WO2015099192A1 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2015099192A1
WO2015099192A1 PCT/JP2014/084741 JP2014084741W WO2015099192A1 WO 2015099192 A1 WO2015099192 A1 WO 2015099192A1 JP 2014084741 W JP2014084741 W JP 2014084741W WO 2015099192 A1 WO2015099192 A1 WO 2015099192A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
energization
unit volume
per unit
test
Prior art date
Application number
PCT/JP2014/084741
Other languages
English (en)
French (fr)
Inventor
央海 澤西
泰明 沖田
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/035,809 priority Critical patent/US9821404B2/en
Priority to CN201480070562.1A priority patent/CN106132622B/zh
Priority to EP14874195.2A priority patent/EP3088119B1/en
Priority to JP2015518103A priority patent/JP5825454B1/ja
Priority to MX2016008413A priority patent/MX349400B/es
Priority to KR1020167018350A priority patent/KR101719172B1/ko
Publication of WO2015099192A1 publication Critical patent/WO2015099192A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a resistance spot welding method, and particularly enables formation of an appropriate nugget using adaptive control welding.
  • a resistance spot welding method which is a kind of a lap resistance welding method, is used for joining the stacked steel plates.
  • This welding method is a method in which two or more superposed steel plates are sandwiched between a pair of electrodes from above and below and pressed to apply a high welding current between the upper and lower electrodes for a short time.
  • a spot-like weld is obtained by utilizing the resistance heat generated by passing a high welding current.
  • This spot-like weld is called a nugget and is the part where both steel plates melt and solidify at the contact points of the steel plates when an electric current is passed through the stacked steel plates.
  • the nugget diameter is determined by welding conditions such as welding current, energization time, electrode shape, and applied pressure. Therefore, in order to form an appropriate nugget diameter, it is necessary to appropriately set the above-described welding conditions in accordance with the welded material conditions such as the material of the welded material, the plate thickness, and the number of stacked sheets.
  • the welded material conditions such as the material of the welded material, the plate thickness, and the number of stacked sheets are the same at each welding location, the welding conditions such as the welding current, energization time, and applied pressure are also the same under the same conditions.
  • the nugget diameter can be obtained.
  • the welding material contact surface of the electrode gradually wears as welding is performed a plurality of times, and the contact area between the electrode and the welding material gradually increases.
  • a resistance welding apparatus having a function (stepper function) for increasing a welding current value after performing a predetermined number of weldings to compensate for a decrease in current density due to electrode wear has been conventionally used. Yes.
  • this stepper function it is necessary to appropriately set the above-described welding current change pattern in advance.
  • a predetermined welding current change pattern is not always appropriate.
  • Patent Document 1 describes a resistance welding machine control device that obtains a set nugget by comparing the estimated temperature distribution of a welded portion with a target nugget and controlling the output of the welding machine. Has been.
  • Patent Document 2 discloses a resistance welding machine that detects welding current and chip-to-chip voltage, simulates a weld by heat conduction calculation, and estimates the nugget formation state, thereby performing good welding. The welding condition control method is described.
  • Patent Document 3 calculates a cumulative heat generation amount per unit volume at which the workpiece can be well welded from the plate thickness and energization time of the workpiece, and calculates per unit volume / unit time calculated.
  • a welding system that performs a process of adjusting to a welding current or voltage that generates a calorific value is described. By using this, good welding can be performed regardless of the type of workpiece and the wear state of the electrodes.
  • the heat generation pattern that is, the heat amount pattern of the welded portion (temporal change in temperature) is the heat amount pattern in which the desired good welded portion is obtained. May occur.
  • the required nugget diameter cannot be obtained or scattering occurs.
  • Patent Documents 1 to 3 are effective against changes in the case where the electrode tip is worn, but no consideration is given to cases where the effect of the diversion is large, such as when the distance from the welded point is short. In some cases, adaptive control did not actually work.
  • This is a resistance spot welding method in which a material to be welded on which a plurality of metal plates are stacked is sandwiched between a pair of electrodes, and energized while being pressed and joined.
  • energization is performed at a constant current of a predetermined current value, and the temporal change in instantaneous calorific value per unit volume, calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed, and Store the cumulative calorific value per unit volume as the target value,
  • welding is started on the basis of the time change curve of instantaneous calorific value per unit volume obtained by the test welding, In any step of the main welding, when the time change amount of the instantaneous heat generation amount per unit volume deviates from the reference time change curve, the difference is compensated within the remaining energization time of the step.
  • the resistance spot welding method is characterized by controlling the energization amount so that the cumulative heat generation amount per unit volume of the main welding matches the cumulative heat generation amount per unit volume obtained in advance by test welding.
  • Patent Document 4 makes it possible to obtain a nugget with a good diameter even when the electrode tip is worn or a disturbance exists.
  • the welding conditions are special, for example, when it is necessary to ensure a particularly large nugget diameter, or when there are many existing weld points around the weld point. In some cases, heat generation in the vicinity of the electrode becomes excessive and scattering occurs, or a nugget having a satisfactory diameter cannot be obtained.
  • the present invention advantageously solves the above problem, and even if the welding conditions are special cases as described above, it is possible to obtain a nugget with an appropriate diameter without increasing the energization time and the occurrence of scattering.
  • An object of the present invention is to provide a resistance spot welding method that can be used.
  • the inventors have intensively studied to achieve the above object. As described above, when the electrode tip is worn or there is a disturbance, even if the accumulated heat generation amount is adjusted to the target value, the form of heat generation, that is, the heat quantity pattern of the welded portion is the target good welded portion. May differ from that obtained. In that case, the required nugget diameter may not be obtained, or scattering may occur.
  • the set current value in the first step for securing a current-carrying path directly under the electrode at the time of test contact is changed to the set current in the second step and subsequent steps for forming a subsequent nugget.
  • heat generation near the electrode in the initial stage of energization is effectively suppressed, and as a result, it becomes possible to follow the temperature distribution (heat quantity pattern) in the test welding aiming at the temperature distribution of the weld. I got the knowledge.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows.
  • a resistance spot welding method in which a material to be welded in which a plurality of metal plates are overlapped is sandwiched between a pair of electrodes, and energized while being pressed and joined. It has a test welding process and a main welding process in which the energization pattern is divided into two or more multi-steps to perform welding
  • energization is performed with a constant current having a different current value for each step, and the temporal change in instantaneous calorific value per unit volume and unit volume calculated from the electrical characteristics between the electrodes when an appropriate nugget is formed.
  • the cumulative amount of heat generated per hit is stored as a target value.
  • welding is started on the basis of the time change curve of instantaneous calorific value per unit volume obtained by the test welding, In any step of the main welding, when the time change amount of the instantaneous heat generation amount per unit volume deviates from the reference time change curve, the difference is compensated within the remaining energization time of the step.
