WO2015099206A1 - 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도 - Google Patents

파브리 병의 유도-만능 줄기세포 모델 및 이의 용도 Download PDF

Info

Publication number
WO2015099206A1
WO2015099206A1 PCT/KR2013/012020 KR2013012020W WO2015099206A1 WO 2015099206 A1 WO2015099206 A1 WO 2015099206A1 KR 2013012020 W KR2013012020 W KR 2013012020W WO 2015099206 A1 WO2015099206 A1 WO 2015099206A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
fabry disease
vascular
ipsc
model
Prior art date
Application number
PCT/KR2013/012020
Other languages
English (en)
French (fr)
Inventor
한용만
박상욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2015099206A1 publication Critical patent/WO2015099206A1/ko
Priority to US14/839,603 priority Critical patent/US10287554B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5064Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts

Definitions

  • the present invention relates to the induction of Fabry disease-induced pluripotent stem cells (iPSC) models, methods for their preparation, and the use of the iPSC models in the development of Fabry disease and the screening of therapeutic agents.
  • iPSC Fabry disease-induced pluripotent stem cells
  • Fabry disease is an X-gene-related recessive genetic disease caused by mutations in the gene that encodes alpha-galactosidase (GLA).
  • GLA gene is a gene located at the xq22.1 position of human exon 7 and is a glycoprotein composed of 370 amino acids processed from a precursor protein composed of 429 amino acids in total. (Schif fmann, Pharmacology & therapeutics 122, 65-77 (2009)).
  • Fabry disease was found with an incidence of 1 in 117,000 men (Meikle, PJ et al. Jama 281, 249-254 (1999)). However, in recent screened data, the incidence rate has risen sharply, indicating one out of 3100 to 3700 boys born (Spada, M. et al. American journal of human genetics! ⁇ , 31 ⁇ 40 ( 2006)).
  • Fabry's disease is due to a deficiency of the lysosomal enzyme, which is caused by mutations in the GLA gene, and is known to act as a Shiga toxin receptor in Burkitt's lymphoma eel Is.
  • the major pathophysiological symptoms of Fabry's disease include Gb3 in various cell types, such as vascular cells, heart cells (cardiac. Eel Is), kidney epithelial cells, and neuronal cells. Accumulation appears. In particular, Gb3 accumulation of vascular cells causes systemic cardiovascular dysfunction-!-Such as stroke or myocardial infarct ion.
  • repetitive enzyme replacement therapy is used, for which the abrasidase beta is a FabrazyraeKEng, CM et. al.The New England journal of medicine 345, 9-16 (2001)) or Replagal, agalsidase alfa (Schiffmann, R. et al.
  • vasculopathy in gla knockout mice as a Fabry disease model system consisting of alpha-galactosidase A deficiency
  • the activity impairment and consequences of alpha-galactosidase A are still
  • the limitations of the mechanistic studies on Fabry disease are thought to be overcome by the use of iPSCs derived from somatic eel Is in patients with Fabry disease.
  • Stem cells are cells in the pre-differentiation stage of each cell constituting the tissue, and can be obtained from embryonic, fetal and adult tissues, and have an ability to proliferate indefinitely in an undifferentiated state and to stimulate specific differentiation.
  • Stem cells unlike differentiated cells that are differentiated to specific cells by differentiation stimulation (environment) and cease cell division, can produce cells that are identical to their own by cell division (proliferation, It has the property of expansion, and it can be differentiated into other cells by different environment or differentiation stimulus, so it has plasticity in differentiation.
  • Human pluri otent stem cells including induced pluripotent stem cells (iPSs)
  • hPSCs Human pluri otent stem cells
  • iPSs induced pluripotent stem cells
  • iPSCs derived from patients with various genetic diseases have been reported to exhibit disease-specific phenotypes when directly differentiated into disease-related cell types (Park ⁇ IH et al. Cell 134, 877-886 (2008); Tiscornia, G. et al. Nature medicine 17, 1570-1576 (2011)). These disease-specific iPSCs can be differentiated into cell types associated with the disease, and therefore, it is considered that they may be usefully used for specific mechanisms of disease or screening for therapeutic agents.
  • iPSCs induced induced pluri potent stem cells
  • EB embryoid body
  • vascular cells were induced.
  • the iPSCs from Fabry disease were found to significantly reduce GLA protein expression and activity compared to normal cells, resulting in the accumulation of Gb3.
  • Induced differentiation from disease-derived iPSCs into vascular cells Differentiated into vascular endothelial cells and vascular smooth muscle cells, and significantly expressed marker proteins.
  • iPS induced pluri potent stem cells
  • An object of the present invention is to provide a novel induced pluri potent stem cell (iPS) that retains the same characteristics as cells of a Fabry disease patient, which is a candidate for research and treatment of Fabry disease. It is to provide a method used for research for the screening method.
  • iPS induced pluri potent stem cell
  • fibroblasts isolated from Fabry disease patients in vitro (// iro) into induced pluri potent stem cells (iPS);
  • ii) providing a method for producing a Fabry disease iPSC model in vitro, comprising obtaining the iPSC derived in step i).
  • the present invention also provides a Fabry disease iPSC model prepared by the above method.
  • the present invention also provides a Fabry disease iPSC model prepared by the above method.
  • the present invention also provides a Fabry disease iPSC model prepared by the above method.
  • iPSC inducing differentiation from the iPSC into an embryoid body (EB) or a vascular cell
  • ii) the differentiation marker of the embryoid body induced in step i), or of vascular cells
  • test compound or composition to the iPSC model, or embryoid bodies or vascular cells differentiated from the iPSC model;
  • iii) a method for screening a candidate drug for Fabry disease, comprising comparing the analyzed result of step ⁇ ) with an untreated control.
  • the present invention provides the use of a Fabry disease iPSC model, prepared by the above method.
  • iPSC inducing differentiation from the iPSC into an embryoid body (EB) or a vascular cell
  • ii) using iPSC as a model for Fabry disease comprising analyzing the differentiation marker of the embryoid body or the vascular cell differentiation marker induced in step 0.
  • iPSCs induced pluripotent stem cells
  • FIG. 1 shows the identification of GLA gene mutations, which are the causative genes of Fabry disease in induced luri otent stem cells (iPSCs) derived from fibroblasts from Fabry disease patients.
  • iPSCs induced luri otent stem cells
  • Figure 2 shows confirmation of iPSC (FB-iPSC) generation from Fabry disease.
  • Figure 3 shows the identification of 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 and Tra-1-61 protein expression, which is a stem cell marker for identifying the multipotent capacity of FB-iPSC.
  • Figure 4 shows the bisulfite sequencing analysis in the undifferentiated FB ⁇ iPSC to determine whether DNA demethylat ion (demethylat ion).
  • Fig. 5 shows N-cadherin ⁇ endodermal marker S0X17 and mesodermal marker alpha in the embryoid body (EB) differentiated from FB-iPSC. Confirmation of a -smooth muscle act in expression.
  • FIG. 10 is a schematic diagram showing a process of inducing FB-iPSCs to differentiate into vascular endothelial cells and vascular smooth muscle cells.
  • FIG. 11 shows Magnetic activated cell sorting (MACS) to separate cells expressing CD31 and CD34 simultaneously from differentiation-induced vascular progenitors from FB-iPSC.
  • MCS Magnetic activated cell sorting
  • FIG. 12 shows the morphology of cells identified in endothelial eel Is differentiated from FB-iPSCs.
  • Figure 13 shows vascular endothelial cell markers in vascular endothelial cells differentiated from FB-iPSC Confirmation of expression of the proteins CD31, VE-cadherin and vWF is shown.
  • Figure 14 shows the identification of ANG endothelial cell specific marker genes ANG2, VE-cad, vWF, EphrinB2 and CAVEOLINS expression in differentiation-induced vascular endothelial cells from FB-iPSC.
  • FIG. 15 shows an improvement effect on Gb3 accumulation in FB ⁇ iPSCs, vascular endothelial cells derived from FB-iPSCs, and vascular smooth muscle cells derived from FB-iPSCs by alpha-galactosidase. Indicates confirmation.
  • iPS inducing fibroblasts isolated from Fabry disease patients in vitro (/?) into induced pluripotent stem cells (iPS);
  • ii) providing a method for producing a Pabra disease iPSC model in vitro, comprising the step of obtaining iPSC derived in step i).
  • Induction of the step 0 is preferably to use an ectopic expression of a pluripotent marker including 0CT4, S0X2, KLF4 and C-MYC, but is not limited thereto.
  • a pluripotent marker including 0CT4, S0X2, KLF4 and C-MYC
  • the present inventors prepared iPSC (FB-iPSC) derived from Fabry disease patients to confirm the mutation of the GLA gene of the causal gene (see Fig. 1 and 2), the FB-iPSC A stem cell marker (sternness maeker) was shown (see FIG. 3), and it was confirmed that the reprogramming process was performed in an undifferentiated state (see FIG. 4).
  • the iPSCs model derived from Fabry disease of the present invention exhibits the same pluripotency as the genetic variation of Fabry disease patients, and thus, the iPSCs
  • the method of making a model can be usefully used for the method used for the analytical study for Fabry disease.
  • the present invention also provides a Fabry disease iPSCs model prepared by the above method.
  • the iPSC is preferably one or more selected from the group consisting of a) to e), but is not limited thereto; a) expressing a multipotent marker comprising any one or more selected from the group consisting of 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 and Tra—1-61;
  • GLA alpha-galactosidase
  • the iPSCs model derived from Fabry disease of the present invention exhibits the same pluripotency as the genetic variation of the Fabry disease patient, the iPSCs model can be usefully used in a method used for analytical research for Fabry disease.
  • the present invention
  • iPSC inducing differentiation from the iPSC into an embryoid body (EB) or a vascular cell
  • ii) a method of using iPSC as a model of Fabry disease, comprising analyzing the differentiation marker of the embryoid body or the vascular cell differentiation marker induced in step i).
  • the differentiation marker of the embryoid body is an ectodermal marker.
  • the vascular cells are preferably endothelial cells or vascular smooth muscle eel Is, but are not limited thereto.
  • the vascular endothelial cells are preferably one or more selected from the group consisting of a) to c), but is not limited thereto. a) the form of a vascular tube-like structure;
  • vascular endothelial cell marker expression comprising any one or more selected from the group consisting of CD31, VE-cadherin and vWF;
  • Endothelial cell marker gene expression comprising any one or more selected from the group consisting of ANG2, VE-cad, ⁇ , EphrinB2 and CAVE0LIN.
  • the present inventors induced differentiation from FB-iPSC to embryoid body (FB ⁇ embryonic body), resulting in N-cadherin (ectodermal) marker in the differentiated FB-embryonic body ( Three germ layer markers of N-cadherin, S0X17, an endoderm marker, and alpha-smooth muscle actin, a mesodermal marker, were expressed, indicating multi-potency. See FIG. 5).
  • the inventors confirmed the deficiency of GLA activity, which is the cause of Fabri disease in FB-iPSC, and thus the accumulation of Gb3, whereas the expression of the GLA gene in FB-iPSC is similar to that of normal cells (see FIG. 6).
  • GLA protein was not expressed (see FIG. 7), thereby showing an activity deficiency of GLA protein (see FIG. 8) and confirming that Gb3 accumulation appeared in cells (see FIG. 9).
  • the present inventors induced the differentiation into vascular progenitors or vascular cells from FE-iPSC (see FIGS. 10 and 11), the vascular cells differentiated from FB-iPSC are vascular endothelial cells ( endothelial cells and vascular smooth muscle cells (see FIG. 12), which represent CD31, VE-cadherin (VE-cad) and vW, marker proteins that vascular endothelial cells represent. (See FIG. 13), expression of vascular endothelial cell specific marker genes ANG2, VE-cad, vW, EphrinB2 and CAVEOLi It was confirmed (see FIG. 14).
  • the iPSCs derived from Fabry disease of the present invention maintain the multipotency of normal iPSCs, and thus exhibit an effective differentiation into embryoid bodies or vascular cells, but the expression level of GLA protein, which is a characteristic of cells derived from Fabry disease patients, and Since the activity does not appear as compared to normal iPSCs, and thus may indicate the accumulation of Gb3 in cells, the iPSC model can be usefully used for diagnostic studies of Fabry's disease including screening methods and screening for Fabry's disease. have.
  • the present invention can be usefully used for diagnostic studies of Fabry's disease including screening methods and screening for Fabry's disease. have.
  • test compound or composition iPSC model or embryoid bodies or vascular cells differentiated from the iPSC model
  • iii a method for screening a candidate drug for Fabry disease, comprising comparing the analysis result of step ii) with an untreated control group.
  • Characterization of the iPSC model of step ii) is preferably an analysis of the differentiation ability of the iPSC model into embryoid body or vascular cells, but is not limited thereto.
  • the characteristics of the embryoid body of step ii) is preferably one or more expressions selected from the group consisting of N-cadherin, S0X17 and alpha-smooth muscle actin, but is not limited thereto.
  • Characterization of the blood vessel cells of step iii) is preferably any one or more of the following a) to d), but is not limited thereto.
  • vascular endothelial cell marker expression including CD31, VE-cadherin and vWF;
  • vascular endothelial cells including ANG2, VE-cad, vF, EphrinB2 and CAVEOLi Marker gene expression.
  • the vascular cells are preferably vascular endothelial cells or vascular smooth muscle cells, but are not limited thereto.
  • step iv) shows that the iPSC maintains the pluripotency seen in normal iPSC, but exhibits one or both of the expression level and activity of the GLA protein, or a decrease in Gb3 accumulation compared to the untreated control, It is preferable to select a test compound or test composition, but is not limited thereto. Comparing step iv) above, it is preferable to select a test compound or a test composition, wherein the goblet is maintained by maintaining the multipotency of the goblet derived from normal cells, but is not limited thereto.
  • step iv) shows that the vascular cells exhibit expression levels of vascular cell marker genes or proteins that appear in vascular cells derived from normal cells, but in which the accumulation of Gb3 in the cells is reduced compared to untreated controls. It is more preferable to select a composition, and more particularly, it is most preferable to select a test compound or a test composition in which the accumulation of Gb3 in cells does not appear to be similar to that of a normal control, but is not limited thereto.
  • the present inventors have performed pharmacologi c treatment during the differentiation of FB-iPSC to determine whether ameliorating effect of Fabry disease is seen from vascular endothelial cells and vascular smooth muscle from FB-iPSC.
