WO2015098658A1 - Bonding material containing metal nanoparticles - Google Patents
Bonding material containing metal nanoparticles Download PDFInfo
- Publication number
- WO2015098658A1 WO2015098658A1 PCT/JP2014/083442 JP2014083442W WO2015098658A1 WO 2015098658 A1 WO2015098658 A1 WO 2015098658A1 JP 2014083442 W JP2014083442 W JP 2014083442W WO 2015098658 A1 WO2015098658 A1 WO 2015098658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- saturated hydrocarbon
- solvent
- compound
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/334—Polymers modified by chemical after-treatment with organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/02—Polyalkylene oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0806—Silver
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/085—Copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/20—Carboxylic acid amides
Definitions
- the present invention relates to a bonding material having metal nanoparticles having a particle diameter of 1 to 100 nm as a main bonding agent.
- Non-patent Document 1 a bonding material having a performance in place of a tin-lead alloy (melting point: 238 ° C.) has not been found, and a material containing a high content of lead is still used (Non-patent Document 1).
- the joining technology using metal nanoparticles is expected as a heat-resistant joining method that does not use lead.
- Metal nanoparticles of 100 nm or less have a much higher specific surface area per weight than bulk metals, so there is a strong tendency to fuse with each other to reduce surface energy, and particles at a much lower temperature than bulk metals. They can be fused together. Applying this phenomenon called the quantum size effect (Kubo effect), the solder is made fine to the extent that the melting point is lowered, and for bonding using silver nanoparticles that are fused at 350 ° C under no pressure condition A material was developed (Patent Document 1). If metal nanoparticles are applied as a bonding material, it becomes a lead-free bonding technique, and therefore, a practical application of a bonding method and a bonding article using silver nanoparticles is being studied.
- Patent Document 3 there is a report using a composite composition in which a copolymer of polyethyleneimine and polyethylene glycol is combined with silver nanoparticles as a bonding agent.
- the bonding strength test method is a cellophane tape peel test, and so on, so it cannot be said that the performance satisfies the actual power semiconductor manufacturing process.
- the silver described above has a weak point that it tends to cause ion migration and easily causes a wiring short circuit, and it is extremely difficult to reduce the price because it is a noble metal. Therefore, investigations have been made on bonding methods and bonding articles using copper nanoparticles (Patent Documents 4 to 5).
- the bonding material of Patent Document 4 is characterized in that copper nanoparticles and silver nanoparticles are used in combination, and each metal of the metal nanoparticles is protected with a low molecular amine. Since the interaction between the low molecular amine and the metal nanoparticle is strong, the low molecular amine is not detached from the nanometal unless the temperature is high, and the nanometal cannot be sufficiently sintered. Therefore, in order to obtain a sufficient bonding strength, bonding under a high temperature condition of 350 ° C. in the atmosphere is required.
- the joining material of patent document 5 is characterized by using the copper nanoparticle which adjusted the particle size distribution, although there exists an effect which provides the oxidation resistance of copper nanoparticle itself, it is the material of joining material itself.
- Storage stability is insufficient and the addition of a dispersion stabilizer is essential.
- bonding is performed at a high temperature of 300 ° C. to 400 ° C. in a hydrogen gas atmosphere as a reducing gas, but the practicality is poor.
- low molecular weight protective agents having an alkyl chain of about C 8 to C 12 as a dispersion site and a terminal amine or carboxylic acid as a metal coordination site have been widely used in metal nanoparticle bonding agents (Patent Documents). 6).
- a flux agent is added as a reducing agent in order to reduce and remove a very thin metal oxide layer on the surface of the metal nanoparticles.
- the alkyl chain in the protective agent does not completely decompose and volatilize at a low temperature of 200 ° C.
- Patent Document 7 No (Patent Document 7).
- silver nanoparticles have problems such as migration and cost reduction, and copper nanoparticles need to be bonded under high temperature conditions due to oxidation resistance. It can be used as a bonding agent.
- silver and copper nanoparticles have high utility as a bonding agent for power semiconductors, low-temperature bonding at 200 ° C. or lower cannot be achieved, which greatly hinders practical application. For these reasons, it is desired to lower the bonding temperature under no pressure condition. Therefore, the main problem to be solved by the present invention is a bonding material using metal nanoparticles, which is high under no pressure condition and at a low temperature of 200 ° C. or less without impairing the dispersion stability of the metal nanoparticles.
- An object of the present invention is to provide a bonding material that can be bonded with strength.
- a polyethylene glycol structure having 8 to 200 carbon atoms is introduced into the dispersion site in the protective agent, and a specific solvent such as an alcohol solvent having a boiling point of 150 ° C. or higher is added.
- a specific solvent such as an alcohol solvent having a boiling point of 150 ° C. or higher is added.
- the metal oxide thin film layer on the surface of the metal nanoparticles can be effectively removed at a low temperature of 200 ° C. or less without the addition of a flux agent, and a metal nanoparticle bonding material that enables high-strength bonding is completed. It came.
- the present invention Item 1.
- the polyethylene glycol having 8 to 200 carbon atoms and the contained organic compound (A) are represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), and the following general formula (3).
- a (meth) acrylic polymer (polymer ⁇ ) having a structure represented by the following general formula (4) at least at one end and having a polyethylene glycol chain (P) in the side chain
- (Meth) acrylic polymer having a structure represented by the following general formula (4) at one end and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain Item 2.
- a benzyloxycarbonyl group optionally having an alkoxy group as a substituent R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom.
- A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ⁇ C 4 of C 1 ⁇ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group.
- Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ′′ -triethylene And t is an integer of 2 to 6.]
- R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom.
- Item 3 The polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), or the following general formula (3).
- Item 2. A bonding material according to Item 1, which is a compound.
- a benzyloxycarbonyl group optionally having an alkoxy group as a substituent R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom.
- A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ⁇ C 4 of C 1 ⁇ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group.
- Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ′′ -triethylene And t is an integer of 2 to 6.]
- Item 4. Item 2.
- the bonding material according to Item 1 wherein the solvent (C) is at least one solvent selected from the group consisting of an alcohol solvent having a boiling point of 150 ° C or higher and an ether solvent having a boiling point of 150 ° C or higher.
- Item 2. The bonding material according to Item 1, wherein the metal nanoparticles (B) are silver nanoparticles, copper nanoparticles, silver core copper shell nanoparticles, or copper core silver shell nanoparticles, or Item 6.
- Item 7. Item 7. The bonding material according to any one of Items 1 to 6, wherein the objects to be bonded are metals or metal oxides.
- bonding is possible with high strength under no pressure condition and at a low temperature condition of 200 ° C. or less.
- the metal species of the metal nanoparticles (B) of the present invention are not particularly limited as long as the later-described polyethylene glycol-containing organic compound can be combined, and preferably copper (Cu) -based, silver (Ag) -based Is preferred.
- copper-based and silver-based nanoparticles include copper nanoparticles, silver nanoparticles, silver core copper shell nanoparticles, copper core silver shell nanoparticles, and the like. Among these, copper nanoparticles are more preferable.
- the polyethylene glycol moiety in the protective agent (polyethylene glycol-containing organic compound) used in the present invention is excellent in affinity with the specific solvent of the present invention such as an alcohol solvent having a boiling point of 150 ° C. or higher. Can be strongly suppressed, and high dispersion of metal nanoparticles can be achieved. In other words, since the metal nanoparticles are packed in a high density, void generation due to decomposition and removal of the protective agent and solvent by heat treatment does not occur, and high density bonding is possible by the necking phenomenon between metal particles. And enables high strength bonding under no pressure condition.
- the metal nanoparticles synthesized using the protective agent of the present invention have a small amount of protective agent of about 2 to 15%, do not hinder the necking phenomenon between the metal particles at the time of bonding, and have organic components after bonding. Since it hardly remains, it has high reliability as a high heat-resistant bonding agent.
- Examples of metal nanoparticles containing a polyethylene glycol-containing organic compound having 8 to 200 carbon atoms contained in the bonding material of the present invention include Japanese Patent No. 4784847, Japanese Patent Application Laid-Open No. 2013-60637, or Japanese Patent No. 5077728. It can be synthesized by the method described in 1.
- the thioether type (RS—R ′) compound has an appropriate affinity adsorption effect on the metal particle surface and rapid detachment by heating, and exhibits low-temperature fusion characteristics.
- metal nanoparticles As another example, among the polymer compounds having a thioether group described in JP-A 2010-209421, metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is combined, Among the polymer compounds having a thioether group and a phosphate ester group described in Japanese Patent No.
- metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is complexed.
- These polyethylene glycol-containing polymer compounds can be produced according to the methods described in these publications.
- these polyethylene glycol-containing phosphate ester-type organic compounds have a thioether group and also a phosphate ester group, and by having these groups, the metal nanoparticle surface is reduced. Appropriate affinity adsorption effect and rapid desorption by heating can be imparted.
- thioether type organic compounds represented by the following formulas (1) to (3) are preferable.
- [W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group
- n is an integer indicating the number of repetitions of 4 to 100
- X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m
- R 1 is C 1 -C 4 saturation
- R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring.
- a benzyloxycarbonyl group optionally having an alkoxy group as a substituent R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom.
- A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ⁇ C 4 of C 1 ⁇ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group.
- Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ′′ -triethylene And t is an integer of 2 to 6.]
- the chain-like functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) functions as a solvent affinity part.
- the polyethylene glycol preferably has 8 to 200 carbon atoms, and more preferably has 8 to 100 carbon atoms.
- the chain functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) has a high number of carbon atoms of about 8 to 12 because the smaller the number of carbon atoms, the less the organic component remains. More preferable as a bonding agent having reliability.
- chain functional groups having ethylene glycol as a repeating unit in the general formulas (1) to (3) having about 50 to 100 carbon atoms are excellent in dispersion stability and highly disperse metal nanoparticles. It is more preferable in terms of improving the bonding strength under no pressure condition. Therefore, the carbon number can be appropriately adjusted in the range of 8 to 200 or more preferably in the range of 8 to 100 according to the usage scene.
- W in the general formulas (1) to (3) is a linear or branched carbon number of 1 to 8 from the viewpoint of industrial availability and dispersion stability when used as a protective agent. From the viewpoint of stability in an aqueous medium, an alkyl group having 1 to 4 carbon atoms is preferable.
- a structure in which X in the general formula (1) includes a carboxyl group, an alkoxycarbonyl group, a carbonyl group, an amino group, or an amide group as a partial structure can constitute a thioether group and a polydentate ligand. Therefore, it is preferable because the coordination force to the surface of the metal nanoparticle becomes strong.
- Y in the general formula (2) has a structure containing ether (C—O—C) and thioether (C—S—C) as a partial structure
- R a in the general formula (3) is a methylene carboxy group (—CH 2 COO—) or an ethylene carboxy group (—CH 2 CH 2 COO—), wherein Z is an ethylene group, 2-ethyl-2-methylenepropane-1,3-diyl group, 2,2-bis Most preferred is a methylenepropane-1,3-diyl group.
- the thioether-type organic compound is preferably a compound represented by the general formulas (1) to (3).
- the method for producing these thioether type organic compounds will be described in detail below.
- Examples of a method for easily producing a thioether-type organic compound include a method in which a polyether compound (a1) having a glycidyl group at the terminal and a thiol compound (a2) are reacted.
- the polyether compound (a1) having the glycidyl group at the end can be represented by the following general formula (5).
- the terminal oxirane ring of the polyether compound (a1) having the glycidyl group at the terminal can be opened with the thiol compound (a2) to obtain the desired thioether-type organic compound.
- This reaction uses a nucleophilic reaction of a thiol group, and various activation methods can be mentioned for this reaction. For example, synthesis by activation of an epoxide with a Lewis acid has been widely performed. Specifically, it is known to use zinc tartrate or a lanthanide Lewis acid. In addition, a method using a Lewis base is often performed.
- a method utilizing fluorine ions as a base catalyst is preferred.
- a thioether-type organic compound can be obtained without any special purification after the reaction between the polyether compound (a1) having a glycidyl group at the terminal and the thiol compound (a2).
- the polyether compound (a1) can be reacted with various thiol compounds (a2).
- thiol compounds (a2) examples include alkanethiols and benzenethiols, thioglycol, thioglycolic acid and esters thereof, mercaptopropionic acid and esters thereof which are easily available because they are widely used as radical polymerization chain transfer agents.
- Mercaptopolycarboxylic acids such as thiomalic acid, thiocitric acid and their esters may be reacted.
- the compound used in the present invention is a (meth) acrylic polymer (polymer ⁇ ) having a structure represented by the following general formula (4) at at least one terminal and having a polyethylene glycol chain (P) in the side chain.
- (meth) acrylic having a structure represented by the following general formula (4) at at least one terminal and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain
- a compound containing a polymer (polymer ⁇ ), RS (4) [In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom.
- thiol compound (Q) used for obtaining a polymer compound having a structure represented by the general formula (4) in the molecule a thiol compound generally used as a chain transfer agent can be used.
- thioglycol, 2,3-dihydroxypropanethiol, thioglycolic acid, ⁇ -mercaptopropionic acid, ethyl ⁇ -mercaptopropionate, and 2-ethylhexyl ⁇ -mercaptopropionate are reactive, readily available, and thinned
- methyl ⁇ -mercaptopropionate is most preferable.
- a well-known polymeric compound can be used. Specifically, (meth) acrylic acid, (meth) acrylic acid ester compounds, vinyl alcohol ester compounds, styrene compounds, allyl alcohol compounds, allylamine compounds, and the like.
- the protective agent for metal nanoparticles of the present invention can be designed according to the metal species to be used and the desired physical properties by appropriately selecting a polymerizable compound having a functional group having an affinity for metal. Possible and characteristic.
- a carboxy group, a phosphoric acid group, a sulfonic acid group, or a heteroaromatic group having a slightly strong adsorption ability for a metal, shows a moderate interaction, and depends on the liquidity of the dispersion medium.
- An amino group for example, dimethylaminoethyl group, dimethylaminopropyl group
- a hydroxy group hydroxyethyl group, hydroxypropyl group
- an aromatic group for example, a smaller interaction with the metal surface than the former
- the polymer compound having a structure represented by the general formula (4) in the molecule is added to the polyethylene glycol chain.
- (meth) acrylic acid or the like as a polymerizable compound, a carboxy group is used, a dimethylaminoethyl methacrylate or the like is used, an amino group is used, or methacryloyloxyethyl phosphate or the like is used. Hydroxy group by using hydroxyethyl methacrylate, etc.
- Aromatic groups can be introduced.
- an amino group, a carboxy group, an imidazole group, a phosphoric acid group, a sulfonic acid group, or the like can be incorporated into the polymer compound having the structure represented by the general formula (4) in the molecule.
