WO2015098688A1 - Overvoltage protection circuit and power conversion device provided therewith - Google Patents

Overvoltage protection circuit and power conversion device provided therewith Download PDF

Info

Publication number
WO2015098688A1
WO2015098688A1 PCT/JP2014/083542 JP2014083542W WO2015098688A1 WO 2015098688 A1 WO2015098688 A1 WO 2015098688A1 JP 2014083542 W JP2014083542 W JP 2014083542W WO 2015098688 A1 WO2015098688 A1 WO 2015098688A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
switch
overvoltage
power supply
Prior art date
Application number
PCT/JP2014/083542
Other languages
French (fr)
Japanese (ja)
Inventor
俊彰 佐藤
矢吹 俊生
田口 泰貴
淳也 三井
康平 森田
敬之 畑山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480067793.7A priority Critical patent/CN105814762B/en
Publication of WO2015098688A1 publication Critical patent/WO2015098688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention relates to an overvoltage protection circuit and a power conversion device including the same.
  • an overvoltage protection circuit as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-207329) is provided. This overvoltage protection circuit is configured to shut off the power supply with a relay when the voltage is equal to or higher than a predetermined voltage.
  • the time required for the power supply voltage to become excessive is extremely short, and it is difficult to reliably protect with a slow response due to the interruption by the relay.
  • a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay.
  • increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
  • an object of the present invention is to provide a small-sized and low-cost overvoltage protection circuit that protects a device from a momentary excessive voltage, and a power conversion device including the same.
  • An overvoltage protection device is an overvoltage protection circuit connected between a power supply and a device to which power is supplied from the power supply, and includes an overvoltage conduction circuit, a first impedance circuit, 2 impedance circuit.
  • the overvoltage conduction circuit is connected in parallel with the device between a pair of power supply lines connecting the power source and the device, and allows current to flow when overvoltage occurs.
  • the first impedance circuit is connected between the pair of power supply lines in parallel with the device and in series with the overvoltage conduction circuit.
  • the second impedance circuit is connected between the power supply in the power supply line and the first impedance circuit.
  • a closed circuit of [power source-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power source] is configured by conducting the overvoltage conduction circuit at the time of overvoltage.
  • An overvoltage protection circuit is the overvoltage protection circuit according to the first aspect, wherein the overvoltage conduction circuit is a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche as elements that allow a current to flow during overvoltage. Any one of the diodes is included.
  • a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche diode are all elements that operate with a short response time with respect to voltage transient fluctuations. Therefore, in this overvoltage protection circuit, when the element conducts at the time of overvoltage, only a voltage corresponding to the ratio of the impedances of the two impedance circuits is applied to the device, and thus the device can be protected from the overvoltage.
  • the overvoltage protection circuit according to the third aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a voltage detector for detecting the voltage of the power supply.
  • the overvoltage conduction circuit has a switch that opens and closes between the power supply line and the first impedance circuit. This switch is turned on when the detection value by the voltage detector exceeds a predetermined threshold value, and conducts between the power supply line and the first impedance circuit.
  • the switch causes the power supply line and the first impedance circuit to conduct at the time of overvoltage. Since only a voltage according to the ratio ⁇ Za / (Za + Zb) ⁇ of the two impedances of the power supply voltage is applied, the device can be protected from overvoltage.
  • the overvoltage protection circuit according to the fourth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a bypass circuit.
  • the voltage detector detects the voltage of the power supply.
  • the bypass circuit is a circuit that bypasses the second impedance circuit.
  • the bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the value detected by the voltage detector exceeds a predetermined threshold value.
  • the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
  • the overvoltage protection circuit according to the fifth aspect of the present invention is the overvoltage protection circuit according to the third aspect, and further includes a bypass circuit.
  • the bypass circuit is a circuit that bypasses the second impedance circuit.
  • the bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the detection value by the voltage detector exceeds a predetermined threshold value.
  • the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
  • the overvoltage protection circuit according to the sixth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a third switch.
  • the voltage detection value detects the voltage of the power supply.
  • the third switch opens and closes the power line.
  • the third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
  • the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio ⁇ Za / (Za + Zb) ⁇ is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
  • An overvoltage protection circuit is the overvoltage protection circuit according to any one of the third aspect to the fifth aspect, and further includes a third switch.
  • the third switch opens and closes the power line.
  • the third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
  • the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio ⁇ Za / (Za + Zb) ⁇ is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
  • the overvoltage protection circuit according to the eighth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power supply is an AC power supply.
  • the overvoltage protection circuit according to the ninth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power source is a DC power source.
  • the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the cost of the switch can be reduced.
  • a power conversion device includes a converter circuit, an inverter circuit, and an overvoltage protection circuit according to any one of the first to ninth aspects.
  • the converter circuit is connected to an AC power source and converts an AC voltage into a DC voltage.
  • the inverter circuit converts a DC voltage into an AC voltage.
  • the overvoltage protection circuit can protect the converter circuit from excessively applied alternating voltage or the inverter circuit from transiently applied excessive DC voltage.
  • a closed circuit of [power supply-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power supply] is configured by conducting the overvoltage conduction circuit at the time of overvoltage.
  • the overvoltage protection circuit according to the second aspect of the present invention protects the device from overvoltage because the device conducts at the time of overvoltage so that only a voltage corresponding to the impedance ratio of the two impedance circuits is applied to the device. Can do.
  • the switch is connected between the power supply line and the first impedance circuit when overvoltage occurs.
  • a voltage corresponding to the ratio of two impedances of the power supply voltage ⁇ Za / (Za + Zb) ⁇ is applied to the device, so that the device can be protected from overvoltage.
  • the bypass circuit is normally closed. No power is consumed by the impedance Zb, and it can be avoided that the voltage applied to the device is lowered by the voltage drop at the impedance Zb.
  • the switch and the second switch operate at the time of overvoltage.
  • a voltage corresponding to the ratio of the two impedances of the power supply voltage ⁇ Za / (Za + Zb) ⁇ is applied to the device, so that the device can be protected from overvoltage, and the third switch operates to By cutting off, power consumption at the impedances Za and Zb is stopped.
  • overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
  • the overvoltage protection circuit according to the eighth aspect of the present invention even if the supply voltage from the AC power supply is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
  • the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so the cost of the switch is low. Can be achieved.
  • the overvoltage protection circuit protects the converter circuit from an excessive AC voltage applied transiently or protects the inverter circuit from an excessive DC voltage applied transiently. be able to.
  • the circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention.
  • FIG. 1 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the first embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, and a second impedance circuit 22.
  • Overvoltage conduction circuit 10 is composed of an element that allows current to flow when overvoltage occurs.
  • a transient voltage suppressor As an element for passing a current at the time of overvoltage, a transient voltage suppressor, a Zener diode, a surge absorber, or an avalanche diode is employed.
  • the overvoltage conduction circuit 10 is composed of one surge absorber.
  • a surge absorber is a voltage-dependent element and has a high resistance in a normal state. However, when the applied voltage exceeds a predetermined voltage, the voltage is limited by abruptly decreasing the resistance. It can be carried out.
  • Specific elements of the surge absorber include, but are not limited to, arresters and discharge tubes.
  • the overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902.
  • the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
  • the first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
  • the first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
  • Second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
  • the second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
  • FIG. 2 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the second embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and a voltage detector 33.
  • Overvoltage conduction circuit 10 employs a switch 11 instead of the surge absorber in the first embodiment.
  • the switch 11 is composed of a phototriac coupler, a light emitting diode 11a is provided on the input side (between A1 and A2), and a phototriac 11b is provided on the output side (between B1 and B2). Yes.
  • the equivalent circuit of the phototriac 11b has a configuration in which two photothyristors 111 and 112 are connected in parallel in opposite directions.
  • the anode A1 of the light emitting diode 11a is connected to the power source Vc via the resistor R1.
  • the cathode A2 of the light emitting diode 11a is connected to the control unit 40 through a signal line.
  • the first anode B1 of the phototriac 11b is connected to the power supply line 901.
  • the second anode B2 of the phototriac 11b is connected to the first impedance circuit 21.
  • the light emitting diode 11a emits light when a current flows.
  • the phototriac 11b receives light from the light emitting diode 11a in a state where the potential of the first anode B1 is higher than the potential of the second anode B2, the photothyristor 111 is turned on.
  • the photothyristor 112 is turned on.
  • the phototriac 11b is a bidirectional element that operates with respect to a bidirectional applied voltage, and also operates at a high speed, so that it is used as a bidirectional high-speed switch.
  • the bidirectional high-speed switch is not limited to the photo triac, but a normal triac or a MOSFET connected so as to conduct in both directions may be adopted.
  • a drive circuit corresponding to the form of the switch is appropriately used.
  • the overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902. When overvoltage protection between phases is performed when the commercial power supply 90 is a multiphase power supply, the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
  • control unit 40 performs operation control of the switch 11, that is, energization control to the light emitting diode 11a.
  • the first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
  • the first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
  • Second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
  • the second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
  • FIG. 3 is a circuit diagram of a general voltage detector 33.
  • the voltage detector 33 includes a transformer circuit 331 and a converter circuit 332.
  • the transformer circuit 331 is located on the input side and includes a primary winding 331a and a secondary winding 331b.
  • the converter circuit 332 is a circuit in which a rectifying unit 332a composed of a rectifying diode and a smoothing capacitor 332b are connected in parallel.
  • the voltage detector 33 when an AC voltage is applied to the transformer circuit 331, the AC voltage is transformed by the transformer circuit 331. Then, the voltage across the secondary winding 331 b is input to the converter circuit 332.
  • the AC voltage after transformation input to the converter circuit 332 is converted into a DC voltage by the rectifying unit 332a and smoothed by the smoothing capacitor 332b.
  • This smoothed DC voltage is input to the control unit 40. That is, a DC voltage corresponding to the voltage applied to the primary winding 331a is input to the control unit 40.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 To do. As a result, the photo triac 11b is turned off and returns to normal operation.
  • FIG. 4 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the third embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, and a bypass circuit 35.
  • a bypass circuit 35 is added to the second embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and The same voltage detector 33 is employed. Therefore, only the bypass circuit 35 will be described here.
  • the bypass circuit 35 is a circuit that is connected in parallel to the second impedance circuit 22 and bypasses the second impedance circuit 22.
  • the bypass circuit 35 includes the second switch 12.
  • the second switch 12 opens and closes the bypass circuit 35.
  • opening and closing the bypass circuit 35 means making the bypass circuit 35 conductive or non-conductive to make it non-conductive.
  • Second switch 12 The second switch 12 normally closes the bypass circuit 35, that is, keeps it in a conductive state. This is because if the bypass circuit 35 is left open (non-conducting state) during normal operation, the second impedance circuit 22 is always connected and power is always consumed, and the voltage applied to the device 30 is second. This is because the voltage is lowered by the voltage drop of the impedance Zb of the impedance circuit 22.
  • the bypass circuit 35 is quickly opened and the second impedance circuit 22 is connected, and the commercial power supply 90—overvoltage conduction circuit 10—first impedance circuit 21—second impedance circuit 22— It is necessary to configure a closed circuit called a commercial power supply 90. For this reason, the second switch 12 is required to operate at high speed.
  • a triac As the second switch 12, a triac, a MOSFET connected so as to conduct in both directions, or the like is employed. In the present embodiment, a phototriac coupler is employed as with the switch 11.
  • the second switch 12 is provided with a light emitting diode 12a on the input side (between C1 and C2) and a phototriac 12b on the output side (between D1 and D2).
  • the equivalent circuit of the phototriac 12b has a configuration in which two photothyristors 121 and 122 are connected in parallel in opposite directions.
  • the anode C1 of the light emitting diode 12a is connected to the power source Vc via the resistor R2.
  • the cathode C2 of the light emitting diode 12a is connected to the control unit 40 via a signal line.
  • the first anode D1 of the phototriac 12b is connected between the second impedance circuit 22 in the power supply line 902 and the device 30.
  • the second anode D2 of the photo triac 12b is connected to the power line 902 between the second impedance circuit 22 and the commercial power source 90.
  • the operating principle of the photothyristors 121 and 122 of the light-emitting diode 12a and the phototriac 12b is the same as the operating principle of the light-emitting diode 11a and the photothyristor 111 and 112 of the phototriac 11b in the switch 11, so that the description of the operation is omitted here. .
  • the control unit 40 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. As a result, the normal operation is restored.
  • FIG. 5 is a circuit diagram of an apparatus including an overvoltage protection circuit 50 according to the fourth embodiment of the present invention.
  • the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902.
  • the overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
  • the overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, a bypass circuit 35, and a third switch 13.
  • a third switch 13 is added to the third embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, The same voltage detector 33 and bypass circuit 35 are employed. Therefore, only the third switch 13 will be described here.
  • (2-1) Third switch 13 The third switch 13 opens and closes the power line 901.
  • opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
  • the third switch 13 normally closes the power supply line 901, that is, keeps it conductive.
  • the switch 11 is turned on, the second switch 12 is turned off, and a closed circuit of the commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed.
  • the third switch 13 is turned off and the power line 901 is shut off.
  • the purpose of cutting off the power supply line 901 is to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22, and it is possible to suppress overheating of the first impedance circuit 21 and the second impedance circuit 22.
  • the power rating can be reduced, and the cost can be reduced.
  • the third switch 13 is not required to have high speed like the switch 11 and the second switch 12, a relay circuit is employed in this embodiment.
  • the third switch 13 includes a relay contact 13a for opening and closing the power supply line 901, a relay coil 13b for operating the relay contact 13a, and a transistor 13c for energizing and de-energizing the relay coil 13b. Is included. One end of the relay coil 13b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 13c. The controller 40 switches between the presence and absence of the base current of the transistor 13c, turns on and off the collector and the emitter, and energizes and de-energizes the relay coil 13b.
  • the control unit 40 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
  • the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22.
  • control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. Further, the third switch 13 is turned on and the power supply line 901 is connected to return to the normal operation.
  • the third switch 13 cuts off the power supply line 901 to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22. As a result, overheating of the first impedance circuit 21 and the second impedance circuit 22 can be suppressed, and the power rating can be reduced.
  • FIG. 6 is a circuit diagram of a power converter 200 including an overvoltage protection circuit 100 according to the fifth embodiment of the present invention.
  • the power conversion device 200 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 100.
  • the inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • the overvoltage protection circuit 100 is connected between the DC power supply unit 80 and the inverter 95.
  • the DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
  • the rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
  • connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90.
  • a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90.
  • the rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
  • the smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81.
  • the smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
  • the DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
  • the inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes.
  • the inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 150.
  • the motor 150 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
  • inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
  • Gate drive circuit 96 The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
  • the overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 83, a bypass circuit 85, and a third switch 63.
  • the fifth embodiment is different from the first to fourth embodiments already described in that the overvoltage protection circuit 100 is provided in the DC section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
  • (2-1) Overvoltage conduction circuit 60 The overvoltage conduction circuit 60 employs a switch 61 instead of the switch 11 in the fourth embodiment.
  • the switch 61 includes a photocoupler 61a, a drive circuit 61b, and a transistor 61c.
  • the photocoupler 61a includes a light emitting diode 611 and a phototransistor 612.
  • the light emitting diode 611 of the photocoupler 61a is connected to the input side (between E1 and E2) of the switch 61.
  • the anode E1 of the light emitting diode 611 is connected to the power source Vc via the resistor R1.
  • the cathode E2 of the light emitting diode 611 is connected to the control unit 40 via a signal line.
  • the phototransistor 612 is connected between the drive circuit 61b and GND.
  • a transistor 61c is provided on the output side (between F1 and F2) of the switch 61.
  • the collector F1 of the transistor 61c is connected to the power supply line 801.
  • the emitter F2 of the transistor 61c is connected to the first impedance circuit 71.
  • the control signal of the control unit 40 is input to the drive circuit 61b via the photocoupler 61a.
  • a driving power supply (not shown) is connected to the driving circuit 61b.
  • the control unit 40 turns on the signal line of the light emitting diode 611, the light emitting diode 611 emits light and the phototransistor 612 becomes conductive. While the phototransistor 612 is conducting, a driving signal is output from the driving circuit 61b to the base of the transistor 61c, and the collector F1-emitter F2 of the transistor 61c is conducted.
  • control unit 40 turns off the signal line of the light emitting diode 611, the light emitting diode 611 does not emit light, and the phototransistor 612 does not conduct. While the phototransistor 612 is not conducting, the collector F1 and the emitter F2 of the transistor 61c are not conducting.
  • a one-way switch may be used, so that bidirectionality is not required when the AC circuit is opened / closed, and there is a cost merit.
  • the configuration of the one-way switch is not limited to this embodiment, but it is desirable that the switch operation can be performed at high speed like a semiconductor switch.
  • the overvoltage conduction circuit 60 is connected in parallel with the device 30 between a pair of power supply lines 801 and 802.
  • the first impedance circuit 71 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za. In general, a resistance element is employed.
  • the first impedance circuit 71 is connected between the pair of power supply lines 801 and 802 in parallel with the inverter 95 and in series with the overvoltage conduction circuit 60.
  • Second impedance circuit 72 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb. In general, a resistance element is employed.
  • the second impedance circuit 72 is connected between the DC power supply unit 80 and the first impedance circuit 71 on the power supply line 802.
  • the voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc.
  • the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
  • the bypass circuit 85 is a circuit that is connected in parallel to the second impedance circuit 72 and bypasses the second impedance circuit 72.
  • the bypass circuit 85 has a second switch 62.
  • the second switch 62 opens and closes the bypass circuit 85.
  • opening and closing the bypass circuit 85 means that the bypass circuit 35 is turned on or off to make it non-conductive.
  • Second switch 62 The second switch 62 normally closes the bypass circuit 85, that is, keeps it in a conductive state. This is because if the bypass circuit 85 is left open (non-conducting state) during normal operation, power is always consumed by the second impedance circuit 72, and the voltage applied to the inverter 95 is the voltage of the impedance Zb of the second impedance circuit 72. This is because it is lowered by the amount of descent.
  • the bypass circuit 85 is quickly opened, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80. Need to be configured. For this reason, the second switch 62 is required to operate at high speed. In the present embodiment, the same switch as the switch 61 is employed. The switch is not limited to this embodiment.
  • a light emitting diode 621 of a photocoupler 62a is provided on the input side (between G1 and G2), and a transistor 62c is provided on the output side (between H1 and H2).
  • the anode G1 of the light emitting diode 621 is connected to the power source Vc via the resistor R2.
  • the cathode G2 of the light emitting diode 621 is connected to the control unit 40 via a signal line.
  • the collector H1 of the transistor 62c is connected between the second impedance circuit 72 in the power supply line 802 and the inverter 95.
  • the emitter H2 of the transistor 62c is connected to the power supply line 802 between the second impedance circuit 72 and the DC power supply unit 80.
  • the third switch 63 opens and closes the power line 801.
  • opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
  • the third switch 63 normally closes the power supply line 801, that is, keeps it conductive.
  • the switch 61 is turned on, the second switch 62 is turned off, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80 is formed.
  • the third switch 63 is turned off and the power line 801 is shut off.
  • the purpose of cutting off the power supply line 801 is to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72, and it is possible to suppress overheating of the first impedance circuit 71 and the second impedance circuit 72.
  • the power rating can be reduced, and the cost can be reduced.
  • the third switch 63 is not required to have high speed like the switch 61 and the second switch 62, a relay circuit is employed in this embodiment.
  • the third switch 63 includes a relay contact 63a for opening and closing the power supply line 801, a relay coil 63b for operating the relay contact 63a, and a transistor 63c for energizing and de-energizing the relay coil 63b. Is included. One end of the relay coil 63b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 63c. The controller 40 switches between the presence and absence of the base current of the transistor 63c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 63b.
  • the control unit 40 When the voltage Vdc of the DC power supply unit 80 increases rapidly and the control unit 40 determines that the voltage output from the voltage detector 83 exceeds the threshold value, the control unit 40 energizes the light emitting diode 611 of the switch 61, The transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
  • the third switch 63 cuts off the power supply line 801 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
  • the control unit 40 determines that the voltage Vac of the commercial power supply 90 and the voltage Vdc of the DC power supply unit 80 are decreased and the voltage output from the voltage detector 83 is lower than the threshold for recovery, the control unit 40 switches the switch 61.
  • the light-emitting diode 611 is turned off, and the transistor 61c is turned off.
  • the control unit 40 energizes the light emitting diode 621 of the second switch 62 to turn on the transistor 62c. Further, by turning on the third switch 63 and connecting the power supply line 801, the normal operation is restored.
  • the third switch 63 cuts off the power supply line 801 to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
  • the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
  • FIG. 7 is a circuit diagram of a power conversion device 200 including the overvoltage protection circuit 100 according to the sixth embodiment of the present invention.
  • the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802.
  • a part of the overvoltage protection circuit 100 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
  • the overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 33, a bypass circuit 85, and a third switch 13.
  • a voltage detector and a third switch which are components of the overvoltage protection circuit 100, are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the third switch is the same as the arrangement of the voltage detector 33 and the third switch 13 in the fourth embodiment. Therefore, in view of the fact that the voltage detector and the third switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the third switch 13 of the fourth embodiment are employed.
  • each component includes the voltage detector 33 and the third switch 13 of the fourth embodiment, the overvoltage conduction circuit 60 of the fifth embodiment, the first impedance circuit 71, the second impedance circuit 72, and the bypass circuit 85. Therefore, the description is omitted here and only the operation is described.
  • control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold value due to the fluctuation of the voltage Vac of the commercial power supply 90, the control unit 40 energizes the light emitting diode 611 of the switch 61. Then, the transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
  • the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
  • the third switch 13 cuts off the power supply line 901 to stop the power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
  • the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
  • the second switch 12 is turned on and the bypass circuit 35 is closed, so that no power is consumed in the second impedance circuit 22, and the voltage applied to the device 30 is equal to the voltage drop in the second impedance circuit 22. Only lowering can be avoided.
  • the third switch 13 stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22 by cutting off the power supply line 901, the power rating of the first impedance circuit 21 and the second impedance circuit 22 is reduced. Can do.
  • the overvoltage protection circuit 50 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the third embodiment shown in FIG. 4 is an overvoltage protection circuit for an AC voltage.
  • the power source is a DC power source or when a DC power source unit that rectifies an AC power source is provided in the device, each component may be replaced with the DC specification and provided downstream of the DC power source unit.
  • the sixth embodiment is different from the fifth embodiment in that the voltage detector and the third switch are provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is commercialized. You may make it provide between the power supply 90 and the DC power supply part 80.
  • the third switch is turned off after the protection operation of the device 30 is performed.
  • the third switch may be turned off after a predetermined time has elapsed since the protection operation was performed.
  • the third switch is turned off after the protection operation of the device 30 is performed.
  • the device further includes a device voltage detector that detects the device voltage V, and the device voltage exceeds a predetermined value. Sometimes the third switch may be turned off.
  • a surge absorber has been described as an example of an element that allows a current to flow during overvoltage.
  • the power supply voltage is divided by the impedance ratio and applied to the device 30.
  • an overvoltage circuit such as a varistor or Zener diode that maintains a predetermined voltage when the element itself is on, the voltage obtained by removing the retained voltage from the power supply voltage. Is divided by the impedance ratio.
  • the applied voltage to the device is limited, and the device can be protected from overvoltage.
  • the present invention is useful for equipment used in an area where power supply voltage is likely to fluctuate, such as a refrigeration apparatus.