  • the iPSCs model of Fabry disease of the present invention maintains the multipotency of normal iPSCs and thus exhibits an effective differentiation into embryoid bodies or vascular cells, but the expression level of GLA protein, which is characteristic of cells from Fabry disease patients, and Activity is not shown as compared to normal iPSCs, and thus the Gb3 activity in cells
  • the iPSC model can be usefully used for the screening method of candidate drugs for Fabry disease because it can show the accumulation and can easily confirm the improvement effect of Fabry disease through the reduction effect of Gb3 accumulation by pharmacological treatment.
  • the present invention also provides the use of a Fabry disease iPSC model made by the above method.
  • iPSC inducing differentiation from the iPSC into an embryoid body (EB) or a vascular cell
  • iPSC a model for Fabry disease, comprising analyzing the differentiation marker of the embryoid body or the vascular cell differentiation marker induced in step i).
  • the iPSCs model derived from Fabry disease of the present invention exhibits the same pluripotency as the genetic variation of the Fabry disease patient, the iPSCs model can be usefully used in a method used for analytical research for Fabry disease.
  • the present invention will be described in detail by examples and production examples.
  • GLA alpha-galactosidase
  • Fabry's disease patients were connected at Asan medical center in Seoul (Korea), and after passing the examination of the hospital's clinical research ethics review committee, Skin tissue biopsies were performed by punch biopsy method after local anesthesia with the consent of the patient and legal representative to obtain dermal tissue into Fabry disease patients.
  • fibroblasts were isolated from the dermal tissues obtained, and 10% fetal bovine serum (FBS; GIBCO, USA), 0.05 mg / mi ascorbic acid, 0.3 Dulbecco mutants, including L-glutamin (GIBCO, USA), 3.7 nig / m £ sodium bicarbonate (NaHC0 3 ) and 100 U / n penicillin (penicillin; GIBCO, USA) Cultured in Eagle's medium (Dulbecco's modified Eagle t s medium, DMEM; GIBCO, USA). After incubation, inoculated into 100 ⁇ l tissue culture plate of cell supernatant, and maintained at 37 ° C.
  • genomic DNA was extracted from the identified fibroblasts, and the base sequence of the GIA gene was identified using a forward primer (SEQ ID NO: 1 atgcagctgaggaacccag) and a reverse primer (SEQ ID NO 2: (ttaaagtaagtcttttaatgacatc)).
  • SEQ ID NO: 1 atgcagctgaggaacccag a forward primer
  • SEQ ID NO 2 reverse primer
  • H9 cells ATCC HTB176; American Type Culture Collection (ATCC), USA
  • an ectopic expression method using reprogramming factors 0CT4, S0X2, LF4 and OMYC induced the generation of iPS (FB-iPS) derived from Fabry disease from fibroblasts of Fabry disease patients.
  • fibroblasts of Fabry disease patients obtained in Example ⁇ 1-1> were 1 fetal bovine serum (fetal bovine serum, FBS; GIBCO, USA), 50 U / ml penicillin (penicillin; GIBCO, USA ), 50 m / mi streptomycin (streptomycin; GIBC0, USA) and 1 mM non-essential amino acid (GIBCO, USA) were incubated in DMEM medium. Then, induction of the development of FB-iPSC using known techniques utilizing the transduction of retroviruses expressing 0CT4, S0X2, KLF4 and C-MYC factors, followed by FB-iPSCs were identified by phase-contrast microscopic.
  • phosphate buffered saline phosphate buffered saline, PBS
  • phosphate buffered saline phosphate buffered saline, PBS
  • formaldehyde formaldehyde
  • 0.1 Permeability was imparted to cell membranes by treatment with% Triron X-100. After treatment, the treated cells were blocked at room temperature for 1 hour with the addition of 4% normal donkey serum, followed by anti-0CT4 antibody (1: 300 dilution, R & D Systems, Inc.).
  • stem cell markers 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 and Tra-1-61 proteins are expressed at normal cell level in FB-iPSC (FIG. 3).
  • the genomic DNA is treated with sodium bisulfite according to a protocol provided by the manufacturer, 25 to 50 ng of sulfurous acid-treated DNA was amplified by PCR as a template.
  • the amplified PCR product was purified using AccuPrep® plasmid Mini extraction Kit (Bioneer, Korea), and subcloned into pGEM ⁇ T EASY vector (Promega, USA). Inserted. Then, the inserted vector was obtained with 5 clones transformed into fibroblasts and FB-iPSCs, and the sequences were identified using M13 primers.
  • the web-based program Blast-2 (blast-2) was obtained. Or by using the program BiQ Analyzer. As a result, as shown in FIG. 4, it was confirmed that the reprogramming process was performed in the undifferentiated state FB-iPSC (FIG. 4).
  • EB embryoid bodies
  • FB-iPSCs colonies of FB-iPSCs, which induced development in the same manner as in Example ⁇ 1-2>, were divided into quarters using a McClain tissue chopper.
  • the quartered FB-iPSCs are embedded in ultra-low attachment dish (DM) / F12 medium containing 10% serum replacement (serum re lacement, SR) embryonic body differentiation media ) Resuspended at 5 m and suspended in culture for 4 days to induce differentiation into FB-iPSC-derived embryos (FB-embryos).
  • DM ultra-low attachment dish
  • F12 medium containing 10% serum replacement (serum re lacement, SR) embryonic body differentiation media ) Resuspended at 5 m and suspended in culture for 4 days to induce differentiation into FB-iPSC-derived embryos (FB-embryos).
  • WT-iPSCs were cultured in the same manner as above to induce differentiation into WT-iPSC-derived embryos (WT-plot
  • N-cadherin S0X17 or alpha-smooth muscle by immunofluorescence staining by the same method as in Example ⁇ 1-3> of the FB-embryonic body that induced differentiation in the same manner as in Example ⁇ 2-1> Expression of actin protein was confirmed.
  • primary antibody for immunofluorescence staining anti-N-CADHERIN mouse antibody (cell signaling technologies, USA), anti-alpha one smooth muscle actin mouse antibody (ant i_alpha—smooth muscle act in mouse antibody; R & D, USA) and anti-S0X17 mouse antibody, R% D, USA Used to check the level of expression
  • 4'6-diamidino-2-phenylindole (4'6-diamidino-2-phenylindole, DAPI) was treated to stain the nuclei of cells and compared.
  • the FB-embryonic body expresses all three types of germline markers of N-cadherin, S0X17, and alpha-smooth muscle actin to show multipotency (FIG. 5).
  • FB-iPSC was obtained in the same manner as in Example ⁇ 1-2>, suspended in Trizol (TRIzol; Invitrogen, USA), and extracted total RNA of FB-iPSC according to the manufacturer's protocol. . Then, the extracted RNA 1 / g M-MLV reverse transcriptase (Enzynomi . Cs, ⁇ 1) to the forward primer (SEQ ID NO: 3: AGCCTGGGCTGTAGCTATGA) and reverse primer (SEQ ID NO: 4: TGCCTGTGGGATTTATGTGA) was used to synthesize first-strand cDNA of cDNA, respectively, and amplified it to confirm the expression of the GLA gene at the RNA level by electrophoresis.
  • the forward primer SEQ ID NO: 3: AGCCTGGGCTGTAGCTATGA
  • reverse primer SEQ ID NO: 4: TGCCTGTGGGATTTATGTGA
  • iPSC cells prepared by infecting human fibroblast line CRL2094 (cat No. CCD-1077Sk, purchased from ATCC, USA) with 0CT4, S0X2, C-MYC and KLF4 were prepared.
  • CRL2094 catalog No. CCD-1077Sk, purchased from ATCC, USA
  • S0X2, C-MYC and KLF4 were prepared.
  • the expression level of the alpha-tubulin gene was determined by the same method as described above.
  • FB-iPSC was obtained by the same method as Example ⁇ 1-2>, and suspended in PRO-PREPTM protein eztraction solution (Intron Bio Co., Korea). Contrast solution was obtained, and the concentration of the protein was confirmed by a brad-ford assay. Then, 20 / g of total protein was separated from the 123 ⁇ 4> SDS-PAGE gel, and the nitrocells were transferred to a nitrocellulose membrane (Biorad, USA), containing 5% 0.1 Tween 20. With TBST (10 mM Tris-HCl, pH 7.5, 150 nM sodium chloride and 0.1% TW-20) consisting of Tris-buffered saline (TBS) of% skim milk Blocked.
  • TST Tris-buffered saline
  • the membrane was treated with an anti-rabbit polyclonal GLA antibody (1: 1000 dilution; anti-rabbit polyclonal GLA antibody, product number: AP6727a, Abgent, USA) as a primary antibody and incubated overnight at 4 ° C.
  • HRP horseradish peroxidase
  • Western blot results were detected using the ECL system as a signal of the color development according to the manufacturer's protocol.
  • H9 cells were subjected to the same method as described above to confirm the expression level of GLA protein in wild-type cells, and as a control to correct color development, anti- ⁇ -actin antibody (ant i- ⁇ -act in antibody; 1 : 3000 dilution; Santa Cruz, USA) was treated to stain ⁇ _actin.
  • FB-iPSC was obtained by performing the same method as Example ⁇ 1-2>, and 5 days in a feeder-free culture MEF-conditioned medium without a support. Incubated for After incubation, FB-iPSC was obtained, washed with PBS, GLA analysis of 4.6 including 100 mM sodium citrate (sigma, USA), 200 mfl disodium phosphate dibasic (sigma, USA) Add 200 ⁇ of GLA assay buffer, sonication for 10 seconds with a program of 1 second and 1 second rest, Micro BCA protein assay kit (Pierce, USA) Protein concentration in cell lysate was confirmed via BCA analysis using.
  • Identified Fluorescence Values were corrected using a standard curve of 4-methylumbel FERFERON (4-MU), and then the ⁇ -galactosidase act ivi ty was calculated. It was. Embryonic stem cells of H9 as a normal control was carried out in the same manner as above to confirm the activity of GLA protein in wild-type cells (H9 ES).
  • Gb3 which is a representative feature in Fabry disease
  • Gb3 was confirmed by immunofluorescence staining in FB-iPSC.
  • Gb3 was confirmed by immunofluorescence staining of FB-iPSC induced by development in the same manner as in Example ⁇ 1-2> in the same manner as in Example ⁇ 1-3>.
  • An anti-Gb3 antibody (CD77 [38.13], 1: 1000 dilution; GeneTex, USA) was used as the primary antibody for immunofluorescence staining.
  • H9 ES was performed in the same manner as above to confirm the accumulation of Gb3 in wild-type cells (H9 ES), and the nuclei of the cells were compared by staining the nuclei of DAPI to control the expression level.
  • FB-iPSCs were induced to differentiate into vascular endothelial cells and vascular smooth muscle cells (FIG. 10).
  • the FB-iPSC generated by performing the same method as in Example ⁇ 1-2> was uniformly cut to 300 to 500 in diameter using a 10 mi syringe needle, and then grown as a growth factor.
  • the medium was changed to RPMI medium containing 1% B27, incubated for 3 days with 50 ng / ml activin A and 20 ng / i BPM4 as growth factors, and mesoderm.
  • step 2 After differentiation into cells (step 2), growth factors were changed to 50 ng / ml VEGFA and 50 ng / ml bFGF, and the mesoderm cells were cultured in RPMI medium containing 0.5% B27 for 6 days to vascular progenitors. Induced to differentiate into (step 3). Induced vascular precursors were subjected to magnetic activated cell sorting (MACS) using CD34 magnetic beads to endothelial cells and vascular smooth muscle eel Is. CD34 positive cells that could be differentiated were isolated.
  • MCS magnetic activated cell sorting
  • the isolated vascular progenitors which are CD34 positive cells, were cultured for 5 to 7 days in EGM-2 medium (Lonza, USA) to which 100 ng / n VEGF-A and 100 ng / n bFGF were added as growth factors. Induce differentiation into endothelial cells, or incubate for 14 to 21 days in EGM-2 medium supplemented with lOOng / i PDGF-BB (R & D, USA) and 100ng / nd bFGF as growth factors to vascular smooth muscle cells Induced to differentiate (step 4).
  • Vascular endothelial cells derived from Fabry's disease In order to confirm the morphology, the morphology of vascular endothelial cells induced by differentiation from FB-iPSC was confirmed.
  • Example ⁇ 4-1> by inducing the differentiation of vascular endothelial cells and vascular smooth muscle cells from FB-iPSC by performing the same method as in Example ⁇ 4-1>, and confirming the shape of the cells by phase contrast microscopy 16 to 18 days after the start of differentiation. It was. As a result, as shown in FIG. 12, the differentiated vascular endothelial cells showed typical vascular cell morphology (FIG. 12A), and it was confirmed that a vascular tube-like structure was formed on Matrigel (FIG. 12B).
  • FIG. 12A the differentiated vascular endothelial cells showed typical vascular cell morphology
  • FIG. 12B Matrigel
  • FB-iPSC-derived vascular endothelial cells were normally induced, CD31, VE-cadherin (VE-cad), and vVF, marker proteins expressed by vascular endothelial cells in differentiation-induced vascular endothelial cells from FB-iPSC Expression was confirmed.
  • Example ⁇ 4-1> induction of differentiation to become vascular endothelial cells by performing the same method as in Example ⁇ 4-1>, and immunofluorescence staining by the same method as in Example ⁇ 1-3> after 16 to 18 days after the start of differentiation
  • the expression of CD31, VE-cadherin and vVF was confirmed.
  • an anti-CD31 antibody, an anti-VE-cadherin antibody (1: 100 dilution; R & D systems, USA) and an anti-vWF antibody (1: 100 dilution; Abeam, USA) Each was used, and compared with the staining of the nucleus of the cells by treatment with DAPI to control the degree of expression.
  • the vascular endothelial cells differentiated from FB-iPSC expressed normal expression of vascular endothelial cell marker proteins CD31, VE-cadherin and vVF (FIG. 13).
  • vascular endothelial cell marker gene in FB-iPSC-derived vascular endothelial cells
  • ANG endothelial cell specific marker genes ANG2, VE-cad, vW, EphrinB2 and CA VEOLI in differentiation-induced vascular endothelial cells It was confirmed.
  • RT-PCR was obtained by extracting vascular endothelial cells induced by differentiation in the same manner as in Example ⁇ 4-1>, extracting total RNA of vascular endothelial cells in the same manner as in Example ⁇ 3-1>.
  • the expression of ANG2, VE-cad, vWF, EphrinB2 and CA VE0LIN gene was confirmed.
  • Primers as described in Table 2 were used for the RT-PCR.
  • H9 embryonic stem cells induced differentiation of vascular endothelial cells in the same manner as in Example ⁇ 4-1> and used as a normal control (H9-EC). Gene expression was confirmed by performing the same method as described above.
  • FB-iPSC expression of ANG2, VE-cad, vWF, EphrinB2 and CA VEOLIN genes did not appear significantly, whereas vascular endothelial cells (FB-EC) differentiated from FB-iPSC was found to express vascular endothelial cell specific marker gene at a level similar to the normal control (FIG. 14).
  • FB-iPSC was obtained by the same method as Example ⁇ 1-2>
  • vascular endothelial cells induced differentiation from FB-iPSC by the same method as Example ⁇ 4-1>.
  • smooth muscle cells were obtained, and then the FB-iPSC, vascular endothelial cells and vascular smooth muscle cells obtained in each of 10 / g / i Fabrazyme
  • Gb3 was confirmed by immunofluorescence staining in the same manner as in Example ⁇ 1-3>.
  • An anti-Gb3 antibody was used as the primary antibody for immunofluorescence staining.
  • FB-iPSC As a control for confirming the differentiation of FB-iPSC into vascular endothelial cells or vascular smooth muscle cells, blood vessels using anti-CD31 antibody or anti- ⁇ -SMA antibody (1: 100 dilution; R & D systems, USA) Expression of CD31 or a-SMA, which is a marker protein for endothelial cells or vascular smooth muscle cells, was confirmed, and the nuclei of the cells were compared by staining the nuclei of DAPI to control the level of expression.

