WO2022042319A1 - 一种非地面网络的通信方法及通信装置 - Google Patents

一种非地面网络的通信方法及通信装置 Download PDF

Info

Publication number
WO2022042319A1
WO2022042319A1 PCT/CN2021/112305 CN2021112305W WO2022042319A1 WO 2022042319 A1 WO2022042319 A1 WO 2022042319A1 CN 2021112305 W CN2021112305 W CN 2021112305W WO 2022042319 A1 WO2022042319 A1 WO 2022042319A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
paging
configurations
terminal
configuration information
Prior art date
Application number
PCT/CN2021/112305
Other languages
English (en)
French (fr)
Inventor
罗禾佳
周建伟
王晓鲁
徐晨蕾
汪宇
陈莹
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860158.1A priority Critical patent/EP4195771A4/en
Publication of WO2022042319A1 publication Critical patent/WO2022042319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a communication method and a communication device for non-terrestrial networks (NTN).
  • NTN non-terrestrial networks
  • NTN new radio
  • base stations or part of base station functions are deployed on high-altitude platforms or satellites to provide seamless coverage for terminals.
  • the terminals are also moving relative to the satellites, which results in a terminal using network services that may move from the coverage area of one satellite to the coverage area of another satellite.
  • the terminal needs to perform cell handover or cell reselection.
  • the terminal will perform cell reselection according to the configuration of the base station, and select a new cell that meets certain conditions to camp on.
  • the base station broadcasts system messages and paging messages respectively.
  • the terminal monitors the system messages of the new cell and obtains the configuration information of the paging message of the new cell, so as to determine the time-frequency resource location where the terminal needs to monitor the paging message.
  • the terminal may miss the paging message sent by the base station when monitoring the system message in the new cell. For example, the transmission time of the system message may overlap or be similar to the transmission time of the paging message. Then, before the terminal has received the system message or has not decoded the system message, the paging message sent by the base station has reached the terminal, that is, the terminal will miss the paging message.
  • the present application provides an NTN communication method and communication device, which can reduce the probability of a terminal missing a paging message and reduce signaling overhead in a cell reselection process.
  • an embodiment of the present application provides an NTN communication method, and the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first configuration information, where the first configuration information is used to indicate the N paging configurations configured for the terminal, if the terminal satisfies the first valid condition, the time-frequency resources indicated by the first paging configuration in the N paging configurations Monitoring paging messages at the location, wherein each paging configuration in the N paging configurations includes a time-frequency resource location of the paging message, the first valid condition corresponds to the first paging configuration, and N is greater than or equal to 1 Integer.
  • an embodiment of the present application provides an NTN communication method.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first configuration information, where the first configuration information is used to indicate the N cell measurement configurations configured for the terminal. If the terminal meets the first validation condition, the first cell in the N cell measurement configurations indicates the cell frequency point of the measurement configuration.
  • the cell frequency point set is measured at the time-frequency resource position corresponding to the set, wherein one cell measurement configuration in the N cell measurement configurations includes the cell frequency point set, the time-frequency resource position corresponding to the cell frequency point set, and the cell frequency point set.
  • the cell ID set corresponding to the point set, the first validation condition corresponds to the first cell measurement configuration, and N is an integer greater than or equal to 1.
  • an embodiment of the present application provides an NTN communication method, the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, for example chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives first configuration information, where the first configuration information is used to indicate N access configurations configured for the terminal, and each access configuration in the N access configurations includes a physical random access channel (PRACH) Configure the time-frequency resource location corresponding to the random access opportunity (PRACH occasion, RO). If the terminal satisfies the first valid condition, the time-frequency resource location corresponding to the RO adopts the first access configuration among the N access configurations.
  • the indicated PRACH configuration performs random access, wherein the first valid condition corresponds to the first access configuration, and N is an integer greater than or equal to 1.
  • an embodiment of the present application provides an NTN communication method, the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as chip system.
  • the following description takes the communication device as a terminal as an example.
  • the method includes:
  • the terminal receives the first configuration information, and the first configuration information is used to indicate the N monitoring configurations configured for the terminal. If the terminal satisfies the first effective condition, the terminal monitors the system on the time-frequency resources indicated by the first monitoring configuration in the N monitoring configurations.
  • Each of the N monitoring configurations includes a time-frequency resource location for monitoring system messages, the first valid condition corresponds to the first monitoring configuration, and N is an integer greater than or equal to 1.
  • the network device may preconfigure multiple configurations of related information for the terminal, such as multiple paging configurations, multiple cell measurement configurations, multiple access configurations, and multiple configurations for monitoring system messages Wait.
  • the network device is configured with corresponding validating conditions for the multiple configurations respectively.
  • the terminal can use the configuration. Since the terminal uses the configuration information on the premise of a valid condition, even if the network device is configured with multiple configurations in advance, the terminal can specify the timing of using a certain configuration. In this way, the terminal does not need to acquire the corresponding configuration from the received system message, so as to avoid missing the configuration information sent by the network device.
  • the method further includes: the terminal receives second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the M valid conditions corresponding to the N configurations may be issued by the network device, so that the terminal does not need to store the corresponding relationship between the N configuration information of the multiple network devices and the M valid conditions in advance, so as to save the terminal. of storage space.
  • the validation condition includes one or more of time, location label, frequency, and polarization direction.
  • the first configuration information is used to indicate N paging configurations, and the first validation condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first polarization direction. one or more.
  • the first configuration information is used to indicate N cell measurement configurations, and the first validation condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, and a first polarization direction. kind.
  • the first configuration information is used to indicate N access configurations
  • the first validation condition includes a first time corresponding to the first access configuration, a first location label, a first frequency, and one of the first polarization directions. one or more.
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction. or more.
  • the movement track of the first network device is regular, then the first network device can clearly know the location of the first network device within a period of time, that is, the first network device can more accurately determine the position of the first network device within a period of time On which time-frequency resources the paging message is sent to the terminal. Therefore, the time can be used as one of the valid conditions of the paging configuration.
  • the first network device sends the paging message based on the beam resources of the first network device, so the beam position of the first network device can be used as one of the validating conditions of the paging configuration.
  • the beam configuration information of the first network device is related to the service of the terminal.
  • the resource configuration of the coverage area is generally similar. Then it can be considered that in different time periods, the beams of different colors are reflected in different frequencies/polarization directions. Therefore, the frequency/polarization direction can be used as one of the valid conditions of the paging configuration.
  • the N paging configurations correspond to the M valid conditions one-to-one. This solution can be applied to the case of beam rules. It is considered that within a period of time, the first network device sends paging messages in the optimal beam. paging messages, you only need to configure a paging configuration to reduce the resource overhead of sending paging messages.
  • N is greater than M
  • at least one of the M validation conditions corresponds to at least two paging configurations.
  • This solution can be applied to the case of irregular beams, that is, the terminal may be covered by multiple beams in the same time period, then one valid condition can correspond to at least two paging configurations, so as to ensure that the first network device may be in all potential coverage terminals of the terminal. Paging messages are sent in the beam.
  • the validating condition includes time, wherein two adjacent times do not overlap.
  • This solution is applicable to the case of beam rules. It is considered that within a period of time, the first network device sends a paging message in an optimal beam, and it is sufficient to configure a paging configuration to reduce the resource overhead of sending paging messages. According to the paging configuration, the terminal determines to monitor the paging message in one beam, and does not need to monitor multiple beams, which can reduce the power consumption of the terminal.
  • the validating condition includes time, where there is an intersection between two adjacent times.
  • This solution can be applied to the case of irregular beams, that is, the terminal may be covered by multiple beams in the same time period, and the first network device may send the paging message in all the beams potentially covering the terminal, in order to avoid the terminal missing to receive the paging message , then the effective time can be extended to ensure that the terminal monitors the paging message in all beams potentially covering the terminal as much as possible.
  • the effective condition is a location tag
  • the method further includes: a change in the location of the terminal within a preset time period exceeds a preset threshold, the terminal sends location information, and before monitoring the paging message, The terminal further receives third configuration information; wherein the location information is used to indicate the location where the terminal is located, and the third configuration information is used to indicate at least one paging configuration, and at least one paging configuration is determined according to the location information of.
  • the first network device can update the N paging configurations configured by the terminal according to the location reported by the terminal, thereby avoiding inappropriate N paging configurations configured for the terminal due to inaccurate terminal location.
  • the first configuration information further includes identifiers of N paging configurations.
  • the scheme can realize the binding of N paging configurations and beams through identification.
  • the N paging configurations are the same, but the M valid conditions may be different.
  • the first network device can configure N paging configurations at cell granularity, and configure M valid conditions at terminal granularity, that is, it is not necessary to configure a set of N paging configurations for different terminals, thereby reducing signaling overhead.
  • the corresponding N paging configurations can be determined.
  • the paging configuration corresponding to the valid condition when a certain valid condition is satisfied.
  • an embodiment of the present application provides an NTN communication method, the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, for example chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • each paging configuration in the N paging configurations includes a time-frequency resource location of the paging message, and N is greater than or equal to an integer of 1;
  • an embodiment of the present application provides an NTN communication method, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • first configuration information is used to indicate N cell measurement configurations configured for the terminal, and one cell measurement configuration in the N cell measurement configurations includes a cell frequency point set and a time-frequency corresponding to the cell frequency point set Resource location, and the cell ID set corresponding to the cell frequency point set, N is an integer greater than or equal to 1;
  • an embodiment of the present application provides an NTN communication method, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, for example chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • each access configuration in the N access configurations includes a PRACH configuration and a time-frequency resource location corresponding to the RO, where N is greater than or an integer equal to 1;
  • the first configuration information is sent, and if the first validating condition is satisfied, the PRACH configuration indicated by the first access configuration among the N access configurations is sent, wherein the first validating condition corresponds to the first access configuration.
  • an embodiment of the present application provides an NTN communication method, the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as chip system.
  • the following description will be given by taking the communication device as a network device as an example.
  • the method includes:
  • each monitoring configuration in the N monitoring configurations includes a time-frequency resource location for monitoring system messages, and N is greater than or equal to 1 the integer;
  • the method further includes: sending second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the first configuration information is used to indicate N paging configurations
  • the first validating condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first one or more of the polarization directions; or,
  • the first configuration information is used to indicate N cell measurement configurations, and the first validation condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, and a first polarization direction; or,
  • the first configuration information is used to indicate N access configurations, and the first effective condition includes one or more of a first time corresponding to the first access configuration, a first location label, a first frequency, and a first polarization direction. species; or,
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one or more of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction.
  • the N paging configurations are in one-to-one correspondence with the M valid conditions; or,
  • N is greater than M, and at least one of the M valid conditions corresponds to at least two paging configurations.
  • the validating condition includes time, where two adjacent times do not overlap, or two adjacent times have an intersection.
  • the effective condition is a location label
  • the method further includes:
  • location information where the location information is used to indicate the location of the terminal
  • Send third configuration information where the third configuration information is used to indicate at least one paging configuration, where the at least one paging configuration is determined according to the location information.
  • the first configuration information further includes identifiers of the N paging configurations.
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device has a function of implementing the behavior in the method embodiment of the first aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the transceiver module is configured to receive first configuration information, where the first configuration information is used to indicate N paging configurations configured for the communication device, and each paging configuration in the N paging configurations includes a time when the paging message is frequency resource location, N is an integer greater than or equal to 1;
  • the transceiver module is further configured to monitor the paging message at the time-frequency resource position indicated by the first paging configuration in the N paging configurations, wherein the first effective condition Corresponds to the first paging configuration.
  • the communication device has a function of implementing the behavior in the method embodiment of the second aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the transceiver module is configured to receive first configuration information, where the first configuration information is used to indicate N cell measurement configurations configured for the communication device, and one cell measurement configuration in the N cell measurement configurations includes a cell frequency point set, a cell The time-frequency resource location corresponding to the frequency point set, and the cell ID set corresponding to the cell frequency point set, N is an integer greater than or equal to 1;
  • the processing module determines that the first validation condition is satisfied, the cell frequency set is measured at the time-frequency resource position corresponding to the cell frequency set indicated by the first cell measurement configuration in the N cell measurement configurations, wherein, The first validation condition corresponds to the first cell measurement configuration.
  • the communication device has a function of implementing the behavior in the method embodiment of the third aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the transceiver module is configured to receive first configuration information, where the first configuration information is used to indicate N access configurations configured for the communication device, and each access configuration in the N access configurations includes a PRACH configuration corresponding to an RO
  • the time-frequency resource location of , N is an integer greater than or equal to 1;
  • the processing module determines that the first effective condition is satisfied, at the time-frequency resource position corresponding to the RO, random access is performed using the PRACH configuration indicated by the first access configuration in the N access configurations, wherein the first effective condition is Corresponds to the first access configuration.
  • the communication device has a function of implementing the behavior in the method embodiment of the fourth aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the transceiver module is configured to receive first configuration information, where the first configuration information is used to indicate N monitoring configurations configured for the communication device, and each monitoring configuration in the N monitoring configurations includes a time-frequency for monitoring system messages.
  • Resource location, N is an integer greater than or equal to 1;
  • the transceiver module is further configured to monitor the system message on the time-frequency resource indicated by the first monitoring configuration in the N monitoring configurations, wherein the first effective condition and the first monitoring configuration corresponds.
  • the transceiver module is further configured to: receive second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the first configuration information is used to indicate N paging configurations
  • the first validation condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first one or more of the polarization directions; or,
  • the first configuration information is used to indicate N cell measurement configurations, and the first validation condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, and a first polarization direction; or,
  • the first configuration information is used to indicate N access configurations, and the first effective condition includes one or more of a first time corresponding to the first access configuration, a first location label, a first frequency, and a first polarization direction. species; or,
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one or more of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction.
  • the N paging configurations are in one-to-one correspondence with the M valid conditions; or,
  • N is greater than M, and at least one of the M valid conditions corresponds to at least two paging configurations.
  • the validation condition includes time, where two adjacent times do not overlap, or two adjacent times have an intersection.
  • the effective condition is a location label
  • the transceiver module is also used for:
  • third configuration information is received, where the third configuration information is used to indicate at least one paging configuration, and the at least one paging configuration is determined according to the location information.
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the fifth aspect or the sixth aspect or the seventh aspect or the eighth aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device has the function of implementing the behavior in the method embodiment of the fifth aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the processing module is configured to generate first configuration information, where the first configuration information is used to indicate N paging configurations configured for the terminal, and each paging configuration in the N paging configurations includes a time-frequency resource location of the paging message , N is an integer greater than or equal to 1;
  • the transceiver module is used for sending the first configuration information, and if the first validating condition is satisfied, sending a paging message at the time-frequency resource position indicated by the first paging configuration in the N paging configurations, wherein the first validating The condition corresponds to the first paging configuration.
  • the communication device has a function of implementing the behavior in the method embodiment of the sixth aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the processing module is configured to generate first configuration information, where the first configuration information is used to indicate N cell measurement configurations configured for the terminal, and one cell measurement configuration in the N cell measurement configurations includes a cell frequency point set and a cell frequency point set The corresponding time-frequency resource location, and the cell ID set corresponding to the cell frequency point set, N is an integer greater than or equal to 1;
  • the transceiver module is configured to send the first configuration information, and if the first validation condition is satisfied, send the cell ID set at the time-frequency resource position corresponding to the cell frequency point set indicated by the first cell measurement configuration in the N cell measurement configurations The measurement signal, wherein the first valid condition corresponds to the measurement configuration of the first cell.
  • the communication device has a function of implementing the behavior in the method embodiment of the seventh aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the processing module is configured to generate first configuration information, where the first configuration information is used to indicate N access configurations configured for the terminal, and each access configuration in the N access configurations includes a PRACH configuration and a time-frequency corresponding to the RO Resource location, N is an integer greater than or equal to 1;
  • the transceiver module is configured to send the first configuration information, and if the first effective condition is satisfied, send the PRACH configuration indicated by the first access configuration in the N access configurations, wherein the first effective condition and the first access configuration correspond.
  • the communication device has a function of implementing the behavior in the method embodiment of the eighth aspect, and the communication device includes a transceiver module and a processing module, wherein:
  • the processing module is configured to generate first configuration information, where the first configuration information is used to indicate N monitoring configurations configured for the terminal, and each monitoring configuration in the N monitoring configurations includes a time-frequency resource location for monitoring system messages, N is an integer greater than or equal to 1;
  • the transceiver module is configured to send the first configuration information, and if the first validating condition is satisfied, send a system message on the time-frequency resource indicated by the first monitoring configuration in the N monitoring configurations, wherein the first validating condition is the same as the first validating condition.
  • the monitoring configuration corresponds.
  • the transceiver module is further configured to send second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the first configuration information is used to indicate N paging configurations
  • the first validation condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first one or more of the polarization directions; or,
  • the first configuration information is used to indicate N cell measurement configurations, and the first validation condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, and a first polarization direction; or,
  • the first configuration information is used to indicate N access configurations, and the first effective condition includes one or more of a first time corresponding to the first access configuration, a first location label, a first frequency, and a first polarization direction. species; or,
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one or more of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction.
  • the N paging configurations are in one-to-one correspondence with the M valid conditions; or,
  • N is greater than M, and at least one of the M valid conditions corresponds to at least two paging configurations.
  • the validation condition includes time, where two adjacent times do not overlap, or two adjacent times have an intersection.
  • the valid condition is a location label
  • the transceiver module is used for:
  • location information where the location information is used to indicate the location of the terminal
  • Send third configuration information where the third configuration information is used to indicate at least one paging configuration, where the at least one paging configuration is determined according to the location information.
  • an embodiment of the present application provides a communication device, and the communication device may be a communication device in any possible implementation manner of the ninth aspect or any possible implementation manner of the tenth aspect in the foregoing embodiments
  • the communication device or a chip provided in the communication device in any possible implementation manner of the ninth aspect or the communication device in any possible implementation manner in the tenth aspect.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program, instructions or data, the communication device is made to execute the above-mentioned first to fourth aspects
  • the method performed by the terminal in the method embodiment of any one of the aspects, or the communication apparatus is caused to perform the method performed by the network device in the method embodiment of any one of the fifth aspect to the eighth aspect.
  • the communication interface may include a transceiver in the communication device, for example, implemented by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip provided in a network device, the communication interface It can be the input/output interface of the chip, such as input/output pins and so on.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is a network device, the other device is a terminal; or, when the communication device is a terminal, the other device is a network device.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the method executed by the communication apparatus in the ninth aspect or any possible implementation manner of the tenth aspect .
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the network device in the above aspects is implemented; A method performed by a terminal in the above aspects.
  • a fifteenth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed, causes the method performed by the network device in the above aspects to be executed, or causes The method performed by the terminal in the above aspects is performed.
  • FIG. 1 is a schematic diagram of a static cell provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mobile cell provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an applicable communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a suitable communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method for NTN provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a regular beam provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a paging configuration provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an irregular beam provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of a paging configuration provided by an embodiment of the present application.
  • FIG. 10 is still another schematic diagram of a paging configuration provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • Network side equipment also known as network equipment, is an entity on the network side that transmits or receives signals, and is a device in the communication system that connects the terminal side equipment to the wireless network.
  • fiber optic cables are connected to the core network, such as a new generation of base stations (generation Node B, gNodeB).
  • the network-side device may be responsible for receiving data from the core network and forwarding it to the wireless backhaul device, or receiving data from the wireless backhaul device and forwarding it to the core network.
  • a network device may be a device used to communicate with mobile devices.
  • the network device may be an AP in wireless local area networks (WLAN), an evolved base station (evolutional Node B, eNB or eNodeB) in long term evolution (LTE), or it may also be included in the 5G NR system
  • the network side device is a gNB as an example.
  • the gNB may include an antenna, a base band unit (BBU) and a remote radio unit (RRU).
  • the BBU may be connected to the RRU through a common public radio interface (CPRI) or enhanced CPRI (enhance CPRI, eCPRI), and the RRU may be connected to the antenna through a feeder.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the antenna can be a passive antenna, which is separated from the RRU and can be connected through a cable.
  • the antenna may be an active antenna unit (active antenna unit, AAU), that is, the antenna unit of the AAU and the RRU are integrated into one piece.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the DU can be used to transmit and receive radio frequency signals, convert radio frequency signals to baseband signals, and perform part of baseband processing.
  • the CU can be used to perform baseband processing, control the base station, and so on.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, therefore, in this architecture, the higher-layer signaling, such as the RRC layer signaling, can also be considered to be sent by the DU. , or, sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • Terminal-side equipment also known as terminal equipment or terminal
  • the terminal-side device may communicate with one or more core networks or the Internet via a radio access network (eg, radio access network, RAN), and exchange voice and/or data with the RAN.
  • the terminal-side equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) ), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • terminals may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • the terminal may include a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), and a wireless terminal in self driving (self driving).
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in remote medical surgery wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, smart home home), terminal equipment in the public land mobile network (PLMN), or vehicle equipment in vehicle to everything (V2X), customer premises equipment (customer premises) equipment, CPE) and so on.
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • the terminal may include a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant ( personal digital assistant, PDA), etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may also include limited devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, and the like.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • network devices and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; and they can also be deployed on aircraft, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of network devices and terminals.
  • DRX Discontinuous reception
  • the terminal can enter the sleep state periodically without monitoring the physical downlink control channel (PDCCH).
  • the DRX in the RRC idle state (idle) or the RRC inactive state is also called IDLE DRX.
  • IDLE DRX the terminal mainly monitors paging, and the terminal monitors a paging opportunity (paging opportunity/occasion, PO) once in a DRX cycle (DRX cycle).
  • the terminal If the terminal has service data transmission, it often needs to enter the RRC connected state from the RRC idle state or the RRC inactive state.
  • the terminal only monitors the paging indicator channel (PICH) at the PO, and does not monitor the PICH at other times, thereby saving the power consumption of the terminal.
  • PICH paging indicator channel
  • the system also needs to consider the delay requirement of the service of the terminal. For a terminal, the shorter the DRS cycle, the greater the standby power consumption of the terminal, the better the downstream reachability, and the shorter the time to establish a link with the network device; the longer the DRX cycle, the lower the standby power consumption of the terminal, and the lower the downstream availability The worse the reachability, the longer the called establishment time.
  • the DRX cycle may be 20ms, 640ms, 1280ms, or 2560ms, among others.
  • Paging cycle which belongs to the same concept as DRX cycle, the terminal needs to detect 1 PO in each DRX cycle, that is to say, the terminal only has 1 PO available for sending in each Paging cycle Paging.
  • PO is a collection of physical downlink control channel (PDCCH) monitoring opportunities (monitoring occasions), which can include multiple time slots (slots) or subframes or orthogonal frequency division multiplexing (OFDM) symbol.
  • the network device sends the paging message (paging message) to the terminal through the physical downlink shared channel (PDSCH) resource, and the network device uses the paging radio network temporary identity (P- RNTI) scrambled PDCCH indicates the PDSCH resource on which the paging message is sent.
  • P- RNTI paging radio network temporary identity
  • the terminal periodically monitors the PDCCH scrambled by the P-RNTI, and parses the received downlink control information (DCI) to obtain the time-frequency position of the PDSCH.
  • the terminal parses the paging message at the time-frequency position to obtain the content included in the paging message. It should be noted that in the time domain, the terminal only attempts to receive the Paging message at the PO of a specific frame in the Paging period, so the network device needs to send the Paging message from the air interface at the PO of the specific frame, so that the terminal It is possible to receive the Paging message at this moment.
  • the specific frame may also be called a paging frame (paging frame, PF). It should be understood that the PF contains one or more POs.
  • BWP Bandwidth part
  • Geostationary earth orbit (GEO) satellite also known as geostationary satellite, the satellite moves at the same speed as the earth's rotation system, so the satellite remains stationary relative to the ground, correspondingly, the cell of the GEO satellite is also stationary.
  • the coverage area of GEO satellite cells is relatively large, and the general cell diameter is 500km.
  • LEO Low-earth orbit
  • the LEO satellite moves relatively fast relative to the ground, about 7Km/s, so the coverage area served by the LEO satellite also moves accordingly.
  • the mapping method of stationary cells means that the location of the cells does not move on the ground, and the moving satellites form these cells by adjusting their own beams. For example, at time T1: cells 1 and 2 are covered by the beam of gNB1, and cells 3 and 4 are covered by the beam of gNB2; at time T2: although both gNB1 and gNB2 move to the left, they can still adjust their own beams to ensure that the cells 1.
  • T3 time compared with time T1, gNB1 and gNB2 have moved far enough distance, gNB1 cannot provide coverage for cell 2 by adjusting the beam, and gNB2 cannot adjust the beam to Cell 4 provides coverage. At this time, gNB2 can provide coverage for cell 2, and gNB3 can provide coverage for cell 4.
  • the moving cell that is, the cell projected to the ground moves with the LEO satellite, and the antenna direction of the LEO satellite does not change during the moving process.
  • the antenna of the LEO satellite is always perpendicular to the ground.
  • the mapping method of the ground mobile cell means that the moving satellite does not dynamically adjust its beam direction, and the beam generated by the moving satellite moves on the ground with the movement of the satellite.
  • Time T1 the area shown in Figure 2 is covered by cell 1, cell 2, cell 3, and cell 4 of gNB1 and gNB2, while at time T3, the area is covered by cell 2, cell 2, and cell 2 of gNB1, gNB2, and gNB3. 3.
  • Cell 4 and cell 5 are covered.
  • NTN wireless communication systems
  • base stations or part of base station functions are deployed on high-altitude platforms or satellites to provide seamless coverage for terminals.