Landscapes

  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

This invention addresses the problem of providing a small-form-factor, low-cost overvoltage protection circuit that protects equipment from momentary excessive voltages and a power conversion device provided with said overvoltage protection circuit. In said overvoltage protection circuit (50), normally, a second switch (12) is on, closing a bypass circuit (35), so no power is consumed in a second impedance circuit (22), preventing a voltage being applied to equipment (30) from decreasing by an amount equal to the voltage drop across said second impedance circuit (22). When an overvoltage occurs, a switch (11) in an overvoltage-conducting circuit (10) turns on and the aforementioned second switch (12) turns off such that only a voltage corresponding to the ratio between the impedances of a first impedance circuit (21) and the abovementioned second impedance circuit (22) is applied to the abovementioned equipment (30), thus protecting said equipment (30) from the overvoltage.

Description

過電圧保護回路、及びそれを備えた電力変換装置Overvoltage protection circuit and power conversion device including the same
 本発明は、過電圧保護回路、及びそれを備えた電力変換装置に関する。 The present invention relates to an overvoltage protection circuit and a power conversion device including the same.
 電源電圧の変動が起こり易い地域で使用される機器は、電圧上昇時の対策如何によっては、機器の故障を招く虞がある。それゆえ、特許文献1(特開2009-207329号公報)に開示されているような過電圧保護回路が設けられる。この過電圧保護回路は、所定電圧以上のときにリレーで電源を遮断する構成である。 ∙ Equipment used in areas where power supply voltage is likely to fluctuate may cause equipment failure depending on the measures taken when the voltage rises. Therefore, an overvoltage protection circuit as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-207329) is provided. This overvoltage protection circuit is configured to shut off the power supply with a relay when the voltage is equal to or higher than a predetermined voltage.
 しかしながら、電源電圧が過大となるのに要する時間は極めて短く、上記リレーによる遮断では反応が遅く確実に保護することは困難である。特に半導体素子のような、過電圧に耐えうる時間が短いものについては、リレーによる遮断では保護ができない。また、瞬間的な過大電圧のためだけに半導体素子などの耐圧を高くすることは高コスト化、大型化を招来する。 However, the time required for the power supply voltage to become excessive is extremely short, and it is difficult to reliably protect with a slow response due to the interruption by the relay. In particular, a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay. Further, increasing the breakdown voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
 そこで、本発明の課題は、瞬間的な過大電圧から機器を保護する小型・低コストの過電圧保護回路、及びそれを備えた電力変換装置を提供することにある。 Therefore, an object of the present invention is to provide a small-sized and low-cost overvoltage protection circuit that protects a device from a momentary excessive voltage, and a power conversion device including the same.
 本発明の第1観点に係る過電圧保護装置は、電源とその電源から電力を供給される機器との間に接続される過電圧保護回路であって、過電圧導通回路と、第1インピーダンス回路と、第2インピーダンス回路とを備えている。過電圧導通回路は、電源と機器とを結ぶ一対の電源ライン間にその機器と並列に接続され、過電圧時に電流を流す。第1インピーダンス回路は、一対の電源ライン間に機器と並列に、且つ過電圧導通回路と直列に接続されている。第2インピーダンス回路は、電源ラインのうちの電源と第1インピーダンス回路との間に接続されている。 An overvoltage protection device according to a first aspect of the present invention is an overvoltage protection circuit connected between a power supply and a device to which power is supplied from the power supply, and includes an overvoltage conduction circuit, a first impedance circuit, 2 impedance circuit. The overvoltage conduction circuit is connected in parallel with the device between a pair of power supply lines connecting the power source and the device, and allows current to flow when overvoltage occurs. The first impedance circuit is connected between the pair of power supply lines in parallel with the device and in series with the overvoltage conduction circuit. The second impedance circuit is connected between the power supply in the power supply line and the first impedance circuit.
 この過電圧保護回路では、過電圧時に、過電圧導通回路が導通することによって、[電源―過電圧導通回路―第1インピーダンス回路―第2インピーダンス回路―電源]の閉回路が構成される。その結果、機器には、2つのインピーダンス回路のインピーダンスの比に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 In this overvoltage protection circuit, a closed circuit of [power source-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power source] is configured by conducting the overvoltage conduction circuit at the time of overvoltage. As a result, since only a voltage corresponding to the ratio of the impedances of the two impedance circuits is applied to the device, the device can be protected from overvoltage.
 本発明の第2観点に係る過電圧保護回路は、第1観点に係る過電圧保護回路であって、過電圧導通回路が、過電圧時に電流を流す素子として、過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードのいずれか1つを含んでいる。 An overvoltage protection circuit according to a second aspect of the present invention is the overvoltage protection circuit according to the first aspect, wherein the overvoltage conduction circuit is a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche as elements that allow a current to flow during overvoltage. Any one of the diodes is included.
 過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードは、いずれも電圧の過渡変動に対して、短い応答時間で動作する素子である。それゆえ、この過電圧保護回路では、過電圧時に当該素子が導通することによって、機器には、2つのインピーダンス回路のインピーダンスの比に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 A transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche diode are all elements that operate with a short response time with respect to voltage transient fluctuations. Therefore, in this overvoltage protection circuit, when the element conducts at the time of overvoltage, only a voltage corresponding to the ratio of the impedances of the two impedance circuits is applied to the device, and thus the device can be protected from the overvoltage.
 本発明の第3観点に係る過電圧保護回路は、第1観点に係る過電圧保護回路であって、電源の電圧を検出する電圧検出器をさらに備えている。過電圧導通回路は、電源ラインと第1インピーダンス回路との間を開閉するスイッチを有している。このスイッチは、電圧検出器による検出値が所定の閾値を超えたときにオンして電源ラインと第1インピーダンス回路との間を導通させる。 The overvoltage protection circuit according to the third aspect of the present invention is the overvoltage protection circuit according to the first aspect, and further includes a voltage detector for detecting the voltage of the power supply. The overvoltage conduction circuit has a switch that opens and closes between the power supply line and the first impedance circuit. This switch is turned on when the detection value by the voltage detector exceeds a predetermined threshold value, and conducts between the power supply line and the first impedance circuit.
 この過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、過電圧時にスイッチが電源ラインと第1インピーダンス回路との間を導通させることによって、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 In this overvoltage protection circuit, for example, when the impedance of each of the first impedance circuit and the second impedance circuit is Za and Zb, the switch causes the power supply line and the first impedance circuit to conduct at the time of overvoltage. Since only a voltage according to the ratio {Za / (Za + Zb)} of the two impedances of the power supply voltage is applied, the device can be protected from overvoltage.
 本発明の第4観点に係る過電圧保護回路は、第1観点又は第2観点に係る過電圧保護回路であって、電圧検出器と、バイパス回路とをさらに備えている。電圧検出器は、電源の電圧を検出する。バイパス回路は、第2インピーダンス回路を迂回する回路である。また、バイパス回路は、バイパス回路を開閉する第2スイッチを有する。この第2スイッチは、通常時はバイパス回路を閉じ、電圧検出器による検出値が所定の閾値を超えたときにバイパス回路を遮断する。 The overvoltage protection circuit according to the fourth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a bypass circuit. The voltage detector detects the voltage of the power supply. The bypass circuit is a circuit that bypasses the second impedance circuit. The bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the value detected by the voltage detector exceeds a predetermined threshold value.
 この過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、通常時はバイパス回路を閉じているので、インピーダンスZbで電力が消費されることはなく、機器への印加電圧がインピーダンスZbでの電圧降下分だけ低くなることも回避することができる。 In this overvoltage protection circuit, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
 他方、過電圧時に第2スイッチがバイパス回路を遮断することにより、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 On the other hand, since the second switch cuts off the bypass circuit at the time of overvoltage, only the voltage according to the ratio of two impedances of power supply voltage {Za / (Za + Zb)} is applied to the device, so that the device is protected from overvoltage. Can do.
 本発明の第5観点に係る過電圧保護回路は、第3観点に係る過電圧保護回路であって、バイパス回路をさらに備えている。バイパス回路は、第2インピーダンス回路を迂回する回路である。また、バイパス回路は、バイパス回路を開閉する第2スイッチを有している。第2スイッチは、通常時はバイパス回路を閉じ、電圧検出器による検出値が所定の閾値を超えたときにバイパス回路を遮断する。 The overvoltage protection circuit according to the fifth aspect of the present invention is the overvoltage protection circuit according to the third aspect, and further includes a bypass circuit. The bypass circuit is a circuit that bypasses the second impedance circuit. The bypass circuit has a second switch that opens and closes the bypass circuit. The second switch normally closes the bypass circuit, and shuts off the bypass circuit when the detection value by the voltage detector exceeds a predetermined threshold value.
 この過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、通常時はバイパス回路を閉じているので、インピーダンスZbで電力が消費されることはなく、機器への印加電圧がインピーダンスZbでの電圧降下分だけ低くなることも回避することができる。 In this overvoltage protection circuit, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the bypass circuit is normally closed, so that power is not consumed by the impedance Zb. It is also possible to avoid the voltage applied to the device being lowered by the voltage drop at the impedance Zb.
 他方、過電圧時に第2スイッチがバイパス回路を遮断することにより、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 On the other hand, since the second switch cuts off the bypass circuit at the time of overvoltage, only the voltage according to the ratio of two impedances of power supply voltage {Za / (Za + Zb)} is applied to the device, so that the device is protected from overvoltage. Can do.
 本発明の第6観点に係る過電圧保護回路は、第1観点又は第2観点に係る過電圧保護回路であって、電圧検出器と、第3スイッチとをさらに備えている。電圧検出値は、電源の電圧を検出する。第3スイッチは、電源ラインを開閉する。第3スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の閾値を超えたとき、第2スイッチの動作後に電源ラインを遮断する。 The overvoltage protection circuit according to the sixth aspect of the present invention is the overvoltage protection circuit according to the first aspect or the second aspect, and further includes a voltage detector and a third switch. The voltage detection value detects the voltage of the power supply. The third switch opens and closes the power line. The third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
 この過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、過電圧時にスイッチ及び第2スイッチが動作することによって、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので機器を過電圧から保護することができ、さらに、第3スイッチが動作して電源ラインを遮断することによってインピーダンスZa及びZbでの電力消費を止める。この結果、インピーダンスZa及びZbの過熱を抑制し、電力定格を小さくすることができる。 In this overvoltage protection circuit, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio {Za / (Za + Zb)} is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
 本発明の第7観点に係る過電圧保護回路は、第3観点から第5観点のいずれか1つに係る過電圧保護回路であって、第3スイッチをさらに備えている。第3スイッチは、電源ラインを開閉する。第3スイッチは、通常時は電源ラインを導通状態にし、電圧検出器による検出値が所定の閾値を超えたとき、第2スイッチの動作後に電源ラインを遮断する。 An overvoltage protection circuit according to a seventh aspect of the present invention is the overvoltage protection circuit according to any one of the third aspect to the fifth aspect, and further includes a third switch. The third switch opens and closes the power line. The third switch normally turns on the power line, and shuts off the power line after the operation of the second switch when the value detected by the voltage detector exceeds a predetermined threshold.
 この過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、過電圧時にスイッチ及び第2スイッチが動作することによって、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので機器を過電圧から保護することができ、さらに、第3スイッチが動作して電源ラインを遮断することによってインピーダンスZa及びZbでの電力消費を止める。この結果、インピーダンスZa及びZbの過熱を抑制し、電力定格を小さくすることができる。 In this overvoltage protection circuit, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the switch and the second switch operate at the time of overvoltage, so that the device has two impedances of the power supply voltage. Since only a voltage corresponding to the ratio {Za / (Za + Zb)} is applied, the device can be protected from overvoltage, and further, the power at the impedances Za and Zb can be obtained by operating the third switch to cut off the power line. Stop consumption. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
 本発明の第8観点に係る過電圧保護回路は、第1観点から第7観点のいずれか一つに係る過電圧保護回路であって、電源がAC電源である。 The overvoltage protection circuit according to the eighth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power supply is an AC power supply.
 この過電圧保護回路では、AC電源からの供給電圧が過大電圧であっても、機器には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器の電圧定格を高く設計する必要がなく、合理的である。 In this overvoltage protection circuit, even if the supply voltage from the AC power supply is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 本発明の第9観点に係る過電圧保護回路は、第1観点から第7観点のいずれか一つに係る過電圧保護回路であって、電源がDC電源である。 The overvoltage protection circuit according to the ninth aspect of the present invention is the overvoltage protection circuit according to any one of the first to seventh aspects, and the power source is a DC power source.
 この過電圧保護回路では、交流を入り切りするスイッチは双方向性を必要とするが、DC電源の下流側に配置されるスイッチは片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 In this overvoltage protection circuit, the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so that the cost of the switch can be reduced.
 本発明の第10観点に係る電力変換装置は、コンバータ回路と、インバータ回路と、第1観点から第9観点のいずれか一つに係る過電圧保護回路とを備えている。コンバータ回路は、交流電源に接続され、交流電圧を直流電圧に変換する。インバータ回路は、直流電圧を交流電圧に変換する。 A power conversion device according to a tenth aspect of the present invention includes a converter circuit, an inverter circuit, and an overvoltage protection circuit according to any one of the first to ninth aspects. The converter circuit is connected to an AC power source and converts an AC voltage into a DC voltage. The inverter circuit converts a DC voltage into an AC voltage.
 この電力変換装置では、過電圧保護回路が、コンバータ回路を過渡的に印加される過大交流電圧から保護し、又はインバータ回路を過渡的に印加される過大直流電圧から保護することができる。 In this power converter, the overvoltage protection circuit can protect the converter circuit from excessively applied alternating voltage or the inverter circuit from transiently applied excessive DC voltage.
 本発明の第1観点に係る過電圧保護装置では、過電圧時に、過電圧導通回路が導通することによって、[電源―過電圧導通回路―第1インピーダンス回路―第2インピーダンス回路―電源]の閉回路が構成される。その結果、機器には、2つのインピーダンス回路のインピーダンスの比に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 In the overvoltage protection device according to the first aspect of the present invention, a closed circuit of [power supply-overvoltage conduction circuit-first impedance circuit-second impedance circuit-power supply] is configured by conducting the overvoltage conduction circuit at the time of overvoltage. The As a result, since only a voltage corresponding to the ratio of the impedances of the two impedance circuits is applied to the device, the device can be protected from overvoltage.
 本発明の第2観点に係る過電圧保護回路では、過電圧時に素子が導通することによって、機器には、2つのインピーダンス回路のインピーダンスの比に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 The overvoltage protection circuit according to the second aspect of the present invention protects the device from overvoltage because the device conducts at the time of overvoltage so that only a voltage corresponding to the impedance ratio of the two impedance circuits is applied to the device. Can do.
 本発明の第3観点に係る過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、過電圧時にスイッチが電源ラインと第1インピーダンス回路との間を導通させることによって、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 In the overvoltage protection circuit according to the third aspect of the present invention, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the switch is connected between the power supply line and the first impedance circuit when overvoltage occurs. By conducting the current, only a voltage corresponding to the ratio of two impedances of the power supply voltage {Za / (Za + Zb)} is applied to the device, so that the device can be protected from overvoltage.