- Specific examples of these polymerizable compounds include 2-dimethylaminoethyl methacrylate, vinylimidazole, 2-methacryloyloxyethyl phosphate, and 2-acrylamido-2-methylpropanesulfonic acid.
- the polymerization method of the protective agent for metal nanoparticles according to the present invention may be an ordinary radical polymerization method.
- the thiol compound and the polymerizable compound may be dissolved in an appropriate solvent, and a percarboxylic acid ester or the like may be added and heated as a polymerization initiator. .
- the divalent copper ion compound generally available copper compounds can be used, and sulfates, nitrates, carboxylates, carbonates, chlorides, acetylacetonate complexes and the like can be used.
- the complex may start from a divalent compound or may be produced from a monovalent compound, or may have moisture or crystal water. Specifically, if expressed excluding crystal water, CuSO 4 , Cu (NO 3 ) 2 , Cu (OAc) 2 , Cu (CH 3 CH 2 COO) 2 , Cu (HCOO) 2 , CuCO 3 , CuCl 3 2 , Cu 2 O, C 5 H 7 CuO 2 and the like.
- basic salts obtained by heating the above salts or exposing them to a basic atmosphere, such as Cu (OAc) 2 .CuO, Cu (OAc) 2 .2CuO, Cu 2 Cl (OH) 3, etc. Most preferably, it can be used. These basic salts may be prepared within the reaction system, or those prepared separately outside the reaction system may be used. Further, a general method can be applied in which ammonia or an amine compound is added to form a complex to ensure solubility and then used for the reduction.
- the monovalent silver ion compound generally available silver compounds can be used.
- copper or silver ion compounds are dissolved or mixed in a medium in which a thioether type organic compound is previously dissolved or dispersed.
- a medium in which a thioether type organic compound is previously dissolved or dispersed.
- water, ethanol, acetone, ethylene glycol, diethylene glycol, glycerin and a mixture thereof are preferably used, and a water-ethylene glycol mixture is particularly preferable. preferable.
- the concentration of the thioether-type organic compound in various media is preferably adjusted to a range of 0.3 to 10% by mass from the viewpoint of easy control of the subsequent reduction reaction.
- the copper or silver ion compound is added all at once or divided and mixed.
- a method in which the medium is dissolved in a small amount of a good solvent in advance and then added to the medium may be used.
- the proportion of the thioether-type organic compound to be mixed and the copper or silver ion compound is preferably selected as appropriate according to the protective ability of the thioether-type organic compound in the reaction medium, but usually 1 mol of copper or silver ion compound.
- the thioether-type organic compound is prepared in the range of 1 mmol to 30 mmol (about 2 to 60 g when a polymer having a molecular weight of 2000 is used), and particularly preferably used in the range of 15 to 30 mmol.
- reducing agents include hydrazine compounds, hydroxylamine and its derivatives, metal hydrides, phosphinates, aldehydes, enediols, hydroxyketones, etc.
- a compound that can be allowed to proceed is preferred because it provides a complex with less precipitate formation.
- reducing agents such as hydrazine hydrate, asymmetric dimethylhydrazine, hydroxylamine aqueous solution, sodium borohydride and the like are suitable. Since these have the ability to reduce the copper compound to zero valence, the divalent and monovalent copper compounds are reduced copper and are suitable for producing a composite of an organic compound and nano-copper particles.
- the conditions suitable for the reduction reaction vary depending on the copper compound used as a raw material, the type of reducing agent, the presence or absence of complexation, the medium, and the type of thioether type organic compound.
- copper (II) acetate is reduced with sodium borohydride in an aqueous system
- zero-valent nano copper particles can be prepared even at a temperature of about ice cooling.
- hydrazine is used, the reaction is slow at room temperature, and a smooth reduction reaction occurs only after heating to about 60 ° C., and when copper acetate is reduced in an ethylene glycol / water system, about 60 hours at 60 ° C. The reaction time is required.
- the reduction reaction is completed in this manner, a reaction mixture containing a complex of an organic compound and copper-based nanoparticles is obtained.
- reducing agents such as dimethylaminoethanol and sodium citrate are suitable. These are capable of reducing silver ions to zero valence under relatively mild conditions.
- the reduction reaction is completed by carrying out the reaction at 40 ° C. for about 2 hours, A reaction mixture containing a complex of organic compound and silver-based nanoparticles is obtained.
- the metal nanoparticles prepared in this way can be completely dispersed in the same way as before drying even after the solvent is added again after completely removing moisture to form a dry powder. It is.
- nano silver is obtained.
- Silver core copper shell nanoparticles whose surface is coated with copper can be obtained.
- a step of removing a metal compound residue, a reducing reagent residue, an excess polyethylene glycol-containing organic compound and the like is provided as necessary.
- reprecipitation, centrifugal sedimentation or ultrafiltration can be applied, and the reaction mixture containing the resulting complex is washed with a washing solvent such as water, ethanol, acetone and a mixture thereof.
- the aforementioned impurities can be washed away.
- the metal nanoparticle-organic compound composite is obtained as an aqueous dispersion.
- an easy-to-use solvent is added as a bonding material, or By exchanging the medium, suitability as a bonding material can be imparted.
- the bonding material can obtain higher bonding strength as the metal concentration in the material is higher, but on the other hand, it is necessary to supply the material to the bonding part by application, dispenser, mask printing, screen printing, etc. It is necessary to add a viscosity adjusting solvent or an additive or adjust the concentration of the metal contained in the material so that the characteristics are suitable. Therefore, the metal concentration of the aqueous dispersion is adjusted so that the maximum metal concentration is obtained in the viscosity range suitable for the printing method. Generally, about 50 to 95% is preferable because it can be easily supplied to the joint.
- the bonding material of the present invention can be used by adding metal nanoparticles having a particle size of about 200 to 1000 nm.
- the joining material of the present invention can be used with a further reducing power by adding a flux component.
- the bonding material prepared in this way is stable for about 1 to 3 months regardless of the preparation concentration if stored in a closed container.
- the level said to be practically sufficient in the technical field of the present invention is that a strength of 15 MPa or more is obtained in a shear strength test described later.
- the bonding material of the present invention exhibits a strength of 15 MPa or more, and preferably exhibits a strength of 20 MPa or more.
- a particularly preferable material for the bonding of the present invention is one that can obtain a strength of 30 MPa or more.
- solvent (C) of the present invention examples include alcohol solvents having a boiling point of 150 ° C. or higher, ether solvents having a boiling point of 150 ° C. or higher, ester solvents having a boiling point of 150 ° C. or higher, and lactam structure-containing solvents having a boiling point of 150 ° C. or higher. Etc. can be used suitably.
- the alcohol solvent having a boiling point of 150 ° C. or more specifically includes monofunctional alcohol types such as hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, and triethylene.
- monofunctional alcohol types such as hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, and triethylene.
- Bifunctional alcohol types such as glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, trifunctional alcohol types such as propanetriol, butanetriol, pentanetriol, hexanetriol, heptanetriol, propanetetraol, butane Tetrafunctional alcohol types such as tetraol, pentanetetraol, hexanetetraol, heptanetetraol, pentanepentaol, hexa Those penta-functional alcohol type, such as penta ol.
- alcohol compounds having a cyclic structure such as benzenetriol, biphenylpentaol, benzenepentaol, and cyclohexanehexaol.
- compounds having an alcohol group such as citric acid and ascorbic acid may be used.
- alcohol derivatives containing an ether structure such as propylene glycol monomethyl ether, 3-methoxybutanol, propylene glycol-n-propyl ether, propylene glycol-n-butyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether, dipropylene glycol -N-propyl ether, dipropylene glycol-n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol-n-butyl ether and the like may be used.
- an ether structure such as propylene glycol monomethyl ether, 3-methoxybutanol, propylene glycol-n-propyl ether, propylene glycol-n-butyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether, dipropylene glycol -N-propyl ether, dipropylene glycol-n-butyl ether, trip
- ether solvent having a boiling point of 150 ° C. or higher examples include polyethylene glycol and polypropylene glycol having a molecular weight of 200 to 400.
- the ester solvent having a boiling point of 150 ° C. or more specifically includes cyclohexanol acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether acetate, 1 , 4-butanediol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate, and crown ethers having a cyclic structure.
- the lactam structure-containing solvent having a boiling point of 150 ° C. or more specifically includes ⁇ -lactams such as ⁇ -lactam, ⁇ -caprolactam, ⁇ -lactam, N-methyl-2-pyrrolidone, pyroglutamic acid, piracetam, and penicillin. System compounds and the like.
- an alcohol solvent having a boiling point of 150 ° C. or higher and an ether solvent having a boiling point of 150 ° C. or higher are preferable to use.
- an alcohol solvent having a boiling point of 150 ° C. or higher of a bifunctional alcohol type such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, An ether solvent at 150 ° C. or higher is preferred.
- ethylene glycol, diethylene glycol, and polyethylene glycol having a molecular weight of 200 to 400 are more preferable.
- the amount used is in the range of 5 to 50% with respect to the metal, and more preferably in the range of 5 to 15%.
- the bonding material thus prepared is applied to two copper rods (diameter 10 mm ⁇ thickness 5 mm, diameter 3 mm ⁇ thickness 2 mm) previously washed with dilute hydrochloric acid, and the copper or silver is applied as it is or slightly pressed. It is possible to produce a joining test piece by heating to a temperature at which the nanoparticles are fused. At this time, it can also be carried out under a forming gas containing hydrogen, in a nitrogen atmosphere, or in an atmosphere of formic acid-containing nitrogen that has been passed through formic acid.
- examples of members to be bonded include metals (including alloys and intermetallic compounds), ceramics, plastics, composite materials thereof, and the like. Including joining of alloys and metals) is preferred. Further, the shape of the member is not particularly limited as long as these powders or pastes can be appropriately disposed between the members.
- the mixture consisting of ethylene glycol (10 mL) was heated while blowing nitrogen at a flow rate of 50 mL / min, and deaerated by aeration and stirring at 125 ° C. for 2 hours.
- the mixture was returned to room temperature, and a solution of hydrazine hydrate (1.50 g, 30.0 mmol) diluted with 7 mL of water was slowly added dropwise using a syringe pump. About 1/4 amount was slowly dropped over 2 hours. The dropping was temporarily stopped here, and after stirring for 2 hours, it was confirmed that foaming subsided, and then the remaining amount was further dropped over 1 hour.
- the resulting brown solution was heated to 60 ° C. and further stirred for 2 hours to complete the reduction reaction.
- a thioether type organic compound (A1) having a molecular weight of polyethylene glycol chain of 200 is a thioether type organic compound (A1), a thioether type organic compound (A2) having a molecular weight of 1000, and a thioether type organic compound (A3) having a molecular weight of 2000.
- a compound having a molecular weight of 3000 is referred to as a thioether type organic compound (A4).
- aqueous dispersions of copper nanoparticles combined with thioether-type organic compounds (A1) to (A4) are referred to as (a1) to (a4), respectively.
- Synthesis example 2 ⁇ Synthesis of Silver Nanoparticles Combining a Polyethylene Glycol-containing Organic Compound (Thioether Type Organic Compound (A3)) with 8 to 200 carbon atoms> Distillation of dimethylaminoethanol (1.78 g, 20 mmol) as a reducing agent into a mixture of silver nitrate (I) (2.55 g, 15.0 mmol), 0.451 g of thioether type organic compound (A3) and distilled water (10 mL) A mixture of 16.02 g of water was dropped using a dropping funnel over 20 minutes, and then heated at 40 ° C. for 2 hours to terminate the reduction reaction, thereby obtaining a black silver nanoparticle reaction mixture.
- Test example 1 By enclosing 5 mL of each of the above aqueous dispersions (a1) to (a4) in a 50 mL three-necked flask and heating them to 40 ° C. using a water bath, flowing nitrogen at a flow rate of 5 ml / min under reduced pressure. The water was completely removed to obtain 1.0 g of a dry powder of copper nanoparticle composite. Next, 0.1 g of ethylene glycol bubbled with nitrogen for 30 minutes was added in the glove bag substituted with argon gas to the obtained dry powder, and then mixed for 10 minutes in a mortar to obtain a copper nanoparticle paste having a nonvolatile content of 91%. Obtained.
- the obtained copper nanoparticle paste was screen-coated with a metal spatula on a copper bar having a diameter of 10 mm and a thickness of 5 mm using a stainless steel mask having a diameter of 4 mm and a thickness of 150 ⁇ m. Thereafter, a copper bar having a diameter of 3 mm and a thickness of 2 mm was mounted on the coated surface, and bonding was performed in a nitrogen atmosphere at 200 ° C. under no pressure condition.
- Example 1 the aqueous dispersion used is (a1)
- Example 2 the aqueous dispersion used was (a2)
- Example 3 the aqueous dispersion used was (a3)
- Example 4 the aqueous dispersion used was (a4)
- Test example 2 Using the water dispersion (a3), a copper bar joined body (in order, Example 5 and Example 6) was obtained in the same manner as in Test Example 1 except that joining was performed at 300 ° C. and 250 ° C., respectively. It was.
- Test example 3 The same procedure as in Test Example 1 was conducted except that diethylene glycol and polyethylene glycol having a molecular weight of 200 to 400 (PEG200, PEG300, PEG400) were added to and mixed with the copper nanoparticle composite dry powder of the aqueous dispersion (a3) instead of ethylene glycol. A copper nanoparticle paste was obtained. Using the copper nanoparticle paste, bonding was performed in the same manner as in Test Example 1 except that the bonding temperature was set to 350 ° C., thereby obtaining a copper bar joined body (in order of Example 7 to Example 10). It was.
- Test example 4 The same procedure as in Test Example 1 was conducted except that N-methyl-2-pyrrolidone and propylene glycol diacetate were added and mixed in place of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3).
- a copper nanoparticle paste was obtained in the same manner as in Test Example 1 except that terpineol and dimethylformamide were added and mixed as a comparative example instead of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3). .
- Test Example 5 Paste adjustment was performed using the same method as in Test Example 1 except that the aqueous dispersion (b) was used instead of the aqueous dispersion (a3) to obtain a silver nanoparticle paste. Next, bonding was performed at 350 ° C., 300 ° C., 250 ° C., and 200 ° C. in the same manner as in Test Example 1 except that the silver nanoparticle paste (b) was used instead of the copper nanoparticle paste (a). Copper rod joined bodies (Examples 13 to 16) were obtained.
- Evaluation 1 A shear strength test was carried out using the copper bar joined body of Examples 1 to 3 (Examples 1 to 3). The results are shown in Table 1.