  • the terminal Since the satellite moves around the earth, the terminal is also moving relative to the satellite.
  • the LEO satellite moves at a speed of 7.5km/s, and the beam is as short as 20km, that is, a beam switch occurs every 3s.
  • NGSO non-geostationary earth orbit
  • the terminal needs to perform cell handover or cell reselection.
  • a satellite beam can be regarded as a cell or a BWP. Due to the different logical entity roles of satellite beams, the processes performed by the terminal due to satellite motion are also different. The following describes the subsequent processes performed by the terminal due to satellite motion by considering the satellite beam as a cell or BWP respectively.
  • Satellite beams are seen as cells.
  • the terminal in the idle state frequently performs cell reselection, and the terminal in the connected state frequently performs cell handover. Specifically, after the terminal in the idle state leaves the coverage area of the current cell, the terminal will perform cell reselection according to the configuration of the base station. or a new cell with a given selection priority) to camp on.
  • the terminal will monitor the system messages of the new cell and obtain the configuration information of the paging message of the new cell, so as to determine the time-frequency resource location where the terminal needs to monitor the paging message.
  • the base station broadcasts the system message and the paging message respectively, and the terminal receives the system message and can determine the resource location for receiving the paging message according to the system message, that is, at which resource location to receive the paging message. If the transmission time of the system message of the cell may overlap or be similar to the transmission time of the paging message, the terminal may miss the paging message sent by the base station when monitoring the system message in the new cell. For example, the transmission time of the system message may overlap or be similar to the transmission time of the paging message.
  • the terminal receives the system message or decodes the system message
  • the paging message sent by the base station has reached the terminal, that is, the terminal will miss the paging message.
  • the terminal in satellite communications, frequent switching of satellite beams results in the terminal needing to measure cells frequently, and the terminal has a higher probability of missing paging messages.
  • the terminal frequently measures the cell, and the terminal needs to decode more system messages, and the processing overhead of the terminal is also large.
  • Satellite beams are considered as BWPs.
  • the terminal in the connected state needs to frequently perform beam/BWP handover as the satellite moves, similar to cell handover in LTE.
  • the terminal that performs cell handover will return to the initial (initial) BWP and can only stay in the initial BWP to monitor system messages and paging messages.
  • the satellite beam is regarded as a BWP, with the movement of the satellite, the initial BWP frequency that the terminal originally monitored disappears.
  • the terminal can receive the satellite beam of the new coverage, the satellite beam of the new coverage is different from the coverage of the source cell.
  • the terminal cannot infer the satellite beam of the source cell coverage based on the satellite beam of the new coverage, so the terminal can only camp on the new beam through the cell reselection process.
  • the terminal may miss the paging message.
  • the initial BWP of the terminal is required, according to the existing protocol architecture, high-level signaling needs to be exchanged between the base station and the terminal, and then the terminal accesses the network. Frequent switching of satellite beams results in higher high-level signaling overhead for terminals to access the network.
  • an embodiment of the present application provides a non-terrestrial network communication method.
  • the satellite base station can configure paging configurations for a terminal for a period of time in advance, and when the terminal meets certain conditions, the terminal uses these paging configurations. In this way, it is not necessary to obtain the paging configuration from the received system message, so as to avoid missing the paging message sent by the satellite base station.
  • the technical solutions provided by the embodiments of this application can be applied to the 4th generation (4G) system, 5G system, NTN system, vehicle to everything (V2X), long-term evolution-vehicle networking (LTE) -vehicle, LTE-V), vehicle to vehicle (V2V), Internet of Vehicles, Machine Type Communications (MTC), Internet of Things (IoT), Long Term Evolution - Machine to Machine ( LTE-machine to machine, LTE-M), machine to machine (machine to machine, M2M), Internet of Things, or future mobile communication systems.
  • 4G 4th generation
  • 5G system 5G system
  • NTN system vehicle to everything
  • V2X vehicle to everything
  • LTE long-term evolution-vehicle networking
  • LTE-V vehicle to vehicle
  • V2V Internet of Vehicles
  • MTC Machine Type Communications
  • IoT Internet of Things
  • LTE-machine to machine LTE-M
  • machine to machine machine to machine
  • M2M Internet of Things
  • the NTN system may include a satellite system.
  • the satellite system can be divided into highly elliptical orbit (HEO) satellites, GEO satellites, medium earth orbit (MEO) satellites and LEO satellites.
  • the NTN system may also include aerial network equipment such as a high altitude platform station (HAPS) communication system, and the network equipment involved in this application is not limited to the above examples.
  • HAPS high altitude platform station
  • the NTN network includes a first network device, a second network device and a terminal.
  • the first network device may be a satellite (or called a satellite base station), such as HEO satellite, GEO satellite, MEO satellite or LEO satellite or HAPS, etc., which is not limited here.
  • the second network device may be a gateway station (or referred to as a ground station, an earth station, or a gateway) (gateway), which may be used to connect the second network device and the core network.
  • a gateway station or referred to as a ground station, an earth station, or a gateway
  • the communication mode of the first network device is transparent mode (transparent), that is, the first network device acts as a base station for wireless communication, and the second network device can act as a relay of the first network device, which can transparently transmit the first network device.
  • the second network device may access the core network through the base station, and then access the data network.
  • the communication mode of the first network device may also be a regenerative mode.
  • the communication mode of the first network device is the regeneration mode, that is, the first network device can be used as a base station for wireless communication.
  • the second network device can transparently transmit signaling between the first network device and the core network.
  • FIG. 3 and FIG. 4 only show one first network device and one second network device.
  • the architecture of multiple first network devices and/or one second network device may be adopted as required.
  • each second network device may provide services to one or more terminals
  • each second network device may correspond to one or more first network devices
  • each first network device may correspond to one or more first network devices 2.
  • Network equipment which is not specifically limited in this application.
  • FIG. 5 is a flowchart of an NTN-based communication method provided by an embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 3 and FIG. 4 as an example. Additionally, the method may be performed by two communication devices, eg, a first communication device and a second communication device.
  • the method is performed by a base station and a terminal as an example, that is, the first communication device is a base station (the first network device in FIG. 3 and FIG. 4 , or it may also be called a satellite base station) .
  • the second communication device is a terminal as an example.
  • the embodiments of the present application only take the communication systems shown in FIG. 3 and FIG. 4 as an example, and are not limited to this scenario.
  • the embodiments of the present application aim to preconfigure multiple configurations of related information for the terminal, such as multiple paging configurations, multiple cell measurement configurations, multiple access configurations, and multiple configurations for monitoring system messages.
  • the network device is configured with corresponding validating conditions for the multiple configurations respectively.
  • the terminal can use the configuration. Since the terminal uses the configuration information on the premise of a valid condition, even if the network device is configured with multiple configurations in advance, the terminal can specify the timing of using a certain configuration. In this way, the terminal does not need to acquire the corresponding configuration from the received system message, so as to avoid missing the configuration information sent by the network device.
  • the following takes the embodiment of the present application preconfiguring multiple paging configurations for the terminal as an example to introduce the NTN communication method provided by the embodiment of the present application.
  • the first network device sends first configuration information to the terminal, and the terminal receives the first configuration information, where the first configuration information includes N paging configurations configured for the terminal, wherein each paging configuration can be used to indicate paging The time-frequency resource location of the message, where N is an integer greater than or equal to 1.
  • the terminal satisfies the first validating condition, and monitors the paging message at the time-frequency resource position indicated by the first paging configuration corresponding to the first validating condition.
  • the first network device may configure a paging configuration for the terminal, that is, some configuration information related to paging.
  • the paging configuration may include parameters of the paging message in the time domain dimension (may be referred to as time domain parameters) and parameters in the frequency domain dimension (may be referred to as frequency domain parameters), and parameters in the polarization dimension parameters (may be referred to as polarization parameters for short).
  • the time domain parameter may be used to indicate the time domain resource location of the paging message, that is, the time domain resource location where the terminal receives the paging message.
  • the time domain parameters may include a paging cycle, the number of PFs in each paging cycle, and the number of POs included in each paging frame.
  • the frequency domain parameter may be used to indicate the frequency domain resource location of the paging message, that is, the frequency domain resource location where the terminal receives the paging message.
  • the frequency domain parameter may include the frequency position of the frequency band resource where the paging message is located, and the relative position of the paging message in the frequency band resource, such as PDSCH indicated by the PDCCH.
  • the polarization parameter can be used to indicate the polarization direction of the beam, and the terminal can receive paging messages according to the polarization direction.
  • the paging configuration can be used to indicate the time-frequency resource location of the paging message and/or the polarization direction of the beam, and the terminal can determine which time-frequency resource location and which polarization direction to receive the paging according to the paging configuration information.
  • the first network device may preconfigure multiple paging configurations for the terminal, for example, N paging configurations, and set a corresponding validating condition for each paging configuration.
  • the terminal When the terminal satisfies a certain valid condition, it monitors the paging message according to the paging configuration corresponding to the valid condition. In this way, there is no need to obtain the time-frequency resource location for monitoring the paging message from the system message, and it is possible to avoid missing the reception of the paging message.
  • the validating condition of the paging configuration may be used to instruct the terminal to apply the paging configuration corresponding to the validating condition after the validating condition is satisfied. Wherein, applying the paging configuration may also consider that the paging configuration is effective, or enable the paging configuration.
  • the first network device may determine multiple paging locations that need to be configured for the terminal according to the relative positional relationship between the beam and the terminal. For example, if the first network device is a satellite base station, the movement trajectory of the first network device is regular, that is, the first network device can clearly know the location of the first network device within a period of time. If the terminal is stationary, the relative positions of the first network device and the terminal are relatively accurate, so the first network device can relatively accurately determine which time-frequency resources to send the paging message to the terminal within a period of time. The terminal only needs to monitor the paging message in the corresponding time period and on the corresponding time-frequency resource.
  • the period of time here can be used as the effective time of the paging message, that is, the effective condition.
  • the first network device can Adaptive adjustment of the effective time set for each paging configuration, such as expanding the range of the effective time. In this way, the terminal can monitor the paging message in advance, or monitor for a longer time, so as to avoid missing the paging message.
  • a condition for a terminal to apply a certain paging configuration may be used to indicate that after the terminal satisfies the condition, the paging configuration corresponding to the condition is used, that is, the paging configuration takes effect.
  • the conditions that need to be satisfied before the terminal applies the received paging configuration are referred to as validating conditions.
  • the validating conditions may include one or more of the following conditions, and these validating conditions are respectively introduced below.
  • Effective condition 1 Time, that is, the effective time corresponding to each paging configuration (it may also be regarded as a time interval).
  • the terminal uses the paging configuration corresponding to the effective time. That is, the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective time.
  • the first paging configuration corresponds to the first effective time
  • the terminal monitors the paging message at the time-frequency resource position indicated by the first paging configuration.
  • Table 1 shows a correspondence between N paging configurations and M valid conditions.
  • the first network device can clearly know the location of the first network device within a period of time, that is, the first network device can relatively accurately determine which time and frequency are within a period of time. Send a paging message to the terminal on the resource. Therefore, the time can be used as one of the valid conditions of the paging configuration.
  • the first network device may send the paging message according to the configuration in Table 1, that is, the first network device sends the paging message within each valid time.
  • the terminal determines that the frequency of monitoring the paging message changes, the terminal can determine that the location of the frequency resource when the first network device sends the paging message also changes.
  • the terminal wakes up which configuration in Table 1 to use may be determined according to the time of monitoring the paging message. That is, when the terminal monitors the paging message at a certain effective time, the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective time. For example, if the time T when the terminal wants to monitor the paging message is in the interval T 2 to T 3 , the terminal monitors the paging message at the time-frequency resource position indicated by paging configuration 3 . Since the terminal can obtain the time-frequency resource positions for monitoring paging messages in advance in each time period, and does not need to obtain the time-frequency resource positions for monitoring paging messages from system messages, it can avoid missing to receive paging messages.
  • Position label which can be used to indicate the position of the beam. It should be understood that when the distance between the terminal and the first network device is relatively short, it is more likely that the terminal is within the coverage of the first network device.
  • the beam of the first network device is switched over time, that is, the beam covering the terminal changes, then the terminal can be determined according to the distance between the terminal and a certain beam of the first network device. Possibility of coverage of this beam.
  • the first network device sends the paging message based on the beam resources of the first network device, so the beam position of the first network device can be used as one of the validating conditions of the paging configuration.
  • Table 2 shows a correspondence between N paging configurations and M valid conditions.
  • the location label here is used to indicate the location of the first network device, or it can also be considered that the location label is used to indicate the location of the beam.
  • the first network device can send the paging message according to the configuration in Table 2, that is, if the location indicated by a certain location label is located within a specific range, the first network device is at the time-frequency resource position indicated by the paging configuration corresponding to the location label. Send a paging message.
  • the terminal applies a certain paging configuration, the terminal can be located within a specific range from the position indicated by a certain location tag within a certain period of time, then the terminal monitors the time-frequency resource position indicated by the paging configuration corresponding to the location tag. paging message.
  • the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the location tag.
  • the terminal can determine the beam positions corresponding to the N paging configurations according to the N position labels of the N paging configurations.
  • the paging message is monitored at the time-frequency resource position indicated by the corresponding paging configuration.
  • the location label may be the coordinates of the center point of a certain beam.
  • the first network device may send to the terminal the position labels corresponding to the multiple beams, and the moving direction and speed of each beam.
  • the terminal can determine the position of a beam according to the position label of a beam, as well as the movement direction and speed.
  • a location label may be used to indicate the location of each beam relative to the first network device. In this case, if the position and motion trajectory of the first network device within a certain period of time are known, the terminal can also determine the position of a certain beam within a certain period of time according to the position label.
  • the first network device can also tell the terminal more information, so that the terminal can determine the beam most likely to serve the terminal, that is, the potential beam or the terminal that is covering the terminal. beam.
  • the first network device may further inform the terminal of the antenna pattern or beam size of the first network device, so as to assist the terminal in determining the beam most likely to serve the terminal.
  • the relative position between the terminal and the first network device is dominated by the network device. That is, if the terminal is stationary, since the movement of the first network device is regular, the prediction accuracy of the terminal on the beam switching trajectory of the first network device is high. If the terminal moves, the accuracy of predicting the beam switching trajectory of the first network device by the terminal according to the movement law of the first network device is relatively low. That is, the terminal predicts that the beam switching trajectory of the first network device and the actual beam switching trajectory of the first network device are offset according to the motion law of the first network device. Then, the N paging configurations configured for the terminal by the first network device according to the situation that the terminal does not move may be inaccurate in certain time periods.
  • the terminal may notify the first network device of the location of the terminal, so that the first network device can determine the location of the terminal according to the location of the terminal.
  • Reconfigure the paging configuration for the terminal at the location Exemplarily, the terminal may send location information indicating the location of the terminal to the first network device, and the first network device may determine at least one paging configuration that needs to be configured for the terminal according to the location information, and send this information to the terminal.
  • At least one call configuration For example, the first network device sends configuration information to the terminal, where the configuration information may be used to indicate at least one paging configuration.
  • the terminal Before monitoring the paging message, the terminal may receive the configuration information, and then monitor the paging message according to the configuration information.
  • Effective condition 3 Frequency, that is, the effective frequency corresponding to each paging configuration.
  • the frequency here can be regarded as a frequency point or a combination of frequency points.
  • the terminal uses the paging configuration corresponding to the effective frequency. That is, the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective frequency.
  • the first paging configuration corresponds to the first effective frequency.
  • the terminal detects that the frequency of the downlink synchronization signal is located at the first frequency combination, the terminal monitors the paging message at the time-frequency resource position indicated by the first paging configuration.
  • Table 3 shows a correspondence between N paging configurations and M valid conditions.
  • M N
  • the valid condition is the valid frequency
  • the frequency is the frequency point combination as example.
  • the beam configuration information of the first network device is related to the service of the terminal.
  • the resource configuration of the coverage area is generally similar. Then it can be considered that in different time periods, the beams of different colors are reflected in different frequencies. Therefore, the frequency can be used as one of the valid conditions of the paging configuration.
  • the first network device may send the paging message according to the configuration in Table 3, that is, the first network device sends the paging message in each frequency point combination.
  • the terminal determines that the frequency of monitoring the paging message changes
  • the terminal can determine that the location of the frequency resource when the first network device sends the paging message also changes.
  • the terminal wakes up which configuration in Table 3 is used can be determined according to the monitored frequency of the downlink synchronization signal. That is, the frequency of the downlink synchronization signal monitored by the terminal is located at a certain effective frequency, then the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective frequency.
  • the terminal monitors the paging message at the time-frequency resource position indicated by paging configuration 2. Since the terminal can obtain the time-frequency resource position of each frequency point combination to monitor the paging message in advance, and does not need to obtain the time-frequency resource position of the monitor paging message from the system message, it can avoid missing to receive the paging message.
  • Polarization direction that is, the effective polarization direction corresponding to each paging configuration. Similar to the effective frequency, the polarization direction here may be considered as a polarization direction combination, and the polarization direction combination may include one polarization direction or multiple polarization directions.
  • the terminal detects that the polarization direction of the downlink synchronization signal corresponds to the effective polarization direction of a certain paging configuration, the terminal uses the paging configuration corresponding to the effective polarization direction. That is, the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective polarization direction.
  • the first paging configuration corresponds to the first effective polarization direction.
  • the terminal detects that the polarization direction of the downlink synchronization signal is located in the first polarization direction combination, the terminal monitors the paging direction at the time-frequency resource position indicated by the first paging configuration. call message.
  • Table 4 shows a correspondence between N paging configurations and M valid conditions.
  • the resource configuration of the coverage area is generally similar. Then it can be considered that in different time periods, the beams of different colors are reflected in different polarization directions. Therefore, the polarization direction can be used as one of the valid conditions of the paging configuration.
  • the first network device may send the paging message according to the configuration in Table 4, that is, the first network device sends the paging message in each polarization direction combination.
  • the terminal determines that the frequency of monitoring the paging message changes
  • the terminal can determine that the location of the frequency resource when the first network device sends the paging message also changes.
  • the terminal wakes up which configuration in Table 4 is used can be determined according to the polarization direction of the monitored downlink synchronization signal.
  • the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective frequency. For example, if the polarization direction of the downlink synchronization signal monitored by the terminal is located in polarization direction combination 2, the terminal monitors the paging message at the time-frequency resource position indicated by paging configuration 2. Since the terminal can obtain the time-frequency resource position of each frequency point combination to monitor the paging message in advance, and does not need to obtain the time-frequency resource position of the monitor paging message from the system message, it can avoid missing to receive the paging message.
  • the four possible valid conditions corresponding to the paging configuration are described above, and the embodiment of the present application does not limit the types and the number of valid conditions corresponding to the paging configuration. That is, the valid condition corresponding to the paging configuration may be one or more of the above time, location label, frequency and polarization direction.
  • the terminal can store the configurations shown in Table 1 or Table 2 or Table 3 or Table 4 in advance (which can be collectively referred to as the configuration table), and the terminal can determine which paging configuration to use within a certain period of time by looking up the table, so that it does not need to
  • the first network device obtains the configuration table, which can save signaling overhead.
  • the beams covering the terminal may be beams from different network devices, and the paging configurations of different network devices may also be different, each network device may correspond to a configuration table.
  • the terminal may store configuration tables corresponding to multiple network devices in advance.
  • the terminal stores configuration tables corresponding to multiple network devices, which requires relatively high storage space of the terminal. Therefore, in some embodiments, the terminal may not need to store the configuration table, the terminal switches from the source network device (the network device currently serving the terminal) to the target network device, and may request the configuration table from the target network device to save the storage space of the terminal .
  • the configuration can only be monitored when the terminal is in a awake state. If the first network device is configured with more paging configurations, obviously some paging configurations are useless, but will increase signaling. overhead. To this end, the first network device may determine how many paging configurations are configured for the terminal according to the wake-up time (paging cycle) of the terminal, that is, determine the value of N. For example, if the paging cycle is longer, the value of N is smaller; on the contrary, if the paging cycle is shorter, the value of N is larger. This can prevent the first network device from configuring too many paging configurations for the terminal, thereby reducing signaling overhead.
  • the wake-up time paging cycle
  • the first network device may determine an interval between two adjacent valid conditions according to a time interval of beam switching. Take the effective condition as the effective time as an example. For example, if the time interval of satellite beam switching is short, then the interval between two adjacent effective time intervals is also short; if the time interval of satellite beam switching is long, then the two adjacent effective time intervals will be effective. The intervals between time intervals are also longer. Further, the first network device may also determine the duration corresponding to each valid condition according to the motion speed.
  • the time period corresponding to the effective condition is the time period corresponding to TN-1 to TN .
  • the duration corresponding to each valid time interval may be several seconds, that is, the granularity of the duration corresponding to T N-1 to T N is at the second level.
  • the boundary values of the valid conditions corresponding to two adjacent paging configurations may be the same or different. Taking Table 1 as an example, TN-1 to TN may be regarded as [ TN-1 , TN ], or may be regarded as [ TN-1 , TN ) or ( TN-1 , TN ].
  • the first network device determines the time duration corresponding to each valid condition is also different.
  • FIG. 6 shows the beam shape of the first network device.
  • FIG. 6 takes the example of including 4-color beams, and the first network device moves to the left, that is, the terminal moves to the right relative to the beam as an example (that is, in FIG. 6 )
  • the direction of the arrow indicates the movement direction of the terminal relative to the first network device).
  • the network device sends the paging message in the optimal beam, which can reduce the resource overhead of sending the paging message.
  • the terminal Since the first network device sends the paging message in the optimal beam, that is, a set of configuration information related to paging may exist for a certain time period, that is, a paging configuration. According to the paging configuration, the terminal determines to monitor the paging message in one beam, and does not need to monitor multiple beams, which can reduce the power consumption of the terminal.
  • the validating conditions of each paging configuration can be mutually exclusive, that is, any two adjacent validating conditions do not overlap (no intersection), that is, only one paging configuration is valid in each time period.
  • the effective condition is the effective time, and any two adjacent effective times do not overlap, as shown in FIG. 7 .
  • the terminal does not need to use multiple paging configurations in one effective time interval, that is, monitoring the paging configurations at different time-frequency resource positions, so as to reduce the power consumption of the terminal as much as possible.
  • the validating condition is a location label
  • one paging configuration may correspond to one location label, and different paging configurations correspond to different location labels. It should be understood that the dotted lines in FIG. 7 indicate the boundaries of the effective time.
  • the beam of the first network device may be irregular, as shown in FIG. 8 .
  • FIG. 8 takes the example of including 3-color beams, and the first network device moves to the left, that is, the terminal moves to the right relative to the beam (ie, the arrow direction in FIG. 8 indicates the movement direction of the terminal relative to the first network device).
  • the terminal may be covered by the first type of beam (color 1 beam) and the second type of beam (color 2 beam) at the same time.
  • the first network device may send the paging message in all beams potentially covering the terminal.
  • the terminal may monitor the paging message in all the beams potentially covering the terminal.
  • Two adjacent valid conditions overlap, that is, there is an intersection between two adjacent valid conditions.
  • the effective condition is the effective time, then the two adjacent effective times overlap.
  • the validating condition is a location label, one paging configuration may correspond to multiple location labels, and the location labels corresponding to two adjacent paging configurations may overlap.
  • FIG. 9 is a schematic diagram of a paging configuration.
  • the effective condition is the effective time as an example, and the dotted line indicates the boundary of the effective time.
  • FIG. 9 substantially extends the effective time based on the effective time shown in FIG. 7 , so that the paging configurations under different beams can overlap within a period of time. If the time T at which the terminal monitors the paging message is simultaneously, for example, at the effective time 2, the terminal may determine to monitor the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective time 2.
  • the terminal can further choose whether to monitor the paging message at the time-frequency resource position indicated by paging configuration 1, or to monitor the paging Paging messages are monitored at the time-frequency resource location indicated by configuration 2.
  • the terminal may select a paging configuration corresponding to a beam with stronger signal strength. For example, the signal strength of the first beam (color 1 beam) is greater than that of the second beam (color 2 beam), then the terminal can monitor the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the first beam.
  • the terminal can monitor the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the first beam , and monitor the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the second beam.
  • the first network device sends paging messages in all beams potentially covering the terminal, that is, within a certain period of time, the first network device may configure paging messages for multiple beams.
  • the first network device cannot accurately determine the location of the terminal, the first network device will also send paging messages in all beams potentially covering the terminal, that is, within a certain period of time, the first network device Paging messages for multiple beams can be configured.
  • the same valid condition can correspond to at least two paging configurations, that is, M is less than N.
  • Table 5 a correspondence table between N paging configurations and M valid conditions is shown.
  • the effective condition is the effective time as an example, and one effective time can correspond to two paging configurations as an example.
  • a schematic diagram of paging configuration is shown in FIG. 10 . It should be understood that the dotted lines in FIG. 10 indicate the boundaries of the effective time.
  • the first network device may send the paging message according to the configuration in Table 5, that is, the first network device sends one or more paging messages within each valid time.
  • which configuration in Table 5 is used may be determined according to the time of monitoring the paging message. That is, when the terminal monitors the paging message at a certain effective time, the terminal monitors the paging message at the time-frequency resource position indicated by the paging configuration corresponding to the effective time. For example, if the time T when the terminal wants to monitor the paging message is in the interval T 1 -T 2 , the terminal monitors the paging message at the time-frequency resource position indicated by paging configuration 2 and/or paging configuration 3.
  • the terminal can monitor the paging configuration of the two beams in the same time period. Further, the terminal can choose whether to monitor the paging message on the time-frequency resource position indicated by paging configuration 2 or monitor the paging message on the time-frequency resource position indicated by paging configuration 3 . For example, the terminal may select the paging configuration corresponding to the beam with stronger signal strength. Exemplarily, the paging configuration corresponding to the beam with stronger signal strength is paging configuration 2, then the terminal monitors the paging message at the time-frequency resource location indicated by paging configuration 2.
  • the first network device determines N paging configurations and M validation conditions configured for the terminal, for example, after any one or more of the configurations in Table 1 to Table 5 above, the N paging configurations and M validation conditions can be validated.
  • the condition informs the terminal. If the contents of the above Table 1-Table 5 are large, obviously the signaling overhead is relatively large.
  • each paging configuration may be pre-configured with a corresponding valid condition, for example, the valid condition corresponding to each paging configuration may be pre-defined, or the first network device and the terminal may Agree on the effective conditions corresponding to each paging configuration pre-configuration. In this case, the first network device only needs to send N paging configurations to the terminal, thereby saving signaling overhead.
  • the first network device may generate first configuration information, and send the first configuration information to the terminal.
  • the first configuration information may be carried in one or more fields of the existing signaling, which is beneficial to be compatible with the existing signaling.
  • the first configuration information may be carried in radio resource control (radio resources control, RRC) signaling, downlink control information (downlink control information, DCI) signaling, media access control element (media access control element, MAC CE) One or more of signaling, etc.