 本発明の第4観点又は第5観点に係る過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、通常時はバイパス回路を閉じているので、インピーダンスZbで電力が消費されることはなく、機器への印加電圧がインピーダンスZbでの電圧降下分だけ低くなることも回避することができる。 In the overvoltage protection circuit according to the fourth aspect or the fifth aspect of the present invention, for example, when the impedance of each of the first impedance circuit and the second impedance circuit is Za and Zb, the bypass circuit is normally closed. No power is consumed by the impedance Zb, and it can be avoided that the voltage applied to the device is lowered by the voltage drop at the impedance Zb.
 他方、過電圧時に第2スイッチがバイパス回路を遮断することにより、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので、機器を過電圧から保護することができる。 On the other hand, since the second switch cuts off the bypass circuit at the time of overvoltage, only the voltage according to the ratio of two impedances of power supply voltage {Za / (Za + Zb)} is applied to the device, so that the device is protected from overvoltage. Can do.
 本発明の第6観点又は第7観点に係る過電圧保護回路では、例えば、第1インピーダンス回路及び第2インピーダンス回路それぞれのインピーダンスをZa及びZbとしたとき、過電圧時にスイッチ及び第2スイッチが動作することによって、機器には電源電圧の2つのインピーダンスの比{Za/(Za+Zb)}に応じた電圧しか印加されないので機器を過電圧から保護することができ、さらに、第3スイッチが動作して電源ラインを遮断することによってインピーダンスZa及びZbでの電力消費を止める。この結果、インピーダンスZa及びZbの過熱を抑制し、電力定格を小さくすることができる。 In the overvoltage protection circuit according to the sixth aspect or the seventh aspect of the present invention, for example, when the impedances of the first impedance circuit and the second impedance circuit are Za and Zb, the switch and the second switch operate at the time of overvoltage. Thus, only a voltage corresponding to the ratio of the two impedances of the power supply voltage {Za / (Za + Zb)} is applied to the device, so that the device can be protected from overvoltage, and the third switch operates to By cutting off, power consumption at the impedances Za and Zb is stopped. As a result, overheating of the impedances Za and Zb can be suppressed and the power rating can be reduced.
 本発明の第8観点に係る過電圧保護回路では、AC電源からの供給電圧が過大電圧であっても、機器には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器の電圧定格を高く設計する必要がなく、合理的である。 In the overvoltage protection circuit according to the eighth aspect of the present invention, even if the supply voltage from the AC power supply is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device. Therefore, it is not necessary to design the equipment with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 本発明の第9観点に係る過電圧保護回路では、交流を入り切りするスイッチは双方向性を必要とするが、DC電源の下流側に配置されるスイッチは片方向スイッチでよいので、スイッチの低コスト化を図ることができる。 In the overvoltage protection circuit according to the ninth aspect of the present invention, the switch for turning on and off the alternating current needs bidirectionality, but the switch arranged on the downstream side of the DC power supply may be a one-way switch, so the cost of the switch is low. Can be achieved.
 本発明の第10観点に係る電力変換装置では、過電圧保護回路が、コンバータ回路を過渡的に印加される過大交流電圧から保護し、又はインバータ回路を過渡的に印加される過大直流電圧から保護することができる。 In the power conversion device according to the tenth aspect of the present invention, the overvoltage protection circuit protects the converter circuit from an excessive AC voltage applied transiently or protects the inverter circuit from an excessive DC voltage applied transiently. be able to.
本発明の第1実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 2nd Embodiment of this invention. 電圧検出器の回路図。The circuit diagram of a voltage detector. 本発明の第3実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る過電圧保護回路を備えた装置の回路図。The circuit diagram of the apparatus provided with the overvoltage protection circuit which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る過電圧保護回路を備えた電力変換装置の回路図。The circuit diagram of the power converter device provided with the overvoltage protection circuit which concerns on 6th Embodiment of this invention.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
 <第1実施形態>
 (1)過電圧保護回路50の構成
 図1は、本発明の第1実施形態に係る過電圧保護回路50を備えた装置の回路図である。図1において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
<First Embodiment>
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 1 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the first embodiment of the present invention. In FIG. 1, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、過電圧導通回路10と、第1インピーダンス回路21と、第2インピーダンス回路22とを含んでいる。 The overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, and a second impedance circuit 22.
 (2)過電圧保護回路50の詳細構成
 (2-1)過電圧導通回路10
 過電圧導通回路10は、過電圧時に電流を流す素子で構成されている。過電圧時に電流を流す素子としては、過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードのいずれかが採用される。
(2) Detailed configuration of overvoltage protection circuit 50 (2-1) Overvoltage conduction circuit 10
The overvoltage conduction circuit 10 is composed of an element that allows current to flow when overvoltage occurs. As an element for passing a current at the time of overvoltage, a transient voltage suppressor, a Zener diode, a surge absorber, or an avalanche diode is employed.
 本実施形態では、過電圧導通回路10は、一つのサージアブソーバで構成されている。サージアブソーバは、電圧依存性を持つ素子であり、通常の状態では高い抵抗を有しているが、印加される電圧が所定電圧を越えたときに抵抗を急激に低下させることによって電圧の制限を行うことができる。サージアブソーバの具体的な素子としては、アレスタや放電管などがあげられるが、これらに限定するものではない。 In the present embodiment, the overvoltage conduction circuit 10 is composed of one surge absorber. A surge absorber is a voltage-dependent element and has a high resistance in a normal state. However, when the applied voltage exceeds a predetermined voltage, the voltage is limited by abruptly decreasing the resistance. It can be carried out. Specific elements of the surge absorber include, but are not limited to, arresters and discharge tubes.
 過電圧導通回路10は、一対の電源ライン901,902間に機器30と並列に接続されている。なお、商用電源90が多相電源のときに各相間の過電圧保護を行う場合は各相分の電源ライン間に、過電圧導通回路10が接続される。 The overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902. When the commercial power supply 90 is a multiphase power supply and overvoltage protection between phases is performed, the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
 (2-2)第1インピーダンス回路21
 第1インピーダンス回路21は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。
(2-2) First impedance circuit 21
The first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
 第1インピーダンス回路21は、一対の電源ライン901,902間に機器30と並列に、且つ過電圧導通回路10と直列に接続されている。 The first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
 (2-3)第2インピーダンス回路22
 第2インピーダンス回路22は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。
(2-3) Second impedance circuit 22
The second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
 第2インピーダンス回路22は、電源ライン902上で、商用電源90と第1インピーダンス回路21との間に接続されている。 The second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
 (3)過電圧保護回路50の動作
 説明の便宜上、商用電源90の電圧をVac、機器30に印加される電圧をVa、第2インピーダンス回路22の両端にかかる電圧をVbとする。
(3) Operation of Overvoltage Protection Circuit 50 For convenience of explanation, the voltage of the commercial power supply 90 is Vac, the voltage applied to the device 30 is Va, and the voltage applied to both ends of the second impedance circuit 22 is Vb.
 図1において、通常時、過電圧導通回路10のサージアブソーバは導通していないので、機器30には電圧Va=Vac-Vbが印加されている。 In FIG. 1, since the surge absorber of the overvoltage conduction circuit 10 is not normally conducted, the voltage Va = Vac−Vb is applied to the device 30.
 商用電源90の電圧Vacが急激に変動して過電圧となり、電圧Vaがサージアブソーバの動作開始電圧を超えると、過電圧導通回路10のサージアブソーバが導通して、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路が構成される。このとき、機器30には電圧Vacの2つのインピーダンスの比に応じた電圧Va=Vac×Za/(Za+Zb)しか印加されない。その結果、機器30が過電圧から保護される。 When the voltage Vac of the commercial power supply 90 suddenly fluctuates and becomes overvoltage, and the voltage Va exceeds the operation start voltage of the surge absorber, the surge absorber of the overvoltage conduction circuit 10 becomes conductive, and the commercial power supply 90-overvoltage conduction circuit 10-first A closed circuit of 1 impedance circuit 21 -second impedance circuit 22 -commercial power supply 90 is formed. At this time, only the voltage Va = Vac × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vac is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 (4)第1実施形態の特徴
 (4-1)
 過電圧保護回路50では、過電圧時に過電圧導通回路10のサージアブソーバが導通することによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。
(4) Features of the first embodiment (4-1)
In the overvoltage protection circuit 50, when the surge absorber of the overvoltage conduction circuit 10 conducts at the time of overvoltage, only a voltage corresponding to the impedance ratio of the first impedance circuit 21 and the second impedance circuit 22 is applied to the device 30. 30 is protected from overvoltage.
 (4-2)
 商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-2)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device 30. Therefore, it is not necessary to design the device 30 with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第2実施形態>
 (1)過電圧保護回路50の構成
 図2は、本発明の第2実施形態に係る過電圧保護回路50を備えた装置の回路図である。図2において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
Second Embodiment
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 2 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the second embodiment of the present invention. In FIG. 2, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、過電圧導通回路10と、第1インピーダンス回路21と、第2インピーダンス回路22と、電圧検出器33とを含んでいる。 The overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and a voltage detector 33.
 (2)過電圧保護回路50の詳細構成
 (2-1)過電圧導通回路10
 過電圧導通回路10は、第1実施形態におけるサージアブソーバに替わってスイッチ11が採用されている。図2に示すように、スイッチ11は、フォトトライアックカプラで構成され、入力側(A1-A2間)に発光ダイオード11aが設けられ、出力側(B1-B2間)にフォトトライアック11bが設けられている。フォトトライアック11bの等価回路は、2つのフォトサイリスタ111,112を互いに逆方向に並列接続した構成である。
(2) Detailed configuration of overvoltage protection circuit 50 (2-1) Overvoltage conduction circuit 10
The overvoltage conduction circuit 10 employs a switch 11 instead of the surge absorber in the first embodiment. As shown in FIG. 2, the switch 11 is composed of a phototriac coupler, a light emitting diode 11a is provided on the input side (between A1 and A2), and a phototriac 11b is provided on the output side (between B1 and B2). Yes. The equivalent circuit of the phototriac 11b has a configuration in which two photothyristors 111 and 112 are connected in parallel in opposite directions.
 発光ダイオード11aのアノードA1は抵抗R1を介して電源Vcに接続されている。また、発光ダイオード11aのカソードA2は信号線を介して制御部40に接続されている。 The anode A1 of the light emitting diode 11a is connected to the power source Vc via the resistor R1. The cathode A2 of the light emitting diode 11a is connected to the control unit 40 through a signal line.
 フォトトライアック11bの第1アノードB1は電源ライン901に接続されている。また、フォトトライアック11bの第2アノードB2は第1インピーダンス回路21に接続されている。 The first anode B1 of the phototriac 11b is connected to the power supply line 901. The second anode B2 of the phototriac 11b is connected to the first impedance circuit 21.
 発光ダイオード11aは電流が流れると発光する。フォトトライアック11bは、第1アノードB1の電位が第2アノードB2の電位より大きい状態で発光ダイオード11aからの光を受けるとフォトサイリスタ111がオン状態になる。他方、第1アノードB1の電位が第2アノードB2の電位より小さい状態で発光ダイオード11aからの光を受けるとフォトサイリスタ112がオン状態になる。 The light emitting diode 11a emits light when a current flows. When the phototriac 11b receives light from the light emitting diode 11a in a state where the potential of the first anode B1 is higher than the potential of the second anode B2, the photothyristor 111 is turned on. On the other hand, when light from the light emitting diode 11a is received in a state where the potential of the first anode B1 is smaller than the potential of the second anode B2, the photothyristor 112 is turned on.
 このように、フォトトライアック11bは双方向の印加電圧に対して動作する双方向素子であり、しかも高速で動作するので、双方向の高速スイッチとして利用される。 Thus, the phototriac 11b is a bidirectional element that operates with respect to a bidirectional applied voltage, and also operates at a high speed, so that it is used as a bidirectional high-speed switch.
 なお、双方向の高速スイッチとしては、フォトトライアックだけに限定されるものではなく、通常のトライアックや双方向に導通させるように接続したMOSFETなどを採用してもよい。別の形態の高速スイッチを用いる場合には、そのスイッチの形態に応じた駆動回路が適宜使用される。 Note that the bidirectional high-speed switch is not limited to the photo triac, but a normal triac or a MOSFET connected so as to conduct in both directions may be adopted. When another form of high-speed switch is used, a drive circuit corresponding to the form of the switch is appropriately used.
 過電圧導通回路10は、一対の電源ライン901,902間に機器30と並列に接続されている。なお、商用電源90が多相電源のときに各相間の過電圧保護を行う場合は、各相分の電源ライン間に過電圧導通回路10が接続される。 The overvoltage conduction circuit 10 is connected in parallel with the device 30 between a pair of power supply lines 901 and 902. When overvoltage protection between phases is performed when the commercial power supply 90 is a multiphase power supply, the overvoltage conduction circuit 10 is connected between the power supply lines for each phase.
 また、スイッチ11の動作制御、つまり発光ダイオード11aへの通電制御は制御部40が行う。 Further, the control unit 40 performs operation control of the switch 11, that is, energization control to the light emitting diode 11a.
 (2-2)第1インピーダンス回路21
 第1インピーダンス回路21は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。
(2-2) First impedance circuit 21
The first impedance circuit 21 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za.
 第1インピーダンス回路21は、一対の電源ライン901,902間に機器30と並列に、且つ過電圧導通回路10と直列に接続されている。 The first impedance circuit 21 is connected between the pair of power supply lines 901 and 902 in parallel with the device 30 and in series with the overvoltage conduction circuit 10.
 (2-3)第2インピーダンス回路22
 第2インピーダンス回路22は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。
(2-3) Second impedance circuit 22
The second impedance circuit 22 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb.
 第2インピーダンス回路22は、電源ライン902上で、商用電源90と第1インピーダンス回路21との間に接続されている。 The second impedance circuit 22 is connected between the commercial power supply 90 and the first impedance circuit 21 on the power supply line 902.
 (2-4)電圧検出器33
 電圧検出器33は、交流電圧検出回路によって構成されている。交流電圧検出回路は、多様であり、使用条件によって適宜採用される。例えば、図3は一般的な電圧検出器33の回路図である。図3において、電圧検出器33は、変圧回路331、コンバータ回路332とで構成されている。
(2-4) Voltage detector 33
The voltage detector 33 is configured by an AC voltage detection circuit. There are various AC voltage detection circuits, and they are appropriately adopted depending on use conditions. For example, FIG. 3 is a circuit diagram of a general voltage detector 33. In FIG. 3, the voltage detector 33 includes a transformer circuit 331 and a converter circuit 332.
 変圧回路331は、入力側に位置し、一次側巻線331aと二次側巻線331bとからなる。 The transformer circuit 331 is located on the input side and includes a primary winding 331a and a secondary winding 331b.
 コンバータ回路332は、整流ダイオードで構成される整流部332aと、平滑コンデンサ332bとが並列接続された回路である。 The converter circuit 332 is a circuit in which a rectifying unit 332a composed of a rectifying diode and a smoothing capacitor 332b are connected in parallel.
 電圧検出器33では、変圧回路331に交流電圧が印加されると、交流電圧は変圧回路331によって変圧される。そして、二次側巻線331bの両端電圧がコンバータ回路332に入力される。 In the voltage detector 33, when an AC voltage is applied to the transformer circuit 331, the AC voltage is transformed by the transformer circuit 331. Then, the voltage across the secondary winding 331 b is input to the converter circuit 332.
 コンバータ回路332に入力された変圧後の交流電圧は、整流部332aで直流電圧に変換され、平滑コンデンサ332bで平滑化される。この平滑化された直流電圧が制御部40に入力される。すなわち、一次側巻線331aに印加される電圧に応じた直流電圧が、制御部40に入力されることになる。 The AC voltage after transformation input to the converter circuit 332 is converted into a DC voltage by the rectifying unit 332a and smoothed by the smoothing capacitor 332b. This smoothed DC voltage is input to the control unit 40. That is, a DC voltage corresponding to the voltage applied to the primary winding 331a is input to the control unit 40.
 (3)過電圧保護回路50の動作
 説明の便宜上、商用電源90の電圧をVac、機器30に印加される電圧をVa、第2インピーダンス回路22の両端にかかる電圧をVbとする。
(3) Operation of Overvoltage Protection Circuit 50 For convenience of explanation, the voltage of the commercial power supply 90 is Vac, the voltage applied to the device 30 is Va, and the voltage applied to both ends of the second impedance circuit 22 is Vb.
 図2において、通常時、過電圧導通回路10のスイッチ11はオフしているので、機器30には電圧Va=Vac-Vbが印加されている。 In FIG. 2, since the switch 11 of the overvoltage conduction circuit 10 is normally turned off, the voltage Va = Vac−Vb is applied to the device 30.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aに通電する。これによって、フォトトライアック11bがオンし、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路が構成される。このとき、機器30には電圧Vacの2つのインピーダンスの比に応じた電圧Va=Vac×Za/(Za+Zb)しか印加されない。その結果、機器30が過電圧から保護される。なお、機器30を保護するため、スイッチ11には高速動作が求められる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 exceeds the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11. As a result, the phototriac 11b is turned on, and a closed circuit of commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed. At this time, only the voltage Va = Vac × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vac is applied to the device 30. As a result, the device 30 is protected from overvoltage. In order to protect the device 30, the switch 11 is required to operate at high speed.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ11の発光ダイオード11aの通電をオフする。これによって、フォトトライアック11bはオフし、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 To do. As a result, the photo triac 11b is turned off and returns to normal operation.
