WO2015099456A1 - 재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법 - Google Patents

재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법 Download PDF

Info

Publication number
WO2015099456A1
WO2015099456A1 PCT/KR2014/012826 KR2014012826W WO2015099456A1 WO 2015099456 A1 WO2015099456 A1 WO 2015099456A1 KR 2014012826 W KR2014012826 W KR 2014012826W WO 2015099456 A1 WO2015099456 A1 WO 2015099456A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellobiose
gene
redesigned
activity
expression
Prior art date
Application number
PCT/KR2014/012826
Other languages
English (en)
French (fr)
Inventor
이승구
권길광
나유진
최수림
김하성
이대희
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2015099456A1 publication Critical patent/WO2015099456A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/942Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-1, 4-glucosidic bonds, e.g. cellulase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/12Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar
    • G01N2400/24Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar beta-D-Glucans, i.e. having beta 1,n (n=3,4,6) linkages between saccharide units, e.g. xanthan
    • G01N2400/26Cellulose

Definitions

  • the present invention relates to a novel screening method of fibrinolytic enzyme using a redesigned genetic circuit, and more particularly, a novel screening method of fibrinolytic enzyme using a redesigned genetic circuit and cellobiose decomposed by the fibrinolytic enzyme It relates to a method for quantifying.
  • the present invention relates to a method for detecting the activity of cellulase, which plays a major role in producing glucose, which is an alternative energy source by hydrolysis of cellulose.
  • Fibrinase is an enzyme that hydrolyzes ⁇ -1,4 glycosidic linkage of cellulose to produce cellobiose, cello-oligosaccharides and glucose. Catalyzes. Fibrinase is an endo type (endoglucanase, EC3.2.1.4) that randomly breaks down the interior of cellulose, depending on the type, and exo, which breaks down the cellulose or cell oligosaccharide in the form of a combination of two molecules of glucose from the linear end of cellulose. Exoglucanase (EC3.2.1.91), consisting of ⁇ -glucosidase, which breaks down cellobiose into two molecules of glucose.
  • a filter paper (Whatman no. 1) is used to show the total fibrinase activity and CMC (Carboxymethyl cellolose) is used to measure the activity of endo fibrinase. And a method for measuring the activity of exo fibrinase using avicel.
  • the FPA (FPase activity) method which measures total fibrinase activity, reacts a 1 ⁇ 6 cm filter paper piece with fibrinase to produce an enzyme unit that produces 1 micromole of glucose for 1 minute.
  • 5-dinitrosalicylic acid is measured by reducing sugar measurement method or glucose measurement method ( Biotechnol Bioeng , 82: 745-749, 2003).
  • This method is widely used because it has the advantage of using inexpensive and readily available substrates, but it has a disadvantage of inferior reproducibility and requires a lot of labor and reagents. It also cannot be used to measure large numbers of enzyme activities, such as large libraries.
  • the method for measuring endo-fibrinase using water-soluble CMC is to measure an enzyme unit capable of producing 1 micromole of glucose for 1 minute ( Biotechnol Bioeng Symp , 21-33, 1976).
  • This method is a method of measuring the traditional endo type fibrinase, but the results are different by the degree of substitution (DS) or the degree of polymerization (DP) of the CMC.
  • DS degree of substitution
  • DP degree of polymerization
  • exo fibrinase The activity of exo fibrinase is generally measured using avicel.
  • Avicel shows low DP, so it is possible to measure the activity of pure exo fibrinase without interference of endo fibrinase ( Crit. Rev. Biotechnol ., 1-8, 2010).
  • this method is also less reproducible and labor-intensive, making it difficult to use for mass library searches.
  • the present inventors have made a diligent effort to develop a method for searching for an enzyme having a new fibrinolytic activity. As a result, the inventors have focused on the characteristics of fibrinase which favors cellobiose in the fibrinolytic reaction. In the redesigned gene circuit, it was confirmed that the activity of the reporter protein induced by cellobiose was rapidly and quantitatively determined, thereby detecting cellobiose, quantifying cellobiose, and cellobiose. A method for measuring free exo fibrinase activity and an ultrafast method for searching for cellobiose free exo fibrinase were devised, and the present invention was completed.
  • Still another object of the present invention is to provide a method for quantifying fibrinase activity and searching for enzymes having new fibrinolytic activity using the gene redesign circuit.
  • the present invention (i) a gene encoding a transcriptional regulator protein that recognizes cellobiose and induces the expression of a reporter protein downstream; (ii) one or more reporter genes selected from the group consisting of genes encoding fluorescent proteins and antibiotic resistance genes; (iii) a promoter that regulates expression of the transcriptional regulator protein; And (iv) a promoter that binds the transcriptional regulator protein to regulate expression of a downstream reporter gene.
  • the present invention also provides a recombinant microorganism for detecting cellobiose containing the redesigned gene circuit for detecting cellobiose.
  • the present invention also comprises the steps of: (a) contacting the cellobiose-containing recombinant microorganism with a sample containing the cellobiose; And (b) detecting the presence of cellobiose by detecting the presence of cellobiose by analyzing the activity of the reporter protein inducing expression by detecting cellobiose present in the sample.
  • the present invention also comprises the steps of: (a) contacting the cellobiose-containing recombinant microorganism with a sample containing cellobiose; And (b) analyzing the activity of the reporter protein, the expression of which is induced by cellobiose present in the sample, to quantify cellobiose present in the sample.
  • the present invention also comprises the steps of: (a) treating the cellopose compound with a fibrin compound, which can liberate the cellobiose compound by enzymatic reaction; And (b) detecting fibrinase activity based on the analysis of the activity of the reporter protein inducing expression by detecting cellobiose liberated by the fibrinase reaction. do.
  • the present invention also comprises the steps of: (a) contacting the recombinant microorganism for detecting cellobiose with fibrin compounds and metagenome library samples; (b) analyzing the activity of the reporter protein induced expression by cellobiose produced by a strain having fibrinolytic activity present in the sample; And (c) based on the activity of the analyzed reporter protein, it provides a screening method of fibrinase production strain comprising the step of selecting a fibrinase producing strain having fibrinolytic activity.
  • FIG. 1 is a schematic diagram of a redesigned gene circuit (CBGESS: CelloBiose induced Genetic Enzyme Screening System) for detecting fibrinase activity (CelR: transcription that induces expression of a reporter protein downstream by recognizing a cellobiose compound according to the present invention).
  • CBGESS CelloBiose induced Genetic Enzyme Screening System
  • CelR transcription that induces expression of a reporter protein downstream by recognizing a cellobiose compound according to the present invention.
  • P HCE a promoter regulating the expression of the electronic regulatory protein
  • P mTrc a site where the transcriptional regulatory protein binds to induce expression of a downstream reporter gene).
  • Figure 2 shows the results of measuring the fluorescence intensity of the redesigned gene circuit by cellobiose in DH5 ⁇ and MG1655, respectively.
  • Figure 3 shows the results showing the fluorescence increase of the redesigned genetic circuit according to the cellobiose concentration in DH5 ⁇ and MG1655.
  • Figure 5 shows the results of analyzing the substrate specificity of the redesigned genetic circuit.
  • FIG. 6 is a result of analyzing the activity of the recombinant fibrinase using a redesigned genetic circuit
  • A the result of measuring the fluorescence of the redesigned gene circuit for the substrate according to the presence or absence of fibrinase by flow cytometry
  • B is the result of measuring the fluorescence expression of the redesigned gene circuit by fibrinolytic enzyme
  • c is the picture of fluorescence image of colonies in the solid medium.
  • A is measured by flow cytometry
  • B colony fluorescence image in a solid medium
  • C is selected
  • D shows a metagenome library search flow chart.
  • Figure 8 shows the result of fluorescence measurement of fibrinolytic activity in the outside of the cell using a redesigned genetic circuit.
  • FIG. 9 is a result of measuring the crystalline fibrinolytic activity using a redesigned genetic circuit
  • A is a colony fluorescence image of the resolution of celluclast in a solid medium
  • B is a result of measuring the resolution in a liquid medium It is shown.
  • the invention provides a gene encoding a transcriptional regulator protein that recognizes cellobiose and induces expression of a downstream reporter protein; (ii) one or more reporter genes selected from the group consisting of genes encoding fluorescent proteins and antibiotic resistance genes; (iii) a promoter that regulates expression of the transcriptional regulator protein; And (iv) a promoter for binding the transcriptional regulator protein to regulate expression of downstream reporter genes.
  • the key to developing biomass-based carbon cycle alternatives is to effectively break down cellulose, a non-food resource, to produce glucose, the largest constituent of sugar available. Therefore, the role of fibrinase, which plays a major role in producing glucose by hydrolyzing cellulose, is important, and research for discovering and improving it is being actively conducted.
  • cellobiohydrolase exo-type fibrinase
  • the method for measuring the activity of fibrinase is difficult to measure fine enzyme activity, and it is difficult to search and improve enzymes in a large amount of genetic resources or environment by requiring a lot of time and individual activity analysis.
  • the present invention detects a variety of compounds using a redesigned genetic circuit, and eventually applies a technology (GESS: Green fluorescence linked enzyme screening system) (Korean Patent No. 1,222,056) to easily detect a variety of compound synthase activities with high sensitivity. It is applied to the detection and quantification of cellobiose, and is a method capable of efficiently and rapidly analyzing cellobiose generated by fibrinolytic activity.
  • GESS Green fluorescence linked enzyme screening system
  • the gene encoding a transcriptional regulator that recognizes cellobiose and induces the expression of a reporter protein downstream may be characterized in that the gene derived from the organism having a fibrinolytic expression operon, the transcription Genes encoding regulatory proteins include TThermobifida fusca , Streptococcus pneumoniae , Streptococcus mutans , Streptomyces griseus , Streptomyces reticuli , Pyrococcus furiosuscan Vibrio slmonicida , Neurospora crassa , Clostridium cellulolyticum , Trichoderma reesei, and Aspergillus genes selected from You can do
  • the gene encoding the transcriptional regulator protein may be characterized in that the CelR gene having a nucleotide sequence of SEQ ID NO: 1 from Thermobifida fusca .
  • the reporter gene and the promoter for regulating the expression of the reporter gene may be characterized in that they are operably linked, and the compound degrading enzyme regulatory protein binds to induce the expression of the downstream reporter gene.
  • the site may be characterized by activating the promoter of the reporter gene so that the compound degrading enzyme regulatory protein binds to express the downstream reporter gene.
  • the gene encoding the transcriptional regulatory protein that recognizes the cellobiose and the promoter for regulating the expression of the regulatory protein may be operably linked.
  • the transcriptional regulator protein can be used to induce expression by sensing cellobiose, in one embodiment of the present invention was used celR which is a regulatory protein of Thermobifida fusca- derived fibrinolytic expression operon.
  • the fluorescent protein may be selected from the group consisting of GFP, sf-GFP, GFP UV and RFP, the antibiotic resistance gene is a kanamycin resistance gene, chloramphenicol resistance gene and tetracycline resistance gene It may be characterized in that it is selected from the group consisting of.
  • the redesigned gene circuit may include a gene encoding a ribosome binding site (RBS), wherein the reporter gene is a double reporter gene consisting of a gene encoding a fluorescent protein and an antibiotic resistance gene It can be characterized by.
  • RBS ribosome binding site
  • celR is the best known T. fusca derived protein (J Biol Chem (1999) 274: 13127) and is an electronic regulator that regulates the expression of fibrinase.
  • celR belongs to the GalR-LacI family and regulates expression as a repressor in cells. Specifically, specific binding to the gene region of 'tgggagcgctccca' inhibits the expression of the lower gene, but when cellobiose is detected, the binding is inhibited, leading to the expression of the lower gene.
  • "redesigned gene circuit” as shown in Figure 1, (i) a gene encoding a regulatory protein that recognizes the cellobiose and induces the expression of a reporter protein downstream; (ii) one or more reporter genes selected from the group consisting of fluorescent proteins and antibiotic resistance genes; And (iii) a promoter that regulates expression of the transcriptional regulator protein, a site to which the regulatory protein binds to induce expression of a downstream reporter gene, and a promoter that regulates expression of the reporter gene.
  • the regulatory protein inhibits transcription of the subgene, but when cellobiose binds to inhibit the regulatory protein, the transcriptional activation function of the subgene appears.
  • promoter refers to a promoter that regulates the expression of the cellobiose degrading enzyme regulatory protein, or a promoter that controls the expression of the reporter protein.
  • a promoter of celR or a promoter for general protein expression may be used.
  • high expression promoters including trc , T7 , lac and ara promoters can be used.
  • P hce which is a high expression vector that does not require a transcription inducer, can be used.
  • the redesigned gene circuit constructed in the present invention uses a T. fusca- derived transcriptional regulator, and a promoter that regulates transcription of the lower reporter gene by binding celR that senses cellobiose is a reporter protein in E. coli, the host of the gene circuit.
  • a trc promoter that is widely used. trc promoter of removing portions that bind to, and to insert the lacI 'tgggagcgctccca' may be combined with celR to induce transcription of the reporter gene by the sub celR.
  • high expression of the reporter protein was induced in E. coli, which was used as a host in the examples.
  • the redesigned gene circuit may include not only the promoter, but preferably RBS (Ribosome Binding Site) and / or transcription terminator that facilitates expression of the reporter protein. That is, as a site for regulating the expression of the regulatory protein, in addition to the promoter, it may include RBS and / or transcription terminator.
  • RBS Ribosome Binding Site
  • protein expression starts with AUG (methionine) or GUG (valine), which is an initiation codon in mRNA. Is determined by a rich RBS (or Shine-Dalgarno (SD) sequence), which is known to differ in sequence from species to species (Stryer, L., (1995) Biochemistry, ( 4th ed. ) WH Freeman, Chapter 34, Protein Synthesis).
  • RBS or Shine-Dalgarno (SD) sequence
  • the redesigned gene circuit constructed in the present invention uses a thermobifida fusca- derived transcriptional regulator, and since the survival pattern is much different from that of the host E. coli, the host E. coli is used to facilitate expression of the reporter protein in E. coli.
  • RBS RBS
  • RBSx RBS which can be used integrally with all strains, can be used, and T7 RBS will also be available.
  • the transcription terminator may preferably be rrnBT1T2 or tL3, and besides this, any transcription terminator commonly used in the art may be used to constitute the present invention.
  • the reporter may be one or more selected from fluorescent proteins and antibiotic resistance genes.
