WO2015098688A1 - Overvoltage protection circuit and power conversion device provided therewith - Google Patents
Overvoltage protection circuit and power conversion device provided therewith Download PDFInfo
- Publication number
- WO2015098688A1 WO2015098688A1 PCT/JP2014/083542 JP2014083542W WO2015098688A1 WO 2015098688 A1 WO2015098688 A1 WO 2015098688A1 JP 2014083542 W JP2014083542 W JP 2014083542W WO 2015098688 A1 WO2015098688 A1 WO 2015098688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- voltage
- switch
- overvoltage
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
Definitions
- the present invention relates to an overvoltage protection circuit and a power conversion device including the same.
- an overvoltage protection circuit as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-207329) is provided. This overvoltage protection circuit is configured to shut off the power supply with a relay when the voltage is equal to or higher than a predetermined voltage.
- the time required for the power supply voltage to become excessive is extremely short, and it is difficult to reliably protect with a slow response due to the interruption by the relay.
- a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay.
- increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
- an object of the present invention is to provide a small-sized and low-cost overvoltage protection circuit that protects a device from a momentary excessive voltage, and a power conversion device including the same.
- An overvoltage protection device is an overvoltage protection circuit connected between a power supply and a device to which power is supplied from the power supply, and includes an overvoltage conduction circuit, a first impedance circuit, 2 impedance circuit.
- the overvoltage conduction circuit is connected in parallel with the device between a pair of power supply lines connecting the power source and the device, and allows current to flow when overvoltage occurs.
- the first impedance circuit is connected between the pair of power supply lines in parallel with the device and in series with the overvoltage conduction circuit.
- the second impedance circuit is connected between the power supply in the power supply line and the first impedance circuit.
- a closed circuit of [power source-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power source] is configured by conducting the overvoltage conduction circuit at the time of overvoltage.
- An overvoltage protection circuit is the overvoltage protection circuit according to the first aspect, wherein the overvoltage conduction circuit is a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche as elements that allow a current to flow during overvoltage. Any one of the diodes is included.
- a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche diode are all elements that operate with a short response time with respect to voltage transient fluctuations. Therefore, in this overvoltage protection circuit, when the element conducts at the time of overvoltage, only a voltage corresponding to the ratio of the impedances of the two impedance circuits is applied to the device, and thus the device can be protected from the overvoltage.
- the overvoltage protection circuit according to the third aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a voltage detector for detecting the voltage of the power supply.
- the overvoltage conduction circuit has a switch that opens and closes between the power supply line and the first impedance circuit. This switch is turned on when the detection value by the voltage detector exceeds a predetermined threshold value, and conducts between the power supply line and the first impedance circuit.
- the switch causes the power supply line and the first impedance circuit to conduct at the time of overvoltage. Since only a voltage according to the ratio ⁇ Za / (Za + Zb) ⁇ of the two impedances of the power supply voltage is applied, the device can be protected from overvoltage.
- the overvoltage protection circuit according to the fourth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a bypass circuit.
- the voltage detector detects the voltage of the power supply.
- the bypass circuit is a circuit that bypasses the second impedance circuit.
- the bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the value detected by the voltage detector exceeds a predetermined threshold value.
- the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
- the overvoltage protection circuit according to the fifth aspect of the present invention is the overvoltage protection circuit according to the third aspect, and further includes a bypass circuit.
- the bypass circuit is a circuit that bypasses the second impedance circuit.
- the bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the detection value by the voltage detector exceeds a predetermined threshold value.
- the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
- the overvoltage protection circuit according to the sixth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a third switch.
- the voltage detection value detects the voltage of the power supply.
- the third switch opens and closes the power line.
- the third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
- the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio ⁇ Za / (Za + Zb) ⁇ is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
- An overvoltage protection circuit is the overvoltage protection circuit according to any one of the third aspect to the fifth aspect, and further includes a third switch.
- the third switch opens and closes the power line.
- the third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
- the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio ⁇ Za / (Za + Zb) ⁇ is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
- the overvoltage protection circuit according to the eighth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power supply is an AC power supply.
- the overvoltage protection circuit according to the ninth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power source is a DC power source.
- the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the cost of the switch can be reduced.
- a power conversion device includes a converter circuit, an inverter circuit, and an overvoltage protection circuit according to any one of the first to ninth aspects.
- the converter circuit is connected to an AC power source and converts an AC voltage into a DC voltage.
- the inverter circuit converts a DC voltage into an AC voltage.
- the overvoltage protection circuit can protect the converter circuit from excessively applied alternating voltage or the inverter circuit from transiently applied excessive DC voltage.
- a closed circuit of [power supply-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power supply] is configured by conducting the overvoltage conduction circuit at the time of overvoltage.
- the overvoltage protection circuit according to the second aspect of the present invention protects the device from overvoltage because the device conducts at the time of overvoltage so that only a voltage corresponding to the impedance ratio of the two impedance circuits is applied to the device. Can do.
- the switch is connected between the power supply line and the first impedance circuit when overvoltage occurs.
- a voltage corresponding to the ratio of two impedances of the power supply voltage ⁇ Za / (Za + Zb) ⁇ is applied to the device, so that the device can be protected from overvoltage.
- the bypass circuit is normally closed. No power is consumed by the impedance Zb, and it can be avoided that the voltage applied to the device is lowered by the voltage drop at the impedance Zb.
- the switch and the second switch operate at the time of overvoltage.
- a voltage corresponding to the ratio of the two impedances of the power supply voltage ⁇ Za / (Za + Zb) ⁇ is applied to the device, so that the device can be protected from overvoltage, and the third switch operates to By cutting off, power consumption at the impedances Za and Zb is stopped.
- overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
- the overvoltage protection circuit according to the eighth aspect of the present invention even if the supply voltage from the AC power supply is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
- the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so the cost of the switch is low. Can be achieved.
- the overvoltage protection circuit protects the converter circuit from an excessive AC voltage applied transiently or protects the inverter circuit from an excessive DC voltage applied transiently. be able to.
- the circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention.
- FIG. 1 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the first embodiment of the present invention.
- the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
- the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
- the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, and a second impedance circuit 22.
- Overvoltage conduction circuit 10 is composed of an element that allows current to flow when overvoltage occurs.
- a transient voltage suppressor As an element for passing a current at the time of overvoltage, a transient voltage suppressor, a Zener diode, a surge absorber, or an avalanche diode is employed.
