WO2015100541A1 - 谐振器、滤波器、双工器、多工器及通信设备 - Google Patents

谐振器、滤波器、双工器、多工器及通信设备 Download PDF

Info

Publication number
WO2015100541A1
WO2015100541A1 PCT/CN2013/090904 CN2013090904W WO2015100541A1 WO 2015100541 A1 WO2015100541 A1 WO 2015100541A1 CN 2013090904 W CN2013090904 W CN 2013090904W WO 2015100541 A1 WO2015100541 A1 WO 2015100541A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance tube
resonator
dielectric material
resonant
tube
Prior art date
Application number
PCT/CN2013/090904
Other languages
English (en)
French (fr)
Inventor
梁丹
陈科
邓晓毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13900752.0A priority Critical patent/EP3079200B1/en
Priority to CN201380009626.2A priority patent/CN104885293B/zh
Priority to PCT/CN2013/090904 priority patent/WO2015100541A1/zh
Publication of WO2015100541A1 publication Critical patent/WO2015100541A1/zh
Priority to US15/199,163 priority patent/US9979070B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2133Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • a resonator a filter, a duplexer, a multiplexer, and a communication device
  • the present invention relates to the field of communication devices, and more particularly to a resonator, a filter, a duplexer, a multiplexer, and a communication device. Background technique
  • the cavity (i.e., the air-filled coaxial cavity) filter is a conventional technology of a base station duplexer, which is mature in technology and low in cost.
  • the cavity filter typically includes a cover plate and a plurality of cavities, each of which is provided with a plurality of resonant tubes. Each cavity functions as an electronic oscillating circuit.
  • the oscillating circuit can be represented as a parallel oscillating circuit including an inductive portion and a capacitive portion, by adjusting the inductance portion or In the capacitor section, the resonant frequency of the filter can be adjusted.
  • One method of adjusting the capacitance is to adjust the spacing between the resonance tube and the cover, which is usually achieved by screwing in or screwing out the screw holes on the cover.
  • the volume reduction also reduces the distance between the surfaces of the inner conductors of a single cavity, resulting in an increase in the electric field strength and exceeding the air breakdown threshold.
  • the power capacity becomes smaller. Therefore, the smaller the cavity filter volume is, the larger the loss is, and the smaller the power capacity is, the smaller the volume cannot be satisfied and the performance is maintained.
  • the cavity filter usually adopts a metal resonator, that is, a cavity, a resonance tube, and the like are all made of a metal material or at least an inner surface metallization.
  • TM transverse magnetic
  • the mode dielectric filter replaces the metal resonator with a high-performance ceramic resonator, and when the reduced conductor loss is greater than the dielectric loss caused by it, a smaller insertion loss can be achieved. And because the electric field of the TM mode dielectric filter is the strongest, it is concentrated inside the medium. The breakdown field strength of the dielectric material is much higher than that of the air, which can greatly increase the power capacity.
  • high-performance ceramic materials often contain rare earths, which are expensive due to the global scarcity of rare earth resources. Summary of the invention
  • a resonator comprising a resonant cavity having a resonant cavity and an open end, the resonator further comprising covering the open end and connecting to the resonant cavity a cover plate, a resonance tube located in the resonant cavity, wherein the resonator further comprises a dielectric material filled in the resonant cavity with a dielectric constant greater than 1, the resonant tube comprising a resonant tube body and An elastic structure combined with the resonance tube body, the dielectric material is filled in a capacitance region in the resonant cavity, the capacitance region includes a region between the resonance tube and the cover plate; and the elastic structure And an elastic pressure for providing axial direction along the resonance tube such that upper and lower end faces of the dielectric material are in
  • the resonator further includes a tuning screw coupled to the cover plate and extending into a space enclosed by the resonance tube.
  • the capacitor region further includes: a region between the tuning screw and an inner wall of the tuning tube, or an outer edge of the resonant tube and the resonant cavity At least one of the regions between the walls of the cavity.
  • the elastic structure is welded or fixed to the resonance tube body or integrally formed with the resonance tube.
  • the elastic structure is disposed at a top, a middle, or a bottom of the resonance tube.
  • the resilient structure defines a gap to enhance elasticity.
  • the elastic structure is a metal piece.
  • the dielectric material has a quality factor Qf greater than 1000.
  • the filled dielectric material is respectively crimped to the cover plate and the resonance tube.
  • one side of the dielectric material is bonded or welded to one of the cover plate and the resonance tube, and the opposite side is provided by an elastic structure to provide elastic pressure and The cover plate and the other of the resonance tubes are in close contact.
  • the dielectric material comprises: ceramic, single crystal quartz, or aluminum oxide.
  • a filter comprising at least one of the resonators provided in the first aspect above.
  • a duplexer comprising a transmit channel filter and a receive channel filter, the transmit channel filter and the receive channel filter being filtered using the filter provided by the second aspect above.
  • a multiplexer comprising a plurality of transmit channel filters and a plurality of receive channel filters, the transmit channel filters and the receive channel filters being filtered using the filter provided by the second aspect.
  • a communication device comprising at least one resonator provided by the above first aspect.
  • the resonator of the first aspect provided by the various embodiments, by filling the cavity with a dielectric material having a dielectric constant greater than the dielectric constant of the air, the volume of the resonator can be reduced, and the power capacity of the resonator can be increased due to the filling thereof.
  • the dielectric material has a small volume, so the relative cost is low; and at the same time, by providing an elastic structure on the resonance tube, the elastic structure is for providing elastic pressure along the axial direction of the resonance tube, so that the upper and lower end faces of the dielectric material Separatingly contacting the lower surface of the cover plate and the upper surface of the resonance tube respectively, thereby ensuring that the dielectric material is in close contact with the cover plate and the resonance tube at the same time, effectively solving the problems caused by structural manufacturing errors and assembly tolerances, Various dielectric materials can be in close contact with the cover plate and the resonance tube, which enhances the power capacity increase and volume reduction of the resonator.
  • FIG. 1 is a cross-sectional view of a resonator according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view of a resonance tube according to a second embodiment of the present invention.
  • Figure 3 is a cross-sectional view of a resonance tube according to a third embodiment of the present invention.
  • Figure 4 is a cross-sectional view of a resonance tube according to a fourth embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a resonance tube according to a fifth embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a resonance tube according to a sixth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a filter according to a seventh embodiment of the present invention.