  • the above-mentioned one or more fields can be a field defined by RRC signaling, a field defined by MAC CE signaling, or a field defined by DCI signaling, or a newly defined RRC field, MAC CE field or DCI field.
  • the embodiments of the present application are not limited.
  • the first configuration information may also be carried in newly defined signaling.
  • the first configuration information may be sent through one signaling, or may be sent through multiple signalings, which is not limited in this embodiment of the present application.
  • the first network device may update the N paging configurations previously configured for the terminal. For example, the first network device may reconfigure N paging configurations for the terminal according to the location information reported by the terminal. Obviously, each paging configuration is preconfigured. Effective conditions no longer apply. To this end, the embodiment of the present application may inform the terminal of M valid conditions corresponding to the N paging configurations. Of course, even if the first network device does not update the N paging configurations previously configured for the terminal, it can also inform the terminal of the N paging configurations and the corresponding M valid conditions, that is, the first network device can send the terminal as shown in Table 1- Any one or more configurations of Table 5.
  • the first network device sends second configuration information to the terminal, and the terminal receives the second configuration information, where the second configuration information includes M valid conditions.
  • the second configuration information may be carried in one or more fields of the existing signaling, which is beneficial to be compatible with the existing signaling.
  • the second configuration information may be carried in one or more of RRC signaling, DCI signaling, MAC CE signaling, and the like.
  • the above-mentioned one or more fields may be fields defined in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling, or may be newly defined RRC fields, MAC CE fields, or DCI fields.
  • the embodiments of the present application are not limited.
  • the second configuration information may also be carried in newly defined signaling.
  • the second configuration information may be sent through one signaling, or may be sent through multiple signalings, which is not limited in this embodiment of the present application.
  • the embodiment of the present application does not limit the sequence in which the base station sends the N paging configurations and the M valid conditions.
  • the first configuration information and the second configuration information may be carried in one RRC signaling, that is, N paging configurations and M valid conditions may be sent to the terminal at the same time.
  • the first configuration information and the second configuration information may be carried in multiple pieces of RRC signaling.
  • N paging configurations may be carried in one signaling
  • M valid conditions may be carried in another signaling.
  • the N paging configurations are carried in multiple pieces of RRC signaling
  • the M valid conditions can be carried in one or more pieces of RRC signaling.
  • N paging configurations are carried in one RRC signaling, and M valid conditions are carried in one or more RRC signalings.
  • the base station configures the paging configuration for the terminal. If the base station is deployed on the first network device and the base station sends the first configuration information to the terminal, it can be considered that the first network device directly sends the first configuration information to the terminal; For the base station, it may be considered that the base station forwards the first configuration information to the terminal through network devices such as the first network device and the second network device, which is not limited in this embodiment of the present application. Similarly, the first network device may directly send the second configuration information to the terminal, or another network device may forward the second configuration information to the terminal, which is not limited in this embodiment of the present application.
  • S503 is not essential, that is, S503 is an optional step, it is illustrated with a dotted line in FIG. 5 . And, it should be understood that if S503 is performed, then S503 is performed before S502.
  • the N paging configurations are the same. However, the M valid conditions may be different for different terminals.
  • the first network device may configure N paging configurations according to cell granularity, that is, N paging configurations may be bound to beams, and configure M valid conditions according to terminal granularity. In this way, the first network device only needs to configure a set of N paging configurations for each cell, and the set of N paging configurations is applicable to all terminals in the cell. Compared with configuring N paging configurations for the terminals in the cell, the signaling overhead is obviously reduced.
  • the first configuration information may include identifiers of N paging configurations, which are used to indicate beams bound to the N paging configurations. After the terminal accesses the network, the corresponding N paging configurations can be determined according to the identifier, combined with the M valid conditions configured for the terminal by the first network device. call configuration.
  • the first network device in addition to configuring the paging message for the terminal, the first network device also configures the system message for the terminal, which may be specifically configured according to the logical entity of the beam of the first network device. For example, if a beam is regarded as a cell, the beams of the same color can belong to the same cell. Taking FIG. 6 as an example, four color beams are equivalent to four cells. In order to simplify the deployment, some configuration information of the four cells can be configured, such as cell ID, initial BWP related configuration, PCCH-Config configuration, and common search space (CSS) carrying P-RNTI scrambled PDCCH, system time etc. same. It should be understood that the remaining configuration information of the four cells is different.
  • the first network device can configure the same part of the four cells, such as frequency point, cell ID, initial BWP, PCCH-Config, and P-RNTI scrambled PDCCH.
  • the CSS configuration is notified to the terminal in advance, and the difference between each cell and another cell is notified, which can save signaling overhead.
  • the first network device may send all configuration information of, for example, the first cell in the four cells, and for the other three cells in the four cells, the first network device may configure the three cells to be respectively connected with the first cell. Different configuration information of the cell.
  • the terminal may determine all the configuration information of the three cells according to all the configuration information of the first cell and the different configuration information of the three cells and the first cell respectively. Compared with configuring all the configuration information for the four cells respectively, the signaling overhead is obviously reduced.
  • the first network device may inform the terminal of the effective conditions of each configuration, such as the effective time.
  • the terminal determines that the beam is switched, for example, the beam is switched from the beam of color 1 to the beam of color 2
  • the terminal can determine the configuration corresponding to the beam of color 2 according to the effective time. For example, the terminal determines on which time-frequency resources to monitor the paging message according to the PCCH-Config information of the beam of color 2.
  • the terminal synchronizes and demodulates the signal of the color 2 beam according to the corresponding frequency point of the color 2 beam, the initial BWP configuration, and the CSS configuration, determines the time-frequency resources of the CSS, and then searches the CSS.
  • PDCCH scrambled by P-RNTI If a PDCCH scrambled by P-RNTI is found, read the DCI in it. After that, the content of the paging message is acquired on the PDSCH indicated by the DCI.
  • the terminal needs to search for multiple potential frequency points (for cell reselection), read and parse system messages to obtain the initial BWP configuration, CSS configuration, PCCH- Config configuration, etc., to obtain the time-frequency resource position of the paging message, and then monitor the paging message at the determined time-frequency resource position, so as to avoid missing the reception of the paging message.
  • the above only takes the configuration of the paging configuration of the first network device as an example.
  • the NTN communication methods provided in the embodiments of the present application may also be applicable to cell measurement configuration, access configuration, and configuration of monitoring system messages.
  • the paging configuration in this embodiment of the present application may be replaced by a cell measurement configuration, an access configuration, or a configuration of monitoring system messages.
  • the effective conditions of the paging configuration in the embodiment of the present application can be applied to the effective conditions of the cell measurement configuration, the access configuration, or the configuration of monitoring system messages.
  • the first network device can pre-configure cell frequency information and other cell measurement assistance information that may appear at different times for the terminal, so as to reduce the frequency range that the terminal needs to measure and improve the speed of acquiring measurement pilots.
  • the foregoing first configuration information may be used to indicate N cell measurement configurations configured for the terminal, and each cell measurement configuration includes configuration parameters in the time domain and configuration parameters in the frequency domain.
  • a certain cell measurement configuration in the N cell measurement configurations may include a cell frequency set, a time-frequency resource location corresponding to the cell frequency set, and a cell ID set corresponding to the cell frequency set.
  • the cell measurement configuration may further include the maximum frequency offset corresponding to the cell frequency point set, and the Doppler pre-compensation value of the satellite to the beam. Based on the maximum frequency offset corresponding to the cell frequency point set and the Doppler pre-compensation value of the satellite to the beam, the terminal can narrow the range of the frequency points to be detected, obtain the frequency offset value of the received pilot signal faster, and avoid blind detection overhead.
  • the cell measurement configuration also includes the position of the pilot signal in the time domain, for example, may include the time domain resource pattern of the synchronization signal block in the target cell, and the system time difference between the current cell and the target cell.
  • the terminal can determine the most probable time window of the pilot signal according to the position of the pilot signal in the time domain, so as to scan in this time window and reduce the scanning overhead.
  • the cell measurement configuration also includes configuration information necessary for other cell measurements, such as polarization mode, priority, synchronization sequence configuration, such as selection information of synchronization signals in a certain satellite beam, pilot sequence, scrambling code selection information and Location information, etc., will not be listed here.
  • the first network device may configure M validation conditions corresponding to the N cell measurement configurations, for example, one or more of the foregoing four validation conditions.
  • the terminal satisfies a certain valid condition, and measures the cell frequency set at the time-frequency resource position corresponding to the cell frequency set indicated by the cell measurement configuration corresponding to the valid condition.
  • the terminal satisfies the first validation condition, and measures the cell frequency set at the time-frequency resource position corresponding to the cell frequency set indicated by the first cell measurement configuration in the N cell measurement configurations, where the first validation condition is the same as The first cell measurement configuration corresponds to.
  • the first configuration information may be used to indicate N access configurations configured for the terminal, and each access configuration in the N access configurations includes a PRACH configuration and a time-frequency resource location corresponding to an RO . If the terminal satisfies the first effective condition, at the time-frequency resource position corresponding to the RO, the PRACH configuration indicated by the first access configuration in the N access configurations is used to perform random access, wherein the first effective condition is the same as the first access configuration. Enter the corresponding configuration.
  • the first configuration information may be used to indicate N monitoring configurations configured for the terminal, and each monitoring configuration in the N monitoring configurations includes a time-frequency resource location for monitoring system messages. If the terminal satisfies the first validating condition, the terminal monitors the system message on the time-frequency resource indicated by the first monitoring configuration in the N monitoring configurations, where the first validating condition corresponds to the first monitoring configuration.
  • the satellite base station can configure paging configurations for a period of time for the terminal in advance, and when the terminal meets certain conditions, the terminal uses these paging configurations. In this way, it is not necessary to obtain the paging configuration from the received system message, so as to avoid missing the paging message sent by the satellite base station.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between a terminal and a network device.
  • the terminal and the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 11 is a schematic block diagram of a communication apparatus 1100 provided by an embodiment of the present application.
  • the communication apparatus 1100 may correspondingly implement the functions or steps implemented by the terminal or the first network device in the foregoing method embodiments.
  • the communication device may include a processing module 1110 and a transceiver module 1120 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 1110 and the transceiver module 1120 may be coupled with the storage unit, for example, the processing unit 1110 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 1100 can correspondingly implement the behaviors and functions of the first network device in the foregoing method embodiments.
  • the communication apparatus 1100 may be the first network device, or may be a component (eg, a chip or a circuit) applied in the first network device.
  • the transceiver module 1120 may be configured to perform all receiving or sending operations performed by the first network device in the embodiment shown in FIG. 5 .
  • S501-S503 in the embodiment shown in FIG. 5, and/or other processes for supporting the techniques described herein.
  • the processing module 1110 is configured to perform all operations performed by the first network device in the embodiment shown in FIG. 5 except for the transceiving operation, such as generating N paging configurations and/or M valid conditions, and /or other processes for supporting the techniques described herein.
  • the processing module 1110 is configured to generate first configuration information, where the first configuration information is used to indicate N paging configurations configured for the terminal, and each paging configuration in the N paging configurations includes a paging message
  • the time-frequency resource location of N is an integer greater than or equal to 1; the transceiver module 1120 is used to send the first configuration information, and if the processing module 1110 determines that the first valid condition is satisfied, the first paging in the N paging configurations
  • the paging message is sent at the time-frequency resource position indicated by the configuration, wherein the first validating condition corresponds to the first paging configuration.
  • the processing module 1110 is configured to generate first configuration information, where the first configuration information is used to indicate N cell measurement configurations configured for the terminal, and one cell measurement configuration in the N cell measurement configurations includes a cell frequency point set , the time-frequency resource position corresponding to the cell frequency point set, and the cell ID set corresponding to the cell frequency point set, N is an integer greater than or equal to 1; the transceiver module 1120 is used to send the first configuration information, and if the processing module 1110 determines The first validation condition is satisfied, and the measurement signal of the cell ID set is sent at the time-frequency resource position corresponding to the cell frequency point set indicated by the first cell measurement configuration in the N cell measurement configurations, where the first validation condition is the same as that of the first cell.
  • the measurement configuration corresponds.
  • the processing module 1110 is configured to generate first configuration information, where the first configuration information is used to indicate N access configurations configured for the terminal, each of the N access configurations includes a PRACH configuration and a The time-frequency resource position corresponding to RO, N is an integer greater than or equal to 1; the transceiver module 1120 is configured to send the first configuration information, and if the processing module 1110 determines that the first validation condition is satisfied, send the first configuration information of the N access configurations.
  • the processing module 1110 is configured to generate first configuration information, where the first configuration information is used to indicate N monitoring configurations configured for the terminal, and each monitoring configuration in the N monitoring configurations includes a monitoring system for monitoring The time-frequency resource location of the message, N is an integer greater than or equal to 1; the transceiver module 1120 is configured to send the first configuration information, and if the processing module 1110 determines that the first validation condition is satisfied, the first monitoring configuration in the N monitoring configurations The system message is sent on the indicated time-frequency resource, where the first effective condition corresponds to the first monitoring configuration.
  • the transceiver module 1120 is further configured to send second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the first configuration information is used to indicate N paging configurations
  • the first validation condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first one or more of the polarization directions; or,
  • the first configuration information is used to indicate N cell measurement configurations, and the first valid condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, a first frequency, and a first polarization direction. species; or,
  • the first configuration information is used to indicate N access configurations, and the first effective condition includes one or more of a first time corresponding to the first access configuration, a first location label, and a first polarization direction; or,
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one or more of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction.
  • the N paging configurations are in one-to-one correspondence with the M valid conditions; or, if N is greater than M, at least one valid condition in the M valid conditions corresponds to at least two paging configurations.
  • the validation condition includes time, where two adjacent times do not overlap, or two adjacent times have an intersection.
  • the effective condition is a location tag
  • the transceiver module 1120 is further configured to: receive location information, and send third configuration information, where the location information is used to indicate the location of the terminal, and the third configuration The information is used to indicate at least one paging configuration, the at least one paging configuration being determined based on the location information.
  • processing module 1110 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1120 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 1100 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication apparatus 1100 may be a terminal, and may also be a component (eg, a chip or a circuit) applied in the terminal.
  • the transceiver module 1120 may be used to perform all the receiving or sending operations performed by the terminal in the embodiment shown in FIG. 5 .
  • the processing module 1110 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 5 except for the transceiving operation, and/or to support other processes of the technology described herein.
  • the transceiver module 1120 is configured to receive first configuration information, where the first configuration information is used to indicate N paging configurations configured for the communication device 1100, and each paging configuration in the N paging configurations includes paging The time-frequency resource location of the paging message, where N is an integer greater than or equal to 1; if the processing module 1110 determines that the first valid condition is met, the transceiver module 1120 is further configured to indicate when the first paging configuration in the N paging configurations indicates The paging message is monitored at the frequency resource location, wherein the first effective condition corresponds to the first paging configuration.
  • the transceiver module 1120 is configured to receive first configuration information, where the first configuration information is used to indicate N cell measurement configurations configured for the communication apparatus 1100, where one cell measurement configuration in the N cell measurement configurations includes a cell frequency
  • the time-frequency resource positions corresponding to the point set, the cell frequency point set, and the cell ID set corresponding to the cell frequency point set, N is an integer greater than or equal to 1;
  • the cell frequency set is measured at the time-frequency resource position corresponding to the cell frequency set indicated by the first cell measurement configuration in the measurement configuration, where the first validation condition corresponds to the first cell measurement configuration.
  • the transceiver module 1120 is configured to receive first configuration information, where the first configuration information is used to indicate N access configurations configured for the communication apparatus 1100, and each access configuration in the N access configurations includes PRACH Configure the time-frequency resource position corresponding to the RO, and N is an integer greater than or equal to 1; if the processing module 1110 determines that the first valid condition is satisfied, the time-frequency resource position corresponding to the RO is used.
  • the PRACH configuration indicated by the access configuration performs random access, wherein the first effective condition corresponds to the first access configuration.
  • the transceiver module 1120 is configured to receive first configuration information, where the first configuration information is used to indicate N monitoring configurations configured for the communication device 1100, and each monitoring configuration in the N monitoring configurations includes a monitoring system for monitoring The time-frequency resource location of the message, where N is an integer greater than or equal to 1; if the processing module 1110 determines that the first valid condition is met, the transceiver module 1120 is further configured to place on the time-frequency resource indicated by the first monitoring configuration in the N monitoring configurations Monitoring system messages, wherein the first validating condition corresponds to the first monitoring configuration.
  • the transceiver module 1120 is further configured to: receive second configuration information, where the second configuration information includes M valid conditions, where M is an integer greater than or equal to 1, and M is less than or equal to N.
  • the first configuration information is used to indicate N paging configurations
  • the first validation condition includes a first time corresponding to the first paging configuration, a first location label, a first frequency, and a first one or more of the polarization directions; or,
  • the first configuration information is used to indicate N cell measurement configurations, and the first validation condition includes one or more of a first time corresponding to the first cell measurement configuration, a first location label, and a first polarization direction; or,
  • the first configuration information is used to indicate N access configurations, and the first effective condition includes one or more of a first time corresponding to the first access configuration, a first location label, a first frequency, and a first polarization direction. species; or,
  • the first configuration information is used to indicate N monitoring configurations, and the first effective condition includes one or more of a first time corresponding to the first monitoring configuration, a first location label, a first frequency, and a first polarization direction.
  • the N paging configurations are in one-to-one correspondence with the M valid conditions; or, if N is greater than M, at least one valid condition in the M valid conditions corresponds to at least two paging configurations.
  • the validation condition includes time, where two adjacent times do not overlap, or two adjacent times have an intersection.
  • the effective condition is a location tag
  • the transceiver module 1120 is further configured to: send the location information, and receive the location information before monitoring the paging message when the change of the location within the preset time period exceeds a preset threshold.
  • the third configuration information wherein the location information is used to indicate the location where the communication apparatus 1100 is located, and the third configuration information is used to indicate at least one paging configuration, where the at least one paging configuration is determined according to the location information.
  • processing module 1110 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1120 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 1200 provided by this embodiment of the present application is shown, wherein the communication apparatus 1200 may be a terminal capable of implementing the functions of the terminal in the method provided by the embodiment of the present application, or the communication apparatus 1200 may be a network device capable of Implement the function of the first network device in the method provided by the embodiment of the present application; the communication apparatus 1200 may also be a device that can support the terminal to implement the corresponding function in the method provided by the embodiment of the present application, or can support the network device to implement the embodiment of the present application. Provides means of corresponding functions in the method.
  • the communication apparatus 1200 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 1120 may be a transceiver, and the transceiver is integrated in the communication device 1200 to form a communication interface 1210 .
  • the communication apparatus 1200 includes at least one processor 1220, which is configured to implement or support the communication apparatus 1200 to implement the function of the network device or terminal in the method provided in the embodiments of this application. For details, refer to the detailed description in the method example, which is not repeated here.
  • Communication apparatus 1200 may also include at least one memory 1230 for storing program instructions and/or data.
  • Memory 1230 and processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230.
  • the processor 1220 may execute program instructions and/or data stored in the memory 1230 to cause the communication device 1200 to implement the corresponding method. At least one of the at least one memory may be included in the processor 1220 .
  • the communication apparatus 1200 may also include a communication interface 1210 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1200 may communicate with other devices.
  • a communication interface 1210 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1200 may communicate with other devices.
  • the communication device is a terminal
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 1220 may utilize the communication interface 1210 to send and receive data.
  • the communication interface 1210 may specifically be a transceiver.
  • the specific connection medium between the communication interface 1210 , the processor 1220 , and the memory 1230 is not limited in the embodiments of the present application.
  • the memory 1230, the processor 1220, and the communication interface 1210 are connected through a bus 1240 in FIG. 12.
  • the bus is represented by a thick line in FIG. 12, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1220 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1230 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiment may be a terminal or a circuit, or may be a chip applied in the terminal or other combined devices or components having the above-mentioned terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system
  • the processing module may be a processor of the chip or the chip system.
  • FIG. 13 shows a schematic structural diagram of a simplified communication device.
  • the communication device is a base station as an example.
  • the base station may be applied in the system shown in FIG. 3 or FIG. 4 , and may be the first network device in FIG. 3 or FIG. 4 , and execute the functions of the first network device in the foregoing method embodiments.
  • the communication device 1300 may include a transceiver 1310 , a memory 1321 and a processor 1322 .
  • the transceiver 1310 can be used for communication by a communication device, such as for sending or receiving the above-mentioned indication information.
  • the memory 1321 is coupled to the processor 1322, and can be used to store programs and data necessary for the communication device 1300 to implement various functions.
  • the processor 1322 is configured to support the communication device 1300 to perform the corresponding functions in the above-mentioned methods, and the functions can be implemented by calling programs stored in the memory 1321 .
  • the transceiver 1310 may be a wireless transceiver, which may be used to support the communication device 1300 to receive and send signaling and/or data through a wireless air interface.
  • the transceiver 1310 may also be referred to as a transceiver unit or a communication unit, and the transceiver 1310 may include one or more radio frequency units 1312 and one or more antennas 1311, wherein the radio frequency unit is such as a remote radio unit (remote radio unit, RRU) Or an active antenna unit (active antenna unit, AAU), which can be specifically used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas can specifically be used for radiation and reception of radio frequency signals.
  • the transceiver 1310 may only include the above radio frequency unit, and then the communication apparatus 1300 may include the transceiver 1310, the memory 1321, the processor 1322 and the antenna.
  • the memory 1321 and the processor 1322 can be integrated or independent from each other. As shown in FIG. 13 , the memory 1321 and the processor 1322 can be integrated into the control unit 1320 of the communication device 1300 .
  • the control unit 1320 may include a baseband unit (BBU) of an LTE base station, and the baseband unit may also be referred to as a digital unit (DU), or the control unit 1320 may include 5G and future wireless access A distributed unit (DU) and/or a centralized unit (CU) in a base station under the technology.
  • BBU baseband unit
  • DU digital unit
  • CU centralized unit
  • the above-mentioned control unit 1320 may be composed of one or more antenna panels, wherein, multiple antenna panels may jointly support a wireless access network (such as an LTE network) of a single access mode, and multiple antenna panels may also support different access modes. Radio access network (such as LTE network, 5G network or other network).
  • the memory 1321 and processor 1322 may serve one or more antenna panels. That is, the memory 1321 and the processor 1322 may be provided individually on each antenna panel. It is also possible that multiple antenna panels share the same memory 1321 and processor 1322 .
  • necessary circuits may be provided on each antenna panel, for example, the circuits may be used to realize the coupling between the memory 1321 and the processor 1322 .
  • the above transceiver 1310, processor 1322 and memory 1321 can be connected through a bus structure and/or other connection media.
  • the processor 1322 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna. It is sent in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1322, and the processor 1322 converts the baseband signal into data and sends the data to the baseband signal. to be processed.
  • the transceiver 1310 can be used to perform the above steps performed by the transceiver module 1120 .
  • the processor 1322 may be used to invoke instructions in the memory 1321 to perform the steps performed by the processing module 1110 above.
  • FIG. 14 shows a schematic structural diagram of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the vehicle-mounted unit, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14 . In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as the transceiver unit of the apparatus, and the processor with the processing function may be regarded as the processing unit of the apparatus.
  • the apparatus includes a transceiver unit 1410 and a processing unit 1420 .
  • the transceiver unit 1410 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 1420 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1410 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1410 may be regarded as a transmitting unit, that is, the transceiver unit 1410 includes a receiving unit and a transmitting unit.
  • the transceiver unit 1410 may also be sometimes referred to as a transceiver, a transceiver, or a transceiver circuit or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • transceiving unit 1410 is configured to perform the sending and receiving operations on the terminal side in the above method embodiments
  • processing unit 1420 is configured to perform other operations on the terminal except the transceiving operations in the above method embodiments.
  • the transceiver unit 1410 may be configured to perform S501-S503 in the embodiment shown in FIG. 5, and/or other processes for supporting the techniques described herein.
  • Processing unit 1420 is used to perform steps other than transceiving in the embodiment shown in FIG. 5, and/or other processes used to support the techniques described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • the apparatus may perform functions similar to the processing module 1110 in FIG. 11 .
  • the apparatus includes a processor 1510, a transmit data processor 1520, and a receive data processor 1530.
  • the processing module 1110 in the above-mentioned embodiment may be the processor 1510 in FIG. 15 and perform corresponding functions.
  • the processing module 1110 in the above embodiments may be the sending data processor 1520 and/or the receiving data processor 1530 in FIG. 15 .
  • the channel encoder and the channel decoder are shown in FIG. 15 , it can be understood that these modules do not constitute a limiting description of this embodiment, but are only illustrative.
  • FIG. 16 shows another form of this embodiment.
  • the communication device 1600 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication apparatus in this embodiment may serve as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1603 and an interface 1604 .
  • the processor 1603 completes the functions of the above-mentioned processing module 1110
  • the interface 1604 implements the functions of the above-mentioned transceiver module 1120 .
  • the modulation subsystem includes a memory 1606, a processor 1603, and a program stored in the memory 1606 and executable on the processor 1603.
  • the terminal in the above method embodiment is implemented. method.
  • the memory 1606 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the communication device 1600, as long as the memory 1606 can be connected to the The processor 1603 is sufficient.
  • the embodiment of the present application further provides a communication system, specifically, the communication system includes a network device and a terminal, or may further include more network devices and multiple terminals.
  • the communication system includes a network device and a terminal for implementing the relevant functions of the above embodiment in FIG. 5 .
  • the network devices are respectively used to implement the functions of the relevant network device parts of the embodiment shown in FIG. 5 .
  • the terminal is used to implement the functions of the terminal related to the embodiment shown in FIG. 5 above. For details, please refer to the relevant descriptions in the foregoing method embodiments, which will not be repeated here.
  • Embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method executed by the network device in the embodiment shown in FIG. 5; or when it runs on the computer , so that the computer executes the method executed by the terminal in the embodiment shown in FIG. 5 .
  • the embodiments of the present application also provide a computer program product, which includes instructions, when running on a computer, causing the computer to execute the method executed by the network device in the embodiment shown in FIG. 5; or when running on the computer, causing the computer to execute the method.
  • the computer executes the method executed by the terminal in the embodiment shown in FIG. 5 .
  • the embodiments of the present application provide a chip system, which includes a processor and may also include a memory, for implementing the functions of the network device or terminal in the foregoing method; or for implementing the functions of the network device and the terminal in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种非地面网络的通信方法及通信装置,可降低终端错过寻呼消息的概率,并降低小区重选过程中信令开销。该方法包括:终端接收第一配置信息,第一配置信息用于指示为终端配置的N个寻呼配置,若终端满足第一生效条件,在N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,第一生效条件与第一寻呼配置对应。N个寻呼配置和M个生效条件可认为是第一网络设备为终端预配置的,当终端满足某一个配置的生效条件,终端可使用该配置。这样就不需要终端从接收的系统消息中获取对应的配置,从而避免错过接收网络设备发送的配置信息。

