WO2015099493A1 - 엔진의 배기 가스 재순환 시스템 - Google Patents

엔진의 배기 가스 재순환 시스템 Download PDF

Info

Publication number
WO2015099493A1
WO2015099493A1 PCT/KR2014/012913 KR2014012913W WO2015099493A1 WO 2015099493 A1 WO2015099493 A1 WO 2015099493A1 KR 2014012913 W KR2014012913 W KR 2014012913W WO 2015099493 A1 WO2015099493 A1 WO 2015099493A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure egr
engine
line
exhaust gas
intake
Prior art date
Application number
PCT/KR2014/012913
Other languages
English (en)
French (fr)
Inventor
신승협
심의준
한영덕
강은아
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Publication of WO2015099493A1 publication Critical patent/WO2015099493A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit

Definitions

  • the present invention relates to an exhaust gas recirculation system of an engine, and more particularly, to an exhaust gas recirculation system of an engine for optimizing fuel consumption rate according to an engine operating section.
  • Nitrogen Oxides which are contained in the exhaust gas of internal combustion engines, are the main air pollutants that cause acid rain, irritate the eyes and respiratory organs, and adversely affect animals and plants. Many studies are being conducted to reduce the number of targets.
  • Exhaust gas recirculation (EGR) system is the most widely used means of suppressing the generation of nitrogen oxides (NOx) and is a device for incorporating some of the exhaust gas discharged from the engine back into the combustion chamber.
  • EGR exhaust gas recirculation
  • Nitrogen oxide has a characteristic that increases rapidly as the combustion chamber temperature of the internal combustion engine increases, and when the temperature of the combustion chamber is lowered by incorporating the cooled exhaust gas into the inhaling mixer, the nitrogen oxide emitted is reduced.
  • FIG. 1 schematically shows a general exhaust gas recirculation system, in which exhaust gas discharged from the engine 1 is supplied to a turbine 3 through an exhaust pipe 2, and the turbine 3 is driven by exhaust gas. do. And the rotational torque of the turbine 3 is transmitted to the compressor 5 through the connecting shaft 4, the compressor (5) compresses the air sucked from the outside to charge the air through the intake pipe (6) To supply.
  • a recirculation line 7 is connected between the exhaust pipe 2 and the intake pipe 6, and a recirculation valve 8 is provided on the recirculation line 7. Accordingly, when the exhaust gas of the engine 1 is to be recycled, when the recirculation valve 8 is opened, a part of the exhaust gas discharged from the engine 1 may be charged with the compressed air compressed by the compressor 5. It is supplied to the engine 1 together.
  • the present invention has been made to solve the above-mentioned problems, and includes a recirculation line of exhaust gas passing through a turbocharger to prevent a decrease in intake pressure of the compressor, and furthermore, to provide an optimum fuel consumption rate according to the engine operating conditions. It is to provide an exhaust gas recirculation system.
  • a turbocharger provided with a turbine for rotating by the exhaust gas of the engine, and a compressor connected to the turbine for compressing the air supplied to the engine;
  • a high pressure EGR line connecting a front end side of the turbine on an exhaust line and a rear end side of the compressor on an intake line;
  • a high pressure EGR valve provided in the high pressure EGR line to adjust an amount of exhaust gas supplied from the exhaust line to the intake line;
  • a low pressure EGR line connecting a rear end side of the turbine on the exhaust line and a front end side of the compressor on the intake line;
  • a low pressure EGR valve provided in the low pressure EGR line to adjust an amount of exhaust gas supplied from the exhaust line to the intake line;
  • An intake pressure control valve provided at a front end side of the compressor on the intake line to adjust an amount of intake air; And classifying combustion conditions into low-temperature combustion conditions and general combustion conditions on the basis of the load versus RPM of the engine, and adjusting opening areas of the high pressure EGR valve, the low pressure EGR valve,
  • control unit the reference value of the load versus the RPM of the engine for separating the combustion conditions into the low temperature combustion conditions and the general combustion conditions may be a value between 42.5% to 57.5%.
  • the controller may be further configured to divide the low temperature combustion operation section into a low load region and a heavy load region based on the load versus the RPM of the engine, and compare the RPM of the engine to divide the low load region and the heavy load region.
  • the reference value of the load may be a value between 20% and 30%.
  • the control unit controls the low pressure EGR valve to open at least 80%, the intake pressure control valve to open at 70% to 90%, and the high pressure EGR valve to open at 40% or less. can do.
  • the controller may control the low pressure EGR valve to be opened by 80% or more, the high pressure EGR valve to be opened by 40% or more, and the intake pressure control valve to be opened to 70% or more and 90% or less. Can be.
  • the control unit may control the high pressure EGR valve to be opened to 80% or less, the low pressure EGR valve to 30% or less, and the intake pressure control valve to be opened to 20% or less. have.
  • the control unit may set a transient driving section that is converted from the low temperature combustion driving section of the engine to the normal combustion driving section, and control the opening rate of the low pressure EGR valve to gradually decrease in the transient driving section.
  • the transient driving section may be set between the low temperature combustion driving section and the general combustion driving section, and may be set to a section width within 15% of the section width of the entire driving section.
  • stable low-temperature combustion can be realized by applying a high pressure EGR line and a low pressure EGR line to the exhaust gas recirculation system of the engine, thereby reducing emissions of nitrogen oxides and particulate matter (PM).
  • a high pressure EGR line and a low pressure EGR line to the exhaust gas recirculation system of the engine, thereby reducing emissions of nitrogen oxides and particulate matter (PM).
  • the optimum fuel consumption rate is realized by selecting an operation strategy of the exhaust gas recirculation system according to the load of the engine.
  • FIG. 1 is a view schematically showing a general exhaust gas recirculation system.
  • FIG. 2 is a block diagram showing an exhaust gas recirculation system of an engine according to an embodiment of the present invention.
  • 3 and 4 are graphs showing experimental conditions of an exhaust gas recirculation system of an engine according to an embodiment of the present invention.
  • 5 to 8 are graphs showing experimental results of an exhaust gas recirculation system of an engine according to an embodiment of the present invention.
  • FIG. 9 is a graph illustrating an engine operating section of an exhaust gas recirculation system of an engine according to an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram showing an exhaust gas recirculation system of an engine according to an embodiment of the present invention. The structure of the exhaust gas recirculation system will be described in detail with reference to FIG. 2.
  • the exhaust gas recirculation system is a system for optimizing fuel consumption rate by applying a high pressure EGR line and a low pressure EGR line together to realize stable low temperature combustion of an engine, and selecting an operation strategy of the exhaust gas recirculation system according to the load of the engine.
  • Engine 100 turbocharger 200, high pressure EGR line 300, high pressure EGR valve 310, low pressure EGR line 400, low pressure EGR valve 410, intake pressure regulating valve 500, control unit ( 800, the DPF / DOC 600, the intercooler 700, and the like.
  • the turbocharger 200 is provided on the intake lines 112 and 114 and the exhaust lines 122 and 124 of the engine 100, and the turbocharger 200 is an exhaust manifold 120 of the engine 100.
  • the turbine 210 is rotated by the exhaust gas discharged from the) and the compressor 220 connected to the turbine 210 to compress the air supplied to the engine 100 is configured.
  • the high pressure EGR line 300 is disposed in the high pressure section of the exhaust lines 122, 124, and the front end of the turbine 210 on the exhaust line 122 and the rear end of the compressor 220 on the intake line 114.
  • the side is connected to recycle some of the exhaust gas discharged from the exhaust manifold 120 to the intake manifold 110.
  • a high pressure EGR valve 310 for controlling the amount of exhaust gas recycled by opening and closing the high pressure EGR line 300, and the recycled exhaust gas are supplied to the intake manifold 110.
  • a high pressure EGR cooler 320 is provided to cool it before.
  • the high pressure exhaust gas discharged from the engine 100 is supplied to the intake line 114 having a relatively low pressure through the high pressure EGR line 300, and the high temperature exhaust gas is supplied to the high pressure EGR cooler 320. Cooling by) reduces the volume and can be efficiently mixed with the intake air.
  • the low pressure EGR line 400 is disposed in the low pressure section of the exhaust lines 122, 124, and the rear end side of the turbine 210 on the exhaust line 124 and of the compressor 220 on the intake line 112.
  • the front end side is connected to recycle some of the exhaust gas discharged from the turbine 210 to the intake line 112 side.
  • a low pressure EGR valve 410 for controlling the amount of exhaust gas recycled by opening and closing the low pressure EGR line 400, and before the recycled exhaust gas is supplied to the intake line 112.
  • a low pressure EGR cooler 420 is provided to cool it.
  • some of the low pressure exhaust gas discharged from the turbine 210 is supplied to the intake line 112 at a relatively low pressure through the low pressure EGR line 400, and the high temperature exhaust gas is supplied to the low pressure EGR cooler 420. Cooling by) reduces the volume and can be efficiently mixed with the intake air.
  • the intake pressure control valve 500 is the compressor 220 on the intake line 112 in order to maximize the recirculation efficiency through the low pressure EGR line 400 of the combustion and stable implementation of low temperature combustion. Is provided on the front end of the. That is, the intake pressure control valve 500 may adjust the opening degree of the intake line 112 to supply a large amount of exhaust gas recycled through the low pressure EGR line 400 to the intake line 112.
  • the controller 800 is electrically connected to the high pressure EGR valve 310, the low pressure EGR valve 410, and the intake pressure control valve 500, and the combustion conditions are based on the low-temperature combustion conditions and the general combustion conditions based on the load to the RPM of the engine. Divided into combustion conditions, the opening areas of the high pressure EGR valve 310, the low pressure EGR valve 410, and the intake pressure control valve 500 are adjusted according to the combustion conditions.