  • - Figure 8 is an exploded perspective view of a filter according to a seventh embodiment of the present invention.
  • FIG. 9 is a schematic view of a duplexer according to an eighth embodiment of the present invention.
  • Figure 10 is a schematic view of a multiplexer according to a ninth embodiment of the present invention. detailed description
  • the resonator 100 includes: a resonant cavity 11, a cover 12, and a resonance tube 13. Further, the resonator 100 may further include a tuning screw 14.
  • the resonant cavity 11 is a metal cavity, and the resonant cavity 11 may be a metal material or a cavity having at least an inner surface metallization, and has a resonant cavity 112 and an open end 113.
  • the cover plate 12 covers the open end 113 and is connected to the resonant cavity 11.
  • the cover 12 and the resonant cavity 11 can be connected by screws or the like.
  • the cover plate 12 may be a separate component or a printed circuit board. When the PCB is mounted and fixed to the resonant cavity 11 and covers the open end 113, the PCB is used as a cover. 12.
  • the resonance tube 13 is located within the resonant cavity 112.
  • the resonance tube 13 may be integrally formed with the resonant cavity 11, that is, the resonance tube 13 is formed on the inner side surface of the bottom portion of the resonant cavity 11.
  • the resonance tube 13 may also be a separately disposed component and fixedly connected to the resonant cavity 11 by a fixing member.
  • the tuning screw 14 is coupled to the cover plate 12 and extends into the resonance tube 13, and the frequency can be adjusted by rotating the tuning screw 14 to change the length of the tuning screw 14 into the resonance tube 13.
  • the tuning screw 14 is disposed coaxially with the resonance tube 13.
  • a lock nut 121 is fixedly disposed on the cover plate 12, and the tuning screw 14 is screwed to the lock nut 121.
  • the resonator 100 further includes a dielectric material 17 filled in the resonant cavity 112 having a dielectric constant greater than one.
  • the dielectric material 17 is filled in a capacitive region within the resonant cavity 112.
  • the capacitor region may specifically include: a region between the resonance tube 13 and the cover plate 12; and may further include a region between the tuning screw 14 and an inner wall of the tuning tube 13, or the resonance tube - -
  • the resonance tube 13 includes a resonance tube body 131 and an elastic structure 132 combined with the resonance tube body 131.
  • the elastic structure 132 provides elastic pressure in the axial direction of the resonance tube 13, so that the upper and lower end faces of the dielectric material 17 are in close contact with the lower surface of the cover plate 12 and the upper surface of the resonance tube 13, respectively.
  • the elastic structure 132 may be disposed at the top, middle or bottom of the resonance tube 13.
  • the dielectric material 17 includes, but is not limited to, ceramic, single crystal quartz or aluminum oxide.
  • the dielectric material 17 is crimped between the cover plate 12 and the resonance tube 13.
  • the medium material 17 may be appropriately disposed.
  • the cover 12 presses the dielectric material 17, and the dielectric material 17 is pressed tightly. Connected between the cover plate 12 and the resonance tube 13.
  • one side of the dielectric material 17 is bonded or welded to one of the cover plate 12 and the resonance tube 13 , and the opposite side is provided with the elastic pressure provided by the elastic structure 132 and the cover plate 12 and The other of the resonance tubes 13 is in close contact.
  • the dielectric material 17 has a quality factor Qf greater than 1000 to reduce dielectric loss.
  • the Qf is usually 1000, which is the boundary line between the dielectric material and the ceramic.
  • the quality factor is the reciprocal of the dielectric loss of the dielectric material 17. Since the low-loss dielectric material 17 can be filled, the resonator 100 of the present embodiment and the SIR resonator (Peded Impedance Resonator) can have a lower loss of the dielectric material 17 in the case where the cavity volume is the same. Therefore, the increase of the dielectric loss caused by the filled dielectric material can be made smaller than the decrease of the conductor loss, and therefore the resonator 100 provided by the embodiment of the present invention has a smaller loss than the SIR technology.
  • the dielectric material 17 filled with the dielectric constant is larger than the dielectric constant of the air, and the larger the dielectric constant of the dielectric material 17, the larger the equivalent capacitance, the resonance tube 13 and The capacitance between the cover plates 12 becomes larger than that of the cavity, so that the resonant cavity 112 can operate at a lower frequency, or when a single cavity of the same resonant frequency is used, the air-filled resonant cavity is completely used.
  • the resonator 100 of the embodiment is smaller in volume, so that the embodiment of the present invention can achieve the effect of reducing the volume of the resonator.
  • the resonator 100 of the embodiment of the present invention has a strong electric field intensity region in the resonant cavity 112 - the field fills the dielectric material 17, and the filled dielectric material 17 has a dielectric constant greater than 1, and its breakdown field strength tends to be several times to several tens of times higher than the breakdown field strength of the air, so the embodiment of the present invention is relatively For air-filled resonators, the resonator power capacity can be increased.
  • the resonator 100 of the embodiment of the present invention is provided with an elastic structure 132 on the resonance tube 13.
  • the elastic structure 132 provides elastic pressure along the axial direction of the resonance tube 13 such that the upper and lower end faces of the dielectric material 17 are in close contact with the lower surface of the cover plate 12 and the upper surface of the resonance tube 13, respectively. Therefore, it is ensured that the dielectric material 17 is in close contact with the cover 12 and the resonance tube 13 at the same time, effectively solving the problems caused by structural manufacturing errors and assembly tolerances, and making the various dielectric materials 17 close to the cover 12 and the resonance tube 13. Contact improves the adaptability and maximizes the effects of (1) and (2) above.
  • the elastic structure 132 of the resonance tube 13 is also low in manufacturing and installation cost, and is compatible with the advantages of low cost and reliable frequency adjustment of the conventional cavity resonator.
  • 2 is a structural diagram of a resonance tube 13 according to a second embodiment of the present invention.
  • the resonance tube 13 includes a resonance tube body 231 and an elastic structure 232 disposed on the top of the resonance tube body 231.
  • the elastic structure 232 is made of a material having elasticity, such as a metal sheet.
  • the elastic structure 232 includes a bottom plate 2321 and a peripheral wall 2323 extending perpendicularly from a periphery of the bottom plate 2321.
  • the bottom plate 2321 is connected to the top of the resonance tube body 231 and extends to the outside of the resonance tube 231.
  • the top of the perimeter wall 2323 is connected to the dielectric material.
  • the bottom plate 2321 and the resonance tube body 231 may be integrally formed or may be fixed by welding. Further, as shown in FIG. 2, in the present embodiment, the top of the peripheral wall 2323 is rounded, but it is not limited thereto.
  • 3 is a structural diagram of a resonance tube 13 according to a third embodiment of the present invention.