- the overvoltage conduction circuit 10 is composed of one surge absorber.
- a surge absorber is a voltage-dependent element and has a high resistance in a normal state. However, when the applied voltage exceeds a predetermined voltage, the voltage is limited by abruptly decreasing the resistance. It can be carried out.
- Specific elements of the surge absorber include, but are not limited to, arresters and discharge tubes.
- the overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902.
- the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
- the first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
- the first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
- Second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
- the second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
- FIG. 2 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the second embodiment of the present invention.
- the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
- the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
- the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and a voltage detector 33.
- Overvoltage conduction circuit 10 employs a switch 11 instead of the surge absorber in the first embodiment.
- the switch 11 is composed of a phototriac coupler, a light emitting diode 11a is provided on the input side (between A1 and A2), and a phototriac 11b is provided on the output side (between B1 and B2). Yes.
- the equivalent circuit of the phototriac 11b has a configuration in which two photothyristors 111 and 112 are connected in parallel in opposite directions.
- the anode A1 of the light emitting diode 11a is connected to the power source Vc via the resistor R1.
- the cathode A2 of the light emitting diode 11a is connected to the control unit 40 through a signal line.
- the first anode B1 of the phototriac 11b is connected to the power supply line 901.
- the second anode B2 of the phototriac 11b is connected to the first impedance circuit 21.
- the light emitting diode 11a emits light when a current flows.
- the phototriac 11b receives light from the light emitting diode 11a in a state where the potential of the first anode B1 is higher than the potential of the second anode B2, the photothyristor 111 is turned on.
- the photothyristor 112 is turned on.
- the phototriac 11b is a bidirectional element that operates with respect to a bidirectional applied voltage, and also operates at a high speed, so that it is used as a bidirectional high-speed switch.
- the bidirectional high-speed switch is not limited to the photo triac, but a normal triac or a MOSFET connected so as to conduct in both directions may be adopted.
- a drive circuit corresponding to the form of the switch is appropriately used.
- the overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902. When overvoltage protection between phases is performed when the commercial power supply 90 is a multiphase power supply, the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
- control unit 40 performs operation control of the switch 11, that is, energization control to the light emitting diode 11a.
- the first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
- the first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
- Second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
- the second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
- FIG. 3 is a circuit diagram of a general voltage detector 33.
- the voltage detector 33 includes a transformer circuit 331 and a converter circuit 332.
- the transformer circuit 331 is located on the input side and includes a primary winding 331a and a secondary winding 331b.
- the converter circuit 332 is a circuit in which a rectifying unit 332a composed of a rectifying diode and a smoothing capacitor 332b are connected in parallel.
- the voltage detector 33 when an AC voltage is applied to the transformer circuit 331, the AC voltage is transformed by the transformer circuit 331. Then, the voltage across the secondary winding 331 b is input to the converter circuit 332.
- the AC voltage after transformation input to the converter circuit 332 is converted into a DC voltage by the rectifying unit 332a and smoothed by the smoothing capacitor 332b.
- This smoothed DC voltage is input to the control unit 40. That is, a DC voltage corresponding to the voltage applied to the primary winding 331a is input to the control unit 40.
- control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 To do. As a result, the photo triac 11b is turned off and returns to normal operation.
- FIG. 4 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the third embodiment of the present invention.
- the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
- the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
- the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, and a bypass circuit 35.
- a bypass circuit 35 is added to the second embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and The same voltage detector 33 is employed. Therefore, only the bypass circuit 35 will be described here.
- the bypass circuit 35 is a circuit that is connected in parallel to the second impedance circuit 22 and bypasses the second impedance circuit 22.
- the bypass circuit 35 includes the second switch 12.
- the second switch 12 opens and closes the bypass circuit 35.
- opening and closing the bypass circuit 35 means making the bypass circuit 35 conductive or non-conductive to make it non-conductive.
- Second switch 12 The second switch 12 normally closes the bypass circuit 35, that is, keeps it in a conductive state. This is because if the bypass circuit 35 is left open (non-conducting state) during normal operation, the second impedance circuit 22 is always connected and power is always consumed, and the voltage applied to the device 30 is second. This is because the voltage is lowered by the voltage drop of the impedance Zb of the impedance circuit 22.
- the bypass circuit 35 is quickly opened and the second impedance circuit 22 is connected, and the commercial power supply 90—overvoltage conduction circuit 10—first impedance circuit 21—second impedance circuit 22— It is necessary to configure a closed circuit called a commercial power supply 90. For this reason, the second switch 12 is required to operate at high speed.
- a triac As the second switch 12, a triac, a MOSFET connected so as to conduct in both directions, or the like is employed. In the present embodiment, a phototriac coupler is employed as with the switch 11.
- the second switch 12 is provided with a light emitting diode 12a on the input side (between C1 and C2) and a phototriac 12b on the output side (between D1 and D2).
- the equivalent circuit of the phototriac 12b has a configuration in which two photothyristors 121 and 122 are connected in parallel in opposite directions.
- the anode C1 of the light emitting diode 12a is connected to the power source Vc via the resistor R2.
- the cathode C2 of the light emitting diode 12a is connected to the control unit 40 via a signal line.
- the first anode D1 of the phototriac 12b is connected between the second impedance circuit 22 in the power supply line 902 and the device 30.
- the second anode D2 of the photo triac 12b is connected to the power line 902 between the second impedance circuit 22 and the commercial power source 90.
- the operating principle of the photothyristors 121 and 122 of the light-emitting diode 12a and the phototriac 12b is the same as the operating principle of the light-emitting diode 11a and the photothyristor 111 and 112 of the phototriac 11b in the switch 11, so that the description of the operation is omitted here. .
- the control unit 40 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
- control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. As a result, the normal operation is restored.
- FIG. 5 is a circuit diagram of an apparatus including an overvoltage protection circuit 50 according to the fourth embodiment of the present invention.
- the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
- the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
- the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, a bypass circuit 35, and a third switch 13.
- a third switch 13 is added to the third embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, The same voltage detector 33 and bypass circuit 35 are employed. Therefore, only the third switch 13 will be described here.
- (2-1) Third switch 13 The third switch 13 opens and closes the power line 901.
- opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
- the third switch 13 normally closes the power supply line 901, that is, keeps it conductive.
- the switch 11 is turned on, the second switch 12 is turned off, and a closed circuit of the commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed.
- the third switch 13 is turned off and the power line 901 is shut off.