  • the DPF / DOC 600 is provided at the rear end side of the turbine 210 on the exhaust line 124, and the diesel particulate filter (DPF) is a particulate matter (PM) in exhaust gas. Is physically collected and burned to remove, and DOC (Diesel Oxidation Catalyst) removes soluble organic matter (SOF) from particulate matter in exhaust gas.
  • DPF diesel particulate filter
  • PM particulate matter
  • the intercooler 700 is provided at the rear end side of the compressor 220 on the intake line 114 to cool the boost air compressed by the compressor 220.
  • the low pressure EGR line 400 and the high pressure EGR line 300 at the same time, it is possible to recirculate a large amount of exhaust gas while minimizing the reduction of the intake pressure, thereby stably low temperature combustion. Can be implemented.
  • Such low-temperature combustion can significantly reduce the nitrogen oxides and particulate matter contained in the exhaust gas of the engine.
  • the output is limited and fuel economy is deteriorated. There is a problem.
  • determining the operating interval of low temperature combustion and general combustion is essential in an engine applying low temperature combustion, and in the present invention, a high pressure EGR line 300, a low pressure EGR line 400, and an intake pressure control valve 500 are provided.
  • the optimum operation strategy of the exhaust gas recirculation system is established in consideration of Brake Specific Fuel Consumption (BSFC) and Pump Mean Effective Pressure (PMEP).
  • the exhaust gas recirculation system is based on the load per RPM (Revolution Per Minute) of the engine 100, when the load is lower than the reference value of the engine is operated under low-temperature combustion conditions, if the load is higher than the reference value of the engine RPM It is characterized by operating under normal combustion conditions.
  • the reference value is a value selected between 42.5% and 57.5%.
  • the load versus the RPM of the engine means a ratio of the maximum output and the current load at each RPM of the engine 100.
  • the load against the RPM of the engine 100 which is the limit of the low-temperature combustion operating range is set to approximately 50%, and the maximum EGR rate range of 50 to 50% or less of the RPM against the engine load.
  • the experiment is conducted at an EGR rate of%, and at an EGR rate of 25% for an engine load of more than 50%, the pattern changes depending on the specific gravity of the high pressure and low pressure EGR at the same EGR rate. .
  • the opening ratios of the high pressure EGR valve 310 and the intake pressure control valve 500 are changed, and the resultant value is measured while keeping the EGR rate constant at 50%. This is for stably supplying a large amount of recycle exhaust gas through the intake pressure control valve 500 to implement low temperature combustion and at the same time efficiently controlling the specific gravity of the low pressure EGR.
  • the opening ratios of the high pressure EGR valve 310 and the low pressure EGR valve 320 are changed, and the resultant value is measured while keeping the EGR rate constant at 25%. This maintains the state in which the intake pressure control valve 500 is opened to the maximum because a large amount of recycle exhaust gas is not required under normal combustion operation conditions.
  • the driving strategy in the low-temperature combustion operating conditions are divided into a low load strategy and a heavy load strategy based on the load versus RPM of the engine 100, and in a section where the load compared to the RPM of the engine is 20% to 30% Experimental results were obtained by dividing the low load strategy and the heavy load strategy.
  • an operation strategy that assists the high-pressure EGR of the recirculated exhaust gas under the low pressure EGR is sufficient to reduce fuel consumption. Appears.
  • BSFC braking fuel consumption rate
  • PMEP pumping loss
  • Closing the intake pressure control valve 500 increases the specific gravity of the low pressure EGR and lowers the specific gravity of the high pressure EGR, thereby increasing the PMEP, which is a deterioration factor of the BSFC.
  • the boost pressure is increased due to the improvement of the efficiency of the turbocharger 200, which is an improvement factor of BSFC.
  • the final BSFC is determined according to the correlation between the two factors affecting the BSFC. As shown in FIG. 5, in the low load region, the BSFC is lowered and improved when the low pressure EGR specific gravity is higher than the high pressure EGR specific gravity. Can be. This is because in the low load region, the flow rate of the exhaust gas is insufficient to sufficiently derive the efficiency of the turbocharger 200.
  • the high pressure EGR valve 310 is set to close or open at an opening rate of 40% or less, and the low pressure EGR valve 410 is set.
  • the high-speed EGR, low-pressure EGR and the high-pressure EGR capable of supplying an EGR rate of 50% under load conditions with an engine speed of 1400 rpm, 50% RPM of the engine 100
  • the combination of the intake pressure regulating valve 500 was limited.
  • the flow rate of the exhaust gas flowing into the turbine 210 is larger than that of the 1400rpm, and even though the specific gravity of the high pressure EGR is reduced, the supply and output of the recycled exhaust gas can be easily maintained, thereby obtaining a lot of experimental data.
  • the BSFC was improved by opening the high pressure EGR valve 310 to the maximum as in the case of the engine speed condition of 1400 rpm.
  • the low pressure EGR valve 410 is opened to the maximum in the low temperature combustion operation condition, and the specific gravity of the low pressure EGR is controlled by the intake pressure control valve 500. That is, when the opening degree of the high pressure EGR valve 310 is reduced, the intake pressure control valve 500 is further opened to increase the specific gravity of the low pressure EGR.
  • the load of the engine 100 has a lower limit selected from a value between 20% to 30% of the RPM, or the load of the engine 100 of the RPM of 42.5% to In the heavy load region having an upper limit selected from a value between 57.5%, the high pressure EGR valve 310 is set to open at an opening rate of 40% or more, and the low pressure EGR valve 410 is opened at an opening rate of 80% or more.
  • the intake pressure control valve 500 is set to open at an opening rate of 70% to 90%.
  • the operation strategy in the normal combustion operating conditions of the high load region where the load compared to the RPM of the engine 100 exceeds the reference value of the low temperature combustion conditions is the operating strategy in the above-described low temperature combustion operating conditions Looks different.
  • the load against the RPM of the engine 100 exceeding the reference value of the low temperature combustion conditions is selected in the section of the load of the RPM of the engine 100 is 42.5% to 57.5%.
  • the experiment was carried out by setting the EGR rate at about 25% under high-load general combustion operation conditions, which is a level that can stably supply recycled exhaust gas only by simultaneously using high pressure EGR and low pressure EGR. Therefore, under the high load general combustion operation conditions, the use of the intake pressure control valve 500 was excluded, and the operation strategy was evaluated only by the high pressure EGR and the low pressure EGR.
  • FIG. 7 shows an engine speed of 1400 rpm, a high load region of the engine 100, BSFC, PMEP, and the rear-side supercharge pressure of the compressor 220 under load conditions with respect to RPM of an engine of 75%.
  • the PMEP decreases, which is a BSFC improvement factor.
  • the flow rate of the exhaust gas flowing into the turbocharger 200 is reduced, thereby reducing the efficiency of the turbocharger 200.
  • the rear supercharge pressure of the compressor 220 is reduced, which is a BSFC deterioration factor.
  • the correlation of the two factors affecting the BSFC determines the tendency of the final BSFC.
  • the PMEP decreases and the impact on the BSFC improvement is greater than the adverse effect on the BSFC by decreasing the efficiency of the turbocharger 200. This is because the flow rate of the recycle exhaust gas is already sufficient to derive the efficiency of the turbocharger 200. Therefore, the strategy of using high pressure EGR more aggressively than low pressure EGR under high load general combustion operation conditions is advantageous for BSFC improvement.
  • FIG. 8 shows the BSFC, PMEP and the rear-side supercharge pressure of the compressor 220 under load conditions with an engine speed of 1800 rpm and an RPM of 75% of the engine, which increases the specific gravity of the high pressure EGR as shown in FIG. 7.
  • Increasing BSFCs show the same trend.
  • the high pressure EGR valve 310 is closed. Or set to open at an opening rate of 80% or less, close the low pressure EGR valve 410, or set to open at an opening rate of 30% or less, and close the intake pressure control valve 500 or 20% or less. It is characterized by setting to open at an opening degree.
  • the operation strategy in the low-temperature combustion operation conditions is divided into a low load region and a heavy load region, and in the low load region, the low pressure EGR and the intake pressure control valve 500 are actively used, and the flow rate of the recirculated exhaust gas is insufficient.
  • both the high pressure EGR valve 310 and the low pressure EGR valve 410 are sufficiently opened, and an operation strategy for controlling the flow rate of the recycle exhaust gas to the intake pressure control valve 500 is established.
  • PMEP is minimized by maximizing the EGR rate with high pressure EGR, and if the flow rate of the recycle exhaust gas is insufficient, the low pressure EGR is assisted, and the use of the intake pressure control valve 500 is minimized.
  • the transient operation section is converted from the low temperature combustion operation section of the engine 100 to the normal combustion operation section is set, the low pressure EGR valve in the transient operation section to be advantageous in terms of fuel consumption rate
  • the opening degree of 410 is gradually reduced, thereby naturally switching to the driving strategy of the high load region.
  • the transient driving section is set between the low temperature combustion driving section and the general combustion driving section, and is set to a section width within 15% of the section width of the entire driving section.
  • the section in which the load is 0% to 100% of the RPM of the engine is the entire driving section
  • the section of the low temperature combustion driving section is the section in which the load is 0% to 42.5% of the RPM of the engine
  • the transient operation may be a section in which the load of the engine relative to the RPM of 42.5% to 57.5%
  • the general combustion driving section may be set to a section in which the load of the engine is 57.5% to 100% of the RPM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