Description

一种非地面网络的通信方法及通信装置
相关申请的交叉引用
本申请要求在2020年08月27日提交中国国家知识产权局、申请号为202010877427.5、申请名称为“一种非地面网络的通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种非地面网络(non terrestrial networks,NTN)的通信方法及通信装置。
背景技术
在新无线(new radio,NR)系统中,引入了NTN。在NTN中,基站或者部分基站功能部署在高空平台或者卫星上,为终端提供无缝覆盖。由于卫星环绕地球运动,终端相对于卫星也在移动,这就导致正在使用网络服务的终端可能从一颗卫星的覆盖范围移动到另一颗卫星的覆盖范围。为了保证通信的连续性和服务质量,终端需要执行小区切换或者小区重选。
具体来讲,当空闲态的终端离开当前小区的覆盖区之后,终端会根据基站的配置进行小区重选,并选择满足特定条件的新小区进行驻留。在小区重选过程中,基站分别广播系统消息和寻呼消息。当终端选定新的小区后,终端会监听新小区的系统消息,获取新小区寻呼消息的配置信息,从而确定终端需要监听寻呼消息的时频资源位置。
如果小区的系统消息的传输时间可能和寻呼消息的传输时间存在交集或者二者相近,那么终端在新小区监听系统消息时,可能会错过基站发送的寻呼消息。例如系统消息的传输时间可能和寻呼消息的传输时间存在交集或者二者相近,那么在终端接收完系统消息或者还没解码系统消息之前,基站发送的寻呼消息已到达终端,即终端会错过寻呼消息。
发明内容
本申请提供一种NTN的通信方法及通信装置,可降低终端错过寻呼消息的概率,并降低小区重选过程中信令开销。
第一方面,本申请实施例提供一种NTN的通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一配置信息,第一配置信息用于指示为终端配置的N个寻呼配置,若终端满足第一生效条件,在N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,第一生效条件与第一寻呼配置对应,N为大于或等于1的整数。
第二方面,本申请实施例提供一种NTN的通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例 如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一配置信息,第一配置信息用于指示为终端配置的N个小区测量配置,若终端满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上对小区频点集合进行测量,其中,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,第一生效条件与第一小区测量配置对应,N为大于或等于1的整数。
第三方面,本申请实施例提供一种NTN的通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一配置信息,第一配置信息用于指示为终端配置的N个接入配置,N个接入配置中的每个接入配置包括物理随机接入信道(physical random access channel,PRACH)配置和随机接入机会(PRACH occasion,RO)对应的时频资源位置,若终端满足第一生效条件,在RO对应的时频资源位置上,采用N个接入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,第一生效条件与第一接入配置对应,N为大于或等于1的整数。
第四方面,本申请实施例提供一种NTN的通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为终端为例进行描述。该方法包括:
终端接收第一配置信息,第一配置信息用于指示为终端配置的N个监听配置,若终端满足第一生效条件,在N个监听配置中的第一监听配置指示的时频资源上监听系统消息,器,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,第一生效条件与第一监听配置对应,N为大于或等于1的整数。
在本申请实施例中,网络设备可为终端预配置多个相关信息的配置,例如多个寻呼配置、多个小区测量配置、多个接入配置,以及多个用于监听系统消息的配置等。且网络设备为这多个配置分别配置对应的生效条件,当终端满足某一个配置的生效条件,那么终端可使用该配置。由于终端使用配置信息是以生效条件为前提的,所以即使网络设备提前配置多个配置,终端也可明确使用某个配置的时机。这样就不需要终端从接收的系统消息中获取对应的配置,从而避免错过接收网络设备发送的配置信息。
在一种可能的实现方式中,该方法还包括:终端接收第二配置信息,第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。该方案中,与N个配置分别对应的M个生效条件可以是网络设备下发的,这样终端不需要事先存储多个网络设备的N个配置信息与M个生效条件的对应关系,以节约终端的存储空间。
在一种可能的实现方式中,生效条件包括时间、位置标签、频率以及极化方向中的一种或多种。示例性的,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。示例性的,第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种。示例性的,第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。示例性的,第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
该方案中,第一网络设备的运动轨迹是规律的,那么第一网络设备可明确知道在一段时间内第一网络设备所处的位置,即第一网络设备可较为准确地确定在一段时间内在哪些时频资源上向终端发送寻呼消息。因此,可以将时间作为寻呼配置的生效条件之一。
应理解,当终端与第一网络设备的距离较近,那么该终端处于该第一网络设备的覆盖范围的可能性较大。进一步的,可根据终端距离第一网络设备的某个波束之间的距离来确定终端处于该波束的覆盖范围的可能性。而第一网络设备基于第一网络设备的波束资源发送寻呼消息,所以可将第一网络设备的波束位置作为寻呼配置的生效条件之一。
通常来说,第一网络设备的波束配置信息与终端的业务相关。在某个时间段内,即使第一网络设备使用不同频率/极化方向,对同一覆盖区域来说,该覆盖区域的资源配置情况通常相似。那么可认为在不同时间段,不同颜色的波束体现在频率/极化方向不同。因此,可将频率/极化方向作为寻呼配置的生效条件之一。
在一种可能的实现方式中,N个寻呼配置与M个生效条件一一对应,该方案可适用于波束规则的情况,认为一段时间内,第一网络设备在最优的波束中发送寻呼消息,配置一个寻呼配置即可,以降低发送寻呼消息的资源开销。
在一种可能的实现方式中,N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。该方案可适用于波束不规则的情况,即同一时间段内终端可能被多个波束覆盖,那么一个生效条件可对应至少两个寻呼配置,以保证第一网络设备可能在所有潜在覆盖终端的波束中发送寻呼消息。
在一种可能的实现方式中,生效条件包括时间,其中,相邻的两个时间不重叠。该方案可适用于波束规则的情况,认为一段时间内,第一网络设备在最优的波束中发送寻呼消息,配置一个寻呼配置即可,以降低发送寻呼消息的资源开销。终端根据该寻呼配置,确定在一个波束中监听寻呼消息,不需要监听多个波束,可降低终端的功耗。
在一种可能的实现方式中,生效条件包括时间,其中,相邻的两个时间存在交集。该方案可适用于波束不规则的情况,即同一时间段内终端可能被多个波束覆盖,第一网络设备可能在所有潜在覆盖终端的波束中发送寻呼消息,为了避免终端错过接收寻呼消息,那么可将生效时间扩展,以尽量保证终端在所有潜在覆盖终端的波束中监听寻呼消息。
在一种可能的实现方式中,生效条件是位置标签,所述方法还包括:终端的位置在预设时长内的变化量超过预设门限,终端发送位置信息,以及在监听寻呼消息之前,该终端还接收第三配置信息;其中,该位置信息用于指示所述终端所处的位置,第三配置信息用于指示至少一个寻呼配置,至少一个寻呼配置是根据所述位置信息确定的。该方案中,第一网络设备可根据终端上报的位置更新终端配置的N个寻呼配置,从而避免由于终端位置的不准确导致为终端配置的N个寻呼配置不合适。
在一种可能的实现方式中,所述第一配置信息还包括N个寻呼配置的标识。该方案通过标识可实现N个寻呼配置与波束的绑定。对于某个波束覆盖区域内的不同终端来说,N个寻呼配置是相同的,然而M个生效条件来说可能是不同的。那么第一网络设备可以小区为粒度配置N个寻呼配置,以终端为粒度配置M个生效条件,即不需要为不同的终端分别配置一套N个寻呼配置,从而降低信令的开销。对于终端而言,根据与N个寻呼配置的标识,可确定对应的N个寻呼配置,结合第一网络设备为终端配置的M个生效条件,在满足某个生效条件的情况下,使用该生效条件对应的寻呼配置。
第五方面,本申请实施例提供一种NTN的通信方法,该方法可由第二通信装置执行, 第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
生成第一配置信息,第一配置信息用于指示为终端配置的N个寻呼配置,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,N为大于或等于1的整数;
发送第一配置信息,以及若满足第一生效条件,在N个寻呼配置中的第一寻呼配置指示的时频资源位置上发送寻呼消息,其中,第一生效条件与第一寻呼配置对应。
第六方面,本申请实施例提供一种NTN的通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
生成第一配置信息,第一配置信息用于指示为所述终端配置的N个小区测量配置,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,N为大于或等于1的整数;
发送第一配置信息,以及若满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上发送小区ID集合的测量信号,其中,第一生效条件与第一小区测量配置对应。
第七方面,本申请实施例提供一种NTN的通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
生成第一配置信息,第一配置信息用于指示为终端配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置,N为大于或等于1的整数;
发送第一配置信息,以及若满足第一生效条件,发送N个接入配置中的第一接入配置指示的PRACH配置,其中,第一生效条件与第一接入配置对应。
第八方面,本申请实施例提供一种NTN的通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为网络设备为例进行描述。该方法包括:
生成第一配置信息,第一配置信息用于指示为终端配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,N为大于或等于1的整数;
发送第一配置信息,以及若满足第一生效条件,在N个监听配置中的第一监听配置指示的时频资源上发送系统消息,其中,第一生效条件与第一监听配置对应。
在一种可能的实现方式中,该方法还包括:发送第二配置信息,第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。
在一种可能的实现方式中,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一 时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
在一种可能的实现方式中,N个寻呼配置与M个生效条件一一对应;或者,
N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
在一种可能的实现方式中,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
在一种可能的实现方式中,生效条件是位置标签,所述方法还包括:
接收位置信息,该位置信息用于指示终端所处的位置;
发送第三配置信息,第三配置信息用于指示至少一个寻呼配置,该至少一个寻呼配置是根据所述位置信息确定的。
在一种可能的实现方式中,所述第一配置信息还包括所述N个寻呼配置的标识。
关于第五方面至第八方面或第五方面至第八方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面至第四方面或第一方面至第四方面的各种可能的实施方式的技术效果的介绍。
第九方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面或第二方面或第三方面或第四方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该通信装置具有实现上述第一方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述收发模块用于接收第一配置信息,第一配置信息用于指示为所述通信装置配置的N个寻呼配置,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,N为大于或等于1的整数;
若所述处理模块确定满足第一生效条件,所述收发模块还用于在N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,第一生效条件与第一寻呼配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第二方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述收发模块用于接收第一配置信息,第一配置信息用于指示为所述通信装置配置的N个小区测量配置,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,N为大于或等于1的整数;
若所述处理模块确定满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的所述小区频点集合对应的时频资源位置上对小区频点集合进行测量,其中,第一生效条件与第一小区测量配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第三方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述收发模块用于接收第一配置信息,第一配置信息用于指示为所述通信装置配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置,N为大于或等于1的整数;
若所述处理模块确定满足第一生效条件,在RO对应的时频资源位置上,采用N个接 入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,第一生效条件与第一接入配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第四方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述收发模块用于接收第一配置信息,第一配置信息用于指示为所述通信装置配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,N为大于或等于1的整数;
若所述处理模块确定满足第一生效条件,所述收发模块还用于在N个监听配置中的第一监听配置指示的时频资源上监听系统消息,其中,第一生效条件与第一监听配置对应。
作为一种可选的实现方式,所述收发模块还用于:接收第二配置信息,该第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。
作为一种可选的实现方式,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
作为一种可选的实现方式,N个寻呼配置与M个生效条件一一对应;或者,
N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
作为一种可选的实现方式,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
作为一种可选的实现方式,生效条件是位置标签,所述收发模块还用于:
在预设时长内的位置的变化量超过预设门限,发送位置信息,该位置信息用于指示所述通信装置所处的位置;
在监听寻呼消息之前,接收第三配置信息,该第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
关于第九方面或第九方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面至第四方面或第一方面至第四方面的各种可能的实施方式的技术效果的介绍。
第十方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第五方面或第六方面或第七方面或第八方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该通信装置具有实现上述第五方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述处理模块用于生成第一配置信息,第一配置信息用于指示为终端配置的N个寻呼配置,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,N为大于或等于1的整数;
所述收发模块用于发送第一配置信息,以及若满足第一生效条件,在N个寻呼配置中的第一寻呼配置指示的时频资源位置上发送寻呼消息,其中,第一生效条件与第一寻呼配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第六方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述处理模块用于生成第一配置信息,第一配置信息用于指示为终端配置的N个小区测量配置,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,N为大于或等于1的整数;
所述收发模块用于发送第一配置信息,以及若满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上发送小区ID集合的测量信号,其中,第一生效条件与第一小区测量配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第七方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述处理模块用于生成第一配置信息,第一配置信息用于指示为终端配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置,N为大于或等于1的整数;
所述收发模块用于发送第一配置信息,以及若满足第一生效条件,发送N个接入配置中的第一接入配置指示的PRACH配置,其中,第一生效条件与第一接入配置对应。
在一种可能的实现方式中,该通信装置具有实现上述第八方面方法实施例中的行为的功能,该通信装置包括收发模块和处理模块,其中:
所述处理模块用于生成第一配置信息,第一配置信息用于指示为终端配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,N为大于或等于1的整数;
所述收发模块用于发送第一配置信息,以及若满足第一生效条件,在N个监听配置中的第一监听配置指示的时频资源上发送系统消息,其中,第一生效条件与第一监听配置对应。
作为一种可选的实现方式,所述收发模块还用于发送第二配置信息,第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。
作为一种可选的实现方式,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
作为一种可选的实现方式,N个寻呼配置与M个生效条件一一对应;或者,
N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
作为一种可选的实现方式,生效条件包括时间,其中,相邻的两个时间不重叠,或者, 相邻的两个时间存在交集。
作为一种可选的实现方式,生效条件是位置标签,所述收发模块用于:
接收位置信息,所述位置信息用于指示所述终端所处的位置;
发送第三配置信息,所述第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
关于第十方面或第十方面的各种可能的实施方式所带来的技术效果,可参考对于第五方面至第八方面或第五方面至第八方面的各种可能的实施方式的技术效果的介绍。
第十一方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第九方面中任一种可能实施方式中的通信装置或第十方面中任一种可能实施方式中的通信装置,或者为设置在第九方面中任一种可能实施方式中的通信装置或第十方面中任一种可能实施方式中的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面至第四方面中任一方面方法实施例中由终端所执行的方法,或者使得通信装置执行上述第五方面至第八方面中任一方面方法实施例中由网络设备所执行的方法。
应理解,该通信接口可以包括通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。该收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为网络设备时,该其它设备为终端;或者,当该通信装置为终端时,该其它设备为网络设备。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第九方面或第十方面任一可能实施方式中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请实施例提供了一种通信系统,所述通信系统包括第九方面所述的通信装置和第十方面所述的通信装置。
第十四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法;或实现上述各方面中由终端执行的方法。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行,或使得上述各方面中由终端执行的方法被执行。
上述第十一方面至第十五方面及其实现方式的有益效果可以参考对第一方面至第八方面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的静止小区的示意图;
图2为本申请实施例提供的移动小区的示意图;
图3为本申请实施例提供的适用的通信系统的一种架构示意图;
图4为本申请实施例提供的适用的通信系统的一种架构示意图;
图5为本申请实施例提供的NTN的通信方法的一种流程示意图;
图6为本申请实施例提供的规则波束的一种示意图;
图7为本申请实施例提供的寻呼配置的一种示意图;
图8为本申请实施例提供的不规则波束的一种示意图;
图9为本申请实施例提供的寻呼配置的另一种示意图;
图10为本申请实施例提供的寻呼配置的再一种示意图;
图11为本申请实施例提供的通信装置的一种结构示意图;
图12为本申请实施例提供的通信装置的另一种结构示意图;
图13为本申请实施例提供的一通信装置的一种结构示意图;
图14为本申请实施例提供的另一通信装置的一种结构示意图;
图15为本申请实施例提供的另一通信装置的又一种结构示意图;
图16为本申请实施例提供的另一通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
为便于本领域技术人员理解本申请实施例提供的技术方案,首先对本申请实施例中的部分用语进行解释说明。
1)网络侧设备,也可称为网络设备,是网络侧中一种用于发射或接收信号的实体,是通信系统中将终端侧设备接入到无线网络的设备,一般通过有线链路(例如光纤线缆)连接到核心网,如新一代基站(generation Node B,gNodeB)。网络侧设备可负责接收核心网的数据并转发给无线回传设备,或者接收无线回传设备的数据并转发给核心网。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的AP,长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR系统中的gNodeB/gNB等。下面以网络侧设备是gNB为例。
gNB可以包括天线,基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU)。其中,BBU可以通过公共无线接口(common public radio interface,CPRI)或增强的CPRI(enhance CPRI,eCPRI)等与RRU相连,RRU可以通过馈线与天线相连。该天线可以为无源天线,其与RRU是分离的,之间可以通过电缆连接。或者该天线可以为有源天线单元(active antenna unit,AAU),即AAU的天线单元和RRU是集成在一块的。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分离单元(distributed unit,DU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,DU可用于实现射频信号的收发,射频信号与基带信号的转换,以及部分基带处理。CU可用于进行基带处理,对基站进行控制等。在一些实施例中,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio  link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
2)终端侧设备,也可以称为终端设备或者终端,可以是能够接收网络设备调度和指示的无线终端设备,终端侧设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端侧设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,与RAN交换语音和/或数据。该终端侧设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,终端可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。又例如,终端可包括虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等等。再例如,终端可包括个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。或者终端还可包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。而如上介绍的各种终端 设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