Abstract

본 발명은 파브리 병(Fabry disease)의 유도-만능 줄기세포(induced pluripotent stem cells; iPSC) 모델, 이의 제조 방법, 및 상기 iPSC 모델을 파브리 병의 발병 연구 및 치료제 스크리닝 방법에 이용하는 용도에 관한 것으로, 구체적으로 파브리 병 환자의 섬유아세포로부터 파브리 병 유래의 유도-만능 줄기세포(induced pluripotent stem cells; iPSC), 배상체(embryoid body, EB) 및 혈관 세포(vascular cell)의 발생 및 분화를 유도하였으며, 상기 파브리 병 유래의 iPSC는 GLA 단백질의 발현 및 활성이 정상 세포에 비하여 현저히 감소하여 글로보트리아오실세라마이드(globotriaosylceramide, Gb3, CD77)가 축적되는 것을 확인하였고, 파브리 병 유래의 iPSC로부터 혈관 세포로 분화를 유도한 결과, 혈관내피 세포 및 혈관 평활근 세포로 분화되어 마커 단백질을 유의적으로 발현하였으며, 상기 혈관내피 세포 및 혈관 평활근 세포에 파브라자임 효소를 처리하였을 때, Gb3의 축적이 유의적으로 감소하므로, 상기 세포 모델은 파브리 병의 기전 분석 연구 및 치료제 스크리닝 방법을 위한 분석 연구에 유용하게 사용될 수 있다.

