定所述用户设备待接入的毫米波基站。
22、 根据权利要求 20所述的蜂窝基站, 其特征在于, 所述指示信息发送 模块, 具体用于:
向所述毫米波基站发送第三测量指示信息并向所述用户设备发送第四测 量指示信息, 所述第三测量指示信息用于指示所述毫米波基站根据所述第三 测量指示信息在蜂窝频段上向所述用户设备发送测量信号, 所述第四测量指 示信息用于指示所述用户设备根据所述第四测量指示信息在所述蜂窝频段上 接收所述毫米波基站在所述蜂窝频段上发送的所述测量信号;
所述获取模块, 具体用于接收所述用户设备发送的第二测量结果, 所述 第二测量结果为所述用户设备根据所述毫米波基站发送的所述测量信号得到 的, 并根据所述第二测量结果, 确定所述用户设备待接入的毫米波基站。
23、 根据权利要求 20~22中任一项所述的蜂窝基站, 其特征在于, 所述 获取模块, 具体用于:
接收所述测量结果, 根据所述测量结果、 以及所述毫米波基站的负载信 息, 确定所述用户设备待接入的毫米波基站。
24、 根据权利要求 20~23中任一项所述的蜂窝基站, 其特征在于, 还包 括:
判断模块, 用于判断所述待接入的毫米波基站是否处于工作状态; 唤醒指令发送模块, 用于若所述判断模块判断所述待接入的毫米波基站 没有处于工作状态, 则向所述待接入的毫米波基站发送唤醒指令, 并在唤醒 所述待接入的毫米波基站后向所述待接入的毫米波基站发送毫米波频段参数 配置信息; 或者, 向所述待接入的毫米波基站发送唤醒指令, 并在唤醒所述 待接入的毫米波基站后接收所述毫米波基站发送的毫米波频段参数配置信 息。
25、 一种毫米波基站, 其特征在于, 包括:
指示信息接收模块, 用于接收蜂窝基站发送的测量指示信息;
交互模块, 用于根据所述测量指示信息, 在蜂窝频段上与用户设备进行 信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确定所 述毫米波基站是否为所述用户设备待接入的毫米波基站。
26、 根据权利要求 25所述的毫米波基站, 其特征在于, 所述指示信息接 收模块, 具体用于:
接收所述蜂窝基站发送的第一测量指示信息, 所述第一测量指示信息用 于指示所述毫米波基站根据所述第一测量指示信息在蜂窝频段上接收所述用 户设备在所述蜂窝频段上发送的测量信号;
所述交互模块, 包括:
测量信号接收单元, 用于根据所述第一测量指示信息, 在蜂窝频段上接 收所述用户设备在所述蜂窝频段上发送的第一测量信号;
获取单元, 用于根据所述第一测量信号, 获取第一测量结果;
发送单元, 用于向所述蜂窝基站发送所述第一测量结果, 以使所述蜂窝 基站根据所述第一测量结果确定所述毫米波基站是否为所述用户设备待接入 的毫米波基站。
27、 根据权利要求 26所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备在蜂窝频段上发送所述第一测量信号的发射功率;
所述获取单元, 具体用于:
根据所述用户设备在蜂窝频段上的所述发射功率以及所述毫米波基站在 蜂窝频段上接收所述第一测量信号的接收功率, 计算获取所述用户设备到所 述毫米波基站的蜂窝频段上的路径损耗值;
若所述路径损耗值小于等于第一预设路径损耗门限值, 则将所述路径损 耗值以及所述毫米波基站的负载信息作为所述第一测量结果。
28、 根据权利要求 26所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备发送所述第一测量信号的绝对发送时间;
所述获取单元, 具体用于:
根据所述绝对发送时间以及所述毫米波基站接收所述第一测量信号的绝 对接收时间, 计算获取所述用户设备到所述毫米波基站的蜂窝频段上的传输 时延;
若所述传输时延小于等于第一预设传输时延门限值, 则将所述传输时延 以及所述毫米波基站的负载信息作为所述第一测量结果。
29、 根据权利要求 26所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备的定位信息;
所述获取单元, 具体用于:
根据所述定位信息, 获取所述用户设备的地理位置信息, 并根据所述地 理位置信息计算获取所述用户设备到所述毫米波基站的距离;
若所述距离小于等于预设距离门限值, 则将所述距离以及所述毫米波基 站的负载信息作为所述第一测量结果。
30、 根据权利要求 25所述的毫米波基站, 其特征在于, 所述指示信息接 收模块, 具体用于:
接收所述蜂窝基站发送的第三测量指示信息, 所述第三测量指示信息用 于指示所述毫米波基站根据所述第三测量指示信息在蜂窝频段上向所述用户 设备发送测量信号;
所述交互模块, 具体用于根据所述第三测量指示信息, 在蜂窝频段上向 所述用户设备发送第二测量信号, 以使所述用户设备根据所述第二测量信号 计算获取第二测量结果。
31、 根据权利要求 25~30中任一项所述的毫米波基站, 其特征在于, 还 包括:
唤醒指令接收模块, 用于接收所述蜂窝基站发送的唤醒指令, 并根据所 述唤醒指令, 从休眠状态转为工作状态;
配置信息处理模块, 用于在所述工作状态接收所述蜂窝基站发送的毫米 波频段参数配置信息; 或者, 在所述工作状态向所述蜂窝基站发送毫米波频 段参数配置信息。
32、 一种用户设备, 其特征在于, 包括:
指示信息接收模块, 用于在蜂窝频段上接收蜂窝基站发送的测量指示信 息;
交互模块, 用于根据所述测量指示信息, 在所述蜂窝频段上与毫米波基 站进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果 确定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
配置信息接收模块, 用于在所述蜂窝频段上接收所述蜂窝基站发送的所 述待接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段 参数配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
33、 根据权利要求 32所述的用户设备, 其特征在于, 所述指示信息接收 模块, 具体用于:
在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第四测量指示 信息, 所述第四测量指示信息用于指示所述用户设备根据所述第四测量指示 信息在蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测量信 号;
所述交互模块, 包括:
测量信号接收单元, 用于根据所述第四测量指示信息, 在所述蜂窝频段 上接收所述毫米波基站在所述蜂窝频段上发送的第二测量信号;
获取单元, 用于根据所述第二测量信号, 获取第二测量结果;
发送单元, 用于在所述蜂窝频段上向所述蜂窝基站发送所述第二测量结 果, 以使所述蜂窝基站根据所述第二测量结果确定所述毫米波基站是否为所 述用户设备待接入的毫米波基站。
34、 根据权利要求 33所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率;
所述获取单元, 具体用于:
根据所述发射功率以及所述用户设备接收所述第二测量信号的接收功 率, 计算获取所述毫米波基站到所述用户设备的蜂窝频段上的路径损耗值; 若所述路径损耗值小于等于第二预设路径损耗门限值, 则将所述路径损 耗值作为所述第二测量结果。
35、 根据权利要求 33所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率; 所述获取单元, 具体用于:
根据所述第二测量信号, 获取所述第二测量信号的参考信号接收功率; 若所述参考信号接收功率大于等于预设参考信号接收功率门限值, 则将 所述参考信号接收功率作为所述第二测量结果。
36、 根据权利要求 33所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站发送所述第二测量信号的绝对发送时间;
所述获取单元, 具体用于:
根据所述绝对发送时间以及所述用户设备接收所述第二测量信号的绝对 接收时间, 计算获取所述毫米波基站到所述用户设备的蜂窝频段上的传输时 延;
若所述传输时延小于等于第二预设传输时延门限值, 则将所述传输时延 作为所述第二测量结果。
37、 根据权利要求 33所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站发送的定位指示信息;
所述获取单元, 具体用于:
根据所述定位指示信息, 获取所述用户设备对应于所述毫米波基站的定 位信息;
将所述定位信息作为所述第二测量结果。
38、 根据权利要求 32所述的用户设备, 其特征在于, 所述指示信息接收 模块, 具体用于:
在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第二测量指示 信息, 所述第二测量指示信息用于指示所述用户设备根据所述第二测量指示 信息在蜂窝频段上向所述毫米波基站发送所述测量信号;
所述交互模块, 具体用于根据所述第二测量指示信息, 在所述蜂窝频段 上向所述毫米波基站发送第一测量信号, 以使所述毫米波基站根据所述第一 测量信号计算获取第一测量结果。
39、 一种蜂窝基站, 其特征在于, 包括:
发送器, 用于向毫米波基站和用户设备发送测量指示信息, 以使所述毫 米波基站和用户设备根据所述测量指示信息在蜂窝频段上进行信号测量交互 以获取测量结果, 其中, 所述毫米波基站部署在所述蜂窝基站覆盖范围内; 处理器, 用于获取所述测量结果, 并根据所述测量结果, 确定所述用户 设备待接入的毫米波基站;
所述发送器, 还用于向所述用户设备发送所述待接入的毫米波基站的毫 米波频段参数配置信息, 以使所述用户设备根据所述毫米波频段参数配置信 息接入所述待接入的毫米波基站。