  • the cumulative heat generation amount per unit volume of the main welding is made to coincide with the cumulative heat generation amount per unit volume determined in advance by test welding
  • the current value of the first step is I a
  • the current value of the second step and after is I x
  • these I a and I x are expressed by the following formula: 0.3 ⁇ I x ⁇ I a ⁇ I x
  • a resistance spot welding method characterized by satisfying the relationship:
  • Said 1st step WHEREIN Energization for obtaining a predetermined nugget diameter is performed in order to secure the energizing diameter between said metal plates, and after said 2nd step. Resistance spot welding method.
  • the existing weld point is in the immediate vicinity of the weld point, or there are many existing weld points around the weld point.
  • a good nugget can be obtained without an increase in time and occurrence of scattering.
  • (A) is a cross section of a welded portion after performing a two-step test welding in an embodiment of the present invention
  • (B) is a welding current value, an electrical resistance value, and a cumulative heating value at the time of the test welding. It is the figure which showed transition.
  • (A) is a cross section of a welded part after performing two-step main welding (adaptive control welding) in one embodiment of the present invention
  • (B) is a welding current value and electric resistance value during the main welding. It is the figure which showed transition of cumulative calorific value.
  • FIG. (A) is a cross section of a welded portion after performing a two-step constant current control welding in Comparative Example 1
  • (B) is a graph showing the transition of the welding current value, electrical resistance value, and cumulative heating value during the welding.
  • FIG. (A) is a cross section of a welded portion after performing one-step test welding in Comparative Example 2, and (B) shows the transition of the welding current value, electrical resistance value, and cumulative heating value during the test welding. It is a figure.
  • (A) is a cross section of a welded portion after performing one-step main welding (adaptive control welding) in Comparative Example 2
  • (B) is a welding current value, electric resistance value, and cumulative heat generation during the main welding. It is the figure which showed transition of quantity.
  • a resistance spot welding method includes a test welding process in which an energization pattern is divided into two or more multi-steps and a main welding process.
  • a different current value is provided for each step.
  • Energized with a constant current and calculated from the electrical characteristics between the electrodes when forming an appropriate nugget, the temporal change in instantaneous calorific value per unit volume and the cumulative calorific value per unit volume are stored as target values.
  • welding is started on the basis of the time variation curve of the instantaneous calorific value per unit volume obtained by the test welding, and in any step, the temporal variation of the instantaneous calorific value per unit volume is changed.
  • the energizing amount is controlled so that the difference is compensated within the remaining energizing time of the step,
  • the cumulative amount of heat generated per position volume, to match the cumulative amount of heat generated per unit volume obtained in advance by tests welding, in the test welding, the current value I a of the first step, the second step and subsequent current value I x is controlled so as to satisfy the range of 0.3 ⁇ I x ⁇ I a ⁇ I x , and more preferably, in the first step, a current-carrying diameter between metal plates (for example, steel plates) is secured.
  • the second and subsequent steps are characterized in that energization is performed to obtain a predetermined nugget diameter.
  • the main welding as described above is referred to as “adaptive control welding” in the present specification.
  • test welding will be explained.
  • the case where the welding current is energized in two steps will be described.
  • the optimum conditions for test welding (additional) Find pressure, energization time, and current value).
  • An inverter DC resistance spot welder is suitable as the welder, and a chrome copper electrode with a DR tip is advantageously adapted as the electrode.
  • the timing of dividing the energization pattern into two steps is, for example, when the melted part starts to form between the steel plates that are the welded materials (the energization path is formed immediately below the electrodes). At the time of being started). In this case, in order to determine this timing, a plurality of weldings are performed with various welding current values and energization times under a constant pressure F, and a time point at which a melted portion starts to be formed is found. The formation of the melted part can be confirmed by a peel test. Then, it is assumed that the melted portion is formed with the current value I 1 and the energization time T 1 . This is the first stage welding condition in the test welding.
  • nugget diameter can be obtained by a peel test or cross-sectional observation at the center of the nugget (etching with a saturated aqueous solution of picric acid). Then, it is assumed that a desired nugget diameter is formed with the current value I 2 and the energization time T 2 . This is the second stage welding condition in the test welding.
  • ⁇ ⁇ ⁇ Test welding is performed on the welded material of the same steel type and thickness as the weld specimen used for preliminary welding under the determined conditions. Then, the time change of the instantaneous heat generation amount per unit volume and the cumulative heat generation amount per unit volume calculated from the electrical characteristics between the electrodes during the test welding are stored as target values for each step.
  • electrical characteristics between electrodes means interelectrode resistance or interelectrode voltage.
  • the main welding may be performed on another material to be welded that has the same steel type and thickness as that used in the test welding, or may be performed on another part of the material used in the test welding. Good.
  • welding is started on the basis of the time change curve of the instantaneous calorific value per unit volume obtained by the test welding. In any of the steps, if the time change amount of the instantaneous heat generation amount per unit volume is along the reference time change curve, welding is performed as it is, and the welding is finished.
  • adaptive control welding is performed when the time change amount of the instantaneous calorific value per unit volume deviates from the reference time change curve. Specifically, the energization amount is controlled so that the difference is compensated within the remaining energization time of the step. In this way, the cumulative heat generation amount per unit volume in the main welding is made to coincide with the cumulative heat generation amount per unit volume determined in advance by test welding. As a result, the electrode tip is worn or a necessary accumulated heat generation amount can be secured even in the presence of disturbance, and a nugget with an appropriate diameter can be obtained.
  • the total thickness of the two workpieces is t
  • the electrical resistivity of the workpieces is r
  • the voltage between the electrodes is V
  • the welding current is I
  • the area where the electrodes and the workpiece are in contact is S.
  • the welding current passes through the columnar portion having the area S and the thickness t, and generates resistance heat.
  • the electrical resistance R of this columnar part is calculated
  • the calorific value q per unit volume and unit time is not affected by the area S where the electrode and the workpiece are in contact.
  • the calorific value q is calculated from the interelectrode voltage V in the formula (3)
  • the calorific value q can also be calculated from the interelectrode current I.
  • the area where the electrode and the workpiece are in contact with each other can also be calculated. There is no need to use S.
  • the cumulative calorific value Q per unit volume applied to welding can be obtained.
  • the cumulative calorific value Q per unit volume can also be calculated without using the area S where the electrode and the material to be welded contact.
  • the disturbance when particularly significant, for example, (1) when a particularly large nugget diameter needs to be secured (for example, when the nugget diameter is 4.5 ⁇ t or more), (2) There are existing weld points in the immediate vicinity of the weld point (for example, when the distance between the weld point and the existing weld point is 7 mm or less), or there are many existing weld points around the weld point (for example, the weld point).
  • the heat quantity pattern of the welded part is different from the target heat quantity pattern in test welding, and sometimes the heat generation near the electrode becomes excessive. As described above, there are cases where scattering occurs and a nugget having a satisfactory diameter cannot be obtained.