- the purpose of cutting off the power supply line 901 is to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22, and it is possible to suppress overheating of the first impedance circuit 21 and the second impedance circuit 22.
- the power rating can be reduced, and the cost can be reduced.
- the third switch 13 is not required to have high speed like the switch 11 and the second switch 12, a relay circuit is employed in this embodiment.
- the third switch 13 includes a relay contact 13a for opening and closing the power supply line 901, a relay coil 13b for operating the relay contact 13a, and a transistor 13c for energizing and de-energizing the relay coil 13b. Is included. One end of the relay coil 13b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 13c. The controller 40 switches between the presence and absence of the base current of the transistor 13c, turns on and off the collector and the emitter, and energizes and de-energizes the relay coil 13b.
- the control unit 40 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
- the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22.
- control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. Further, the third switch 13 is turned on and the power supply line 901 is connected to return to the normal operation.
- the third switch 13 cuts off the power supply line 901 to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22. As a result, overheating of the first impedance circuit 21 and the second impedance circuit 22 can be suppressed, and the power rating can be reduced.
- FIG. 6 is a circuit diagram of a power converter 200 including an overvoltage protection circuit 100 according to the fifth embodiment of the present invention.
- the power conversion device 200 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 100.
- the inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802.
- the overvoltage protection circuit 100 is connected between the DC power supply unit 80 and the inverter 95.
- the DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
- the rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
- connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90.
- a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90.
- the rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
- the smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81.
- the smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
- the DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
- the inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes.
- the inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 150.
- the motor 150 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
- inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
- Gate drive circuit 96 The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
- the overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 83, a bypass circuit 85, and a third switch 63.
- the fifth embodiment is different from the first to fourth embodiments already described in that the overvoltage protection circuit 100 is provided in the DC section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
- (2-1) Overvoltage conduction circuit 60 The overvoltage conduction circuit 60 employs a switch 61 instead of the switch 11 in the fourth embodiment.
- the switch 61 includes a photocoupler 61a, a drive circuit 61b, and a transistor 61c.
- the photocoupler 61a includes a light emitting diode 611 and a phototransistor 612.
- the light emitting diode 611 of the photocoupler 61a is connected to the input side (between E1 and E2) of the switch 61.
- the anode E1 of the light emitting diode 611 is connected to the power source Vc via the resistor R1.
- the cathode E2 of the light emitting diode 611 is connected to the control unit 40 via a signal line.
- the phototransistor 612 is connected between the drive circuit 61b and GND.
- a transistor 61c is provided on the output side (between F1 and F2) of the switch 61.
- the collector F1 of the transistor 61c is connected to the power supply line 801.
- the emitter F2 of the transistor 61c is connected to the first impedance circuit 71.
- the control signal of the control unit 40 is input to the drive circuit 61b via the photocoupler 61a.
- a driving power supply (not shown) is connected to the driving circuit 61b.
- the control unit 40 turns on the signal line of the light emitting diode 611, the light emitting diode 611 emits light and the phototransistor 612 becomes conductive. While the phototransistor 612 is conducting, a driving signal is output from the driving circuit 61b to the base of the transistor 61c, and the collector F1-emitter F2 of the transistor 61c is conducted.
- control unit 40 turns off the signal line of the light emitting diode 611, the light emitting diode 611 does not emit light, and the phototransistor 612 does not conduct. While the phototransistor 612 is not conducting, the collector F1 and the emitter F2 of the transistor 61c are not conducting.
- a one-way switch may be used, so that bidirectionality is not required when the AC circuit is opened / closed, and there is a cost merit.
- the configuration of the one-way switch is not limited to this embodiment, but it is desirable that the switch operation can be performed at high speed like a semiconductor switch.
- the overvoltage conduction circuit 60 is connected in parallel with the device 30 between a pair of power supply lines 801 and 802.
- the first impedance circuit 71 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za. In general, a resistance element is employed.
- the first impedance circuit 71 is connected between the pair of power supply lines 801 and 802 in parallel with the inverter 95 and in series with the overvoltage conduction circuit 60.
- Second impedance circuit 72 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb. In general, a resistance element is employed.
- the second impedance circuit 72 is connected between the DC power supply unit 80 and the first impedance circuit 71 on the power supply line 802.
- the voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc.
- the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
- the bypass circuit 85 is a circuit that is connected in parallel to the second impedance circuit 72 and bypasses the second impedance circuit 72.
- the bypass circuit 85 has a second switch 62.
- the second switch 62 opens and closes the bypass circuit 85.
- opening and closing the bypass circuit 85 means that the bypass circuit 35 is turned on or off to make it non-conductive.
- Second switch 62 The second switch 62 normally closes the bypass circuit 85, that is, keeps it in a conductive state. This is because if the bypass circuit 85 is left open (non-conducting state) during normal operation, power is always consumed by the second impedance circuit 72, and the voltage applied to the inverter 95 is the voltage of the impedance Zb of the second impedance circuit 72. This is because it is lowered by the amount of descent.
- the bypass circuit 85 is quickly opened, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80. Need to be configured. For this reason, the second switch 62 is required to operate at high speed. In the present embodiment, the same switch as the switch 61 is employed. The switch is not limited to this embodiment.
- a light emitting diode 621 of a photocoupler 62a is provided on the input side (between G1 and G2), and a transistor 62c is provided on the output side (between H1 and H2).
- the anode G1 of the light emitting diode 621 is connected to the power source Vc via the resistor R2.
- the cathode G2 of the light emitting diode 621 is connected to the control unit 40 via a signal line.
- the collector H1 of the transistor 62c is connected between the second impedance circuit 72 in the power supply line 802 and the inverter 95.
- the emitter H2 of the transistor 62c is connected to the power supply line 802 between the second impedance circuit 72 and the DC power supply unit 80.
- the third switch 63 opens and closes the power line 801.
- opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
- the third switch 63 normally closes the power supply line 801, that is, keeps it conductive.
- the switch 61 is turned on, the second switch 62 is turned off, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80 is formed.
- the third switch 63 is turned off and the power line 801 is shut off.
- the purpose of cutting off the power supply line 801 is to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72, and it is possible to suppress overheating of the first impedance circuit 71 and the second impedance circuit 72.
- the power rating can be reduced, and the cost can be reduced.
- the third switch 63 is not required to have high speed like the switch 61 and the second switch 62, a relay circuit is employed in this embodiment.