40、 根据权利要求 39所述的蜂窝基站, 其特征在于, 所述发送器, 具体 用于:
向所述毫米波基站发送第一测量指示信息并向所述用户设备发送第二测 量指示信息, 所述第一测量指示信息用于指示所述毫米波基站根据所述第一 测量指示信息在蜂窝频段上接收所述用户设备在所述蜂窝频段上发送的测量 信号, 所述第二测量指示信息用于指示所述用户设备根据所述第二测量指示 信息在所述蜂窝频段上向所述毫米波基站发送所述测量信号;
所述处理器, 具体用于接收所述毫米波基站发送的第一测量结果, 所述 第一测量结果为所述毫米波基站根据所述用户设备发送的所述测量信号得到 的, 并根据所述第一测量结果, 确定所述用户设备待接入的毫米波基站。
41、 根据权利要求 39所述的蜂窝基站, 其特征在于, 所述发送器, 具体 用于:
向所述毫米波基站发送第三测量指示信息并向所述用户设备发送第四测 量指示信息, 所述第三测量指示信息用于指示所述毫米波基站根据所述第三 测量指示信息在蜂窝频段上向所述用户设备发送测量信号, 所述第四测量指 示信息用于指示所述用户设备根据所述第四测量指示信息在所述蜂窝频段上 接收所述毫米波基站在所述蜂窝频段上发送的所述测量信号;
所述处理器, 具体用于接收所述用户设备发送的第二测量结果, 所述第 二测量结果为所述用户设备根据所述毫米波基站发送的所述测量信号得到 的, 并根据所述第二测量结果, 确定所述用户设备待接入的毫米波基站。
42、 根据权利要求 39~41中任一项所述的蜂窝基站, 其特征在于, 所述 处理器, 具体用于:
接收所述测量结果, 根据所述测量结果、 以及所述毫米波基站的负载信 息, 确定所述用户设备待接入的毫米波基站。
43、 根据权利要求 39~42中任一项所述的蜂窝基站, 其特征在于, 所述 处理器, 还用于判断所述待接入的毫米波基站是否处于工作状态;
所述发送器, 还用于若所述判断模块判断所述待接入的毫米波基站没有 处于工作状态, 则向所述待接入的毫米波基站发送唤醒指令, 并在唤醒所述 待接入的毫米波基站后向所述待接入的毫米波基站发送毫米波频段参数配置 信息; 或者, 向所述待接入的毫米波基站发送唤醒指令, 并在唤醒所述待接 入的毫米波基站后接收所述毫米波基站发送的毫米波频段参数配置信息。
44、 一种毫米波基站, 其特征在于, 包括:
接收器, 用于接收蜂窝基站发送的测量指示信息;
蜂窝频段处理器, 用于根据所述测量指示信息, 在蜂窝频段上与用户设 备进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果 确定所述毫米波基站是否为所述用户设备待接入的毫米波基站。
45、 根据权利要求 44所述的毫米波基站, 其特征在于, 所述接收器, 具 体用于:
接收所述蜂窝基站发送的第一测量指示信息, 所述第一测量指示信息用 于指示所述毫米波基站根据所述第一测量指示信息在蜂窝频段上接收所述用 户设备在所述蜂窝频段上发送的测量信号;
所述蜂窝频段处理器, 具体用于:
根据所述第一测量指示信息, 在蜂窝频段上接收所述用户设备在所述蜂 窝频段上发送的第一测量信号;
根据所述第一测量信号, 获取第一测量结果;
向所述蜂窝基站发送所述第一测量结果, 以使所述蜂窝基站根据所述第 一测量结果确定所述毫米波基站是否为所述用户设备待接入的毫米波基站。
46、 根据权利要求 45所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备在蜂窝频段上发送所述第一测量信号的发射功率;
所述蜂窝频段处理器根据所述第一测量信号, 获取第一测量结果, 包括: 所述蜂窝频段处理器根据所述用户设备在蜂窝频段上的所述发射功率以 及所述毫米波基站在蜂窝频段上接收所述第一测量信号的接收功率, 计算获 取所述用户设备到所述毫米波基站的蜂窝频段上的路径损耗值;
若所述路径损耗值小于等于第一预设路径损耗门限值, 则所述蜂窝频段 处理器将所述路径损耗值以及所述毫米波基站的负载信息作为所述第一测量 结果。
47、 根据权利要求 45所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备发送所述第一测量信号的绝对发送时间;
所述蜂窝频段处理器根据所述第一测量信号, 获取第一测量结果, 包括: 所述蜂窝频段处理器根据所述绝对发送时间以及所述毫米波基站接收所 述第一测量信号的绝对接收时间, 计算获取所述用户设备到所述毫米波基站 的蜂窝频段上的传输时延;
若所述传输时延小于等于第一预设传输时延门限值, 则所述蜂窝频段处 理器将所述传输时延以及所述毫米波基站的负载信息作为所述第一测量结 果。
48、 根据权利要求 45所述的毫米波基站, 其特征在于, 所述第一测量信 号包括所述用户设备的定位信息;
所述蜂窝频段处理器根据所述第一测量信号, 获取第一测量结果, 包括: 所述蜂窝频段处理器根据所述定位信息, 获取所述用户设备的地理位置 信息, 并根据所述地理位置信息计算获取所述用户设备到所述毫米波基站的 距离;