  • the resonance tube 13 includes a resonance tube body 331 and an elastic structure 332 disposed at the top of the resonance tube body 331.
  • the elastic structure 332 is made of a material having elasticity, such as a metal piece.
  • the elastic structure 332 includes a bowl mouth portion 3321 and a peripheral wall 3323 extending perpendicularly from the top periphery of the bowl mouth portion 3321.
  • the bottom of the bowl portion 3321 is connected to the resonance tube body 331.
  • the mouth portion 3321 gradually increases in diameter in the axial direction away from the resonance tube body 331.
  • the peripheral wall 3323 is connected to the dielectric material 4.
  • the elastic pressure of the upper surface of the tube 33 is in close contact.
  • the bowl mouth portion 3321 and the resonance tube body 331 may be integrally formed or may be fixed by welding. Further, as shown in Fig. 2, in the present embodiment, the top of the bowl portion 3321 is rounded, but it is not limited thereto.
  • 4 is a structural diagram of a resonance tube 13 according to a fourth embodiment of the present invention.
  • the resonance tube 13 includes a resonance tube body 431 and an elastic structure 432 disposed on the top of the resonance tube body 431.
  • the elastic structure 432 is made of a material having elasticity, such as a metal sheet.
  • the elastic structure 432 forms a drum-shaped structure that protrudes radially outward along the resonance tube 43.
  • the lower end surface of the elastic structure 432 is connected to the top of the resonance tube body 431, and the upper end surface is in contact with the dielectric material.
  • the elastic structure 332 is elastically deformed by the drum structure, so that the upper and lower end faces of the dielectric material are respectively closely related to the lower surface of the cover plate and the upper surface of the resonance tube 43. The elastic pressure of contact.
  • FIG. 5 is a structural diagram of a resonance tube according to a fifth embodiment of the present invention.
  • the elastic structure 532 of the resonance tube is provided with a plurality of notches 5321 to enhance the elasticity thereof. As shown in FIG. 5, a plurality of notches 5321 along the radial direction of the resonance tube may be formed at the periphery of the elastic structure 532, and six are shown in the figure.
  • FIG. 6 is a structural diagram of a resonance tube according to a sixth embodiment of the present invention.
  • the resonance tube 13 includes a resonance tube body 631 and an elastic structure 632 disposed at a middle portion of the resonance tube body 631.
  • the resonance tube body 631 includes a first body portion 6312 and a second body portion 6314 at both ends of the elastic structure 632. Both ends of the elastic structure 632 are connected to the first body portion 6312 and the second body portion 6314, respectively.
  • the elastic structure 632 has a drum shape and is concave (or convex) in the radial direction of the resonance tube 63.
  • the top of the first body portion 6312 is provided with an abutting portion 6319, and the abutting portion 6319 abuts against the dielectric material.
  • Extended peripheral wall 6316 is provided with an abutting portion 6319, and the abutting portion 6319 abuts against the dielectric material.
  • the elastic structure 632 When the joint portion 6319 is subjected to the axial pressure, the elastic structure 632 is elastically deformed to provide an elastic pressure which brings the upper and lower end faces of the dielectric material into close contact with the lower surface of the cover plate and the upper surface of the resonance tube 63, respectively.
  • the shape of the elastic structure 632 is not limited to the drum shape, and a structure of any one of Embodiments 2 to 5, such as a bowl shape or the like, may be employed.
  • the elastic structure of each of the above embodiments may be made of a metal sheet, and of course, other elastic materials such as an elastically deformable alloy material may be used.
  • the elastic structure and the resonance tube body may be connected by welding, or the elastic structure may be integrally formed with the resonance tube.
  • the specific form of the elastic structure is not limited to the manner provided by the above specific embodiment, and the specific structure is designed to be elastically deformed to provide close contact between the upper and lower end faces of the dielectric material and the lower surface of the cover plate and the upper surface of the resonance tube, respectively.
  • the filter 700 is constructed by a combination of resonators, wherein at least one of the resonators adopts the structure of the resonator described above.
  • the filter 700 includes - - a case 71, and a cover 72 covering the case 71.
  • the cover 71 is a metal case, and the cover 72 is a metal cover.
  • the case 71 may be a metal material or a cavity having at least an inner surface metallized.
  • the metal cover 72 may be A metal material or a plate body that is at least metallized on the lower surface.
  • the filter 700 is a three-cavity filter.
  • the casing 71 has an open end and three resonant cavities 712.
  • the cover plate 72 covers the open end.
  • a resonant tube 73 is disposed in each of the resonant cavities 712, and a tuning screw 74 corresponding to the resonant cavity 712.
  • a dielectric material 77 is filled in at least one of the resonant cavities 712 in a region of stronger electric field strength.
  • At least one of the resonance tubes 73 adopts the structure of any of the above embodiments.
  • a dielectric material 77 having a dielectric constant greater than 1 is filled in a region with a stronger electric field strength, and the dielectric material 77 is filled in the resonant cavity 712.
  • Capacitor area may specifically include: a region between the resonance tube 73 and the cover plate 72; and may further include a region between the tuning screw 74 and an inner wall of the tuning tube 73, or the resonance tube 73 At least one of a region between the outer edge region and the cavity wall of the resonant cavity 712. These areas have a strong electric field strength.
  • FIG. 9 is a schematic structural diagram of a duplexer 801 according to an eighth embodiment of the present invention.
  • the duplexer 801 includes: a transmit channel filter 8011 and a receive channel filter 8012, and the transmit channel filter 8011 and The receive channel filter 8012 is filtered using the filter 500 described above.
  • the transmit channel filter 8011 is used to process the transmit signal of the transmitter, and the receive channel filter 8012 is used to process the receive signal of the receiver.
  • the multiplexer 902 includes: a plurality of transmit channel filters 9021 and a plurality of receive channel filters 9022, the transmitting The channel filter 9021 and the receive channel filter 9022 are filtered using the filter 700 described above. Two transmit channel filters 9021 and two receive channel filters 9022 are shown, and other embodiments may be three or more. Transmit channel filter 9021 is used to process - - The transmit signal of the shooter, the receive channel filter 9022 is used to process the received signal of the receiver.
  • the filter, duplexer or multiplexer provided by the above embodiments can be applied to a communication system, such as a communication device (such as a base station or a terminal), and can also be applied to a radar system. Limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种谐振器,包括具有一谐振腔及一开口端的谐振腔体,覆盖所述开口端并与所述谐振腔体相连接的盖板,位于所述谐振腔内的谐振管,所述谐振器还包括填充于所述谐振腔内的介电常数大于 1的介质材料,所述谐振管包括谐振管本体以及与所述谐振管本体相结合的弹性结构,所述介质材料填充于所述谐振腔内的电容区域,所述弹性结构提供沿所述谐振管轴向方向的弹性压力,使所述介质材料的上下端面分别与所述盖板的下表面及所述谐振管的上表面紧密接触。本发明提供的谐振器可减少导体损耗,提升功率容量且成本较低,本发明还提供采用该谐振器的滤波器、双工器、多工器及通信设备。