  • the fluorescent protein preferably, GFP, sf-GFP, GFP UV or RFP can be used, and as long as the object of the present invention can be achieved, the fluorescent protein that can be used in the present invention is not limited to these examples.
  • the antibiotic resistance gene may be a conventional antibiotic resistance gene such as genes resistant to antibiotics such as kanamycin, chloramphenicol and tetracycline.
  • the activity of the reporter protein can be measured using microbial colony image analysis, fluorescence spectrum analysis, fluorescence flow cytometry (FACS), antibiotic resistance measurement.
  • the redesigned genetic circuit may be provided in the form of a vector or a microorganism.
  • the microorganism may be E. coli, Pseudomonas, yeast, or plant cells, animal cells and the like.
  • the present invention relates to a recombinant microorganism for detecting cellobiose containing the redesigned gene circuit for detecting cellobiose.
  • the recombinant microorganism may be E. coli, Pseudomonas, yeast, plant cells, animal cells and the like.
  • the present invention comprises the steps of: (a) contacting the cellobis-containing recombinant microorganisms with a sample that may contain cellobiose; And (b) detecting the presence of cellobiose by analyzing the activity of the reporter protein with which expression is induced by sensing the cellobiose present in the sample.
  • the present invention comprises the steps of (a) contacting the cellobiose-containing recombinant microorganism with a sample containing cellobiose; And (b) analyzing the activity of the reporter protein, the expression of which is induced by cellobiose present in the sample, to quantify cellobiose present in the sample.
  • the present invention comprises the steps of: (a) treating the cellopose compound with a fibrin compound which can release the cellobiose compound by enzymatic reaction; And (b) detecting fibrinase activity based on the analysis of the activity of the expression-induced reporter protein by detecting cellobiose liberated by the fibrinase reaction.
  • the present invention applies a technique for easily detecting various enzyme activities (GESS: genetic enzyme screening system) using a redesigned gene circuit to search for fibrinase activity, which was not easy to detect in the prior art. It provides a method to efficiently search in a wide range of gene libraries, and has the advantage of quantitatively measuring the activity of fibrinase.
  • GESS genetic enzyme screening system
  • the microorganism transformed by the gene circuit is treated with one or more substrates selected from compounds capable of freeing cellobiose by enzymatic reaction.
  • the nutritional medium or minimal medium will be applicable to a variety of media that can be used generally in the art.
  • the fluorescent protein and antibiotic resistance protein used as a reporter in the present invention can not only apply a highly sensitive measurement method, but also are characterized in that the foreign gene is expressed in the cell because it is limited to a specific cell without passing through the cell membrane. Will be used individually. Therefore, since each single cell plays the role of an independent reactor and analyzer, it is possible to detect the cellobiose liberated by enzymatic reaction and measure the activity of expression-induced reporter. Samples can be measured using a flow cytometer, microcolony fluorescence image analysis, fluorescence spectrum analysis, and mass screening using antibiotic selection media.
  • the present invention comprises the steps of (a) contacting the recombinant microorganism for detecting cellobiose and fibrin compounds and metagenomic library sample; (b) analyzing the activity of the reporter protein induced expression by cellobiose produced by a strain having fibrinolytic activity present in the sample; And (c) based on the activity of the analyzed reporter protein, relates to the screening method of fibrinase production strain comprising the step of selecting a fibrinase producing strain having fibrinolytic activity.
  • the gene encoding the enzyme to be searched may be provided in the form of a clone or gene library, in the form of a single gene, genomic library, metagenomic or metagenomic library applicable in the field of molecular biology research.
  • the single gene may be provided in a form contained in a vector or a microorganism.
  • any known method may be used for the stepwise transformation of the metagenome library and the cellobiose sensing redesign gene circuit into a suitable microbial host.
  • electroporation may be preferably used.
  • the celR gene was extracted from Thermobifida fusca , a type of actinomycetes.
  • Thermobifida fusca KCTC9025 was distributed at Daejeon Bio Resource Center (KCTC), and the celR gene was amplified by colony PCR using the primers of SEQ ID NO: 2,3.
  • the promoter region for regulating celR expression was HCE promoter which is a constant expression promoter. Extraction was performed using restriction enzymes NheI and ClaI in a pHCE-IIB (Takara, Japan) vector. The trc promoter was used as a promoter region to which celR binds to regulate transcription of the lower reporter gene. The LacI binding site present in the trc promoter was removed and the celR binding site of SEQ ID NO: 4 was inserted.
  • the trc promoter has KpnI and NdeI sites at both ends and prepared genes through gene synthesis in Daejeon's Bioneer.
  • GESS plasmid Kanean Patent Registration No. 10-1222056
  • Figure 1 shows a schematic diagram of the redesigned gene circuit for the detection of fibrinase activity (CelR: PHCE gene, which encodes a transcriptional regulator protein that recognizes cellobiose compounds according to the present invention and induces expression of reporter proteins downstream
  • PHCE Promoter that regulates the expression of the electronic regulatory protein
  • P mTrc Site where the transcriptional regulatory protein binds to induce the expression of a reporter gene downstream.
  • E. coli MG1655 and E. coli DH5 ⁇ strains were attempted to transform CBGESS through heat shock.
  • MG1655 (stanford collection, USA) is the original version of the E. coli K-type strain and has the characteristics of E. coli.
  • DH5 ⁇ (NEB, USA) is a K-type E. coli that minimizes genetic preservation and denaturation through chromosomal manipulation.
  • MG1655 and DH5 ⁇ single colonies each 2 ml of LB (1% (w / v) tryptone, 0.5% (w / v) yeast extract, 1% (w / v) sodium chloride with 100 ⁇ g / ml ampicillin) ) was inoculated in liquid medium and incubated overnight at 37 ° C. After inoculating 1% of the culture medium in 10 ml of the same medium, when the cell concentration (OD) reached about 0.8, the cells were divided into 5 ml and 5 mM cellobiose was added to one side and the other was not added. After that, shaking culture was further performed at 37 ° C. for 18 hours to induce fluorescence. Cell concentration was measured using a UV / VIS fluorescence spectrometer, and fluorescence was measured using a fluorescence plate reader (Victor5, ParkinElmer, USA).
  • MG1655 increased about 6-fold fluorescence and DH5 ⁇ increased about 3-fold fluorescence compared to the case without adding cellobiose (FIG. 2).
  • This result indicates that the redesigned gene circuit detects cellobiose, expresses the reporter protein eGFP, and detects fluorescence.
  • the results indicate that the redesigned genetic circuit constructed by this result is clearly different in fluorescence intensity depending on the presence or absence of cellobiose, indicating that it can be used for the purpose of measuring fibrinase activity.
  • MG1655 and DH5 ⁇ single colonies transformed with CBGESS were inoculated into LB liquid medium containing 100 ⁇ g / ml of ampicillin and shaken overnight at 37 ° C. After inoculating 1% of the above culture in the same medium, the cell concentration reached about 0.4, divided by 1 ml, and then mixed with the cellobiose concentration of 0, 1, 5, 10, 50, 100 ⁇ M for 18 hours. Further shaking culture at 37 °C induced fluorescence. Cell fluorescence was used with a flow cytometer (FACSCalibur, BD, USA).
  • DH5 ⁇ began to fluoresce at 5 ⁇ M, and it was confirmed that fluorescence appeared quantitatively as the cellobiose concentration was increased (FIG. 3).
  • MG1655 it was observed that the number of cells that do not come out than the fluorescence cells.
  • ⁇ -glycosidase enzyme activity of Escherichia coli is present, and celloose that is decomposed to react with celR decreases due to the degradation of cellobiose.
  • ⁇ -glycosidase enzyme in the chromosome gene information of DH5 ⁇ but according to the results, it is determined that there is no cellobiose resolution.
  • the lack of cellobiose resolution of DH5 ⁇ may be an advantage in detecting low cellobiose due to the weak enzymatic activity of the metagenome.
  • eGFP which is used as a reporter protein
  • sf-GFP high expression in Escherichia coli
  • PCR was performed on the CBGESS, and two pieces were Gibson-Assembly (gibson assembly kit (NEB)) to construct a new redesigned genetic circuit.
  • NEB Gibson assembly kit
  • the redesigned genetic circuit attempted to transform CBGESS by heat shock to the DH5 ⁇ strain.
  • Transformed single colonies were inoculated in LB liquid medium to which 100 ⁇ g / ml of ampicillin was added and shaken overnight at 37 ° C. After inoculating 1% of the above culture in the same medium, when the cell concentration (OD 600 ) reached about 0.4, dividing each cell into 1 ml, so that the concentration of cellobiose was 0, 1, 5, 10, 50, 100 ⁇ M. Addition was followed by shaking culture at 37 ° C. for 18 hours to induce fluorescence. Cell fluorescence was analyzed using flow cytometer and fluorescent plate reader.
  • the newly redesigned gene circuit showed fluorescence even at a low cell concentration of 1 ⁇ M and fluorescence increased quantitatively with increasing cellobiose concentration.
  • the fluorescence intensity when compared to the experimental group without the addition of cellobiose and 50 ⁇ M cellobiose, the fluorescence intensity of about 100 times increased (Fig. 4).
  • the optimized redesigned genetic circuit was sensitive and quantitatively reacted to low concentration of cellobiose, indicating that it could be used for the purpose of analyzing unknown enzyme activity.
  • the redesigned gene circuit In order to search for enzymes with the desired activity in large libraries, the redesigned gene circuit must specifically detect only those products that are freed with the desired enzyme activity.
  • E. coli DH5 ⁇ single colonies into which the redesigned gene circuit was introduced were inoculated in LB liquid medium to which 100 ⁇ g / ml of ampicillin was added and shaken at 37 ° C. overnight. After inoculating 1% of the above culture in the same medium, the cell concentration was divided into 1 ml each when the cell concentration reached about 0.4, and then glucose (Glucose), cellobiose (Cellobiose), cellotrose (Cellotriose) and celloterose ( Cellotetraose) and Cellopenpentose (Cellopentaose) were added, followed by further shaking culture at 37 ° C. for 18 hours to induce fluorescence. Cell fluorescence was measured using a fluorescent plate reader.
  • Cellobiose and other substrates used in the experiment are aggregates of glucose.
  • Experimental results showed that the redesigned genetic circuit of the present invention showed strong fluorescence by specifically reacting only with cellobiose (FIG. 5). Therefore, the enzymatic activity that favors cellobiose in a large library can be specifically selected only without the disturbance such as false positives.
  • CelEdx16 As an application example using the redesigned genetic circuit according to the present invention, the activity of the metagenome-derived fibrinase CelEdx16 ( Appl Microbiol Biotechnol . 89: 1453-62, 2011) was detected.
  • CelEdx16 is a fibrinolytic enzyme with endo- and exo-activity, which can produce cellobiose by decomposing pNPG2 (4-nitrophenyl ⁇ -D-cellobioside).
  • pcE-CelEdx16 was prepared using Gibson-assembly in a pcc1 vector (epicentre, USA), and then introduced into E. coli containing a redesigned gene circuit. Single colonies with the CelEdx16 gene and colonies with only the pcc1 vector were inoculated in LB liquid medium containing 100 ⁇ g / ml of ampicillin and 12.5 ⁇ g / ml of chloramperichol, respectively, and shaken at 37 ° C. overnight. After inoculating 1% of the above culture medium in the same medium, when cell concentration (OD) reached about 0.4, cellobiose and pNPG2 were added and cultured. In addition, the fluorescence of the cells was measured using the same solid medium as above. Cell fluorescence was analyzed using flow cytometer, fluorescent plate reader and fluorescence microscope (AZ100, Nikon, Japan).
  • the vector-introduced control showed no fluorescence in pNPG2, but the fluorescence was strong in E. coli with fibrinase-induced analysis, and when analyzed by flow cytometry, it was observed that the fluorescence distribution moved to the right side when compared with the control. ( Figure 6).
  • the fluorescence expression of fibrinase and the redesigned gene circuit-bearing cells was measured by time using a fluorescence plate reader, and it was observed that fluorescence appeared after about 3 hours for cellobiose and about 6 hours for pNPG2 (FIG. 6). I).
  • Example 7 Detection of methagenome derived fibrinolytic enzyme using redesigned gene circuit
  • Redesigned gene circuits were used to search for clones with fibrinolytic activity from the metagenome library.
  • the regenerated genetic circuit was transformed into a metagenome derived from a tidal flat using an electroporation method to construct a library (5 ⁇ 10 5 ), and then experimented.
  • the order in which the experiment was performed is shown in FIG.
  • the constructed metagenome library was inoculated in LB liquid medium to which 100 ⁇ g / ml of ampicillin and 12.5 ⁇ g / ml of chloramperichol were added and cultured at 37 ° C. When the cell concentration reached about 0.4, induction solution (epicentre, USA), which increased the number of pcc1 plasmids, 100 ⁇ M cellobiose, and 200 ⁇ M pNPG2 were added and cultured for 12 hours.
  • the cultured culture was selected by the flow cytometer cells with strong fluorescence (Fig. 7A). Selected clones were plated on the same LB solid medium and incubated at 37 ° C. for 18 hours to search for clones with increased fluorescence intensity compared to controls (FIG. 7 b). The clones showed stronger fluorescence than controls on solid medium (FIG. 7).
  • E. coli with a redesigned genetic circuit was tested to determine the activity of extracellular fibrinolytic enzymes. Since fibrinase present in nature acts on crystalline cellulose in many cases, it is also important to measure activity outside the cell.
  • 200 ⁇ M pNPG2 was mixed with E. coli with the redesigned gene circuit and E. coli with the fibrinase or control vector. It was incubated for 18 hours by the addition of. Cell fluorescence was measured using a flow cytometer.
  • the redesigned genetic circuit was used to determine the actual crystalline fibrinolytic activity.
  • E. coli introduced with the redesigned genetic circuit used was plated in an LB solid medium to which 0.5% crystalline fibrin (avicel) was added, followed by 1 ⁇ l of celluclast 1.5L (Novozyme, Denmark) and PBS (pH 7.4) 1 After dropping each of ⁇ L, the cells were incubated at 37 ° C. for 18 hours (FIG. 9A).
  • E. coli introduced with CBGESS was pre-incubated in LB liquid medium, and then inoculated in 1% of the same medium, and then grown to a cell concentration of 0.4 at 37 ° C. After diluting 1 ml each, 0.5% avicel and celluclast were added and diluted for 18 hours. (FIG. 9 b). Cell fluorescence was measured using a fluorescence microscope and a fluorescence plate reader.
  • fibrinase can measure the enzyme activity in response to the actual substrate using a redesigned genetic circuit.
  • cellobiose cognitive transcriptional regulatory protein which is proportional to the amount of cellobiose, induces the expression of the reporter protein, thereby rapidly detecting and quantifying cellobiose with high sensitivity, thereby detecting cellobiose.
  • it can be utilized for quantitative analysis, can measure the activity of exo-type fibrinase liberating cellobiose, or can search for a new exo-type fibrinase.
  • the fluorescent protein is used as a reporter protein
  • a flow cytometer can be used to search millions of gene libraries per day, thereby providing an environment for exploring new exo-type fibrinase very quickly. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 재설계 유전자 회로를 이용한 섬유소분해활성 효소의 신규 탐색방법에 관한 것으로, 더욱 자세하게는 재설계 유전자 회로를 이용한 섬유소분해활성 효소의 신규 탐색방법 및 상기 섬유소분해활성 효소에 의해 분해되는 셀로비오스의 정량방법에 관한 것이다. 본 발명의 재설계 유전자회로를 이용하면, 셀로비오스의 양에 비례하는 셀로비오스 인지 전사조절 단백질(CelR)이 리포터 단백질의 발현을 유도하도록 함으로써, 셀로비오스를 고감도로 빠르게 감지하고 정량화 함으로서 셀로비오스의 감지 및 정량적 분석에 활용할 수 있고, 셀로비오스를 유리하는 exo형 섬유소분해효소의 활성을 측정하거나 새로운 exo형 섬유소분해효소 탐색할 수 있다.