  • the energization pattern is divided into two steps for both the test welding and the main welding.
  • the first step energization is performed until the interface between the steel plates disappears, and in the second step, a predetermined nugget diameter is obtained.
  • some melted portions may be formed as long as no scattering occurs when adaptive control is performed.
  • the current value of the first step (step for securing a current-carrying path immediately below the electrode) and the subsequent second step (step for forming a nugget of a predetermined diameter) in the test welding is described. It is important to optimize the relationship and to effectively lower the temperature near the electrode in the main welding so that the heat quantity pattern of the welded part in the main welding conforms to the heat quantity pattern in the target test welding. .
  • test welding of the first step and the second step is performed, and the temporal change in instantaneous calorific value per unit volume and the cumulative calorific value per unit volume in each step are stored.
  • the current value I a of the first step I x or more the cumulative amount of heat generated per unit volume at the welding, deviates significantly from the cumulative amount of heat generated per unit volume has been stored in the test weld (target value) At this time, scattering tends to occur in the first step of the main welding.
  • the energization time T 1 (cycle / 50 Hz) of the first step is preferably 3 cycles or more and 10 cycles or less.
  • the first step of the energization time T 1 is less than 3 cycles, heating value is low, can not be ensured conduction path between the steel sheet, scattering occurs in the second step or later.
  • the energization time T 1 of the first step is more than 10 cycles, when the cumulative amount of heat generated per unit volume at the weld is largely deviated from the target value, scattering is likely to occur in the first step of the present welding Become.
  • the melting portion may be formed as long as no scattering occurs when adaptive control is performed.
  • the pressure F is preferably about 1.0 to 7.0 kN in each step. Note that the pressure F may be the same or different between the test welding and the main welding. Moreover, you may change the applied pressure F during electricity supply as needed.
  • the material to be welded is a plated steel plate
  • the specific resistance of the material to be welded increases as the temperature rises, the specific resistance value also increases with the energization time. That is, following the decrease in inter-electrode resistance due to energization area expansion, the inter-electrode resistance increases due to the increase in the temperature of the material to be welded, and then a melted part is formed. Therefore, the stage where the energization area rapidly expands after the plating melts, the stage until a stable energization path (melting part) is formed between the electrodes by energization thereafter, and the subsequent nugget growth process
  • the welding process is disassembled and adaptive control welding is performed at each stage to compensate for the cumulative heat generation per unit volume. As a result, even if there is a welded point near the welding point by resistance spot welding of the plated steel sheet, a current-carrying path is stably formed, and stable nugget growth is possible in the subsequent third step.
  • Example 1 As a material to be welded, a steel material (270 MPa) having a thickness of 1.6 mm was prepared. In addition, both the test welding and the main welding are performed by dividing the energization pattern into two stages.
  • this welding material is stacked two times, and pre-welding is performed with constant current control in a state where there is no diversion to the gap or the existing welding point, and the welding conditions for obtaining an appropriate nugget diameter are obtained. It was.
  • An inverter DC resistance spot welder was used as the welder, and a chrome copper electrode having a DR tip diameter of 6 mm was used as the electrode.
  • the welding conditions for the test welding were: the first stage with a pressure of 3.5 kN, the welding current: 7.0 kA, the energization time: 5 cyc, the second stage with a pressure of 3.5 kN, and a welding current of 9.0 kA.
  • Energization time 13 cyc.
  • the energization time is displayed as the number of cycles at 50 Hz.
  • Test welding is performed under this welding condition on another material to be welded with the same steel type and thickness as the steel used for preliminary welding, and the temporal change in instantaneous calorific value per unit volume and the cumulative calorific value per unit volume are calculated.
  • the target value was stored for each step.
  • FIG. 1A shows a cross section of the welded portion after this test welding
  • FIG. 1B shows the transition of the welding current value, electrical resistance value, and cumulative heat generation during the test welding.
  • a nugget diameter of 6.2 mm ( ⁇ 5 ⁇ t) is obtained in this test welding.
  • the cumulative heat generation amount at the first stage was 88 J
  • the target cumulative heat generation amount at the second stage was 163 J. These are the target values.
  • adaptive control welding was performed on the basis of the above-described test welding under the condition that an existing welding point exists in advance near the welding point (welding point center interval: 10 mm) and the influence of the diversion is large. That is, resistance spot welding was started based on a time change curve of instantaneous calorific value per unit volume obtained by test welding. Further, in both the first stage and the second stage, when the temporal change in instantaneous calorific value per unit volume deviates from the reference time change curve, the difference is within the remaining energization time of the step. The energization amount, that is, the welding current value was controlled so as to compensate.
  • FIG. 2 (A) shows the cross section of the welded portion after the main welding
  • FIG. 2 (B) shows the transition of the welding current value, electrical resistance value, and cumulative heat generation during the main welding.
  • the welding current value is greatly changed so that the cumulative heat generation amount for each step is the same as that in the case of the test welding.
  • the diameter was also 6.2 mm, and the target nugget diameter could be obtained. Moreover, no welding defects such as scattering occurred.
  • the cumulative calorific value at the first stage was 85 J
  • the cumulative calorific value at the second stage was 165 J
  • FIG. 3 (A) shows a cross section of the welded portion after welding
  • FIG. 3 (B) shows changes in the welding current value, electrical resistance value, and cumulative heat generation during the welding.
  • the cumulative calorific value at the first stage was 42 J
  • the cumulative calorific value at the second stage was 122 J, indicating a decrease in the calorific value due to the diversion.
  • only a nugget having a small diameter of 4.3 mm was obtained.
  • the main welding was carried out under the following conditions with respect to another welded material having the same steel type and thickness as the steel material used in the test welding. That is, adaptive control welding was performed on the basis of the above-described test welding under the condition that an existing welding point exists in advance near the welding point (welding point center interval: 10 mm) and the influence of the diversion is large. That is, resistance spot welding was started based on a time change curve of instantaneous calorific value per unit volume obtained by test welding. In addition, when the temporal change in instantaneous calorific value per unit volume deviates from the reference time change curve, the energization amount, that is, welding, is compensated so that the difference is compensated within the remaining energization time of the step. The current value was controlled.
  • FIG. 4 (A) shows a cross section of the welded portion after the test welding
  • FIG. 4 (B) shows changes in the welding current value, electrical resistance value, and accumulated heat generation amount during the test welding
  • FIG. 5 (A) shows a cross section of the welded portion after the main welding
  • FIG. 5 (B) shows changes in the welding current value, the electric resistance value, and the accumulated heat generation amount during the main welding.
  • the target cumulative heat generation amount of test welding at the time of 9.5 cyc when scattering occurred in the main welding was 195 J
  • the cumulative heat generation amount of the main welding was 190 J
  • both were almost the same.
  • the welded portion was cut, the cross section was etched, and then observed with an optical microscope to measure the nugget diameter.
  • t plate thickness (mm)
  • O the nugget diameter is less than 4.5 ⁇ t and / or the scattering is The case where it occurred was regarded as defective (x).
  • Table 1 The obtained results are also shown in Table 1.