- Example 4 A shear strength test was conducted using the copper bar joined body of Example 4 (Example 11, Example 12, Comparative Examples 1 and 2). The results are shown in Table 4.
- Example 5 A shear strength test was carried out using the copper bar joined body of Example 5 (Example 13 to Example 16). The results are shown in Table 5.
- the joining material of the present invention utilizes the fact that the joining part has a melting point close to that of bulk copper and heat dissipation, so that mounting of semiconductor chips, joining in LED lighting manufacturing processes, joining in power device assembly, etc.
- the joining part has a melting point close to that of bulk copper and heat dissipation, so that mounting of semiconductor chips, joining in LED lighting manufacturing processes, joining in power device assembly, etc.
- it can be suitably used for assembling devices that are exposed to high temperatures and devices that require reliability at high temperatures.
- the joint since the joint does not remelt even when heating is repeated, secondary and tertiary mounting can be performed without restriction of the reflow temperature, which can contribute to the expansion of the mounting procedure.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The present invention addresses the problem of providing a material that achieves sufficient bonding strength at a low bonding temperature without application of a pressure. This problem is solved by providing a bonding material which is characterized by containing: metal nanoparticles (B) to which a polyethylene glycol-containing organic compound (A) having 8-200 carbon atoms is complexed; and at least one solvent (C) selected from the group consisting of an alcohol solvent having a boiling point of 150°C or more, an ether solvent having a boiling point of 150°C or more, an ester solvent having a boiling point of 150°C or more and a lactam structure-containing solvent having a boiling point of 150°C or more.
Description
本発明は、粒径が1~100nmの金属ナノ粒子を接合の主剤とする接合用材料に関する。
The present invention relates to a bonding material having metal nanoparticles having a particle diameter of 1 to 100 nm as a main bonding agent.
環境保護の観点から有害物の使用規制が産業上広く課されているが、とりわけ、実装材料においては欧州連合のRoHS指令の施行に基づいて、はんだ材料の鉛フリー化が強力に推進されてきた。その結果、従来のスズ-鉛共晶はんだ(融点183℃)を代替する接合用材料として、スズ-銀系またはスズ-銅系はんだが見出され、広く用いられるようになっている(融点220~230℃)。しかしながら、耐熱性と伝熱性が求められるような実装、例えば大電流を制御するパワーデバイスを放熱ベースに接合するような用途では、250℃付近の高温条件下での信頼性が求められているが、スズ-鉛合金(融点238℃)に代わる性能の接合用材料が見出されておらず、未だに高含量の鉛を含むものが用いられているのが実情である(非特許文献1)。
Restrictions on the use of harmful substances are widely imposed in the industry from the viewpoint of environmental protection, but in particular, lead-free solder materials have been strongly promoted in mounting materials based on the enforcement of the European Union's RoHS directive. . As a result, a tin-silver or tin-copper solder has been found and widely used as a joining material that replaces the conventional tin-lead eutectic solder (melting point 183 ° C.) (melting point 220). ~ 230 ° C). However, in mounting where heat resistance and heat transfer are required, such as joining a power device that controls a large current to a heat dissipation base, reliability under high temperature conditions around 250 ° C. is required. However, a bonding material having a performance in place of a tin-lead alloy (melting point: 238 ° C.) has not been found, and a material containing a high content of lead is still used (Non-patent Document 1).
鉛を使用しない耐熱性の接合方法として期待されているのが、金属ナノ粒子を用いた接合技術である。100nm以下の金属ナノ粒子はバルク金属に比して重量あたり比表面積が格段に高いので、相互に融着して表面エネルギーを低下させようとする傾向が強く、バルク金属よりはるかに低い温度で粒子相互が融着しうる。量子サイズ効果(久保効果)と呼ばれるこの現象を応用し、融点を低下させる程度にまではんだを微粒子化して、無加圧条件下、350℃の温度で融着させる銀ナノ粒子を用いた接合用材料が開発された(特許文献1)。金属ナノ粒子を接合用材料として応用すれば、鉛フリーの接合技術となるため、銀ナノ粒子を利用した接合方法や接合用品の実用化検討が行われている。
The joining technology using metal nanoparticles is expected as a heat-resistant joining method that does not use lead. Metal nanoparticles of 100 nm or less have a much higher specific surface area per weight than bulk metals, so there is a strong tendency to fuse with each other to reduce surface energy, and particles at a much lower temperature than bulk metals. They can be fused together. Applying this phenomenon called the quantum size effect (Kubo effect), the solder is made fine to the extent that the melting point is lowered, and for bonding using silver nanoparticles that are fused at 350 ° C under no pressure condition A material was developed (Patent Document 1). If metal nanoparticles are applied as a bonding material, it becomes a lead-free bonding technique, and therefore, a practical application of a bonding method and a bonding article using silver nanoparticles is being studied.
加熱によりバルク金属となると、再び溶融させるには相当の高温(バルク金属の融点)を要することから、金属ナノ粒子を用いた接合には250℃以上の高温条件下での高い信頼性が期待できる。すなわち、前述のパワー半導体の接合や、自動車のエンジンルームのような高温環境で用いられる回路実装用はんだに好適である。バルク材料の融点まで再溶融しないので、二次実装を行う場合に、接合が安定であるという性質も実用上の価値である。ハイブリッド自動車用パワー半導体装置の組立てにも応用が期待されている。
When it becomes a bulk metal by heating, it requires a considerably high temperature (melting point of the bulk metal) to be melted again, and therefore, high reliability under high temperature conditions of 250 ° C. or higher can be expected for joining using metal nanoparticles. . That is, it is suitable for soldering for circuit mounting used in high-temperature environments such as the aforementioned power semiconductor bonding and automobile engine rooms. Since it does not remelt up to the melting point of the bulk material, the property that the bonding is stable when performing secondary mounting is also a practical value. Applications are also expected in the assembly of power semiconductor devices for hybrid vehicles.
しかしながら、金属ナノ粒子を用いた接合では300℃程度の加熱が必要であり、この温度では周辺部品に反りや湾曲を生じさせてしまうため、既存工程により接合を行うためには、無加圧条件下、200℃以下での低温接合を実現する必要がある。オキシジ酢酸のようなフラックス剤を添加することで接合温度を300℃以下に低下させる報告もあるが、接合基板に銀メッキ処理を行う必要がある等、実用性に劣っている(特許文献2)。また、200℃以下での低温接合例としてポリエチレンイミンとポリエチレングリコールの共重合体を銀ナノ粒子と複合化させた複合組成物を接合剤として用いた報告があるが(特許文献3)、2.5MPa程度の加圧を必要とする上、接合強度試験方法がセロハンテープ剥離試験である等、現実のパワー半導体製造工程を満足させる性能とは到底言えない。
一方で、上記した銀は、イオンマイグレーションが発生しやすく、配線短絡の要因になりやすいという弱点がある上、貴金属であることから低価格化が極めて困難である。そこで、銅ナノ粒子を利用した接合方法や接合用品の検討が行われ始めた(特許文献4~5)。
特許文献4の接合用材料は、銅ナノ粒子と銀ナノ粒子を併用することを特徴としており、金属ナノ粒子はそれぞれの金属は共に低分子アミンで保護されている。低分子アミンと金属ナノ粒子との相互作用は強いため、高温条件でなければナノ金属から低分子アミンが脱離せず、ナノ金属を十分に焼結させることができない。従って、十分な接合強度を得るためには、大気下で350℃といった高温条件下の接合が必要となる。
また特許文献5の接合材料は、粒度分布を調整した銅ナノ粒子を用いることを特徴とするものであるが、銅ナノ粒子自体の耐酸化性を付与する効果はあるものの、接合用材料自体の保存安定性は不充分であり分散安定剤の添加が不可欠である。分散安定剤存在下で十分な接合強度を確保するために、還元性気体である水素ガス雰囲気下で300℃~400℃といった高温で接合を行っているが、実用性に乏しい。
また、金属ナノ粒子接合剤には分散部位としてC8~C12程度のアルキル鎖を持ち、金属配位部位として末端にアミンやカルボン酸を持つ低分子保護剤が広く用いられてきた(特許文献6)。このような低分子保護剤を使用した金属ナノ粒子を接合用材料として用いる場合、金属ナノ粒子表面のごく薄い金属酸化物層を還元除去するために還元剤としてフラックス剤を添加していた。しかしながら、保護剤中のアルキル鎖は200℃以下の低温では完全に分解及び揮発が進まず、金属ナノ粒子表面に残留してしまい、フラックス剤の還元効果を阻害し、低温接合の実現を困難にしていた。
一方で、親水部位を有するリン酸系保護剤を使用した金属ナノ粒子の接合検討も行われているが、金属酸化皮膜の除去力が十分ではなく、200℃という低温での接合は達成できていない(特許文献7)。 However, in joining using metal nanoparticles, heating at about 300 ° C. is necessary, and at this temperature, peripheral parts are warped and curved, so in order to perform joining by an existing process, there is no pressure condition. Below, it is necessary to realize low-temperature bonding at 200 ° C. or lower. Although there is also a report that the bonding temperature is lowered to 300 ° C. or less by adding a fluxing agent such as oxydiacetic acid, it is inferior in practicality because it is necessary to perform silver plating treatment on the bonding substrate (Patent Document 2). . In addition, as an example of low-temperature bonding at 200 ° C. or lower, there is a report using a composite composition in which a copolymer of polyethyleneimine and polyethylene glycol is combined with silver nanoparticles as a bonding agent (Patent Document 3). In addition to requiring pressurization of about 5 MPa, the bonding strength test method is a cellophane tape peel test, and so on, so it cannot be said that the performance satisfies the actual power semiconductor manufacturing process.
On the other hand, the silver described above has a weak point that it tends to cause ion migration and easily causes a wiring short circuit, and it is extremely difficult to reduce the price because it is a noble metal. Therefore, investigations have been made on bonding methods and bonding articles using copper nanoparticles (Patent Documents 4 to 5).
The bonding material of Patent Document 4 is characterized in that copper nanoparticles and silver nanoparticles are used in combination, and each metal of the metal nanoparticles is protected with a low molecular amine. Since the interaction between the low molecular amine and the metal nanoparticle is strong, the low molecular amine is not detached from the nanometal unless the temperature is high, and the nanometal cannot be sufficiently sintered. Therefore, in order to obtain a sufficient bonding strength, bonding under a high temperature condition of 350 ° C. in the atmosphere is required.
Moreover, although the joining material of patent document 5 is characterized by using the copper nanoparticle which adjusted the particle size distribution, although there exists an effect which provides the oxidation resistance of copper nanoparticle itself, it is the material of joining material itself. Storage stability is insufficient and the addition of a dispersion stabilizer is essential. In order to ensure sufficient bonding strength in the presence of a dispersion stabilizer, bonding is performed at a high temperature of 300 ° C. to 400 ° C. in a hydrogen gas atmosphere as a reducing gas, but the practicality is poor.
In addition, low molecular weight protective agents having an alkyl chain of about C 8 to C 12 as a dispersion site and a terminal amine or carboxylic acid as a metal coordination site have been widely used in metal nanoparticle bonding agents (Patent Documents). 6). When metal nanoparticles using such a low molecular weight protective agent are used as a bonding material, a flux agent is added as a reducing agent in order to reduce and remove a very thin metal oxide layer on the surface of the metal nanoparticles. However, the alkyl chain in the protective agent does not completely decompose and volatilize at a low temperature of 200 ° C. or lower, and remains on the surface of the metal nanoparticles, hindering the reduction effect of the flux agent, making it difficult to realize low-temperature bonding. It was.
On the other hand, metal nanoparticle bonding using a phosphate-based protective agent having a hydrophilic site has also been studied, but the metal oxide film removal ability is not sufficient, and bonding at a low temperature of 200 ° C. has not been achieved. No (Patent Document 7).
一方で、上記した銀は、イオンマイグレーションが発生しやすく、配線短絡の要因になりやすいという弱点がある上、貴金属であることから低価格化が極めて困難である。そこで、銅ナノ粒子を利用した接合方法や接合用品の検討が行われ始めた(特許文献4~5)。
特許文献4の接合用材料は、銅ナノ粒子と銀ナノ粒子を併用することを特徴としており、金属ナノ粒子はそれぞれの金属は共に低分子アミンで保護されている。低分子アミンと金属ナノ粒子との相互作用は強いため、高温条件でなければナノ金属から低分子アミンが脱離せず、ナノ金属を十分に焼結させることができない。従って、十分な接合強度を得るためには、大気下で350℃といった高温条件下の接合が必要となる。
また特許文献5の接合材料は、粒度分布を調整した銅ナノ粒子を用いることを特徴とするものであるが、銅ナノ粒子自体の耐酸化性を付与する効果はあるものの、接合用材料自体の保存安定性は不充分であり分散安定剤の添加が不可欠である。分散安定剤存在下で十分な接合強度を確保するために、還元性気体である水素ガス雰囲気下で300℃~400℃といった高温で接合を行っているが、実用性に乏しい。
また、金属ナノ粒子接合剤には分散部位としてC8~C12程度のアルキル鎖を持ち、金属配位部位として末端にアミンやカルボン酸を持つ低分子保護剤が広く用いられてきた(特許文献6)。このような低分子保護剤を使用した金属ナノ粒子を接合用材料として用いる場合、金属ナノ粒子表面のごく薄い金属酸化物層を還元除去するために還元剤としてフラックス剤を添加していた。しかしながら、保護剤中のアルキル鎖は200℃以下の低温では完全に分解及び揮発が進まず、金属ナノ粒子表面に残留してしまい、フラックス剤の還元効果を阻害し、低温接合の実現を困難にしていた。
一方で、親水部位を有するリン酸系保護剤を使用した金属ナノ粒子の接合検討も行われているが、金属酸化皮膜の除去力が十分ではなく、200℃という低温での接合は達成できていない(特許文献7)。 However, in joining using metal nanoparticles, heating at about 300 ° C. is necessary, and at this temperature, peripheral parts are warped and curved, so in order to perform joining by an existing process, there is no pressure condition. Below, it is necessary to realize low-temperature bonding at 200 ° C. or lower. Although there is also a report that the bonding temperature is lowered to 300 ° C. or less by adding a fluxing agent such as oxydiacetic acid, it is inferior in practicality because it is necessary to perform silver plating treatment on the bonding substrate (Patent Document 2). . In addition, as an example of low-temperature bonding at 200 ° C. or lower, there is a report using a composite composition in which a copolymer of polyethyleneimine and polyethylene glycol is combined with silver nanoparticles as a bonding agent (Patent Document 3). In addition to requiring pressurization of about 5 MPa, the bonding strength test method is a cellophane tape peel test, and so on, so it cannot be said that the performance satisfies the actual power semiconductor manufacturing process.