Description

【명세세
【발명의 명칭】
파브리 병의 유도 -만능 줄기세포 모델 및 이의 용도 【기술분야】
본 발명은 파브리 병 (Fabry disease)의 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSC) 모델, 이의 제조 방법, 및 상기 iPSC 모델을 파브리 병의 발병 연구 및 치료제 스크리닝 방법에 이용하는 용도에 관한 것이다.
【배경기술】
파브리 병 (Fabry disease)은 알파 갈락토시다제 ( a-galactosidase, GLA)를 암호화 하는 유전자인 의 변이가 원인이 되어 나타나는 X-유전자 관련의 열성 유전 질병이다. 상기 GLA 유전자는 인간의 7 번 엑손의 xq22.1 위치에 존재하는 유전자로서, 총 429 개의 아미노산으로 구성되는 전구체 단백질 (precursor protein)로부터 가공 (process)되어 이루어지는 370 개의 아미노산으로 구성되는 당단백질 (glycoprotein)을 암호화한다 (Schif fmann, . Pharmacology & therapeutics 122, 65-77 (2009)).
보고된 바에 따르면, 파브리 병은 117,000 명의 남성 중 1 명의 발병 빈도로 나타났다 (Meikle, P. J. et al. Jama 281, 249-254 (1999)). 그러나, 최근 스크리닝된 자료에서 발병 빈도는 급격하게 상승하여, 태어난 3100 내지 3700 명의 남자 아이 중에서 1 명의 발병 빈도를 나타내었다 (Spada, M. et al. American journal of human genetics!^, 31ᅳ 40 (2006)) . 파브리 병은 상기 GLA 유전자의 변이로 인하여 나타나는 리로솜 효소 (lysosomal enzyme)의 결핍으로 인해, 버킷 림프종 세포 (Burkitt뭘 lymphoma eel Is)에서 시가 독소 (Shiga toxin) 수용체로서 작용하는 것으로 알려져 있는 중성당스핑고지질 (neutral glycosphingol ipid)인 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3, CD77)의 과도한 축적이 원인이 되는 것으로 알려져 있다 (Nudelman, E. et al. Science New York, N.V220, 509-511 (1983))..
현재까지, GLA 유전자에서 나타날 수 있는 것으로 일려져 있는 변이 위치로서 약 400 개 이상의 변이 위치가 보고되었으며 (http://www.hgmd. cf.ac.uk), 파브리 병은 GLA 유전자의 변이 위치에 따라서 질병 증상의 정도가 다양하게 나타난다. 대부분의 변이 형태는 알파-갈락토시다제의 활성 전체가 나타나지 않으며, 몇몇의 미스센스 변이 (missense mutation)은 5 내지 10%로 잔여 효소 활성을 통해 임상적으로 중요한 병리생리학 (pathophysiology)을 나타내지 않는다 (Clarke, J. T. Annals of internal medic inel&, 425-433 (2007)).
파브리 병에서 나타나는 주요 병리생리학적 증상으로서, 혈관 세포 (vascular cells), 심장 세포 (cardiac . eel Is), 신장 내피 세포 (kidney epithelial cells) 및 신경 세포 (neuronal cells)와 같은 다양한 세포 종류에서 Gb3의 축적이 나타난다. 특히, 혈관 세포의 Gb3 축적은 뇌졸중 (stroke) 또는 심근 경색증 (myocardial infarct ion)과 같은 심혈관계 기능장애 (systemic cardiovascular dysfunction)-!- 유발한다. 파브리 병올 치료하기 위한 유일한 방법으로, 반복적인 효소 대체 치료법 (enzyme replacement therapy)이 사용되며, 이를 위하여 알파 -갈락토시다제로서 아갈시다제 베타 (agalsidase beta)인 파브라지 "임 (FabrazyraeKEng, C. M. et al. The New England journal of medicine 345, 9-16 (2001)) 또는 아갈시다제 알파 (agalsidase alfa)인 레플라갈 (Replagal)(Schiffmann, R. et al . Proceedings of the National Academy of Sciences of the United States of America 97, 365-370 (2000))을 투여하여 파브리 병 환자의 다양한 세포 종류에서 축적된 Gb3를 제거한다. 정맥주사로 투여된 효소는 세포막 (plasma membrane)의 만노오즈 6-인산 (mannose 6-phosphate, M6P) 수용체를 통해 세포 내로 유입되어, 리소솜 ( lysosome)으로 이동한다. 이와 같은 치료적 효소의 투여는 파브리 병의 치료에 있어서 중추적인 역할을 나타내나, 상기 파브라자임 또는 레플라갈과 같은 재조합 효소는 혈액 내에서 블안정하며, 반복적인 투여를 통해 알러지 반웅이 유발될 가능성이 있다는 단점을 가진다 (Eng, C. M. et al. The New England journal of medicine 345, 9-16 (2001); Schi f fmann, R. et al · Proceedings of the National Academy of Sciences of the United States of America 97, 365-370 (2000); Sakuraba, H. et al . Journal of human genetics 51, 180-188 (2006)) . 파브리 병의 연구 및 치료제 개발에 있어서, 쥐에서 의 넉아웃을 유발한 후, 내피세포 장애 (endothelial dysfunction)에 대하여 Gb3 축적의 역할을 연구하는 것이 일반적인 방법이다. 상기 ( 의 넉아웃을 유발한 쥐 모델에서는 대동맥 내피 세포 (aortic endothelial cell)의 카베올레 (caveolae)에 비정상적으로 Gb3가 축적되는 것이 관찰되었다 (Shu, L. & Shayman, J. A. The Journal of biological chemistry ^2, 20960-20967 (2007)). 이러한 비정상적인 Gb3의 침전 (deposit)은 GLA 넉아웃 내피 세포에서 칼슘 채널의 기능 저하를 유발할 수 있는 것으로 보고된 바 있다 (Park, S. et al. Cardiovascular research 89, 290-299 (2010)).
다양한 연구를 통해 알파-갈락토시다제 A의 결핍으로 이루어지는 파브리 병 모델 시스템으로서 gla 넉아웃 쥐에서 혈관병증 (vasculopathy)을 발견하였음에도 불구하고, 아직까지 알파-갈락토시다제 A의 활성 손상 및 이로 인한 혈관 세포 내 Gb3 축적으로 유발되는 심혈관계 장애 (cardiovascular complication)에 대한 구체적인 기작에 관하여는 알려진 바 없다. 파브리 병에 대한 기전적인 연구의 제한은 파브리 병 환자의 체세포 (somatic eel Is)로부터 유래된 iPSC를 사용하여 극복이 가능할 것으로 여겨지고 있다. 줄기세포 (stem cell)는 조직을 구성하는 각 세포로 분화되기 전단계의 세포로서, 배아, 태아 및 성체의 각 조직에서 얻을 수 있을 수 있으며, 미분화 상태에서 무한 증식이 가능한 자가증식능 및 특정 분화 자극에 의해 다양한 조직의 세포로 분화될 수 있는 잠재적 가능성인 다분화능을 가진 세포를 말한다. 줄기세포는 분화 자극 (환경)에 의하여 특정 세포로 분화가 진행되몌 세포분열이 정지된 분화된 세포와는 달리 세포분열에 의해 자신과 동일한 세포를 생산 (self-renewal)할 수 있어 증식 (proliferation, expansion)하는 특성이 있으며, 다른 환경 또는 다른 분화 자극에 의해 다른 세포로도 분화될 수 있어 분화에 유연성 (plasticity)을 가지고 있는 것이 특징이다.
유도만능줄기세포 (inducedpluripotent stem cells; iPS)를 포함하는 인간 다능성 줄기세포 (Human pluri otent stem cells; hPSCs)는 다양한 특정 세포 종류로 분화할 수 있는 능력을 가져, iPS를 시험관 내의 분화 시스템을 사용하였을 때, 면역 거부반응의 낮은 위험도와 같은 치료가능성 (therapeutic potential)뿐만 아니라, 기관 형성 (organogenesis)의 초기 발달 동안에 복합적 질병의 메커니즘을 이해하는데 효과적인 평가자로 알려져 있다 Muotri, A. R.
(2009) Epilepsy Behav 14 Suppl 1: 81-85; Marchetto, M. C. , B. Winner, et al.
(2010) Hum Mol Genet 19(R1): R71-76) .
현재까지, 다양한 유전적 질병을 가지는 환자로부터 유래된 iPSC가 질병과-관련있는 세포 종류로 직접 분화되었을 때 질병-특이적인 표현형 (phenotypes)을 나타내는 것에 관련되어 보고된 바 있다 (Parkᅳ I. H. et al. Cell 134, 877-886 (2008); Tiscornia, G. et al. Nature medicine 17, 1570-1576 (2011)). 이러한 질병-특이적인 iPSC는 질병과 관련있는 세포 종류로 분화될 수 있으며, 이에 따라 질병의 구체적인 기작 또는 치료제 스크리닝 방법에 유용하게 사용될 수 있을 것으로 여겨지고 있다.
따라서, 본 발명자들은 파브리 병을 연구하기 위한 줄기세포 모델을 확립하기 위해 노력한 결과, 파브리 병 환자의 섬유아세포로부터 파브리 병 유래의 유도 -만능 줄기세포 (induced pluri potent stem cells; iPSC) , 배상체 (embryoid body, EB) 및 혈관 세포 (vascular cell)의 발생 및 분화를 유도하였으며, 상기 파브리 병 유래의 iPSC는 GLA 단백질의 발현 및 활성이 정상 세포에 비하여 현저히 감소하여 Gb3가 축적되는 것을 확인하였고, 파브리 병 유래의 iPSC로부터 혈관 세포로 분화를 유도한 결과, 혈관내피 세포 및 혈관 평활근 세포로 분화되어 마커 단백질을 유의적으로 발현하였으며, 상기 혈관내피 세포 및 혈관 평활근 세포에 파브라자임 효소를 처리하였을 때, 글로보트리아오실세라마이드( 101)011^303 ^3^(1 Gb3, CD77) 축적이 유의적으로 감소하므로, 본 발명의 유도 -만능 줄기세포 (induced pluri potent stem cells; iPS)를 이용한 파브리 병의 세포 모델링 방법은 파브리 병의 발병 연구 및 치료제 후보물질 스크리닝 방법에 유용하게 사용될 수 있음을 확인함으로써 본 발명을 완성하였다. 【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 파브리 병 (Fabry disease) 환자의 세포와 동일한 특성을 유지하는 새로운 유도 -만능 줄기세포 (induced pluri potent stem ce ls; iPS)을 제공하여, 이를 파브리 병의 발병 연구 및 치료제 후보물질 스크리닝 방법올 위한 연구에 이용하는 방법을 제공하는 것이다.
【기술적 해결방법】
상기 목적을 달성하기 위하여, 본 발명은
Π시험관 내 (/ /iro)에서 파브리 병 (Fabry disease)환자로부터 분리된 섬유아세포 (fibroblast)를 유도 -만능 줄기 세포 (induced pluri potent stem cells; iPS)로 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 iPSC를 수득하는 단계를 포함하는, 시험관 내에서 파브리 병 iPSC모델의 제조 방법을 제공한다.
또한, 본 발명은 상기 방법으로 제조된 파브리 병 iPSC모델을 제공한다. 또한, 본 발명은
i)상기 iPSC로부터 배상체 (embryo id body, EB)또는 혈관 세포 (vascular cell)로 분화를 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 방법을 제공한다.
또한' 본 발명은
i)상기 iPSC모델, 또는 상기 iPSC모델로부터 분화된 배상체 또는 혈관 세포에 피검 화합물 또는 조성물을 처리하는 단계 ;
ii) 상기 단계 i)의 iPSC 모델, 배상체 또는 혈관 세포의 특성을 분석하는 단계; 및
iii) 상기 단계 Π)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, 파브리 병의 치료제 후보물질의 스크리닝 방법을 제공한다.
아울러, 본 발명은 상기 방법으로 제조된, 파브리 병 iPSC모델의 용도를 제공한다.
아을러, 본 발명은
i)상기 iPSC로부터 배상체 (embryo id body, EB)또는 혈관 세포 (vascular cell)로 분화를 유도하는 단계; 및
ii) 상기 단계 0에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 용도를 제공한다.
【유리한 효과】
본 발명의 파브리 병 (Fabry disease) 환자의 섬유아세포로부터 유래한 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs)를 이용한 줄기 세포 모델은 혈관 세포 (vascular cell)로의 분화 여부, 및 파브리 병의 증상인 세포 내 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3, CD77)의 축적 여부를 효과적으로 확인할 수 있으므로, 상기 세포 모델은 파브리 병의 기전 분석 연구 및 치료제 스크리닝 방법을 위한 분석 연구에 유용하게 사용될 수 있다. 【도면의 간단한 설명】
도 1은 파브리 병 (Fabry disease) 환자의 섬유아세포로부터 유래한 유도 -만능 줄기세포 (induced luri otent stem cells; iPSCs)에서 파브리 병의 원인 유전자인 GLA유전자 변이 확인을 나타낸다.
도 2는 파브리 병 유래의 iPSC(FB-iPSC) 발생을 확인을 나타낸다.