Description

재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법
본 발명은 재설계 유전자 회로를 이용한 섬유소분해활성 효소의 신규 탐색방법에 관한 것으로, 더욱 자세하게는 재설계 유전자 회로를 이용한 섬유소분해활성 효소의 신규 탐색방법 및 상기 섬유소분해활성 효소에 의해 분해되는 셀로비오스의 정량방법에 관한 것이다.
최근 석유자원 고갈과 국제환경규제로 기존의 석유화학산업을 대체할 수 있는 바이오매스 기반의 탄소순환 대체원료 개발기술이 각광 받고 있다. 이러한 석유대체원료 개발기술 중, 특히 목본계 셀룰로스(cellulose)를 효율적으로 분해하여 글루코오스 (glucose)를 생산하기 위한 연구가 활발히 수행되어 오고 있다. 본 발명은 셀룰로스를 가수분해하여 대체 에너지원인 글루코오스를 생산하는 데 주요한 역할을 담당하는 섬유소분해효소 (cellulase)의 활성을 감지하는 방법에 관한 것이다.
섬유소분해효소는 셀룰로스의 β-1,4 글리코시드 결합 (β-1,4 glycosidic linkage)을 가수분해하여 셀로비오스, 셀로올리고당 (cello-oligosaccharide) 및 글루코오스를 생산하는 효소로서 셀룰로스의 가수분해 반응을 촉매한다. 섬유소분해효소는 종류에 따라 셀룰로스의 내부를 무작위로 분해하는 endo형 (endoglucanase, EC3.2.1.4), 셀룰로스의 선형 말단으로부터 포도당 두 분자가 결합된 형태의 셀로비오스나 셀로올리고당 형태로 분해하는 exo형 (exoglucanase, EC3.2.1.91), 셀로비오스를 두 분자의 포도당으로 분해하는 β-glucosidase로 구성된다. 바이오매스의 종류 및 전처리 방법에 따라서 섬유소분해효소의 효과는 매우 복잡하게 나타나며, 효소칵테일 등 다양한 효소의 조합을 통하여 효율을 극대화하기 위한 노력이 진행되고 있다. 특히 비 식량 자원 바이오매스인 결정형섬유소 (crystalline cellulose) 분해에 큰 영향을 미치는 exo형 섬유소분해효소를 찾거나 개량하려는 연구들이 진행되고 있다.
섬유소분해효소의 활성을 측정하는 방법은 필터페이퍼 (filter paper, Whatman no. 1)를 이용하여 전제 섬유소분해효소활성을 나타내는 방법, CMC (Carboxymethyl cellolose)를 이용하여 endo형 섬유소분해효소의 활성을 측정하는 방법, avicel을 이용하여 exo형 섬유소분해효소의 활성을 측정하는 방법 등이 있다.
전체 섬유소분해효소활성을 측정하는 FPA (FPase activity) 방법은 1×6 cm 필터페이퍼 조각을 섬유소분해효소와 반응시켜, 1분 동안 글루코오스 1 마이크로몰 (micromole)을 생산하는 효소유닛을 DNS (3,5- dinitrosalicylic acid)를 등의 환원당 측정법이나 글루코오스 측정법을 통해 측정하는 방법이다 (Biotechnol Bioeng, 82:745-749, 2003). 이 방법은 값싸고 쉽게 구할 수 있는 기질을 사용하는 장점이 있어 널리 사용되고 있으나, 재연성이 떨어지고 많은 노동력과 시약들이 필요한 단점이 있다. 또한 대량의 라이브러리 등 많은 수의 효소활성을 측정하는데 사용될 수 없다.
수용성 CMC를 이용하여 endo형 섬유소분해효소를 측정하는 방법은 1분 동안 1 마이크로몰의 글루코오스를 생산할 수 있는 효소유닛을 측정하는 방법이다 (Biotechnol Bioeng Symp, 21-33, 1976). 이 방법은 전통적인 endo형 섬유소분해효소를 측정하는 방법이지만, CMC의 DS (degree of substitution)이나 DP (degree of polymerization)에 의해 결과가 차이가 나며, 노동력을 요하는 방법이므로 대량의라이브러리의 효소활성을 측정하는데 사용되기 어려운 단점이 있다.
exo형 섬유소분해효소의 활성은 일반적으로 avicel을 이용하여 측정하는데, avicel은 낮은 DP를 나타내어 endo형 섬유소분해효소의 방해를 받지 않고 순수 exo형 섬유소분해효소의 활성만 측정할 수 있게 된다 (Crit. Rev. Biotechnol., 1-8, 2010). 그러나 이 방법 역시 재연성이 떨어지며 노동력을 요해 대량의 라이브러리 탐색에 사용되기 어렵다.
이렇듯 대부분의 섬유소분해효소 기능 탐색은 많은 시간과 노력을 요하는 개별적 활성분석기술에 의존하고 있는 형편이다. 게다가 최근 미생물 유전체 혹은 메타게놈 (metagenome)으로부터 새로운 유전자원을 확보하거나, 기존 유전자의 활성을 개량하여 유용성이 높은 바이오촉매로 발전시키기 위하여 방향성 분자진화기술 (directed evolution)을 적용하는 연구가 바이오산업기술의 중요한 전략으로 부각되고 있으며, 이에 따라 극미량의 효소활성을 감지하는 새로운 고속화기술의 등장을 요구하고 있다.
따라서 본 발명자들은 새로운 섬유소분해활성을 가지는 효소를 탐색하는 방법을 개발하기 위하여 예의 노력한 결과, 섬유소 분해 반응에서 셀로비오스을 유리하게 되는 섬유소분해효소의 특성을 착안하여, 셀로비오스을 감지하는 재설계 유전자회로를 제작하고, 상기 재설계 유전자 회로에서 셀로비오스에 의해 발현이 유도된 리포터 단백질의 활성을 고속, 정량적으로 측정할 수 있음을 확인하여, 셀로비오스를 감지하는 방법, 셀로비오스를 정량하는 방법, 셀로비오스 유리 exo형 섬유소분해효소 활성 측정 방법, 및 셀로비오스 유리 exo형 섬유소분해효소를 탐색하는 초고속 방법을 고안하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 셀로비오스를 검출 및 정량하는데 사용되는 유전자 재설계 회로를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 유전자 재설계회로를 이용하여, 섬유소분해효소 활성 정량 및 새로운 섬유소분해활성을 가지는 효소를 탐색할 수 있는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자; (ii) 형광 단백질을 코딩하는 유전자 및 항생제 저항성 유전자로 구성된 군에서 선택된 하나 이상의 리포터 유전자; (iii) 상기 전사 조절 단백질의 발현을 조절하는 프로모터; 및 (iv) 상기 전사 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 조절하는 프로모터를 포함하는 셀로비오스 감지용 재설계 유전자회로를 제공한다.
본 발명은 또한 상기 셀로비오스 감지용 재설계 유전자회로를 함유하는 셀로비오스 감지용 재조합 미생물을 제공한다.
본 발명은 또한, (a) 상기 셀로비오스 감지용 재조합 미생물을 셀로비오스 함유 가능성이 있는 샘플과 접촉시키는 단계; 및 (b) 상기 샘플 내에 존재하는 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성을 분석하여, 셀로비오스의 존재여부를 감지하는 단계를 포함하는 셀로비오스의 감지방법을 제공한다.
본 발명은 또한, (a) 상기 셀로비오스 감지용 재조합 미생물을 셀로비오스를 함유하는 샘플과 접촉시키는 단계; 및 (b) 상기 샘플 내에 존재하는 셀로비오스에 의해 발현이 유도된 리포터 단백질의 활성을 분석하여, 샘플 내에 존재하는 셀로비오스를 정량하는 단계를 포함하는 셀로비오스의 정량방법을 제공한다.
본 발명은 또한, (a) 상기 셀로비오스 감지용 재조합 미생물을 효소반응에 의해 셀로비오스 화합물을 유리할 수 있는 섬유소 화합물로 처리하는 단계; 및 (b) 섬유소분해효소 반응에 의해 유리된 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성 분석을 기반으로, 섬유소분해효소 활성을 측정하는 단계를 포함하는 섬유소분해효소 활성의 측정방법을 제공한다.
본 발명은 또한, (a) 상기 셀로비오스 감지용 재조합 미생물과 섬유소 화합물 및 메타게놈 라이브러리 샘플을 접촉시키는 단계; (b) 상기 샘플 내에 존재하는 섬유소분해효소 활성을 가지는 균주에 의해 생산된 셀로비오스에 의해, 발현이 유도된 리포터 단백질의 활성을 분석하는 단계; 및 (c) 상기 분석된 리포터 단백질의 활성을 기반으로, 섬유소분해효소 활성을 가지는 섬유소분해효소 생산균주를 선별하는 단계를 포함하는 섬유소분해효소 생산균주의 스크리닝 방법을 제공한다.
도 1은 섬유소분해효소 활성 감지를 위한 재설계 유전자회로 (CBGESS: CelloBiose induced Genetic Enzyme Screening System)의 모식도이다 (CelR: 본 발명에 따른 셀로비오스 화합물을 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사 조절 단백질을 코딩하는 유전자, PHCE: 상기 전자 조절 단백질의 발현을 조절하는 프로모터, PmTrc: 상기 전사 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 유도하는 부위).
도 2는 셀로비오스에 의한 재설계 유전자회로의 형광세기를 DH5α와 MG1655에서 각각 측정한 결과를 나타낸 것이다.
도 3은 DH5α와 MG1655에서 셀로비오스 농도에 따른 재설계 유전자회로의 형광증가를 보여주는 결과를 나타낸 것이다.
도 4는 최적화된 재설계 유전자회로의 민감도를 측정한 결과로서, (가)는 유세포분석기를 이용한 결과이며, (나)는 형광 플레이트 리더기를 이용한 결과를 나타낸 것이다.
도 5는 재설계 유전자회로의 기질 특이성을 분석한 결과를 나타낸 것이다.
도 6은 재조합 섬유소분해효소의 활성을 재설계 유전자회로를 이용하여 분석한 결과로서, (가)는 섬유소분해효소의 유무에 따른, 기질에 대한 재설계 유전자회로의 형광을 유세포분석기로 측정한 결과이며, (나)는 섬유소분해효소에 의한 재설계 유전자회로의 형광 발현을 시간에 따라 측정한 결과이며, (다)는 고체배지에서의 콜로니의 형광이미지를 관찰한 그림이다.
도 7은 재설계 유전자회로를 이용한 메타게놈 라이브러리 섬유소분해효소 탐색결과로서, (가)는 유세포분석기를 이용하여 측정한 결과이며, (나)는 고체배지에서의 콜로니 형광이미지, (다)는 선별한 클론의 콜로니 형광이미지, (라)는 메타게놈 라이브러리 탐색 순서도를 나타낸 것이다.
도 8은, 재설계 유전자회로를 이용하여 세포 외부에서의 섬유소 분해효소 활성을 형광으로 측정한 결과를 나타낸 것이다.
도 9는, 재설계 유전자회로를 이용한 결정형 섬유소 분해 활성을 측정한 결과로서, (가)는 celluclast의 분해능을 고체배지에서 측정한 콜로니 형광이미지이며, (나)는 액체배지에서의 분해능 측정 결과를 나타낸 것이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