Description

一 一 谐振器、 滤波器、 双工器、 多工器及通信 i殳备
技术领域
本发明涉及通信设备领域, 尤其涉及一种谐振器、 滤波器、 双工器、 多工 器及通信设备。 背景技术
无线通信宽带化发展趋势,要求基站射频前端双工器具有更小体积、 更大 功率容量、 更低成本的同时能够维持损耗等性能基本不变。 空腔(即充满空气 的同轴谐振腔)滤波器是基站双工器的传统技术, 技术成熟, 成本低廉。 空腔 滤波器通常包括盖板及多个腔体,每个腔体中设有多个谐振管。每个腔体的功 能相当于一个电子振荡电路, 当滤波器被调谐到所接收信号的适当波长时, 所 述振荡电路可表示为包括电感部分和电容部分的并联振荡电路,通过调整电感 部分或电容部分, 即可对滤波器的谐振频率进行调整。
对电容调整的一种方法是调节谐振管到盖板之间的间距,所述间距的调整 通常通过调谐螺丝旋进或旋出于盖板上的螺丝孔来实现。随着单腔体积不断减 小, 其表面电流密度上升, 损耗不断增大; 体积减小也使单腔内部导体表面之 间的距离减小, 导致电场强度增大从而超过空气击穿阈值, 使功率容量变小。 因此, 空腔滤波器体积越小, 损耗越大, 功率容量越小, 不能满足更小体积并 维持性能不变的要求。
空腔滤波器通常采用金属谐振器, 即腔体、谐振管等均采用金属材料或者 至少内表面金属化的制成, 在与空腔滤波器单腔体积相同的情况下, TM ( transverse magnetic )模介质滤波器因采用高性能陶瓷谐振器替代金属谐振器, 当其减小的导体损耗大于其带来的介质损耗时, 可以实现更小的插损。 并且由 于 TM模介质滤波器电场最强的地方集中在介质内部,介质材料的击穿场强远 远高于空气, 也可以极大提升功率容量。 但高性能陶瓷材料往往含有稀土, 由 于稀土资源的全球稀缺性, 其价格昂贵。 发明内容
本发明提供一种可减少导体损耗且成本较低的谐振器,以及采用该谐振器 的滤波器、 双工器、 多工器及通信设备。 - - 第一方面, 提供了一种谐振器, 包括谐振腔体, 该谐振腔体具有一谐振腔 及一开口端,该谐振器还包括覆盖所述开口端并与所述谐振腔体相连接的盖板, 位于所述谐振腔内的谐振管, 其特征在于, 所述谐振器还包括填充于所述谐振 腔内的介电常数大于 1的介质材料,所述谐振管包括谐振管本体以及与所述谐 振管本体相结合的弹性结构, 所述介质材料填充于所述谐振腔内的电容区域, 所述电容区域包括所述谐振管与所述盖板之间的区域;所述弹性结构用于提供 沿所述谐振管轴向方向的弹性压力,使所述介质材料的上下端面分别与所述盖 板的下表面及所述谐振管的上表面紧密接触。
在第一方面的第一种可能的实现方式中, 所述谐振器还包括调谐螺釘, 所 述调谐螺釘与所述盖板连接并伸入所述谐振管围成的空间中。
在第一方面的第二种可能的实现方式中, 所述电容区域还包括: 所述调谐 螺釘与所述调谐管内壁之间的区域,或者所述谐振管的外缘与所述谐振腔的腔 壁之间的区域中的至少一个。
在第一方面的第三种可能的实现方式中,所述弹性结构与所述谐振管本体 焊接固定或者与所述谐振管成型为一体。
在第一方面的第四种可能的实现方式中,所述弹性结构设置于所述谐振管 的顶部、 中部或者底部。
在第一方面的第五种可能的实现方式中,所述弹性结构开设缺口以增强弹 性。
在第一方面的第六种可能的实现方式中, 所述弹性结构为金属片。
在第一方面的第七种可能的实现方式中, 所述介质材料的品质因子 Qf 大 于 1000。
在第一方面的第八种可能的实现方式中,所述填充的介质材料分别与所述 盖板及所述谐振管压接。
在第一方面的第九种可能的实现方式中,所述介质材料的一面与所述盖板 及所述谐振管中的一个粘结或焊接,相对的另一面通过弹性结构提供的弹力压 力与所述盖板及所述谐振管中的另一个紧密接触。
在第一方面的第十种可能的实现方式中, 所述介质材料包括: 陶瓷、 单晶 石英、 或者氧化铝。
第二方面,提供一种滤波器,包括至少一个上述第一方面所提供的谐振器。 - - 第三方面, 提供一种双工器, 包括发射通道滤波器和接收通道滤波器, 所 述发射通道滤波器和接收通道滤波器采用上述第二方面所提供的滤波器进行 滤波。
第四方面,提供一种多工器, 包括多个发射通道滤波器和多个接收通道滤 波器,所述发射通道滤波器和接收通道滤波器采用第二方面所提供的滤波器进 行滤波。
第五方面, 提供一种通信设备, 其特征在于, 包括至少一个上述第一方面 所提供的谐振器。 根据各种实施方式提供的第一方面的谐振器,通过在谐振腔内填充介电常 数大于空气介电常数的介质材料, 可减小谐振器的体积, 并提升谐振器功率容 量, 因其填充的介质材料体积较小, 所以相对成本较低; 同时通过在谐振管上 设置弹性结构, 所述弹性结构用于提供沿所述谐振管轴向方向的弹性压力,使 所述介质材料的上下端面分别与所述盖板的下表面及所述谐振管的上表面紧 密接触,从而确保介质材料同时与盖板及谐振管紧密接触,有效地解决了结构 制造误差和装配公差带来的问题,使得各种介质材料都能与盖板及谐振管紧密 接触, 强化了谐振器功率容量提升和体积减小的效果。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
图 1是本发明第一实施方式提供的谐振器的剖视图;
图 2是本发明第二实施方式提供的谐振管的剖视图;
图 3是本发明第三实施方式提供的谐振管的剖视图;
图 4是本发明第四实施方式提供的谐振管的剖视图;
图 5是本发明第五实施方式提供的谐振管的剖视图;
图 6是本发明第六实施方式提供的谐振管的剖视图;
图 7是本发明第七实施方式提供的滤波器的结构示意图; - - 图 8是本发明第七实施方式提供的滤波器的立体分解图;
图 9是本发明第八实施方式提供的双工器的示意图;
图 10是本发明第九实施方式提供的多工器的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参阅图 1 , 为本发明第一实施方式提供的一种谐振器 100的剖视图。 所 述谐振器 100包括: 谐振腔体 11、 盖板 12和谐振管 13。 进一步的, 该谐振器 100还可以包括调谐螺釘 14。