본 발명은 엔진의 배기 가스 재순환 시스에 관한 것이다. 본 발명에 따른 엔진의 배기 가스 재순환 시스템은, 엔진의 배기 가스에 의하여 회전하는 터빈과, 상기 터빈에 접속되어 상기 엔진으로 공급되는 공기를 압축하는 컴프레서가 마련되는 터보차저; 배기 라인 상의 상기 터빈의 전단 측과 흡기 라인 상의 상기 컴프레서의 후단 측을 연결하는 고압 EGR 라인; 상기 고압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 고압 EGR 밸브; 상기 배기 라인 상의 상기 터빈의 후단 측과 상기 흡기 라인 상의 상기 컴프레서의 전단 측을 연결하는 저압 EGR 라인; 상기 저압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 저압 EGR 밸브; 상기 흡기 라인 상의 상기 컴프레서의 전단 측에 마련되어 흡입공기의 양을 조절하는 흡기압력 조절밸브; 및 상기 엔진의 RPM 대비 부하를 기준으로 연소 조건을 저온 연소 조건과 일반 연소 조건으로 구분하고, 상기 연소 조건에 따라 상기 고압 EGR 밸브, 상기 저압 EGR 밸브, 상기 흡기압력 조절밸브의 개구 면적을 조절하는 제어부를 포함한다.