일 관점에서, 본 발명은 (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자; (ii) 형광 단백질을 코딩하는 유전자 및 항생제 저항성 유전자로 구성된 군에서 선택된 하나 이상의 리포터 유전자; (iii) 상기 전사 조절 단백질의 발현을 조절하는 프로모터; 및 (iv) 상기 전사 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 조절하는 프로모터를 포함하는 셀로비오스 감지용 재설계 유전자회로에 관한 것이다.
바이오매스 기반 탄소순환 대체원료 개발기술의 핵심은 비 식량 자원인 셀룰로스를 효과적으로 분해하여 사용가능한 최대로 구성 단당인 포도당(glucose)을 생산하는 것이다. 따라서 셀룰로스를 가수분해하여 포도당을 생산하는 데 주요한 역할을 하는 섬유소분해효소의 역할이 중요하며, 이를 발굴, 개량하기 위한 연구가 활발히 진행되고 있다. 특히 바이오매스 중 난분해성 결정형섬유소를 분해하는 셀로비오스를 유리하는 가수분해효소 (cellobiohydrolase: exo형 섬유소분해효소)에 대한 관심이 높아지고 있는 추세이다. 그러나 현재 섬유소분해효소의 활성을 측정하는 방법은 미세한 효소활성을 측정하기 어려우며, 많은 시간과 개별적 활성분석을 요하여 대량의 유전자자원이나 환경에서의 효소 탐색 및 개량에 어려움이 있다.
본 발명은 재설계 유전자회로를 이용하여 다양한 화합물을 감지하여, 결국 다양한 화합물 합성 효소 활성을 고감도로 간편하게 감지하는 기술 (GESS: Green fluorescence linked enzyme screening system)(대한민국 등록특허 제1,222,056호)를 응용하여, 셀로비오스 감지 및 정량에 적용한 것으로, 섬유소분해효소 활성에 의하여 생성되는 셀로비오스를 효율적으로 신속하고 고감도로 분석할 수 있는 방법이다.
본 발명에서, 상기 (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자는 섬유소분해효소 발현 오페론을 가지는 생물 유래 유전자인 것을 특징으로 할 수 있으며, 상기 전사조절 단백질을 코딩하는 유전자는 TThermobifida fusca, Streptococcus pneumoniae, Streptococcus mutans, Streptomyces griseus, Streptomyces reticuli, Pyrococcus furiosuscan Vibrio slmonicida, Neurospora crassa, Clostridium cellulolyticum, Trichoderma reeseiAspergillus aculeatus 로 구성된 군에서 선택되는 균주 유래 유전자인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전사조절 단백질을 코딩하는 유전자는 Thermobifida fusca 유래의 서열번호 1의 염기서열을 가지는 CelR 유전자인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 리포터 유전자와 상기 리포터 유전자의 발현을 조절하는 프로모터는 상호작동가능하게 연결되어 있는 것을 특징으로 할 수 있고, 상기 화합물 분해효소 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 유도하는 부위는 상기 화합물 분해효소 조절 단백질이 결합하여 하류의 리포터 유전자가 발현될 수 있도록 리포터유전자의 프로모터를 활성화하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 셀로비오스를 인지하는 상기 전사 조절 단백질을 코딩하는 유전자와 상기 조절 단백질의 발현을 조절하는 프로모터는 상호작동가능하게 연결되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 전사 조절 단백질은 셀로비오스를 감지하여 발현을 유도하는 것을 사용할 수 있으며, 본 발명의 일 양태에서는 Thermobifida fusca유래 섬유소분해효소 발현 오페론의 조절단백질인 celR를 사용하였다.
본 발명에 있어서, 상기 형광단백질은 GFP, sf-GFP, GFPUV 및 RFP로 구성된 군으로부터 선택되는 것을 특징으로 할 수 있고, 상기 항생제 저항성 유전자는 카나마이신 저항성 유전자, 클로람페니콜 저항성 유전자 및 테트라사이클린 저항성 유전자로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 재설계 유전자회로는 RBS(ribosome binding site)를 코딩하는 유전자를 포함하는 것을 특징으로 할 수 있고, 상기 리포터 유전자는 형광 단백질을 코딩하는 유전자 및 항생제 저항성 유전자로 구성된 이중 리포터 유전자인 것을 특징으로 할 수 있다.
상기 전사 조절 단백질에 관하여, celR은 T. fusca유래 단백질이 가장 잘 알려져 있으며 (J Biol Chem (1999) 274:13127), 섬유소분해효소의 발현을 조절하는 전자조절인자이다. celR은 GalR-LacI family에 속하며, 세포 내에서 repressor로서 발현을 조절한다. 자세하게는 'tgggagcgctccca'의 유전자 부위에 특이적 결합을 하여 하위 유전자의 발현을 저해하다가 셀로비오스를 감지하였을 때는 결합을 못하게 되어 하위 유전자의 발현을 유도하게 된다.
본 발명에서, "재설계 유전자회로"란, 도 1에 나타난 바와 같이, (i) 상기 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 조절 단백질을 코딩하는 유전자; (ii) 형광 단백질 및 항생제 저항성 유전자롤 구성된 군에서 선택된 하나 이상의 리포터 유전자; 및 (iii) 상기 전사 조절 단백질의 발현을 조절하는 프로모터, 상기 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 유도하는 부위, 및 상기 리포터 유전자의 발현을 조절하는 프로모터로 구성된다. 상기 전사 조절 단백질은 셀로비오스가 없을 때에는 조절단백질이 하위유전자의 전사를 저해하지만, 셀로비오스가 결합하여 조절단백질을 억제하면, 하위 유전자의 전사활성화 기능이 나타나게 된다.
본 발명에서, "프로모터"는 셀로비오스 분해효소 조절 단백질의 발현을 조절하는 프로모터 또는, 리포터 단백질의 발현을 조절하는 프로모터를 의미하며, 예를 들어 celR의 프로모터나 일반 단백질 발현용 프로모터가 사용될 수 있으며, 외래 단백질의 고발현용으로 trc, T7, lac, ara 프로모터를 비롯한 고발현 프로모터가 사용될 수 있고, 특히, 전사유도화합물(inducer)가 필요없는 항시 고발현벡터인 Phce가 사용될 수 있다.
본 발명에서 구축한 재설계 유전자회로는 T. fusca유래 전사조절인자를 사용하고 있는데, 셀로비오스를 감지하는 celR이 결합하여 하위 리포터유전자의 전사를 조절하는 프로모터는 유전자회로의 숙주인 대장균에서 리포터단백질의 발현을 용이하게 하기 위해 대장균에서 많이 사용되는 trc 프로모터를 사용하였다. trc 프로모터 중 lacI 와 결합하는 부분을 제거하고 celR 과 결합할 수 있는'tgggagcgctccca'를 삽입하여 celR에 의한 하위 리포터유전자의 전사를 유도하였다. 그 결과 실시 예에서 숙주로 사용한 대장균에서 리포터단백질의 고발현을 유도하였다.
본 발명에 있어서, 상기 재설계 유전자회로는, 상기 프로모터 뿐만 아니라, 바람직하게는, 리포터 단백질의 발현을 용이하게 해주는 RBS(Ribosome Binding Site) 및/또는 전사종결인자를 포함할 수 있다. 즉, 상기 조절 단백질의 발현을 조절하는 부위로써, 상기 프로모터 이외에도 RBS 및/또는 전사종결인자를 포함할 수 있는 것이다.
일반적으로 단백질의 발현은 mRNA에서 개시코돈인 AUG (메티오닌) 혹은 GUG (발린)에서 시작하는데, 리보좀이 단백질 내부의 잔기에 위치한 AUG 혹은 GUG와 단백질 개시코돈으로서의 AUG와 GUG의 구분은 DNA의 퓨린 염기가 풍부한 RBS (또는 샤인-달가노 연속부분; Shine-Dalgarno (SD) sequence) 에 의하여 결정되며 이 RBS는 종마다 서열이 차이가 나는 것으로 알려져 있다 (Stryer, L., (1995) Biochemistry, (4th ed.) W. H. Freeman, Chapter 34, Protein Synthesis). 본 발명에서 구축한 재설계 유전자회로는 Thermobifida fusca유래 전사조절인자를 사용하고 있는데 유전자회로의 숙주인 대장균과는 생존 형태가 많이 다르기 때문에, 숙주인 대장균에서 리포터 단백질의 발현을 용이하게 하기 위하여 대장균용 RBS (RBSε), 또는 모든 균주에 통합적으로 사용가능한 RBS(RBSx) 를 사용할 수 있으며, T7 RBS 또한 사용 가능할 것이다.
본 발명에 있어서, 상기 전사종결인자는, 바람직하게는, rrnBT1T2 또는 tL3일 수 있고, 이것 이외에도, 당업계에서 통상적으로 사용되는 여하한 전사종결인자를 사용하여 본 발명을 구성할 수 있다.
본 발명에서 리포터는 형광단백질 및 항생제 저항성 유전자로부터 선택된 하나 이상일 수 있다. 형광단백질로는 바람직하게 GFP, sf-GFP, GFPUV 또는 RFP를 사용할 수 있고, 본 발명의 목적을 달성할 수 있는 한 본 발명에 사용할 수 있는 형광단백질은 이러한 예에 한정되지 않는다. 또한, 상기 항생제 저항성 유전자는 카나마이신, 클로람페니콜, 테트라사이클린 등 항생제에 저항성인 유전자 등 통상의 항생제 저항성 유전자를 사용할 수 있다.
본 발명에서, 상기 리포터 단백질의 활성 측정은 미생물 콜로니 이미지 분석, 형광스펙트럼 분석, 형광유세포분석 (FACS), 항생제 내성 측정법을 이용하여 측정할 수 있다.
본 발명에 있어서, 상기 재설계 유전자회로는 벡터 또는 미생물의 형태로 제공될 수 있다. 본 발명에 있어서, 상기 미생물은 바람직하게 대장균, 슈도모나스, 효모, 또는 식물세포, 동물세포 등 일 수 있다.
따라서, 다른 관점에서, 본 발명은 상기 셀로비오스 감지용 재설계 유전자회로를 함유하는 셀로비오스 감지용 재조합 미생물에 관한 것이다.
본 발명에서 재조합 미생물은 대장균, 슈도모나스, 효모, 식물세포, 동물세포 등을 사용할 수 있다.
또 다른 관점에서, 본 발명은 (a) 상기 셀로비오스 감지용 재조합 미생물을 셀로비오스 함유 가능성이 있는 샘플과 접촉시키는 단계; 및 (b) 상기 샘플 내에 존재하는 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성을 분석하여, 셀로비오스의 존재여부를 감지하는 단계를 포함하는 셀로비오스의 감지방법에 관한 것이다.