On the other hand, the silver described above has a weak point that it tends to cause ion migration and easily causes a wiring short circuit, and it is extremely difficult to reduce the price because it is a noble metal. Therefore, investigations have been made on bonding methods and bonding articles using copper nanoparticles (Patent Documents 4 to 5).
The bonding material of Patent Document 4 is characterized in that copper nanoparticles and silver nanoparticles are used in combination, and each metal of the metal nanoparticles is protected with a low molecular amine. Since the interaction between the low molecular amine and the metal nanoparticle is strong, the low molecular amine is not detached from the nanometal unless the temperature is high, and the nanometal cannot be sufficiently sintered. Therefore, in order to obtain a sufficient bonding strength, bonding under a high temperature condition of 350 ° C. in the atmosphere is required.
Moreover, although the joining material of patent document 5 is characterized by using the copper nanoparticle which adjusted the particle size distribution, although there exists an effect which provides the oxidation resistance of copper nanoparticle itself, it is the material of joining material itself. Storage stability is insufficient and the addition of a dispersion stabilizer is essential. In order to ensure sufficient bonding strength in the presence of a dispersion stabilizer, bonding is performed at a high temperature of 300 ° C. to 400 ° C. in a hydrogen gas atmosphere as a reducing gas, but the practicality is poor.
In addition, low molecular weight protective agents having an alkyl chain of about C 8 to C 12 as a dispersion site and a terminal amine or carboxylic acid as a metal coordination site have been widely used in metal nanoparticle bonding agents (Patent Documents). 6). When metal nanoparticles using such a low molecular weight protective agent are used as a bonding material, a flux agent is added as a reducing agent in order to reduce and remove a very thin metal oxide layer on the surface of the metal nanoparticles. However, the alkyl chain in the protective agent does not completely decompose and volatilize at a low temperature of 200 ° C. or lower, and remains on the surface of the metal nanoparticles, hindering the reduction effect of the flux agent, making it difficult to realize low-temperature bonding. It was.
On the other hand, metal nanoparticle bonding using a phosphate-based protective agent having a hydrophilic site has also been studied, but the metal oxide film removal ability is not sufficient, and bonding at a low temperature of 200 ° C. has not been achieved. No (Patent Document 7).
上述の通り、銀ナノ粒子はマイグレーションと低価格化、銅ナノ粒子は耐酸化性に起因する高温条件での接合を要するといった課題をそれぞれ抱えているが、使用用途によっては共に有効な高耐熱性接合剤として使用することが可能である。
しかしながら、銀及び銅ナノ粒子はパワー半導体用接合剤として高い有用性を持つものの、200℃以下での低温接合が達成できず、実用化の大きな妨げとなっている。こうしたことから、無加圧条件下での接合温度の低温化が希求されている。
そこで、本発明が解決しようとする主な課題は、金属ナノ粒子を用いる接合用材料であって、金属ナノ粒子の分散安定性を損なうことなく、無加圧条件且つ200℃以下の低温において高い強度で接合可能な接合用材料を提供することにある。 As mentioned above, silver nanoparticles have problems such as migration and cost reduction, and copper nanoparticles need to be bonded under high temperature conditions due to oxidation resistance. It can be used as a bonding agent.
However, although silver and copper nanoparticles have high utility as a bonding agent for power semiconductors, low-temperature bonding at 200 ° C. or lower cannot be achieved, which greatly hinders practical application. For these reasons, it is desired to lower the bonding temperature under no pressure condition.
Therefore, the main problem to be solved by the present invention is a bonding material using metal nanoparticles, which is high under no pressure condition and at a low temperature of 200 ° C. or less without impairing the dispersion stability of the metal nanoparticles. An object of the present invention is to provide a bonding material that can be bonded with strength.
しかしながら、銀及び銅ナノ粒子はパワー半導体用接合剤として高い有用性を持つものの、200℃以下での低温接合が達成できず、実用化の大きな妨げとなっている。こうしたことから、無加圧条件下での接合温度の低温化が希求されている。
そこで、本発明が解決しようとする主な課題は、金属ナノ粒子を用いる接合用材料であって、金属ナノ粒子の分散安定性を損なうことなく、無加圧条件且つ200℃以下の低温において高い強度で接合可能な接合用材料を提供することにある。 As mentioned above, silver nanoparticles have problems such as migration and cost reduction, and copper nanoparticles need to be bonded under high temperature conditions due to oxidation resistance. It can be used as a bonding agent.
However, although silver and copper nanoparticles have high utility as a bonding agent for power semiconductors, low-temperature bonding at 200 ° C. or lower cannot be achieved, which greatly hinders practical application. For these reasons, it is desired to lower the bonding temperature under no pressure condition.
Therefore, the main problem to be solved by the present invention is a bonding material using metal nanoparticles, which is high under no pressure condition and at a low temperature of 200 ° C. or less without impairing the dispersion stability of the metal nanoparticles. An object of the present invention is to provide a bonding material that can be bonded with strength.
上記実情を鑑み鋭意検討を行った結果、保護剤中の分散部位に炭素数8~200のポリエチレングリコール構造を導入し、且つ、沸点が150℃以上のアルコール系溶媒などの特定の溶媒を添加することで、フラックス剤の添加無しに200℃以下の低温で金属ナノ粒子表面の金属酸化物薄膜層を効果的に除去し、高強度の接合を可能とする金属ナノ粒子接合用材料を完成させるに至った。
As a result of intensive studies in view of the above circumstances, a polyethylene glycol structure having 8 to 200 carbon atoms is introduced into the dispersion site in the protective agent, and a specific solvent such as an alcohol solvent having a boiling point of 150 ° C. or higher is added. Thus, the metal oxide thin film layer on the surface of the metal nanoparticles can be effectively removed at a low temperature of 200 ° C. or less without the addition of a flux agent, and a metal nanoparticle bonding material that enables high-strength bonding is completed. It came.
即ち本発明は、
項1.炭素数8~200のポリエチレングリコール含有有機化合物(A)が複合した金属ナノ粒子(B)と沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒、沸点150℃以上のエステル系溶媒及び沸点150℃以上のラクタム構造含有溶媒からなる群より選ばれる少なくとも一種の溶媒(C)とを含有することを特徴とする接合用材料、
項2.炭素数8~200のポリエチレングリコール、含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物、又は少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖にポリエチレングリコール鎖(P)を有する(メタ)アクリル系重合体(重合体α)と、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖に-OP(O)(OH)2で表されるリン酸エステル残基を有する(メタ)アクリル系重合体(重合体β)とを含有する化合物である、項1記載の接合用材料、
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
R-S- (4)
〔一般式(4)中、Rは、炭素原子数1~18の直鎖若しくは分岐状のアルキル基、又は、水酸基、炭素原子数1~18の直鎖アルコキシ基、炭素原子数1~18の分岐状アルコキシ基、アラルキルオキシ基、置換フェニルオキシ基、炭素原子数1~18の直鎖アルキルカルボニルオキシ基、炭素原子数1~18の分岐状アルキルカルボニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の直鎖アルコキシカルボニル基、炭素原子数1~18の分岐状アルコキシカルボニル基、リン酸基、炭素原子数1~6の直鎖アルキルリン酸基、炭素原子数1~6の分岐状アルキルリン酸基、スルホン酸基、炭素原子数1~6の直鎖アルキルスルホン酸基、及び炭素原子数1~6の分岐状アルキルスルホン酸基からなる群から選ばれる少なくとも1つの官能基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基を表す。〕
項3.炭素数8~200のポリエチレングリコール含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物又は下記一般式(3)で表される化合物である、項1記載の接合用材料、
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
項4.溶媒(C)が、沸点150℃以上のアルコール系溶媒及び沸点150℃以上のエーテル系溶媒からなる群より選ばれる少なくとも一種の溶媒である、項1記載の接合用材料、
項5.金属ナノ粒子(B)が、銀ナノ粒子、銅ナノ粒子、銀コア銅シェルナノ粒子又は銅コア銀シェルナノ粒子であることを特徴とする項1記載の接合用材料、又は、
項6.前記金属ナノ粒子中、炭素数8~200のポリエチレングリコール含有有機化合物(A)の含有率が2~15質量%である、項1記載の接合用材料、
項7.接合すべき被接合物が、金属又は金属酸化物である項1~6の何れか一項に記載の接合用材料に関する。 That is, the present invention
Item 1. Metal nanoparticles (B) in which a polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is combined, an alcohol solvent having a boiling point of 150 ° C. or higher, an ether solvent having a boiling point of 150 ° C. or higher, and an ester solvent having a boiling point of 150 ° C. or higher. And at least one solvent (C) selected from the group consisting of a lactam structure-containing solvent having a boiling point of 150 ° C. or higher, and a bonding material,
Item 2. The polyethylene glycol having 8 to 200 carbon atoms and the contained organic compound (A) are represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), and the following general formula (3). Or a (meth) acrylic polymer (polymer α) having a structure represented by the following general formula (4) at least at one end and having a polyethylene glycol chain (P) in the side chain, (Meth) acrylic polymer having a structure represented by the following general formula (4) at one end and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain ( Item 2. A bonding material according to Item 1, which is a compound containing polymer β).
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
RS (4)
[In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A branched alkoxy group, an aralkyloxy group, a substituted phenyloxy group, a linear alkylcarbonyloxy group having 1 to 18 carbon atoms, a branched alkylcarbonyloxy group having 1 to 18 carbon atoms, a carboxy group, a salt of a carboxy group, Straight chain alkoxycarbonyl group having 1 to 18 carbon atoms, branched alkoxycarbonyl group having 1 to 18 carbon atoms, phosphoric acid group, straight chain alkylphosphoric acid group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms Selected from the group consisting of branched alkyl phosphate groups, sulfonic acid groups, linear alkyl sulfonic acid groups having 1 to 6 carbon atoms, and branched alkyl sulfonic acid groups having 1 to 6 carbon atoms. Even without a linear or branched alkyl group having 1 to 8 carbon atoms having a single functional group. ]
Item 3. The polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), or the following general formula (3). Item 2. A bonding material according to Item 1, which is a compound.
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
Item 4. Item 2. The bonding material according to Item 1, wherein the solvent (C) is at least one solvent selected from the group consisting of an alcohol solvent having a boiling point of 150 ° C or higher and an ether solvent having a boiling point of 150 ° C or higher.
Item 5. Item 2. The bonding material according to Item 1, wherein the metal nanoparticles (B) are silver nanoparticles, copper nanoparticles, silver core copper shell nanoparticles, or copper core silver shell nanoparticles, or
Item 6. Item 2. The bonding material according to Item 1, wherein the content of the polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms in the metal nanoparticles is 2 to 15% by mass.
Item 7. Item 7. The bonding material according to any one of Items 1 to 6, wherein the objects to be bonded are metals or metal oxides.
項1.炭素数8~200のポリエチレングリコール含有有機化合物(A)が複合した金属ナノ粒子(B)と沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒、沸点150℃以上のエステル系溶媒及び沸点150℃以上のラクタム構造含有溶媒からなる群より選ばれる少なくとも一種の溶媒(C)とを含有することを特徴とする接合用材料、
項2.炭素数8~200のポリエチレングリコール、含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物、又は少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖にポリエチレングリコール鎖(P)を有する(メタ)アクリル系重合体(重合体α)と、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖に-OP(O)(OH)2で表されるリン酸エステル残基を有する(メタ)アクリル系重合体(重合体β)とを含有する化合物である、項1記載の接合用材料、
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
R-S- (4)
〔一般式(4)中、Rは、炭素原子数1~18の直鎖若しくは分岐状のアルキル基、又は、水酸基、炭素原子数1~18の直鎖アルコキシ基、炭素原子数1~18の分岐状アルコキシ基、アラルキルオキシ基、置換フェニルオキシ基、炭素原子数1~18の直鎖アルキルカルボニルオキシ基、炭素原子数1~18の分岐状アルキルカルボニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の直鎖アルコキシカルボニル基、炭素原子数1~18の分岐状アルコキシカルボニル基、リン酸基、炭素原子数1~6の直鎖アルキルリン酸基、炭素原子数1~6の分岐状アルキルリン酸基、スルホン酸基、炭素原子数1~6の直鎖アルキルスルホン酸基、及び炭素原子数1~6の分岐状アルキルスルホン酸基からなる群から選ばれる少なくとも1つの官能基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基を表す。〕
項3.炭素数8~200のポリエチレングリコール含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物又は下記一般式(3)で表される化合物である、項1記載の接合用材料、
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
項4.溶媒(C)が、沸点150℃以上のアルコール系溶媒及び沸点150℃以上のエーテル系溶媒からなる群より選ばれる少なくとも一種の溶媒である、項1記載の接合用材料、
項5.金属ナノ粒子(B)が、銀ナノ粒子、銅ナノ粒子、銀コア銅シェルナノ粒子又は銅コア銀シェルナノ粒子であることを特徴とする項1記載の接合用材料、又は、
項6.前記金属ナノ粒子中、炭素数8~200のポリエチレングリコール含有有機化合物(A)の含有率が2~15質量%である、項1記載の接合用材料、
項7.接合すべき被接合物が、金属又は金属酸化物である項1~6の何れか一項に記載の接合用材料に関する。 That is, the present invention
Item 1. Metal nanoparticles (B) in which a polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is combined, an alcohol solvent having a boiling point of 150 ° C. or higher, an ether solvent having a boiling point of 150 ° C. or higher, and an ester solvent having a boiling point of 150 ° C. or higher. And at least one solvent (C) selected from the group consisting of a lactam structure-containing solvent having a boiling point of 150 ° C. or higher, and a bonding material,
Item 2. The polyethylene glycol having 8 to 200 carbon atoms and the contained organic compound (A) are represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), and the following general formula (3). Or a (meth) acrylic polymer (polymer α) having a structure represented by the following general formula (4) at least at one end and having a polyethylene glycol chain (P) in the side chain, (Meth) acrylic polymer having a structure represented by the following general formula (4) at one end and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain ( Item 2. A bonding material according to Item 1, which is a compound containing polymer β).
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
RS (4)
[In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A branched alkoxy group, an aralkyloxy group, a substituted phenyloxy group, a linear alkylcarbonyloxy group having 1 to 18 carbon atoms, a branched alkylcarbonyloxy group having 1 to 18 carbon atoms, a carboxy group, a salt of a carboxy group, Straight chain alkoxycarbonyl group having 1 to 18 carbon atoms, branched alkoxycarbonyl group having 1 to 18 carbon atoms, phosphoric acid group, straight chain alkylphosphoric acid group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms Selected from the group consisting of branched alkyl phosphate groups, sulfonic acid groups, linear alkyl sulfonic acid groups having 1 to 6 carbon atoms, and branched alkyl sulfonic acid groups having 1 to 6 carbon atoms. Even without a linear or branched alkyl group having 1 to 8 carbon atoms having a single functional group. ]
Item 3. The polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), or the following general formula (3). Item 2. A bonding material according to Item 1, which is a compound.