所述谐振腔体 11为一金属腔体,所述谐振腔体 11可以整体为金属材料或 者为至少内表面金属化的腔体, 其具有一谐振腔 112及一开口端 113。 所述盖 板 12覆盖所述开口端 113, 并与所述谐振腔体 11连接, 该盖板 12与所述谐 振腔体 11的连接方式可以为螺釘连接等。所述盖板 12可以为独立的部件,也 可以为 PCB ( printed circuit board )板, 当 PCB板与所述谐振腔体 11安装固 定并覆盖所述开口端 113时, 所述 PCB板作为盖板 12。
所述谐振管 13位于所述谐振腔 112内。 在本实施方式中, 所述谐振管 13 可以与所述谐振腔体 11一体形成, 即该谐振管 13—体形成于所述谐振腔体 11的底部的内侧面。 在其他实施方式中, 所述谐振管 13也可以是独立设置的 部件, 并与所述谐振腔体 11通过固定元件进行固定连接。
所述调谐螺釘 14与所述盖板 12连接并伸入所述谐振管 13内, 通过旋转 调谐螺釘 14,改变调谐螺釘 14伸入谐振管 13内的长度,可进行频率的调节。 本实施方式中, 所述调谐螺釘 14与所述谐振管 13同轴设置。 所述盖板 12上 固定设置锁紧螺母 121 , 所述调谐螺釘 14与所述锁紧螺母 121螺纹连接。
所述谐振器 100还包括填充于所述谐振腔 112内的介电常数大于 1的介质 材料 17。 所述介质材料 17填充于谐振腔 112内的电容区域。
所述电容区域具体可包括: 所述谐振管 13与所述盖板 12之间的区域; 还 可以包括所述调谐螺釘 14与所述调谐管 13内壁之间的区域,或者所述谐振管 - -
13的外缘区域与所述谐振腔 112的腔壁之间的区域中的至少一个。 这些区域 具有较强的电场强度。
所述谐振管 13包括谐振管本体 131以及与所述谐振管本体 131相结合的 弹性结构 132。所述弹性结构 132提供沿所述谐振管 13轴向方向的弹性压力, 使所述介质材料 17的上下端面分别与所述盖板 12的下表面及所述谐振管 13 的上表面紧密接触。 所述弹性结构 132可以设置于所述谐振管 13的顶部、 中 部或者底部。
所述介质材料 17包括但不限于: 陶瓷、 单晶石英或者氧化铝。
在一实施方式中, 所述介质材料 17压接于所述盖板 12与所述谐振管 13 之间。 其实现方式可以是, 适当设置介质材料 17的厚度, 当所述盖板 12固定 安装至所述谐振腔体 11时, 该盖板 12挤压所述介质材料 17, 将该介质材料 17紧密压接于所述盖板 12与谐振管 13之间。
在一实施方式中, 所述介质材料 17的一面与所述盖板 12及所述谐振管 13中的一个粘结或焊接,相对的另一面通过弹性结构 132提供的弹力压力与盖 板 12及所述谐振管 13中的另一个紧密接触。
进一步地,所述介质材料 17的品质因子 Qf大于 1000,以降低介质损耗。 其中, 通常情况下, Qf为 1000是介质材料为塑料还是陶瓷的分界线。 所述品 质因子为所述介质材料 17的介质损耗的倒数。 由于可以填充低损耗的介质材 料 17, 本实施方式的谐振器 100与 SIR谐振器(P介梯阻抗谐振器, Stepped Impedance Resonator )在谐振腔体积相同的情况下, 介质材料 17的损耗可以 更低,从而可以使填充的介质材料带来的介质损耗的增加小于导体损耗的减小, 因此本发明实施例提供的谐振器 100其损耗较 SIR技术更小。
本发明实施方式的谐振器 100产生的有益效果如下:
( 1 )本发明实施方式的谐振器 100, 其填充的介质材料 17的介电常数大 于空气介电常数, 介质材料 17的介电常数越大则等效电容越大, 所述谐振管 13与所述盖板 12之间的电容较空腔时变大, 使所述谐振腔 112可以工作在更 低频率, 或在使用相同谐振频率的单腔时, 较完全采用空气填充的谐振腔, 本 实施方式的谐振器 100的体积更小,从而本发明实施例可以达到减小谐振器体 积的效果。
( 2) 本发明实施方式的谐振器 100,在所述谐振腔 112内电场强度较强区 - - 域填充所述介质材料 17, 而填充的介质材料 17的介电常数大于 1 , 其击穿场 强往往高于空气的击穿场强数倍至数十倍,所以本发明实施方式相对于采用空 气填充的谐振腔, 可以提升谐振器功率容量。
( 3 )本发明实施方式的谐振器 100,通过在谐振管 13上设置弹性结构 132。 所述弹性结构 132提供沿所述谐振管 13轴向方向的弹性压力, 使所述介质材 料 17的上下端面分别与所述盖板 12的下表面及所述谐振管 13的上表面紧密 接触, 从而确保介质材料 17同时与盖板 12及谐振管 13紧密接触, 有效地解 决了结构制造误差和装配公差带来的问题, 并使得各种介质材料 17都能与盖 板 12及谐振管 13紧密接触, 提高了适应性, 最大程度使得上述(1 )、 (2 )方 面的效果得到充分发挥。
( 4 )本发明实施方式的谐振器 100中, 仅在所述谐振腔 112内电场强度 较强的地方局部填充少量介质材料 17, 填充的介质材料 17体积较小, 成本较 低。 谐振管 13的弹性结构 132, 其制造和安装成本也较低, 同时兼容传统空 腔谐振器低成本、 频率调节可靠的优点。 请参见图 2, 为本发明第二实施方式提供的一种谐振管 13的结构图, 所 述谐振管 13包括谐振管本体 231以及设置于所述谐振管本体 231顶部的弹性 结构 232。
所述弹性结构 232采用具有弹性的材料制成, 例如金属片。所述弹性结构 232包括一底板 2321以及从所述底板 2321周缘垂直延伸出的周壁 2323。底板 2321与谐振管本体 231的顶部连接, 并向谐振管 231的外侧延伸。 周壁 2323 顶部与介质材料 4氏接。 这样, 当周壁 2323受到轴向的压力时, 所述弹性结构 232的底板 2321可沿轴向产生弹性形变, 从而提供使所述介质材料的上下端 面分别与盖板的下表面及谐振管 23的上表面紧密接触的弹性压力。 通过设置 周壁 2323可增加弹性结构 232的变形量,从而提高提供的弹性压力。底板 2321 与谐振管本体 231可以是一体成型, 也可以通过焊接固定。 此外, 进一步的, 如图 2所示, 在本实施方式中, 所述周壁 2323的顶部进行倒圆角的设计, 但 并不对此进行限定。 请参见图 3 , 为本发明第三实施方式提供的一种谐振管 13的结构图, 所 述谐振管 13包括谐振管本体 331以及设置于所述谐振管本体 331顶部的弹性 结构 332。