 (4)第2実施形態の特徴
 (4-1)
 過電圧保護回路50では、過電圧時に過電圧導通回路10のスイッチ11がオンすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。
(4) Features of the second embodiment (4-1)
In the overvoltage protection circuit 50, since the switch 11 of the overvoltage conduction circuit 10 is turned on at the time of overvoltage, only a voltage corresponding to the impedance ratio of the first impedance circuit 21 and the second impedance circuit 22 is applied to the device 30. 30 is protected from overvoltage.
 (4-2)
 商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-2)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device 30. Therefore, it is not necessary to design the device 30 with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第3実施形態>
 (1)過電圧保護回路50の構成
 図4は、本発明の第3実施形態に係る過電圧保護回路50を備えた装置の回路図である。図4において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
<Third Embodiment>
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 4 is a circuit diagram of a device including an overvoltage protection circuit 50 according to the third embodiment of the present invention. In FIG. 4, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、過電圧導通回路10と、第1インピーダンス回路21と、第2インピーダンス回路22と、電圧検出器33、バイパス回路35とを含んでいる。 The overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, and a bypass circuit 35.
 (2)過電圧保護回路50の詳細構成
 第3実施形態は、第2実施形態にバイパス回路35が追加された形態であり、過電圧導通回路10、第1インピーダンス回路21、第2インピーダンス回路22、及び電圧検出器33については同様のものを採用している。したがって、ここではバイパス回路35についてのみを説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 50 In the third embodiment, a bypass circuit 35 is added to the second embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, and The same voltage detector 33 is employed. Therefore, only the bypass circuit 35 will be described here.
 (2-1)バイパス回路35
 バイパス回路35は、第2インピーダンス回路22に並列接続されており、第2インピーダンス回路22を迂回する回路である。バイパス回路35は、第2スイッチ12を有している。第2スイッチ12は、バイパス回路35を開閉する。ここで、バイパス回路35を開閉するとは、バイパス回路35を導通又は遮断して非導通にすることである。
(2-1) Bypass circuit 35
The bypass circuit 35 is a circuit that is connected in parallel to the second impedance circuit 22 and bypasses the second impedance circuit 22. The bypass circuit 35 includes the second switch 12. The second switch 12 opens and closes the bypass circuit 35. Here, opening and closing the bypass circuit 35 means making the bypass circuit 35 conductive or non-conductive to make it non-conductive.
 (2-2)第2スイッチ12
 第2スイッチ12は、通常時はバイパス回路35を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路35を開(非導通状態)にしておくと、第2インピーダンス回路22が常に接続された状態となって常に電力消費される上に、機器30への印加電圧が第2インピーダンス回路22のインピーダンスZbの電圧降下分だけ低くなるからである。
(2-2) Second switch 12
The second switch 12 normally closes the bypass circuit 35, that is, keeps it in a conductive state. This is because if the bypass circuit 35 is left open (non-conducting state) during normal operation, the second impedance circuit 22 is always connected and power is always consumed, and the voltage applied to the device 30 is second. This is because the voltage is lowered by the voltage drop of the impedance Zb of the impedance circuit 22.
 他方、過電圧時は機器30を保護するためにバイパス回路35を素早く開にして第2インピーダンス回路22を接続し、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路を構成する必要がある。そのため、第2スイッチ12には、高速動作が求められる。 On the other hand, in order to protect the device 30 during overvoltage, the bypass circuit 35 is quickly opened and the second impedance circuit 22 is connected, and the commercial power supply 90—overvoltage conduction circuit 10—first impedance circuit 21—second impedance circuit 22— It is necessary to configure a closed circuit called a commercial power supply 90. For this reason, the second switch 12 is required to operate at high speed.
 第2スイッチ12としては、トライアック、双方向に導通させるように接続したMOSFETなどが採用される。本実施形態では、スイッチ11と同じくフォトトライアックカプラが採用されている。 As the second switch 12, a triac, a MOSFET connected so as to conduct in both directions, or the like is employed. In the present embodiment, a phototriac coupler is employed as with the switch 11.
 図4に示すように、第2スイッチ12は、入力側(C1-C2間)に発光ダイオード12aが設けられ、出力側(D1-D2間)にフォトトライアック12bが設けられている。フォトトライアック12bの等価回路は、2つのフォトサイリスタ121,122を互いに逆方向に並列接続した構成である。 As shown in FIG. 4, the second switch 12 is provided with a light emitting diode 12a on the input side (between C1 and C2) and a phototriac 12b on the output side (between D1 and D2). The equivalent circuit of the phototriac 12b has a configuration in which two photothyristors 121 and 122 are connected in parallel in opposite directions.
 発光ダイオード12aのアノードC1は抵抗R2を介して電源Vcに接続されている。また、発光ダイオード12aのカソードC2は信号線を介して制御部40に接続されている。 The anode C1 of the light emitting diode 12a is connected to the power source Vc via the resistor R2. The cathode C2 of the light emitting diode 12a is connected to the control unit 40 via a signal line.
 フォトトライアック12bの第1アノードD1は、電源ライン902のうちの第2インピーダンス回路22と機器30との間に接続されている。また、フォトトライアック12bの第2アノードD2は電源ライン902にうちの第2インピーダンス回路22と商用電源90との間に接続されている。 The first anode D1 of the phototriac 12b is connected between the second impedance circuit 22 in the power supply line 902 and the device 30. The second anode D2 of the photo triac 12b is connected to the power line 902 between the second impedance circuit 22 and the commercial power source 90.
 発光ダイオード12a及びフォトトライアック12bのフォトサイリスタ121,122の動作原理は、スイッチ11における発光ダイオード11a及びフォトトライアック11bのフォトサイリスタ111,112の動作原理と同じであるので、ここでは動作説明を省略する。 The operating principle of the photothyristors 121 and 122 of the light-emitting diode 12a and the phototriac 12b is the same as the operating principle of the light-emitting diode 11a and the photothyristor 111 and 112 of the phototriac 11b in the switch 11, so that the description of the operation is omitted here. .
 (3)過電圧保護回路50の動作
 図4において、通常時、過電圧導通回路10のスイッチ11はオフし、バイパス回路35は第2スイッチ12が閉じて導通状態であるので、機器30には電圧Va=Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 50 In FIG. 4, the switch 11 of the overvoltage conduction circuit 10 is normally turned off and the bypass circuit 35 is in the conduction state with the second switch 12 closed, so that the voltage Va is applied to the device 30. = Vac is applied.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aに通電して、フォトトライアック11bをオンさせる。同時に制御部40は、第2スイッチ12の発光ダイオード12aへの通電を停止し、フォトトライアック12bをオフさせる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
 その結果、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路が構成される。このとき、機器30には電圧Vacの2つのインピーダンスの比に応じた電圧Va=Vac×Za/(Za+Zb)しか印加されない。その結果、機器30が過電圧から保護される。 As a result, a closed circuit of commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed. At this time, only the voltage Va = Vac × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vac is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ11の発光ダイオード11aの通電をオフし、フォトトライアック11bをオフさせる。同時に制御部40は、第2スイッチ12の発光ダイオード12aへ通電し、フォトトライアック12bをオンさせる。これにより、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. As a result, the normal operation is restored.
 (4)第3実施形態の特徴
 (4-1)
 過電圧保護回路50では、通常時は第2スイッチ12をオンにしてバイパス回路35を閉じているので、第2インピーダンス回路22で電力が消費されることはなく、機器30への印加電圧が第2インピーダンス回路22での電圧降下分だけ低くなることも回避することができる。
(4) Features of the third embodiment (4-1)
In the overvoltage protection circuit 50, since the second switch 12 is normally turned on and the bypass circuit 35 is closed, power is not consumed by the second impedance circuit 22, and the voltage applied to the device 30 is the second voltage. It can also be avoided that the voltage drop in the impedance circuit 22 is lowered.
 (4-2)
 また、過電圧時には、過電圧導通回路10のスイッチ11がオンし、第2スイッチ12がオフすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。
(4-2)
In addition, when overvoltage occurs, the switch 11 of the overvoltage conduction circuit 10 is turned on and the second switch 12 is turned off, so that the device 30 has only a voltage corresponding to the impedance ratio of the first impedance circuit 21 and the second impedance circuit 22. Since it is not applied, the device 30 is protected from overvoltage.
 (4-3)
 商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-3)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device 30. Therefore, it is not necessary to design the device 30 with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第4実施形態>
 (1)過電圧保護回路50の構成
 図5は、本発明の第4実施形態に係る過電圧保護回路50を備えた装置の回路図である。図5において、機器30は、商用電源90から一対の電源ライン901,902を介して電力供給されている。過電圧保護回路50は、商用電源90と機器30との間に接続されている。
<Fourth embodiment>
(1) Configuration of Overvoltage Protection Circuit 50 FIG. 5 is a circuit diagram of an apparatus including an overvoltage protection circuit 50 according to the fourth embodiment of the present invention. In FIG. 5, the device 30 is supplied with power from a commercial power supply 90 via a pair of power supply lines 901 and 902. The overvoltage protection circuit 50 is connected between the commercial power supply 90 and the device 30.
 過電圧保護回路50は、過電圧導通回路10と、第1インピーダンス回路21と、第2インピーダンス回路22と、電圧検出器33、バイパス回路35と、第3スイッチ13とを含んでいる。 The overvoltage protection circuit 50 includes an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, a voltage detector 33, a bypass circuit 35, and a third switch 13.
 (2)過電圧保護回路50の詳細構成
 第4実施形態は、第3実施形態に第3スイッチ13が追加された形態であり、過電圧導通回路10、第1インピーダンス回路21、第2インピーダンス回路22、電圧検出器33、及びバイパス回路35については同様のものを採用している。したがって、ここでは第3スイッチ13についてのみを説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 50 In the fourth embodiment, a third switch 13 is added to the third embodiment, and an overvoltage conduction circuit 10, a first impedance circuit 21, a second impedance circuit 22, The same voltage detector 33 and bypass circuit 35 are employed. Therefore, only the third switch 13 will be described here.
 (2-1)第3スイッチ13
 第3スイッチ13は、電源ライン901を開閉する。ここで、電源ライン901を開閉するとは、電源ライン901を導通又は遮断して非導通にすることである。
(2-1) Third switch 13
The third switch 13 opens and closes the power line 901. Here, opening and closing the power supply line 901 means that the power supply line 901 is turned on or off to make it non-conductive.
 第3スイッチ13は、通常時は電源ライン901を閉、つまり導通状態にしておく。他方、過電圧時には、スイッチ11がオンし、第2スイッチ12がオフして、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路が構成され、機器30の保護動作が行われた後に、第3スイッチ13がオフして電源ライン901を遮断する。 The third switch 13 normally closes the power supply line 901, that is, keeps it conductive. On the other hand, at the time of overvoltage, the switch 11 is turned on, the second switch 12 is turned off, and a closed circuit of the commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed. After the protection operation of the device 30 is performed, the third switch 13 is turned off and the power line 901 is shut off.
 電源ライン901を遮断する目的は、第1インピーダンス回路21及び第2インピーダンス回路22での電力消費を止めるためであり、第1インピーダンス回路21及び第2インピーダンス回路22の過熱を抑制することができるので、電力定格を小さくすることができ、低コスト化を図ることができる。 The purpose of cutting off the power supply line 901 is to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22, and it is possible to suppress overheating of the first impedance circuit 21 and the second impedance circuit 22. The power rating can be reduced, and the cost can be reduced.
 第3スイッチ13は、スイッチ11及び第2スイッチ12のような高速性は求められないので、本実施形態ではリレー回路が採用されている。 Since the third switch 13 is not required to have high speed like the switch 11 and the second switch 12, a relay circuit is employed in this embodiment.
 図5に示すように、第3スイッチ13は、電源ライン901を開閉するリレー接点13aと、リレー接点13aを動作させるリレーコイル13bと、リレーコイル13bへの通電と非通電とを行うトランジスタ13cとを含んでいる。リレーコイル13bの一端は、電源Vbの正極に接続され、他端はトランジスタ13cのコレクタ側に接続されている。制御部40は、トランジスタ13cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル13bへの通電と非通電を行う。 As shown in FIG. 5, the third switch 13 includes a relay contact 13a for opening and closing the power supply line 901, a relay coil 13b for operating the relay contact 13a, and a transistor 13c for energizing and de-energizing the relay coil 13b. Is included. One end of the relay coil 13b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 13c. The controller 40 switches between the presence and absence of the base current of the transistor 13c, turns on and off the collector and the emitter, and energizes and de-energizes the relay coil 13b.
 (3)過電圧保護回路50の動作
 図5において、通常時、過電圧導通回路10のスイッチ11はオフし、バイパス回路35は第2スイッチ12が閉じて導通状態であり、且つ第3スイッチ13は電源ライン901を導通状態にしているので、機器30には電圧Va=Vacが印加されている。
(3) Operation of Overvoltage Protection Circuit 50 In FIG. 5, normally, the switch 11 of the overvoltage conduction circuit 10 is turned off, the bypass circuit 35 is in the conduction state with the second switch 12 closed, and the third switch 13 is a power source. Since the line 901 is in a conducting state, the voltage Va = Vac is applied to the device 30.
 商用電源90の電圧Vacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ11の発光ダイオード11aに通電して、フォトトライアック11bをオンさせる。同時に制御部40は、第2スイッチ12の発光ダイオード12aへの通電を停止し、フォトトライアック12bをオフさせる。 When the voltage Vac of the commercial power supply 90 suddenly increases and the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold, the control unit 40 energizes the light emitting diode 11a of the switch 11 to generate a photo The triac 11b is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 12a of the second switch 12 and turns off the phototriac 12b.
 その結果、商用電源90―過電圧導通回路10―第1インピーダンス回路21―第2インピーダンス回路22―商用電源90という閉回路が構成される。このとき、機器30には電圧Vacの2つのインピーダンスの比に応じた電圧Va=Vac×Za/(Za+Zb)しか印加されない。その結果、機器30が過電圧から保護される。 As a result, a closed circuit of commercial power supply 90-overvoltage conduction circuit 10-first impedance circuit 21-second impedance circuit 22-commercial power supply 90 is formed. At this time, only the voltage Va = Vac × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vac is applied to the device 30. As a result, the device 30 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、第3スイッチ13が電源ライン901を遮断して、第1インピーダンス回路21及び第2インピーダンス回路22での電力消費を止める。 Thereafter, when the overvoltage state continues, the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22.
 商用電源90の電圧Vacが下がり、電圧検出器33から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ11の発光ダイオード11aの通電をオフし、フォトトライアック11bをオフさせる。同時に制御部40は、第2スイッチ12の発光ダイオード12aへ通電し、フォトトライアック12bをオンさせる。さらに、第3スイッチ13をオンさせて電源ライン901を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 has dropped and the voltage output from the voltage detector 33 has fallen below the threshold for recovery, the control unit 40 turns off the light-emitting diode 11a of the switch 11 Then, the photo triac 11b is turned off. At the same time, the control unit 40 energizes the light emitting diode 12a of the second switch 12 to turn on the phototriac 12b. Further, the third switch 13 is turned on and the power supply line 901 is connected to return to the normal operation.
 (4)第4実施形態の特徴
 (4-1)
 過電圧保護回路50では、通常時は第2スイッチ12をオンにしてバイパス回路35を閉じているので、第2インピーダンス回路22で電力が消費されることはなく、機器30への印加電圧が第2インピーダンス回路22での電圧降下分だけ低くなることも回避することができる。
(4) Features of the fourth embodiment (4-1)
In the overvoltage protection circuit 50, since the second switch 12 is normally turned on and the bypass circuit 35 is closed, power is not consumed by the second impedance circuit 22, and the voltage applied to the device 30 is the second voltage. It can also be avoided that the voltage drop in the impedance circuit 22 is lowered.
 (4-2)
 また、過電圧時には、過電圧導通回路10のスイッチ11がオンし、第2スイッチ12がオフすることによって、機器30には第1インピーダンス回路21と第2インピーダンス回路22のインピーダンスの比に応じた電圧しか印加されないので、機器30が過電圧から保護される。
(4-2)
In addition, when overvoltage occurs, the switch 11 of the overvoltage conduction circuit 10 is turned on and the second switch 12 is turned off, so that the device 30 has only a voltage corresponding to the impedance ratio of the first impedance circuit 21 and the second impedance circuit 22. Since it is not applied, the device 30 is protected from overvoltage.
 (4-3)
 さらに、第3スイッチ13が電源ライン901を遮断することによって第1インピーダンス回路21及び第2インピーダンス回路22での電力消費を止める。この結果、第1インピーダンス回路21及び第2インピーダンス回路22の過熱を抑制し、電力定格を小さくすることができる。
(4-3)