Abstract

溶接条件が特殊な場合であっても、通電時間の増加や散りの発生なしに、適切な径のナゲットを得ることができる抵抗スポット溶接方法を提供することを目的とし、本発明は、通電パターンを2段以上の多段ステップに分割してテスト溶接及び本溶接を行う抵抗スポット溶接方法であって、テスト溶接では、ステップ毎に異なる電流値の定電流で通電を行い、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させ、本溶接では、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、テスト溶接の実績から外れた場合に、その差を当該ステップの残りの通電時間内で補償するように通電量を制御し、テスト溶接では、第1ステップの電流値をI、第2ステップ以降の電流値をIとしたとき、0.3×I≦I<Iの関係を満足させる構成とした。

Description

抵抗スポット溶接方法
 本発明は、抵抗スポット溶接方法に関し、特に適応制御溶接を用いて適正なナゲットの形成を可能とするものである。
 一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。この溶接法は、重ね合わせた2枚以上の鋼板を、その上下から一対の電極で挟み、加圧しつつ、上下電極間に高い溶接電流を短時間通電して接合する方法である。高い溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分であり、これにより鋼板同士が点状に接合される。
 良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。
 例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における、被溶接材の材質、板厚および重ね枚数等の被溶接材条件が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、溶接を複数回行うにつれて電極の被溶接材接触面が次第に摩耗して、電極と被溶接材との接触面積が次第に広くなる。このように接触面積が広くなった状態で、初回の溶接時と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるために、ナゲット径は小さくなる。このため、数百~数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。
 その他、予め定めた回数の溶接を行った後に溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このためには、数多くの被溶接材条件および溶接条件に対応した溶接電流変化パターンを、試験等によって導き出す必要があり、これには多くの時間とコストが必要になる。また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。
 さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)がある場合や、被溶接材の表面凹凸が大きく、溶接する点の近くに被溶接材同士の接触点が存在する場合などには、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。
 上記の問題を解決するものとして、以下に述べるような技術が提案されている。例えば、特許文献1には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定されたナゲットが得られるようにした抵抗溶接機の制御装置が記載されている。
 また、特許文献2には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、ナゲットの形成状態を推定することによって、良好な溶接を行うようにした抵抗溶接機の溶接条件制御方法が記載されている。
 さらに、特許文献3には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接できる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムが記載されている。これを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接ができる。
 しかしながら、特許文献1および2に記載の抵抗スポット溶接方法では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要である。これには溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。
 また、特許文献3に記載の抵抗スポット溶接方法では、累積発熱量を目標値にして溶接電流または電圧を制御することで、電極の摩耗具合の如何にかかわらず常に良好な溶接が可能となる。しかし、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば、近くに前述した既溶接点などの外乱が存在する場合や、発熱量の時間変化パターンが短時間で大きく変化する場合や、目付量の多い溶融亜鉛めっき鋼板を溶接する場合などには、この溶接方法では適応制御が正確にできない。よって、最終的な累積発熱量を目標値に合わせることができても、発熱の形態、つまり溶接部の熱量パターン(温度の時間変化)が、目標とする良好な溶接部が得られた熱量パターンから外れる場合が生じる。この場合には必要とするナゲット径が得られなかったり、散りが発生したりする。例えは、分流の影響が大きな場合に、累積発熱量を目標値に合わせようとすると、鋼板−鋼板間ではなく電極・鋼板間近傍での発熱が著しくなり、鋼板表面からの散りが発生しやすくなる。
 さらに、特許文献1~3の技術は全て、電極先端が摩耗した場合の変化に対しては有効ではあるが、既溶接点との距離が短い場合など、分流の影響が大きい場合については何ら検討がなされておらず、実際に適応制御が働かない場合があった。
特開平9−216071号公報 特開平10−94883号公報 特開平11−33743号公報 特願2013−047180号明細書
 上記の問題を解決するものとして、発明者らは先に、
「複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
 通電パターンを2段以上の多段ステップに分割して、溶接を実施するテスト溶接工程と本溶接工程とを有し、
 前記テスト工程では、ステップ毎に、所定の電流値の定電流で通電を行い、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させ、
 ついで、前記本溶接では、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、
 前記本溶接のいずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償するように通電量を制御して、本溶接の単位体積当たりの累積発熱量を、テスト溶接で予め求めた単位体積当たりの累積発熱量と一致させることを特徴とする抵抗スポット溶接方法。」を開発し、特許文献4において特許出願した。
 上掲特許文献4に開示した技術により、電極先端が摩耗したり、外乱が存在する場合であっても、良好な径のナゲットを得ることができるようになった。しかしながら、溶接条件が特殊な場合、例えば、特に大きなナゲット径を確保する必要がある場合や、既溶接点が溶接点の直近に存在したり、既溶接点が溶接点の周囲に多数存在する場合には、時として電極近傍での発熱が過大となって散りが発生したり、満足のいく径のナゲットが得られない場合があった。
 本発明は、上記の問題を有利に解決するもので、溶接条件が上記したような特殊な場合であっても、通電時間の増加や散りの発生なしに、適切な径のナゲットを得ることができる抵抗スポット溶接方法を提供することを目的とする。
 発明者らは、上記の目的を達成すべく鋭意検討を重ねた。前述したとおり、電極先端が摩耗した場合や外乱が存在する場合は、累積発熱量を目標値と合わせられたとしても、発熱の形態、つまり溶接部の熱量パターンが、目標とする良好な溶接部が得られた状態のそれと異なることがある。その際は必要とするナゲット径が得られなかったり、散りが発生したりする。
 抵抗スポット溶接前および溶接初期は、溶接する点の鋼板間は抵抗が高く、通電径が確保されていない状態である。従って、この状態で、外乱が存在するなど分流の影響が大きな場合に、累積発熱量を目標値と合わせようとすると、鋼板間の通電径が確保されていない状態で電流値が大きく増加するため、鋼板−鋼板間ではなく電極−鋼板間近傍での発熱が著しくなる。その結果、発熱形態がテスト溶接時のそれと大きく異なってしまう。
 これらの観点を踏まえてさらに検討を重ねた結果、テスト接時に、電極直下に通電経路を確保するための第1ステップにおける設定電流値を、引き続くナゲットを形成するための第2ステップ以降における設定電流値より小さくすることで、通電初期における電極近傍の発熱が効果的に抑制され、その結果、溶接部の温度分布を目標とするテスト溶接における温度分布(熱量パターン)に沿わせることが可能になるとの知見を得た。本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
(1)複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
 通電パターンを2段以上の多段ステップに分割して溶接を実施するテスト溶接工程と本溶接工程とを有し、
 前記テスト溶接では、ステップ毎に異なる電流値の定電流で通電を行い、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させ、
 ついで、前記本溶接では、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、
 前記本溶接のいずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償するように通電量を制御して、本溶接の単位体積当たりの累積発熱量を、テスト溶接で予め求めた単位体積当たりの累積発熱量と一致させ、
 前記テスト溶接では、第1ステップの電流値をI、第2ステップ以降の電流値をIとしたとき、これらI、Iが、次式
 0.3×I≦I<I
の関係を満足することを特徴とする抵抗スポット溶接方法。
(2)前記第1ステップでは前記金属板間の通電径を確保するため、また前記第2ステップ以降では所定のナゲット径を得るための通電を行うことを特徴とする前記(1)に記載の抵抗スポット溶接方法。
 本発明によれば、特に大きなナゲット径を必要としたり、既溶接点が溶接点の直近に存在したり、既溶接点が溶接点の周囲に多数存在するような特殊な溶接条件下でも、通電時間の増加や散りの発生なしに良好なナゲットを得ることができる。