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
Item 4. Item 2. The bonding material according to Item 1, wherein the solvent (C) is at least one solvent selected from the group consisting of an alcohol solvent having a boiling point of 150 ° C or higher and an ether solvent having a boiling point of 150 ° C or higher.
Item 5. Item 2. The bonding material according to Item 1, wherein the metal nanoparticles (B) are silver nanoparticles, copper nanoparticles, silver core copper shell nanoparticles, or copper core silver shell nanoparticles, or
Item 6. Item 2. The bonding material according to Item 1, wherein the content of the polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms in the metal nanoparticles is 2 to 15% by mass.
Item 7. Item 7. The bonding material according to any one of Items 1 to 6, wherein the objects to be bonded are metals or metal oxides.
本発明によれば、無加圧条件且つ200℃以下の低温条件において高い強度で接合可能である。
According to the present invention, bonding is possible with high strength under no pressure condition and at a low temperature condition of 200 ° C. or less.
次に、本発明の実施形態について説明する。
Next, an embodiment of the present invention will be described.
<金属ナノ粒子における金属種>
本発明の金属ナノ粒子(B)の金属種は、後述のポリエチレングリコール含有有機化合物が複合可能なものであれば特に限定されるものではなく、好ましくは銅(Cu)系、銀(Ag)系が好ましい。銅系及び銀系のナノ粒子としては、銅ナノ粒子、銀ナノ粒子、銀コア銅シェルナノ粒子、銅コア銀シェルナノ粒子などが挙げられる。なかでも、銅ナノ粒子がより好ましい。 <Metal species in metal nanoparticles>
The metal species of the metal nanoparticles (B) of the present invention are not particularly limited as long as the later-described polyethylene glycol-containing organic compound can be combined, and preferably copper (Cu) -based, silver (Ag) -based Is preferred. Examples of the copper-based and silver-based nanoparticles include copper nanoparticles, silver nanoparticles, silver core copper shell nanoparticles, copper core silver shell nanoparticles, and the like. Among these, copper nanoparticles are more preferable.
本発明の金属ナノ粒子(B)の金属種は、後述のポリエチレングリコール含有有機化合物が複合可能なものであれば特に限定されるものではなく、好ましくは銅(Cu)系、銀(Ag)系が好ましい。銅系及び銀系のナノ粒子としては、銅ナノ粒子、銀ナノ粒子、銀コア銅シェルナノ粒子、銅コア銀シェルナノ粒子などが挙げられる。なかでも、銅ナノ粒子がより好ましい。 <Metal species in metal nanoparticles>
The metal species of the metal nanoparticles (B) of the present invention are not particularly limited as long as the later-described polyethylene glycol-containing organic compound can be combined, and preferably copper (Cu) -based, silver (Ag) -based Is preferred. Examples of the copper-based and silver-based nanoparticles include copper nanoparticles, silver nanoparticles, silver core copper shell nanoparticles, copper core silver shell nanoparticles, and the like. Among these, copper nanoparticles are more preferable.
<ポリエチレングリコール含有有機化合物>
本発明で用いる保護剤(ポリエチレングリコール含有有機化合物)中のポリエチレングリコール部位は、沸点が150℃以上のアルコール系溶媒など本発明の特定の溶媒との親和性に優れることから、金属ナノ粒子の凝集を強く抑制でき、金属ナノ粒子の高分散を可能とする。これは即ち、金属ナノ粒子が高密度に充填されている状態であるため、加熱処理による保護剤及び溶媒の分解除去に伴うボイド発生を起こさず、金属粒子同士のネッキング現象による高密度接合を可能とし、無加圧条件下での高強度接合を可能とする。また、本発明の保護剤を用いて合成した金属ナノ粒子は、保護剤存在量が2~15%程度と少なく、接合時の金属粒子同士のネッキング現象を妨げず、且つ、接合後に有機成分がほとんど残らないため、高耐熱性接合剤として高い信頼性を有している。
本発明の接合用材料に含有される炭素数8~200のポリエチレングリコール含有有機化合物が複合した金属ナノ粒子の例として、特許第4784847号公報、特開2013-60637号公報又は特許第5077728号公報に記載の方法で合成することができる。これらは、チオエーテル型(R-S-R’)化合物が金属粒子表面に対して適切な親和吸着効果と、加熱による迅速な脱離性を有することが特徴となっており、低温融着特性を示す金属ナノ粒子として開発されている。
また、ほかの例として、特開2010-209421号公報に記載のチオエーテル基を有する高分子化合物のうち、炭素数8~200のポリエチレングリコール部位を有する高分子化合物が複合した金属ナノ粒子、さらには、特許第4697356号公報に記載のチオエーテル基を有しリン酸エステル基を有する高分子化合物のうち、炭素数8~200のポリエチレングリコール部位を有する高分子化合物が複合した金属ナノ粒子などが挙げられる。これらのポリエチレングリコール含有高分子化合物の製造は、これら公報に記載の方法に従い行うことができる。また、本発明においてこれらのポリエチレングリコール含有のリン酸エステル型有機化合物は、チオエーテル基を有しリン酸エステル基をも有しており、これらの基を有することにより、金属ナノ粒子表面に対して適切な親和吸着効果と、加熱による迅速な脱離性を付与することができる。
これらの中でも、下記式(1)~(3)で表されるチオエーテル型有機化合物であることが好ましい。 <Polyethylene glycol-containing organic compound>
The polyethylene glycol moiety in the protective agent (polyethylene glycol-containing organic compound) used in the present invention is excellent in affinity with the specific solvent of the present invention such as an alcohol solvent having a boiling point of 150 ° C. or higher. Can be strongly suppressed, and high dispersion of metal nanoparticles can be achieved. In other words, since the metal nanoparticles are packed in a high density, void generation due to decomposition and removal of the protective agent and solvent by heat treatment does not occur, and high density bonding is possible by the necking phenomenon between metal particles. And enables high strength bonding under no pressure condition. In addition, the metal nanoparticles synthesized using the protective agent of the present invention have a small amount of protective agent of about 2 to 15%, do not hinder the necking phenomenon between the metal particles at the time of bonding, and have organic components after bonding. Since it hardly remains, it has high reliability as a high heat-resistant bonding agent.
Examples of metal nanoparticles containing a polyethylene glycol-containing organic compound having 8 to 200 carbon atoms contained in the bonding material of the present invention include Japanese Patent No. 4784847, Japanese Patent Application Laid-Open No. 2013-60637, or Japanese Patent No. 5077728. It can be synthesized by the method described in 1. These are characterized in that the thioether type (RS—R ′) compound has an appropriate affinity adsorption effect on the metal particle surface and rapid detachment by heating, and exhibits low-temperature fusion characteristics. Developed as shown metal nanoparticles.
As another example, among the polymer compounds having a thioether group described in JP-A 2010-209421, metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is combined, Among the polymer compounds having a thioether group and a phosphate ester group described in Japanese Patent No. 4697356, there are metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is complexed. . These polyethylene glycol-containing polymer compounds can be produced according to the methods described in these publications. Further, in the present invention, these polyethylene glycol-containing phosphate ester-type organic compounds have a thioether group and also a phosphate ester group, and by having these groups, the metal nanoparticle surface is reduced. Appropriate affinity adsorption effect and rapid desorption by heating can be imparted.
Among these, thioether type organic compounds represented by the following formulas (1) to (3) are preferable.
本発明で用いる保護剤(ポリエチレングリコール含有有機化合物)中のポリエチレングリコール部位は、沸点が150℃以上のアルコール系溶媒など本発明の特定の溶媒との親和性に優れることから、金属ナノ粒子の凝集を強く抑制でき、金属ナノ粒子の高分散を可能とする。これは即ち、金属ナノ粒子が高密度に充填されている状態であるため、加熱処理による保護剤及び溶媒の分解除去に伴うボイド発生を起こさず、金属粒子同士のネッキング現象による高密度接合を可能とし、無加圧条件下での高強度接合を可能とする。また、本発明の保護剤を用いて合成した金属ナノ粒子は、保護剤存在量が2~15%程度と少なく、接合時の金属粒子同士のネッキング現象を妨げず、且つ、接合後に有機成分がほとんど残らないため、高耐熱性接合剤として高い信頼性を有している。
本発明の接合用材料に含有される炭素数8~200のポリエチレングリコール含有有機化合物が複合した金属ナノ粒子の例として、特許第4784847号公報、特開2013-60637号公報又は特許第5077728号公報に記載の方法で合成することができる。これらは、チオエーテル型(R-S-R’)化合物が金属粒子表面に対して適切な親和吸着効果と、加熱による迅速な脱離性を有することが特徴となっており、低温融着特性を示す金属ナノ粒子として開発されている。
また、ほかの例として、特開2010-209421号公報に記載のチオエーテル基を有する高分子化合物のうち、炭素数8~200のポリエチレングリコール部位を有する高分子化合物が複合した金属ナノ粒子、さらには、特許第4697356号公報に記載のチオエーテル基を有しリン酸エステル基を有する高分子化合物のうち、炭素数8~200のポリエチレングリコール部位を有する高分子化合物が複合した金属ナノ粒子などが挙げられる。これらのポリエチレングリコール含有高分子化合物の製造は、これら公報に記載の方法に従い行うことができる。また、本発明においてこれらのポリエチレングリコール含有のリン酸エステル型有機化合物は、チオエーテル基を有しリン酸エステル基をも有しており、これらの基を有することにより、金属ナノ粒子表面に対して適切な親和吸着効果と、加熱による迅速な脱離性を付与することができる。
これらの中でも、下記式(1)~(3)で表されるチオエーテル型有機化合物であることが好ましい。 <Polyethylene glycol-containing organic compound>
The polyethylene glycol moiety in the protective agent (polyethylene glycol-containing organic compound) used in the present invention is excellent in affinity with the specific solvent of the present invention such as an alcohol solvent having a boiling point of 150 ° C. or higher. Can be strongly suppressed, and high dispersion of metal nanoparticles can be achieved. In other words, since the metal nanoparticles are packed in a high density, void generation due to decomposition and removal of the protective agent and solvent by heat treatment does not occur, and high density bonding is possible by the necking phenomenon between metal particles. And enables high strength bonding under no pressure condition. In addition, the metal nanoparticles synthesized using the protective agent of the present invention have a small amount of protective agent of about 2 to 15%, do not hinder the necking phenomenon between the metal particles at the time of bonding, and have organic components after bonding. Since it hardly remains, it has high reliability as a high heat-resistant bonding agent.
Examples of metal nanoparticles containing a polyethylene glycol-containing organic compound having 8 to 200 carbon atoms contained in the bonding material of the present invention include Japanese Patent No. 4784847, Japanese Patent Application Laid-Open No. 2013-60637, or Japanese Patent No. 5077728. It can be synthesized by the method described in 1. These are characterized in that the thioether type (RS—R ′) compound has an appropriate affinity adsorption effect on the metal particle surface and rapid detachment by heating, and exhibits low-temperature fusion characteristics. Developed as shown metal nanoparticles.
As another example, among the polymer compounds having a thioether group described in JP-A 2010-209421, metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is combined, Among the polymer compounds having a thioether group and a phosphate ester group described in Japanese Patent No. 4697356, there are metal nanoparticles in which a polymer compound having a polyethylene glycol moiety having 8 to 200 carbon atoms is complexed. . These polyethylene glycol-containing polymer compounds can be produced according to the methods described in these publications. Further, in the present invention, these polyethylene glycol-containing phosphate ester-type organic compounds have a thioether group and also a phosphate ester group, and by having these groups, the metal nanoparticle surface is reduced. Appropriate affinity adsorption effect and rapid desorption by heating can be imparted.
Among these, thioether type organic compounds represented by the following formulas (1) to (3) are preferable.
<チオエーテル(R-S-R’)型有機化合物>
本発明の効果を説明する一例として、下記一般式(1)~(3)で表されるチオエーテル型有機化合物が複合した銅系及び銀系ナノ粒子について詳述する。 <Thioether (RSR) type organic compound>
As an example for explaining the effect of the present invention, copper-based and silver-based nanoparticles combined with thioether type organic compounds represented by the following general formulas (1) to (3) will be described in detail.
本発明の効果を説明する一例として、下記一般式(1)~(3)で表されるチオエーテル型有機化合物が複合した銅系及び銀系ナノ粒子について詳述する。 <Thioether (RSR) type organic compound>
As an example for explaining the effect of the present invention, copper-based and silver-based nanoparticles combined with thioether type organic compounds represented by the following general formulas (1) to (3) will be described in detail.
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3) W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3) W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
前記一般式(1)~(3)中におけるエチレングリコールを繰り返し単位として有する鎖状の官能基は、溶媒親和部として機能する。このポリエチレングリコールの炭素数は、8~200のものを用いることが好適であり、炭素数8~100のものを用いることがより好適である。
また、前記一般式(1)~(3)中におけるエチレングリコールを繰り返し単位として有する鎖状の官能基は炭素数が少ない程、有機成分が残りにくいため、炭素数8~12程度のものが高い信頼性を有する接合剤としてより好ましい。
一方で、前記一般式(1)~(3)中におけるエチレングリコールを繰り返し単位として有する鎖状の官能基は炭素数50~100程度のものが分散安定性に優れ、金属ナノ粒子を高分散させ、無加圧条件での接合強度を向上させる点で、より好ましい。
従って、使用場面に応じて炭素数を8~200の範囲や、より好ましい炭素数8~100の範囲で適宜調節することができる。 The chain-like functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) functions as a solvent affinity part. The polyethylene glycol preferably has 8 to 200 carbon atoms, and more preferably has 8 to 100 carbon atoms.
In addition, the chain functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) has a high number of carbon atoms of about 8 to 12 because the smaller the number of carbon atoms, the less the organic component remains. More preferable as a bonding agent having reliability.
On the other hand, chain functional groups having ethylene glycol as a repeating unit in the general formulas (1) to (3) having about 50 to 100 carbon atoms are excellent in dispersion stability and highly disperse metal nanoparticles. It is more preferable in terms of improving the bonding strength under no pressure condition.
Therefore, the carbon number can be appropriately adjusted in the range of 8 to 200 or more preferably in the range of 8 to 100 according to the usage scene.