Further, the third switch 13 cuts off the power supply line 901 to stop power consumption in the first impedance circuit 21 and the second impedance circuit 22. As a result, overheating of the first impedance circuit 21 and the second impedance circuit 22 can be suppressed, and the power rating can be reduced.
 (4-4)
 商用電源90からの供給電圧が過大電圧であっても、機器30には2つのインピーダンスの比に応じた電圧しか印加されない。それゆえ、短時間の過大電圧からの保護だけのために機器30の電圧定格を高く設計する必要がなく、合理的である。
(4-4)
Even if the supply voltage from the commercial power supply 90 is an excessive voltage, only a voltage corresponding to the ratio of the two impedances is applied to the device 30. Therefore, it is not necessary to design the device 30 with a high voltage rating only for protection from an excessive voltage for a short time, which is reasonable.
 <第5実施形態>
 (1)電力変換装置200の構成
 図6は、本発明の第5実施形態に係る過電圧保護回路100を備えた電力変換装置200の回路図である。図6において、電力変換装置200は、直流電源部80、インバータ95、過電圧保護回路100で構成されている。
<Fifth Embodiment>
(1) Configuration of Power Converter 200 FIG. 6 is a circuit diagram of a power converter 200 including an overvoltage protection circuit 100 according to the fifth embodiment of the present invention. In FIG. 6, the power conversion device 200 includes a DC power supply unit 80, an inverter 95, and an overvoltage protection circuit 100.
 インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路100は、直流電源部80とインバータ95との間に接続されている。 The inverter 95 is supplied with power from the DC power supply unit 80 via a pair of power supply lines 801 and 802. The overvoltage protection circuit 100 is connected between the DC power supply unit 80 and the inverter 95.
 (1-1)直流電源部80
 直流電源部80は、整流部81と、整流部81と並列接続される平滑コンデンサ82とで構成されている。
(1-1) DC power supply unit 80
The DC power supply unit 80 includes a rectifying unit 81 and a smoothing capacitor 82 connected in parallel with the rectifying unit 81.
 整流部81は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共に平滑コンデンサ82のプラス側端子に接続されており、整流部81の正側出力端子として機能する。ダイオードD1b,D2bの各ダイオードの各アノード端子は、共に平滑コンデンサ82のマイナス側端子に接続されており、整流部81の負側出力端子として機能する。 The rectifying unit 81 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 82 and function as the positive side output terminal of the rectifying unit 81. The anode terminals of the diodes D1b and D2b are both connected to the minus terminal of the smoothing capacitor 82 and function as the negative output terminal of the rectifier 81.
 ダイオードD1a及びダイオードD1bの接続点は、商用電源90の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、商用電源90の他方の極に接続されている。整流部81は、商用電源90から出力される交流電圧を整流して直流電圧を生成し、これを平滑コンデンサ82へ供給する。 The connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90. A connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90. The rectifying unit 81 rectifies the AC voltage output from the commercial power supply 90 to generate a DC voltage, and supplies this to the smoothing capacitor 82.
 平滑コンデンサ82は、整流部81によって整流された電圧を平滑する。平滑後の電圧Vdcは、平滑コンデンサ82の出力側に接続されるインバータ95へ印加される。 The smoothing capacitor 82 smoothes the voltage rectified by the rectifying unit 81. The smoothed voltage Vdc is applied to the inverter 95 connected to the output side of the smoothing capacitor 82.
 なお、コンデンサの種類としては、電解コンデンサやフィルムコンデンサ、タンタルコンデンサ等が挙げられるが、本実施形態においては、平滑コンデンサ82として電解コンデンサが採用される。 In addition, as a kind of capacitor | condenser, although an electrolytic capacitor, a film capacitor, a tantalum capacitor etc. are mentioned, an electrolytic capacitor is employ | adopted as the smoothing capacitor 82 in this embodiment.
 この直流電源部80は、交流電圧を直流電圧に変換するコンバータ回路と言い換えることもできる。 The DC power supply unit 80 can be rephrased as a converter circuit that converts an AC voltage into a DC voltage.
 (1-2)インバータ95
 インバータ95は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)及び複数の還流用ダイオードを含んでいる。インバータ95は、平滑コンデンサ82からの電圧Vdcが印加され、かつゲート駆動回路96により指示されたタイミングで各トランジスタがオン及びオフを行うことによって、モータ150を駆動する駆動電圧を生成する。モータ150は、例えばヒートポンプ式空気調和機の圧縮機モータ、ファンモータである。
(1-2) Inverter 95
The inverter 95 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter simply referred to as transistors) and a plurality of free-wheeling diodes. The inverter 95 is applied with the voltage Vdc from the smoothing capacitor 82, and each transistor is turned on and off at the timing instructed by the gate drive circuit 96, thereby generating a drive voltage for driving the motor 150. The motor 150 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
 なお、本実施形態のインバータ95は、電圧形インバータであるが、それに限定されるものではなく、電流形インバータでもよい。 In addition, although the inverter 95 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
 (1-3)ゲート駆動回路96
 ゲート駆動回路96は、制御部40からの指令に基づき、インバータ95の各トランジスタのオン及びオフの状態を変化させる。
(1-3) Gate drive circuit 96
The gate drive circuit 96 changes the on / off state of each transistor of the inverter 95 based on a command from the control unit 40.
 (1-4)過電圧保護回路100
 過電圧保護回路100は、過電圧導通回路60と、第1インピーダンス回路71と、第2インピーダンス回路72と、電圧検出器83、バイパス回路85と、第3スイッチ63とを含んでいる。
(1-4) Overvoltage protection circuit 100
The overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 83, a bypass circuit 85, and a third switch 63.
 (2)過電圧保護回路100の詳細構成
 第5実施形態と、既に説明した第1から第4までの実施形態と大きく異なる点は、過電圧保護回路100が直流部に設けられていることである。したがって、各構成要素も交流仕様から直流仕様に置き換えられることに鑑みて、同一名称であっても符号を換えて、再度説明する。
(2) Detailed Configuration of Overvoltage Protection Circuit 100 The fifth embodiment is different from the first to fourth embodiments already described in that the overvoltage protection circuit 100 is provided in the DC section. Therefore, in view of the fact that each component is also replaced from the AC specification to the DC specification, the description will be given again by changing the code even if the names are the same.
 (2-1)過電圧導通回路60
 過電圧導通回路60は、第4実施形態におけるスイッチ11に替わってスイッチ61が採用されている。
(2-1) Overvoltage conduction circuit 60
The overvoltage conduction circuit 60 employs a switch 61 instead of the switch 11 in the fourth embodiment.
 図6に示すように、スイッチ61は、フォトカプラ61aと、駆動回路61bと、トランジスタ61cとで構成されている。フォトカプラ61aは、発光ダイオード611とフォトトランジスタ612を内蔵している。 As shown in FIG. 6, the switch 61 includes a photocoupler 61a, a drive circuit 61b, and a transistor 61c. The photocoupler 61a includes a light emitting diode 611 and a phototransistor 612.
 スイッチ61の入力側(E1-E2間)にはフォトカプラ61aの発光ダイオード611が接続されている。発光ダイオード611のアノードE1は抵抗R1を介して電源Vcに接続されている。発光ダイオード611のカソードE2は信号線を介して制御部40に接続されている。また、フォトトランジスタ612は駆動回路61bとGNDとの間に接続されている。 The light emitting diode 611 of the photocoupler 61a is connected to the input side (between E1 and E2) of the switch 61. The anode E1 of the light emitting diode 611 is connected to the power source Vc via the resistor R1. The cathode E2 of the light emitting diode 611 is connected to the control unit 40 via a signal line. The phototransistor 612 is connected between the drive circuit 61b and GND.
 スイッチ61の出力側(F1-F2間)にトランジスタ61cが設けられている。トランジスタ61cのコレクタF1は電源ライン801に接続されている。また、トランジスタ61cのエミッタF2は第1インピーダンス回路71に接続されている。 A transistor 61c is provided on the output side (between F1 and F2) of the switch 61. The collector F1 of the transistor 61c is connected to the power supply line 801. The emitter F2 of the transistor 61c is connected to the first impedance circuit 71.
 制御部40の制御信号は、フォトカプラ61aを介して駆動回路61bに入力される。駆動回路61bには、駆動用電源(図示せず)が接続されており、制御部40が発光ダイオード611の信号ラインをオンさせると、発光ダイオード611が発光しフォトトランジスタ612が導通する。このフォトトランジスタ612が導通している間、駆動回路61bからトランジスタ61cのベースに駆動信号が出力され、トランジスタ61cのコレクタF1-エミッタF2間が導通する。 The control signal of the control unit 40 is input to the drive circuit 61b via the photocoupler 61a. A driving power supply (not shown) is connected to the driving circuit 61b. When the control unit 40 turns on the signal line of the light emitting diode 611, the light emitting diode 611 emits light and the phototransistor 612 becomes conductive. While the phototransistor 612 is conducting, a driving signal is output from the driving circuit 61b to the base of the transistor 61c, and the collector F1-emitter F2 of the transistor 61c is conducted.
 逆に、制御部40が発光ダイオード611の信号ラインをオフさせると、発光ダイオード611が発光しないので、フォトトランジスタ612は導通しない。このフォトトランジスタ612が導通していない間、トランジスタ61cのコレクタF1-エミッタF2間も導通しない。 Conversely, when the control unit 40 turns off the signal line of the light emitting diode 611, the light emitting diode 611 does not emit light, and the phototransistor 612 does not conduct. While the phototransistor 612 is not conducting, the collector F1 and the emitter F2 of the transistor 61c are not conducting.
 このように、直流回路を開閉するときは片方向スイッチでよいので、交流回路を開閉する場合の双方向性は必要とせず、コストメリットがある。なお片方向スイッチの構成は本実施形態に限定するものではないが、半導体スイッチのように高速にスイッチ動作を行なうことができるのが望ましい。 Thus, when the DC circuit is opened / closed, a one-way switch may be used, so that bidirectionality is not required when the AC circuit is opened / closed, and there is a cost merit. The configuration of the one-way switch is not limited to this embodiment, but it is desirable that the switch operation can be performed at high speed like a semiconductor switch.
 過電圧導通回路60は、一対の電源ライン801,802間に機器30と並列に接続されている。 The overvoltage conduction circuit 60 is connected in parallel with the device 30 between a pair of power supply lines 801 and 802.
 (2-2)第1インピーダンス回路71
 第1インピーダンス回路71は、当該回路における電圧と電流との比であるインピーダンスがZaとなるように構成された回路である。一般に抵抗素子が採用される。
(2-2) First impedance circuit 71
The first impedance circuit 71 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Za. In general, a resistance element is employed.
 第1インピーダンス回路71は、一対の電源ライン801,802間にインバータ95と並列に、且つ過電圧導通回路60と直列に接続されている。 The first impedance circuit 71 is connected between the pair of power supply lines 801 and 802 in parallel with the inverter 95 and in series with the overvoltage conduction circuit 60.
 (2-3)第2インピーダンス回路72
 第2インピーダンス回路72は、当該回路における電圧と電流との比であるインピーダンスがZbとなるように構成された回路である。一般に抵抗素子が採用される。
(2-3) Second impedance circuit 72
The second impedance circuit 72 is a circuit configured such that an impedance that is a ratio of a voltage and a current in the circuit is Zb. In general, a resistance element is employed.
 第2インピーダンス回路72は、電源ライン802上で、直流電源部80と第1インピーダンス回路71との間に接続されている。 The second impedance circuit 72 is connected between the DC power supply unit 80 and the first impedance circuit 71 on the power supply line 802.
 (2-4)電圧検出器83
 電圧検出器83は、平滑コンデンサ82の出力側に接続されており、平滑コンデンサ82の両端電圧、即ち平滑後の電圧Vdcの値を検出する。電圧検出器83は、例えば、互いに直列に接続された2つの抵抗が平滑コンデンサ82に並列接続され、電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、制御部40に入力される。
(2-4) Voltage detector 83
The voltage detector 83 is connected to the output side of the smoothing capacitor 82, and detects the voltage across the smoothing capacitor 82, that is, the value of the smoothed voltage Vdc. For example, the voltage detector 83 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 82 and the voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
 (2-5)バイパス回路85
 バイパス回路85は、第2インピーダンス回路72に並列接続されており、第2インピーダンス回路72を迂回する回路である。バイパス回路85は、第2スイッチ62を有している。第2スイッチ62は、バイパス回路85を開閉する。ここで、バイパス回路85を開閉するとは、バイパス回路35を導通又は遮断して非導通にすることである。
(2-5) Bypass circuit 85
The bypass circuit 85 is a circuit that is connected in parallel to the second impedance circuit 72 and bypasses the second impedance circuit 72. The bypass circuit 85 has a second switch 62. The second switch 62 opens and closes the bypass circuit 85. Here, opening and closing the bypass circuit 85 means that the bypass circuit 35 is turned on or off to make it non-conductive.
 (2-6)第2スイッチ62
 第2スイッチ62は、通常時はバイパス回路85を閉、つまり導通状態にしておく。なぜなら、通常時にバイパス回路85を開(非導通状態)にしておくと、第2インピーダンス回路72で常に電力消費される上に、インバータ95への印加電圧が第2インピーダンス回路72のインピーダンスZbの電圧降下分だけ低くなるからである。
(2-6) Second switch 62
The second switch 62 normally closes the bypass circuit 85, that is, keeps it in a conductive state. This is because if the bypass circuit 85 is left open (non-conducting state) during normal operation, power is always consumed by the second impedance circuit 72, and the voltage applied to the inverter 95 is the voltage of the impedance Zb of the second impedance circuit 72. This is because it is lowered by the amount of descent.
 他方、過電圧時はインバータ95を保護するためにバイパス回路85を素早く開にして、直流電源部80―過電圧導通回路60―第1インピーダンス回路71―第2インピーダンス回路72―直流電源部80という閉回路を構成する必要がある。そのため、第2スイッチ62には、高速動作が求められる。本実施形態では、スイッチ61と同じスイッチが採用されている。なお、スイッチは本実施形態に限定されない。 On the other hand, in order to protect the inverter 95 at the time of overvoltage, the bypass circuit 85 is quickly opened, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80. Need to be configured. For this reason, the second switch 62 is required to operate at high speed. In the present embodiment, the same switch as the switch 61 is employed. The switch is not limited to this embodiment.
 図6に示すように、第2スイッチ62は、入力側(G1-G2間)にフォトカプラ62aの発光ダイオード621が設けられ、出力側(H1-H2間)にトランジスタ62cが設けられている。発光ダイオード621のアノードG1は抵抗R2を介して電源Vcに接続されている。また、発光ダイオード621のカソードG2は信号線を介して制御部40に接続されている。 As shown in FIG. 6, in the second switch 62, a light emitting diode 621 of a photocoupler 62a is provided on the input side (between G1 and G2), and a transistor 62c is provided on the output side (between H1 and H2). The anode G1 of the light emitting diode 621 is connected to the power source Vc via the resistor R2. The cathode G2 of the light emitting diode 621 is connected to the control unit 40 via a signal line.
 トランジスタ62cのコレクタH1は、電源ライン802のうちの第2インピーダンス回路72とインバータ95との間に接続されている。また、トランジスタ62cのエミッタH2は電源ライン802にうちの第2インピーダンス回路72と直流電源部80との間に接続されている。 The collector H1 of the transistor 62c is connected between the second impedance circuit 72 in the power supply line 802 and the inverter 95. The emitter H2 of the transistor 62c is connected to the power supply line 802 between the second impedance circuit 72 and the DC power supply unit 80.
 第2スイッチ62の動作原理は、スイッチ61の動作原理と同じであるので、ここでは動作説明を省略する。 Since the operation principle of the second switch 62 is the same as that of the switch 61, the description of the operation is omitted here.
 (2-7)第3スイッチ63
 第3スイッチ63は、電源ライン801を開閉する。ここで、電源ライン801を開閉するとは、電源ライン801を導通又は遮断して非導通にすることである。
(2-7) Third switch 63
The third switch 63 opens and closes the power line 801. Here, opening and closing the power supply line 801 is to turn the power supply line 801 on or off to make it non-conductive.
 第3スイッチ63は、通常時は電源ライン801を閉、つまり導通状態にしておく。他方、過電圧時には、スイッチ61がオンし、第2スイッチ62がオフして、直流電源部80―過電圧導通回路60―第1インピーダンス回路71―第2インピーダンス回路72―直流電源部80という閉回路が構成され、インバータ95の保護動作が行われた後に、第3スイッチ63がオフして電源ライン801を遮断する。 The third switch 63 normally closes the power supply line 801, that is, keeps it conductive. On the other hand, at the time of overvoltage, the switch 61 is turned on, the second switch 62 is turned off, and a closed circuit of DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80 is formed. After the configuration and the protective operation of the inverter 95 is performed, the third switch 63 is turned off and the power line 801 is shut off.
 電源ライン801を遮断する目的は、第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止めるためであり、第1インピーダンス回路71及び第2インピーダンス回路72の過熱を抑制することができるので、電力定格を小さくすることができ、低コスト化を図ることができる。 The purpose of cutting off the power supply line 801 is to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72, and it is possible to suppress overheating of the first impedance circuit 71 and the second impedance circuit 72. The power rating can be reduced, and the cost can be reduced.
 第3スイッチ63は、スイッチ61及び第2スイッチ62のような高速性は求められないので、本実施形態ではリレー回路が採用されている。 Since the third switch 63 is not required to have high speed like the switch 61 and the second switch 62, a relay circuit is employed in this embodiment.
 図6に示すように、第3スイッチ63は、電源ライン801を開閉するリレー接点63aと、リレー接点63aを動作させるリレーコイル63bと、リレーコイル63bへの通電と非通電とを行うトランジスタ63cとを含んでいる。リレーコイル63bの一端は、電源Vbの正極に接続され、他端はトランジスタ63cのコレクタ側に接続されている。制御部40は、トランジスタ63cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル63bへの通電と非通電を行う。 As shown in FIG. 6, the third switch 63 includes a relay contact 63a for opening and closing the power supply line 801, a relay coil 63b for operating the relay contact 63a, and a transistor 63c for energizing and de-energizing the relay coil 63b. Is included. One end of the relay coil 63b is connected to the positive electrode of the power source Vb, and the other end is connected to the collector side of the transistor 63c. The controller 40 switches between the presence and absence of the base current of the transistor 63c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 63b.
 (3)過電圧保護回路50の動作