(A)は、本発明の一実施形態における、2段ステップのテスト溶接を行った後の溶接部断面、(B)は、当該テスト溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (A)は、本発明の一実施形態における、2段ステップの本溶接(適応制御溶接)を行った後の溶接部断面、(B)は、当該本溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (A)は、比較例1における、2段ステップの定電流制御溶接を行った後の溶接部断面、(B)は、当該溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (A)は、比較例2における、1段ステップのテスト溶接を行った後の溶接部断面、(B)は、当該テスト溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (A)は、比較例2における、1段ステップの本溶接(適応制御溶接)を行った後の溶接部断面、(B)は、当該本溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。
 本発明の一実施形態による抵抗スポット溶接方法は、通電パターンを2段以上の多段ステップに分割したテスト溶接工程と本溶接工程とを有すること、前記テスト溶接では、ステップ毎に、異なる電流値の定電流で通電を行い、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させておくこと、前記本溶接では、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償するように通電量を制御して、本溶接の単位体積当たりの累積発熱量を、テスト溶接で予め求めた単位体積当たりの累積発熱量と一致させること、前記テスト溶接では、第1ステップの電流値Iが、第2ステップ以降の電流値Iに対して、0.3×I≦I<Iの範囲を満足するように制御すること、さらに好ましくは第1ステップでは金属板(例えば鋼板)間の通電径を確保するための通電、第2ステップ以降では所定のナゲット径を得るための通電を行うところに特徴を有している。なお、上記のような本溶接を本明細書では「適応制御溶接」という。
 まず、テスト溶接について説明する。なお、この例では、溶接電流の通電を2段ステップで行う場合について説明する。被溶接材と同じ鋼種、厚みの溶接試験体を用いて、ギャップや既溶接点への分流のない状態で、定電流制御にて種々の条件で予備溶接を行い、テスト溶接における最適条件(加圧力、通電時間、及び電流値)を見つける。具体的には以下のようにする。なお、溶接機としてはインバータ直流抵抗スポット溶接機が好適であり、また電極としてはDR形先端のクロム銅電極が有利に適合する。
 予備溶接及びテスト溶接において、通電パターンを2段ステップに分割する場合のステップ分けのタイミングは、例えば、被溶接材である鋼板間に溶融部が形成され始めた時点(電極直下に通電経路が形成され始めた時点)とすることができる。この場合には、このタイミングを決定するために、一定の加圧力Fの下で、種々の異なる溶接電流値および通電時間で複数回の溶接を行い、溶融部が形成され始める時点を見つける。なお、溶融部の形成はピール試験により確認することができる。そして、電流値I、通電時間Tで溶融部が形成されたとする。これを、テスト溶接における1段目溶接条件とする。なお、溶接部が形成され始める「電流値I、通電時間T」の組み合わせは複数あり得るが、電流値I及び通電時間Tのそれぞれは、タクトタイムや散り発生の可能性を考慮して適切な値とすればよい。後述の実施例では、電流値I=7.0kA、通電時間T=5cycとした。
 次に、必要とするナゲット径が得られる溶接条件を決定するために、上記と同じ加圧力Fおよび電流値I、通電時間Tでの通電後、第2ステップの通電として、種々の通電時間及びおよび電流値で複数回の溶接を行う。なお、ナゲット径は、ピール試験やナゲット中央の断面観察(ピクリン酸飽和水溶液にてエッチング)により求めることができる。そして、電流値I、通電時間Tで所望のナゲット径が形成されたとする。これを、テスト溶接における2段目溶接条件とする。なお、所望のナゲット径が形成される「電流値I、通電時間T」の組み合わせは複数あり得るが、電流値I及び通電時間Tのそれぞれは、タクトタイムや散り発生の可能性を考慮して適切な値とすればよい。後述の実施例では、電流値I=9.0kA、通電時間T=13cycとした。
 以上の実験結果から、テスト溶接の条件を次のように決定する。
・1段目溶接条件 加圧力F、通電時間T、溶接電流値I
・2段目溶接条件 加圧力F、通電時間T(=T−T)、溶接電流値I
 決定された条件で、予備溶接で用いた溶接試験体と同じ鋼種、厚みの被溶接材に対してテスト溶接を行う。そして、テスト溶接中における、電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値としてステップ毎に記憶させる。なお、本明細書において「電極間の電気特性」とは、電極間抵抗または電極間電圧を意味する。
 本実施形態では、上記した1段目の溶接と引き続く2段目の溶接とで、電流値の関係を適正に制御することが重要であるが、この点については後で詳述する。
 上記のテスト溶接後、本溶接を行う。本溶接は、テスト溶接で用いた被溶接材と鋼種、厚みは同じ別の被溶接材に対して行ってもよいし、テスト溶接で用いた被溶接材の別の部位に対して行ってもよい。本溶接では、上記のテスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始する。そしていずれのステップにおいても、単位体積当たりの瞬時発熱量の時間変化量が、基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。
 ただし、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合には適応制御溶接を行う。具体的には、その差を当該ステップの残りの通電時間内で補償するように通電量を制御する。このようにして、本溶接における単位体積当たりの累積発熱量を、テスト溶接で予め求めた単位体積当たりの累積発熱量と一致させるのである。これにより、電極先端が摩耗したり、外乱の存在下においても必要な累積発熱量を確保して、適正な径のナゲットを得ることができる。
 単位体積当たりの発熱量の算出方法は特に制限されないが、特許文献3にその一例が開示されており、本実施形態でもこの方法を採用することができる。この方法による単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
 2枚の被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は、面積S、厚みtの柱状部分を通過して、抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(1)で求められる。
 q=(V・I)/(S・t)   −−− (1)
 また、この柱状部分の電気抵抗Rは、次式(2)で求められる。
 R=(r・t)/S       −−− (2)
 (2)式をSについて解いてこれを(1)式に代入すると、発熱量qは次式(3)
 q=(V・I・R)/(r・t
  =(V)/(r・t)    −−− (3)
となる。
 上掲式(3)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極と被溶接物が接触する面積Sによる影響を受けない。なお、(3)式は電極間電圧Vから発熱量qを計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。
 そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(3)式から明らかなように、この単位体積当たりの累積発熱量Qもまた、電極と被溶接材が接触する面積Sを用いないで算出することができる。
 以上、特許文献3に記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。
 ここで、外乱がとりわけ著しい場合、例えば
(1)特に大きなナゲット径を確保する必要がある場合(例えばナゲット径が4.5√t以上の場合)や、
(2)既溶接点が溶接点の直近に存在したり(例えば溶接点と既溶接点の間の距離が7mm以下の場合)、既溶接点が溶接点の周囲に多数存在する(例えば溶接点の周囲に既溶接点が3個以上存在する)場合
などには、溶接部の熱量パターンが、目標とする、テスト溶接における熱量パターンと異なるものとなり、時として電極近傍での発熱が過大となって散りが発生したり、満足のいく径のナゲットが得られない場合があったことは、前述したとおりである。
 そこで、以下、本発明の一実施形態として、溶接部と既溶接点との間隔が狭い場合を例にとって説明する。この場合も、テスト溶接及び本溶接ともに、通電パターンは2段ステップに分割して行うものとする。
 第1ステップでは、鋼板間の界面が消失するまで、また第2ステップでは、所定のナゲット径が得られるまで通電することは、既述のとおりである。なお、第1ステップにおいては、適応制御を行った際に散りが発生しない範囲であれば、若干の溶融部が形成されていてもよい。
 本実施形態では、テスト溶接における、上記した第1ステップ(電極直下に通電経路を確保するためのステップ)と、引き続く第2ステップ(所定径のナゲットを形成するためのステップ)との電流値の関係を適正化することと、本溶接における電極近傍の温度を効果的に低下して、本溶接における溶接部の熱量パターンを、目標とするテスト溶接における熱量パターンに沿わせることが共に重要である。
 これら第1ステップおよび第2ステップのテスト溶接を行い、それぞれのステップにおける単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を記憶させる。
 本溶接では、上記のテスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始する。そして、いずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である時間変化曲線から外れた場合には、その差を当該ステップの残りの通電時間内で補償するように通電量(具体的には溶接電流値)を制御する。このようにして、本溶接の各ステップにおける単位体積当たりの累積発熱量が、テスト溶接で記憶させた単位体積当たりの累積発熱量と一致するようにする。これにより、至近既溶接点に起因した分流の有無にかかわらず、本溶接におけるステップ毎の発熱パターンをテスト溶接のそれに合わせることができる。その結果、特殊な外乱の存在下でも安定したナゲットの形成が達成される。