도 3은 FB-iPSC의 다분화능올 확인하기 위한 줄기세포성 마커인 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 및 Tra-1-61 단백질 발현의 확인을 나타낸다. 도 4는 미분화 상태인 FBᅳ iPSC에서 중아황산염 서열 (bisulfite sequencing) 분석을 수행하여 DNA 탈메틸화 (demethylat ion) 여부 확인을 나타낸다.
도 5는 FB-iPSC로부터 분화된 배상체 (embryoid body, EB)에서 외배엽 (ectodermal) 마커인 N-카데린 (N— cadherin)ᅳ 내배엽 (endodermal) 마커인 S0X17및 증배엽 (mesodermal)마커인 알파-평활근 액틴 ( a -smooth muscle act in) 발현의 확인을 나타낸다.
도 6은 FB-iPSC에서 알파-갈락토시다제 ( a-galactosidase, GLA) 유전자 발현 수준의 확인을 나타낸다.
도 7은 FB-iPSC에서 GLA 단백질 발현 수준의 확인을 나타낸다.
도 8은 FB— iPSC에서 GLA 효소 활성 결핍의 확인을 나타낸다.
도 9는 FB-iPSC에서 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3, CD77) 축적 현상의 확인을 나타낸다.
도 10은 FB-iPSC를 혈관내피 세포 및 혈관 평활근 세포로 분화되도록 유도하는 과정을 나타내는 모식도이다.
도 11은 FB-iPSC로부터 분화 유도된 혈관전구체 (vascular progenitors) 중에서 CD31 및 CD34를 동시에 발현하는 세포를 분리하기 위한 자기 활성화 세포 분류 (Magnetic activated cell sorting, MACS)를 나타낸다.
도 12는 FB-iPSC로부터 분화 유도된 혈관내피 세포 (endothelial eel Is)에서 확인한 세포의 형태를 나타낸다.
도 13은 FB-iPSC로부터 분화된 혈관내피 세포에서 혈관내피 세포 마커 단백질인 CD31, VE-카데린 및 vWF의 발현의 확인을 나타낸다.
도 14는 FB-iPSC로부터 분화 유도된 혈관내피 세포에서 혈관내피 세포 특이적인 마커 유전자인 ANG2, VE-cad, vWF, EphrinB2 및 CAVEOLINS 발현의 확인을 나타낸다.
도 15는 알파-갈락토시다제 ( α-galactosidase)에 의한 FBᅳ iPSC, FB-iPSC 유래의 혈관내피 세포 및 FB-iPSC 유래의 혈관 평활근 세포 (vascular smooth muscle cells)에서 Gb3 축적에 대한 개선 효과의 확인을 나타낸다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 상세히 설명한다. 본 발명은
i)시험관 내 (/? 에서 파브리 병 (Fabry disease)환자로부터 분리된 섬유아세포 (fibroblast)를 유도 -만능 줄기 세포 (induced pluripotent stem cells; iPS)로 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 iPSC를 수득하는 단계를 포함하는, 시험관 내에서 파브라 병 iPSC 모델의 제조 방법을 제공한다.
상기 단계 0의 유도는 0CT4, S0X2, KLF4 및 C-MYC를 포함하는 다분화능 마커 (pluripotent marker)의 이소성 발현 (ectopic expression)을 사용하는 것이 바람직하나, 이에 한정되지 않는다. 본 발명의 구체적인 실시예에서, 본 발명자들은 파브리 병 환자로부터 유래된 iPSC(FB-iPSC)를 제조하여 원인유전자의 GLA 유전자의 변이를 확인하였고 (도 1 및 도 2 참조), 상기 FB-iPSC는 줄기세포성 마커 (sternness maeker)를 나타내며 (도 3 참조), 미분화 상태에서 리프로그래밍 과정이 진행된 것을 확인하였다 (도 4 참조).
따라서, 본 발명의 파브리 병 유래의 iPSCs 모델은 파브리 병 환자의 유전자 변이와 동일한 변이를 나타내면서 다분화능을 나타내므로, 상기 iPSCs 모델의 제조 방법은 파브리 병올 위한 분석 연구에 이용하는 방법에 유용하게 사용될 수 있다. 또한, 본 발명은 상기 방법으로 제조된 파브리 병 iPSCs 모델올 제공한다.
상기 iPSC는 하기 a) 내지 e)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 것이 바람직하나, 이에 한정되지 않는다; a) 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 및 Tra—1-61으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 다분화능 마커를 발현;
b) 알파-갈락토시다제 ( a -galactosidase, GLA) 유전자 발현 ;
c) GLA 단백질 미발현;
d) GLA 효소 활성의 결핍 ; 및
e) 세포 내 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3, CD77)의 축적 .
발명의 파브리 병 유래의 iPSCs 모델은 파브리 병 환자의 유전자 변이와 동일한 변이를 나타내면서 다분화능을 나타내므로, 상기 iPSCs 모델은 파브리 병을 위한 분석 연구에 이용하는 방법에 유용하게 사용될 수 있다. 또한, 본 발명은
i) 상기 iPSC로부터 배상체 (embryo id body, EB) 또는 혈관 세포 (vascular cell)로 분화를 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 방법을 제공한다.
상기 배상체의 분화마커는 외배엽 (ectodermal) 마커인
N-카데린 (N-cadherin), 내배엽 (endodermal) 마커인 S0X17 및 중배엽 (mesodermal) 마커인 알파-평활근 액틴 ( a—smooth muscle actin) 중 어느 하나 이상을 발현하는 것이 바람직하나, 이에 한정되지 않는다. 상기 혈관 세포는 혈관내피 세포 (endothelial cells) 또는 혈관 평활근 세포 (vascular smooth muscle eel Is)인 것이 바람직하나, 이에 한정되지 않는다. 상기 혈관내피 세포는 하기 a) 내지 c)로 이루어진 군으로부터 선택되는 어느 하나 이상을 특징으로 하는 것이 바람직하나, 이에 한정되지 않는다. a) 혈관 (vascular tube) 유사 구조의 형태;
b) CD31, VE-카데린 (VE-cadherin) 및 vWF로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 혈관내피 세포 마커 발현; 및
c) ANG2, VE-cad, νΨΡ, EphrinB2 및 CAVE0LIN로ᅳ 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 혈관내피 세포 마커 유전자 발현. 본 발명의 또 다른 구체적인 실시예에서, 본 발명자들은 FB-iPSC로부터 배상체 (FBᅳ배상체)로 분화를 유도한 결과, 분화된 FB-배상체에서 외배엽 (ectodermal) 마커인 N-카데린 (N-cadherin), 내배엽 (endodermal) 마커인 S0X17 및 중배엽 (mesodermal) 마커인 알파-평활근 액틴 ( α-smooth muscle actin)의 세 가지 배엽 (germ layer)마커를 발현하여 다분화능을 나타내는 것을 확인하였다 (도 5 참조).
또한, 본 발명자들은 FB-iPSC에서 파브리 병의 원인인 GLA 활성 결핍 및 이에 따른 Gb3의 축적을 확인한 결과, FB-iPSC에서 GLA 유전자의 발현은 정상 세포와 유사한 수준으로 나타나는 반면 (도 6 참조), GLA 단백질은 발현되지 않아 (도 7참조), 이에 따라 GLA단백질의 활성 결핍을 보이며 (도 8참조), 세포 내에 Gb3 축적이 나타나는 것을 확인하였다 (도 9 참조).
또한, 본 발명자들은 FE-iPSC로부터 혈관전구체 (vascular progenitors) 또는 혈관 세포 (vascular cell)로 분화되도록 유도한 결과 (도 10 및 도 11 참조), FB-iPSC로부터 분화된 혈관 세포는 혈관내피 세포 (endothelial cells) 및 혈관 평활근 세포 (vascular smooth muscle cells)로 분화되었으며 (도 12 참조), 상기 혈관내피 세포는 혈관내피 세포가 나타내는 마커 단백질인 CD31, VE-카데린 (VE-cad) 및 vW을 나타내고 (도 13 참조), 혈관내피 세포 특이적인 마커 유전자인 ANG2, VE-cad, vW, EphrinB2 및 CAVEOLi 발현하는 것을 확인하였다 (도 14 참조).
따라서, 본 발명의 파브리 병 유래의 iPSCs모델은 정상 iPSC가 나타내는 다분화능을 유지므로 효과적인 배상체 또는 혈관 세포로의 분화능을 나타내나, 파브리 병 환자 유래의 세포에서 나타내는 특징인 GLA 단백질의 발현 수준 및 활성이 정상 iPSC에 비하여 나타나지 않으며, 이에 따라 세포 내에서 Gb3의 축적을 나타낼 수 있으므로, 상기 iPSC 모델은 파브리 병을 위한 진단 방법 및 스크리닝을 포함하는 파브리 병의 분석 연구에 이용하는 방법께 유용하게 사용될 수 있다. 아울러, 본 발명은
i) 상기 iPSC모델, 또는 상기 iPSC모델로부터 분화된 배상체 또는 혈관 세포에 피검 화합물 또는 조성물을 처리하는 단계 ;
ii) 상기 단계 i)의 iPSC 모델, 배상체 또는 혈관 세포의 특성올 분석하는 단계 ; 및
iii) 상기 단계 ii)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, 파브리 병의 치료제 후보물질의 스크리닝 방법을 제공한다.
상기 단계 ii)의 iPSC 모델의 특성은 iPSC 모델의 배상체 또는 혈관 세포로의 분화능올 분석하는 것이 바람직하나, 이에 한정되지 않는다.
상기 단계 ii)의 배상체의 특성은 N-카데린, S0X17 및 알파-평활근 액틴으로 구성된 군으로부터 선택되는 어느 하나 이상의 발현인 것을 특징으로 하는 것이 바람직하나, 이에 한정되지 않는다.
상기 단계 iii)의 혈관 세포의 특성은 하기 a) 내지 d) 중 어느 하나 이상인 것을 특징으로 하는 것이 바람직하나, 이에 한정되지 않는다.
a) 혈관 (vascular tube) 유사 구조의 형태;
b) Gb3 축적의 감소;
c) CD31, VE-카데린 (VE-cadherin) 및 vWF를 포함하는 혈관내피 세포 마커 발현 ; 및
d) ANG2, VE-cad, v¥F, EphrinB2및 CAVEOLi 포함하는 혈관내피 세포 마커 유전자 발현.
상기 혈관 세포는 혈관내피 세포 또는 혈관 평활근 세포인 것이 바람직하나, 이에 한정되지 않는다.
상기 단계 iv)의 비교는 상기 iPSC가, 정상 iPSC에서 나타나는 다분화능을 유지하여 나타내나, 무처리 대조군에 비해 GLA 단백질의 발현 수준 및 활성의 회복, 또는 Gb3 축적의 감소 중 하나 또는 둘 다를 나타내는, 피검 화합물 또는 피검 조성물을 선별하는 것이 바람직하나, 이에 한정되자 않는다. 상기 단계 iv)의 비교는 상기 배상체가, 정상 세포 유래의 배상체에서 나타나는 다분화능을 유지하여 나타내는, 피검 화합물 또는 피검 조성물을 선별하는 것이 바람직하나, 이에 한정되지 않는다.
상기 단계 iv)의 비교는 상기 혈관 세포가, 정상 세포 유래의 혈관 세포에서 나타나는 혈관 세포 마커 유전자 또는 단백질의 발현 수준올 나타내나, 무처리 대조군에 비해 세포 내의 Gb3의 축적이 감소하는 피검 화합물 또는 피검 조성물을 선별하는 것이 더욱 바람직하고, 보다 구체적으로 세포 내의 Gb3의 축적이 정상 대조군과 유사한 수준으로 나타나지 않는 피검 화합물 또는 피검 조성물을 선별하는 것이 가장 바람직하나, 이에 한정되지 않는다. 본 발명의 또다른 구체적인 실시예에 있어서, 본 발명자들은 FB-iPSC의 분화 동안에 약리학적 (pharmacologi c) 처리에 의해 파브리 병의 개선 효과가 나타나는지 확인하기 위해, FB-iPSC로부터 혈관내피 세포 및 혈관 평활근 세포로의 분화를 유도한 후 GLA 재조합 단백질인 파브라자임 (Fabrazyme)을 처리한 결과, 상기 FB-iPSC , 혈관내피 세포 및 혈관 평활근 세포 내에서 Gb3의 축적이 유의적으로 감소하는 것을 확인하였다 (도 15 참조) .
따라서 , 본 발명의 파브리 병 유래의 iPSCs모델은 정상 iPSC가 나타내는 다분화능을 유지므로 효과적인 배상체 또는 혈관 세포로의 분화능을 나타내나, 파브리 병 환자 유래의 세포에서 나타내는 특징인 GLA 단백질의 발현 수준 및 활성이 정상 iPSC에 비하여 나타나지 않으며, 이에 따라 세포 내에서 Gb3의 축적을 나타낼 수 있고, 약리학적 처리에 의해 Gb3 축적의 감소 효과를 통한 파브리 병의 개선 효과를 용이하게 확인할 수 있으므로, 상기 iPSC 모델은 파브리 병의 치료제 후보물질의 스크리닝 방법에 유용하게 사용될 수 있다. 또한, 본 발명은 상기 방법으로 제조된, 파브리 병 iPSC 모델의 용도를 제공한다.
아울러, 본 발명은
i ) 상기 iPSC로부터 배상체 (embryo id body, EB) 또는 혈관 세포 (vascular cel l )로 분화를 유도하는 단계 ; 및
i i ) 상기 단계 i )에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 용도를 제공한다.
본 발명의 파브리 병 유래의 iPSCs 모델은 파브리 병 환자의 유전자 변이와 동일한 변이를 나타내면서 다분화능을 나타내므로, 상기 iPSCs 모델은 파브리 병을 위한 분석 연구에 이용하는 방법에 유용하게 사용될 수 있다. 이하, 본 발명을 실시예 및 제조예에 의해 상세히 설명한다.
단, 하기 실시예 및 제조예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 제조예에 의해 한정되는 것은 아니다.
<실시예 1> 파브리 병 (Fabry disease) 환자로부터 유래된 유도 -만능 줄기세포 (induced pur ipotent stem cel ls, iPSC)의 제조
<1ᅳ1>파브리 병 환자의 원인 유전자 변이 확인
파브리병 환자에서 원인이 되는 유전자 변이를 확인하기 위하여, 알파-갈락토시다제 ( α -galactosidase, GLA) 유전자의 서열을 파브리 병 환자의 섬유아세포 ( f ibroblast )로부터 확인하였다.