若所述距离小于等于预设距离门限值, 则所述蜂窝频段处理器将所述距 离以及所述毫米波基站的负载信息作为所述第一测量结果。
49、 根据权利要求 44所述的毫米波基站, 其特征在于, 所述接收器, 具 体用于:
接收所述蜂窝基站发送的第三测量指示信息, 所述第三测量指示信息用 于指示所述毫米波基站根据所述第三测量指示信息在蜂窝频段上向所述用户 设备发送测量信号;
所述蜂窝频段处理器, 具体用于根据所述第三测量指示信息, 在蜂窝频 段上向所述用户设备发送第二测量信号, 以使所述用户设备根据所述第二测 量信号计算获取第二测量结果。
50、 根据权利要求 44~49中任一项所述的毫米波基站, 其特征在于, 所 述接收器, 用于接收所述蜂窝基站发送的唤醒指令, 并根据所述唤醒指令, 从休眠状态转为工作状态; 所述毫米波基站还包括: 毫米波频段处理器, 用于在所述工作状态接收 所述蜂窝基站发送的毫米波频段参数配置信息; 或者, 在所述工作状态向所 述蜂窝基站发送毫米波频段参数配置信息。
51、 一种用户设备, 其特征在于, 包括:
接收器, 用于在蜂窝频段上接收蜂窝基站发送的测量指示信息; 处理器, 用于根据所述测量指示信息, 在所述蜂窝频段上与毫米波基站 进行信号测量交互, 以使所述蜂窝基站获取测量结果并根据所述测量结果确 定所述毫米波基站是否为所述用户设备待接入的毫米波基站;
所述接收器, 还用于在所述蜂窝频段上接收所述蜂窝基站发送的所述待 接入的毫米波基站的毫米波频段参数配置信息, 并根据所述毫米波频段参数 配置信息唤醒毫米波频段功能以及接入所述待接入的毫米波基站。
52、 根据权利要求 51所述的用户设备, 其特征在于, 所述接收器, 具体 用于:
在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第四测量指示 信息, 所述第四测量指示信息用于指示所述用户设备根据所述第四测量指示 信息在蜂窝频段上接收所述毫米波基站在所述蜂窝频段上发送的所述测量信 号;
所述处理器, 具体用于:
根据所述第四测量指示信息, 在所述蜂窝频段上接收所述毫米波基站在 所述蜂窝频段上发送的第二测量信号;
根据所述第二测量信号, 获取第二测量结果;
在所述蜂窝频段上向所述蜂窝基站发送所述第二测量结果, 以使所述蜂 窝基站根据所述第二测量结果确定所述毫米波基站是否为所述用户设备待接 入的毫米波基站。
53、 根据权利要求 52所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率;
所述处理器根据所述第二测量信号, 获取第二测量结果, 包括: 所述处理器根据所述发射功率以及所述用户设备接收所述第二测量信号 的接收功率, 计算获取所述毫米波基站到所述用户设备的蜂窝频段上的路径 损耗值; 若所述路径损耗值小于等于第二预设路径损耗门限值, 则所述处理器将 所述路径损耗值作为所述第二测量结果。
54、 根据权利要求 52所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站在蜂窝频段上发送所述第二测量信号的发射功率;
所述处理器根据所述第二测量信号, 获取第二测量结果, 包括: 所述处理器根据所述第二测量信号, 获取所述第二测量信号的参考信号 接收功率;
若所述参考信号接收功率大于等于预设参考信号接收功率门限值, 则所 述处理器将所述参考信号接收功率作为所述第二测量结果。
55、 根据权利要求 52所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站发送所述第二测量信号的绝对发送时间;
所述处理器根据所述第二测量信号, 获取第二测量结果, 包括: 所述处理器根据所述绝对发送时间以及所述用户设备接收所述第二测量 信号的绝对接收时间, 计算获取所述毫米波基站到所述用户设备的蜂窝频段 上的传输时延;
若所述传输时延小于等于第二预设传输时延门限值, 则所述处理器将所 述传输时延作为所述第二测量结果。
56、 根据权利要求 52所述的用户设备, 其特征在于, 所述第二测量信号 包括所述毫米波基站发送的定位指示信息;
所述处理器根据所述第二测量信号, 获取第二测量结果, 包括: 所述处理器根据所述定位指示信息, 获取所述用户设备对应于所述毫米 波基站的定位信息;
所述处理器将所述定位信息作为所述第二测量结果。
57、 根据权利要求 51所述的用户设备, 其特征在于, 所述接收器, 具体 用于:
在蜂窝频段上接收所述蜂窝基站在所述蜂窝频段上发送的第二测量指示 信息, 所述第二测量指示信息用于指示所述用户设备根据所述第二测量指示 信息在蜂窝频段上向所述毫米波基站发送所述测量信号;
所述处理器, 具体用于根据所述第二测量指示信息, 在所述蜂窝频段上 向所述毫米波基站发送第一测量信号, 以使所述毫米波基站根据所述第一测 量信号计算获取第一测量结果。