 本実施形態では、テスト溶接において、第1ステップの電流値をI、第2ステップ以降の電流値をIとしたとき、これらI、Iが、次式
 0.3×I≦I<I
の関係を満たすように制御する。第1ステップにおける電流値Iが0.3×I未満では、本溶接で発熱量が低く、鋼板間の通電経路を確保することができず、第2ステップ以降で散りが発生する。一方、第1ステップの電流値IがI以上では、本溶接での単位体積当たりの累積発熱量が、テスト溶接で記憶させた単位体積当たりの累積発熱量(目標値)から大きく外れた際に、本溶接の第1ステップで散りが発生しやすくなる。
 また、テスト溶接及び本溶接の両方において、第1ステップの通電時間T(サイクル/50Hz)は、3サイクル以上10サイクル以下とすることが好ましい。第1ステップの通電時間Tが3サイクル未満では、発熱量が低く、鋼板間の通電経路を確保することができず、第2ステップ以降で散りが発生する。一方、第1ステップの通電時間Tが10サイクルを超えると、本溶接での単位体積当たりの累積発熱量が目標値から大きく外れた際に、本溶接の第1ステップで散りが発生しやすくなる。なお、この第1ステップにおいては、適応制御を行った際に散りが発生しない範囲であれば、溶融部が形成されてもよいことは、前述したとおりである。
 テスト溶接及び本溶接の両方において、各ステップとも加圧力Fは、1.0~7.0kN程度とすることが好ましい。なお、テスト溶接と本溶接とで加圧力Fは同じでもよいし、異なっていてもよい。また、加圧力Fは必要に応じて通電中に変化させてもよい。
 以上、テスト溶接及び本溶接における通電パターンを2段に分割した場合について主に説明したが、本発明では、必要に応じて3段に分割することもできる。なお、本発明においてステップ数はテスト溶接と本溶接とで同じとなる。
 すなわち、被溶接材がめっき鋼板の場合には、めっきの溶融を考慮した3段分割とすることが、より好適である。というのは、電極直下は分流の影響が大きく、めっきが存在する場合、そこに安定した通電経路が形成されるまでの現象が大きく異なるためである。めっきの融点は鋼板より低いため、通電を開始するとはじめに鋼板間のめっきが溶融に至り、溶融しためっきの一部は、加圧力により鋼板間から吐き出される。このとき吐き出されためっきが通電面積を広げることとなるため、溶接中の電極間抵抗が大きく減少する。一方で、被溶接材の固有抵抗は温度上昇とともに増加するため、通電時間とともに固有抵抗値も上昇する。すなわち、通電面積拡大による電極間抵抗の減少に引き続き、被溶接材の温度の上昇による電極間抵抗の上昇が生じるようになり、その後、溶融部が形成されることになる。よって、めっきが溶融して急激に通電面積が拡大する段階、その後の通電により電極間に安定した通電経路(溶融部)が形成されるまでの段階、および、その後のナゲット成長過程の3段に溶接プロセスを分解して、それぞれの段階で、単位体積当たりの累積発熱量を補償するように適応制御溶接を行う。これにより、めっき鋼板の抵抗スポット溶接で溶接点の近くに既溶接点が存在しても、安定して通電経路が形成され、その後の第3ステップで安定したナゲットの成長が可能になる。
 (実施例1)
 被溶接材として、厚みが1.6mmの鋼材(270MPa)を準備した。また、テスト溶接及び本溶接ともに、通電パターンを2段に分割して行うこととした。
 既述の方法で、この被溶接材を2枚重ねにし、ギャップや既溶接点への分流のない状態にて定電流制御にて予備溶接を行い、適切なナゲット径が得られる溶接条件を求めた。溶接機にはインバータ直流抵抗スポット溶接機を用い、電極にはDR形先端径6mmのクロム銅電極を用いた。その結果、テスト溶接の溶接条件は、1段目を加圧力:3.5kN、溶接電流:7.0kA、通電時間:5cyc、2段目を加圧力:3.5kN、溶接電流:9.0kA、通電時間:13cycとした。なお、本明細書において、通電時間は50Hzにおけるcycle数で表示する。
 予備溶接で用いた鋼材と同じ鋼種、厚みの別の被溶接材に対して、この溶接条件にてテスト溶接を行い、単位体積当たりの瞬間発熱量の時間変化および単位体積当たりの累積発熱量を目標値としてステップ毎に記憶させた。
 このテスト溶接を行った後の溶接部断面を図1(A)に、当該テスト溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を図1(B)に示す。図1(A)に示したとおり、このテスト溶接では、6.2mm(≒5√t)のナゲット径が得られている。また、1段目での累積発熱量は88J、2段目での目標累積発熱量は163Jであった。これらが目標値となる。
 ついで、テスト溶接で用いた鋼材と同じ鋼種、厚みの別の被溶接材に対して、以下の条件で本溶接を実施した。すなわち、溶接点の近傍(溶接点中央間隔:10mm)に予め既溶接点が存在し、分流の影響が大きい条件で、上記したテスト溶接を基準として、本発明に従う適応制御溶接を行った。すなわち、テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として抵抗スポット溶接を開始した。また、1段目、2段目ともに、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合には、その差を当該ステップの残りの通電時間内で補償するように通電量、すなわち溶接電流値を制御した。
 この本溶接を行った後の溶接部断面を図2(A)に、当該本溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を図2(B)に示す。図2(B)に示したとおり、本実施例1の場合は、ステップ毎の累積発熱量がテスト溶接の場合と同様になるように、溶接電流値が大きく変化しており、その結果、ナゲット径も6.2mmとほぼ目標どおりのナゲット径を得ることができた。また、散りなどの溶接欠陥は発生しなかった。1段目での累積発熱量は85J、2段目での累積発熱量は165Jであり、テスト溶接とほぼ同様な累積発熱量が得られていた。
 (比較例1)
 被溶接材として厚みが1.6mmの鋼材(270MPa)に対して、溶接点の近傍(溶接点中央間隔:10mm)に予め既溶接点が存在する同じ条件で、定電流制御による抵抗スポット溶接を行った。溶接条件は、上記テスト溶接と同じ(1段目を加圧力:3.5kN、溶接電流:7.0kA、通電時間:5cyc、2段目を加圧力:3.5kN、溶接電流:9.0kA、通電時間:13cyc)とした。
 この溶接後の溶接部断面を図3(A)に、当該溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を図3(B)に示す。1段目での累積発熱量は42J、2段目での累積発熱量は122Jであり、分流による熱量の低下が見られた。また、4.3mmという小径のナゲットしか得られなかった。
 (比較例2)
 以下の方法で、従来の1段適応制御溶接を行った。
 まずは、ギャップや既溶接点への分流のない状態にて、被溶接材として厚みが1.6mmの鋼材(270MPa)に対して、加圧力:3.5kN、通電時間:16cyc、溶接電流:9.0kAの条件でテスト溶接を行い、単位体積当たりの瞬間発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させた。
 ついで、テスト溶接で用いた鋼材と同じ鋼種、厚みの別の被溶接材に対して、以下の条件で本溶接を実施した。すなわち、溶接点の近傍(溶接点中央間隔:10mm)に予め既溶接点が存在し、分流の影響が大きい条件で、上記したテスト溶接を基準として、適応制御溶接を行った。すなわち、テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として抵抗スポット溶接を開始した。また、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合には、その差を当該ステップの残りの通電時間内で補償するように通電量、すなわち溶接電流値を制御した。
このテスト溶接の後の溶接部断面を図4(A)に、テスト溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を図4(B)に示す。また、本溶接後の溶接部断面を図5(A)に、本溶接時の溶接電流値、電気抵抗値および累積発熱量の推移を図5(B)に示す。図4(A)に示したとおり、テスト溶接では、6.3mmのナゲット径が得られており、また散りの発生もなかった。しかし、図5(A)に示したとおり、本溶接後には鋼板表面から表散りが発生していた。
 ここで、本溶接において散りが発生した9.5cyc時点におけるテスト溶接の目標累積発熱量は195Jであったのに対し、本溶接の累積発熱量は190Jであり、両者はほぼ同じであった。この結果から、従来の1段適応制御では、累積発熱量の制御は適正に行えているにも関わらず、鋼板表面付近の発熱が優先的に生じたために、鋼板表面から散りが発生したことが分かる。
 (実験例)
 次に、表1に示す2枚の薄鋼板を重ね合わせた板組み、溶接条件で抵抗スポット溶接を行い、溶接継手を作製した。なお、テスト溶接は、表1に示す条件で既溶接点のない状態で行った。本溶接は、表1に示す条件で行った。なお、表1中の「本溶接の制御方法」における「2段適応制御」は、上記実施例1に記載の本溶接の方法であり、「定電流制御」は、上記比較例1に記載の方法であり、「1段適応制御」は、上記比較例2に記載の本溶接の方法である。
 得られた溶接継手について、溶接部を切断し、断面をエッチング後、光学顕微鏡により観察してナゲット径を測定した。4.5√t(t:板厚(mm))以上のナゲット径が得られ、かつ散りの発生がなかった場合を良好(○)、ナゲット径が4.5√t未満および/または散りが発生した場合を不良(×)とした。得られた結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、発明例はいずれも、散りの発生がなく、また4.5√t以上の径を有するナゲットが得られ、良好なスポット溶接継手を得ることができた。これは、既打点の有無に係わらず、必要な径のナゲットを得るための抵抗スポット溶接が可能であることを示している。
 これに対し、本発明の適正範囲を外れた比較例では、散りが発生するか、あるいは十分な径のナゲットが形成されていなかった。すなわち、No.19,20の定電流制御では、分流により発熱量が不足して十分な径のナゲットが形成されなかった。また、No.21の1段適応制御溶接では、散りが発生した。さらに、No.22は、特許文献4に示した2段適応制御溶接を行った場合である。この場合、特許文献4に示すように、目標ナゲット径を4√tとした場合には散りの発生なしに良好なナゲットが得られたのであるが、本願の表1に示すように、目標ナゲット径を4.5√t以上と大きくした場合には散りの発生を余儀なくされた。