Description

엔진의 배기 가스 재순환 시스템
본 발명은 엔진의 배기 가스 재순환 시스템에 관한 것으로서, 더욱 상세하게는 엔진의 운전구간에 따라 연료 소비율을 최적화하는 엔진의 배기 가스 재순환 시스템에 관한 것이다.
일반적으로 내연 기관의 배기 가스에 포함되어 배출되는 질소 산화물(Nitrogen Oxides, NOx)은 산성비의 원인이 되고, 눈과 호흡기를 자극하며, 동식물에 나쁜 영향을 주는 주요 대기오염물질로서, 이것의 배출량은 규제 대상으로 지정되어 이를 줄이기 위한 많은 연구가 진행되고 있다.
배기 가스 재순환(Exhaust Gas Recirculation, EGR) 시스템이란 질소 산화물(NOx)의 생성을 억제하기 위하여 현재 가장 많이 사용하고 있는 수단으로서, 엔진에서 배출되는 배기 가스의 일부를 다시 연소실로 혼입시키는 장치이다.
질소 산화물은 내연기관의 연소실 온도가 상승할수록 급격히 증가하는 특성을 가지므로 흡입하는 혼합기에 냉각된 배기 가스를 혼입시켜 연소실의 온도를 낮추게 되면 배출되는 질소 산화물이 감소된다.
도 1은 일반적인 배기 가스 재순환 시스템을 개략적으로 나타낸 도면으로서, 엔진(1)에서 배출되는 배기 가스는 배기관(2)을 통하여 터빈(3)으로 공급되고, 상기 터빈(3)은 배기 가스에 의하여 구동된다. 그리고 상기 터빈(3)의 회전 토크는 접속축(4)을 통하여 컴프레서(5)로 전달되며, 상기 컴프레서(5)는 외부로부터 흡입되는 공기를 압축하여 과급 공기를 흡기관(6)을 통하여 엔진으로 공급한다.
한편, 상기 배기관(2)과 상기 흡기관(6) 사이에는 재순환 라인(7)이 연결되고, 상기 재순환 라인(7) 상에는 재순환 밸브(8)가 마련된다. 따라서 상기 엔진(1)의 배기 가스를 재순환 시키고자 하는 경우, 상기 재순환 밸브(8)를 개방시키면 상기 엔진(1)에서 배출되는 배기 가스의 일부가 상기 컴프레서(5)에 의하여 압축된 과급 공기와 함께 상기 엔진(1)으로 공급된다.
그러나, 이러한 배기 가스 재순환 시스템에서 엔진에서 배출되는 배기 가스가 터빈 및 컴프레서로 구성되는 터보차저(turbo charger)를 경유하지 않게 되면, 다시 말해 배기 가스의 재순환율이 증가할수록 배기 압력이 감소하여 펌핑 손실(Pumping Mean Effective Pressure, PMEP)이 감소하고, 이에 따라 터빈으로 유입되는 배기 가스의 유량이 감소하여 터빈을 효율적으로 사용하는데 한계가 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 터보차저를 경유하는 배기 가스의 재순환 라인을 구비하여 컴프레서의 흡기 압력의 저하를 방지하고, 나아가 엔진의 운전 조건에 따라 최적의 연료 소비율을 가지는 엔진의 배기 가스 재순환 시스템을 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명은, 엔진의 배기 가스에 의하여 회전하는 터빈과, 상기 터빈에 접속되어 상기 엔진으로 공급되는 공기를 압축하는 컴프레서가 마련되는 터보차저; 배기 라인 상의 상기 터빈의 전단 측과 흡기 라인 상의 상기 컴프레서의 후단 측을 연결하는 고압 EGR 라인; 상기 고압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 고압 EGR 밸브; 상기 배기 라인 상의 상기 터빈의 후단 측과 상기 흡기 라인 상의 상기 컴프레서의 전단 측을 연결하는 저압 EGR 라인; 상기 저압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 저압 EGR 밸브; 상기 흡기 라인 상의 상기 컴프레서의 전단 측에 마련되어 흡입공기의 양을 조절하는 흡기압력 조절밸브; 및 상기 엔진의 RPM 대비 부하를 기준으로 연소 조건을 저온 연소 조건과 일반 연소 조건으로 구분하고, 상기 연소 조건에 따라 상기 고압 EGR 밸브, 상기 저압 EGR 밸브, 상기 흡기압력 조절밸브의 개구 면적을 조절하는 제어부를 포함하는 엔진의 배기 가스 재순환 시스템을 제공할 수 있다.
이때, 상기 제어부는, 상기 연소 조건을 상기 저온 연소 조건과 상기 일반 연소 조건으로 구분하기 위한 상기 엔진의 RPM 대비 부하의 기준값은 42.5% 내지 57.5% 사이의 값일 수 있다.
또한, 상기 제어부는, 상기 저온 연소 운전구간을 상기 엔진의 RPM 대비 부하를 기준으로 저부하 영역과 중부하 영역으로 구분하되, 상기 저부하 영역과 상기 중부하 영역으로 구분하기 위한 상기 엔진의 RPM 대비 부하의 기준값은 20% 내지 30% 사이의 값일 수 있다.
또한, 상기 저부하 영역에서 상기 제어부는, 상기 저압 EGR 밸브는 80% 이상 개방되고, 상기 흡기압력 조절밸브는 70% 이상 90% 이하로 개방되며, 상기 고압 EGR 밸브는 40% 이하로 개방되도록 제어할 수 있다.
또한, 상기 중부하 영역에서 상기 제어부는, 상기 저압 EGR 밸브는 80% 이상 개방되고, 상기 고압 EGR 밸브는 40% 이상 개방되며, 상기 흡기압력 조절밸브는 70% 이상 90% 이하로 개방되도록 제어할 수 있다.
또한, 상기 일반 연소 운전구간에서 상기 제어부는, 고압 EGR 밸브는 80% 이하로 개방되고, 상기 저압 EGR 밸브는 30% 이하로 개방되며, 상기 흡기압력 조절밸브는 20% 이하로 개방되도록 제어할 수 있다.
또한, 상기 제어부는, 상기 엔진의 상기 저온 연소 운전구간에서 상기 일반 연소 운전구간으로 변환되는 과도 운전구간을 설정하고, 상기 과도 운전구간에서는 상기 저압 EGR 밸브의 개도율이 점진적으로 감소되도록 제어할 수 있다.
또한, 상기 과도 운전구간은, 상기 저온 연소 운전구간과 상기 일반 연소 운전구간 사이에 설정되고, 전체 운전구간의 구간 폭의 15% 이내의 구간 폭으로 설정될 수 있다.
본 발명에 따르면, 엔진의 배기 가스 재순환 시스템에 고압 EGR 라인과 저압 EGR 라인을 함께 적용함으로써 안정적인 저온 연소를 구현할 수 있고, 이로 인하여 질소 산화물과 입자상 물질(Particle Matter; PM)의 배출을 저감할 수 있다.
그리고 엔진의 부하에 따라 배기 가스 재순환 시스템의 운전 전략을 선택함으로써 최적의 연료 소비율이 실현되는 장점이 있다.
도 1은 일반적인 배기 가스 재순환 시스템을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 엔진의 배기 가스 재순환 시스템을 나타낸 구성도이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 엔진의 배기 가스 재순환 시스템의 실험 조건을 나타낸 그래프이다.
도 5 내지 도 8은 본 발명의 일 실시예에 따른 엔진의 배기 가스 재순환 시스템의 실험 결과를 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 엔진의 배기 가스 재순환 시스템의 엔진 운전구간을 나타낸 그래프이다.
*도면부호의 설명*
100: 엔진, 110: 흡기 매니폴더
120: 배기 매니폴더, 200: 터보차저
210: 터빈, 220: 컴프레서
300: 고압 EGR 라인, 310: 고압 EGR 밸브
320: 고압 EGR 쿨러, 400: 저압 EGR 라인
410: 저압 EGR 밸브, 420: 저압 EGR 쿨러
500: 흡기압력 조절밸브, 600: DPF/DOC
700: 인터쿨러
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다. 그리고 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 실시할 수 있을 것이나, 이 또한 본 발명의 범위 내에 속함은 물론이다.
도 2는 본 발명의 일 실시예에 따른 엔진의 배기 가스 재순환 시스템을 나타낸 구성도이다. 도 2를 참조하여 상기 배기 가스 재순환 시스템의 구조에 대하여 상세히 설명한다.
상기 배기 가스 재순환 시스템은 엔진의 안정적인 저온 연소를 구현하기 위하여 고압 EGR 라인과 저압 EGR 라인을 함께 적용하고, 엔진의 부하에 따라 배기 가스 재순환 시스템의 운전 전략을 선택함으로써 연료 소비율을 최적화하기 위한 시스템으로서, 엔진(100), 터보차저(200), 고압 EGR 라인(300), 고압 EGR 밸브(310), 저압 EGR 라인(400), 저압 EGR 밸브(410), 흡기압력 조절밸브(500), 제어부(800), DPF/DOC(600) 및 인터쿨러(700) 등을 포함하여 구성된다.
상기 엔진(100)의 흡기 라인(112, 114)과 배기 라인(122, 124) 상에는 상기 터보차저(200)가 마련되고, 상기 터보차저(200)는 상기 엔진(100)의 배기 매니폴더(120)로부터 배출되는 배기 가스에 의하여 회전하는 터빈(210)과, 상기 터빈(210)에 접속되어 상기 엔진(100)으로 공급되는 공기를 압축하는 컴프레서(220)를 포함하여 구성된다.