 図6において、通常時、過電圧導通回路60のスイッチ61はオフし、バイパス回路85は第2スイッチ62が閉じて導通状態であり、且つ第3スイッチ63は電源ライン801を導通状態にしているので、インバータ95には電圧Va=Vdcが印加されている。
(3) Operation of Overvoltage Protection Circuit 50 In FIG. 6, normally, the switch 61 of the overvoltage conduction circuit 60 is turned off, the bypass circuit 85 is in the conduction state with the second switch 62 closed, and the third switch 63 is a power source. Since the line 801 is in a conductive state, the voltage Va = Vdc is applied to the inverter 95.
 直流電源部80の電圧Vdcが急激に増加し、制御部40が電圧検出器83から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ61の発光ダイオード611に通電して、トランジスタ61cをオンさせる。同時に制御部40は、第2スイッチ62の発光ダイオード621への通電を停止し、トランジスタ62cをオフさせる。 When the voltage Vdc of the DC power supply unit 80 increases rapidly and the control unit 40 determines that the voltage output from the voltage detector 83 exceeds the threshold value, the control unit 40 energizes the light emitting diode 611 of the switch 61, The transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
 その結果、直流電源部80―過電圧導通回路60―第1インピーダンス回路71―第2インピーダンス回路72―直流電源部80という閉回路が構成される。このとき、インバータ95には電圧Vdcの2つのインピーダンスの比に応じた電圧Va=Vdc×Za/(Za+Zb)しか印加されない。その結果、インバータ95が過電圧から保護される。 As a result, a closed circuit of the DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80 is formed. At this time, only the voltage Va = Vdc × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vdc is applied to the inverter 95. As a result, the inverter 95 is protected from overvoltage.
 その後、過電圧状態が続いている場合には、第3スイッチ63が電源ライン801を遮断して、第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。 Thereafter, when the overvoltage state continues, the third switch 63 cuts off the power supply line 801 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
 商用電源90の電圧Vac及び直流電源部80の電圧Vdcが下がり、電圧検出器83から出力される電圧が復帰のための閾値よりも下がったと制御部40が判定したとき、制御部40はスイッチ61の発光ダイオード611の通電をオフし、トランジスタ61cをオフさせる。同時に制御部40は、第2スイッチ62の発光ダイオード621へ通電し、トランジスタ62cをオンさせる。さらに、第3スイッチ63をオンさせて電源ライン801を接続することで、通常の動作に復帰する。 When the control unit 40 determines that the voltage Vac of the commercial power supply 90 and the voltage Vdc of the DC power supply unit 80 are decreased and the voltage output from the voltage detector 83 is lower than the threshold for recovery, the control unit 40 switches the switch 61. The light-emitting diode 611 is turned off, and the transistor 61c is turned off. At the same time, the control unit 40 energizes the light emitting diode 621 of the second switch 62 to turn on the transistor 62c. Further, by turning on the third switch 63 and connecting the power supply line 801, the normal operation is restored.
 (4)第5実施形態の特徴
 (4-1)
 過電圧保護回路100では、通常時は第2スイッチ62をオンにしてバイパス回路85を閉じているので、第2インピーダンス回路72で電力が消費されることはなく、インバータ95への印加電圧が第2インピーダンス回路72での電圧降下分だけ低くなることも回避することができる。
(4) Features of the fifth embodiment (4-1)
In the overvoltage protection circuit 100, since the second switch 62 is normally turned on and the bypass circuit 85 is closed, power is not consumed by the second impedance circuit 72, and the voltage applied to the inverter 95 is the second voltage. It can also be avoided that the voltage drops by the voltage drop in the impedance circuit 72.
 (4-2)
 また、過電圧時には、過電圧導通回路60のスイッチ61がオンし、第2スイッチ62がオフすることによって、インバータ95には第1インピーダンス回路71と第2インピーダンス回路72のインピーダンスの比に応じた電圧しか印加されないので、インバータ95が過電圧から保護される。
(4-2)
In addition, when overvoltage occurs, the switch 61 of the overvoltage conduction circuit 60 is turned on and the second switch 62 is turned off, so that the inverter 95 has only a voltage corresponding to the impedance ratio of the first impedance circuit 71 and the second impedance circuit 72. Since it is not applied, the inverter 95 is protected from overvoltage.
 (4-3)
 また、第3スイッチ63が電源ライン801を遮断することによって第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。この結果、第1インピーダンス回路71及び第2インピーダンス回路72の過熱を抑制し、電力定格を小さくすることができる。
(4-3)
Further, the third switch 63 cuts off the power supply line 801 to stop power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
 (4-4)
 さらに、直流電源部80の下流側に配置されるスイッチ61、第2スイッチ62は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。
(4-4)
Furthermore, since the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
 <第6実施形態>
 (1)過電圧保護回路100の構成
 図7は、本発明の第6実施形態に係る過電圧保護回路100を備えた電力変換装置200の回路図である。図7において、インバータ95は、直流電源部80から一対の電源ライン801,802を介して電力供給されている。過電圧保護回路100の一部は商用電源90と直流電源部80との間に接続され、他の部分は直流電源部80とインバータ95との間に接続されている。
<Sixth Embodiment>
(1) Configuration of Overvoltage Protection Circuit 100 FIG. 7 is a circuit diagram of a power conversion device 200 including the overvoltage protection circuit 100 according to the sixth embodiment of the present invention. In FIG. 7, the inverter 95 is supplied with power from a DC power supply unit 80 via a pair of power supply lines 801 and 802. A part of the overvoltage protection circuit 100 is connected between the commercial power supply 90 and the DC power supply unit 80, and the other part is connected between the DC power supply unit 80 and the inverter 95.
 過電圧保護回路100は、過電圧導通回路60と、第1インピーダンス回路71と、第2インピーダンス回路72と、電圧検出器33、バイパス回路85と、第3スイッチ13とを含んでいる。 The overvoltage protection circuit 100 includes an overvoltage conduction circuit 60, a first impedance circuit 71, a second impedance circuit 72, a voltage detector 33, a bypass circuit 85, and a third switch 13.
 第6実施形態と、既に説明した第5実施形態と異なる点は、過電圧保護回路100の構成要素である電圧検出器と第3スイッチとが商用電源90と直流電源部80との間に設けられていることである。つまり、電圧検出器及び第3スイッチの配置が、第4実施形態における電圧検出器33及び第3スイッチ13の配置と同じである。したがって、電圧検出器及び第3スイッチが直流仕様から交流仕様に置き換えられることに鑑みて、第4実施形態の電圧検出器33及び第3スイッチ13が採用されている。 The difference between the sixth embodiment and the fifth embodiment already described is that a voltage detector and a third switch, which are components of the overvoltage protection circuit 100, are provided between the commercial power supply 90 and the DC power supply unit 80. It is that. That is, the arrangement of the voltage detector and the third switch is the same as the arrangement of the voltage detector 33 and the third switch 13 in the fourth embodiment. Therefore, in view of the fact that the voltage detector and the third switch are replaced from the DC specification to the AC specification, the voltage detector 33 and the third switch 13 of the fourth embodiment are employed.
 したがって、各構成要素の内容は、第4実施形態の電圧検出器33及び第3スイッチ13、第5実施形態の過電圧導通回路60、第1インピーダンス回路71、第2インピーダンス回路72、及びバイパス回路85と同様であるので、ここでは説明を省略し、動作説明のみ行う。 Therefore, the content of each component includes the voltage detector 33 and the third switch 13 of the fourth embodiment, the overvoltage conduction circuit 60 of the fifth embodiment, the first impedance circuit 71, the second impedance circuit 72, and the bypass circuit 85. Therefore, the description is omitted here and only the operation is described.
 (2)過電圧保護回路50の動作
 図7において、通常時、過電圧導通回路60のスイッチ61はオフし、バイパス回路85は第2スイッチ62が閉じて導通状態であり、且つ第3スイッチ63は電源ライン901を導通状態にしているので、インバータ95には電圧Va=Vdcが印加されている。
(2) Operation of Overvoltage Protection Circuit 50 In FIG. 7, normally, the switch 61 of the overvoltage conduction circuit 60 is turned off, the bypass circuit 85 is in the conduction state with the second switch 62 closed, and the third switch 63 is a power source. Since the line 901 is in a conducting state, the voltage Va = Vdc is applied to the inverter 95.
 商用電源90の電圧Vacの変動によってVacが急激に増加し、制御部40が電圧検出器33から出力される電圧が閾値を超えたと判定したとき、制御部40はスイッチ61の発光ダイオード611に通電して、トランジスタ61cをオンさせる。同時に制御部40は、第2スイッチ62の発光ダイオード621への通電を停止し、トランジスタ62cをオフさせる。 When the control unit 40 determines that the voltage output from the voltage detector 33 has exceeded the threshold value due to the fluctuation of the voltage Vac of the commercial power supply 90, the control unit 40 energizes the light emitting diode 611 of the switch 61. Then, the transistor 61c is turned on. At the same time, the control unit 40 stops energization of the light emitting diode 621 of the second switch 62 and turns off the transistor 62c.
 その結果、直流電源部80―過電圧導通回路60―第1インピーダンス回路71―第2インピーダンス回路72―直流電源部80という閉回路が構成される。このとき、インバータ95には電圧Vdcの2つのインピーダンスの比に応じた電圧Va=Vdc×Za/(Za+Zb)しか印加されない。その結果、インバータ95が過電圧から保護される。 As a result, a closed circuit of the DC power supply unit 80-overvoltage conduction circuit 60-first impedance circuit 71-second impedance circuit 72-DC power supply unit 80 is formed. At this time, only the voltage Va = Vdc × Za / (Za + Zb) corresponding to the ratio of the two impedances of the voltage Vdc is applied to the inverter 95. As a result, the inverter 95 is protected from overvoltage.
 その後、第3スイッチ13が電源ライン901を遮断して、第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。 Thereafter, the third switch 13 cuts off the power supply line 901 and stops the power consumption in the first impedance circuit 71 and the second impedance circuit 72.
 (3)第6実施形態の特徴
 (3-1)
 過電圧保護回路100では、通常時は第2スイッチ62をオンにしてバイパス回路85を閉じているので、第2インピーダンス回路72で電力が消費されることはなく、インバータ95への印加電圧が第2インピーダンス回路72での電圧降下分だけ低くなることも回避することができる。
(3) Features of the sixth embodiment (3-1)
In the overvoltage protection circuit 100, since the second switch 62 is normally turned on and the bypass circuit 85 is closed, power is not consumed by the second impedance circuit 72, and the voltage applied to the inverter 95 is the second voltage. It can also be avoided that the voltage drops by the voltage drop in the impedance circuit 72.
 (3-2)
 また、過電圧時には、過電圧導通回路60のスイッチ61がオンし、第2スイッチ62がオフすることによって、インバータ95には第1インピーダンス回路71と第2インピーダンス回路72のインピーダンスの比に応じた電圧しか印加されないので、インバータ95が過電圧から保護される。
(3-2)
In addition, when overvoltage occurs, the switch 61 of the overvoltage conduction circuit 60 is turned on and the second switch 62 is turned off, so that the inverter 95 has only a voltage corresponding to the impedance ratio of the first impedance circuit 71 and the second impedance circuit 72. Since it is not applied, the inverter 95 is protected from overvoltage.
 (3-3)
 また、第3スイッチ13が電源ライン901を遮断することによって第1インピーダンス回路71及び第2インピーダンス回路72での電力消費を止める。この結果、第1インピーダンス回路71及び第2インピーダンス回路72の過熱を抑制し、電力定格を小さくすることができる。
(3-3)
Further, the third switch 13 cuts off the power supply line 901 to stop the power consumption in the first impedance circuit 71 and the second impedance circuit 72. As a result, overheating of the first impedance circuit 71 and the second impedance circuit 72 can be suppressed, and the power rating can be reduced.
 (3-4)
 さらに、直流電源部80の下流側に配置されるスイッチ61、第2スイッチ62は片方向スイッチでよいので、スイッチの低コスト化を図ることができる。
(3-4)
Furthermore, since the switch 61 and the second switch 62 disposed on the downstream side of the DC power supply unit 80 may be unidirectional switches, the cost of the switches can be reduced.
 <その他実施形態>
 (A)
 図1で示す第1実施形態における第2インピーダンス回路22に、図4で示す第3実施形態におけるバイパス回路35を並列接続した実施形態も有効である。
<Other embodiments>
(A)
The embodiment in which the bypass circuit 35 in the third embodiment shown in FIG. 4 is connected in parallel to the second impedance circuit 22 in the first embodiment shown in FIG. 1 is also effective.
 通常時は第2スイッチ12をオンにしてバイパス回路35を閉じるので、第2インピーダンス回路22で電力が消費されることはなく、機器30への印加電圧が第2インピーダンス回路22での電圧降下分だけ低くなることを回避することができる。 Normally, the second switch 12 is turned on and the bypass circuit 35 is closed, so that no power is consumed in the second impedance circuit 22, and the voltage applied to the device 30 is equal to the voltage drop in the second impedance circuit 22. Only lowering can be avoided.
 (B)
 図1に示す第1実施形態及び図2示す第2実施形態における電源ライン901を、図5で示す第4実施形態における第3スイッチ13で開閉する実施形態も有効である。
(B)
An embodiment in which the power supply line 901 in the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 2 is opened and closed by the third switch 13 in the fourth embodiment shown in FIG. 5 is also effective.
 第3スイッチ13が電源ライン901を遮断することによって第1インピーダンス回路21及び第2インピーダンス回路22での電力消費を止めるので、第1インピーダンス回路21及び第2インピーダンス回路22の電力定格を小さくすることができる。 Since the third switch 13 stops the power consumption in the first impedance circuit 21 and the second impedance circuit 22 by cutting off the power supply line 901, the power rating of the first impedance circuit 21 and the second impedance circuit 22 is reduced. Can do.
 (C)
 図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第3実施形態に係る過電圧保護回路50は、いずれも交流電圧に対する過電圧保護回路を実施形態としているが、電源が直流電源である場合、あるいは機器内に交流電源を整流する直流電源部を持つ場合には、各構成要素を交流仕様から直流仕様へ置き換えて直流電源部の下流側に設けてもよい。
(C)
The overvoltage protection circuit 50 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the third embodiment shown in FIG. 4 is an overvoltage protection circuit for an AC voltage. When the power source is a DC power source or when a DC power source unit that rectifies an AC power source is provided in the device, each component may be replaced with the DC specification and provided downstream of the DC power source unit.
 (D)
 第6実施形態は、第5実施形態から、電圧検出器と第3スイッチとを、商用電源90と直流電源部80との間に設けるように変更したものであるが、電圧検出器のみを商用電源90と直流電源部80との間に設けるようにしてもよい。
(D)
The sixth embodiment is different from the fifth embodiment in that the voltage detector and the third switch are provided between the commercial power supply 90 and the DC power supply unit 80, but only the voltage detector is commercialized. You may make it provide between the power supply 90 and the DC power supply part 80. FIG.
 (E)
 第5実施形態、第6実施形態では、機器の内部に過電圧保護回路を持つ例を示したが、機器はコンバータ回路とインバータ回路を持つものに限定されない。
(E)
In the fifth embodiment and the sixth embodiment, the example in which the overvoltage protection circuit is provided inside the device has been described, but the device is not limited to the one having the converter circuit and the inverter circuit.
 (F)
 第3実施形態では、機器30の保護動作が行なわれた後に第3スイッチがオフされるものとしたが、保護動作が行なわれてから所定時間経過後に第3スイッチをオフしてもよい。
(F)
In the third embodiment, the third switch is turned off after the protection operation of the device 30 is performed. However, the third switch may be turned off after a predetermined time has elapsed since the protection operation was performed.
 (G)
 第3実施形態では、機器30の保護動作が行なわれた後に第3スイッチがオフされるものとしたが、機器電圧Vを検出する機器電圧検出器を更に備え、機器電圧が所定値を超えたときに第3スイッチをオフしてもよい。
(G)
In the third embodiment, the third switch is turned off after the protection operation of the device 30 is performed. However, the device further includes a device voltage detector that detects the device voltage V, and the device voltage exceeds a predetermined value. Sometimes the third switch may be turned off.
 (H)
 第1実施形態では、過電圧時に電流を流す素子としてサージアブソーバを例にとって説明した。この場合には第1実施形態で説明したように、導通時に素子自体で電圧は保持しないため、電源電圧はインピーダンスの比によって分圧されて機器30に印加される。しかし、過電圧導通回路の素子として、バリスタやツェナダイオードなどの導通時に素子自体で所定の電圧を保持するような素子を過電圧回路に適用した場合には、電源電圧からその保持電圧分を除いた電圧がインピーダンスの比によって分圧されることなる。この場合には、素子の保持電圧とインピーダンスで分圧された電圧を加算した電圧しか機器に印加されないので、機器への引加電圧が制限されて、機器を過電圧から保護することができる。
(H)
In the first embodiment, a surge absorber has been described as an example of an element that allows a current to flow during overvoltage. In this case, as described in the first embodiment, since the voltage is not held by the element itself when conducting, the power supply voltage is divided by the impedance ratio and applied to the device 30. However, when an overvoltage circuit is applied to an overvoltage circuit, such as a varistor or Zener diode that maintains a predetermined voltage when the element itself is on, the voltage obtained by removing the retained voltage from the power supply voltage. Is divided by the impedance ratio. In this case, since only the voltage obtained by adding the holding voltage of the element and the voltage divided by the impedance is applied to the device, the applied voltage to the device is limited, and the device can be protected from overvoltage.
 本発明は、電源電圧の変動が起こり易い地域で使用される機器、例えば、冷凍装置に有用である。 The present invention is useful for equipment used in an area where power supply voltage is likely to fluctuate, such as a refrigeration apparatus.
10,60   過電圧導通回路
11,61   スイッチ
12,62   第2スイッチ
13,63   第3スイッチ
21,71   第1インピーダンス回路
22,72   第2インピーダンス回路
33,83   電圧検出器
35,85   バイパス回路
50,100  過電圧保護回路
80      直流電源部(DC電源、コンバータ回路)
90      商用電源(AC電源)
95      インバータ(インバータ回路)
10, 60 Overvoltage conduction circuit 11, 61 Switch 12, 62 Second switch 13, 63 Third switch 21, 71 First impedance circuit 22, 72 Second impedance circuit 33, 83 Voltage detector 35, 85 Bypass circuit 50, 100 Overvoltage protection circuit 80 DC power supply (DC power supply, converter circuit)
90 Commercial power (AC power)
95 Inverter (Inverter circuit)
特開2009-207329号公報JP 2009-207329 A