在本申请的实施例中,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
3)非连续接收(discontinuous reception,DRX),在DRX机制下,终端可以周期性的进入睡眠状态,不需要监听物理下行控制信道(physical downlink control channel,PDCCH)。DRX在RRC空闲态、RRC非激活(inactive)态和RRC连接(connected)态等三种状态下的实现机制有所不同。其中,RRC空闲态(idle)或RRC非激活态的DRX也称为IDLE DRX。在IDLE DRX下,终端主要监听寻呼,终端在一个DRX周期(DRX cycle)监听一次寻呼时机(paging opportunity/occasion,PO)。终端如果有业务数据传输,则往往需要从RRC空闲态或RRC非激活态进入RRC连接态。终端只在PO监控寻呼指示信道(paging indicator channel,PICH),其余时刻不监控PICH,从而节省终端的功耗。应理解,通常来说,系统除了要考虑终端的功耗之外,还需要考虑终端的业务的时延要求。对于终端来说,DRS周期越短,终端的待机功耗越大,下行可达性越好,与网络设备建立链接的时间越短;DRX周期越长,终端的待机功耗越小,下行可达性越差,被叫建立时间越长。在一些实施例中,DRX周期可以为20ms、640ms、1280ms或2560ms等。
4)寻呼(Paging)周期,与DRX循环(cycle)属于同一概念,终端在每个DRX cycle上需要检测1个PO,也就是说,终端在每个Paging周期内只有1个PO可用于发送Paging。PO是物理下行控制信道(physical downlink control channel,PDCCH)监测机会(monitoring occasions)的集合,可包含多个时隙(slots)或者子帧或者正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。网络设备通过物理下行共享信道(physical downlink shared channel,PDSCH)资源将寻呼消息(paging message)发送给终端,且网络设备通过用于寻呼消息的网络临时标识(paging radio network tempory identity,P-RNTI)加扰的PDCCH指示发送寻呼消息的PDSCH资源。终端周期性地监测P-RNTI加扰的PDCCH,并解析接收的下行控制信息(downlink control information,DCI),可获得PDSCH的时频位置。终端在该时频位置上解析寻呼消息,获得该寻呼消息包括的内容。需要说明的是,在时域上,终端只会在Paging周期内的某个特定帧的PO去尝试接收Paging消息,所以网络设备需要在该特定帧的PO将Paging消息从空口上发出,这样终端才有可能在这个时刻接收到Paging消息。由于该特定帧用于Paging的传输,所以该特定帧也可以称为寻呼帧(paging frame,PF),应理解,PF包含一个或多个PO。
5)部分带宽(bandwidth part,BWP),是指小区总带宽的一个子集带宽。由于卫星存在多色复用,可将一个卫星波束映射成一个BWP。话句话说,BWP可以看作是一个波束。
6)地球同步(geostationary earth orbit,GEO)卫星:又称为静止卫星,卫星运动速度与地球自转系统相同,因此卫星相对地面保持静止状态,对应的,GEO卫星的小区也是静止的。GEO卫星小区的覆盖范围较大,一般小区直径为500km。
7)低轨(low-earth orbit,LEO):非静止的卫星有很多种,以LEO卫星为例。LEO卫星相对地面移动较快,大约7Km/s,因此LEO卫星提供服务的覆盖区域也随之移动。LEO卫星投射到地面的小区有两种模式,分别为静止小区(fixed cell)和移动小区(moving cell)。
fixed cell,即投射到地面的小区相对于地面静止,上空的LEO卫星通过调整天线角度 完成地面同一位置的覆盖,等这个LEO卫星无法覆盖到地面的时候,由另一个LEO卫星接替。如图1所示,静止小区的映射方式是指小区的位置在地面上是不动的,移动的卫星通过调整自己的波束形成这些小区。举例说明,T1时刻:小区1和小区2由gNB1的波束覆盖,小区3和小区4由gNB2的波束覆盖;T2时刻:虽然gNB1和gNB2都向左移动,但是依然可以调整自己的波束,保证小区1,小区2,小区3,小区4的覆盖;T3时刻:相比T1时刻,gNB1和gNB2已经移动了足够远的距离,gNB1无法通过调整波束再为小区2提供覆盖,gNB2无法通过调整波束为小区4提供覆盖,此时,gNB2可以为小区2提供覆盖,而gNB3可以为小区4提供覆盖。
moving cell,即投射到地面的小区跟着LEO卫星一起移动,移动过程中LEO卫星的天线方向不变,例如,LEO卫星的天线总是与地面垂直。如图2所示,地面移动小区的映射方式是指移动的卫星并不动态调整它的波束方向,移动的卫星生成的波束随着卫星的移动在地面上移动。举例说明:T1时刻:如图2所示的区域由gNB1和gNB2的小区1,小区2,小区3,小区4进行覆盖,而在T3时刻,该区域由gNB1,gNB2,gNB3的小区2,小区3,小区4,小区5进行覆盖。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
在无线通信系统,如NR通信系统中,引入了NTN。在NTN中,基站或者部分基站功能部署在高空平台或者卫星上,为终端提供无缝覆盖。由于卫星环绕地球运动,终端相对于卫星也在移动,例如LEO卫星运动速度为7.5km/s,波束最短为20km,即每3s就会发生一次波束切换。又例如非地球同步轨道(non geostationary earth orbit,NGSO)卫星高速运动,这就导致正在使用网络服务的终端可能从一颗卫星的覆盖范围移动到另一颗卫星的覆盖范围。为了保证通信的连续性和服务质量,终端需要执行小区切换或者小区重选。
然而,根据卫星波束的通信参数配置的不同,不同的卫星波束可看作是不同的逻辑实体。例如卫星波束可看作是小区,也可以看作是BWP。因卫星波束的逻辑实体角色的不同,终端由于卫星运动执行的流程也有所不同,下面分别就卫星波束看作小区或BWP来介绍终端由于卫星运动执行的后续流程。
a)卫星波束看作是小区。这种情况下,处于idle态的终端频繁执行小区重选,处于connected态的终端频繁执行小区切换。具体来讲,当idle态的终端离开当前小区的覆盖区之后,终端会根据基站的配置进行小区重选,终端需要对候选小区的清单中的小区进行测量,并选择满足特定条件(例如信号强度或者给定的选择优先级)的新小区进行驻留。当选定新的小区后,终端会监听新小区的系统消息,获取新小区寻呼消息的配置信息,从而确定终端需要监听寻呼消息的时频资源位置。
在小区重选过程中,基站分别广播系统消息和寻呼消息,终端接收到系统消息,可根据系统消息确定接收寻呼消息的资源位置,也就是在哪些资源位置接收寻呼消息。如果小区的系统消息的传输时间可能和寻呼消息的传输时间存在交集或者二者相近,那么终端在新小区监听系统消息时,可能会错过基站发送的寻呼消息。例如系统消息的传输时间可能和寻呼消息的传输时间存在交集或者二者相近,那么在终端接收完系统消息或者还没解码系统消息之前,基站发送的寻呼消息已到达终端,即终端会错过寻呼消息。尤其是,在卫星通信中,卫星波束的频繁切换,导致终端需要频繁测量小区,终端错过寻呼消息的概率更大。另外,终端频繁测量小区,伴随着终端需要解码的系统消息也较多,终端的处理开销也较大。
b)卫星波束看作是BWP。这种情况下,处于connected态的终端随着卫星的运动需要频繁执行波束/BWP的切换,类似LTE中的小区切换。对于处于idle态的终端来说,执行小区切换终端会回到初始(initial)BWP且只能停留在initial BWP中监听系统消息和寻呼消息。然而在将卫星波束看作BWP,随着卫星的运动,终端原先监听的initial BWP频点消失,虽然终端可接收到新覆盖范围的卫星波束,但是新覆盖范围的卫星波束与源小区覆盖范围的卫星波束在逻辑上没有对应关系,也就是终端无法根据新覆盖范围的卫星波束推断出源小区覆盖范围的卫星波束,这样终端只能通过小区重选流程来驻留新的波束。如a)所示,若系统消息的传输时间可能和寻呼消息的传输时间存在交集或者二者相近,那么终端可能会错过寻呼消息。且如果需要终端的initial BWP,按照现有协议架构,基站和终端之间需要交互高层信令,之后终端再接入网络。卫星波束的频繁切换会导致用于终端接入网络的高层信令开销更大。
鉴于此,本申请实施例提供了一种非地面网络的通信方法,该方法中,卫星基站可提前为终端配置一段时间内的寻呼配置,当终端满足特定条件,终端使用这些寻呼配置。这样就不需要从接收的系统消息中获取寻呼配置,从而避免错过接收卫星基站发送的寻呼消息。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统,5G系统,NTN系统,车到万物(vehicle to everything,V2X),长期演进-车联网(LTE-vehicle,LTE-V),车到车(vehicle to vehicle,V2V),车联网,机器类通信(Machine Type Communications,MTC),物联网(internet of things,IoT),长期演进-机器到机器(LTE-machine to machine,LTE-M),机器到机器(machine to machine,M2M),物联网,或者将来的移动通信系统。
作为一种可能的应用场景,NTN系统可以包括卫星系统。按照卫星高度,即卫星轨位高度,可以将卫星系统分为高椭圆轨道(highly elliptical orbiting,HEO)卫星、GEO卫星、中轨(medium earth orbit,MEO)卫星和LEO卫星。此外,NTN系统还可以包括高空平台(high altitude platform station,HAPS)通信系统等空中网络设备,本申请涉及的网络设备不限于以上举例。
作为一种示例,请参见图3,示出了NTN网络的架构示意图。该NTN网络包括第一网络设备、第二网络设备以及终端。第一网络设备可以是卫星(或称卫星基站),例如可为HEO卫星、GEO卫星、MEO卫星或LEO卫星或HAPS等,这里不作限制。第二网络设备可以是关口站(或称地面站、地球站、信关站)(gateway),可用于连接第二网络设备与核心网。在图3中,第一网络设备的通信模式为透传模式(transparent),即第一网络设备作为无线通信的基站,而第二网络设备可作为第一网络设备的中继,可透传第一网络设备与终端之间的信号。例如第二网络设备可通过基站接入核心网,进而接入数据网。
在本申请实施例中,第一网络设备的通信模式也可以是再生模式(regenerative)。请参见图4,示出了NTN网络的另一种架构示意图。在图4中,第一网络设备的通信模式为再生模式,即第一网络设备可以作为无线通信的基站,例如第一网络设备可以是将人造地球卫星和高空飞行器等作为无线通信的基站,例如作为演进型基站(eNB)和5G基站(gNB)等,第二网络设备可透传第一网络设备与核心网之间的信令。
应理解,图3和图4仅示出了一个第一网络设备以及一个第二网络设备,在实际使用中,可根据需要采取多个第一网络设备和/或一个第二网络设备的架构。其中,每个第二网 络设备可向一个或多个终端提供服务,每个第二网络设备可对应于一个或多个第一网络设备,每个第一网络设备可对应于一个或多个第二网络设备,本申请中不予具体限定。
下面结合附图对本申请实施例提供的基于NTN的通信方法进行详细介绍。
请参见图5,为本申请实施例提供的基于NTN的通信方法的流程图。在下文的介绍过程中,以该方法应用于图3和图4所示的通信系统为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。为了便于介绍,在下文中,以该方法由基站和终端执行为例,也就是,以第一通信装置是基站(如图3和图4中的第一网络设备,或者也可称为卫星基站)、第二通信装置是终端为例。需要说明的是,本申请实施例只是以通过图3和图4的通信系统为例,并不限制于这种场景。
本申请实施例旨在为终端预配置多个相关信息的配置,例如多个寻呼配置、多个小区测量配置、多个接入配置,以及多个用于监听系统消息的配置等。且网络设备为这多个配置分别配置对应的生效条件,当终端满足某一个配置的生效条件,那么终端可使用该配置。由于终端使用配置信息是以生效条件为前提的,所以即使网络设备提前配置多个配置,终端也可明确使用某个配置的时机。这样就不需要终端从接收的系统消息中获取对应的配置,从而避免错过接收网络设备发送的配置信息。为了便于描述,下面以本申请实施例为终端预配置多个寻呼配置为例,介绍本申请实施例提供的NTN的通信方法。
具体的,本申请实施例提供的NTN的通信方法的流程描述如下。
S501、第一网络设备向终端发送第一配置信息,终端接收该第一配置信息,该第一配置信息包括为终端配置的N个寻呼配置,其中,每个寻呼配置可用于指示寻呼消息的时频资源位置,N为大于或等于1的整数。
S502、终端满足第一生效条件,在与所述第一生效条件对应的第一寻呼配置指示的时频资源位置上监听寻呼消息。
第一网络设备可为终端配置寻呼配置,也就是跟寻呼相关的一些配置信息。在本申请实施例中,寻呼配置可包括寻呼消息在时域维度上的参数(可简称时域参数)和频域维度上的参数(可简称频域参数),以及极化维度上的参数(可简称为极化参数)。时域参数可用于指示寻呼消息的时域资源位置,也就是终端接收寻呼消息的时域资源位置。示例性的,时域参数可包括寻呼的周期、每个寻呼周期内的PF数量、每个寻呼帧中所包含的PO数量。频域参数可用于指示寻呼消息的频域资源位置,也就是终端接收寻呼消息的频域资源位置。示例性的,频域参数可包括寻呼消息所在频带资源的频点位置,以及寻呼消息在频带资源内的相对位置,例如PDCCH所指示的PDSCH等。极化参数可用于指示波束的极化方向,终端可根据该极化方向接收寻呼消息。应理解,寻呼配置可用于指示寻呼消息的时频资源位置和/或波束的极化方向,终端可根据寻呼配置确定在哪些时频资源位置,以及在哪个极化方向上接收寻呼消息。
在本申请实施例中,第一网络设备可为终端预配置多个寻呼配置,例如N个寻呼配置,并为每个寻呼配置设置相应的生效条件。当终端满足某个生效条件,就根据该生效条件对应的寻呼配置来监听寻呼消息。这样就不需要从系统消息中获取监听寻呼消息的时频资源位置,可避免错过寻呼消息的接收。应理解,寻呼配置的生效条件可用于指示终端满足该生效条件后,应用该生效条件对应的寻呼配置。其中,应用寻呼配置也可以认为该寻呼配置生效,或者使能该寻呼配置。
示例性的,第一网络设备可根据波束与终端的相对位置关系,确定需要为终端配置的 多个寻呼位置。例如第一网络设备是卫星基站,那么第一网络设备的运动轨迹是规律的,也就是第一网络设备可明确知道在一段时间内第一网络设备所处的位置。如果终端是静止的,那么第一网络设备和终端的相对位置较为准确,所以第一网络设备可较为准确地确定在一段时间内在哪些时频资源上向终端发送寻呼消息。终端在对应的时间段内,以及在对应的时频资源上监听寻呼消息即可。应理解,这里的一段时间可作为寻呼消息的生效时间,即生效条件。而如果终端是运动的,那么第一网络设备和终端的相对位置准确性较低,针对这种情况,为了避免终端错过寻呼消息,第一网络设备可以根据第一网络设备和终端的相对位置适应性调整为每个寻呼配置设置的生效时间,例如扩大生效时间的范围。这样终端可提前监听寻呼消息,或者监听更长时间,从而避免错过寻呼消息。
应理解,终端应用某个寻呼配置的条件可用于指示终端满足该条件后,使用该条件对应的寻呼配置,也就是该寻呼配置开始生效。为了便于描述,下文将终端应用接收的寻呼配置之前需要满足的条件称为生效条件。在本申请实施例中,生效条件可包括如下条件的一种或多种,下面分别介绍这几种生效条件。
生效条件一、时间,也就是每个寻呼配置对应的生效时间(也可认为是时间区间)。当终端监听寻呼消息的时间与某个寻呼配置的生效时间对应,该终端使用该生效时间对应的寻呼配置。即该终端在该生效时间对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,第一寻呼配置对应第一生效时间,当终端监听寻呼消息的时间位于第一生效时间内,终端在第一寻呼配置指示的时频资源位置上监听寻呼消息。
作为一种示例,请参见表1,示出了N个寻呼配置和M个生效条件的一种对应关系,表1以生效条件是生效时间,M=N为例,即一个寻呼配置对应一个生效条件为例。
表1
Figure PCTCN2021112305-appb-000001
由于第一网络设备的运动轨迹是规律的,那么第一网络设备可明确知道在一段时间内第一网络设备所处的位置,即第一网络设备可较为准确地确定在一段时间内在哪些时频资源上向终端发送寻呼消息。因此,可以将时间作为寻呼配置的生效条件之一。第一网络设备可按照表1的配置发送寻呼消息,即第一网络设备在各个生效时间内发送寻呼消息。当覆盖终端的波束从源波束切换到目标波束,例如终端确定监听寻呼消息的频点发生变化,那么终端可确定第一网络设备发送寻呼消息时频资源位置也发生了变化。当终端唤醒时,可根据监听寻呼消息的时间确定使用表1中的哪个配置。即终端监听寻呼消息的时间位于某个生效时间,那么该终端在该生效时间对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,如果终端要监听寻呼消息的时间T位于区间T 2~T 3,那么终端在寻呼配置3所指示的时频资源位置上监听寻呼消息。由于终端可提前获取各个时间段监听寻呼消息的时频资源位置,而不需要从系统消息中获取监听寻呼消息的时频资源位置,所以可避免错过接收寻呼消息。
生效条件二、位置标签,该位置标签可用于指示波束的位置。应理解,当终端与第一网络设备的距离较近,那么该终端处于该第一网络设备的覆盖范围的可能性较大。在本申请实施例中,第一网络设备的波束随时间的变化而发生切换,即覆盖终端的波束发生变化,那么可根据终端距离第一网络设备的某个波束之间的距离来确定终端处于该波束的覆盖 范围的可能性。而第一网络设备基于第一网络设备的波束资源发送寻呼消息,所以可将第一网络设备的波束位置作为寻呼配置的生效条件之一。
作为一种示例,请参见表2,示出了N个寻呼配置和M个生效条件的一种对应关系,表2以M=N,且生效条件为位置标签为例,即一个寻呼配置对应一个生效条件为例。
表2
Figure PCTCN2021112305-appb-000002
这里的位置标签用于指示第一网络设备的位置,或者也可认为位置标签用于指示波束的位置。第一网络设备可按照表2的配置发送寻呼消息,即如果某个位置标签指示的位置位于特定的范围内,第一网络设备在该位置标签对应的寻呼配置指示的时频资源位置上发送寻呼消息。终端应用某个寻呼配置可以是终端在某一时间段内距离某个位置标签所指示的位置位于特定的范围内,那么终端在该位置标签对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如终端在某一段时间内距离某个位置标签指示的位置小于或等于预设距离门限,那么终端在该位置标签对应的寻呼配置指示的时频资源位置上监听寻呼消息。示例性的,终端可根据N个寻呼配置的N个位置标签确定这N个寻呼配置分别对应的波束位置,进一步地,终端可确定距离哪个波束位置或哪些波束位置最近,终端最近位置标签对应的寻呼配置指示的时频资源位置上监听寻呼消息。
本申请实施例对位置标签的具体实现形式不作限制,只要终端根据位置标签可计算出波束的位置即可。示例性的,位置标签可以是某个波束的中心点坐标。这种情况下,第一网络设备可向终端发送多个波束分别对应的位置标签,以及各个波束的运动方向和速度。终端可根据某个波束的位置标签,以及运动方向和速度确定该波束的位置。另一示例性的,位置标签可用于指示每个波束相对于第一网络设备的位置。这种情况下,如果第一网络设备在某一段时间内的位置和运动轨迹是已知的,那么终端根据该位置标签也可以确定某段时间内某个波束的位置。
需要说明的是,如果第一网络设备的多个波束大小相近,那么距离终端较近的波束一般是正在覆盖或潜在覆盖终端的波束。如果第一网络设备的多个波束大小相差较大,那么距离终端较近的波束未必是正在覆盖或潜在覆盖终端的波束。所以如果第一网络设备的多个波束大小相差较大,那么第一网络设备还可以告诉终端更多的信息,以便终端确定最有可能服务于该终端的波束,即潜在波束或者正在覆盖该终端的波束。示例性的,第一网络设备还可以告知终端,该第一网络设备的天线图案或者波束尺寸,以辅助终端确定最有可能服务于该终端的波束。
考虑到卫星通信中,终端和第一网络设备之间的相对位置由网络设备主导。即如果终端固定不动,由于第一网络设备的运动是规律的,那么终端对第一网络设备的波束切换轨迹的预测准确度较高。如果终端运动,终端按照第一网络设备的运动规律预测第一网络设备的波束切换轨迹的准确低较低。也就是终端按照第一网络设备的运动规律预测第一网络设备的波束切换轨迹与实际的第一网络设备的波束切换轨迹存在偏移。那么第一网络设备按照终端不动的情况为终端配置的N个寻呼配置在某些时间段可能是不准确的。所以在本申请实施例中,如果终端的位置在预设时长内的变化量超过预设门限,那么终端可通知第一网络设备,该终端所处的位置,以便第一网络设备根据终端所处的位置重新为终端配置 寻呼配置。示例性的,终端可向第一网络设备发送用于指示终端所处的位置的位置信息,第一网络设备可根据该位置信息确定需要为终端配置的至少一个寻呼配置,并向终端发送这至少一个呼配置。例如第一网络设备向终端发送配置信息,该配置信息可用于指示至少一个寻呼配置。终端在监听寻呼消息之前,可接收该配置信息,之后根据该配置信息监听寻呼消息。
生效条件三、频率,也就是每个寻呼配置对应的生效频率。这里的频率可以认为是频点,也可以认为是频点组合。当终端监测到下行同步信号的频点与某个寻呼配置的生效频率对应,该终端使用该生效频率对应的寻呼配置。即该终端在该生效频率对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,第一寻呼配置对应第一生效频率,当终端监测到下行同步信号的频点位于第一频点组合,终端在第一寻呼配置指示的时频资源位置上监听寻呼消息。
作为一种示例,请参见表3,示出了N个寻呼配置和M个生效条件的一种对应关系,表1以M=N,生效条件是生效频率,且以频率是频点组合为例。
表3
Figure PCTCN2021112305-appb-000003
通常来说,第一网络设备的波束配置信息与终端的业务相关。在某个时间段内,即使第一网络设备使用不同频率,对同一覆盖区域来说,该覆盖区域的资源配置情况通常相似。那么可认为在不同时间段,不同颜色的波束体现在频率不同。因此,可将频率作为寻呼配置的生效条件之一。
第一网络设备可按照表3的配置发送寻呼消息,即第一网络设备在各个频点组合内发送寻呼消息。当覆盖终端的波束从源波束切换到目标波束,例如终端确定监听寻呼消息的频点发生变化,那么终端可确定第一网络设备发送寻呼消息时频资源位置也发生了变化。当终端唤醒时,可根据监测到的下行同步信号的频点来确定使用表3中的哪个配置。即终端监测到的下行同步信号的频点位于某个生效频率,那么该终端在该生效频率对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,如果终端监测到的下行同步信号的频点位于频点组合2,那么终端在寻呼配置2所指示的时频资源位置上监听寻呼消息。由于终端可提前获取各个频点组合监听寻呼消息的时频资源位置,而不需要从系统消息中获取监听寻呼消息的时频资源位置,所以可避免错过接收寻呼消息。
生效条件四、极化方向,也就是每个寻呼配置对应的生效极化方向。与生效频率类似,这里的极化方向可以认为是极化方向组合,该极化方向组合可包括一个极化方向,也可以包括多个极化方向。当终端监测到下行同步信号的极化方向与某个寻呼配置的生效极化方向对应,该终端使用该生效极化方向对应的寻呼配置。即该终端在该生效极化方向对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,第一寻呼配置对应第一生效极化方向,当终端监测到下行同步信号的极化方向位于第一极化方向组合,终端在第一寻呼配置指示的时频资源位置上监听寻呼消息。
作为一种示例,请参见表4,示出了N个寻呼配置和M个生效条件的一种对应关系,表1以M=N,生效条件是生效极化方向为例。
表4
Figure PCTCN2021112305-appb-000004
与生效条件三类似,即使第一网络设备使用不同频率,对同一覆盖区域来说,该覆盖区域的资源配置情况通常相似。那么可认为在不同时间段,不同颜色的波束体现在极化方向不同。因此,可将极化方向作为寻呼配置的生效条件之一。
第一网络设备可按照表4的配置发送寻呼消息,即第一网络设备在各个极化方向组合内发送寻呼消息。当覆盖终端的波束从源波束切换到目标波束,例如终端确定监听寻呼消息的频点发生变化,那么终端可确定第一网络设备发送寻呼消息时频资源位置也发生了变化。当终端唤醒时,可根据监测到的下行同步信号的极化方向来确定使用表4中的哪个配置。即终端监测到的下行同步信号的频点位于某个生效频率,那么该终端在该生效频率对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,如果终端监测到的下行同步信号的极化方向位于极化方向组合2,那么终端在寻呼配置2所指示的时频资源位置上监听寻呼消息。由于终端可提前获取各个频点组合监听寻呼消息的时频资源位置,而不需要从系统消息中获取监听寻呼消息的时频资源位置,所以可避免错过接收寻呼消息。
如上介绍了与寻呼配置对应的可能的四种生效条件,本申请实施例对于寻呼配置对应的生效条件的种类以及个数不作限制。即寻呼配置对应的生效条件可以是如上的时间、位置标签、频率以及极化方向中的一种或多种。
终端可事先存储上述表1或表2或表3或表4示意的配置(可统称为配置表),终端可通过查表的方式确定在某段时间内使用哪个寻呼配置,这样不需要从第一网络设备获取配置表,可节约信令的开销。考虑到覆盖终端的波束可能是来自不同网络设备的波束,而不同的网络设备配置的寻呼配置也可能不同,每个网络设备可对应一个配置表。这种情况下,终端可事先存储多个网络设备对应的配置表。
当然,终端存储多个网络设备对应的配置表,对终端的存储空间的要求较高。因此,在一些实施例中,终端可不需要存储配置表,终端从源网络设备(当前为终端服务的网络设备)切换到目标网络设备,可向目标网络设备请求配置表,以节约终端的存储空间。