所述弹性结构 332采用具有弹性的材料制成, 例如金属片。所述弹性结构 332 包括一碗口部 3321 以及从所述碗口部 3321顶部周缘垂直延伸出的周壁 3323。所述碗口部 3321的底部与谐振管本体 331连接。碗口部 3321在远离所 述谐振管本体 331的轴向方向上,口径逐渐增大。周壁 3323与介质材料 4氐接。 这样, 当周壁 3323受到轴向的压力时, 所述弹性结构 332的碗口部 3321可向 外扩张而产生弹性形变,从而提供使所述介质材料的上下端面分别与盖板的下 表面及谐振管 33的上表面紧密接触的弹性压力。通过设置碗口部 3321可增加 弹性结构 332的变形量, 从而提高提供的弹性压力。 碗口部 3321与谐振管本 体 331可以是一体成型,也可以通过焊接固定。此外,进一步的,如图 2所示, 在本实施方式中, 所述碗口部 3321的顶部进行倒圆角的设计, 但并不对此进 行限定。 请参见图 4, 为本发明第四实施方式提供的一种谐振管 13的结构图, 所 述谐振管 13包括谐振管本体 431以及设置于所述谐振管本体 431顶部的弹性 结构 432。
所述弹性结构 432采用具有弹性的材料制成, 例如金属片。所述弹性结构 432形成一沿谐振管 43径向向外凸出的鼓形结构。 所述弹性结构 432的下端 面与谐振管本体 431的顶部连接, 上端面与介质材料抵接。 这样, 当弹性结构 受到轴向的压力时,所述弹性结构 332通过其鼓形结构的弹性形变,提供使所 述介质材料的上下端面分别与盖板的下表面及谐振管 43的上表面紧密接触的 弹性压力。 在其他实施方式中, 所述鼓形结构也可以沿谐振管 43的径向向内 凹, 鼓形结构的数量可以是一个, 也可以是多个。 弹性结构 432与谐振管本体 431可以是一体成型, 也可以通过焊接固定。 请参见图 5 , 为本发明第五实施方式提供的一种谐振管的结构图, 所述谐 振管的弹性结构 532开设有若干缺口 5321 , 以增强其弹性。 如图 5所示, 可 以在弹性结构 532的周缘开设沿谐振管径向的若干缺口 5321 ,图中示出 6个, 这样, 在弹性结构 532受到轴向力时, 这些缺口 5321形成的间隙可增加弹性 - - 结构 532变形的空间, 增强弹性, 同时由于谐振器内特殊的电流分布, 该结构 对电性能没有影响。 请参见图 6, 为本发明第六实施方式提供的一种谐振管的结构图, 所述谐 振管 13包括谐振管本体 631以及设置于所述谐振管本体 631中部的弹性结构 632。
所述谐振管本体 631包括位于弹性结构 632两端的第一本体部 6312和第 二本体部 6314。 弹性结构 632的两端分别与第一本体部 6312和第二本体部 6314相连接。 弹性结构 632呈鼓形, 并沿谐振管 63的径向内凹(或外凸)。 第 一本体部 6312顶部设置有抵接部 6319, 所述抵接部 6319与介质材料抵接。 延伸的周壁 6316。 在 4氏接部 6319受到轴向的压力时, 弹性结构 632产生弹性 形变, 从而提供使所述介质材料的上下端面分别与盖板的下表面及谐振管 63 的上表面紧密接触的弹性压力。
所述弹性结构 632的形状不局限于鼓形,也可以采用实施方式二至五任意 一项的结构, 例如碗口形等等。 以上各实施方式的弹性结构可以采用金属片制造,当然也可以采用其他具 有弹性的材料, 例如可弹性形变的合金材料等。
弹性结构与谐振管本体的连接方式可以是焊接,或者弹性结构与谐振管成 型为一体。
弹性结构的具体形态不限于上述具体实施方式提供的方式,其具体结构的 设计以可以产生弹性形变以提供使所述介质材料的上下端面分别与盖板的下 表面及谐振管的上表面紧密接触的弹性压力即可。 请参见图 7及图 8, 分别为本发明第七实施方式提供的滤波器 700的组装 状态的立体剖视图和立体分解图。所述滤波器 700采用谐振器进行组合构造而 成, 其中, 所述谐振器中的至少一个采用上述的谐振器的结构。 一般情况下, 滤波器 700中各个谐振器的盖板合并为该滤波器的盖板, N个谐振器的谐振腔 称为该滤波器的 N个谐振腔(N为不小于 1的整数) 。 所述滤波器 700包括 - - 一盒体 71 , 以及覆盖所述盒体 71的盖板 72。 所述盒体 71为金属盒体, 所述 盖板 72为金属盖板,所述盒体 71可以为整体为金属材料或者至少内表面金属 化的腔体, 所述金属盖板 72可以整体为金属材料或者至少下表面金属化的板 体。
在本实施方式中, 所述滤波器 700为三腔滤波器。 所述盒体 71具有一开 口端以及三个谐振腔 712。 所述盖板 72覆盖所述开口端。 每个谐振腔 712内 设置一谐振管 73 , 以及对应于所述谐振腔 712的调谐螺釘 74。 至少一个谐振 腔 712内在电场强度较强区域填充介质材料 77。
至少一个所述谐振管 73采用上述实施方式中任意一种的结构。
可以理解的是,本发明实施例提供的滤波器中的至少一个谐振腔中在电场 强度较强区域填充介电常数大于 1的介质材料 77, 所述介质材料 77填充于谐 振腔 712内形成的电容区域。 所述电容区域具体可包括: 所述谐振管 73与所 述盖板 72之间的区域; 还可以包括所述调谐螺釘 74与所述调谐管 73内壁之 间的区域, 或者所述谐振管 73的外缘区域与所述谐振腔 712的腔壁之间的区 域中的至少一个。 这些区域具有较强的电场强度。 而且, 在前述的至少一个谐 振腔内的谐振管可以采用上述实施例方式中任意一种结构,如图 1至图 6所对 应的实施例的描述。而对于该滤波器中的其他部分的结构可以参考现有技术中 的滤波器的结构, 在此不予赘述, 也不予限定(即可以与未来的一些滤波器的 结构相结合使用) 。 请参见图 9, 为本发明第八实施方式提供的双工器 801的结构示意图, 所 述双工器 801包括: 发射通道滤波器 8011和接收通道滤波器 8012, 所述发射 通道滤波器 8011和接收通道滤波器 8012采用上述滤波器 500进行滤波。发射 通道滤波器 8011用于处理发射机的发射信号,接收通道滤波器 8012用于处理 接收机的接收信号。