- the third switch 63 includes a relay contact 63a for opening and closing the power supply line 801, a relay coil 63b for operating the relay contact 63a, and a transistor 63c for energizing and de-energizing the relay coil 63b. Is included. One end of the relay coil 63b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 63c. The controller 40 switches between the presence and absence of the base current of the transistor 63c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 63b.
- the control unit 40 When the voltage Vdc of the DC power supply unit 80 increases rapidly and the control unit 40 determines that the voltage output from the voltage detector 83 exceeds the threshold value, the control unit 40 energizes the light emitting diode 611 of the switch 61, The transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
- the third switch 63 cuts off the power supply line 801 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
- the control unit 40 determines that the voltage Vac of the commercial power supply 90 and the voltage Vdc of the DC power supply unit 80 are decreased and the voltage output from the voltage detector 83 is lower than the threshold for recovery, the control unit 40 switches the switch 61.
- the light-emitting diode 611 is turned off, and the transistor 61c is turned off.
- the control unit 40 energizes the light emitting diode 621 of the second switch 62 to turn on the transistor 62c. Further, by turning on the third switch 63 and connecting the power supply line 801, the normal operation is restored.
- the third switch 63 cuts off the power supply line 801 to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
- the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
- FIG. 7 is a circuit diagram of a power conversion device 200 including the overvoltage protection circuit 100 according to the sixth embodiment of the present invention.
- the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802.
- a part of the overvoltage protection circuit 100 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
- the overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 33, a bypass circuit 85, and a third switch 13.
- a voltage detector and a third switch which are components of the overvoltage protection circuit 100, are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the third switch is the same as the arrangement of the voltage detector 33 and the third switch 13 in the fourth embodiment. Therefore, in view of the fact that the voltage detector and the third switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the third switch 13 of the fourth embodiment are employed.
- each component includes the voltage detector 33 and the third switch 13 of the fourth embodiment, the overvoltage conduction circuit 60 of the fifth embodiment, the first impedance circuit 71, the second impedance circuit 72, and the bypass circuit 85. Therefore, the description is omitted here and only the operation is described.
- control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold value due to the fluctuation of the voltage Vac of the commercial power supply 90, the control unit 40 energizes the light emitting diode 611 of the switch 61. Then, the transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
- the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
- the third switch 13 cuts off the power supply line 901 to stop the power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
- the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
- the second switch 12 is turned on and the bypass circuit 35 is closed, so that no power is consumed in the second impedance circuit 22, and the voltage applied to the device 30 is equal to the voltage drop in the second impedance circuit 22. Only lowering can be avoided.
- the third switch 13 stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22 by cutting off the power supply line 901, the power rating of the first impedance circuit 21 and the second impedance circuit 22 is reduced. Can do.
- the overvoltage protection circuit 50 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the third embodiment shown in FIG. 4 is an overvoltage protection circuit for an AC voltage.
- the power source is a DC power source or when a DC power source unit that rectifies an AC power source is provided in the device, each component may be replaced with the DC specification and provided downstream of the DC power source unit.
- the sixth embodiment is different from the fifth embodiment in that the voltage detector and the third switch are provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is commercialized. You may make it provide between the power supply 90 and the DC power supply part 80.
- the third switch is turned off after the protection operation of the device 30 is performed.
- the third switch may be turned off after a predetermined time has elapsed since the protection operation was performed.