应理解,对于采用DRX机制的终端来说,只有在终端处于唤醒状态才会监听配置,如果第一网络设备配置较多个寻呼配置,显然有些寻呼配置是无用的,反而会增加信令开销。为此,第一网络设备可根据终端的唤醒时间(寻呼周期)来确定为终端配置多少个寻呼配置,即确定N的取值。例如,寻呼周期较长,那么N的取值较小;相反,寻呼周期较短,N的取值较大。这样可避免第一网络设备为终端配置过多的寻呼配置,从而降低信令开销。同理,如果相邻两个生效条件,例如相邻两个生效时间之间的间隔较长,而实际上第一网络设备的波束切换时间较短,那么终端可能无法监听到某段时间内的寻呼消息。为此,第一网络设备可根据波束切换的时间间隔确定相邻两个生效条件之间的间隔。以生效条件是生效时间为例,例如卫星波束切换的时间间隔较短,那么相邻两个生效时间区间之间的间隔也较短;卫星波束切换的时间间隔较长,那么相邻两个生效时间区间之间的间隔也较长。进一步地,第一网络设备还可根据运动速度来确定每个生效条件对应的时长。如果第一网络设备的运动速率较快,那么第一网络设备的波束切换频率较高,那么生效条件 对应的时长应该较短。以生效条件是生效时间为例,生效条件对应的时长,即T N-1~T N对应的时长。例如,第一网络设备是低轨卫星,每个生效时间区间对应的时长可为几秒,即T N-1~T N对应时长的粒度是秒级别。需要说明的是,本申请实施例中,相邻的两个寻呼配置对应的生效条件的边界值可以相同,也可以不相同。以表1为例,T N-1~T N可以认为是[T N-1,T N],也可以认为是[T N-1,T N)或者(T N-1,T N]。
进一步的,根据第一网络设备的波束形状的不同特征,例如第一网络设备的波束规则或者不规则,第一网络设备确定每个生效条件对应的时长也有所不同。
请参见图6,示出了第一网络设备的波束形状,图6以包括4色波束为例,且以第一网络设备向左运动,即终端相对波束向右运动为例(即图6中箭头方向示意终端相对第一网络设备的运动方向)。应理解,如果第一网络设备,即卫星基站的波束形状是规则的,那么对于任意终端来说,可认为同一时间段内存在一个最优的波束覆盖该终端,在该时间段内,第一网络设备在该最优的波束发送寻呼消息,可减少发送寻呼消息的资源开销。由于第一网络设备在最优的波束中发送寻呼消息,即对于某一个时间段可存在一套跟寻呼相关的配置信息,即一个寻呼配置。终端根据该寻呼配置,确定在一个波束中监听寻呼消息,不需要监听多个波束,可降低终端的功耗。
这种情况下,各个寻呼配置的生效条件可以互斥,也就是任意相邻的两个生效条件不重叠(没有交集),即每个时间段内只有一个寻呼配置生效。例如,假设生效条件是生效时间,任意相邻的两个生效时间不重叠,如图7所示。这样终端不需要在一个生效时间区间内使用多个寻呼配置,即在不同的时频资源位置上监听寻呼配置,以尽量降低终端的功耗。又例如,假设生效条件是位置标签,那么一个寻呼配置可对应一个位置标签,不同的寻呼配置对应的位置标签不同。应理解,图7中的虚线示意生效时间的边界。
然而第一网络设备的波束可能是不规则的,如图8所示。图8以包括3色波束为例,且以第一网络设备向左运动,即终端相对波束向右运动为例(即图8中箭头方向示意终端相对第一网络设备的运动方向)。这种情况下,同一时间段可能有多个波束覆盖终端,例如终端可能同时被第一种波束(颜色1波束)和第二种波束(颜色2波束)覆盖。这种情况下,第一网络设备可能在所有潜在覆盖终端的波束中发送寻呼消息,为了避免终端错过接收寻呼消息,终端可在所有潜在覆盖终端的波束中监听寻呼消息,那么可令相邻两个生效条件重叠,即相邻两个生效条件存在交集。例如生效条件是生效时间,那么相邻的两个生效时间存在重叠。又例如生效条件是位置标签,一个寻呼配置可对应多个位置标签,相邻的两个寻呼配置对应的位置标签可以存在重叠。
为了便于理解,请参见图9,为一种寻呼配置的示意图。图9以生效条件是生效时间为例,虚线示意生效时间的边界。从图9可以看出,图9相比图7实质上是在图7所示生效时间的基础上,对生效时间进一步扩展,这样不同波束下的寻呼配置在一段时间内可以重叠。如果终端监听寻呼消息的时间T同时位于例如位于生效时间2,那么终端可确定在生效时间2对应的寻呼配置指示的时频资源位置上监听寻呼消息。应理解,虽然生效时间2对应的寻呼配置包括寻呼配置1和寻呼配置2,但是终端可进一步选择究竟在寻呼配置1指示的时频资源位置上监听寻呼消息,还是在寻呼配置2指示的时频资源位置上监听寻呼消息。示例性的,终端可选择信号强度较强的波束对应的寻呼配置。例如第一种波束(颜色1波束)的信号强度大于第二种波束(颜色2波束),那么终端可在第一种波束对应的寻呼配置指示的时频资源位置上监听寻呼消息。又例如,第一种波束(颜色1波束)的信 号强度等于第二种波束(颜色2波束),那么终端可在第一种波束对应的寻呼配置指示的时频资源位置上监听寻呼消息,以及在第二种波束对应的寻呼配置指示的时频资源位置上监听寻呼消息。
上述以一个寻呼配置对应一个寻呼条件为例,即N=M为例。考虑到第一网络设备的波束不规则,那么同一时间段,可能存在覆盖终端的多个波束。这种情况下,第一网络设备在所有潜在覆盖终端的波束中发送寻呼消息,即在某个时间段内,第一网络设备可配置多个波束的寻呼消息。类似的,如果第一网络设备不能够较为准确地确定终端的位置,那么第一网络设备也会在所有潜在覆盖终端的波束中发送寻呼消息,即在某个时间段内,第一网络设备可配置多个波束的寻呼消息。换句话说,可认为同一个生效条件可对应至少两个寻呼配置,即M小于N。
作为一种示例,请参见表5,为N个寻呼配置与M个生效条件的一种对应关系表。表5以生效条件是生效时间为例,且以一个生效时间可对应2个寻呼配置为例。相应的,寻呼配置的示意图,如图10所示。应理解,图10中的虚线示意生效时间的边界。
表5
Figure PCTCN2021112305-appb-000005
第一网络设备可按照表5的配置发送寻呼消息,即第一网络设备在各个生效时间内发送一个或多个寻呼消息。当终端唤醒时,可根据监听寻呼消息的时间确定使用表5中的哪个配置。即终端监听寻呼消息的时间位于某个生效时间,那么该终端在该生效时间对应的寻呼配置指示的时频资源位置上监听寻呼消息。例如,如果终端要监听寻呼消息的时间T位于区间T 1~T 2,那么终端在寻呼配置2和/或寻呼配置3所指示的时频资源位置上监听寻呼消息。即终端在同一时间段内,可监控两个波束的寻呼配置。进一步地,终端可选择究竟在寻呼配置2指示的时频资源位置上监听寻呼消息,还是在寻呼配置3指示的时频资源位置上监听寻呼消息。例如终端可选择信号强度较强的波束对应的寻呼配置。示例性的,信号强度较强的波束对应的寻呼配置是寻呼配置2,那么终端在寻呼配置2指示的时频资源位置上监听寻呼消息。
第一网络设备确定了为终端配置的N个寻呼配置和M个生效条件,例如上述表1-表5任意一种或多种的配置之后,可将这N个寻呼配置以及M个生效条件告知终端。如果上述表1-表5的内容较多,显然信令开销较大。为了降低信令开销,本申请实施例中,可为每个寻呼配置预配置对应的生效条件,例如可预定义每个寻呼配置预配置对应的生效条件,或者第一网络设备和终端可约定每个寻呼配置预配置对应的生效条件。这种情况下,第一网络设备只需要向终端发送N个寻呼配置即可,从而可节约信令开销。
例如第一网络设备确定为N个寻呼配置之后,可生成第一配置信息,并将第一配置信息发送给终端。其中,第一配置信息可以承载在现有信令的一个或多个字段上,有利于兼容现有的信令。例如,该第一配置信息可承载于在无线资源控制(radio resources control,RRC)信令、下行控制信息(downlink control information,DCI)信令、媒体访问控制元素(media access control element,MAC CE)信令等中的一种或多种。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令已定义的字 段,也可以是新定义的RRC字段、MAC CE字段或DCI字段。对此,本申请实施例不作限制。当然,该第一配置信息也可以承载在新定义的信令。第一配置信息可以通过一条信令发送,也可以通过多条信令发送,本申请实施例对此不作限制。
然而第一网络设备可能会更新之前为终端配置的N个寻呼配置,例如第一网络设备可根据终端上报的位置信息重新为终端配置N个寻呼配置,显然每个寻呼配置预配置的生效条件已经不适用。为此,本申请实施例可告知终端与N个寻呼配置对应的M个生效条件。当然,即使第一网络设备不更新之前为终端配置的N个寻呼配置,也可以告知终端N个寻呼配置以及对应的M个生效条件,即第一网络设备可向终端发送如表1-表5的任意一种或多种的配置。
S503、第一网络设备向终端发送第二配置信息,终端接收该第二配置信息,该第二配置信息包括M个生效条件。
与第一配置信息类似,第二配置信息可以承载在现有信令的一个或多个字段上,有利于兼容现有的信令。例如,该第二配置信息可承载于在RRC信令、DCI信令、MAC CE信令等中的一种或多种。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段。对此,本申请实施例不作限制。当然,该第二配置信息也可以承载在新定义的信令。第二配置信息可以通过一条信令发送,也可以通过多条信令发送,本申请实施例对此不作限制。
需要说明的是,本申请实施例对基站发送N个寻呼配置和M个生效条件的先后顺序不作限制。例如第一配置信息和第二配置信息可承载于一条RRC信令,即N个寻呼配置和M个生效条件可以同时发送给终端。又例如,第一配置信息和第二配置信息可承载于多条RRC信令。示例性的,N个寻呼配置可承载于一条信令,M个生效条件可承载于另一条信令。或者N个寻呼配置承载于多条RRC信令,M个生效条件可承载于一条或多条RRC信令。或者N个寻呼配置承载于一条RRC信令,M个生效条件承载于一条或多条RRC信令。
应理解,基站为终端配置了寻呼配置,如果基站部署在第一网络设备上,基站向终端发送第一配置信息,可认为第一网络设备直接向终端发送第一配置信息;如果基站是地面基站,可认为基站通过第一网络设备、第二网络设备等网络设备向终端转发第一配置信息,本申请实施例对此不作限制。同理,第一网络设备可直接向终端发送第二配置信息,也可以是由其他网络设备向终端转发第二配置信息,本申请实施例对此不作限制。
另外,由于S503不是必不可少的,即S503是可选的步骤,所以在图5中以虚线进行示意。且,应理解,如果S503被执行,那么S503在S502之前被执行。
对于第一网络设备的某个波束覆盖区域内的不同终端来说,N个寻呼配置是相同的。然而M个生效条件对于不同终端可能是不同的。为了节省信令的开销,第一网络设备可按照小区粒度配置N个寻呼配置,即N个寻呼配置可以与波束绑定,按照终端粒度配置M个生效条件。这样第一网络设备针对每个小区,只需要配置一套N个寻呼配置即可,该套N个寻呼配置适用于该小区内的所有终端。相较于为该小区内的终端分别配置N个寻呼配置来说,显然降低信令的开销。
作为一种示例,第一配置信息可包括N个寻呼配置的标识,用于指示该N个寻呼配置所绑定的波束。终端接入网络后,可根据该标识确定对应的N个寻呼配置,结合第一网络 设备为终端配置的M个生效条件,在满足某个生效条件的情况下,使用该生效条件对应的寻呼配置。
应理解,第一网络设备除了为终端配置寻呼消息,还为终端配置系统消息,具体可根据第一网络设备的波束的逻辑实体来配置。例如将波束看作是小区,那么可将同一颜色的波束属于同一小区,以图6为例,4种颜色波束相当于4个小区。为了简化部署,可配置这4个小区的部分配置信息,例如cell ID、initial BWP相关配置、PCCH-Config配置和承载P-RNTI加扰PDCCH的公共搜索空间(common search space,CSS)、系统时间等相同。应理解,这4个小区的其余配置信息存在差异。
由于终端在卫星波束中的运动轨迹有规律,所以第一网络设备可以将4个小区的相同的部分配置,例如频点、cell ID、initial BWP、PCCH-Config和承载P-RNTI加扰PDCCH的CSS配置都事先告知终端,并告知每个小区与另一小区的差异部分,这样可节约信令的开销。示例性的,第一网络设备可发送这4个小区中例如第一小区的全部配置信息,对于这4个小区中另外3个小区,第一网络设备可分别配置这3个小区分别与第一小区的不同的配置信息。终端可根据第一小区的全部配置信息,以及这3个小区分别与第一小区的不同的配置信息确定这3个小区的全部配置信息。相较于为这4个小区分别配置全部的配置信息来说,显然降低信令的开销。
另外,第一网络设备可告知终端各个配置的生效条件,例如生效时间。当终端确定波束发生切换,例如波束从颜色1的波束切换到颜色2的波束,终端可根据生效时间确定使用颜色2的波束对应的配置。例如终端根据颜色2的波束的PCCH-Config信息确定在哪些时频资源上监听寻呼消息。当需要监听寻呼消息时,终端根据颜色2的波束对应的频点、initial BWP配置、CSS配置对颜色2的波束的信号进行同步、解调,确定CSS的时频资源,进而在CSS中查找被P-RNTI加扰的PDCCH。如果发现被P-RNTI加扰的PDCCH,读取其中的DCI。之后,在该DCI指示的PDSCH上获取寻呼消息的内容。相较于,波束从颜色1的波束切换到颜色2的波束,终端需要搜索多个潜在频点(进行小区重选),读取并解析系统消息,以获取initial BWP配置、CSS配置、PCCH-Config配置等,以获得寻呼消息的时频资源位置,进而在确定的时频资源位置上监听寻呼消息监听来说,可避免错过寻呼消息的接收。
需要说明的是,上述仅以第一网络设备配置寻呼配置为例。本申请实施例提供的NTN的通信方法也可以适用于小区测量配置、接入配置以及监听系统消息的配置。应理解,在不冲突的前提下,本申请实施例中的寻呼配置可替换成小区测量配置、接入配置或者监听系统消息的配置。且在不冲突的前提下,本申请实施例中的寻呼配置的生效条件可沿用到小区测量配置、接入配置或者监听系统消息的配置的生效条件。
例如,对于小区测量来说,终端需要进行小区测量的卫星波束随时间的变化是规律的。因此第一网络设备可以为终端预配置不同时间可能出现的小区频点信息和其他小区测量辅助信息,以减少终端需要测量的频点范围,提高获取测量导频的速度。
作为一种示例,前述的第一配置信息可用于指示为终端配置的N个小区测量配置,每个小区测量配置包括时域上的配置参数和频域上的配置参数。例如,这N个小区测量配置中的某个小区测量配置可包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合。
在一些实施例中,小区测量配置还可以包括小区频点集合对应的最大频偏、卫星对波 束的多普勒预补偿值。终端基于小区频点集合对应的最大频偏、卫星对波束的多普勒预补偿值可缩小要检测的频点范围,较快地获取接收到导频信号的频偏值,避免盲检测开销。
另外,小区测量配置还包括导频信号在时域上的位置,例如可包括同步信号块在目标小区的时域资源图案,当前小区和目标小区的系统时间差。终端根据导频信号在时域上的位置可确定导频信号最有可能的时间窗,从而在该时间窗进行扫描,降低扫描开销。
当然,小区测量配置还包括其余小区测量必需的配置信息,例如极化模式、优先级,同步序列的配置,例如某个卫星波束中同步信号的选择信息,导频序列、扰码的选取信息和位置信息等,这里不再一一列举。
第一网络设备可配置与N个小区测量配置对应的M个生效条件,例如前述的四种生效条件的一种或多种。终端满足某个生效条件,在该生效条件对应的小区测量配置指示的小区频点集合对应的时频资源位置上对小区频点集合进行测量。例如,终端满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上对小区频点集合进行测量,其中,第一生效条件与第一小区测量配置对应。
又例如,对于接入配置来说,第一配置信息可用于指示为终端配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置。若终端满足第一生效条件,在RO对应的时频资源位置上,采用N个接入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,第一生效条件与第一接入配置对应。
再例如,对于监听系统消息的配置来说,第一配置信息可用于指示为终端配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置。若终端满足第一生效条件,在N个监听配置中的第一监听配置指示的时频资源上监听系统消息,其中,第一生效条件与第一监听配置对应。
本申请实施例提供的NTN的通信方法,该方法中,卫星基站可提前为终端配置一段时间内的寻呼配置,当终端满足特定条件,终端使用这些寻呼配置。这样就不需要从接收的系统消息中获取寻呼配置,从而避免错过接收卫星基站发送的寻呼消息。
上述本申请提供的实施例中,分别从终端和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图11为本申请实施例提供的通信装置1100的示意性框图。该通信装置1100可以对应实现上述各个方法实施例中由终端或第一网络设备实现的功能或者步骤。该通信装置可以包括处理模块1110和收发模块1120。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1110和收发模块1120可以与该存储单元耦合,例如,处理单元1110可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1100能够对应实现上述方法实施例中第一网络设备的行为和功能。例如通信装置1100可以为第一网络设备,也可以为应用于第一网络设备中的部件(例如芯片或者电路)。收发模块1120可以用于执行图5所示的实施例中由第一 网络设备所执行的全部接收或发送操作。例如图5所示的实施例中的S501-S503,和/或用于支持本文所描述的技术的其它过程。其中,处理模块1110用于执行如图5所示的实施例中由第一网络设备所执行的除了收发操作之外的全部操作,例如生成N个寻呼配置和/或M个生效条件,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,处理模块1110用于生成第一配置信息,该第一配置信息用于指示为终端配置的N个寻呼配置,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,N为大于或等于1的整数;收发模块1120用于发送第一配置信息,以及若处理模块1110确定满足第一生效条件,在N个寻呼配置中的第一寻呼配置指示的时频资源位置上发送寻呼消息,其中,第一生效条件与第一寻呼配置对应。
作为一种示例,处理模块1110用于生成第一配置信息,该第一配置信息用于指示为终端配置的N个小区测量配置,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,N为大于或等于1的整数;收发模块1120用于发送第一配置信息,以及若处理模块1110确定满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上发送小区ID集合的测量信号,其中,第一生效条件与第一小区测量配置对应。
作为一种示例,处理模块1110用于生成第一配置信息,该第一配置信息用于指示为终端配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置,N为大于或等于1的整数;收发模块1120用于发送第一配置信息,以及若处理模块1110确定满足第一生效条件,发送N个接入配置中的第一接入配置指示的PRACH配置,其中,第一生效条件与第一接入配置对应。
作为一种示例,处理模块1110用于生成第一配置信息,该第一配置信息用于指示为所述终端配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,N为大于或等于1的整数;收发模块1120用于发送第一配置信息,以及若处理模块1110确定满足第一生效条件,在N个监听配置中的第一监听配置指示的时频资源上发送系统消息,其中,第一生效条件与第一监听配置对应。
作为一种可选的实现方式,收发模块1120还用于发送第二配置信息,该第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。
作为一种可选的实现方式,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
作为一种可选的实现方式,N个寻呼配置与M个生效条件一一对应;或者,N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
作为一种可选的实现方式,生效条件包括时间,其中,相邻的两个时间不重叠,或者, 相邻的两个时间存在交集。
作为一种可选的实现方式,生效条件是位置标签,收发模块1120还用于:接收位置信息,以及发送第三配置信息,其中,该位置信息用于指示终端所处的位置,第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现,收发模块1120可以由收发器或收发器相关电路组件或者通信接口实现。
在一些可能的实施方式中,通信装置1100能够对应实现上述方法实施例中终端的行为和功能。例如通信装置1100可以为终端,也可以为应用于终端中的部件(例如芯片或者电路)。收发模块1120可以用于执行图5所示的实施例中由终端所执行的全部接收或发送操作。例如图5所示的实施例中的S501-503,和/或用于支持本文所描述的技术的其它过程。其中,处理模块1110用于执行如图5所示的实施例中由终端所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,收发模块1120用于接收第一配置信息,该第一配置信息用于指示为通信装置1100配置的N个寻呼配置,N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,N为大于或等于1的整数;若处理模块1110确定满足第一生效条件,收发模块1120还用于在N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,第一生效条件与第一寻呼配置对应。
作为一种示例,收发模块1120用于接收第一配置信息,该第一配置信息用于指示为通信装置1100配置的N个小区测量配置,N个小区测量配置中的一个小区测量配置包括小区频点集合、小区频点集合对应的时频资源位置,以及与小区频点集合对应的小区ID集合,N为大于或等于1的整数;若处理模块1110确定满足第一生效条件,在N个小区测量配置中的第一小区测量配置指示的小区频点集合对应的时频资源位置上对所述小区频点集合进行测量,其中,第一生效条件与第一小区测量配置对应。
作为一种示例,收发模块1120用于接收第一配置信息,该第一配置信息用于指示为通信装置1100配置的N个接入配置,N个接入配置中的每个接入配置包括PRACH配置和RO对应的时频资源位置,N为大于或等于1的整数;若处理模块1110确定满足第一生效条件,在RO对应的时频资源位置上,采用N个接入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,第一生效条件与第一接入配置对应。
作为一种示例,收发模块1120用于接收第一配置信息,该第一配置信息用于指示为通信装置1100配置的N个监听配置,N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,N为大于或等于1的整数;若处理模块1110确定满足第一生效条件,收发模块1120还用于在N个监听配置中的第一监听配置指示的时频资源上监听系统消息,其中,第一生效条件与第一监听配置对应。
作为一种可选的实现方式,收发模块1120还用于:接收第二配置信息,该第二配置信息包括M个生效条件,M为大于或等于1的整数,M小于或等于N。
作为一种可选的实现方式,第一配置信息用于指示N个寻呼配置,第一生效条件包括与第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个小区测量配置,第一生效条件包括与第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个接入配置,第一生效条件包括与第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
第一配置信息用于指示N个监听配置,第一生效条件包括与第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
作为一种可选的实现方式,N个寻呼配置与M个生效条件一一对应;或者,N大于M,M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
作为一种可选的实现方式,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
作为一种可选的实现方式,生效条件是位置标签,收发模块1120还用于:在预设时长内的位置的变化量超过预设门限,发送位置信息,并在监听寻呼消息之前,接收第三配置信息,其中,位置信息用于指示通信装置1100所处的位置,第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现,收发模块1120可以由收发器或收发器相关电路组件或者通信接口实现。
如图12所示为本申请实施例提供的通信装置1200,其中,通信装置1200可以是终端,能够实现本申请实施例提供的方法中终端的功能,或者,通信装置1200可以是网络设备,能够实现本申请实施例提供的方法中第一网络设备的功能;通信装置1200也可以是能够支持终端实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1200可以为芯片或芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块1120可以为收发器,收发器集成在通信装置1200中构成通信接口1210。
通信装置1200包括至少一个处理器1220,用于实现或用于支持通信装置1200实现本申请实施例提供的方法中网络设备或终端的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令和/或数据,以使得通信装置1200实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器1220中。
通信装置1200还可以包括通信接口1210,用于通过传输介质和其它设备进行通信,从而用于通信装置1200中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器1220可以利用通信接口1210收发数据。通信接口1210具体可以是收发器。
本申请实施例中不限定上述通信接口1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及通信接口1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1220可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1230可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片系统时,收发模块可以是芯片或芯片系统的输入输出接口、处理模块可以是芯片或芯片系统的处理器。