请参见图 10, 为本发明第九实施方式提供的多工器 902的结构示意图, 所述多工器 902包括: 包括多个发射通道滤波器 9021和多个接收通道滤波器 9022, 所述发射通道滤波器 9021和接收通道滤波器 9022采用上述的滤波器 700进行滤波。图中示出两个发射通道滤波器 9021和两个接收通道滤波器 9022, 其他实施方式还可以为 3个或者 3个以上。 发射通道滤波器 9021用于处理发 - - 射机的发射信号, 接收通道滤波器 9022用于处理接收机的接收信号。
可以理解的是, 以上实施例提供的滤波器, 双工器或多工器, 可以应用于 通信系统, 如一种通信设备(比如基站或终端) 中, 也可以应用于雷达系统, 在此可以不予限定。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员 应当理解: 本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员 在本发明揭露的技术范围内, 可轻易想到的变化或替换,都应涵盖在本发明的 保护范围之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权 利 要 求
1. 一种谐振器, 包括谐振腔体, 该谐振腔体具有一谐振腔及一开口端, 所述谐振器还包括覆盖所述开口端并与所述谐振腔体相连接的盖板,位于所述 谐振腔内的谐振管, 其特征在于,所述谐振器还包括填充于所述谐振腔内的介 电常数大于 1的介质材料,所述谐振管包括谐振管本体以及与所述谐振管本体 相结合的弹性结构, 所述介质材料填充于所述谐振腔内的电容区域, 所述电容 区域包括所述谐振管与所述盖板之间的区域;所述弹性结构用于提供沿所述谐 振管轴向方向的弹性压力,使所述介质材料的上下端面分别与所述盖板的下表 面及所述谐振管的上表面紧密接触。
2. 如权利要求 1 所述的谐振器, 其特征在于, 所述谐振器还包括调谐螺 釘, 所述调谐螺釘与所述盖板连接并伸入所述谐振管围成的空间中。
3. 如权利要求 1或 2所述的谐振器,其特征在于,所述电容区域还包括: 所述调谐螺釘与所述调谐管内壁之间的区域,或者所述谐振管的外缘与所述谐 振腔的腔壁之间的区域中的至少一个。
4. 如权利要求 1至 3任意一项所述的谐振器, 其特征在于, 所述弹性结 构与所述谐振管本体焊接固定或者与所述谐振管成型为一体。
5. 如权利要求 1至 4任意一项所述的谐振器, 其特征在于, 所述弹性结 构设置于所述谐振管的顶部、 中部或者底部。
6. 如权利要求 1至 5任意一项所述的谐振器, 其特征在于, 所述弹性结 构开设缺口以增强弹性。
7. 如权利要求 1至 6任意一项所述的谐振器, 其特征在于, 所述弹性结 构为金属片。
8. 如权利要求 1至 7任意一项所述的谐振器, 其特征在于, 所述介质材 料的品质因子 Qf大于 1000。
9. 如权利要求 1至 8任意一项所述的谐振器, 其特征在于, 所述填充的 介质材料分别与所述盖板及所述谐振管压接。
10. 如权利要求 1至 8任意一项所述的谐振器, 其特征在于, 所述介质材 料的一面与所述盖板及所述谐振管中的一个粘结或焊接,相对的另一面通过弹 性结构提供的弹力压力与所述盖板及所述谐振管中的另一个紧密接触。
11. 如权利要求 1至 10任意一项所述的谐振器, 其特征在于, 其特征在 于, 所述介质材料包括: 陶瓷、 单晶石英、 或者氧化铝。
12. 一种滤波器, 其特征在于, 包括至少一个如权利要求 1至 11任意一 项所述的谐振器。
13 . 一种双工器, 其特征在于, 包括发射通道滤波器和接收通道滤波器, 所述发射通道滤波器和接收通道滤波器采用权利要求 12所述的滤波器进行滤 波。
14. 一种多工器, 其特征在于, 包括多个发射通道滤波器和多个接收通道 滤波器, 所述发射通道滤波器和接收通道滤波器采用权利要求 12所述的滤波 器进行滤波。
15. 一种通信设备, 其特征在于, 包括至少一个如权利要求 1至 11任意 一项所述的谐振器。
PCT/CN2013/090904 2013-12-30 2013-12-30 谐振器、滤波器、双工器、多工器及通信设备 WO2015100541A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13900752.0A EP3079200B1 (en) 2013-12-30 2013-12-30 Resonator, filter, duplexer, multiplexer and communication device
CN201380009626.2A CN104885293B (zh) 2013-12-30 2013-12-30 谐振器、滤波器、双工器、多工器及通信设备
PCT/CN2013/090904 WO2015100541A1 (zh) 2013-12-30 2013-12-30 谐振器、滤波器、双工器、多工器及通信设备
US15/199,163 US9979070B2 (en) 2013-12-30 2016-06-30 Resonator, filter, duplexer, multiplexer, and communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090904 WO2015100541A1 (zh) 2013-12-30 2013-12-30 谐振器、滤波器、双工器、多工器及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/199,163 Continuation US9979070B2 (en) 2013-12-30 2016-06-30 Resonator, filter, duplexer, multiplexer, and communications device