Claims (2)

  1.  複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、
     通電パターンを2段以上の多段ステップに分割して溶接を実施するテスト溶接工程と本溶接工程とを有し、
     前記テスト溶接では、ステップ毎に異なる電流値の定電流で通電を行い、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させ、
     ついで、前記本溶接では、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、
     前記本溶接のいずれかのステップにおいて、単位体積当たりの瞬時発熱量の時間変化量が、基準である前記時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償するように通電量を制御して、本溶接の単位体積当たりの累積発熱量を、テスト溶接で予め求めた単位体積当たりの累積発熱量と一致させ、
     前記テスト溶接では、第1ステップの電流値をI、第2ステップ以降の電流値をIとしたとき、これらI、Iが、次式
     0.3×I≦I<I
    の関係を満足することを特徴とする抵抗スポット溶接方法。
  2.  前記第1ステップでは前記金属板間の通電経路を確保するため、また前記第2ステップ以降では所定のナゲット径を得るための通電を行うことを特徴とする請求項1に記載の抵抗スポット溶接方法。
PCT/JP2014/084741 2013-12-27 2014-12-22 抵抗スポット溶接方法 WO2015099192A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/035,809 US9821404B2 (en) 2013-12-27 2014-12-22 Resistance spot welding method
CN201480070562.1A CN106132622B (zh) 2013-12-27 2014-12-22 电阻点焊方法
EP14874195.2A EP3088119B1 (en) 2013-12-27 2014-12-22 Resistance spot welding method
JP2015518103A JP5825454B1 (ja) 2013-12-27 2014-12-22 抵抗スポット溶接方法
MX2016008413A MX349400B (es) 2013-12-27 2014-12-22 Método de soldadura por puntos de resistencia.
KR1020167018350A KR101719172B1 (ko) 2013-12-27 2014-12-22 저항 스폿 용접 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273246 2013-12-27
JP2013-273246 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099192A1 true WO2015099192A1 (ja) 2015-07-02

Family

ID=53479030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084741 WO2015099192A1 (ja) 2013-12-27 2014-12-22 抵抗スポット溶接方法

Country Status (7)