상기 고압 EGR 라인(300)은 상기 배기 라인(122, 124)의 고압부에 배치되고, 배기 라인(122) 상의 상기 터빈(210)의 전단 측과 흡기 라인(114) 상의 상기 컴프레서(220)의 후단 측을 연결하여 상기 배기 매니폴더(120)에서 배출되는 배기 가스 중의 일부를 상기 흡기 매니폴더(110) 측으로 재순환시킨다.
상기 고압 EGR 라인(300) 상에는 상기 고압 EGR 라인(300)을 개폐하여 재순환되는 배기 가스의 양을 조절하는 고압 EGR 밸브(310)와, 재순환되는 배기 가스가 상기 흡기 매니폴더(110)로 공급되기 전에 이를 냉각시키는 고압 EGR 쿨러(320)가 마련된다.
따라서, 상기 엔진(100)에서 배출되는 고압의 배기 가스 중 일부는 상기 고압 EGR 라인(300)을 통해 비교적 저압인 상기 흡기 라인(114)으로 공급되며, 고온의 배기 가스는 상기 고압 EGR 쿨러(320)에 의해 냉각됨으로써 부피가 감소되어 흡기와 효율적으로 혼합될 수 있다.
상기 저압 EGR 라인(400)은 상기 배기 라인(122, 124)의 저압부에 배치되고, 배기 라인(124) 상의 상기 터빈(210)의 후단 측과 흡기 라인(112) 상의 상기 컴프레서(220)의 전단 측을 연결하여 상기 터빈(210)에서 배출되는 배기 가스 중의 일부를 상기 흡기 라인(112) 측으로 재순환시킨다.
상기 저압 EGR 라인(400) 상에는 상기 저압 EGR 라인(400)을 개폐하여 재순환되는 배기 가스의 양을 조절하는 저압 EGR 밸브(410)와, 재순환 되는 배기 가스가 상기 흡기 라인(112)으로 공급되기 전에 이를 냉각시키는 저압 EGR 쿨러(420)가 마련된다.
따라서, 상기 터빈(210)에서 배출되는 저압의 배기 가스 중 일부는 상기 저압 EGR 라인(400)을 통해 비교적 저압인 상기 흡기 라인(112)으로 공급되며, 고온의 배기 가스는 상기 저압 EGR 쿨러(420)에 의해 냉각됨으로써 부피가 감소되어 흡기와 효율적으로 혼합될 수 있다.
상기 흡기압력 조절밸브(500, Intake Pressure Control Valve, IPCV)는 저온 연소의 안정적인 구현 및 배기 가스의 저압 EGR 라인(400)을 통한 재순환 효율을 극대화하기 위하여 흡기 라인(112) 상의 상기 컴프레서(220)의 전단 측에 마련된다. 즉, 상기 흡기압력 조절밸브(500)는 상기 흡기 라인(112)의 개도율을 조절하여 상기 저압 EGR 라인(400)을 통해 재순환되는 배기 가스를 흡기 라인(112)에 다량으로 공급할 수 있다.
상기 제어부(800)는 고압 EGR 밸브(310), 저압 EGR 밸브(410), 흡기압력 조절밸브(500)와 전기적으로 연결되고, 상기 엔진의 RPM 대비 부하를 기준으로 연소 조건을 저온 연소 조건과 일반 연소 조건으로 구분하여, 연소 조건에 따라 고압 EGR 밸브(310), 저압 EGR 밸브(410), 흡기압력 조절밸브(500)의 개구 면적을 조절한다.
상기 DPF/DOC(600)는 배기 라인(124) 상의 상기 터빈(210)의 후단 측에 마련되며, DPF(Diesel Particulate Filter, 배기 가스 후처리 장치)는 배기 가스 중의 입자상 물질(Particle Matter, PM)을 물리적으로 포집하여 연소시켜 제거하고, DOC(Diesel Oxidation Catalyst, 디젤 산화 촉매 장치)는 배기 가스 중의 입자상 물질 중 용해성 유기물질(Soluble Organic Fraction, SOF)를 제거한다.
상기 인터쿨러(700)는 흡기 라인(114) 상의 상기 컴프레서(220)의 후단 측에 마련되어 상기 컴프레서(220)에서 압축된 과급 공기를 냉각한다.
이와 같은 엔진의 배기 가스 재순환 시스템에 고압 EGR 라인(300)만을 적용할 경우 배기 가스의 재순환율을 증가시킬수록 상기 터빈(210) 측으로 유입되는 배기 가스의 양이 감소하여 상기 터빈(210)을 효율적으로 사용하는데 한계가 있으며, 이로 인하여 상기 컴프레서(220)에 의해 압축되는 흡기의 압력이 저하된다는 문제가 있다.
따라서, 본 발명의 일 실시예에 따르면, 저압 EGR 라인(400)을 상기 고압 EGR 라인(300)과 동시에 적용함으로써 흡기 압력의 저하를 최소화하면서도 배기 가스를 다량으로 재순환시킬 수 있어 저온 연소를 안정적으로 구현할 수 있다.
이러한 저온 연소에 의하여 엔진의 배기 가스 중에 포함된 질소 산화물과 입자상 물질을 현저하게 감소시킬 수 있지만, 상기 엔진(100)에서 연소되지 않는 다량의 배기 가스를 사용하여 출력의 제한이 발생하고 연비가 악화된다는 문제점이 있다.
따라서, 저온 연소 및 일반 연소의 운전구간을 결정하는 것은 저온 연소를 적용하는 엔진에서 필수적이며, 본 발명에서는 고압 EGR 라인(300), 저압 EGR 라인(400) 및 흡기압력 조절밸브(500)를 마련함과 동시에 제동연료소비율(Brake Specific Fuel Consumption, BSFC)와 펌핑손실(Pump Mean Effective Pressure, PMEP)을 고려하여 배기 가스 재순환 시스템의 최적 운전 전략을 수립한다.
이하에서는 상기 배기 가스 재순환 시스템의 최적 운전 전략을 수립하기 위한 실험 방법 및 조건에 대하여 설명한다.
상기 배기 가스 재순환 시스템은 상기 엔진(100)의 RPM(Revolution Per Minute) 대비 부하를 기준으로, 엔진의 RPM 대비 부하가 기준값보다 낮으면 저온 연소 조건으로 운전하고, 엔진의 RPM 대비 부하가 기준값보다 높으면 일반 연소 조건으로 운전하는 것을 특징으로 한다. 상기 기준값은 42.5% 내지 57.5% 사이에서 선택되는 값이다. 여기서, 상기 엔진의 RPM 대비 부하란 상기 엔진(100)의 각 RPM에서의 최대 출력과 현재 부하의 비를 의미한다.
본 발명의 일 실시예에 따르면, 저온 연소 운전구간의 한계가 되는 상기 엔진(100)의 RPM 대비 부하를 대략 50%로 설정하고, 50% 이하의 엔진의 RPM 대비 부하에서는 최대 EGR율 영역인 50%의 EGR율에서 실험을 진행하고, 50% 초과의 엔진의 RPM 대비 부하에서는 25%의 EGR율에서 실험을 진행하여, 동일한 EGR율에서 고압 EGR과 저압 EGR의 비중에 따라 변화되는 양상을 측정한다.
도 3을 참조하면, 저온 연소 운전조건에서는 상기 고압 EGR 밸브(310) 및 상기 흡기압력 조절밸브(500)의 개도율을 변화시키고, EGR율을 50%로 일정하게 유지하며 결과값을 측정한다. 이는 저온 연소의 구현을 위하여 상기 흡기압력 조절밸브(500)를 통해 다량의 재순환 배기가스를 안정적으로 공급함과 동시에 저압 EGR의 비중을 효율적으로 조절하기 위함이다.
도 4를 참조하면, 일반 연소 운전조건에서는 상기 고압 EGR 밸브(310)와 상기 저압 EGR 밸브(320)의 개도율을 변화시키고, EGR율을 25%로 일정하게 유지하며 결과값을 측정한다. 이는 일반 연소 운전조건에서는 다량의 재순환 배기가스가 필요하지 않으므로 상기 흡기압력 조절밸브(500)를 최대로 개방한 상태를 유지한다.
이하에서는 상술한 실험 방법 및 조건에 따른 실험 결과를 도 5 내지 도 8을 참조하여 설명하고, 이에 따라 수립된 상기 배기 가스 재순환 시스템 최적의 운전 전략을 도 9를 참조하여 설명한다.
먼저, 저온 연소 운전조건에서의 운전 전략은 상기 엔진(100)의 RPM 대비 부하를 기준으로 저부하 전략과 와 중부하 전략으로 구분하고, 상기 엔진의 RPM 대비 부하가 20% 내지 30%인 구간에서 저부하 전략과 중부하 전략을 나누어 실험 결과를 도출하였으며, 저부하 영역의 저온 연소 운전조건에서는 저압 EGR을 충분히 사용하는 상태에서 부족한 재순환 배기가스를 고압 EGR로 보조하는 운전 전략이 연료 소비율 감소에 유리하게 나타난다.
도 5는 상기 엔진(100)의 저부하 영역인 1400rpm의 엔진 회전수, 25%의 엔진의 RPM 대비 부하 조건에서의 제동연료소비율(이하 BSFC라고 한다), 펌핑손실(이하 PMEP라고 한다) 및 상기 컴프레서(220)의 후단 측 과급 압력을 나타낸다.
상기 흡기압력 조절밸브(500)을 폐쇄하면 저압 EGR의 비중이 높아지고, 고압 EGR의 비중이 낮아지며, 이에 따라 PMEP가 증가하는데, 이는 BSFC의 악화 요소라고 할 수 있다. 반면, 이때에는 상기 터보차저(200)의 효율 개선으로 인해 과급 압력이 상승하고 이는 BSFC의 개선 요소라고 할 수 있다.
이와 같이 BSFC에 영향을 미치는 두 가지 요소의 상관 관계에 따라 최종 BSFC가 결정되는데, 도 5에 나타난 바와 같이 저부하 영역에서는 저압 EGR 비중이 고압 EGR 비중보다 상대적으로 높을 때 BSFC가 낮아져 개선되는 것을 알 수 있다. 이는 저부하 영역에서는 배기 가스의 유량이 상기 터보차저(200)의 효율을 충분히 끌어내기에 부족하기 때문이다.