또 다른 관점에서, 본 발명은 (a) 상기 셀로비오스 감지용 재조합 미생물을 셀로비오스를 함유하는 샘플과 접촉시키는 단계; 및 (b) 상기 샘플 내에 존재하는 셀로비오스에 의해 발현이 유도된 리포터 단백질의 활성을 분석하여, 샘플 내에 존재하는 셀로비오스를 정량하는 단계를 포함하는 셀로비오스의 정량방법에 관한 것이다.
또 다른 관점에서, 본 발명은 (a) 상기 셀로비오스 감지용 재조합 미생물을 효소반응에 의해 셀로비오스 화합물을 유리할 수 있는 섬유소 화합물로 처리하는 단계; 및 (b) 섬유소분해효소 반응에 의해 유리된 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성 분석을 기반으로, 섬유소분해효소 활성을 측정하는 단계를 포함하는 섬유소분해효소 활성의 측정방법에 관한 것이다.
본 발명은 재설계 유전자회로를 이용하여 다양한 효소 활성을 고감도로 간편하게 감지하는 기술(GESS: genetic enzyme screening system)을 섬유소분해효소 활성 탐색에 적용한 것으로, 종래 기술로는 활성 탐색이 쉽지 않았던 섬유소분해효소를 광범위 유전자 라이브러리에서 효율적으로 탐색할 수 있는 방법을 제공하고 있으며, 섬유소분해효소의 활성을 정량적으로 측정할 수 있는 장점이 있다.
본 발명에 따르면, 상기 유전자회로로 형질전환된 미생물을 효소반응에 의해 셀로비오스를 유리할 수 있는 화합물로부터 선택된 하나 이상의 기질로 처리한다.
상기 영양 배지 또는 최소배지는 기술분야에 일반적으로 사용될 수 있는 다양한 배지가 적용 가능 할 것이다.
셀로비오스를 감지하는 재설계 유전자회로를 함유한 재조합 미생물에 임의의 효소 유전자를 도입하고, 셀로비오스로 처리하면 세포내 효소유전자의 기능 및 활성도에 따라서 상기 화합물의 농도가 변화하게 된다. 따라서, 셀로비오스 의 발현유도 기능에 의한 형광, 항생제저항성 등 리포터의 정량적 증가를 형광분석기, 항생제저항성 등 다양한 측정기술을 이용하여 탐색하면 세포내외의 효소활성을 고감도로 감지할 수 있는 새로운 측정방법을 제공하게 된다.
또한, 본 발명에서 리포터로 사용되는 형광단백질, 항생제저항성 단백질은 고도의 민감성 측정방법을 적용할 수 있을 뿐만 아니라, 세포막을 통과하지 않고 특정세포 내부에 한정되므로 그 세포 내에서 발현되는 외래 유전자의 특성을 개별적으로 발휘하게 된다. 따라서, 하나하나의 세포(single cell)가 독립적인 반응조 및 분석기의 역할을 수행하게 되므로 효소반응에 의해 유리된 셀로비오스를 감지하여 발현이 유도된 리포터의 활성을 측정하는 수단으로 수백-수천만 개의 대량시료를 유세포분석기 (flow cytometer), 미세콜로니 형광이미지분석, 형광스펙트럼분석, 항생제 선택배지를 이용한 대량탐색 등을 이용하여 측정할 수 있다.
또 다른 관점에서, 본 발명은 (a) 상기 셀로비오스 감지용 재조합 미생물과 섬유소 화합물 및 메타게놈 라이브러리 샘플을 접촉시키는 단계; (b) 상기 샘플 내에 존재하는 섬유소분해효소 활성을 가지는 균주에 의해 생산된 셀로비오스에 의해, 발현이 유도된 리포터 단백질의 활성을 분석하는 단계; 및 (c) 상기 분석된 리포터 단백질의 활성을 기반으로, 섬유소분해효소 활성을 가지는 섬유소분해효소 생산균주를 선별하는 단계를 포함하는 섬유소분해효소 생산균주의 스크리닝 방법에 관한 것이다.
본 발명에 있어서, 상기 탐색하고자 하는 효소를 코딩하는 유전자는 클론 또는 유전자 라이브러리의 형태로, 분자생물학 연구 분야에서 적용가능한 단일 유전자, 게놈라이브러리, 메타게놈 또는 메타게놈 라이브러리 형태로 제공될 수 있다. 또한, 상기 단일 유전자는 벡터 또는 미생물에 포함된 형태로 제공될 수 있다.
본 발명에 따르면 메타게놈 라이브러리와 셀로비오스 감지 재설계 유전자회로를 적합한 미생물 숙주내로 순차적 형질전환 (stepwise transformation) 시키는 데, 공지된 여하한 방법을 이용할 수 있다. 형질전환의 효율을 높이기 위해서, 바람직하게 전기천공법 (electroporation) 을 사용할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 셀로비오스를 감지하는 전사조절인자(celR) 기반의 재설계 유전자 회로 구축
재설계 유전자회로는 셀로비오스를 감지하여 리포터유전자의 전사를 조절하는 celR 유전자 부위, celR의 발현을 조절하는 프로모터 부위, celR이 결합하여 하위 리포터유전자의 전사를 조절하는 프로모터 부위, 하위 리포터유전자 부위로 구성된다. celR 유전자는 방선균의 일종인 Thermobifida fusca에서 추출하였다.
Thermobifida fusca KCTC9025를 대전의 생물자원센터(KCTC)에서 분양받았으며, 서열번호 2,3의 프라이머를 사용하여 콜로니 PCR를 수행하여 celR유전자를 증폭하였다.
서열번호 2: 5'-GGGGCTAGCATGGAGCGTCGGCGAC-3' (NheI site, Nterm)
서열번호 3: 5'-GGGAGATCTTCACCCGGATTCCCGC-3' (BglIII site, Cterm)
celR의 발현을 조절하는 프로모터 부위는 항시발현 프로모터인 HCE promoter를 사용하였다. pHCE-IIB(Takara, 일본)벡터에서 제한효소 NheI, ClaI을 사용하여 추출하였다. celR이 결합하여 하위 리포터유전자의 전사를 조절하는 프로모터 부위는 trc 프로모터를 사용하였다. trc 프로모터에 존재하는 LacI binding site를 제거하고 서열번호 4의 celR binding site를 삽입하였다.
서열번호 4: 5'-TGGGAGCGCTCCCA-3'
trc 프로모터는 양 말단에 KpnI, NdeI site를 보유하고 있으며, 대전의 바이오니아에서 유전자합성을 통해 유전자를 준비하였다. 하위 리포터유전자 부위인 eGFP유전자와 벡터부위는 선행 기술로 발명된 GESS 플라스미드(대한민국 등록특허 10-1222056)를 사용하였다. 준비된 4개의 유전자에 각 유전자에 맞는 제한효소를 처리하여 4개의 유전자가 하나로 연결된 5.6kb의 CBGESS(서열번호 5)를 개발하였다 (도 1).
도 1은 섬유소분해효소 활성 감지를 위한 재설계 유전자회로의 모식도를 나타낸 것이다 (CelR: 본 발명에 따른 셀로비오스 화합물을 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사 조절 단백질을 코딩하는 유전자, PHCE: 상기 전자 조절 단백질의 발현을 조절하는 프로모터, PmTrc: 상기 전사 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 유도하는 부위).
실시예 2: 재설계 유전자회로의 셀로비오스 감지능 확인
CBGESS 함유 재설계 대장균의 셀로비오스 감지기능을 확인하기 위하여, 대장균 MG1655와 대장균 DH5α 균주에 열 충격을 통한 CBGESS의 형질전환을 시도하였다. MG1655(stanford collection, 미국)는 대장균 K타입 균주의 오리지날 버전으로 일반적인 대장균의 특성을 가지고 있다. DH5α(NEB, 미국)의 경우 염색체조작을 통해 유전자의 보존 및 변성을 최소화한 K타입 대장균이다.
MG1655와 DH5α 단일 콜로니를 100 ㎍/㎖의 앰피실린을 첨가한 각 2 ㎖의 LB (1 % (w/v) 트립톤, 0.5% (w/v) 효모추출물, 1% (w/v) 염화나트륨) 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지 10 ㎖에 1 % 접종한 후 세포농도(OD)가 약 0.8정도 도달하였을 때, 각 5 ㎖로 나눈 뒤, 한 쪽에는 5 mM 셀로비오스를 첨가하고 다른 한쪽은 첨가하지 않았다. 이 후, 18 시간동안 37℃ 에서 진탕배양을 더 진행하여 형광발현을 유도하였다. 세포농도 측정은 UV/VIS 형광분광기를 사용하였으며, 형광측정은 형광 플레이트 리더기 (Victor5, ParkinElmer, 미국)를 사용하였다.
그 결과, 셀로비오스를 첨가하지 않았을 때에 비하여 MG1655는 약 6배 형광이 증가하였으며, DH5α는 약 3배정도 형광이 증가하였다(도 2). 이 결과는 재설계 유전자회로가 셀로비오스를 감지하여 리포터 단백질인 eGFP를 발현, 형광이 감지됨을 나타낸다. 이 결과를 통해 구축된 재설계 유전자회로가 셀로비오스 유무에 따라 형광 강도가 확실하게 차이가 남이 입증되어, 섬유소분해효소 활성을 측정하는 목적에 이용될 수 있음을 나타냈다.
실시예 3: 재설계 유전자회로의 셀로비오스 민감도 측정
대량의 라이브러리에서 효소활성을 감지하기 위해선 낮은 농도의 셀로비오스에서도 감지가 가능해야 한다. 따라서 재설계 유전자회로의 높은 민감성이 필요하다.
CBGESS가 형질전환된 MG1655 와 DH5α 단일 콜로니를 100 ㎍/㎖ 의 앰피실린을 첨가한 LB 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지에 1 % 접종한 후 세포농도가 약 0.4 정도 도달하였을 때 각 1 ㎖ 로 나눈 뒤, 셀로비오스의 농도를 0, 1, 5, 10, 50, 100 μM 이 되게 섞어 18 시간동안 37℃ 에서 진탕배양을 더 진행하여 형광발현을 유도하였다. 세포형광은 유세포분석기 (FACSCalibur, BD, 미국)를 이용하였다.
그 결과, DH5α는 5 μM에서부터 형광이 나타나기 시작했으며, 셀로비오스 농도가 높아짐에 따라 정량적으로 형광이 나타나는 것으로 확인되었다 (도 3). 그러나 MG1655의 경우 형광이 나오는 세포보다 나오지 않는 세포의 수가 많은 것으로 관찰되었다. 이는 대장균의 β-glycosidase 효소활성이 나타나 셀로비오스를 분해하여 celR에 반응할 셀로비오스가 적어져 형광이 나오지 않는 세포가 우점된 것으로 판단된다. DH5α의 염색체 유전자 정보 중 β-glycosidase 효소에 대한 것은 밝혀져 있지 않으나, 상기 결과에 따르면, 셀로비오스 분해능은 없는 것으로 판단된다. DH5α의 셀로비오스 분해능이 없는 특성은 메타게놈의 특성상 미약한 효소활성에 의한 낮은 셀로비오스도 감지하는 데 장점이 될 수 있어 이후 실험은 DH5α에서 진행하였다.
실시예 4: 재설계 유전자회로의 감지능 최적화
재설계 유전자회로의 감지능을 높이기 위해, 리포터단백질로 사용하는 eGFP를 대장균에서 발현이 빠르고 많은 sf-GFP로 교체하였다 (Nat Biotechnol. 24:79-88, 2006).
sf-GFP를 PCR로 증폭한 뒤 만들어진 CBGESS를 PCR하여 두 조각을 Gibson-Assembly (gibson assembly kit, NEB)하여 새로운 재설계 유전자회로를 구축하였다.
서열번호 6: 5' -GAGAAGGAGATATACATATGAGCAAAGGTGAAGA-3' (sf-GFP N-term)