Country Link
US (1) US9821404B2 (ja)
EP (1) EP3088119B1 (ja)
JP (1) JP5825454B1 (ja)
KR (1) KR101719172B1 (ja)
CN (1) CN106132622B (ja)
MX (1) MX349400B (ja)
WO (1) WO2015099192A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825454B1 (ja) * 2013-12-27 2015-12-02 Jfeスチール株式会社 抵抗スポット溶接方法
JP2019034341A (ja) * 2017-08-18 2019-03-07 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
WO2019160141A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
CN110889213A (zh) * 2019-11-18 2020-03-17 重庆理工大学 一种基于切片分割加载体的热源焊接模拟方法
JP2020093287A (ja) * 2018-12-13 2020-06-18 本田技研工業株式会社 抵抗溶接評価装置及び抵抗溶接評価方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584495B1 (ko) * 2013-03-29 2016-01-13 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 시스템
KR101831081B1 (ko) * 2013-10-04 2018-02-21 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
CN107030361B (zh) * 2016-12-09 2019-05-17 广东技术师范大学 一种焊接能量在线控制方法
WO2019035367A1 (ja) * 2017-08-18 2019-02-21 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
JP6658993B1 (ja) * 2018-06-29 2020-03-04 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
JP6658992B1 (ja) * 2018-06-29 2020-03-04 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
MX2020013762A (es) * 2018-06-29 2021-03-02 Jfe Steel Corp Metodo de soldadura por puntos de resistencia y metodo de produccion de miembro de soldadura.
CN111390366A (zh) * 2020-04-15 2020-07-10 深圳市欧帝克科技有限公司 一种电阻焊电极温度补偿方法
JP7435505B2 (ja) * 2021-03-04 2024-02-21 トヨタ自動車株式会社 抵抗スポット溶接方法、および、抵抗スポット溶接装置
CN114559144A (zh) * 2021-09-24 2022-05-31 南京迪威尔高端制造股份有限公司 一种克服16Mn链条表面焊接缺陷的电阻点焊方法
CN114813356B (zh) * 2022-07-01 2022-09-23 江铃汽车股份有限公司 封装芯片焊脚焊接质量检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216071A (ja) 1996-02-07 1997-08-19 Matsushita Electric Ind Co Ltd 抵抗溶接機の制御装置
JPH1094883A (ja) 1996-09-24 1998-04-14 Matsushita Electric Ind Co Ltd 抵抗溶接機の溶接条件制御方法
JPH1133743A (ja) 1997-07-14 1999-02-09 Na Detsukusu:Kk 単位体積当たりの累積発熱量を指標とする抵抗溶接システム
JP2010221284A (ja) * 2009-03-25 2010-10-07 Daihen Corp 抵抗溶接制御方法
JP2010240740A (ja) * 2009-03-17 2010-10-28 Jfe Steel Corp 抵抗スポット溶接継手の製造方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
JP2013047180A (ja) 2006-10-12 2013-03-07 Jgc Catalysts & Chemicals Ltd 金平糖状シリカ系ゾル
WO2014136507A1 (ja) * 2013-03-08 2014-09-12 Jfeスチール株式会社 抵抗スポット溶接方法
WO2014156290A1 (ja) * 2013-03-29 2014-10-02 Jfeスチール株式会社 抵抗スポット溶接システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493965A (en) 1983-05-25 1985-01-15 General Motors Corporation Method and apparatus for predicting and controlling the quality of a resistance spot weld
US4849601A (en) 1988-08-08 1989-07-18 General Electric Company Current-loop feedback of spot welding machines
JP2003236674A (ja) * 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
US7759596B2 (en) * 2005-11-30 2010-07-20 Ford Motor Company Method for controlling weld energy
JP5468350B2 (ja) * 2009-10-23 2014-04-09 マツダ株式会社 異種金属板の接合方法
JP2011152574A (ja) * 2010-01-28 2011-08-11 Honda Motor Co Ltd 抵抗溶接方法
KR101831081B1 (ko) * 2013-10-04 2018-02-21 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
WO2015099192A1 (ja) * 2013-12-27 2015-07-02 Jfeスチール株式会社 抵抗スポット溶接方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216071A (ja) 1996-02-07 1997-08-19 Matsushita Electric Ind Co Ltd 抵抗溶接機の制御装置
JPH1094883A (ja) 1996-09-24 1998-04-14 Matsushita Electric Ind Co Ltd 抵抗溶接機の溶接条件制御方法
JPH1133743A (ja) 1997-07-14 1999-02-09 Na Detsukusu:Kk 単位体積当たりの累積発熱量を指標とする抵抗溶接システム
JP2013047180A (ja) 2006-10-12 2013-03-07 Jgc Catalysts & Chemicals Ltd 金平糖状シリカ系ゾル
JP2010240740A (ja) * 2009-03-17 2010-10-28 Jfe Steel Corp 抵抗スポット溶接継手の製造方法
JP2010221284A (ja) * 2009-03-25 2010-10-07 Daihen Corp 抵抗溶接制御方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法
WO2014136507A1 (ja) * 2013-03-08 2014-09-12 Jfeスチール株式会社 抵抗スポット溶接方法
WO2014156290A1 (ja) * 2013-03-29 2014-10-02 Jfeスチール株式会社 抵抗スポット溶接システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825454B1 (ja) * 2013-12-27 2015-12-02 Jfeスチール株式会社 抵抗スポット溶接方法
JP2019034341A (ja) * 2017-08-18 2019-03-07 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
WO2019160141A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
JP6590121B1 (ja) * 2018-02-19 2019-10-16 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
EP3756814A4 (en) * 2018-02-19 2021-06-30 JFE Steel Corporation RESISTANCE POINT WELDING METHOD AND METHOD FOR MANUFACTURING A WELDED ELEMENT
US11911837B2 (en) 2018-02-19 2024-02-27 Jfe Steel Corporation Resistance spot welding method and weld member production method
JP2020093287A (ja) * 2018-12-13 2020-06-18 本田技研工業株式会社 抵抗溶接評価装置及び抵抗溶接評価方法
CN110889213A (zh) * 2019-11-18 2020-03-17 重庆理工大学 一种基于切片分割加载体的热源焊接模拟方法

Also Published As

Publication number Publication date
KR101719172B1 (ko) 2017-03-23
US9821404B2 (en) 2017-11-21
MX349400B (es) 2017-07-27
JPWO2015099192A1 (ja) 2017-03-23
JP5825454B1 (ja) 2015-12-02
CN106132622A (zh) 2016-11-16
KR20160086971A (ko) 2016-07-20
MX2016008413A (es) 2016-10-12
EP3088119A1 (en) 2016-11-02
CN106132622B (zh) 2018-08-31
EP3088119B1 (en) 2018-07-25
EP3088119A4 (en) 2016-11-02
US20160271720A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
JP5825454B1 (ja) 抵抗スポット溶接方法
JP5900699B2 (ja) 抵抗スポット溶接方法
JP5920523B2 (ja) 抵抗スポット溶接方法
KR101974298B1 (ko) 저항 스폿 용접 방법
JP6108030B2 (ja) 抵抗スポット溶接方法
JP5999293B1 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
JP5907317B1 (ja) 抵抗スポット溶接装置および抵抗スポット溶接方法
WO2017212916A1 (ja) 抵抗スポット溶接方法
WO2019035367A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JPWO2019160141A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6241580B1 (ja) 抵抗スポット溶接方法
JP6652228B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP2021003733A (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP5988015B1 (ja) 抵抗スポット溶接方法
JP6658993B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6658992B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015518103

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15035809

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008413

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018350

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604889

Country of ref document: ID