구체적으로, 서울 아산병원 (Asan medical center , 한국)에서 파브리 병 환자가 연결되었고, 병원의 임상연구 윤리 심의위원회의 심사를 통과한 후, 환자와 법적 대리인의 동의를 얻어 국소 마취 후 펀치 생검법 (punch biopsy method)으로 피부 조직 생검을 수행하여 파브리 병 환자로의 진피 (dermal) 조직을 수득하였다. 그런 다음, 상기 수득한 진피 조직에서 섬유아세포를 분리하여 10%소태아혈청 (fetal bovine serum, FBS; GIBCO사, 미국), 0.05 mg/mi 아스코르브산 (ascorbic acid), 0.3
Figure imgf000016_0001
L-글루타민 (L-glutamin; GIBCO 사, 미국), 3.7 nig/ m£ 탄산수소나트륨 (sodium bicarbonate, NaHC03) 및 100 U/n 페니실린 (penicillin; GIBCO 사, 미국)을 포함하는 둘베코 변이된 이글 배지 (Dulbecco's modified Eaglets medium, DMEM; GIBCO 사, 미국)에서 배양하였다. 배양 후, 세포 상충액 100 ^올 조직 배양 플레이트 (tissue culture plate)에 접종한 후, 5¾ 이산화탄소 조건의 37°C에서 3 시간 동안 유지한 다음, 배양 배지를 2 ηύ 첨가한 후 1 주일 간 세포 배양하여 심유아세포의 생존력 (viability) 및 증식 (proliferation)을 확인하였다. 그런 다음, 상기 확인한 섬유아세포로부터 유전체 DNA(genomic DNA, gDNA)를 추출하고, 정방향 프라이머 (서열번호 1: atgcagctgaggaacccag) 및 역방향 프라이머 (서열번호 2: (ttaaagtaagtcttttaatgacatc)를 사용하여 GIA 유전자의 염기 서열올 확인하였다. 대조군으로는 H9 세포 (ATCC HTB176; 미국 세포주 은행 (American Type Culture Collection; ATCC) , 미국)를 상기와 동일한 방법을 수행하여 GLA 유전자의 염기 서열을 확인하였으며, 이를 야생형 (wild type; FT)으로 하여 파브리 병 환자와 유전자 서열과 비교하였다.
그 결과, 도 1에서 나타난 바와 같이 파브리 병 환자의 유전자에서 엑손
6에 넌센스 변이 (nonsense mutation)이 나타나, 상기 유전자에서 합성된 GLA 단백질의 268 번째 라이신 (lysin) 잔기가 나타내지 않는 것을 확인하였다 (도 1). <1-2>파브리 병 환자유래의 iPSC발생의 유도
본 발명의 실사예를 수행하기 위하여, 리프로그래밍 인자 (reprogra瞧 ing factor)인 0CT4, S0X2, LF4 및 OMYC를 이용한 이소성 발현 (ectopic expression) 방법 (Takahashi, K et al , Cell 131(5): 861-872, 2007)올 통해 파브리 병 환자의 섬유아세포로부터 파브리 병 유래의 iPS(FB-iPS)의 발생을 유도하였다.
구체적으로, 상기 실시예 <1-1〉에서 수득한 파브리 병 환자의 섬유아세포를 1 소태아혈청 (fetal bovine serum, FBS; GIBCO사,미국), 50 U/ml 페니실린 (penicillin; GIBCO사, 미국), 50 m/mi 스트렙토마이신 (streptomycin; GIBC0사, 미국) 및 1 mM비필수 아미노산 (non-essential amino acid; GIBCO사, 미국)을 포함하는 DMEM 배지에 배양하였다. 그런 다음, 0CT4, S0X2, KLF4 및 C-MYC 인자를 발현하는 레트로바이러스 (retrovirus)의 형질도입 (transduction)을 이용하는 공지된 기술을 사용하여 FB-iPSC의 발생을 발생을 유도한 후, 상기 유도된 FB-iPSCs를 위상차 현미경 (phase-contrast microscopic)으로 확인하였다.
그 결과, 도 2에서 나타난 바와 같이 파브리 병 환자 유래의 섬유아세포로부터 FB-iPSC가 발생되었으며, 정상 세포의 iPSC 형태를 나타내는 것을 확인하였다 (도 2).
<1-3> FB-iPSC의 다분화능 확인
미분화 상태인 FB-iPSC가 다분화능을 나타내는지 확인하기 위하여, FB-iPSC에서 줄기세포성 마커 (sternness maeker)의 발현을 확인하였다.
구체적으로, 상기 실시예 <1-2>에서 발생을 유도한 FB-iPSC에 4¾ 포름알데히드 (formaldehyde)를 포함하는 인산완충식염수 (phosphate buffered saline, PBS)를 처리하여 실온에서 15분간 고정하고, 0.1%트리론 X-100(triton X-100)을 처리하여 세포막에 투과성 (Permeability)를 부여하였다. 처리 후, 상기 처리한 세포를 4% 정상 당나귀 혈청 (normal donkey serum)을 첨가하여 1 시간 동안 상온에서 차단 (blocking)한 다음, 1차 항체로 항 -0CT4 항체 (1:300 희석, R&D Systems 사, 미국), 항 -NAN0G 항체 (1:300 희석, Cell signaling technology 사, 미국), 항 -SSEA-4 항체 (1:300 희석, R&D Systems 사, 미국), 항 -S0X2 토끼 항체 (BD Transduction Laboratories, 미국), 항 -Tra-1-81 항체 (1:300 희석, MiUipore 사, 미국) 또는 항 -Tra-1ᅳ 60 항체 (1:300 희석, Millipore 사, 미국)를 각각 처리하여 4°C에서 밤새 배양하고, 0.1% 트원 -20(Tween-20)을 포함하는 PBS인 PBST로 수회 세척하였다. 세척 후, 알렉사 폴루오르 488(Alexa Fluor 488) 또는 알렉사 플루오르 594(Alexa Fluor 594)가 결합된 2차 항체 (Inv.itrogen, 미국)를 처리하여 1 시간 동안 배양하여 FB-iPS를 면역형광염색하여, 형광 현미경 (fluorescence microscope; olympus, 일본)또는 자이스 LSM 510공초점 현미경 (Carl Zeiss, 독일)으로 관찰하여 0CT4 NANOG, S0X2, SSEA4, Tra-1-80 및 Tra-1-61 단백질의 발현을 확인하였다.
그 결과, 도 3에서 나타난 바와 같이 FB-iPSC에서 줄기세포성 마커인 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 및 Tra-1-61 단백질이 정상 세포 수준으로 발현하는 것을 확인하였다 (도 3).
<1-4>미분화 FB-iPSC에서 리프로그래밍 과정 진행의 확인
발생 후 미분화 상태인 FB-iPSC에서 리프로그래밍 과정이 진행되었는지 여부를 확인하기 위하여, 중아황산염 서열 (bisulfite sequencing) 분석을 수행하여 FB-iPSC의 0CT4, REX1및 Λ¾Μ¾?유전자 프로모터 부위에서 CpG위치의 DNA탈메틸화 (demethylation)여부를 확인하였다 (Park, S. . etaJ. (2010) Blood 116, 5762-5772).
구체적으로, theEZ DAN 메틸화-금 키트 (theEZ DNA methylat ion-Gold Kit; Zymo Research 사, 미국)을 사용하여, 제조사에서 제공하는 프로토콜에 따라 유전체 DNA에 아황산수소나트륨 (sodium bisulfite) 처리하여, 25 내지 50 ng의 아황산-처리된 DNA를 주형으로 PCR을 통해 증폭하였다. 증폭된 PCR 산물은 AccuPrep®플라스미드 미니 추출 키트 (AccuPrep® plasmid Mini extraction Kit; 바이오니어 사, 한국)를 사용하여 정제하고 , pGEMᅳ T EASY 백터 (프로메가 사, 미국)에 서브클로닝 (subcloning)하여 삽입하였다. 그런 다음, 삽입한 백터를 섬유아세포 및 FB-iPSC에 형질전환한 클론 (clone)을 각각 5개씩 수득하고, M13 프라이머를 사용하여 서열을 확인한 후, 웹 기반의 프로그램인 블라스트 -2(blast-2) 또는 프로그램인 바이 Q 아날라이저 (BiQ Analyzer)를 사용하여 분석하였다. 그 결과, 도 4에서 나타난 바와 같이 발생 후의 미분화 상태인 FB-iPSC에서 리프로그래밍 과정이 진행된 것을 확인하였다 (도 4).
<실시예 2>파브리 병 환자유래의 배상체 (embryoid body, EB) 분화유도
<2-1> FB-iPSC로부터 배상체 분화유도
시험관 내 (in vitro)에서 FB-iPSC의 전분화능 (phir ipotency)를 확인하기 위하여ᅳ FB-iPSC로부터 배상체 (EB)를 형성하도록 분화를 유도하였다.
구체적으로, 상기 실시예 <1-2>와 동일한 방법으로 발생을 유도한 FB-iPSC의 집락 (colony)를 맥클래인 조직 절편기 (McClain tissue chopper)를 사용하여 4 등분하였다. 상기 4 등분한 FB-iPSC는 초-저 부착 배지 (ultra-low attachment dish)에 뿌려 10% 혈청 대체물 (serum re lacement, SR)을 포함하는 DMED/F12배지인 배상체 분화 배지 (embryoid body differentiation media) 5 m에 재 -현탁하고, 4 일간 현탁 배양하여 FB— iPSC 유래의 배상체 (FB-배상체)로 분화를 유도하였다. 정상 대조군으로 WT-iPSC를 상기와 동일한 방법으로 배양하여 WT— iPSC 유래의 배상체 (WT-배상체)로 분화를 유도하였다.
<2-2> FB-배상체의 분화능 확인
FB-배상체의 분화능을 확인하기 위하여, FB-배상체에서 외배엽 (ectodermal) 마커인 N-카데린 (N—cadher in), 내배엽 (endodermal) 마커인 S0X17 및 중배엽 (mesodermal) 마커인 알파-평활근 액틴 (a -smooth muscle act in)의 세 가지 배엽 (germ layer) 마커의 발현을 확인하였다.
구체적으로, 상기 실시예 <2-1>과 동일한 방법으로 분화를 유도한 FB-배상체를 상기 실시예 <1-3>과 동일한 방법으로 면역형광염색하여 N-카데린 : S0X17 또는 알파-평활근 액틴 단백질의 발현을 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 항 -N-카데린 마우스 항체 (anti-N-CADHERIN mouse antibody; cell signaling Technologies사, 미국), 항—알파一평활근 액틴 마우스항체 (ant i_alpha— smooth muscle act in mouse antibody; R&D사, 미국) 및 항 -S0X17 마우스 항체 (anti-S0X17 mouse antibody, R%D사, 미국)을 각각 사용하였고, 발현의 정도를 대조하기 위해
4'6-디아미디노 -2-페닐인돌 (4'6-diamidino-2-phenylindole, DAPI)을 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과, 도 5에서 나타난 바와 같이 FB-배상체는 N-카데린, S0X17 및 알파-평활근 액틴의 세 가지 형태의 배엽 마커를 모두 발현하여 다분화능을 나타내는 것을 확인하였다 (도 5).
<실시예 3> FB-iPSC에서 알파-갈락토시다제 ( α-galactosidase, GLA) 발현 결핍 및 활성 저하 확인
<3-1> FB-iPSC에서 GLA의 유전자 발현 수준 확인
파브리 병 환자에서 GLA 유전자의 발현 정도를 확인하기 위하여, FB-iPSC에서 GLA의 mRNA수준을 확인하였다.
구체적으로, 상기 실시예 <1-2>와 동일한 방법을 수행하여 FB-iPSC를 수득하여, 트리졸 (TRIzol; Invitrogen, 미국)에 현탁하고 제조사의 프로토콜에 따라 FB-iPSC의 전체 RNA를 추출하였다. 그런 다음, 상기 추출한 RNA 1 /g을 M-MLV 역전 } 합성효소 (M一 MLV reverse transcriptase; Enzynomi.cs, 口 1국)를 정방향 프라이머 (서열번호 3: AGCCTGGGCTGTAGCTATGA ) 및 역방향 프라이머 (서열번호 4: TGCCTGTGGGATTTATGTGA)를 사용하여 의 제 1 가닥 cDNA(first-strand cDNA)를 각각 합성하고, 이를 증폭하여 전기영동 (electrophresis)로 GLA 유전자의 발현을 RNA 수준에서 확인하였다. 정상 대조군으로 사용하기 위하여, 인간 섬유아세포주인 CRL2094(cat No. CCD-1077Sk, ATCC 구입, 미국) 세포에 0CT4, S0X2, C-MYC 및 KLF4를 감염하여 제조한 iPSC세포 (CRLJiiPSCs)를 제조한 후, 이를 정상 인간역분화줄기세포주로 사용하였고, H9 세포를 정상 인간배아줄기세포주로 사용하여, 상기와 동일한 방법을 통해 야생형 세포에서 유전자의 발현 정도를 확인하였으며, 발현 수준을 보정하기 위한 대조군으로는 알파-튜블린 ( a -tubulin) 유전자를 상기와 동일한 방법을 수행하여 발현량을 확인하였다.
그 결과, 도 6에서 나타난 바와 같이 FB-iPSC에서 GLA 유전자의 발현 정도는 정상 대조군인 H9 세포와 유사한 수준으로 발현되는 것을 확인하였다 (도 6).
<3-2> FB-iPSC에서 GLA의 단백질 발현 수준 확인
파브리 병 환자에서 GLA의 결핍에 대한 단백질의 발현 정도를 확인하기 위하여, FB-iPSC에서 GLA의 단백질 발현 수준을 확인하였다.