また、前記一般式(1)~(3)中におけるエチレングリコールを繰り返し単位として有する鎖状の官能基は炭素数が少ない程、有機成分が残りにくいため、炭素数8~12程度のものが高い信頼性を有する接合剤としてより好ましい。
一方で、前記一般式(1)~(3)中におけるエチレングリコールを繰り返し単位として有する鎖状の官能基は炭素数50~100程度のものが分散安定性に優れ、金属ナノ粒子を高分散させ、無加圧条件での接合強度を向上させる点で、より好ましい。
従って、使用場面に応じて炭素数を8~200の範囲や、より好ましい炭素数8~100の範囲で適宜調節することができる。 The chain-like functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) functions as a solvent affinity part. The polyethylene glycol preferably has 8 to 200 carbon atoms, and more preferably has 8 to 100 carbon atoms.
In addition, the chain functional group having ethylene glycol as a repeating unit in the general formulas (1) to (3) has a high number of carbon atoms of about 8 to 12 because the smaller the number of carbon atoms, the less the organic component remains. More preferable as a bonding agent having reliability.
On the other hand, chain functional groups having ethylene glycol as a repeating unit in the general formulas (1) to (3) having about 50 to 100 carbon atoms are excellent in dispersion stability and highly disperse metal nanoparticles. It is more preferable in terms of improving the bonding strength under no pressure condition.
Therefore, the carbon number can be appropriately adjusted in the range of 8 to 200 or more preferably in the range of 8 to 100 according to the usage scene.
前記一般式(1)~(3)中のWは、工業的な入手の容易さ、および保護剤として使用したときの分散安定性の点から、直鎖状または分岐状の炭素数1~8のアルキル基であり、特に水性媒体中での安定性の観点からは炭素数1~4のアルキル基であることが好ましい。
W in the general formulas (1) to (3) is a linear or branched carbon number of 1 to 8 from the viewpoint of industrial availability and dispersion stability when used as a protective agent. From the viewpoint of stability in an aqueous medium, an alkyl group having 1 to 4 carbon atoms is preferable.
前記一般式(1)中のXがカルボキシル基、アルコキシカルボニル基、カルボニル基、アミノ基、アミド基を部分構造として含む構造のものは、チオエーテル基と多座配位子を構成することが可能となるため、金属ナノ粒子表面への配位力が強くなるため好ましい。
A structure in which X in the general formula (1) includes a carboxyl group, an alkoxycarbonyl group, a carbonyl group, an amino group, or an amide group as a partial structure can constitute a thioether group and a polydentate ligand. Therefore, it is preferable because the coordination force to the surface of the metal nanoparticle becomes strong.
前記一般式(2)中のYがエーテル(C-O-C)、チオエーテル(C-S-C)を部分構造として含む構造のもの、前記一般式(3)中のRaがメチレンカルボキシ基(-CH2COO-)またはエチレンカルボキシ基(-CH2CH2COO-)であって、Zがエチレン基、2-エチル-2-メチレンプロパン-1,3-ジイル基、2,2-ビスメチレンプロパン-1,3-ジイル基であるものが最も好適である。
Y in the general formula (2) has a structure containing ether (C—O—C) and thioether (C—S—C) as a partial structure, and R a in the general formula (3) is a methylene carboxy group (—CH 2 COO—) or an ethylene carboxy group (—CH 2 CH 2 COO—), wherein Z is an ethylene group, 2-ethyl-2-methylenepropane-1,3-diyl group, 2,2-bis Most preferred is a methylenepropane-1,3-diyl group.
<チオエーテル型有機化合物の製造方法>
前述のように、本発明においてチオエーテル型有機化合物は、前記一般式(1)~(3)で表される化合物であることが好ましい。これらのチオエーテル型有機化合物を製造する方法について、以下詳述する。 <Method for producing thioether type organic compound>
As described above, in the present invention, the thioether-type organic compound is preferably a compound represented by the general formulas (1) to (3). The method for producing these thioether type organic compounds will be described in detail below.
前述のように、本発明においてチオエーテル型有機化合物は、前記一般式(1)~(3)で表される化合物であることが好ましい。これらのチオエーテル型有機化合物を製造する方法について、以下詳述する。 <Method for producing thioether type organic compound>
As described above, in the present invention, the thioether-type organic compound is preferably a compound represented by the general formulas (1) to (3). The method for producing these thioether type organic compounds will be described in detail below.
チオエーテル型有機化合物を簡便に製造する方法としては、例えばグリシジル基を末端に有するポリエーテル化合物(a1)とチオール化合物(a2)とを反応させる方法が挙げられる。
Examples of a method for easily producing a thioether-type organic compound include a method in which a polyether compound (a1) having a glycidyl group at the terminal and a thiol compound (a2) are reacted.
前記グリシジル基を末端に有するポリエーテル化合物(a1)は、下記一般式(5)で表すことができる。
The polyether compound (a1) having the glycidyl group at the end can be represented by the following general formula (5).
(式中、W、R1、nは前記と同じである。)
グリシジル基を末端に有するポリエーテル化合物(a1)の合成方法としては、例えば、ルイス酸存在下、ポリエチレングリコールモノアルキルエーテルをエピクロロヒドリンのオキシラン環に付加開環させた後、生成するクロロヒドリン体を濃厚アルカリ中で加熱再閉環する方法、過剰のアルコラートや濃厚アルカリなどの強塩基を用いて、一段階で反応させる方法が挙げられるが、より高純度のポリエーテル化合物(a1)を得る方法としては、カリウムt-ブトキシドを用いてポリエチレングリコールモノメチルエーテルをアルコキシドとし、これとエピクロロヒドリンとを縮合させた後、加熱を継続してエポキシ環を再形成するGandourらの方法(Gandour,et al.,J.Org.Chem.,1983,48,1116.)を準用することが好ましい。 (Wherein, W, R 1 and n are the same as above.)
As a method for synthesizing the polyether compound (a1) having a glycidyl group at its terminal, for example, a chlorohydrin produced by adding and opening a polyethylene glycol monoalkyl ether to an oxirane ring of epichlorohydrin in the presence of a Lewis acid. There are a method of heating and re-ringing in a concentrated alkali and a method of reacting in a single step using a strong base such as excess alcoholate or concentrated alkali. As a method of obtaining a higher purity polyether compound (a1) Uses a method of Gandour et al. (Gandour, et al.) Which uses polyethylene tert-butoxide to convert polyethylene glycol monomethyl ether into an alkoxide, condenses this with epichlorohydrin, and then continues heating to reform the epoxy ring. J. Org.Chem., 1983, 48, 1 116.) is preferably applied mutatis mutandis.
グリシジル基を末端に有するポリエーテル化合物(a1)の合成方法としては、例えば、ルイス酸存在下、ポリエチレングリコールモノアルキルエーテルをエピクロロヒドリンのオキシラン環に付加開環させた後、生成するクロロヒドリン体を濃厚アルカリ中で加熱再閉環する方法、過剰のアルコラートや濃厚アルカリなどの強塩基を用いて、一段階で反応させる方法が挙げられるが、より高純度のポリエーテル化合物(a1)を得る方法としては、カリウムt-ブトキシドを用いてポリエチレングリコールモノメチルエーテルをアルコキシドとし、これとエピクロロヒドリンとを縮合させた後、加熱を継続してエポキシ環を再形成するGandourらの方法(Gandour,et al.,J.Org.Chem.,1983,48,1116.)を準用することが好ましい。 (Wherein, W, R 1 and n are the same as above.)
As a method for synthesizing the polyether compound (a1) having a glycidyl group at its terminal, for example, a chlorohydrin produced by adding and opening a polyethylene glycol monoalkyl ether to an oxirane ring of epichlorohydrin in the presence of a Lewis acid. There are a method of heating and re-ringing in a concentrated alkali and a method of reacting in a single step using a strong base such as excess alcoholate or concentrated alkali. As a method of obtaining a higher purity polyether compound (a1) Uses a method of Gandour et al. (Gandour, et al.) Which uses polyethylene tert-butoxide to convert polyethylene glycol monomethyl ether into an alkoxide, condenses this with epichlorohydrin, and then continues heating to reform the epoxy ring. J. Org.Chem., 1983, 48, 1 116.) is preferably applied mutatis mutandis.
前記グリシジル基を末端に有するポリエーテル化合物(a1)の末端オキシラン環を、チオール化合物(a2)で開環させて、目的とするチオエーテル型有機化合物を得ることができる。この反応はチオール基の求核反応を利用したものであるが、この反応については様々な活性化方法が挙げられる。
例えば、ルイス酸によるエポキシドの活性化による合成が広く行なわれており、具体的には酒石酸亜鉛や、ランタニド系ルイス酸を用いることが知られている。また、ルイス塩基を用いる方法もしばしば行われている。 The terminal oxirane ring of the polyether compound (a1) having the glycidyl group at the terminal can be opened with the thiol compound (a2) to obtain the desired thioether-type organic compound. This reaction uses a nucleophilic reaction of a thiol group, and various activation methods can be mentioned for this reaction.
For example, synthesis by activation of an epoxide with a Lewis acid has been widely performed. Specifically, it is known to use zinc tartrate or a lanthanide Lewis acid. In addition, a method using a Lewis base is often performed.
例えば、ルイス酸によるエポキシドの活性化による合成が広く行なわれており、具体的には酒石酸亜鉛や、ランタニド系ルイス酸を用いることが知られている。また、ルイス塩基を用いる方法もしばしば行われている。 The terminal oxirane ring of the polyether compound (a1) having the glycidyl group at the terminal can be opened with the thiol compound (a2) to obtain the desired thioether-type organic compound. This reaction uses a nucleophilic reaction of a thiol group, and various activation methods can be mentioned for this reaction.
For example, synthesis by activation of an epoxide with a Lewis acid has been widely performed. Specifically, it is known to use zinc tartrate or a lanthanide Lewis acid. In addition, a method using a Lewis base is often performed.
更に、フッ素イオンを塩基触媒として活用する方法はJames H.Clarkの総説に詳しく述べられている。Pensoらはこれをレジオセレクティビティーに優れるエポキシドの開環方法として応用しており、フッ化第四級アンモニウムを触媒とすることで穏和な条件下でチオールのエポキシドへの付加開環反応が進行することを報告している。
Furthermore, the method of utilizing fluorine ions as a base catalyst is described in James H. et al. It is described in detail in Clark's review. Penso et al. Have applied this as a ring opening method for epoxides with excellent regioselectivity, and by using quaternary ammonium fluoride as a catalyst, addition ring opening reaction of thiol to epoxide proceeds under mild conditions. It is reported that.
特に本発明で用いるチオエーテル型有機化合物が高効率で得られる点からは、フッ素イオンを塩基触媒として活用する方法が好ましい。この方法を適用することによって、グリシジル基を末端に有するポリエーテル化合物(a1)とチオール化合物(a2)の反応後、特別な精製を行わなくても、チオエーテル型有機化合物を得ることができる。
In particular, from the viewpoint that the thioether-type organic compound used in the present invention can be obtained with high efficiency, a method utilizing fluorine ions as a base catalyst is preferred. By applying this method, a thioether-type organic compound can be obtained without any special purification after the reaction between the polyether compound (a1) having a glycidyl group at the terminal and the thiol compound (a2).
ポリエーテル化合物(a1)には様々なチオール化合物(a2)を反応させることができる。例としてアルカンチオール類、ベンゼンチオール類の他、ラジカル重合連鎖移動剤として汎用されているため入手が容易なチオグリコール、チオグリコール酸およびそのエステル類、メルカプトプロピオン酸およびそのエステル類などが挙げられる。チオリンゴ酸、チオクエン酸およびそれらのエステル類のようなメルカプトポリカルボン酸類を反応させてもよい。また、分子内に複数のチオール基を有する化合物、すなわちエタンジチオールの様なアルキレンジチオール類、トリメチロールプロパン=トリス(3-メルカプトプロピオナート)、ペンタエリスリトール=テトラキス(3-メルカプトプロピオナート)、ジペンタエリスリトール=ヘキサキス(3-メルカプトプロピオナート)なども同様に反応させ導入することが可能である。その結果得られる化合物は、分子内に複数のチオエーテル構造を持つので、銅系ナノ粒子に対し複数の領域によって親和性を発現しうる。
The polyether compound (a1) can be reacted with various thiol compounds (a2). Examples include alkanethiols and benzenethiols, thioglycol, thioglycolic acid and esters thereof, mercaptopropionic acid and esters thereof which are easily available because they are widely used as radical polymerization chain transfer agents. Mercaptopolycarboxylic acids such as thiomalic acid, thiocitric acid and their esters may be reacted. Further, compounds having a plurality of thiol groups in the molecule, that is, alkylenedithiols such as ethanedithiol, trimethylolpropane = tris (3-mercaptopropionate), pentaerythritol = tetrakis (3-mercaptopropionate), Dipentaerythritol = hexakis (3-mercaptopropionate) and the like can be similarly reacted and introduced. Since the compound obtained as a result has a plurality of thioether structures in the molecule, it can exhibit affinity for the copper-based nanoparticles by a plurality of regions.
<ポリエチレングリコール含有のリン酸エステル型有機化合物>
本発明の効果を説明する一例として、ポリエチレングリコール含有のリン酸エステル型有機化合物が複合した銅系及び銀系ナノ粒子について詳述する。
本発明に用いられる化合物は、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖にポリエチレングリコール鎖(P)を有する(メタ)アクリル系重合体(重合体α)と、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖に-OP(O)(OH)2で表されるリン酸エステル残基を有する(メタ)アクリル系重合体(重合体β)とを含有する化合物である、
R-S- (4)
〔一般式(4)中、Rは、炭素原子数1~18の直鎖若しくは分岐状のアルキル基、又は、水酸基、炭素原子数1~18の直鎖アルコキシ基、炭素原子数1~18の分岐状アルコキシ基、アラルキルオキシ基、置換フェニルオキシ基、炭素原子数1~18の直鎖アルキルカルボニルオキシ基、炭素原子数1~18の分岐状アルキルカルボニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の直鎖アルコキシカルボニル基、炭素原子数1~18の分岐状アルコキシカルボニル基、リン酸基、炭素原子数1~6の直鎖アルキルリン酸基、炭素原子数1~6の分岐状アルキルリン酸基、スルホン酸基、炭素原子数1~6の直鎖アルキルスルホン酸基、及び炭素原子数1~6の分岐状アルキルスルホン酸基からなる群から選ばれる少なくとも1つの官能基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基を表す。〕
ここで、ポリエチレングリコールの好適な炭素数については、前述のチオエーテル型有機化合物の場合と同様である。 <Polyphosphate type organic compound containing polyethylene glycol>
As an example for explaining the effect of the present invention, copper-based and silver-based nanoparticles combined with a polyethylene glycol-containing phosphate ester-type organic compound will be described in detail.