- the third switch is turned off after the protection operation of the device 30 is performed.
- the device further includes a device voltage detector that detects the device voltage V, and the device voltage exceeds a predetermined value. Sometimes the third switch may be turned off.
- a surge absorber has been described as an example of an element that allows a current to flow during overvoltage.
- the power supply voltage is divided by the impedance ratio and applied to the device 30.
- an overvoltage circuit such as a varistor or Zener diode that maintains a predetermined voltage when the element itself is on, the voltage obtained by removing the retained voltage from the power supply voltage. Is divided by the impedance ratio.
- the applied voltage to the device is limited, and the device can be protected from overvoltage.
- the present invention is useful for equipment used in an area where power supply voltage is likely to fluctuate, such as a refrigeration apparatus.
Landscapes
- Protection Of Static Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
- Electronic Switches (AREA)
Abstract
Description
(1)過電圧保護回路50の構成
図1は、本発明の第1実施形態に係る過電圧保護回路50を備えた装置の回路図である。図1において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。 <First Embodiment>
(1) Configuration of
(2-1)過電圧導通回路10
過電圧導通回路10は、過電圧時に電流を流す素子で構成されている。過電圧時に電流を流す素子としては、過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードのいずれかが採用される。 (2) Detailed configuration of overvoltage protection circuit 50 (2-1)
The
第1インピーダンス回路21は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。 (2-2)
The
第2インピーダンス回路22は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。 (2-3)
The
説明の便宜上、商用電源90の電圧をVac、機器30に印加される電圧をVa、第2インピーダンス回路22の両端にかかる電圧をVbとする。 (3) Operation of
(4-1)
過電圧保護回路50では、過電圧時に過電圧導通回路10のサージアブソーバが導通することによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。 (4) Features of the first embodiment (4-1)
In the
商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。 (4-2)
Even if the supply voltage from the
(1)過電圧保護回路50の構成
図2は、本発明の第2実施形態に係る過電圧保護回路50を備えた装置の回路図である。図2において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。 Second Embodiment
(1) Configuration of
(2-1)過電圧導通回路10
過電圧導通回路10は、第1実施形態におけるサージアブソーバに替わってスイッチ11が採用されている。図2に示すように、スイッチ11は、フォトトライアックカプラで構成され、入力側(A1-A2間)に発光ダイオード11aが設けられ、出力側(B1-B2間)にフォトトライアック11bが設けられている。フォトトライアック11bの等価回路は、2つのフォトサイリスタ111,112を互いに逆方向に並列接続した構成である。 (2) Detailed configuration of overvoltage protection circuit 50 (2-1)
The
第1インピーダンス回路21は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。 (2-2)
The
第2インピーダンス回路22は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。 (2-3)
The
電圧検出器33は、交流電圧検出回路によって構成されている。交流電圧検出回路は、多様であり、使用条件によって適宜採用される。例えば、図3は一般的な電圧検出器33の回路図である。図3において、電圧検出器33は、変圧回路331、コンバータ回路332とで構成されている。 (2-4)
The
説明の便宜上、商用電源90の電圧をVac、機器30に印加される電圧をVa、第2インピーダンス回路22の両端にかかる電圧をVbとする。 (3) Operation of
(4-1)
過電圧保護回路50では、過電圧時に過電圧導通回路10のスイッチ11がオンすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。 (4) Features of the second embodiment (4-1)
In the
商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。 (4-2)
Even if the supply voltage from the
(1)過電圧保護回路50の構成
図4は、本発明の第3実施形態に係る過電圧保護回路50を備えた装置の回路図である。図4において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。 <Third Embodiment>
(1) Configuration of
第3実施形態は、第2実施形態にバイパス回路35が追加された形態であり、過電圧導通回路10、第1インピーダンス回路21、第2インピーダンス回路22、及び電圧検出器33については同様のものを採用している。したがって、ここではバイパス回路35についてのみを説明する。 (2) Detailed Configuration of
バイパス回路35は、第2インピーダンス回路22に並列接続されており、第2インピーダンス回路22を迂回する回路である。バイパス回路35は、第2スイッチ12を有している。第2スイッチ12は、バイパス回路35を開閉する。ここで、バイパス回路35を開閉するとは、バイパス回路35を導通又は遮断して非導通にすることである。 (2-1)
The
第2スイッチ12は、通常時はバイパス回路35を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路35を開(非導通状態)にしておくと、第2インピーダンス回路22が常に接続された状態となって常に電力消費される上に、機器30への印加電圧が第2インピーダンス回路22のインピーダンスZbの電圧降下分だけ低くなるからである。 (2-2)
The
図4において、通常時、過電圧導通回路10のスイッチ11はオフし、バイパス回路35は第2スイッチ12が閉じて導通状態であるので、機器30には電圧Va=Vacが印加されている。 (3) Operation of
(4-1)
過電圧保護回路50では、通常時は第2スイッチ12をオンにしてバイパス回路35を閉じているので、第2インピーダンス回路22で電力が消費されることはなく、機器30への印加電圧が第2インピーダンス回路22での電圧降下分だけ低くなることも回避することができる。 (4) Features of the third embodiment (4-1)
In the
また、過電圧時には、過電圧導通回路10のスイッチ11がオンし、第2スイッチ12がオフすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。 (4-2)
In addition, when overvoltage occurs, the
商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。 (4-3)
Even if the supply voltage from the
(1)過電圧保護回路50の構成
図5は、本発明の第4実施形態に係る過電圧保護回路50を備えた装置の回路図である。図5において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。 <Fourth embodiment>
(1) Configuration of
第4実施形態は、第3実施形態に第3スイッチ13が追加された形態であり、過電圧導通回路10、第1インピーダンス回路21、第2インピーダンス回路22、電圧検出器33、及びバイパス回路35については同様のものを採用している。したがって、ここでは第3スイッチ13についてのみを説明する。 (2) Detailed Configuration of
第3スイッチ13は、電源ライン901を開閉する。ここで、電源ライン901を開閉するとは、電源ライン901を導通又は遮断して非導通にすることである。 (2-1)
The
図5において、通常時、過電圧導通回路10のスイッチ11はオフし、バイパス回路35は第2スイッチ12が閉じて導通状態であり、且つ第3スイッチ13は電源ライン901を導通状態にしているので、機器30には電圧Va=Vacが印加されている。 (3) Operation of
(4-1)
過電圧保護回路50では、通常時は第2スイッチ12をオンにしてバイパス回路35を閉じているので、第2インピーダンス回路22で電力が消費されることはなく、機器30への印加電圧が第2インピーダンス回路22での電圧降下分だけ低くなることも回避することができる。 (4) Features of the fourth embodiment (4-1)