Publications (1)

Publication Number Publication Date
WO2015100541A1 true WO2015100541A1 (zh) 2015-07-09

Family

ID=53492901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090904 WO2015100541A1 (zh) 2013-12-30 2013-12-30 谐振器、滤波器、双工器、多工器及通信设备

Country Status (4)

Country Link
US (1) US9979070B2 (zh)
EP (1) EP3079200B1 (zh)
CN (1) CN104885293B (zh)
WO (1) WO2015100541A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088978A (zh) * 2016-12-27 2019-08-02 华为技术有限公司 谐振器及通信装置
WO2019196852A1 (zh) * 2018-04-11 2019-10-17 华为技术有限公司 滤波装置
US10977267B1 (en) 2016-08-17 2021-04-13 Palantir Technologies Inc. User interface data sample transformer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266062B1 (en) * 2015-03-01 2018-08-22 Telefonaktiebolaget LM Ericsson (publ) Waveguide e-plane filter
CN113013563A (zh) 2016-12-09 2021-06-22 华为技术有限公司 滤波装置
US10505244B2 (en) * 2017-03-17 2019-12-10 Ace Technologies Corporation RF cavity filter using elastic element and method for manufacturing the same
KR102343774B1 (ko) * 2017-03-22 2021-12-28 주식회사 에이스테크놀로지 Pimd 성능 향상을 위한 rf 필터
CN113170200A (zh) 2018-12-13 2021-07-23 华为技术有限公司 滤波方法和装置
CN110534854A (zh) * 2019-07-26 2019-12-03 苏州诺泰信通讯有限公司 一种新型滤波器降频结构
CN113745780B (zh) * 2020-05-29 2022-10-28 华为技术有限公司 一种腔体滤波器和通信设备
CN114079439A (zh) * 2020-08-17 2022-02-22 中兴通讯股份有限公司 双工器、网络设备、控制方法、电子设备及存储介质
US20230387878A1 (en) * 2020-09-21 2023-11-30 Telefonktiebolaget Lm Ericsson (Publ) Modular Electronic Cigarette
CN117393980B (zh) * 2023-12-12 2024-04-02 成都世源频控技术股份有限公司 一种卯榫结构的四工器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102509819A (zh) * 2011-10-31 2012-06-20 深圳市大富科技股份有限公司 一种介质滤波器、锁紧螺母、调谐装置及通信射频器件

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124902A (en) 1981-01-26 1982-08-04 Toyo Commun Equip Co Ltd Filter for semicoaxial cavity resonator
JP2762877B2 (ja) * 1992-11-27 1998-06-04 日本電気株式会社 光マイクロ波共鳴器用キャビティ
FI94298C (fi) * 1993-03-03 1995-08-10 Lk Products Oy Menetelmä ja kytkentä suodatintyypin vaihtamiseksi
JP2005223665A (ja) * 2004-02-06 2005-08-18 Tamagawa Electronics Co Ltd 誘電体共振器及びフィルタ装置
EP1791212B1 (en) * 2005-11-28 2009-07-15 Panasonic Corporation Microwave filters including a capacitive coupling element
US7804385B2 (en) * 2007-04-20 2010-09-28 Rs Microwave Company Composite resonator for use in tunable or fixed filters
US8773222B2 (en) * 2008-01-31 2014-07-08 Telefonaktiebolaget L M Ericsson (Publ) Filter assembly
JP5399849B2 (ja) 2009-10-08 2014-01-29 株式会社ブリヂストン 空気入りタイヤ
CN201629390U (zh) * 2010-04-14 2010-11-10 武汉凡谷电子技术股份有限公司 一种tm介质滤波器
US8947178B1 (en) * 2010-08-12 2015-02-03 The United States Of America As Represented By The Secretary Of The Air Force Dielectric core tunable filters
CN202004138U (zh) * 2010-08-18 2011-10-05 深圳市大富科技股份有限公司 介质滤波器、介质谐振器及盖板单元和通信设备
JP5740410B2 (ja) * 2011-04-20 2015-06-24 太陽誘電株式会社 デュープレクサ
CN202217778U (zh) * 2011-07-08 2012-05-09 武汉凡谷电子技术股份有限公司 一种两端接地tm模介质谐振器
CN202308237U (zh) * 2011-09-30 2012-07-04 深圳市大富科技股份有限公司 介质滤波器和通信射频器件
CN102637940A (zh) * 2012-04-27 2012-08-15 深圳市国人射频通信有限公司 介质滤波器及其介质谐振器
CN103107389A (zh) 2012-11-16 2013-05-15 深圳市大富科技股份有限公司 腔体滤波器
CN103022621A (zh) * 2012-12-18 2013-04-03 四川九洲电器集团有限责任公司 运用介质块加载的谐振器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102509819A (zh) * 2011-10-31 2012-06-20 深圳市大富科技股份有限公司 一种介质滤波器、锁紧螺母、调谐装置及通信射频器件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10977267B1 (en) 2016-08-17 2021-04-13 Palantir Technologies Inc. User interface data sample transformer
US11475033B2 (en) 2016-08-17 2022-10-18 Palantir Technologies Inc. User interface data sample transformer
CN110088978A (zh) * 2016-12-27 2019-08-02 华为技术有限公司 谐振器及通信装置
US10840577B2 (en) 2016-12-27 2020-11-17 Huawei Technologies Co., Ltd. Resonator and communications apparatus
CN110088978B (zh) * 2016-12-27 2021-01-29 华为技术有限公司 谐振器及通信装置
WO2019196852A1 (zh) * 2018-04-11 2019-10-17 华为技术有限公司 滤波装置
US11211677B2 (en) 2018-04-11 2021-12-28 Huawei Technologies Co., Ltd. Filtering apparatus

Also Published As

Publication number Publication date
US9979070B2 (en) 2018-05-22
CN104885293A (zh) 2015-09-02
US20160315368A1 (en) 2016-10-27
CN104885293B (zh) 2018-05-29
EP3079200B1 (en) 2019-04-24
EP3079200A4 (en) 2017-01-04
EP3079200A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2015100541A1 (zh) 谐振器、滤波器、双工器、多工器及通信设备
US10873119B2 (en) Filter and wireless network device
WO2015070450A1 (zh) 谐振器、滤波器、双工器及多工器
WO2014190536A1 (zh) 介质滤波器,收发信机及基站
KR101307107B1 (ko) 유전체 공진기 필터
US10840577B2 (en) Resonator and communications apparatus
GB2353144A (en) Combline filter
WO2014134915A1 (zh) 介质谐振器及介质滤波器
CN110676542B (zh) 端口耦合结构、滤波器及射频组件
KR101035071B1 (ko) Pimd에 의한 특성 저하를 방지하기 위한 rf 캐비티 필터 및 이에 적용되는 튜닝 구조
JP3883902B2 (ja) 誘電体フィルタ
US7535318B2 (en) Dielectric device
KR100703719B1 (ko) 곡면형 도체판으로 결합된 공진기 필터
KR101605863B1 (ko) 유전체 공진기 필터
CN111316498B (zh) 电路载体和波导之间的耦合及去耦装置
KR20160008486A (ko) 동축 공진기를 포함하는 캐비티 필터
US6724279B1 (en) Duplexer filter with offset resonator holes
KR101595550B1 (ko) 동축 공진기를 포함하는 캐비티 필터
WO2021102852A1 (zh) 一种介质滤波器及通信设备
WO2012167585A1 (zh) 滤波器
KR200330762Y1 (ko) 불효파 특성 개선을 위한 유전체 캐비티 여파기
JP2007096773A (ja) 誘電体装置
TW201315144A (zh) 可調式濾波器裝置
JP2004064274A (ja) 誘電体フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900752

Country of ref document: EP