The compound used in the present invention is a (meth) acrylic polymer (polymer α) having a structure represented by the following general formula (4) at at least one terminal and having a polyethylene glycol chain (P) in the side chain. And (meth) acrylic having a structure represented by the following general formula (4) at at least one terminal and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain A compound containing a polymer (polymer β),
RS (4)
[In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A branched alkoxy group, an aralkyloxy group, a substituted phenyloxy group, a linear alkylcarbonyloxy group having 1 to 18 carbon atoms, a branched alkylcarbonyloxy group having 1 to 18 carbon atoms, a carboxy group, a salt of a carboxy group, Straight chain alkoxycarbonyl group having 1 to 18 carbon atoms, branched alkoxycarbonyl group having 1 to 18 carbon atoms, phosphoric acid group, straight chain alkylphosphoric acid group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms Selected from the group consisting of branched alkyl phosphate groups, sulfonic acid groups, linear alkyl sulfonic acid groups having 1 to 6 carbon atoms, and branched alkyl sulfonic acid groups having 1 to 6 carbon atoms. Even without a linear or branched alkyl group having 1 to 8 carbon atoms having a single functional group. ]
Here, the suitable carbon number of polyethylene glycol is the same as that of the above-mentioned thioether type organic compound.
本発明の効果を説明する一例として、ポリエチレングリコール含有のリン酸エステル型有機化合物が複合した銅系及び銀系ナノ粒子について詳述する。
本発明に用いられる化合物は、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖にポリエチレングリコール鎖(P)を有する(メタ)アクリル系重合体(重合体α)と、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖に-OP(O)(OH)2で表されるリン酸エステル残基を有する(メタ)アクリル系重合体(重合体β)とを含有する化合物である、
R-S- (4)
〔一般式(4)中、Rは、炭素原子数1~18の直鎖若しくは分岐状のアルキル基、又は、水酸基、炭素原子数1~18の直鎖アルコキシ基、炭素原子数1~18の分岐状アルコキシ基、アラルキルオキシ基、置換フェニルオキシ基、炭素原子数1~18の直鎖アルキルカルボニルオキシ基、炭素原子数1~18の分岐状アルキルカルボニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の直鎖アルコキシカルボニル基、炭素原子数1~18の分岐状アルコキシカルボニル基、リン酸基、炭素原子数1~6の直鎖アルキルリン酸基、炭素原子数1~6の分岐状アルキルリン酸基、スルホン酸基、炭素原子数1~6の直鎖アルキルスルホン酸基、及び炭素原子数1~6の分岐状アルキルスルホン酸基からなる群から選ばれる少なくとも1つの官能基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基を表す。〕
ここで、ポリエチレングリコールの好適な炭素数については、前述のチオエーテル型有機化合物の場合と同様である。 <Polyphosphate type organic compound containing polyethylene glycol>
As an example for explaining the effect of the present invention, copper-based and silver-based nanoparticles combined with a polyethylene glycol-containing phosphate ester-type organic compound will be described in detail.
The compound used in the present invention is a (meth) acrylic polymer (polymer α) having a structure represented by the following general formula (4) at at least one terminal and having a polyethylene glycol chain (P) in the side chain. And (meth) acrylic having a structure represented by the following general formula (4) at at least one terminal and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain A compound containing a polymer (polymer β),
RS (4)
[In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A branched alkoxy group, an aralkyloxy group, a substituted phenyloxy group, a linear alkylcarbonyloxy group having 1 to 18 carbon atoms, a branched alkylcarbonyloxy group having 1 to 18 carbon atoms, a carboxy group, a salt of a carboxy group, Straight chain alkoxycarbonyl group having 1 to 18 carbon atoms, branched alkoxycarbonyl group having 1 to 18 carbon atoms, phosphoric acid group, straight chain alkylphosphoric acid group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms Selected from the group consisting of branched alkyl phosphate groups, sulfonic acid groups, linear alkyl sulfonic acid groups having 1 to 6 carbon atoms, and branched alkyl sulfonic acid groups having 1 to 6 carbon atoms. Even without a linear or branched alkyl group having 1 to 8 carbon atoms having a single functional group. ]
Here, the suitable carbon number of polyethylene glycol is the same as that of the above-mentioned thioether type organic compound.
<ポリエチレングリコール含有のリン酸エステル型有機化合物の製造方法>
一般式(4)で表される構造を分子中に有する高分子化合物を得るために使用するチオール化合物(Q)は、一般に連鎖移動剤として使用されるチオール化合物を使用することができる。具体的には、チオグリコール、2-メルカプトプロパノール、3-メルカプトプロパノール、8-メルカプトオクタノール、2,3-ジヒドロキシプロパンチオール、2-メトキシエタンチオール、2-エトキシエタンチオール、2-ヘキシルオキシエタンチオール、2-(2-エチルヘキシルオキシ)エタンチオール、2-ベンジルオキシエタンチオール、2-(4-メトキシベンジルオキシ)エタンチオール、2-フェニルオキシエタンチオール、2-(4-メトキシフェニルオキシ)エタンチオール、2-(2,4-ジメトキシフェニルオキシ)エタンチオール、6-(4-ヒドロキシメチルフェニルオキシ)ヘキサンチオール、2-アセトキシエタンチオール、2-ヘプタノイルオキシエタンチオール、2-オクタノイルオキシエタンチオール、2-オクタデカノイルオキシエタンチオール、2-イソブチリルオキシエタンチオール、2-ピバロイルオキシエタンチオール、チオグリコール酸、β-メルカプトプロピオン酸、7-メルカプトオクタン酸、2-メルカプトプロピオン酸、2-メルカプトコハク酸、およびこれらカルボン酸の無機塩、アンモニウム塩および有機アミンの塩、チオグリコール酸メチル、チオグリコール酸エチル、チオグリコール酸オクチル、β-メルカプトプロピオン酸エチル、β-メルカプトプロピオン酸オクチル、β-メルカプトプロピオン酸ドデシル、β-メルカプトプロピオン酸-2-(メトキシエチル)、β-メルカプトプロピオン酸-2-(メトキシエトキシエトキシ)、β-メルカプトプロピオン酸-2-(4-メトキシブトキシ)、チオグリコール酸-2-エチルヘキシル、β-メルカプトプロピオン酸-2-エチルヘキシル、β-メルカプトプロピオン酸-3-メトキシブトキシ、2-メルカプトエチルホスファート、2-メルカプトエチルホスフィン酸、2-メルカプトプロピルホスファート、2-メルカプトプロピルホスフィン酸、ω-メルカプトエトキシエチルホスファート、ω-メルカプトプロピルオキシプロピルホスファート、2-メルカプトエチルジメチルホスファート、2-メルカプトエチルホスフィン酸ジメチル、2-メルカプトエチルジエチルホスファート、2-メルカプトプロピルジエチルホスファート、2-メルカプトエチルジイソプロピルホスファート、2-メルカプトエチルジイソブチルホスファート、2-メルカプトエチルサルファート、2-メルカプトエチルスルホン酸、2-メルカプトプロピルスルホン酸、2-メルカプトエチルメチルサルファート、メチル 2-メルカプトエチルスルホナート、2-メルカプトエチルエチルサルファート、エチル 2-メルカプトエチルスルホナート、メチル 2-メルカプトプロピルスルホナート、エチル 2-メルカプトプロピルスルホナート、等があげられる。中でもチオグリコール、2,3-ジヒドロキシプロパンチオール、チオグリコール酸、β―メルカプトプロピオン酸、β―メルカプトプロピオン酸エチル、β―メルカプトプロピオン酸2-エチルヘキシルが、反応性、入手容易さおよび薄膜化した時の面平滑性の点から好ましく、β―メルカプトプロピオン酸メチルが最も好ましい。 <Method for producing polyethylene glycol-containing phosphate ester type organic compound>
As the thiol compound (Q) used for obtaining a polymer compound having a structure represented by the general formula (4) in the molecule, a thiol compound generally used as a chain transfer agent can be used. Specifically, thioglycol, 2-mercaptopropanol, 3-mercaptopropanol, 8-mercaptooctanol, 2,3-dihydroxypropanethiol, 2-methoxyethanethiol, 2-ethoxyethanethiol, 2-hexyloxyethanethiol, 2- (2-ethylhexyloxy) ethanethiol, 2-benzyloxyethanethiol, 2- (4-methoxybenzyloxy) ethanethiol, 2-phenyloxyethanethiol, 2- (4-methoxyphenyloxy) ethanethiol, 2 -(2,4-dimethoxyphenyloxy) ethanethiol, 6- (4-hydroxymethylphenyloxy) hexanethiol, 2-acetoxyethanethiol, 2-heptanoyloxyethanethiol, 2-octanoyloxyeta Thiol, 2-octadecanoyloxyethanethiol, 2-isobutyryloxyethanethiol, 2-pivaloyloxyethanethiol, thioglycolic acid, β-mercaptopropionic acid, 7-mercaptooctanoic acid, 2-mercaptopropionic acid , 2-mercaptosuccinic acid, and inorganic salts, ammonium salts and organic amine salts of these carboxylic acids, methyl thioglycolate, ethyl thioglycolate, octyl thioglycolate, ethyl β-mercaptopropionate, β-mercaptopropionic acid Octyl, β-mercaptopropionic acid dodecyl, β-mercaptopropionic acid-2- (methoxyethyl), β-mercaptopropionic acid-2- (methoxyethoxyethoxy), β-mercaptopropionic acid-2- (4-methoxybutoxy) , Thioglycolic acid-2-ethylhexyl, β-mercaptopropionic acid-2-ethylhexyl, β-mercaptopropionic acid-3-methoxybutoxy, 2-mercaptoethyl phosphate, 2-mercaptoethylphosphinic acid, 2-mercaptopropyl phosphate, 2-mercaptopropyl phosphinic acid, ω-mercaptoethoxyethyl phosphate, ω-mercaptopropyloxypropyl phosphate, 2-mercaptoethyl dimethyl phosphate, dimethyl 2-mercaptoethyl phosphinate, 2-mercaptoethyl diethyl phosphate, 2- Mercaptopropyl diethyl phosphate, 2-mercaptoethyl diisopropyl phosphate, 2-mercaptoethyl diisobutyl phosphate, 2-mercaptoethyl sulfate, 2 Mercaptoethyl sulfonic acid, 2-mercaptopropyl sulfonic acid, 2-mercaptoethyl methyl sulfate, methyl 2-mercaptoethyl sulfonate, 2-mercaptoethyl ethyl sulfate, ethyl 2-mercaptoethyl sulfonate, methyl 2-mercaptopropyl sulfone Nert, ethyl 2-mercaptopropyl sulfonate and the like. Among them, when thioglycol, 2,3-dihydroxypropanethiol, thioglycolic acid, β-mercaptopropionic acid, ethyl β-mercaptopropionate, and 2-ethylhexyl β-mercaptopropionate are reactive, readily available, and thinned In view of surface smoothness, methyl β-mercaptopropionate is most preferable.
一般式(4)で表される構造を分子中に有する高分子化合物を得るために使用するチオール化合物(Q)は、一般に連鎖移動剤として使用されるチオール化合物を使用することができる。具体的には、チオグリコール、2-メルカプトプロパノール、3-メルカプトプロパノール、8-メルカプトオクタノール、2,3-ジヒドロキシプロパンチオール、2-メトキシエタンチオール、2-エトキシエタンチオール、2-ヘキシルオキシエタンチオール、2-(2-エチルヘキシルオキシ)エタンチオール、2-ベンジルオキシエタンチオール、2-(4-メトキシベンジルオキシ)エタンチオール、2-フェニルオキシエタンチオール、2-(4-メトキシフェニルオキシ)エタンチオール、2-(2,4-ジメトキシフェニルオキシ)エタンチオール、6-(4-ヒドロキシメチルフェニルオキシ)ヘキサンチオール、2-アセトキシエタンチオール、2-ヘプタノイルオキシエタンチオール、2-オクタノイルオキシエタンチオール、2-オクタデカノイルオキシエタンチオール、2-イソブチリルオキシエタンチオール、2-ピバロイルオキシエタンチオール、チオグリコール酸、β-メルカプトプロピオン酸、7-メルカプトオクタン酸、2-メルカプトプロピオン酸、2-メルカプトコハク酸、およびこれらカルボン酸の無機塩、アンモニウム塩および有機アミンの塩、チオグリコール酸メチル、チオグリコール酸エチル、チオグリコール酸オクチル、β-メルカプトプロピオン酸エチル、β-メルカプトプロピオン酸オクチル、β-メルカプトプロピオン酸ドデシル、β-メルカプトプロピオン酸-2-(メトキシエチル)、β-メルカプトプロピオン酸-2-(メトキシエトキシエトキシ)、β-メルカプトプロピオン酸-2-(4-メトキシブトキシ)、チオグリコール酸-2-エチルヘキシル、β-メルカプトプロピオン酸-2-エチルヘキシル、β-メルカプトプロピオン酸-3-メトキシブトキシ、2-メルカプトエチルホスファート、2-メルカプトエチルホスフィン酸、2-メルカプトプロピルホスファート、2-メルカプトプロピルホスフィン酸、ω-メルカプトエトキシエチルホスファート、ω-メルカプトプロピルオキシプロピルホスファート、2-メルカプトエチルジメチルホスファート、2-メルカプトエチルホスフィン酸ジメチル、2-メルカプトエチルジエチルホスファート、2-メルカプトプロピルジエチルホスファート、2-メルカプトエチルジイソプロピルホスファート、2-メルカプトエチルジイソブチルホスファート、2-メルカプトエチルサルファート、2-メルカプトエチルスルホン酸、2-メルカプトプロピルスルホン酸、2-メルカプトエチルメチルサルファート、メチル 2-メルカプトエチルスルホナート、2-メルカプトエチルエチルサルファート、エチル 2-メルカプトエチルスルホナート、メチル 2-メルカプトプロピルスルホナート、エチル 2-メルカプトプロピルスルホナート、等があげられる。中でもチオグリコール、2,3-ジヒドロキシプロパンチオール、チオグリコール酸、β―メルカプトプロピオン酸、β―メルカプトプロピオン酸エチル、β―メルカプトプロピオン酸2-エチルヘキシルが、反応性、入手容易さおよび薄膜化した時の面平滑性の点から好ましく、β―メルカプトプロピオン酸メチルが最も好ましい。 <Method for producing polyethylene glycol-containing phosphate ester type organic compound>
As the thiol compound (Q) used for obtaining a polymer compound having a structure represented by the general formula (4) in the molecule, a thiol compound generally used as a chain transfer agent can be used. Specifically, thioglycol, 2-mercaptopropanol, 3-mercaptopropanol, 8-mercaptooctanol, 2,3-dihydroxypropanethiol, 2-methoxyethanethiol, 2-ethoxyethanethiol, 2-hexyloxyethanethiol, 2- (2-ethylhexyloxy) ethanethiol, 2-benzyloxyethanethiol, 2- (4-methoxybenzyloxy) ethanethiol, 2-phenyloxyethanethiol, 2- (4-methoxyphenyloxy) ethanethiol, 2 -(2,4-dimethoxyphenyloxy) ethanethiol, 6- (4-hydroxymethylphenyloxy) hexanethiol, 2-acetoxyethanethiol, 2-heptanoyloxyethanethiol, 2-octanoyloxyeta Thiol, 2-octadecanoyloxyethanethiol, 2-isobutyryloxyethanethiol, 2-pivaloyloxyethanethiol, thioglycolic acid, β-mercaptopropionic acid, 7-mercaptooctanoic acid, 2-mercaptopropionic acid , 2-mercaptosuccinic acid, and inorganic salts, ammonium salts and organic amine salts of these carboxylic acids, methyl thioglycolate, ethyl thioglycolate, octyl thioglycolate, ethyl β-mercaptopropionate, β-mercaptopropionic acid Octyl, β-mercaptopropionic acid dodecyl, β-mercaptopropionic acid-2- (methoxyethyl), β-mercaptopropionic acid-2- (methoxyethoxyethoxy), β-mercaptopropionic acid-2- (4-methoxybutoxy) , Thioglycolic acid-2-ethylhexyl, β-mercaptopropionic acid-2-ethylhexyl, β-mercaptopropionic acid-3-methoxybutoxy, 2-mercaptoethyl phosphate, 2-mercaptoethylphosphinic acid, 2-mercaptopropyl phosphate, 2-mercaptopropyl phosphinic acid, ω-mercaptoethoxyethyl phosphate, ω-mercaptopropyloxypropyl phosphate, 2-mercaptoethyl dimethyl phosphate, dimethyl 2-mercaptoethyl phosphinate, 2-mercaptoethyl diethyl phosphate, 2- Mercaptopropyl diethyl phosphate, 2-mercaptoethyl diisopropyl phosphate, 2-mercaptoethyl diisobutyl phosphate, 2-mercaptoethyl sulfate, 2 Mercaptoethyl sulfonic acid, 2-mercaptopropyl sulfonic acid, 2-mercaptoethyl methyl sulfate, methyl 2-mercaptoethyl sulfonate, 2-mercaptoethyl ethyl sulfate, ethyl 2-mercaptoethyl sulfonate, methyl 2-mercaptopropyl sulfone Nert, ethyl 2-mercaptopropyl sulfonate and the like. Among them, when thioglycol, 2,3-dihydroxypropanethiol, thioglycolic acid, β-mercaptopropionic acid, ethyl β-mercaptopropionate, and 2-ethylhexyl β-mercaptopropionate are reactive, readily available, and thinned In view of surface smoothness, methyl β-mercaptopropionate is most preferable.