서열번호 7: 5' -TCCGCCAAAACAGAAGCTTATTAGTGATGGTGAT-3' (sf-GFP C-term)
서열번호 8: 5' -ATCACCATCACTAATAAGCTTCTGTTTTGGCGGA-3' (CBGESS N-term)
서열번호 9: 5' -TCTTCACCTTTGCTCATATGTATATCTCCTTCTC-3' (CBGESS C-term)
구축한 재설계 유전자회로는 DH5α 균주에 열 충격을 통한 CBGESS의 형질전환을 시도하였다. 형질전환한 단일 콜로니를 100 ㎍/㎖의 앰피실린을 첨가한 LB 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지에 1 % 접종한 후 세포농도 (OD600)가 약 0.4정도 도달하였을 때 각 1 ㎖ 로 나눈 뒤, 셀로비오스의 농도를 0, 1, 5, 10, 50, 100 μM 이 되도록 첨가하여, 18 시간동안 37℃ 에서 진탕배양하여 형광발현을 유도하였다. 세포형광은 유세포분석기와 형광 플레이트 리더기를 이용하여 분석하였다.
그 결과, 새로 구축한 재설계 유전자회로는 1 μM의 낮은 셀로비오스 농도에서도 형광이 나타나며, 셀로비오스 농도가 증가함에 따라 정량적으로 형광이 증가하는 것으로 나타났다. 또한 셀로비오스를 첨가하지 않았을 때와 50 μM의 셀로비오스를 첨가한 실험군을 비교한 결과, 약 100배의 형광 강도가 증가하였다 (도 4). 이 결과로 최적화한 새로운 재설계 유전자회로가 낮은 농도의 셀로비오스에도 민감하고 정량적으로 반응함을 확인하여 미지의 효소활성을 분석하는 목적에 이용될 수 있음을 나타내었다.
실시예 5: 재설계 유전자회로의 특이성 검증
대량의 라이브러리에서 원하는 활성을 가진 효소를 탐색하기 위해선 재설계 유전자회로가 원하는 효소활성으로 유리되는 생성물만을 특이적으로 감지해야한다.
재설계 유전자회로의 특이적 반응을 검증하기 위해 재설계 유전자회로가 도입된 대장균 DH5α 단일 콜로니를 100 ㎍/㎖의 앰피실린을 첨가한 LB 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지에 1 % 접종한 후 세포농도가 약 0.4정도 도달하였을 때 각 1 ㎖ 로 나눈 뒤, 각각 글루코오스 (Glucose), 셀로비오스 (Cellobiose), 셀로트리오스 (Cellotriose), 셀로테트로스 (Cellotetraose), 셀로펜토스 (Cellopentaose)를 첨가한 뒤, 18 시간동안 37℃ 에서 진탕배양을 더 진행하여 형광발현을 유도하였다. 세포형광은 형광 플레이트 리더기를 이용하여 측정하였다.
실험에 사용된 셀로비오스를 비롯한 다른 기질들은 글루코오스의 집합체이다. 실험결과 본 발명의 재설계 유전자회로는 셀로비오스에만 특이적으로 반응하여 강한 형광을 나타내는 것으로 나타났다 (도 5). 따라서 대량의 라이브러리에서 셀로비오스를 유리하는 효소활성을 거짓양성 (false positive) 등의 방해가 없이 원하는 효소활성만 특이적으로 선별할 수 있다.
실시예 6: 재설계 유전자회로를 이용한 재조합 섬유소 분해효소의 세포 내 효소활성 감지
본 발명에 따른 재설계 유전자회로를 이용한 응용 예로, 메타게놈 유래 섬유소분해효소인 CelEdx16 (Appl Microbiol Biotechnol. 89:1453-62, 2011)의 활성을 감지하였다. CelEdx16은 endo-, exo- 활성을 동시에 가지고 있는 섬유소분해효소로서 pNPG2 (4-nitrophenyl β-D-cellobioside) 를 분해하여 셀로비오스를 생산할 수 있다.
먼저, CelEdx16 유전자를 pcc1 vector (epicentre, 미국)에 Gibson-assembly 를 이용하여 pcc-CelEdx16 을 제조한 후, 재설계 유전자회로를 함유한 대장균에 도입하였다. CelEdx16유전자가 도입된 단일 콜로니와 pcc1 백터만 도입된 콜로니를 각각 100 ㎍/㎖의 앰피실린과 12.5 ㎍/㎖의 클로람페리콜이 첨가된 LB 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지에 1% 접종한 후 세포농도(OD)가 약 0.4정도 도달하였을 때 셀로비오스와 pNPG2를 첨가하여 배양하였다. 또한 위와 동일한 고체배지를 이용하여 세포의 형광을 측정하였다. 세포형광은 유세포분석기, 형광 플레이트 리더기 그리고 형광현미경 (AZ100, 니콘, 일본) 을 이용하여 분석하였다.
그 결과, 백터만 도입된 컨트롤은 pNPG2에서 형광이 보이지 않았으나 섬유소 분해효소가 도입된 대장균에서는 형광이 강하게 나타나, 유세포분석기로 분석 시 그래프상에서 형광분포가 컨트롤과 비교했을 때 오른쪽으로 이동함을 관찰할 수 있었다 (도 6 가). 또한 섬유소 분해효소와 재설계 유전자회로 보유 세포의 형광발현을 형광 플레이트 리더기를 이용하여 시간대 별로 측정한 결과, 셀로비오스는 약 3시간, pNPG2는 약 6시간 이후부터 형광이 나타나는 것으로 관찰되었다 (도 6 나).
또한 형광현미경을 이용하여 고체배지에서 자란 콜로니의 형광을 관찰한 결과, 섬유소분해효소의 유무에 따라 콜로니의 형광차이를 관찰할 수 있었다(도 6 다). 따라서 상기 결과를 통해 CBGESS 유전자회로를 이용하여 섬유소분해효소의 활성을 측정할 수 있음을 확인하였다.
실시예 7: 재설계 유전자회로를 이용한 매타게놈 유래 섬유소분해효소 감지
재설계 유전자회로를 이용하여 메타게놈 라이브러리로부터 섬유소분해효소 활성을 가진 클론을 탐색하였다.
갯벌 유래의 메타게놈에 재설계 유전자회로를 전기천공 방법으로 형질전환하여 라이브러리를 구축한 뒤 (5×105) 실험을 진행하였다. 실험이 진행된 순서는 도7 라에 나타내었다. 먼저 구축된 메타게놈 라이브러리를 100 ㎍/㎖의 앰피실린과 12.5 ㎍/㎖의 클로람페리콜이 첨가된 LB 액체 배지에 접종하여 37℃에서 배양하였다. 그리고 세포농도가 약 0.4정도 도달하였을 때 pcc1 플라스미드 숫자를 증가시키는 induction solution (epicentre, 미국) 과 100 μM 셀로비오스, 그리고 200 μM pNPG2를 첨가한 뒤 12시간 더 배양하였다. 배양한 배양액은 유세포분석기를 이용하여 형광이 강하게 나오는 세포를 선별하였다 (도 7 가). 선별한 클론들은 상기와 동일한 LB 고체배지에 도말한 후 37℃에서 18시간 배양한 후 컨트롤과 비교하여 형광강도가 증가된 클론을 탐색하였다 (도7 나). 탐색한 클론은 고체배지 상에서 컨트롤보다 강한 형광을 나타내었다 (도7 다).
그 결과, 재설계 유전자회로를 이용하여 메타게놈 등의 대량 라이브러리에서 섬유소분해효소 활성을 가지는 클론을 선별할 수 있음을 증명하였다.
실시예 8: 재설계 유전자회로를 이용한 세포 외부 효소활성 측정
재설계 유전자회로가 도입된 대장균을 이용하여 세포 외부의 섬유소 분해효소 활성을 측정할 수 있는지 실험하였다. 자연계에 존재하는 섬유소 분해효소는 많은 경우 결정형 섬유소 (Crystalline cellulose)에 작용하기 때문에 세포 외부에서의 활성을 측정하는 것 역시 중요한 부분이다.
상기 실험에 사용되었던 재설계 유전자회로가 도입된 대장균과 CelEdx16와 컨트롤 백터가 각각 도입된 대장균을 LB 액체 배지에 접종하여 37℃ 에서 밤새 진탕 배양하였다. 위 배양액을 동일배지에 1 % 접종한 후 세포농도가 약 0.4정도 도달하였을 때 재설계 유전자회로가 도입된 대장균과 섬유소 분해효소 또는 컨트롤 백터가 도입된 대장균을 1:1 비율로 섞은 뒤 200 μM pNPG2를 첨가하여 18시간 동안 배양하였다. 세포형광은 유세포분석기를 이용하여 측정하였다.
그 결과, 재설계 유전자회로가 도입된 대장균과 컨트롤 백터가 도입된 대장균을 섞은 실험배치에서는 형광이 검출되지 않았으나, 재설계 유전자회로가 도입된 대장균과 섬유소 분해효소가 도입된 대장균을 섞은 배치에서는 pNPG2에 반응하여 형광을 나타내는 것으로 나타났다 (도 8). 이 결과로 재설계 유전자회로를 이용하여 세포 외부에서의 효소활성을 세포 간 신호전달 형태로 감지할 수 있는 것으로 나타났다. 이는 메타게놈 등의 세포 내부 라이브러리 뿐 만 아니라 곰팡이 등의 이종의 효소활성도 본 발명의 재설계 유전자회로로 측정 가능함을 나타낸다.
실시예 9: 재설계 유전자회로를 이용한 결정형 섬유소 분해능 측정
재설계 유전자회로를 이용하여 실제적으로 사용하는 결정형 섬유소 분해 활성을 측정하였다.
상기 실시예에서, 사용되었던 재설계 유전자회로가 도입된 대장균을 0.5 % 결정형 섬유소 (avicel) 이 첨가된 LB 고체배지에 도말한 뒤 celluclast 1.5L (Novozyme, 덴마크) 1 ㎕와 PBS (pH 7.4) 1 ㎕를 각각 떨군 뒤, 37℃에서 18시간 배양하였다 (도9 가). 또한 CBGESS가 도입된 대장균을 LB 액체배지에 전배양한 뒤, 동일배지에 1 % 접종 후 37℃에서 세포농도 0.4 까지 키운 후 각각 1 ㎖씩 나누어 0.5 % avicel 과 celluclast를 희석하여 첨가하여 18시간 배양하였다 (도 9 나). 세포형광은 형광현미경과 형광 플레이트 리더기를 이용하여 측정하였다.
그 결과, avicel이 섞인 고체배지에 celluclast를 떨군 부위 주변에서 자란 대장균에서만 형광을 나타내는 것이 관찰되었다. 또한 액체배양에서도 celluclast 농도가 높아질수록 형광이 점차 강하게 나오는 것으로 관찰되었다. 단지 celluclast 0.1 % 가 첨가된 실험배치에서는 형광이 조금 줄어든 것으로 관찰되었으나, 이는 높은 효소 농도에 의한 세포 성장 저해인 것으로 판단된다. 또한 형광 현미경을 이용한 액체 배양액 관찰 시, cellulclast 농도가 높아질수록 형광이 강하게 나오는 것이 나타났다.
상기 결과로, 재설계 유전자회로를 이용하여 섬유소 분해효소가 실제적인 기질에 반응하는 효소 활성을 측정 가능한 것이 확인되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술 하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 재설계 유전자회로를 이용하면, 셀로비오스의 양에 비례하는 셀로비오스 인지 전사조절 단백질(CelR)이 리포터 단백질의 발현을 유도하여, 셀로비오스를 고감도로 빠르게 감지하고 정량화 함으로서 셀로비오스의 감지 및 정량적 분석에 활용할 수 있고, 셀로비오스를 유리하는 exo형 섬유소분해효소의 활성을 측정하거나 새로운 exo형 섬유소분해효소 탐색할 수 있다. 특히, 리포터 단백질로 형광단백질을 활용할 경우 유세포 분석기(flow cytometer)를 이용하여 하루 수백만개 이상의 유전자 라이브러리를 탐색할 수 있어 새로운 exo형 섬유소분해효소를 매우 빠른 속도록 탐색할 수 있는 환경을 제공할 수 있다.
전자파일 첨부하였음.