58、 一种毫米波通信系统, 其特征在于, 包括: 蜂窝基站和毫米波基站, 所述蜂窝基站采用权利要求 20~24中任一项所述的蜂窝基站, 所述毫米波基 站采用权利要求 25~31中任一项所述的毫米波基站。
59、 一种毫米波通信系统, 其特征在于, 包括: 蜂窝基站和毫米波基站, 所述蜂窝基站采用权利要求 39~43中任一项所述的蜂窝基站, 所述毫米波基 站采用权利要求 44~50中任一项所述的毫米波基站。
PCT/CN2013/091060 2013-12-31 2013-12-31 通信方法、装置及系统 WO2015100595A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380081070.8A CN105745894B (zh) 2013-12-31 2013-12-31 通信方法、装置及系统
JP2016543644A JP6227793B2 (ja) 2013-12-31 2013-12-31 通信方法、装置、およびシステム
KR1020167020588A KR101804480B1 (ko) 2013-12-31 2013-12-31 통신 방법, 장치 및 시스템
PCT/CN2013/091060 WO2015100595A1 (zh) 2013-12-31 2013-12-31 通信方法、装置及系统
EP13900791.8A EP3079325B1 (en) 2013-12-31 2013-12-31 Millimeter wave frequency band use in a cellular communication system
US15/196,188 US10111237B2 (en) 2013-12-31 2016-06-29 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091060 WO2015100595A1 (zh) 2013-12-31 2013-12-31 通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/196,188 Continuation US10111237B2 (en) 2013-12-31 2016-06-29 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2015100595A1 true WO2015100595A1 (zh) 2015-07-09

Family

ID=53492947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091060 WO2015100595A1 (zh) 2013-12-31 2013-12-31 通信方法、装置及系统

Country Status (6)

Country Link
US (1) US10111237B2 (zh)
EP (1) EP3079325B1 (zh)
JP (1) JP6227793B2 (zh)
KR (1) KR101804480B1 (zh)
CN (1) CN105745894B (zh)
WO (1) WO2015100595A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193525B1 (en) * 2014-09-12 2021-02-24 Nec Corporation Wireless station, wireless terminal and method for terminal measurement
US10004032B2 (en) * 2015-03-13 2018-06-19 Qualcomm Incorporated Resource partitioning in millimeter wave networks
US11129034B2 (en) * 2016-08-12 2021-09-21 Nokia Solutions And Networks Oy Link latency and system behavior
US20200037132A1 (en) * 2018-07-27 2020-01-30 Qualcomm Incorporated Methods and apparatus for peer ue search and notification for unicast over sidelink
KR102243033B1 (ko) * 2018-10-26 2021-04-21 인제대학교 산학협력단 밀리미터파 초고밀도 네트워크를 위한 사용자 연계 및 전력 할당 방법
US20210112550A1 (en) * 2019-10-10 2021-04-15 T-Mobile Usa, Inc. Detecting interference between base stations and microwave backhaul transceivers