Claims (10)

  1.  電源と前記電源から電力を供給される機器との間に接続される過電圧保護回路であって、
     前記電源と前記機器とを結ぶ一対の電源ライン間に前記機器と並列に接続され、過電圧時に電流を流す過電圧導通回路(10,60)と、
     一対の前記電源ライン間に前記機器と並列に、且つ前記過電圧導通回路(10,60)と直列に接続される第1インピーダンス回路(21,71)と、
     前記電源ラインのうちの前記電源と前記第1インピーダンス回路(21,71)との間に接続される第2インピーダンス回路(22,72)と、
    を備える、
    過電圧保護回路(50,100)。
    An overvoltage protection circuit connected between a power source and a device supplied with power from the power source,
    An overvoltage conduction circuit (10, 60) that is connected in parallel with the device between a pair of power supply lines connecting the power source and the device, and causes a current to flow in the event of an overvoltage,
    A first impedance circuit (21, 71) connected in parallel with the device between a pair of power supply lines and in series with the overvoltage conduction circuit (10, 60);
    A second impedance circuit (22, 72) connected between the power supply of the power supply line and the first impedance circuit (21, 71);
    Comprising
    Overvoltage protection circuit (50, 100).
  2.  前記過電圧導通回路(10,60)は、過電圧時に電流を流す素子として、過渡電圧サプレッサ、ツェナダイオード、サージアブソーバ、及びアバランシェダイオードのいずれか1つを含む、
    請求項1に記載の過電圧保護回路(50,100)。
    The overvoltage conduction circuit (10, 60) includes any one of a transient voltage suppressor, a Zener diode, a surge absorber, and an avalanche diode as an element that allows a current to flow when overvoltage occurs.
    The overvoltage protection circuit (50, 100) according to claim 1.
  3.  前記電源の電圧を検出する電圧検出器(33,83)をさらに備え、
     前記過電圧導通回路(10,60)は、前記電源ラインと前記第1インピーダンス回路(21,71)との間を開閉するスイッチ(11,61)を有し、
     前記スイッチ(11,61)は、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときにオンして前記電源ラインと前記第1インピーダンス回路(21,71)との間を導通させる、
    請求項1に記載の過電圧保護回路(50,100)。
    A voltage detector (33, 83) for detecting the voltage of the power source;
    The overvoltage conduction circuit (10, 60) has a switch (11, 61) for opening and closing between the power supply line and the first impedance circuit (21, 71),
    The switch (11, 61) is turned on when a value detected by the voltage detector (33, 83) exceeds a predetermined threshold, and between the power supply line and the first impedance circuit (21, 71). Continuity,
    The overvoltage protection circuit (50, 100) according to claim 1.
  4.  前記電源の電圧を検出する電圧検出器(33,83)と、
     前記第2インピーダンス回路(22,72)を迂回するバイパス回路(35,85)と、
    をさらに備え、
     前記バイパス回路(35,85)は、前記バイパス回路(35,85)を開閉する第2スイッチ(12,62)を有し、
     前記第2スイッチ(12,62)は、通常時は前記バイパス回路(35,85)を閉じ、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときに前記バイパス回路(35,85)を遮断する、
    請求項1又は請求項2に記載の過電圧保護回路(50,100)。
    A voltage detector (33, 83) for detecting the voltage of the power source;
    A bypass circuit (35, 85) bypassing the second impedance circuit (22, 72);
    Further comprising
    The bypass circuit (35, 85) has a second switch (12, 62) for opening and closing the bypass circuit (35, 85),
    The second switch (12, 62) normally closes the bypass circuit (35, 85), and when the detected value by the voltage detector (33, 83) exceeds a predetermined threshold, 35, 85),
    The overvoltage protection circuit (50, 100) according to claim 1 or 2.
  5.  前記第2インピーダンス回路(22,72)を迂回するバイパス回路(35,85)をさらに備え、
     前記バイパス回路(35,85)は、前記バイパス回路(35,85)を開閉する第2スイッチ(12,62)を有し、
     前記第2スイッチ(12,62)は、通常時は前記バイパス回路(35,85)を閉じ、前記電圧検出器(33,83)による検出値が所定の閾値を超えたときに前記バイパス回路(35,85)を遮断する、
    請求項3に記載の過電圧保護回路(50,100)。
    A bypass circuit (35, 85) for bypassing the second impedance circuit (22, 72);
    The bypass circuit (35, 85) has a second switch (12, 62) for opening and closing the bypass circuit (35, 85),
    The second switch (12, 62) normally closes the bypass circuit (35, 85), and when the detected value by the voltage detector (33, 83) exceeds a predetermined threshold, 35, 85),
    The overvoltage protection circuit (50, 100) according to claim 3.
  6.  前記電源の電圧を検出する電圧検出器(33,83)と、
     前記電源ラインを開閉する第3スイッチ(13,63)と、
    をさらに備え、
     前記第3スイッチ(13,63)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、前記過電圧導通回路(10,60)の導通後に前記電源ラインを遮断する、
    請求項1又は請求項2に記載の過電圧保護回路(50,100)。
    A voltage detector (33, 83) for detecting the voltage of the power source;
    A third switch (13, 63) for opening and closing the power line;
    Further comprising
    The third switch (13, 63) normally turns on the power supply line, and when the detection value by the voltage detector (33, 83) exceeds a predetermined threshold, the overvoltage conduction circuit (10, 60) shuts off the power line after continuity;
    The overvoltage protection circuit (50, 100) according to claim 1 or 2.
  7.  前記電源ラインを開閉する第3スイッチ(13,63)をさらに備え、
     前記第3スイッチ(13,63)は、通常時は前記電源ラインを導通状態にし、前記電圧検出器(33,83)による検出値が所定の閾値を超えたとき、前記過電圧導通回路(10,60)の導通後に前記電源ラインを遮断する、
    請求項3から請求項5のいずれか1項に記載の過電圧保護回路(50,100)。
    A third switch (13, 63) for opening and closing the power line;
    The third switch (13, 63) normally turns on the power supply line, and when the detection value by the voltage detector (33, 83) exceeds a predetermined threshold, the overvoltage conduction circuit (10, 60) shuts off the power line after continuity;
    The overvoltage protection circuit (50, 100) according to any one of claims 3 to 5.
  8.  前記電源は、AC電源である、
    請求項1から請求項7のいずれか1項に記載の過電圧保護回路(50)。
    The power source is an AC power source;
    The overvoltage protection circuit (50) according to any one of claims 1 to 7.
  9.  前記電源は、DC電源である、
    請求項1から請求項7のいずれか1項に記載の過電圧保護回路(100)。
    The power source is a DC power source;
    The overvoltage protection circuit (100) according to any one of claims 1 to 7.
  10.  交流電源に接続され、交流電圧を直流電圧に変換するコンバータ回路(80)と、
     前記直流電圧を交流電圧に変換するインバータ回路(95)と、
     請求項1から請求項9のいずれか1項に記載の過電圧保護回路(100)と、
    を備える、
    電力変換装置。
    A converter circuit (80) connected to an AC power source and converting AC voltage to DC voltage;
    An inverter circuit (95) for converting the DC voltage into an AC voltage;
    Overvoltage protection circuit (100) according to any one of claims 1 to 9,
    Comprising
    Power conversion device.
PCT/JP2014/083542 2013-12-27 2014-12-18 Overvoltage protection circuit and power conversion device provided therewith WO2015098688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480067793.7A CN105814762B (en) 2013-12-27 2014-12-18 Excess voltage protection and power-converting device with the excess voltage protection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273502 2013-12-27
JP2013273502A JP6110294B2 (en) 2013-12-27 2013-12-27 Overvoltage protection circuit and power conversion device including the same