图13示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图13中,以通信装置是基站作为例子。该基站可应用于如图3或图4所示的系统中,可以为图3或图4中的第一网络设备,执行上述方法实施例中第一网络设备的功能。
该通信装置1300可包括收发器1310、存储器1321以及处理器1322。该收发器1310可以用于通信装置进行通信,如用于发送或接收上述指示信息等。该存储器1321与所述处理器1322耦合,可用于保存通信装置1300实现各功能所必要的程序和数据。该处理器1322被配置为支持通信装置1300执行上述方法中相应的功能,所述功能可通过调用存储器1321存储的程序实现。
具体的,该收发器1310可以是无线收发器,可用于支持通信装置1300通过无线空口进行接收和发送信令和/或数据。收发器1310也可被称为收发单元或通信单元,收发器1310可包括一个或多个射频单元1312以及一个或多个天线1311,其中,射频单元如远端射频单元(remote radio unit,RRU)或者有源天线单元(active antenna unit,AAU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线具体可用于进行射频信号的辐射和接收。可选的,收发器1310可以仅包括以上射频单元,则此时通信装置1300可包括收发器1310、存储器1321、处理器1322以及天线。
存储器1321以及处理器1322可集成于一体也可相互独立。如图13所示,可将存储器1321以及处理器1322集成于通信装置1300的控制单元1320。示例性的,控制单元1320可包括LTE基站的基带单元(baseband unit,BBU),基带单元也可称为数字单元(digital unit,DU),或者,该控制单元1320可包括5G和未来无线接入技术下基站中的分布式单元(distribute unit,DU)和/或集中单元(centralized unit,CU)。上述控制单元1320可由一个或多个天线面板构成,其中,多个天线面板可以共同支持单一接入制式的无线接入网(如LTE网络),多个天线面板也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述存储器1321和处理器1322可以服务于一个或多个天线面板。也 就是说,可以每个天线面板上单独设置存储器1321和处理器1322。也可以是多个天线面板共用相同的存储器1321和处理器1322。此外每个天线面板上可以设置有必要的电路,如,该电路可用于实现存储器1321以及处理器1322的耦合。以上收发器1310、处理器1322以及存储器1321之间可通过总线(bus)结构和/或其他连接介质实现连接。
基于图13所示结构,当通信装置1300需要发送数据时,处理器1322可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1300时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1322,处理器1322将基带信号转换为数据并对该数据进行处理。
基于如图13所示结构,收发器1310可用于执行以上由收发模块1120所执行的步骤。和/或,处理器1322可用于调用存储器1321中的指令以执行以上由处理模块1110所执行的步骤。
图14示出了一种简化的终端的结构示意图。便于理解和图示方便,图14中,该终端以手机作为例子。如图14所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图14所示,该装置包括收发单元1410和处理单元1420。收发单元1410也可以称为收发器、收发机、收发装置等。处理单元1420也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元1410有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1410用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1420用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1410可以用于执行图5所示的实施例中的S501-S503,和/或用于支持本文所描述的技术的其它过程。处理单元1420用于执行图5所示的实施例中除收发之外的步骤,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其 中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图15所示的装置。作为一个例子,该装置可以完成类似于图11中处理模块1110的功能。在图15中,该装置包括处理器1510,发送数据处理器1520,接收数据处理器1530。上述实施例中的处理模块1110可以是图15中的该处理器1510,并完成相应的功能。上述实施例中的处理模块1110可以是图15中的发送数据处理器1520,和/或接收数据处理器1530。虽然图15中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图16示出本实施例的另一种形式。通信装置1600中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1603,接口1604。其中处理器1603完成上述处理模块1110的功能,接口1604完成上述收发模块1120的功能。作为另一种变形,该调制子系统包括存储器1606、处理器1603及存储在存储器1606上并可在处理器1603上运行的程序,该处理器1603执行该程序时实现上述方法实施例中终端的方法。需要注意的是,所述存储器1606可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于通信装置1600中,只要该存储器1606可以连接到所述处理器1603即可。
本申请实施例还提供一种通信系统,具体的,通信系统包括网络设备和终端,或者还可以包括更多个网络设备和多个终端。示例性的,通信系统包括用于实现上述图5实施例的相关功能的网络设备和终端。
所述网络设备分别用于实现上述图5所示实施例相关网络设备部分的功能。所述终端用于实现上述图5所示实施例相关终端的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图5所示实施例中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图5所示实施例中终端执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图5所示实施例中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图5所示实施例中终端执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中网络设备或终端的功能;或者用于实现前述方法中网络设备和终端的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种非地面网络NTN的通信方法,其特征在于,包括:
    终端接收第一配置信息,所述第一配置信息用于指示为所述终端配置的N个寻呼配置,所述N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,所述N为大于或等于1的整数;
    若所述终端满足第一生效条件,在所述N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,所述第一生效条件与所述第一寻呼配置对应。
  2. 一种非地面网络NTN的通信方法,其特征在于,包括:
    终端接收第一配置信息,所述第一配置信息用于指示为所述终端配置的N个小区测量配置,所述N个小区测量配置中的一个小区测量配置包括小区频点集合、所述小区频点集合对应的时频资源位置,以及与所述小区频点集合对应的小区ID集合,所述N为大于或等于1的整数;
    若所述终端满足第一生效条件,在所述N个小区测量配置中的第一小区测量配置指示的所述小区频点集合对应的时频资源位置上对所述小区频点集合进行测量,其中,所述第一生效条件与所述第一小区测量配置对应。
  3. 一种非地面网络NTN的通信方法,其特征在于,包括:
    终端接收第一配置信息,所述第一配置信息用于指示为所述终端配置的N个接入配置,所述N个接入配置中的每个接入配置包括物理随机接入信道PRACH配置和随机接入机会RO对应的时频资源位置,所述N为大于或等于1的整数;
    若所述终端满足第一生效条件,在所述RO对应的时频资源位置上,采用所述N个接入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,所述第一生效条件与所述第一接入配置对应。
  4. 一种非地面网络NTN的通信方法,其特征在于,包括:
    终端接收第一配置信息,所述第一配置信息用于指示为所述终端配置的N个监听配置,所述N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,所述N为大于或等于1的整数;
    若所述终端满足第一生效条件,在所述N个监听配置中的第一监听配置指示的时频资源上监听系统消息,其中,所述第一生效条件与所述第一监听配置对应。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收第二配置信息,所述第二配置信息包括M个生效条件,所述M为大于或等于1的整数,所述M小于或等于所述N。
  6. 如权利要求5所述的方法,其特征在于,所述第一配置信息用于指示所述N个寻呼配置,所述第一生效条件包括与所述第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个小区测量配置,所述第一生效条件包括与所述第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个接入配置,所述第一生效条件包括与所述第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个监听配置,所述第一生效条件包括与所述第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述N个寻呼配置与所述M个生效条件一一对应;或者,
    所述N大于所述M,所述M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
  8. 如权利要求1-7任一项所述的方法,其特征在于,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
  9. 如权利要求6-8任一项所述的方法,其特征在于,生效条件是位置标签,所述方法还包括:
    所述终端的位置在预设时长内的变化量超过预设门限,所述终端发送位置信息,所述位置信息用于指示所述终端所处的位置;
    在监听寻呼消息之前,所述终端还接收第三配置信息,所述第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一配置信息还包括所述N个寻呼配置的标识。
  11. 一种非地面网络NTN的通信方法,其特征在于,包括:
    生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个寻呼配置,所述N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,所述N为大于或等于1的整数;
    发送第一配置信息,以及若满足第一生效条件,在所述N个寻呼配置中的第一寻呼配置指示的时频资源位置上发送寻呼消息,其中,所述第一生效条件与所述第一寻呼配置对应。
  12. 一种非地面网络NTN的通信方法,其特征在于,包括:
    生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个小区测量配置,所述N个小区测量配置中的一个小区测量配置包括小区频点集合、所述小区频点集合对应的时频资源位置,以及与所述小区频点集合对应的小区ID集合,所述N为大于或等于1的整数;
    发送第一配置信息,以及若满足第一生效条件,在所述N个小区测量配置中的第一小区测量配置指示的所述小区频点集合对应的时频资源位置上发送所述小区ID集合的测量信号,其中,所述第一生效条件与所述第一小区测量配置对应。
  13. 一种非地面网络NTN的通信方法,其特征在于,包括:
    生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个接入配置,所述N个接入配置中的每个接入配置包括物理随机接入信道PRACH配置和随机接入机会RO对应的时频资源位置,所述N为大于或等于1的整数;
    发送第一配置信息,以及若满足第一生效条件,发送所述N个接入配置中的第一接入配置指示的PRACH配置,其中,所述第一生效条件与所述第一接入配置对应。
  14. 一种非地面网络NTN的通信方法,其特征在于,包括:
    生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个监听配置,所述N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,所述N为大于 或等于1的整数;
    发送第一配置信息,以及若满足第一生效条件,在所述N个监听配置中的第一监听配置指示的时频资源上发送系统消息,其中,所述第一生效条件与所述第一监听配置对应。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    发送第二配置信息,所述第二配置信息包括M个生效条件,所述M为大于或等于1的整数,所述M小于或等于所述N。
  16. 如权利要求15所述的方法,其特征在于,所述第一配置信息用于指示所述N个寻呼配置,所述第一生效条件包括与所述第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个小区测量配置,所述第一生效条件包括与所述第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个接入配置,所述第一生效条件包括与所述第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个监听配置,所述第一生效条件包括与所述第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
  17. 如权利要求11-16任一项所述的方法,其特征在于,所述N个寻呼配置与所述M个生效条件一一对应;或者,
    所述N大于所述M,所述M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
  18. 如权利要求11-17任一项所述的方法,其特征在于,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
  19. 如权利要求16-18任一项所述的方法,其特征在于,生效条件是位置标签,所述方法还包括:
    接收位置信息,所述位置信息用于指示所述终端所处的位置;
    发送第三配置信息,所述第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
  20. 如权利要求11-19任一项所述的方法,其特征在于,所述第一配置信息还包括所述N个寻呼配置的标识。
  21. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述收发模块,用于接收第一配置信息,所述第一配置信息用于指示为所述通信装置配置的N个寻呼配置,所述N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,所述N为大于或等于1的整数;
    若所述处理模块确定满足第一生效条件,所述收发模块还用于在所述N个寻呼配置中的第一寻呼配置指示的时频资源位置上监听寻呼消息,其中,所述第一生效条件与所述第一寻呼配置对应。
  22. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述收发模块,用于接收第一配置信息,所述第一配置信息用于指示为所述通信装置配置的N个小区测量配置,所述N个小区测量配置中的一个小区测量配置包括小区频点集合、所述小区频点集合对应的时频资源位置,以及与所述小区频点集合对应的小区ID集 合,所述N为大于或等于1的整数;
    若所述处理模块确定满足第一生效条件,在所述N个小区测量配置中的第一小区测量配置指示的所述小区频点集合对应的时频资源位置上对所述小区频点集合进行测量,其中,所述第一生效条件与所述第一小区测量配置对应。
  23. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述收发模块,用于接收第一配置信息,所述第一配置信息用于指示为所述通信装置配置的N个接入配置,所述N个接入配置中的每个接入配置包括物理随机接入信道PRACH配置和随机接入机会RO对应的时频资源位置,所述N为大于或等于1的整数;
    若所述处理模块确定满足第一生效条件,在所述RO对应的时频资源位置上,采用所述N个接入配置中的第一接入配置指示的PRACH配置进行随机接入,其中,所述第一生效条件与所述第一接入配置对应。
  24. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述收发模块,用于接收第一配置信息,所述第一配置信息用于指示为所述通信装置配置的N个监听配置,所述N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,所述N为大于或等于1的整数;
    若所述处理模块确定满足第一生效条件,所述收发模块还用于在所述N个监听配置中的第一监听配置指示的时频资源上监听系统消息,其中,所述第一生效条件与所述第一监听配置对应。
  25. 如权利要求21-24任一项所述的通信装置,其特征在于,所述收发模块还用于:
    接收第二配置信息,所述第二配置信息包括M个生效条件,所述M为大于或等于1的整数,所述M小于或等于所述N。
  26. 如权利要求25所述的通信装置,其特征在于,所述第一配置信息用于指示所述N个寻呼配置,所述第一生效条件包括与所述第一寻呼配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个小区测量配置,所述第一生效条件包括与所述第一小区测量配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个接入配置,所述第一生效条件包括与所述第一接入配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个监听配置,所述第一生效条件包括与所述第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
  27. 如权利要求21-26任一项所述的通信装置,其特征在于,所述N个寻呼配置与所述M个生效条件一一对应;或者,
    所述N大于所述M,所述M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
  28. 如权利要求21-27任一项所述的通信装置,其特征在于,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
  29. 如权利要求26-28任一项所述的通信装置,其特征在于,生效条件是位置标签,所述收发模块还用于:
    在预设时长内的位置的变化量超过预设门限,发送位置信息,所述位置信息用于指示 所述通信装置所处的位置;
    在监听寻呼消息之前,接收第三配置信息,所述第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
  30. 如权利要求21-29任一项所述的装置,其特征在于,所述第一配置信息还包括所述N个寻呼配置的标识。
  31. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述处理模块,用于生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个寻呼配置,所述N个寻呼配置中的每个寻呼配置包括寻呼消息的时频资源位置,所述N为大于或等于1的整数;
    所述收发模块,用于发送第一配置信息,以及若所述处理模块确定满足第一生效条件,在所述N个寻呼配置中的第一寻呼配置指示的时频资源位置上发送寻呼消息,其中,所述第一生效条件与所述第一寻呼配置对应。
  32. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述处理模块,用于生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个小区测量配置,所述N个小区测量配置中的一个小区测量配置包括小区频点集合、所述小区频点集合对应的时频资源位置,以及与所述小区频点集合对应的小区ID集合,所述N为大于或等于1的整数;
    所述收发模块,用于发送第一配置信息,以及若所述处理模块确定满足第一生效条件,在所述N个小区测量配置中的第一小区测量配置指示的所述小区频点集合对应的时频资源位置上发送所述小区ID集合的测量信号,其中,所述第一生效条件与所述第一小区测量配置对应。
  33. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述处理模块,用于生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个接入配置,所述N个接入配置中的每个接入配置包括物理随机接入信道PRACH配置和随机接入机会RO对应的时频资源位置,所述N为大于或等于1的整数;
    所述收发模块,用于发送第一配置信息,以及若所述处理模块确定满足第一生效条件,发送所述N个接入配置中的第一接入配置指示的PRACH配置,其中,所述第一生效条件与所述第一接入配置对应。
  34. 一种通信装置,其特征在于,包括收发模块和处理模块,其中:
    所述处理模块,用于生成第一配置信息,所述第一配置信息用于指示为所述终端配置的N个监听配置,所述N个监听配置中的每个监听配置包括用于监听系统消息的时频资源位置,所述N为大于或等于1的整数;
    所述收发模块,用于发送第一配置信息,以及若所述处理模块确定满足第一生效条件,在所述N个监听配置中的第一监听配置指示的时频资源上发送系统消息,其中,所述第一生效条件与所述第一监听配置对应。
  35. 如权利要求31-34任一项所述的通信装置,其特征在于,所述收发模块还用于:
    发送第二配置信息,所述第二配置信息包括M个生效条件,所述M为大于或等于1的整数,所述M小于或等于所述N。
  36. 如权利要求31-35任一项所述的通信装置,其特征在于,所述第一配置信息用于指示所述N个寻呼配置,所述第一生效条件包括与所述第一寻呼配置对应的第一时间、第一 位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个小区测量配置,所述第一生效条件包括与所述第一小区测量配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个接入配置,所述第一生效条件包括与所述第一接入配置对应的第一时间、第一位置标签以及第一极化方向中的一种或多种;或者,
    所述第一配置信息用于指示所述N个监听配置,所述第一生效条件包括与所述第一监听配置对应的第一时间、第一位置标签、第一频率以及第一极化方向中的一种或多种。
  37. 如权利要求31-36任一项所述的通信装置,其特征在于,所述N个寻呼配置与所述M个生效条件一一对应;或者,
    所述N大于所述M,所述M个生效条件内至少存在一个生效条件对应至少两个寻呼配置。
  38. 如权利要求31-37任一项所述的通信装置,其特征在于,生效条件包括时间,其中,相邻的两个时间不重叠,或者,相邻的两个时间存在交集。
  39. 如权利要求36-38任一项所述的通信装置,其特征在于,生效条件是位置标签,所述收发模块用于:
    接收位置信息,所述位置信息用于指示所述终端所处的位置;
    发送第三配置信息,所述第三配置信息用于指示至少一个寻呼配置,所述至少一个寻呼配置是根据所述位置信息确定的。
  40. 如权利要求31-39任一项所述的通信装置,其特征在于,所述第一配置信息还包括所述N个寻呼配置的标识。
  41. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述通信接口用于输入和/或输出信息,所述处理器用于执行计算机程序,使得所述通信装置执行如权利要求1-10任一项所述的方法;或者,使得所述通信装置执行如权利要求11-20任一项所述的方法。
  42. 如权利要求41所述的通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使得如权利要求1-10任一项所述的方法被执行;或者使得权利要求11-20任一项所述的方法被执行。
  44. 一种包含指令的计算机程序产品,当其在计算机上执行时,使得权利要求1-10任一项所述的方法被执行;或者使得权利要求11-20任一项所述的方法被执行。
  45. 一种计算机程序,当其在计算机上执行时,使得权利要求1-10任一项所述的方法被执行;或者使得权利要求11-20任一项所述的方法被执行。
  46. 一种通信系统,包括权利要求21至30任一项所述的通信装置和权利要求31至40任一项所述的通信装置。
PCT/CN2021/112305 2020-08-27 2021-08-12 一种非地面网络的通信方法及通信装置 WO2022042319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21860158.1A EP4195771A4 (en) 2020-08-27 2021-08-12 COMMUNICATION METHOD AND DEVICE FOR NON-TERRESTRIAL NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010877427.5 2020-08-27
CN202010877427.5A CN114125953A (zh) 2020-08-27 2020-08-27 一种非地面网络的通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022042319A1 true WO2022042319A1 (zh) 2022-03-03