In the
また、過電圧時には、過電圧導通回路10のスイッチ11がオンし、第2スイッチ12がオフすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。 (4-2)
In addition, when overvoltage occurs, the
さらに、第3スイッチ13が電源ライン901を遮断することによって第1インピーダンス回路21及び第2インピーダンス回路22での電力消費を止める。この結果、第1インピーダンス回路21及び第2インピーダンス回路22の過熱を抑制し、電力定格を小さくすることができる。 (4-3)
Further, the
商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。 (4-4)
Even if the supply voltage from the
(1)電力変換装置200の構成
図6は、本発明の第5実施形態に係る過電圧保護回路100を備えた電力変換装置200の回路図である。図6において、電力変換装置200は、直流電源部80、インバータ95、過電圧保護回路100で構成されている。 <Fifth Embodiment>
(1) Configuration of
直流電源部80は、整流部81と、整流部81と並列接続される平滑コンデンサ82とで構成されている。 (1-1) DC
The DC
インバータ95は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)及び複数の還流用ダイオードを含んでいる。インバータ95は、平滑コンデンサ82からの電圧Vdcが印加され、かつゲート駆動回路96により指示されたタイミングで各トランジスタがオン及びオフを行うことによって、モータ150を駆動する駆動電圧を生成する。モータ150は、例えばヒートポンプ式空気調和機の圧縮機モータ、ファンモータである。 (1-2)
The
ゲート駆動回路96は、制御部40からの指令に基づき、インバータ95の各トランジスタのオン及びオフの状態を変化させる。 (1-3)
The
過電圧保護回路100は、過電圧導通回路60と、第1インピーダンス回路71と、第2インピーダンス回路72と、電圧検出器83、バイパス回路85と、第3スイッチ63とを含んでいる。 (1-4)
The
第5実施形態と、既に説明した第1から第4までの実施形態と大きく異なる点は、過電圧保護回路100が直流部に設けられていることである。したがって、各構成要素も交流仕様から直流仕様に置き換えられることに鑑みて、同一名称であっても符号を換えて、再度説明する。 (2) Detailed Configuration of
過電圧導通回路60は、第4実施形態におけるスイッチ11に替わってスイッチ61が採用されている。 (2-1)
The
第1インピーダンス回路71は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。一般に抵抗素子が採用される。 (2-2)
The
第2インピーダンス回路72は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。一般に抵抗素子が採用される。 (2-3)
The
電圧検出器83は、平滑コンデンサ82の出力側に接続されており、平滑コンデンサ82の両端電圧、即ち平滑後の電圧Vdcの値を検出する。電圧検出器83は、例えば、互いに直列に接続された2つの抵抗が平滑コンデンサ82に並列接続され、電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、制御部40に入力される。 (2-4)
The
バイパス回路85は、第2インピーダンス回路72に並列接続されており、第2インピーダンス回路72を迂回する回路である。バイパス回路85は、第2スイッチ62を有している。第2スイッチ62は、バイパス回路85を開閉する。ここで、バイパス回路85を開閉するとは、バイパス回路35を導通又は遮断して非導通にすることである。 (2-5)
The
第2スイッチ62は、通常時はバイパス回路85を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路85を開(非導通状態)にしておくと、第2インピーダンス回路72で常に電力消費される上に、インバータ95への印加電圧が第2インピーダンス回路72のインピーダンスZbの電圧降下分だけ低くなるからである。 (2-6)
The
第3スイッチ63は、電源ライン801を開閉する。ここで、電源ライン801を開閉するとは、電源ライン801を導通又は遮断して非導通にすることである。 (2-7)
The
図6において、通常時、過電圧導通回路60のスイッチ61はオフし、バイパス回路85は第2スイッチ62が閉じて導通状態であり、且つ第3スイッチ63は電源ライン801を導通状態にしているので、インバータ95には電圧Va=Vdcが印加されている。 (3) Operation of
(4-1)
過電圧保護回路100では、通常時は第2スイッチ62をオンにしてバイパス回路85を閉じているので、第2インピーダンス回路72で電力が消費されることはなく、インバータ95への印加電圧が第2インピーダンス回路72での電圧降下分だけ低くなることも回避することができる。 (4) Features of the fifth embodiment (4-1)
In the
また、過電圧時には、過電圧導通回路60のスイッチ61がオンし、第2スイッチ62がオフすることによって、インバータ95には第1インピーダンス回路71と第2インピーダンス回路72のインピーダンスの比に応じた電圧しか印加されないので、インバータ95が過電圧から保護される。 (4-2)
In addition, when overvoltage occurs, the switch 61 of the
また、第3スイッチ63が電源ライン801を遮断することによって第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。この結果、第1インピーダンス回路71及び第2インピーダンス回路72の過熱を抑制し、電力定格を小さくすることができる。 (4-3)
Further, the
さらに、直流電源部80の下流側に配置されるスイッチ61、第2スイッチ62は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 (4-4)
Furthermore, since the switch 61 and the
(1)過電圧保護回路100の構成
図7は、本発明の第6実施形態に係る過電圧保護回路100を備えた電力変換装置200の回路図である。図7において、インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路100の一部は商用電源90と直流電源部80との間に接続され、他の部分は直流電源部80とインバータ95との間に接続されている。 <Sixth Embodiment>
(1) Configuration of
図7において、通常時、過電圧導通回路60のスイッチ61はオフし、バイパス回路85は第2スイッチ62が閉じて導通状態であり、且つ第3スイッチ63は電源ライン901を導通状態にしているので、インバータ95には電圧Va=Vdcが印加されている。 (2) Operation of
(3-1)
過電圧保護回路100では、通常時は第2スイッチ62をオンにしてバイパス回路85を閉じているので、第2インピーダンス回路72で電力が消費されることはなく、インバータ95への印加電圧が第2インピーダンス回路72での電圧降下分だけ低くなることも回避することができる。 (3) Features of the sixth embodiment (3-1)
In the
また、過電圧時には、過電圧導通回路60のスイッチ61がオンし、第2スイッチ62がオフすることによって、インバータ95には第1インピーダンス回路71と第2インピーダンス回路72のインピーダンスの比に応じた電圧しか印加されないので、インバータ95が過電圧から保護される。 (3-2)
In addition, when overvoltage occurs, the switch 61 of the
また、第3スイッチ13が電源ライン901を遮断することによって第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。この結果、第1インピーダンス回路71及び第2インピーダンス回路72の過熱を抑制し、電力定格を小さくすることができる。 (3-3)
Further, the
さらに、直流電源部80の下流側に配置されるスイッチ61、第2スイッチ62は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 (3-4)
Furthermore, since the switch 61 and the
(A)
図1で示す第1実施形態における第2インピーダンス回路22に、図4で示す第3実施形態におけるバイパス回路35を並列接続した実施形態も有効である。 <Other embodiments>
(A)
The embodiment in which the
図1に示す第1実施形態及び図2示す第2実施形態における電源ライン901を、図5で示す第4実施形態における第3スイッチ13で開閉する実施形態も有効である。 (B)
An embodiment in which the
図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第3実施形態に係る過電圧保護回路50は、いずれも交流電圧に対する過電圧保護回路を実施形態としているが、電源が直流電源である場合、あるいは機器内に交流電源を整流する直流電源部を持つ場合には、各構成要素を交流仕様から直流仕様へ置き換えて直流電源部の下流側に設けてもよい。 (C)
The
第6実施形態は、第5実施形態から、電圧検出器と第3スイッチとを、商用電源90と直流電源部80との間に設けるように変更したものであるが、電圧検出器のみを商用電源90と直流電源部80との間に設けるようにしてもよい。 (D)
The sixth embodiment is different from the fifth embodiment in that the voltage detector and the third switch are provided between the
第5実施形態、第6実施形態では、機器の内部に過電圧保護回路を持つ例を示したが、機器はコンバータ回路とインバータ回路を持つものに限定されない。 (E)
In the fifth embodiment and the sixth embodiment, the example in which the overvoltage protection circuit is provided inside the device has been described, but the device is not limited to the one having the converter circuit and the inverter circuit.