결론적으로, 저압 EGR을 적극적으로 사용하여 상기 터빈(210)으로 배기 가스의 유량을 보다 많이 공급함으로써 상기 터보차저(200)의 효율을 높이는 것이 PMEP가 증가하여 일의 손실을 가져오는 것보다 더 큰 효과가 있어 BSFC가 개선된다.
따라서, 본 발명의 일 실시예에 따르면 상기 엔진(100)의 저부하 영역의 경우, 상기 고압 EGR 밸브(310)를 폐쇄하거나 40% 이하의 개도율로 개방하도록 설정하고, 상기 저압 EGR 밸브(410)를 80% 이상의 개도율로 개방하도록 설정하며, 상기 흡기압력 조절밸브(500)를 70% 내지 90%의 개도율로 개방하도록 설정하는 것을 특징으로 한다.
그리고, 상기 엔진(100)의 중부하 영역을 살펴보면, 1400rpm의 엔진 회전수, 50%의 상기 엔진(100)의 RPM 대비 부하 조건에서 50%의 EGR율의 공급이 가능한 고압 EGR, 저압 EGR 및 상기 흡기압력 조절밸브(500)의 조합이 한정적이었다.
즉, 상기 고압 EGR 밸브(310)의 개도율을 줄이면서 저압 EGR의 비중을 높이기 위해 상기 흡기압력 조절밸브(500)를 폐쇄하면, 충분한 EGR율이 확보되지 않을 뿐 아니라 쓰로틀링(throttling) 효과로 인해 신기가 충분히 공급되지 않아 출력 역시 저하되었다. 이는 저온 연소 운전조건의 한계인 50%의 엔진의 RPM 대비 부하에서 50% EGR율을 공급하기 위해서는 고압 EGR과 저압 EGR을 가용 한계에서 운용해야 한다는 것을 의미한다.
따라서, 중부하 영역의 저온 연소 운전조건에서 재순환 배기가스에 따른 BSFC 경향을 조금 더 명확히 관찰하기 위해 도 6에 나타난 바와 같이, 유량이 더 많은 엔진회전수가 1800rpm이고, 엔진의 RPM 대비 부하가 50%인 조건에서의 실험 결과를 살펴보았다.
엔진 회전수가 1800rpm일 때는 1400rpm일 때 비해 상기 터빈(210)으로 유입되는 배기 가스의 유량이 많아 고압 EGR의 비중을 줄여도 재순환 배기가스의 공급 및 출력 유지가 수월하여 많은 실험 데이터를 확보할 수 있었다.
즉, 중부하 저온 연소 운전조건에서는 앞선 1400rpm의 엔진 회전수 조건일 때와 마찬가지로 상기 고압 EGR 밸브(310)를 최대로 개방하여야 BSFC가 개선되었다. 앞서 실험 방법에서 언급한 바와 같이 저온 연소 운전조건에서는 상기 저압 EGR 밸브(410)를 최대로 개방하고, 상기 흡기압력 조절밸브(500)로 저압 EGR의 비중을 조절하였다. 즉 상기 고압 EGR 밸브(310)의 개도율이 줄어들면 상기 흡기압력 조절밸브(500)를 더 개방하여 저압 EGR의 비중을 늘린다.
결론적으로 중부하 저온 연소조건에서는 고압 EGR의 비중이 줄어들수록 상기 흡기압력 조절밸브(500)에 의한 쓰로틀링 효과가 크게 되어 BSFC에 악영향을 미친다. 따라서 상기 고압 EGR 밸브(310)와 상기 저압 EGR 밸브(410)의 개도율이 최대인 상태에서 상기 흡기압력 조절밸브(500)를 상대적으로 적게 사용하면서 EGR율을 맞추는 것이 저온 연소를 안정적으로 구현함과 동시에 BSFC를 개선할 수 있는 전략이라 할 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 상기 엔진(100)의 RPM 대비 부하가 20% 내지 30% 사이의 값 중에서 선택되는 하한값을 갖거나, 상기 엔진(100)의 RPM 대비 부하가 42.5% 내지 57.5% 사이의 값 중에서 선택되는 상한값을 갖는 중부하 영역의 경우, 상기 고압 EGR 밸브(310)를 40% 이상의 개도율로 개방하도록 설정하고, 상기 저압 EGR 밸브(410)를 80% 이상의 개도율로 개방하도록 설정하며, 상기 흡기압력 조절밸브(500)를 70% 내지 90%의 개도율로 개방하도록 설정하는 것을 특징으로 한다.
한편, 상기 엔진(100)의 RPM 대비 부하가 저온 연소 조건(저부하 및 중부하)의 기준 값을 초과하는 고부하 영역인 일반 연소 운전조건에서의 운전 전략은 상술한 저온 연소 운전조건에서의 운전 전략과 다른 양상을 보인다. 여기서 상기 저온 연소 조건의 기준 값을 초과하는 엔진(100)의 RPM 대비 부하는 상기 엔진(100)의 RPM 대비 부하가 42.5% 내지 57.5%의 구간에서 선택된다.
고부하 일반 연소 운전조건에서의 EGR율은 약 25%로 설정하여 실험을 진행하였으며, 이는 고압 EGR 및 저압 EGR의 동시 사용만으로도 안정적으로 재순환 배기가스를 공급할 수 있는 수준이다. 따라서 고부하 일반 연소 운전조건에서는 상기 흡기압력 조절밸브(500)의 사용을 배제하고, 고압 EGR과 저압 EGR만으로 운전 전략을 평가하였다.
도 7은 상기 엔진(100)의 고부하 영역인 1400rpm의 엔진 회전수, 75%의 엔진의 RPM 대비 부하 조건에서의 BSFC, PMEP 및 상기 컴프레서(220)의 후단 측 과급 압력을 나타낸다.
이를 참조하면, 고압 EGR의 비중이 증가함과 동시에 저압 EGR의 비중이 감소함에 따라 PMEP가 감소하며, 이는 BSFC 개선 요소이다. 반면에 상기 터보차저(200)에 유입되는 배기 가스의 유량이 줄어들어 상기 터보차저(200)의 효율이 감소한다.
이에 따라 상기 컴프레서(220)의 후단 측 과급 압력이 감소하며 이는 BSFC 악화 요소이다. 따라서, BSFC에 영향을 미치는 두 가지 요소의 상관 관계에 따라 최종 BSFC의 경향이 결정된다.
즉, 고부하 일반 연소 운전조건에서는 PMEP가 감소하여 BSFC 개선에 미치는 영향이 상기 터보차저(200)의 효율이 감소하여 BSFC에 미치는 악영향보다 크다. 이는 재순환 배기가스의 유량이 이미 상기 터보차저(200)의 효율을 끌어내기에 충분하기 때문이다. 따라서 고부하 일반 연소 운전조건에서는 고압 EGR을 저압 EGR보다 적극적으로 사용하는 전략이 BSFC 개선에 유리하다.
도 8은 1800rpm의 엔진 회전수, 75%의 엔진의 RPM 대비 부하 조건에서의 BSFC, PMEP 및 상기 컴프레서(220)의 후단 측 과급 압력을 나타내며, 이는 도 7에 나타난 바와 마찬가지로 고압 EGR의 비중이 늘어날수록 BSFC가 감소하는 동일한 경향을 나타내고 있다.
따라서, 본 발명의 일 실시예에 따르면 상기 엔진(100)의 RPM 대비 부하가 42.5% 내지 57.5%의 구간에서 선택되는 임의의 값을 초과하는 고부하 영역의 경우, 상기 고압 EGR 밸브(310)를 폐쇄하거나 80% 이하의 개도율로 개방하도록 설정하고, 상기 저압 EGR 밸브(410)를 폐쇄하거나 30% 이하의 개도율로 개방하도록 설정하며, 상기 흡기압력 조절밸브(500)를 폐쇄하거나 20% 이하의 개도율로 개방하도록 설정하는 것을 특징으로 한다.
결론적으로, 앞선 실험 결과의 분석을 바탕으로 수립한 배기 가스 재순환 시스템의 최종 운전 전략은 도 9에 나타난 바와 같다.
즉, 저온 연소 운전조건에서의 운전 전략은 저부하 영역과 중부하 영역으로 나누고, 저부하 영역에서는 저압 EGR과 상기 흡기압력 조절밸브(500)를 적극적으로 사용하고, 부족한 재순환 배기가스의 유량을 고압 EGR로 보조하는 운전 전략을 수립한다.
그리고 중부하 영역에서는 상기 고압 EGR 밸브(310) 및 상기 저압 EGR 밸브(410)를 모두 충분히 개방하고, 상기 흡기압력 조절밸브(500)로 재순환 배기가스의 유량을 제어하는 운전 전략을 수립한다.
마지막으로 고온 연소 운전조건인 고부하 영역에서는 고압 EGR로 EGR율을 최대한 맞춰 PMEP를 최소화하고, 만약 재순환 배기가스의 유량이 부족한 경우 저압 EGR로 보조하며, 상기 흡기압력 조절밸브(500)의 사용은 최소화하는 운전 전략을 수립한다.
한편, 본 발명의 일 실시예에 따르면 상기 엔진(100)의 저온 연소 운전구간에서 일반 연소 운전구간으로 변환되는 과도 운전구간이 설정되고, 연료 소비율 측면에서 유리하도록 상기 과도 운전구간에서는 상기 저압 EGR 밸브(410)의 개도율이 점진적으로 감소됨으로써 자연스럽게 고부하 영역의 운전 전략으로 전환되는 것을 특징으로 한다.
이러한 과도 운전구간은 상기 저온 연소 운전구간과 상기 일반 연소 운전구간 사이에 설정되고, 전체 운전구간의 구간 폭의 15% 이내의 구간 폭으로 설정된다. 예를 들어, 엔진의 RPM 대비 부하가 0% 내지 100%인 구간이 전체 운전구간일 때, 상기 저온 연소 운전구간의 구간은 엔진의 RPM 대비 부하가 0% 내지 42.5%인 구간이고, 상기 과도 운전구간은 엔진의 RPM 대비 부하가 42.5% 내지 57.5%인 구간이며, 상기 일반 연소 운전구간은 엔진의 RPM 대비 부하가 57.5% 내지 100%인 구간으로 설정될 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (8)