US10728009B1 (en) 2019-10-10 2020-07-28 T-Mobile Usa, Inc. Mitigating interference between base stations and microwave backhaul transceivers
CN110913446A (zh) * 2019-12-30 2020-03-24 宇龙计算机通信科技(深圳)有限公司 数据传输方法、装置、存储介质和电子设备
US11653225B2 (en) * 2020-07-01 2023-05-16 Qualcomm Incorporated Positioning techniques using positioning reference signaling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086410A2 (en) * 2011-12-08 2013-06-13 Interdigital Patent Holdings, Inc. High-rate dual-band cellular communications
WO2013086164A1 (en) * 2011-12-08 2013-06-13 Interdigital Patent Holdings, Inc. Method and apparatus for a millimeter wave communication system
CN103348757A (zh) * 2010-12-16 2013-10-09 英特尔公司 毫米波通信站和用于毫米波基本服务集中的站和信息发现的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274903B2 (en) * 2008-08-20 2012-09-25 Qualcomm Incorporated Methods and apparatus for switching between a base channel and a 60 GHz channel
KR101292577B1 (ko) 2008-08-28 2013-08-12 삼성전자주식회사 무선통신시스템에서 연동 신호 전송 장치 및 방법
US8548479B2 (en) * 2008-08-28 2013-10-01 Samsung Electronics Co., Ltd. Apparatus and method for transmitting inter-working signal in wireless communication system
US10244579B2 (en) * 2010-01-28 2019-03-26 Samsung Electronics Co., Ltd. Techniques for millimeter wave mobile communication
JP5611090B2 (ja) * 2011-03-17 2014-10-22 三菱電機株式会社 無線通信ネットワークシステム
US9603087B2 (en) * 2011-10-18 2017-03-21 Broadcom Corporation Green femtocells and methods of implementing the same
EP2912890B1 (en) * 2012-10-29 2020-01-08 Zte Usa, Inc. Supporting a base station to enter and leave sleep mode in a wireless communication system
US9630265B2 (en) * 2013-06-28 2017-04-25 Signode Industrial Group Llc Powered two-stage strap cutter
JP2015022077A (ja) * 2013-07-17 2015-02-02 住友電気工業株式会社 スポットサイズ変換器を作製する方法
JP6219110B2 (ja) * 2013-09-26 2017-10-25 株式会社Nttドコモ 無線基地局、ユーザ端末及び通信制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348757A (zh) * 2010-12-16 2013-10-09 英特尔公司 毫米波通信站和用于毫米波基本服务集中的站和信息发现的方法
WO2013086410A2 (en) * 2011-12-08 2013-06-13 Interdigital Patent Holdings, Inc. High-rate dual-band cellular communications