구체적으로, 상기 실시예 <1-2〉와 동일한 방법을 수행하여 FB-iPSC를 수득하여, PRO-PREPTM 단백질 추출 용액 (PRO-PREPTM protein eztraction solution; 인트론바이오 사, 한국)에 현탁하여 세포의 단백질을 포함하는 상충액을 수득하고, 상기 단백질의 농도를 브레드 -포드 분석 (brad-ford assay)로 확인하였다. 그런 다음, 20 /g의 전체 단백질을 12¾> SDS-PAGE gel에서 분리하고, 니트로셀를로오즈 막 (nitrocellulose membrane; 바이오 래드 사, 미국)으로 이동하여 0.1% 트원 20(Tween 20)을 포함하는 5% 스킴 밀크 (skim milk)의 트리스 -완충 생리식염수 (Tris-buffered saline, TBS)로 구성된 TBST(10 mM 트리스 -염산 (Tris-HCl), pH 7.5, 150 nM 염화나트륨 및 0.1% 트원 -20)으로 차단하였다. 차단 후, 상기 막에 1차 항체로 항 -토끼 다클론 GLA 항체 (1:1000 회석; anti-rabbit polyclonal GLA antibody, 제품 번호: AP6727a, Abgent 사, 미국)를 처리하여 4°C에서 밤새 배양하고, TBST로 세척하여, 염소 (goat)로부터 유래한 겨자무과산화효소 (horseradish peroxidase, HRP)가 결합된 항 -토끼 IgG (H+L) 2차 항체 (Goat ant i -Rabbit IgG (H+L) Secondary Antibody, HRP conjugate; Thermo scientific 사, 미국)를 2차 항체로 하여 실온에서 한 시간 동안 배양하고 세척하여 웨스턴블럿 (western blot)을 수행하였다. 웨스턴블럿을 수행한 결과는 ECL 시스템을 사용하여 제조사의 프로토콜에 따라 발색 정도를 신호 (signal)로 검출하였다. 정상 대조군으로 H9 세포를 상기와 동일한 방법을 수행하여 야생형 세포에서 GLA 단백질의 발현 정도를 확인하였으며, 발색을 보정하기 위한 대조군으로써 , 항 -β—액틴 항체 (ant i-β -act in antibody; 1:3000 희석; 산타 크루즈 사, 미국)을 처리하여 β_액틴를 염색하였다.
그 결과, 도 7에서 나타난 바와 같이 정상 대조군에서는 GLA 단백질이 발현이 나타나는 반면, FB-iPSC에서는 GLA 단백질이 발현되지 않는 것올 확인하였다 (도 7). .
<3-3> FB-iPSC에서 GLA 활성의 확인
파브리 병 환자에서 GLA의 결핍에 대한 단백질의 활성을 확인하기 위하여, FB-iPSC에서 GLA 단백질의 활성을 기존에 공지되어 있는 형광 발색 방법 (flurogenic method)을 수정하여, 확인하였다 (Benjamin, E. R. et al . Journal of inherited metabolic disease 32, 424-440 (2009)) .
구체적으로, 상기 실시예 <1-2〉와 동일한 방법을 수행하여 FB-iPSC를 수득하여, 지지체가 없는 배양 환경의 (feeder-free culture) MEF-조절된 배지 (MEF-conditioned medium)에서 5일 동안 배양하였다. 배양 후, FB-iPSC를 수득하여 PBS로 세척하고, 100 mM구연산나트륨 (sodium citrate; sigma사, 미국), 200 mfl인산수소이나트륨 (sodium phosphate dibasic; sigma사, 미국)을 포함하는 4.6의 GLA분석 완충용액 (GLA assay buffer)을 200≠가하여, 1초 파쇄 및 1 초 휴식의 프로그램으로 총 10 초간 초음파 (sonication) 파쇄하고, 마이크로 BCA 단백질 어세이 키트 (Micro BCA protein assay kit; Pierce 사, 미국)를 사용하여 BCA 분석을 통해 세포 파쇄물 내의 단백질 농도를 확인하였다. 그런 다음, 4°C에서 30분간 원심분리하여 세포 파쇄물 상층액을 수득한 후, 30 ^의 200 mM N-아세틸 -D-갈락토사민 (N-acetyl-D-galactosamine, GalNAC; sigma 사, 미국), 6 ^의 50 mM
4-MU-알파— D-갈락토피라노사이드 (4-MU- a -D-galactopyranoside, 4MUaGal; sigma 사, 미국), 14 id GLA 분석 완충용액 및 상기 수득한 세포 파쇄물 상층액 10 ^을 흔합하여 GLA 분석을 위한 흔합물을 제조하였다. 제조한 흔합물은 검은색 웰 (blackwell)을 가지고 바닥은 투명한 (celar-boUom) 96 웰 플레이트 (96 well plate)에 첨가하여, 37°C에서 1시간 동안 배양하였다. 배양 후, ρΗΊΟ.32의 200mM글리신을 포함하는 GLA정지 완충용액 (GLA stop buffer)을 150 ιή 가하여 빅터 플레이트 리더기 (Victor plate reader; Perkin Elmer, 미국)를 사용하여 355 및 460 nm의 파장에서 형광을 확인하였다. 확인한 형광 값은 4-메틸룸벨리페론 (4-methylumbel H feron, 4-MU)의 표준 곡선 (standard curve)를 사용하여 보정한 후, α -갈락토시다제 활성 ( a -galactosidase act ivi ty)를 계산하였다. 정상 대조군으로 H9의 배아 줄기 세포를 상기와 동일한 방법을 수행하여 야생형 세포 (H9 ES)에서 GLA 단백질의 활성을 확인하였다.
그 결과, 도 8에서 나타난 바와 같이 정상 대조군에서는 GLA의 활성이 나타나는 반면, FB-iPSC에서는 GLA의 활성이 전혀 나타나지 않아, GLA의 단백질 발현이 나타나지 않는 것과 동일하게 FB-iPSC에서 GLA의 결핍이 나타나는 것을 확인하였다 (도 8) .
<3-4> FB-iPSC의 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3, CD77) 축적 현상 확인
파브리 병에서 나타타는 대표적인 특징인 Gb3를 확인하기 위하여, FB-iPSC에서 Gb3를 면역형광염색하여 확인하였다.
구체적으로, 상기 실시예 <1-2>과 동일한 방법을 수행하여 발생을 유도한 FB-iPSC를 상기 실시예 <1-3>과 동일한 방법으로 면역형광염색하여 Gb3를 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 항 -Gb3 항체 (CD77[38.13] , 1 : 1000 희석; GeneTex 사, 미국)를 사용하였다. 정상 대조군으로 H9 ES를 상기와 동일한 방법을 수행하여 야생형 세포 (H9 ES)에서 Gb3의 축적 유무를 확인하였으며, 발현의 정도를 대조하기 위해 DAPI를 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과, 도 9에서 나타난 바와 같이 정상 대조군에서는 Gb3의 축적이 나타나지 않는 반면, FB-iPSC에서는 축적된 Gb3가 나타나, 파브리 병에서 나타나는 증상이 동알하게 나타나는 것을 확인하였다 (도 9) .
<실시예 4> FB유래의 혈관 세포 분화 확인
<4-1> FB-iPSC로부터 혈관 세포로의 분화유도
파브리 병 환자로부터 혈관 세포로의 분화를 유도하기 위해서, 도 10에서 나타난 과정을 따라 FB-iPSC를 혈관내괴 세포 및 혈관 평활근 세포로 분화되도록 유도하였다 (도 10).
구체적으로, 상기 실시예 <1-2>와 동일한 방법을 수행하여 발생올 유도한 FB-iPSC를 10 mi 주사기 바늘을 이용하여 직경 300 내지 500 로 균일하게 절단한 후, 생장 인자 (growth factor)로 8 ng/mi bFGF를 첨가한 mTES l 배지를 포함하는 매트리겔이 코팅된 디쉬 (Mat ri gel -coated dish)에 접종하여 3 일간 배양해 영양주가 없는 (feeder-free) 상태로 분화를 유도하였다 (단계 1). 그런 다음, 상기 배지를 1% B27를 포함하는 RPMI 배지로 변경하고, 생장 인자로서 50 ng/ml 액티빈 A(activin A) 및 20 ng/i BPM4를 첨가해 3 일간 배양하여, 중배엽 (Mesoderm) 세포로 분화한 후 (단계 2), 생장 인자를 50 ng/ml VEGFA및 50 ng/ml bFGF로 변경하여 0.5% B27를 포함하는 RPMI 배지에서 상기 중배엽 세포를 6 일간 배양하여 혈관전구체 (vascular progenitors)로 분화되도록 유도하였다 (단계 3). 유도된 혈관전구체는 CD34 마그네틱 비드 (CD34 magnetic bead)를 사용하는 자기 활성화 세포 분류 (Magnetic activated cell sorting, MACS)를 수행하여 혈관내피 세포 (endothelial cells)및 혈관 평활근 세포 (vascular smooth muscle eel Is)로 분화될 수 있는 CD34 양성 세포를 분리하였다. 상기 분리된 CD34 양성 세포인 혈관전구체는, 생장 인자로서 100 ng/n VEGF-A 및 100 ng/n bFGF를 첨가한 EGM-2 배지 (Lonza 사, 미국)에서 추가로 5 내지 7 일간 배양하여 혈관내피 세포로 분화되도록 유도하거나, 생장 인자로서 lOO ng/i PDGF-BB(R&D사,미국) 및 100 ng/nd bFGF를 첨가한 EGM-2 배지에서 추가로 14 내지 21 일간 배양하여 혈관 평활근 세포로 분화되도록 유도하였다 (단계 4).
그 결과, 도 11에서 나타난 바와 같이 단계 3에서 분화된 혈관전구체에서 FB-iPSC로부터 분화가 유도되어 배양된 지 11 일 후에 CD34 및 CD31을 동시에 발현하는 세포가 10% 이상 발생 되는 것을 확인하였다 (도 11).
<4-2> FB-iPSC유래의 혈관내피 세포의 형태 확인
파브리 병으로부터 유래된 혈관내피 세포가 정상의 혈관내피 세포의 형태를 나타내는지 확인하기 위하여, FB— iPSC로부터 분화 유도된 혈관내피 세포의 형태를 확인하였다.
구체적으로, 상기 실시예 <4-1>과 동일한 방법을 수행하여 FB-iPSC로부터 혈관내피 세포 및 혈관 평활근 세포가 분화되도록 유도한 후, 분화 개시 16 내지 18 일 후에 위상차 현미경으로 세포의 형태를 확인하였다. 그 결과ᅳ 도 12에서 나타난 바와 같이 분화된 혈관내피 세포는 전형적인 혈관 세포의 형태를 나타내며 (도 12a) , 매트리겔 위에서 혈관 (vascular tube ) 유사 구조를 형성하는 것을 확인하였다 (도 12b) . <4-3> FB-iPSC 유래의 혈관내피 세포에서 혈관내피 세포 마커 단백질의 발현 확인
FB-iPSC 유래의 혈관내피 세포가 정상적으로 분화가 유도되었는지 확인하기 위하여, FB-iPSC로부터 분화 유도된 혈관내피 세포에서 혈관내피 세포가 나타내는 마커 단백질인 CD31 , VE-카데린 (VE-cad) 및 vVF의 발현을 확인하였다.
구체적으로, 상기 실시예 <4-1>과 동일한 방법을 수행하여 혈관내피 세포가 되도록 분화를 유도한 후, 분화 개시 16 내지 18 일 후에 상기 실시예 <1-3〉과 동일한 방법으로 면역형광염색하여 CD31 , VE-카데린 및 vVF의 발현을 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 항 -CD31 항체, 항 -VE 카데린 항체 ( 1 : 100 회석; R&D systems 사, 미국) 및 항 -vWF 항체 ( 1 : 100 희석; Abeam 사, 미국)를 각각 사용하였고, 발현의 정도를 대조하기 위하여 DAPI를 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과, 도 13에서 나타난 바와 같이 FB-iPSC로부터 분화된 혈관내피 세포는 혈관내피 세포 마커 단백질인 CD31 , VE-카데린 및 vVF를 정상작으로 발현하는 것을 확인하였다 (도 13) .
<4-4> FB-iPSC 유래의 혈관내피 세포에서 혈관내피 세포 마커 유전자의 발현 확인 FB-iPSC 유래의 혈관내피 세포가 정상적으로 분화가 유도되었는지 확인하기 위하여, FB-iPSC로부터 분화 유도된 혈관내피 세포에서 혈관내피 세포 특이적인 마커 유전자인 ANG2, VE-cad, vW, EphrinB2 및 CA VEOLI 발현을 확인하였다.
구체적으로, 상기 실시예 <4-1>과 동일한 방법으로 분화를 유도한 혈관내피 세포를 수득하여, 상기 실시예 <3-1>과 동일한 방법으로 혈관내피 세포의 전체 RNA를 추출한 후 RT-PCR을 수행하여, ANG2, VE-cad, vWF, EphrinB2 및 CA VE0LIN유전자의 발현을 확인하였다. 상기 RT-PCR을 위하여 하기 [표 2]에 기재된 바와 같은 프라이머를 사용하였다. 대조군으로는, H9 배아 줄기 세포로부터 상기 실시예 <4-1>과 동일한 방법으로 혈관내피 세포의 분화를 유도하여 이를 정상 대조군으로 사용하였으며 (H9-EC) , 발현 수준을 보정하기 위한 대조군으로는 유전자를 상기와 동일한 방법을 수행하여 발현량을 확인하였다.
그 결과, 도 14에서 나타난 바와 같이 FB-iPSC에서는 ANG2, VE-cad, vWF, EphrinB2 및 CA VEOLIN 유전자의 발현이 유의적으로 나타나지 않은 반면, FB-iPSC로부터 분화된 혈관내피 세포 (FB-EC)는 정상 대조군과 유사한 수준으로 혈관내피 세포 특이적인 마커 유전자를 발현하는 것을 확인하였다 (도 14) .
<실시예 5> 알파-갈락토시다제 ( α -galactosidase)에 의한 FB-iPSC에서 Gb3 축적에 대한 개선 효과의 확인
FB-iPSC의 분화 동안에 약리학적 (pharmacologi c) 처리에 의해 파브리 병의 개선 효과가 나타나는지 확인하기 위해, FB-iPSC로부터 혈관 세포로의 분화를 유도한 후 알파-갈락토시다제 ( α -gal actos i dase) 재조합 단백질인 파브라자임 (Fabrazyme)을 처리하였다.
구체적으로, 상기 실시예 <1-2>와 동일한 방법을 수행하여 FB-iPSC를 수득한 후, 상기 실시예 <4-1>과 동일한 방법을 수행하여 FB-iPSC로부터 분화를 유도한 혈관내피 세포 및 평활근 세포를 수득한 다음, 상기 수득한 FB-iPSC , 혈관내피 세포 및 혈관 평활근 세포에 각각 10 / g/i 의 파브라자임을 5 일간 처리한 다음, 상기 실시예 <1-3〉과 동일한 방법으로 면역형광염색하여 Gb3를 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 항 -Gb3 항체를 사용하였다. FB-iPSC로부터 혈관내피 세포 또는 혈관 평활근 세포로의 분화를 확인하기 위한 대조군으로, 항 -CD31항체 또는 항ᅳ α -SMA항체 (1 : 100희석 ; R&D systems 사, 미국)을 각각 사용하여, 혈관내피 세포 또는 혈관 평활근 세포에 대한 마커 단백질인 CD31 또는 a -SMA의 발현을 확인하였으며, 발현의 정도를 대조하기 위해 DAPI를 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과, 도 15에서 나타난 바와 같이 파브라자임을 처리하기 전의 FB-iPSC, 혈관내피 세포 및 혈관 평활근 세포에서 Gb3의 축적이 나타나는 반면 10 / 의 파브라자임을 5 일간 처리한 후에는 Gb3의 축적이 유의적으로 나타나지 않는 것을 확인하였다 (도 15) .