  1. 엔진의 배기 가스에 의하여 회전하는 터빈과, 상기 터빈에 접속되어 상기 엔진으로 공급되는 공기를 압축하는 컴프레서가 마련되는 터보차저;
    배기 라인 상의 상기 터빈의 전단 측과 흡기 라인 상의 상기 컴프레서의 후단 측을 연결하는 고압 EGR 라인;
    상기 고압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 고압 EGR 밸브;
    상기 배기 라인 상의 상기 터빈의 후단 측과 상기 흡기 라인 상의 상기 컴프레서의 전단 측을 연결하는 저압 EGR 라인;
    상기 저압 EGR 라인에 마련되어 상기 배기 라인으로부터 상기 흡기 라인으로 공급되는 배기 가스의 양을 조절하는 저압 EGR 밸브;
    상기 흡기 라인 상의 상기 컴프레서의 전단 측에 마련되어 흡입공기의 양을 조절하는 흡기압력 조절밸브; 및
    상기 엔진의 RPM 대비 부하를 기준으로 연소 조건을 저온 연소 조건과 일반 연소 조건으로 구분하고, 상기 연소 조건에 따라 상기 고압 EGR 밸브, 상기 저압 EGR 밸브, 상기 흡기압력 조절밸브의 개구 면적을 조절하는 제어부를 포함하는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  2. 제1항에 있어서,
    상기 제어부는, 상기 연소 조건을 상기 저온 연소 조건과 상기 일반 연소 조건으로 구분하기 위한 상기 엔진의 RPM 대비 부하의 기준값은42.5% 내지 57.5% 사이의 값인 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  3. 제2항에 있어서,
    상기 제어부는, 상기 저온 연소 운전구간을 상기 엔진의 RPM 대비 부하를 기준으로 저부하 영역과 중부하 영역으로 구분하되, 상기 저부하 영역과 상기 중부하 영역으로 구분하기 위한 상기 엔진의 RPM 대비 부하의 기준값은 20% 내지 30% 사이의 값인 것을 특징으로 하는 엔진의 배기가스 재순환 시스템.
  4. 제3항에 있어서,
    상기 저부하 영역에서 상기 제어부는,
    상기 저압 EGR 밸브는 80% 이상 개방되고, 상기 흡기압력 조절밸브는 70% 이상 90% 이하로 개방되며, 상기 고압 EGR 밸브는 40% 이하로 개방되도록 제어하는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  5. 제3항에 있어서,
    상기 중부하 영역에서 상기 제어부는,
    상기 저압 EGR 밸브는 80% 이상 개방되고, 상기 고압 EGR 밸브는 40% 이상 개방되며, 상기 흡기압력 조절밸브는 70% 이상 90% 이하로 개방되도록 제어하는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  6. 제1항에 있어서,
    상기 일반 연소 운전구간에서 상기 제어부는,
    고압 EGR 밸브는 80% 이하로 개방되고, 상기 저압 EGR 밸브는 30% 이하로 개방되며, 상기 흡기압력 조절밸브는 20% 이하로 개방되도록 제어하는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  7. 제1항에 있어서,
    상기 제어부는, 상기 엔진의 상기 저온 연소 운전구간에서 상기 일반 연소 운전구간으로 변환되는 과도 운전구간을 설정하고, 상기 과도 운전구간에서는 상기 저압 EGR 밸브의 개도율이 점진적으로 감소되도록 제어하는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
  8. 제7항에 있어서,
    상기 과도 운전구간은, 상기 저온 연소 운전구간과 상기 일반 연소 운전구간 사이에 설정되고, 전체 운전구간의 구간 폭의 15% 이내의 구간 폭으로 설정되는 것을 특징으로 하는 엔진의 배기 가스 재순환 시스템.
PCT/KR2014/012913 2013-12-26 2014-12-26 엔진의 배기 가스 재순환 시스템 WO2015099493A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0163935 2013-12-26
KR20130163935 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015099493A1 true WO2015099493A1 (ko) 2015-07-02