Family

ID=80354549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112305 WO2022042319A1 (zh) 2020-08-27 2021-08-12 一种非地面网络的通信方法及通信装置

Country Status (3)

Country Link
EP (1) EP4195771A4 (zh)
CN (1) CN114125953A (zh)
WO (1) WO2022042319A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155369B (zh) * 2023-04-20 2023-08-29 成都爱瑞无线科技有限公司 卫星通信方法、卫星设备、终端及存储介质
CN117320168B (zh) * 2023-11-24 2024-03-08 中国星网网络系统研究院有限公司 上行及下行数据传输调度方法、装置及cu设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151922A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 测量方法、测量配置方法和相关设备
CN109309950A (zh) * 2017-07-28 2019-02-05 维沃移动通信有限公司 寻呼消息盲检测方法、发送方法、相关设备和系统
WO2020001502A1 (zh) * 2018-06-26 2020-01-02 华为技术有限公司 一种测量方法和测量装置
CN111132326A (zh) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 随机接入方法、终端设备及计算机存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208190B (zh) * 2015-05-28 2019-03-05 维沃移动通信有限公司 通知信号提示方法及终端
CN115835288A (zh) * 2017-10-21 2023-03-21 上海朗帛通信技术有限公司 一种无线通信的用户设备、网络设备中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151922A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 测量方法、测量配置方法和相关设备
CN109309950A (zh) * 2017-07-28 2019-02-05 维沃移动通信有限公司 寻呼消息盲检测方法、发送方法、相关设备和系统
WO2020001502A1 (zh) * 2018-06-26 2020-01-02 华为技术有限公司 一种测量方法和测量装置
CN111132326A (zh) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 随机接入方法、终端设备及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195771A4 *

Also Published As

Publication number Publication date
EP4195771A1 (en) 2023-06-14
CN114125953A (zh) 2022-03-01
EP4195771A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
EP3282786B1 (en) Terminal device, base station, wireless communication methods, and computer programs
KR102323383B1 (ko) 다중 링크 무선 로컬 영역 네트워크 인프라구조를 위한 전력 절감
JP2023524461A (ja) ユーザ機器および基地局
WO2022042319A1 (zh) 一种非地面网络的通信方法及通信装置
US20240007840A1 (en) Method for secondary cell state configuration, user equipment, and storage medium
JP7458412B2 (ja) 装置及びその無線通信の方法
US20220353844A1 (en) Paging Method and Communication Apparatus
US20230254801A1 (en) Tracking area code transmission in non-terrestrial networks
US20240031972A1 (en) User equipment, base station, and amf system
CN114079998A (zh) 一种通信方法及装置
CN113810964B (zh) 一种通信方法及设备
CN116671201A (zh) 一种上行参考信号资源的配置方法及相关装置
US20220182892A1 (en) Communication Method and Apparatus
CN115175205A (zh) 通信方法及装置
WO2023143248A1 (zh) 一种通信方法及通信装置
WO2024031626A1 (en) Methods for sidelink positioning measurements
WO2019028838A1 (en) NETWORK TRENCH-SPECIFIC PAGING CYCLES FOR WIRELESS NETWORKS
US20230292275A1 (en) Transceiver device, network entity and base station
WO2024031654A1 (en) Sidelink positioning for 5g advanced
WO2024061077A1 (zh) 一种通信方法及装置
KR20240064024A (ko) 신호 전송 방법, 신호 수신 방법, 및 통신 장치
CN116326005A (zh) 蜂窝通信系统中灵活的非周期性srs触发
CN115643588A (zh) 一种通信方法及装置
CN117322087A (zh) 资源处理的方法、终端设备、网络设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860158

Country of ref document: EP

Effective date: 20230309

NENP Non-entry into the national phase

Ref country code: DE