Claims

【청구의 범위】
【청구항 1】
i)시험관 내 (//7 / / )에서 파브리 병 (Fabry disease)환자로부터 분리된 섬유아세포 (fibroblast)를 유도 -만능 줄기 세포 (induced luri potent stem cells; iPS)로 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 iPSC를 수득하는 단계를 포함하는, 시험관 내에서 파브리 병 iPSC 모델의 제조 방법 .
【청구항 2】
제 1항에 있어서, 상기 단계 i)의 유도는 다분화능 마커 (pluripotent marker)의 이소성 발현 (ectopic expression)을 사용하는 것을 특징으로 하는 시험관 내에서 파브리 병 iPSC 모델의 제조 방법.
【청구항 3】
제 1항의 방법으로 제조된, 파브리 병 iPSC 모델.
[청구항 4]
제 3항에 있어서, 상기 iPSC는 하기 i) 및 V) 중 어느 하나 이상을 특징으로 하는 파브리 병 iPSC 모델;
i) 0CT4, NANOG, S0X2, SSEA4, Tra-1-80및 Tra-1-61을 포함하는 다분화능 마커를 발현;
ii) 알파-갈락토시다제 ( α-galactosidase, GLA) 유전자 발현;
iii) GLA 단백질 미발현;
iv) GLA 효소 활성의 결핍 ; 및
V) 세포 내 글로보트리아오실세라마이드 (globotriaosylceramide, Gb3,
CD77)의 축적 . '
【청구항 5】 i) 제 3항의 iPSC로부터 배상체 (embryoid body, EB) 또는 혈관 세포 (vascular cell)로 분화를 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 방법.
【청구항 6】
제 5항에 있어서, 상기 배상체의 분화마커는 외배엽 (ectodermal) 마커인 N-카데린 (N-cadherin), 내배엽 (endodermal) 마커인 S0X17 및 중배엽 (mesodermal) 마커인 알파 -평활근 액틴 ( α-smooth muscle act in) 중 어느 하나 이상을 발현하는 것을 특징으로 하는 iPSC를 파브리 병의 모델로 사용하는 방법 .
【청구항 7】
제 5항에 .있어서, 상가 혈관 세포는 혈관내피 세포 (endothelial cells) 또는 혈관 평활근 세포 (vascular smooth muscle cells)안 것을 특징으로 하는 iPSC를 파브리 병의 모델로 사용하는 방법 .
【청구항 8】
제 7항에 있어서, 상기 혈관내피 세포는 하기 i) 및 iii) 중 어느 하나 이상을 특징으로 하는 iPSC를 파브리 병의 모델로 사용하는 방법;
i) 혈관 (vascular tube) 유사 구조의 형태;
ii) CD31, VE-카데린 (VE-cadherin) 및 vWF를 포함하는 혈관내피 세포 마커 발현; 및
iii) ANG2, VE-cad, vWF, EphrinB2^ CAVEOLim 포함하는 혈관내피 세포 마커 유전자 발현.
【청구항 9] i) 제 3항의 iPSC 모델, 또는 상기 iPSC 모델로부터 분화된 배상체 또는 혈관 세포에 피검 화합물 또는 조성물을 처리하는 단계;
ii) 상기 단계 i)의 iPSC 모델, 배상체 또는 혈관 세포의 특성을 분석하는 단계 ; 및
iii) 상기 단계 ii)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, 파브리 병의 치료제 후보물질의 스크리닝 방법.
【청구항 10]
제 9항에 있어서, 상기 단계 ii)의 iPSC 모델의 특성은 iPSC 모델의 배상체 또는 혈관 세포로의 분화능을 분석하는 것을 특징으로 하는, 파브리 병의 치료제 후보물질의 스크리닝 방법 .
【청구항 11】 .
제 9항에 있어서, 상기 단계 ii)의 배상체의 특성은 N-카데린, S0X17 및 알파-평활근 액틴 ( α-smooth muscle actin)으로 구성된 군으로부터 선택되는 어느 하나 이상의 발현인 것을 특징으로 하는, 파브리 병의 치료제 후보물질의 스크리닝 방법 .
【청구항 12】
제 9항에 있어서,상기 단계 iii)의 혈관 세포의 특성은 하기 a)내지 d) 중 어느 하나 이상인 것을 특징으로 하는, 파브리 병의 치료제 후보물질의 스크리닝 방법.
a) 혈관 (vascular tube) 유사 구조의 형태;
b) Gb3 축적의 감소;
c) CD31, VE-카데린 (VE-cadherin) 및 vWF를 포함하는 혈관내피 세포 마커 발현 ; 및
d) ANG2, VE-cad, vWF, EphrinB2및 CAVEOLim 포함하는 혈관내피 세포 마커 유전자 발현.
【청구항 13】
제 9항에 있어서, 상기 혈관 세포는 혈관내피 세포 또는 혈관 평활근 세포인 것을 특징으로 하는, 파브리 병의 치료제 후보물질의 스크리닝 방법.
【청구항 14】
제 1항의 방법으로 제조된, 파브리 병 iPSC모델의 용도. [청구항 15】
i) 제 3항의 iPSC로부터 배상체 (embryo id body, EB) 또는 혈관 세포 (vascular cell)로 분화를 유도하는 단계; 및
ii) 상기 단계 i)에서 유도된 배상체의 분화 마커, 또는 혈관 세포의 분화 마커를 분석하는 단계를 포함하는, iPSC를 파브리 병의 모델로 사용하는 용도.
PCT/KR2013/012020 2013-12-23 2013-12-23 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도 WO2015099206A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/839,603 US10287554B2 (en) 2013-12-23 2015-08-28 Induced pluripotent stem cell model for Fabry disease and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130160920A KR101519452B1 (ko) 2013-12-23 2013-12-23 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도
KR10-2013-0160920 2013-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/839,603 Continuation US10287554B2 (en) 2013-12-23 2015-08-28 Induced pluripotent stem cell model for Fabry disease and use thereof

Publications (1)

Publication Number Publication Date
WO2015099206A1 true WO2015099206A1 (ko) 2015-07-02

Family

ID=53394461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012020 WO2015099206A1 (ko) 2013-12-23 2013-12-23 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도

Country Status (3)

Country Link
US (1) US10287554B2 (ko)
KR (1) KR101519452B1 (ko)
WO (1) WO2015099206A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287554B2 (en) 2013-12-23 2019-05-14 Korea Advanced Institute Of Science And Technology Induced pluripotent stem cell model for Fabry disease and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940417B1 (ko) * 2016-10-13 2019-01-18 연세대학교 산학협력단 X-링크된 부신백질이영양증 예방 또는 치료용 물질 스크리닝 방법
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
KR102253326B1 (ko) * 2020-05-13 2021-05-18 가톨릭대학교 산학협력단 파브리병의 생체 장기 모사 모델 및 이의 제조방법
KR20230063563A (ko) 2021-11-02 2023-05-09 가톨릭대학교 산학협력단 파브리병 치료제 개발을 위한 파브리병 환자 맞춤형 오가노이드를 활용한 질환 모델링

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133598A (ko) * 2012-05-29 2013-12-09 차의과학대학교 산학협력단 헌팅턴병 환자에서 유래한 유도만능줄기세포를 이용하여 헌팅턴병 치료제를 스크리닝하는 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350142A (zh) * 2012-04-18 2015-02-11 海莫希尔有限责任公司 病理或生理性病况的体外模型
KR101519452B1 (ko) 2013-12-23 2015-05-12 한국과학기술원 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133598A (ko) * 2012-05-29 2013-12-09 차의과학대학교 산학협력단 헌팅턴병 환자에서 유래한 유도만능줄기세포를 이용하여 헌팅턴병 치료제를 스크리닝하는 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAWAGOE, S. ET AL.: "Morphological features of iPS cells generated from Fab ry disease skin fibroblasts using Sendai virus vector (SeVdp", MOLECULAR GENTICS AND METABOLISM, vol. 109, 12 June 2013 (2013-06-12), pages 386 - 389 *
MENG, X. ET AL.: "A mechanistic study of Fabry heart disease using induced pluripotent stem cells", THE AMERICAN SOCIETY OF HUMAN GENETICS 61TH ANNUAL MEETING, PROGRAM NUMBER 1319T, 13 October 2011 (2011-10-13) *
MENG, X-L. ET AL.: "Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders", PNAS, vol. 107, no. 17, 27 April 2010 (2010-04-27), pages 7886 - 7891 *
RUFAIHAH, AJ. ET AL.: "Human induced pluripotent stem cell -derived endothelial cells exhibit functional heterogeneity", AM J TRANSI RES., vol. 5, no. 1, 21 January 2013 (2013-01-21), pages 21 - 35 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287554B2 (en) 2013-12-23 2019-05-14 Korea Advanced Institute Of Science And Technology Induced pluripotent stem cell model for Fabry disease and use thereof

Also Published As

Publication number Publication date
KR101519452B1 (ko) 2015-05-12
US20150361401A1 (en) 2015-12-17
US10287554B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
JP6673966B2 (ja) 神経変性を治療するための方法及び組成物
US10857185B2 (en) Compositions and methods for reprogramming non-neuronal cells into neuron-like cells
EP1734112B1 (en) Method of proliferating pluripotent stem cell
Bergamin et al. A human neuronal model of Niemann Pick C disease developed from stem cells isolated from patient’s skin
Annese et al. Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body
JP2002522069A (ja) 移植可能なヒトニューロン幹細胞
US10287554B2 (en) Induced pluripotent stem cell model for Fabry disease and use thereof
JP2013507974A (ja) 線維芽細胞からの誘導多能性幹細胞および前駆細胞の作製法
JP2023071728A (ja) 多能性幹細胞および造血始原細胞からのヒトミクログリア様細胞の分化と使用
TWI746459B (zh) 製造腎前驅細胞之方法
Sato et al. PDGFR-β plays a key role in the ectopic migration of neuroblasts in cerebral stroke
JP7169468B2 (ja) 改良された網膜オルガノイドおよびその製造方法
Nizzardo et al. iPSC-derived LewisX+ CXCR4+ β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models
JP7233717B2 (ja) 多能性幹細胞からの立体臓器の構築
Lin et al. Role of HIF-1α-activated Epac1 on HSC-mediated neuroplasticity in stroke model
US20190322981A1 (en) Means and methods for the generation of oligodendrocytes
US9969978B2 (en) Method for producing cardiomyocytes from human or mouse embryonic stem cells in a medium consisting of a serum-free medium and N2 supplement
Wang et al. Homozygous MESP1 knock-in reporter hESCs facilitated cardiovascular cell differentiation and myocardial infarction repair
CN110121555B (zh) 包含工程化内皮细胞的血脑屏障
JPWO2005026343A1 (ja) 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法
Archacka et al. Competence of in vitro cultured mouse embryonic stem cells for myogenic differentiation and fusion with myoblasts
US20220034908A1 (en) Pharmaceutical composition for preventing or treating fabry disease, containing tsp1 protein inhibitor as active ingredient
WO2009146098A2 (en) Stem cells and uses thereof
US20220365073A1 (en) Systems and methods for in-vitro modeling of neurodegenerative diseases
Cheng et al. Generation of cardiac valve endocardial like cells from human pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900096

Country of ref document: EP

Kind code of ref document: A1