第3実施形態では、機器30の保護動作が行なわれた後に第3スイッチがオフされるものとしたが、保護動作が行なわれてから所定時間経過後に第3スイッチをオフしてもよい。 (F)
In the third embodiment, the third switch is turned off after the protection operation of the
第3実施形態では、機器30の保護動作が行なわれた後に第3スイッチがオフされるものとしたが、機器電圧Vを検出する機器電圧検出器を更に備え、機器電圧が所定値を超えたときに第3スイッチをオフしてもよい。 (G)
In the third embodiment, the third switch is turned off after the protection operation of the
第1実施形態では、過電圧時に電流を流す素子としてサージアブソーバを例にとって説明した。この場合には第1実施形態で説明したように、導通時に素子自体で電圧は保持しないため、電源電圧はインピーダンスの比によって分圧されて機器30に印加される。しかし、過電圧導通回路の素子として、バリスタやツェナダイオードなどの導通時に素子自体で所定の電圧を保持するような素子を過電圧回路に適用した場合には、電源電圧からその保持電圧分を除いた電圧がインピーダンスの比によって分圧されることなる。この場合には、素子の保持電圧とインピーダンスで分圧された電圧を加算した電圧しか機器に印加されないので、機器への引加電圧が制限されて、機器を過電圧から保護することができる。 (H)
In the first embodiment, a surge absorber has been described as an example of an element that allows a current to flow during overvoltage. In this case, as described in the first embodiment, since the voltage is not held by the element itself when conducting, the power supply voltage is divided by the impedance ratio and applied to the
11,61 スイッチ
12,62 第2スイッチ
13,63 第3スイッチ
21,71 第1インピーダンス回路
22,72 第2インピーダンス回路
33,83 電圧検出器
35,85 バイパス回路
50,100 過電圧保護回路
80 直流電源部(DC電源、コンバータ回路)
90 商用電源(AC電源)
95 インバータ(インバータ回路) 10, 60
90 Commercial power (AC power)
95 Inverter (Inverter circuit)
Claims (10)
- 電源と前記電源から電力を供給される機器との間に接続される過電圧保護回路であって、
前記電源と前記機器とを結ぶ一対の電源ライン間に前記機器と並列に接続され、過電圧時に電流を流す過電圧導通回路(10,60)と、
一対の前記電源ライン間に前記機器と並列に、且つ前記過電圧導通回路(10,60)と直列に接続される第1インピーダンス回路(21,71)と、
前記電源ラインのうちの前記電源と前記第1インピーダンス回路(21,71)との間に接続される第2インピーダンス回路(22,72)と、
を備える、
過電圧保護回路(50,100)。 An overvoltage protection circuit connected between a power source and a device supplied with power from the power source,
An overvoltage conduction circuit (10, 60) that is connected in parallel with the device between a pair of power supply lines connecting the power source and the device, and causes a current to flow in the event of an overvoltage,
A first impedance circuit (21, 71) connected in parallel with the device between a pair of power supply lines and in series with the overvoltage conduction circuit (10, 60);
A second impedance circuit (22, 72) connected between the power supply of the power supply line and the first impedance circuit (21, 71);
Comprising
Overvoltage protection circuit (50, 100). - 前記過電圧導通回路(10,60)は、過電圧時に電流を流す素子として、過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードのいずれか1つを含む、
請求項1に記載の過電圧保護回路(50,100)。 The overvoltage conduction circuit (10, 60) includes any one of a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche diode as an element that allows a current to flow when overvoltage occurs.
The overvoltage protection circuit (50, 100) according to claim 1. - 前記電源の電圧を検出する電圧検出器(33,83)をさらに備え、
前記過電圧導通回路(10,60)は、前記電源ラインと前記第1インピーダンス回路(21,71)との間を開閉するスイッチ(11,61)を有し、
前記スイッチ(11,61)は、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときにオンして前記電源ラインと前記第1インピーダンス回路(21,71)との間を導通させる、
請求項1に記載の過電圧保護回路(50,100)。 A voltage detector (33, 83) for detecting the voltage of the power source;
The overvoltage conduction circuit (10, 60) has a switch (11, 61) for opening and closing between the power supply line and the first impedance circuit (21, 71),
The switch (11, 61) is turned on when a value detected by the voltage detector (33, 83) exceeds a predetermined threshold, and between the power supply line and the first impedance circuit (21, 71). Continuity,
The overvoltage protection circuit (50, 100) according to claim 1. - 前記電源の電圧を検出する電圧検出器(33,83)と、
前記第2インピーダンス回路(22,72)を迂回するバイパス回路(35,85)と、
をさらに備え、
前記バイパス回路(35,85)は、前記バイパス回路(35,85)を開閉する第2スイッチ(12,62)を有し、
前記第2スイッチ(12,62)は、通常時は前記バイパス回路(35,85)を閉じ、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときに前記バイパス回路(35,85)を遮断する、
請求項1又は請求項2に記載の過電圧保護回路(50,100)。 A voltage detector (33, 83) for detecting the voltage of the power source;
A bypass circuit (35, 85) bypassing the second impedance circuit (22, 72);
Further comprising
The bypass circuit (35, 85) has a second switch (12, 62) for opening and closing the bypass circuit (35, 85),
The second switch (12, 62) normally closes the bypass circuit (35, 85), and when the detected value by the voltage detector (33, 83) exceeds a predetermined threshold, 35, 85),
The overvoltage protection circuit (50, 100) according to claim 1 or 2. - 前記第2インピーダンス回路(22,72)を迂回するバイパス回路(35,85)をさらに備え、
前記バイパス回路(35,85)は、前記バイパス回路(35,85)を開閉する第2スイッチ(12,62)を有し、
前記第2スイッチ(12,62)は、通常時は前記バイパス回路(35,85)を閉じ、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときに前記バイパス回路(35,85)を遮断する、
請求項3に記載の過電圧保護回路(50,100)。 A bypass circuit (35, 85) for bypassing the second impedance circuit (22, 72);
The bypass circuit (35, 85) has a second switch (12, 62) for opening and closing the bypass circuit (35, 85),
The second switch (12, 62) normally closes the bypass circuit (35, 85), and when the detected value by the voltage detector (33, 83) exceeds a predetermined threshold, 35, 85),
The overvoltage protection circuit (50, 100) according to claim 3. - 前記電源の電圧を検出する電圧検出器(33,83)と、
前記電源ラインを開閉する第3スイッチ(13,63)と、
をさらに備え、
前記第3スイッチ(13,63)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、前記過電圧導通回路(10,60)の導通後に前記電源ラインを遮断する、
請求項1又は請求項2に記載の過電圧保護回路(50,100)。 A voltage detector (33, 83) for detecting the voltage of the power source;
A third switch (13, 63) for opening and closing the power line;
Further comprising
The third switch (13, 63) normally turns on the power supply line, and when the detection value by the voltage detector (33, 83) exceeds a predetermined threshold, the overvoltage conduction circuit (10, 60) shuts off the power line after continuity;
The overvoltage protection circuit (50, 100) according to claim 1 or 2. - 前記電源ラインを開閉する第3スイッチ(13,63)をさらに備え、
前記第3スイッチ(13,63)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、前記過電圧導通回路(10,60)の導通後に前記電源ラインを遮断する、
請求項3から請求項5のいずれか1項に記載の過電圧保護回路(50,100)。 A third switch (13, 63) for opening and closing the power line;
The third switch (13, 63) normally turns on the power supply line, and when the detection value by the voltage detector (33, 83) exceeds a predetermined threshold, the overvoltage conduction circuit (10, 60) shuts off the power line after continuity;
The overvoltage protection circuit (50, 100) according to any one of claims 3 to 5. - 前記電源は、AC電源である、
請求項1から請求項7のいずれか1項に記載の過電圧保護回路(50)。 The power source is an AC power source;