WO2013086164A1 (en) * 2011-12-08 2013-06-13 Interdigital Patent Holdings, Inc. Method and apparatus for a millimeter wave communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079325A4 *

Also Published As

Publication number Publication date
US20160309490A1 (en) 2016-10-20
EP3079325A1 (en) 2016-10-12
US10111237B2 (en) 2018-10-23
EP3079325B1 (en) 2021-08-25
CN105745894A (zh) 2016-07-06
CN105745894B (zh) 2019-04-19
JP2017507531A (ja) 2017-03-16
KR101804480B1 (ko) 2017-12-04
JP6227793B2 (ja) 2017-11-08
EP3079325A4 (en) 2016-11-23
KR20160103111A (ko) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2015100595A1 (zh) 通信方法、装置及系统
EP3063994B1 (en) Systems and methods for non-cellular wireless access
US11388778B2 (en) Time configuration method, network device, and UE
US20160227518A1 (en) Device to device (d2d) control information relay
US20210212013A1 (en) Communications method and apparatus
CN114846851A (zh) 小区重选方法、终端设备和网络设备
WO2016197958A1 (zh) 一种消息处理的方法、基站及终端
US20220394526A1 (en) Communication method and apparatus
CN112911691B (zh) 一种小区节能方法、设备及存储介质
US20170230950A1 (en) Wireless communications method and system, base station, and user equipment
JPWO2015052973A1 (ja) 通信制御装置、通信制御方法、無線通信装置、無線通信方法及び無線通信システム
US20230254801A1 (en) Tracking area code transmission in non-terrestrial networks
EP3282743B1 (en) Signal sending method and device
US20220338183A1 (en) Method and Apparatus for Transmitting Initial Access Configuration Information
WO2020103797A1 (zh) 无线通信的方法和装置
WO2017201885A1 (zh) 信令发送方法、参考信号发送方法、装置及系统
WO2022042319A1 (zh) 一种非地面网络的通信方法及通信装置
US10999702B2 (en) Method for managing wireless system area, terminal and base station
WO2023066915A1 (en) Cell wake-up signal or receiver
CN114697993A (zh) 一种通信方法和装置
WO2023159472A1 (zh) 通信方法及终端设备
WO2024092648A1 (zh) 无线通信的方法、终端设备及网络设备
CN117596678A (zh) 一种通信的方法和装置
CN117397361A (zh) 无线通信的方法、终端设备和网络设备
CN117501751A (zh) 获取测量信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900791

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900791

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167020588

Country of ref document: KR

Kind code of ref document: A