Family

ID=53479253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012913 WO2015099493A1 (ko) 2013-12-26 2014-12-26 엔진의 배기 가스 재순환 시스템

Country Status (1)

Country Link
WO (1) WO2015099493A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837503A (zh) * 2015-12-03 2017-06-13 北汽福田汽车股份有限公司 一种发动机冷却系统及具有其的车辆
CN111779582A (zh) * 2020-06-23 2020-10-16 河南柴油机重工有限责任公司 一种柴油机的egr系统的控制方法、系统及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215171A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp 内燃機関制御装置
JP2008303802A (ja) * 2007-06-08 2008-12-18 Suzuki Motor Corp 内燃機関のegr制御装置
JP2011001886A (ja) * 2009-06-18 2011-01-06 Mitsubishi Motors Corp 内燃機関の吸気通路構造
KR20120054713A (ko) * 2010-11-22 2012-05-31 현대자동차주식회사 Ecu 특성 곡선의 변경을 통해 배압조절밸브의 제어 안정성을 향상하는 제어방법
KR20120137879A (ko) * 2011-06-13 2012-12-24 현대자동차주식회사 저압 이지알 시스템 및 저압 이지알 쿨러 효율 진단방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215171A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp 内燃機関制御装置
JP2008303802A (ja) * 2007-06-08 2008-12-18 Suzuki Motor Corp 内燃機関のegr制御装置
JP2011001886A (ja) * 2009-06-18 2011-01-06 Mitsubishi Motors Corp 内燃機関の吸気通路構造
KR20120054713A (ko) * 2010-11-22 2012-05-31 현대자동차주식회사 Ecu 특성 곡선의 변경을 통해 배압조절밸브의 제어 안정성을 향상하는 제어방법
KR20120137879A (ko) * 2011-06-13 2012-12-24 현대자동차주식회사 저압 이지알 시스템 및 저압 이지알 쿨러 효율 진단방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN, SEUNG YEOP ET AL.: "Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Imp", KSAE 2013 ANNUAL CONFERENCE AND EXHIBITION, November 2013 (2013-11-01), pages 240 - 241 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837503A (zh) * 2015-12-03 2017-06-13 北汽福田汽车股份有限公司 一种发动机冷却系统及具有其的车辆
CN106837503B (zh) * 2015-12-03 2019-04-23 北汽福田汽车股份有限公司 一种发动机冷却系统及具有其的车辆
CN111779582A (zh) * 2020-06-23 2020-10-16 河南柴油机重工有限责任公司 一种柴油机的egr系统的控制方法、系统及应用

Similar Documents

Publication Publication Date Title
EP2775111B1 (en) Ventilation control device for internal combustion engine
US8479512B2 (en) Internal combustion engine comprising an exhaust gas recirculation system
US5205265A (en) Exhaust gas recirculation system
CN201747481U (zh) 一种egr系统控制装置
JP2607175B2 (ja) ターボ過給エンジンのegr装置
US6484499B2 (en) Twin variable nozzle turbine exhaust gas recirculation system
CN105840355A (zh) 内燃机全工况egr率可调的二级增压系统及其控制方法
WO2013120450A1 (zh) 具有可变几何增压涡轮的涡轮复合装置及其发动机系统
EP1186767A2 (en) Exhaust gas recirculation system for internal combustion engine
JP2018513938A (ja) ターボ過給対向ピストンエンジン用の外部アシスト過給を有する空気処理システムの構造
CN110552780A (zh) 一种发动机进排气系统与一种发动机
KR20130003115A (ko) 과급 엔진의 egr 장치 및 그 제어방법
WO2015099493A1 (ko) 엔진의 배기 가스 재순환 시스템
KR20100004478A (ko) 터보 디젤엔진의 배기가스 재순환시스템
CN102444464A (zh) 双涡单压涡轮增压系统
CN113530665B (zh) 一种柴油机两级增压系统及增压方法
CN115638047A (zh) 相继增压系统及发动机
CN210239872U (zh) 发动机和车辆
CN212583814U (zh) 一种相继增压系统、发动机总成及车辆
CN210343537U (zh) 一种基于两级涡轮增压器的高压废气中压侧引入系统
KR102463199B1 (ko) 엔진 시스템
CN104791146A (zh) 一种内燃机进排气系统
WO2019022453A1 (ko) 엔진의 배기가스 재순환 시스템
CN112627996A (zh) 一种提高增压柴油机废气再循环率的装置及其控制方法
CN205330830U (zh) 一种内燃机高低压截止egr系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14873686

Country of ref document: EP

Kind code of ref document: A1