Claims (24)

  1. 다음을 포함하는 셀로비오스 감지용 재설계 유전자회로:
    (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자;
    (ii) 형광 단백질을 코딩하는 유전자 및 항생제 저항성 유전자로 구성된 군에서 선택된 하나 이상의 리포터 유전자;
    (iii) 상기 전사 조절 단백질의 발현을 조절하는 프로모터; 및
    (iv) 상기 전사 조절 단백질이 결합하여 하류의 리포터 유전자의 발현을 조절하는 프로모터.
  2. 제1항에 있어서, (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자는 섬유소분해효소 발현 오페론을 가지는 생물 유래 유전자인 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  3. 제1항에 있어서, (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자는 Thermobifida fusca, Streptococcus pneumoniae, Streptococcus mutans, Streptomyces griseus, Streptomyces reticuli, Pyrococcus furiosuscan Vibrio slmonicida, Neurospora crassa, Clostridium cellulolyticum, Trichoderma reesei Aspergillus aculeatus로 구성된 군에서 선택되는 균주 유래 유전자인 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  4. 제3항에 있어서, (i) 셀로비오스를 인지하여 하류의 리포터 단백질의 발현을 유도하는 전사조절 단백질을 코딩하는 유전자는 Thermobifida fusca 유래의 서열번호 1의 염기서열을 가지는 CelR 유전자인 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  5. 제1항에 있어서, 상기 리포터 유전자와 상기 리포터 유전자의 발현을 조절하는 프로모터는 상호작동가능하게 연결되어 있는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  6. 제1항에 있어서, 상기 리포터 유전자의 발현을 조절하는 프로모터는 상기 전사조절 단백질과 결합하여 상기 리포터 유전자의 발현을 조절하는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  7. 제6항에 있어서, 상기 리포터 유전자의 발현을 조절하는 프로모터는 상기 전사조절 단백질과 결합하는 부위로 'tgggagcgctccca(서열번호 4)'를 포함하는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  8. 제6항에 있어서, 상기 리포터 유전자의 발현을 조절하는 프로모터는 trc 프로모터 중 lacI 와 결합하는 부분을 'tgggagcgctccca(서열번호 4)'로 치환한 프로모터인 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  9. 제1항에 있어서, 상기 형광단백질은 GFP, GFPUV, sfGFP 및 RFP로 구성된 군으로부터 선택되는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  10. 제1항에 있어서, 상기 항생제 저항성 유전자는 카나마이신 저항성 유전자, 클로람페니콜 저항성 유전자 및 테트라사이클린 저항성 유전자로 구성된 군에서 선택되는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  11. 제1항에 있어서, 상기 재설계 유전자회로는 RBS(ribosome binding site)를 코딩하는 유전자를 포함하는 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  12. 제1항에 있어서, 상기 리포터 유전자는 형광 단백질을 코딩하는 유전자 및 항생제 저항성 유전자로 구성된 이중 리포터 유전자인 것을 특징으로 하는 셀로비오스 감지용 재설계 유전자회로.
  13. 제1항 내지 제12항 중 어느 한 항의 셀로비오스 감지용 재설계 유전자회로를 함유하는 셀로비오스 감지용 재조합 미생물.
  14. 제13항에 있어서, 미생물은 세균, 효모, 식물세포 및 동물세포로 이루어진 군으로부터 선택되는 것을 특징으로 하는 셀로비오스 감지용 재조합 미생물.
  15. 다음 단계를 포함하는 셀로비오스의 감지방법:
    (a) 제13항의 셀로비오스 감지용 재조합 미생물을 셀로비오스 함유 가능성이 있는 샘플과 접촉시키는 단계; 및
    (b) 상기 샘플 내에 존재하는 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성을 분석하여, 셀로비오스의 존재여부를 감지하는 단계.
  16. 제15항에 있어서, 상기 리포터 단백질의 활성 측정은 미생물 콜로니 이미지 분석, 형광스펙트럼 분석, 형광유세포분석 (FACS) 및 항생제 내성 측정법으로 구성된 군에서 선택되는 방법을 이용하는 것을 특징으로 하는 방법.
  17. 다음 단계를 포함하는 셀로비오스의 정량방법:
    (a) 제13항의 셀로비오스 감지용 재조합 미생물을 셀로비오스를 함유하는 샘플과 접촉시키는 단계; 및
    (b) 상기 샘플 내에 존재하는 셀로비오스에 의해 발현이 유도된 리포터 단백질의 활성을 분석하여, 샘플 내에 존재하는 셀로비오스를 정량하는 단계.
  18. 제17항에 있어서, 상기 리포터 단백질의 활성 분석은 미생물 콜로니 이미지 분석, 형광스펙트럼 분석, 형광유세포분석 (FACS) 및 항생제 내성 측정법으로 구성된 군에서 선택되는 방법을 이용하는 것을 특징으로 하는 방법.
  19. 다음 단계를 포함하는 섬유소분해효소 활성의 측정방법:
    (a) 제13항의 셀로비오스 감지용 재조합 미생물을 효소반응에 의해 셀로비오스 화합물을 유리할 수 있는 섬유소 화합물로 처리하는 단계; 및
    (b) 섬유소분해효소 반응에 의해 유리된 셀로비오스를 감지하여 발현이 유도된 리포터 단백질의 활성 분석을 기반으로, 섬유소분해효소 활성을 측정하는 단계.
  20. 제19항에 있어서, 상기 리포터 단백질의 활성 분석은 미생물 콜로니 이미지 분석, 형광스펙트럼 분석, 형광유세포분석 (FACS) 및 항생제 내성 측정법으로 구성된 군에서 선택되는 방법을 이용하는 것을 특징으로 하는 방법.
  21. 제19항에 있어서, 상기 탐색하고자 하는 효소는 exo형 또는 endo형 섬유소분해효소인 것을 특징으로 하는 방법.
  22. 다음 단계를 포함하는 섬유소분해효소 생산균주의 스크리닝 방법:
    (a) 제13항의 셀로비오스 감지용 재조합 미생물과 섬유소 화합물 및 메타게놈 라이브러리 샘플을 접촉시키는 단계;
    (b) 상기 샘플 내에 존재하는 섬유소분해효소 활성을 가지는 균주에 의해 생산된 셀로비오스에 의해, 발현이 유도된 리포터 단백질의 활성을 분석하는 단계; 및
    (c) 상기 분석된 리포터 단백질의 활성을 기반으로, 섬유소분해효소 활성을 가지는 섬유소분해효소 생산균주를 선별하는 단계.
  23. 제22항에 있어서, 상기 리포터 단백질의 활성 분석은 미생물 콜로니 이미지 분석, 형광스펙트럼 분석, 형광유세포분석 (FACS) 및 항생제 내성 측정법으로 구성된 군에서 선택되는 방법을 이용하는 것을 특징으로 하는 방법.
  24. 제22항에 있어서, 상기 탐색하고자 하는 효소는 exo형 또는 endo형 섬유소분해효소인 것을 특징으로 하는 방법.
PCT/KR2014/012826 2013-12-26 2014-12-24 재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법 WO2015099456A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0164442 2013-12-26
KR1020130164442A KR101639424B1 (ko) 2013-12-26 2013-12-26 재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법