Publications (1)

Publication Number Publication Date
WO2015098688A1 true WO2015098688A1 (en) 2015-07-02

Family

ID=53478549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083542 WO2015098688A1 (en) 2013-12-27 2014-12-18 Overvoltage protection circuit and power conversion device provided therewith

Country Status (3)

Country Link
JP (1) JP6110294B2 (en)
CN (1) CN105814762B (en)
WO (1) WO2015098688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245185A1 (en) 2018-06-21 2019-12-26 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179560B2 (en) 2015-06-26 2017-08-16 トヨタ自動車株式会社 Fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056738A (en) * 1996-08-08 1998-02-24 Hitachi Ltd Power factor improving rectifier circuit
JP2004072961A (en) * 2002-08-09 2004-03-04 Tdk Corp Overvoltage protection element, electrochemical device module and charger
JP2004215323A (en) * 2002-12-26 2004-07-29 Ntt Data Corp Protective circuit
JP2004350493A (en) * 2003-04-28 2004-12-09 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner using the same
JP2008141894A (en) * 2006-12-04 2008-06-19 Mitsubishi Electric Corp Rush current preventing circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2607689Y (en) * 2003-03-22 2004-03-24 魏广强 Multi-user safety distributing box
CN102106053A (en) * 2008-04-25 2011-06-22 捷通国际有限公司 Input protection circuit
CN202121302U (en) * 2010-09-08 2012-01-18 易丰兴业有限公司 DC supply equipment voltage abnormity protective circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056738A (en) * 1996-08-08 1998-02-24 Hitachi Ltd Power factor improving rectifier circuit
JP2004072961A (en) * 2002-08-09 2004-03-04 Tdk Corp Overvoltage protection element, electrochemical device module and charger
JP2004215323A (en) * 2002-12-26 2004-07-29 Ntt Data Corp Protective circuit
JP2004350493A (en) * 2003-04-28 2004-12-09 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner using the same
JP2008141894A (en) * 2006-12-04 2008-06-19 Mitsubishi Electric Corp Rush current preventing circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245185A1 (en) 2018-06-21 2019-12-26 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof
EP3738185A4 (en) * 2018-06-21 2021-03-03 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof
US11031777B2 (en) 2018-06-21 2021-06-08 Samsung Electronics Co., Ltd. Clamping operation and apparatus for surge protection

Also Published As

Publication number Publication date
JP2015128356A (en) 2015-07-09
CN105814762B (en) 2019-06-18
CN105814762A (en) 2016-07-27
JP6110294B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5761425B2 (en) Overvoltage protection circuit and power conversion device including the same
JP5210424B2 (en) Switching power supply circuit with protection function and electronic device using the same
JP5617000B2 (en) Switching power supply circuit with protection function and electronic device using the same
US9979286B2 (en) Power converting device
WO2015182658A1 (en) Circuit for driving electrical-power semiconductor element
JP6370492B2 (en) Power converter
JP5126241B2 (en) Overvoltage protection circuit and overvoltage protection method
JP6110294B2 (en) Overvoltage protection circuit and power conversion device including the same
JP6337270B2 (en) DC power supply device, inverter drive device, and air conditioner using the same
WO2015098625A1 (en) Overvoltage protection circuit and power conversion device equipped with same
JP6239024B2 (en) Power converter
JP6070782B2 (en) Overvoltage protection circuit and power conversion device including the same
JP2014161195A (en) Dc power supply device
JP2017127134A (en) Overvoltage protection circuit
JP2015216746A (en) Overvoltage protection circuit
JP6371226B2 (en) Switching power supply with reverse current protection
JP2015216744A (en) Overvoltage protection circuit and power conversion apparatus including the same
JP2017034869A (en) Ac-dc conversion circuit
JP2021145450A (en) Power source circuit
JP2015216745A (en) Overvoltage protection circuit
JP2012115078A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016/08648

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604930

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14875845

Country of ref document: EP

Kind code of ref document: A1