The overvoltage protection circuit (50) according to any one of claims 1 to 7. - 前記電源は、DC電源である、
請求項1から請求項7のいずれか1項に記載の過電圧保護回路(100)。 The power source is a DC power source;
The overvoltage protection circuit (100) according to any one of claims 1 to 7. - 交流電源に接続され、交流電圧を直流電圧に変換するコンバータ回路(80)と、
前記直流電圧を交流電圧に変換するインバータ回路(95)と、
請求項1から請求項9のいずれか1項に記載の過電圧保護回路(100)と、
を備える、
電力変換装置。 A converter circuit (80) connected to an AC power source and converting AC voltage to DC voltage;
An inverter circuit (95) for converting the DC voltage into an AC voltage;
Overvoltage protection circuit (100) according to any one of claims 1 to 9,
Comprising
Power conversion device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480067793.7A CN105814762B (en) | 2013-12-27 | 2014-12-18 | Excess voltage protection and power-converting device with the excess voltage protection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-273502 | 2013-12-27 | ||
JP2013273502A JP6110294B2 (en) | 2013-12-27 | 2013-12-27 | Overvoltage protection circuit and power conversion device including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098688A1 true WO2015098688A1 (en) | 2015-07-02 |
Family
ID=53478549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083542 WO2015098688A1 (en) | 2013-12-27 | 2014-12-18 | Overvoltage protection circuit and power conversion device provided therewith |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6110294B2 (en) |
CN (1) | CN105814762B (en) |
WO (1) | WO2015098688A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019245185A1 (en) | 2018-06-21 | 2019-12-26 | Samsung Electronics Co., Ltd. | Electronic apparatus and control method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6179560B2 (en) | 2015-06-26 | 2017-08-16 | トヨタ自動車株式会社 | Fuel cell system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056738A (en) * | 1996-08-08 | 1998-02-24 | Hitachi Ltd | Power factor improving rectifier circuit |
JP2004072961A (en) * | 2002-08-09 | 2004-03-04 | Tdk Corp | Overvoltage protection element, electrochemical device module and charger |
JP2004215323A (en) * | 2002-12-26 | 2004-07-29 | Ntt Data Corp | Protective circuit |
JP2004350493A (en) * | 2003-04-28 | 2004-12-09 | Matsushita Electric Ind Co Ltd | Inverter controller for driving motor and air conditioner using the same |
JP2008141894A (en) * | 2006-12-04 | 2008-06-19 | Mitsubishi Electric Corp | Rush current preventing circuit |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2607689Y (en) * | 2003-03-22 | 2004-03-24 | 魏广强 | Multi-user safety distributing box |
CN102106053A (en) * | 2008-04-25 | 2011-06-22 | 捷通国际有限公司 | Input protection circuit |
CN202121302U (en) * | 2010-09-08 | 2012-01-18 | 易丰兴业有限公司 | DC supply equipment voltage abnormity protective circuit |
-
2013
- 2013-12-27 JP JP2013273502A patent/JP6110294B2/en active Active
-
2014
- 2014-12-18 CN CN201480067793.7A patent/CN105814762B/en active Active
- 2014-12-18 WO PCT/JP2014/083542 patent/WO2015098688A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056738A (en) * | 1996-08-08 | 1998-02-24 | Hitachi Ltd | Power factor improving rectifier circuit |
JP2004072961A (en) * | 2002-08-09 | 2004-03-04 | Tdk Corp | Overvoltage protection element, electrochemical device module and charger |
JP2004215323A (en) * | 2002-12-26 | 2004-07-29 | Ntt Data Corp | Protective circuit |
JP2004350493A (en) * | 2003-04-28 | 2004-12-09 | Matsushita Electric Ind Co Ltd | Inverter controller for driving motor and air conditioner using the same |
JP2008141894A (en) * | 2006-12-04 | 2008-06-19 | Mitsubishi Electric Corp | Rush current preventing circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019245185A1 (en) | 2018-06-21 | 2019-12-26 | Samsung Electronics Co., Ltd. | Electronic apparatus and control method thereof |
EP3738185A4 (en) * | 2018-06-21 | 2021-03-03 | Samsung Electronics Co., Ltd. | Electronic apparatus and control method thereof |
US11031777B2 (en) | 2018-06-21 | 2021-06-08 | Samsung Electronics Co., Ltd. | Clamping operation and apparatus for surge protection |
Also Published As
Publication number | Publication date |
---|---|
JP2015128356A (en) | 2015-07-09 |
CN105814762B (en) | 2019-06-18 |
CN105814762A (en) | 2016-07-27 |
JP6110294B2 (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5761425B2 (en) | Overvoltage protection circuit and power conversion device including the same | |
JP5210424B2 (en) | Switching power supply circuit with protection function and electronic device using the same | |
JP5617000B2 (en) | Switching power supply circuit with protection function and electronic device using the same | |
US9979286B2 (en) | Power converting device | |
WO2015182658A1 (en) | Circuit for driving electrical-power semiconductor element | |
JP6370492B2 (en) | Power converter | |
JP5126241B2 (en) | Overvoltage protection circuit and overvoltage protection method | |
JP6110294B2 (en) | Overvoltage protection circuit and power conversion device including the same | |
JP6337270B2 (en) | DC power supply device, inverter drive device, and air conditioner using the same | |
WO2015098625A1 (en) | Overvoltage protection circuit and power conversion device equipped with same | |
JP6239024B2 (en) | Power converter | |
JP6070782B2 (en) | Overvoltage protection circuit and power conversion device including the same | |
JP2014161195A (en) | Dc power supply device | |
JP2017127134A (en) | Overvoltage protection circuit | |
JP2015216746A (en) | Overvoltage protection circuit | |
JP6371226B2 (en) | Switching power supply with reverse current protection | |
JP2015216744A (en) | Overvoltage protection circuit and power conversion apparatus including the same | |
JP2017034869A (en) | Ac-dc conversion circuit | |
JP2021145450A (en) | Power source circuit | |
JP2015216745A (en) | Overvoltage protection circuit | |
JP2012115078A (en) | Power supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875845 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016/08648 Country of ref document: TR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201604930 Country of ref document: ID |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14875845 Country of ref document: EP Kind code of ref document: A1 |