Publications (1)

Publication Number Publication Date
WO2015099456A1 true WO2015099456A1 (ko) 2015-07-02

Family

ID=53479220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012826 WO2015099456A1 (ko) 2013-12-26 2014-12-24 재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법

Country Status (2)

Country Link
KR (1) KR101639424B1 (ko)
WO (1) WO2015099456A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241682B1 (ko) * 2018-12-26 2021-04-19 명지대학교 산학협력단 D-자일론산 반응성 프로모터, 이를 포함하는 d-자일론산 감지용 재설계 유전자 회로 및 이를 이용한 d-자일론산의 감지방법
KR102242467B1 (ko) * 2019-09-20 2021-04-21 성균관대학교산학협력단 변형된 시아노박테리아 유전자 발현 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099202A (ko) * 2009-06-08 2012-09-07 한국생명공학연구원 재설계 유전자회로를 이용한 목적 효소 활성의 신규 탐색 및 정량 방법
US20130189744A1 (en) * 2011-12-22 2013-07-25 Brian Grant Fox Method and Compositions for Improved Lignocellulosic Material Hydrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099202A (ko) * 2009-06-08 2012-09-07 한국생명공학연구원 재설계 유전자회로를 이용한 목적 효소 활성의 신규 탐색 및 정량 방법
US20130189744A1 (en) * 2011-12-22 2013-07-25 Brian Grant Fox Method and Compositions for Improved Lignocellulosic Material Hydrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 24 April 2001 (2001-04-24), accession no. F086819 *
LEE, SEUNG GU ET AL.: "Development of Cellulose-based Biofuel Technology.", SUBJECT REPORT OF KOREA RESEARCH COUNCIL OF FUNDAMENTAL SCIENCE TECHNOLOGY., 10 December 2013 (2013-12-10), pages 51, 52 , 59 , 89 - 95 , 98 *

Also Published As

Publication number Publication date
KR101639424B1 (ko) 2016-07-13
KR20150075967A (ko) 2015-07-06

Similar Documents

Publication Publication Date Title
Bastien et al. Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics
Liu et al. Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes
Taupp et al. The art and design of functional metagenomic screens
US11169152B2 (en) Function-based probes for environmental microbiome analysis and methods of making and using the same
Premalatha et al. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification
Yang et al. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases
Meng et al. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering
Wakarchuk et al. Proteomic analysis of the secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482
Longoni et al. Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate
Zhang et al. Synergism of glycoside hydrolase secretomes from two thermophilic bacteria cocultivated on lignocellulose
Kalim et al. Optimization of fermentation media and growth conditions for microbial xylanase production
Xia et al. Metaproteomics reveals protein composition of multiple saccharifying enzymes in nongxiangxing daqu and jiangxiangxing daqu under different thermophilic temperatures
WO2010018948A2 (ko) 자일라나아제를 생산하는 신규 페니바실러스 에스피. 에이치피엘-001 균주, 이로부터 분리한 신규 자일라나아제 효소 및 이의 생산 방법
Kwon et al. Development of a novel cellulase biosensor that detects crystalline cellulose hydrolysis using a transcriptional regulator
WO2015099456A1 (ko) 재설계 유전자회로를 이용한 섬유소분해효소의 신규 탐색 및 정량방법
Esaka et al. Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation
Urbelienė et al. Application of the uridine auxotrophic host and synthetic nucleosides for a rapid selection of hydrolases from metagenomic libraries
EP1124948A1 (en) Method for generating a gene library
CN104630229A (zh) 一种具有启动子功能的dna片段与应用
Lin et al. Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa
WO2014142529A1 (ko) 메타게놈 유래 신규 셀룰라아제 및 이의 제조방법
Liu et al. Arabinan saccharification by biogas reactor metagenome-derived arabinosyl hydrolases
WO2011010792A2 (ko) 알칼리성 자일라나아제를 생산하는 신규 페니바실러스 에스피. 에이치피엘-002 균주, 이로부터 분리한 신규 자일라나아제 효소 및 이의 생산 방법
Zhang et al. A novel host-vector system for heterologous protein co-expression and purification in the Trichoderma reesei industrial strain RUT-C30
US8440400B2 (en) Process for amplifying DNA in cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875211

Country of ref document: EP

Kind code of ref document: A1