前記チオール化合物(Q)と反応させる重合性化合物としては、特に限定はなく公知の重合性化合物を使用することができる。具体的には、(メタ)アクリル酸、(メタ)アクリル酸エステル化合物、ビニルアルコールエステル化合物、スチレン化合物、アリルアルコール化合物、アリルアミン化合物などである。
本発明の金属ナノ粒子用保護剤は、金属との親和性を有する官能基を有する重合性化合物を適宜選択することで、使用する金属種や所望する物性に応じた保護剤を設計することが可能であり、特徴である。具体的には、金属に対しやや強い吸着能を有するカルボキシ基、リン酸基、スルホン酸基、または、複素芳香族基(例えばイミダゾール基)、中程度の相互作用を示し分散媒の液性によって吸着能が変化するアミノ基(例、ジメチルアミノエチル基、ジメチルアミノプロピル基)、および金属表面との相互作用が前者と比べ小さいヒドロキシ基(ヒドロキシエチル基、ヒドロキシプロピル基)、芳香族基(たとえばベンジル基)を有する重合性化合物を使用することで、金属ナノ粒子用保護剤に自在に該官能基を付与することが可能であり、またこれらの比率を自在に変更することが可能なため、その吸着性も自在に変更することができる。
例えば、重合性化合物として、ポリアルキレングリコールメタクリレート等のポリエチレングリコール鎖を有する重合性化合物を使用することで、前記一般式(4)で表される構造を分子中に有する高分子化合物にポリエチレングリコール鎖を組み込むことができる。
また同様に、重合性化合物として、(メタ)アクリル酸等を使用することでカルボキシ基を、メタクリル酸ジメチルアミノエチル等を使用することでアミノ基を、メタクリロイルオキシエチルホスフェート等を使用することでリン酸基を、ヒドロキシエチルメタクリレート等を使用することでヒドロキシ基を、スルホン酸基を有する修飾(メタ)アクリル酸エステルを重合性化合物として用いるスルホン酸基を、ヘテロ芳香族ビニル化合物を用いることでヘテロ芳香族基を導入することが出来る。このようにして、前記一般式(4)で表される構造を分子中に有する高分子化合物にアミノ基、カルボキシ基、イミダゾール基、リン酸基、スルホン酸基等を組み込むことができる。
これらの重合性化合物の具体的な例としては、2-ジメチルアミノエチルメタクリレート、ビニルイミダゾール、2-メタクリロイルオキシエチルホスフェート、2-アクリルアミド-2-メチルプロパンスルホン酸が挙げられる。
本発明の金属ナノ粒子用保護剤の重合方法は通常のラジカル重合法でよく、チオール化合物および重合性化合物を適当な溶剤に溶解し、重合開始剤として過カルボン酸エステル等を加え加熱すればよい。 There is no limitation in particular as a polymeric compound made to react with the said thiol compound (Q), A well-known polymeric compound can be used. Specifically, (meth) acrylic acid, (meth) acrylic acid ester compounds, vinyl alcohol ester compounds, styrene compounds, allyl alcohol compounds, allylamine compounds, and the like.
The protective agent for metal nanoparticles of the present invention can be designed according to the metal species to be used and the desired physical properties by appropriately selecting a polymerizable compound having a functional group having an affinity for metal. Possible and characteristic. Specifically, a carboxy group, a phosphoric acid group, a sulfonic acid group, or a heteroaromatic group (for example, an imidazole group) having a slightly strong adsorption ability for a metal, shows a moderate interaction, and depends on the liquidity of the dispersion medium. An amino group (for example, dimethylaminoethyl group, dimethylaminopropyl group) whose adsorptive capacity changes, and a hydroxy group (hydroxyethyl group, hydroxypropyl group), an aromatic group (for example, a smaller interaction with the metal surface than the former) By using a polymerizable compound having a benzyl group), it is possible to freely give the functional group to the protective agent for metal nanoparticles, and it is possible to freely change these ratios, The adsorptivity can also be changed freely.
For example, by using a polymerizable compound having a polyethylene glycol chain such as polyalkylene glycol methacrylate as the polymerizable compound, the polymer compound having a structure represented by the general formula (4) in the molecule is added to the polyethylene glycol chain. Can be incorporated.
Similarly, by using (meth) acrylic acid or the like as a polymerizable compound, a carboxy group is used, a dimethylaminoethyl methacrylate or the like is used, an amino group is used, or methacryloyloxyethyl phosphate or the like is used. Hydroxy group by using hydroxyethyl methacrylate, etc. Acid group, sulfonic acid group using modified (meth) acrylic acid ester having sulfonic acid group as polymerizable compound, heteroaromatic compound by using heteroaromatic vinyl compound Aromatic groups can be introduced. Thus, an amino group, a carboxy group, an imidazole group, a phosphoric acid group, a sulfonic acid group, or the like can be incorporated into the polymer compound having the structure represented by the general formula (4) in the molecule.
Specific examples of these polymerizable compounds include 2-dimethylaminoethyl methacrylate, vinylimidazole, 2-methacryloyloxyethyl phosphate, and 2-acrylamido-2-methylpropanesulfonic acid.
The polymerization method of the protective agent for metal nanoparticles according to the present invention may be an ordinary radical polymerization method. The thiol compound and the polymerizable compound may be dissolved in an appropriate solvent, and a percarboxylic acid ester or the like may be added and heated as a polymerization initiator. .
本発明の金属ナノ粒子用保護剤は、金属との親和性を有する官能基を有する重合性化合物を適宜選択することで、使用する金属種や所望する物性に応じた保護剤を設計することが可能であり、特徴である。具体的には、金属に対しやや強い吸着能を有するカルボキシ基、リン酸基、スルホン酸基、または、複素芳香族基(例えばイミダゾール基)、中程度の相互作用を示し分散媒の液性によって吸着能が変化するアミノ基(例、ジメチルアミノエチル基、ジメチルアミノプロピル基)、および金属表面との相互作用が前者と比べ小さいヒドロキシ基(ヒドロキシエチル基、ヒドロキシプロピル基)、芳香族基(たとえばベンジル基)を有する重合性化合物を使用することで、金属ナノ粒子用保護剤に自在に該官能基を付与することが可能であり、またこれらの比率を自在に変更することが可能なため、その吸着性も自在に変更することができる。
例えば、重合性化合物として、ポリアルキレングリコールメタクリレート等のポリエチレングリコール鎖を有する重合性化合物を使用することで、前記一般式(4)で表される構造を分子中に有する高分子化合物にポリエチレングリコール鎖を組み込むことができる。
また同様に、重合性化合物として、(メタ)アクリル酸等を使用することでカルボキシ基を、メタクリル酸ジメチルアミノエチル等を使用することでアミノ基を、メタクリロイルオキシエチルホスフェート等を使用することでリン酸基を、ヒドロキシエチルメタクリレート等を使用することでヒドロキシ基を、スルホン酸基を有する修飾(メタ)アクリル酸エステルを重合性化合物として用いるスルホン酸基を、ヘテロ芳香族ビニル化合物を用いることでヘテロ芳香族基を導入することが出来る。このようにして、前記一般式(4)で表される構造を分子中に有する高分子化合物にアミノ基、カルボキシ基、イミダゾール基、リン酸基、スルホン酸基等を組み込むことができる。
これらの重合性化合物の具体的な例としては、2-ジメチルアミノエチルメタクリレート、ビニルイミダゾール、2-メタクリロイルオキシエチルホスフェート、2-アクリルアミド-2-メチルプロパンスルホン酸が挙げられる。
本発明の金属ナノ粒子用保護剤の重合方法は通常のラジカル重合法でよく、チオール化合物および重合性化合物を適当な溶剤に溶解し、重合開始剤として過カルボン酸エステル等を加え加熱すればよい。 There is no limitation in particular as a polymeric compound made to react with the said thiol compound (Q), A well-known polymeric compound can be used. Specifically, (meth) acrylic acid, (meth) acrylic acid ester compounds, vinyl alcohol ester compounds, styrene compounds, allyl alcohol compounds, allylamine compounds, and the like.
The protective agent for metal nanoparticles of the present invention can be designed according to the metal species to be used and the desired physical properties by appropriately selecting a polymerizable compound having a functional group having an affinity for metal. Possible and characteristic. Specifically, a carboxy group, a phosphoric acid group, a sulfonic acid group, or a heteroaromatic group (for example, an imidazole group) having a slightly strong adsorption ability for a metal, shows a moderate interaction, and depends on the liquidity of the dispersion medium. An amino group (for example, dimethylaminoethyl group, dimethylaminopropyl group) whose adsorptive capacity changes, and a hydroxy group (hydroxyethyl group, hydroxypropyl group), an aromatic group (for example, a smaller interaction with the metal surface than the former) By using a polymerizable compound having a benzyl group), it is possible to freely give the functional group to the protective agent for metal nanoparticles, and it is possible to freely change these ratios, The adsorptivity can also be changed freely.
For example, by using a polymerizable compound having a polyethylene glycol chain such as polyalkylene glycol methacrylate as the polymerizable compound, the polymer compound having a structure represented by the general formula (4) in the molecule is added to the polyethylene glycol chain. Can be incorporated.
Similarly, by using (meth) acrylic acid or the like as a polymerizable compound, a carboxy group is used, a dimethylaminoethyl methacrylate or the like is used, an amino group is used, or methacryloyloxyethyl phosphate or the like is used. Hydroxy group by using hydroxyethyl methacrylate, etc. Acid group, sulfonic acid group using modified (meth) acrylic acid ester having sulfonic acid group as polymerizable compound, heteroaromatic compound by using heteroaromatic vinyl compound Aromatic groups can be introduced. Thus, an amino group, a carboxy group, an imidazole group, a phosphoric acid group, a sulfonic acid group, or the like can be incorporated into the polymer compound having the structure represented by the general formula (4) in the molecule.
Specific examples of these polymerizable compounds include 2-dimethylaminoethyl methacrylate, vinylimidazole, 2-methacryloyloxyethyl phosphate, and 2-acrylamido-2-methylpropanesulfonic acid.
The polymerization method of the protective agent for metal nanoparticles according to the present invention may be an ordinary radical polymerization method. The thiol compound and the polymerizable compound may be dissolved in an appropriate solvent, and a percarboxylic acid ester or the like may be added and heated as a polymerization initiator. .
<炭素数8~200のポリエチレングリコール含有有機化合物が複合した銅又は銀ナノ粒子の合成>
本発明の効果を説明する一例として、本発明の接合用材料に含有される炭素数8~200のポリエチレングリコール含有有機化合物が複合した金属ナノ粒子の製造方法は、チオエーテル型有機化合物の存在下で、2価の銅イオン化合物又は1価の銀イオン化合物を溶媒と混合する工程と、銅イオン又は銀イオンを還元する工程とを有することを特徴とするものである。 <Synthesis of Copper or Silver Nanoparticles Composed of Polyethylene Glycol-Containing Organic Compounds with 8 to 200 Carbons>
As an example for explaining the effect of the present invention, a method for producing metal nanoparticles in which a polyethylene glycol-containing organic compound having 8 to 200 carbon atoms contained in the bonding material of the present invention is combined is described in the presence of a thioether type organic compound. It has the process of mixing a bivalent copper ion compound or a monovalent silver ion compound with a solvent, and the process of reduce | restoring a copper ion or a silver ion, It is characterized by the above-mentioned.
本発明の効果を説明する一例として、本発明の接合用材料に含有される炭素数8~200のポリエチレングリコール含有有機化合物が複合した金属ナノ粒子の製造方法は、チオエーテル型有機化合物の存在下で、2価の銅イオン化合物又は1価の銀イオン化合物を溶媒と混合する工程と、銅イオン又は銀イオンを還元する工程とを有することを特徴とするものである。 <Synthesis of Copper or Silver Nanoparticles Composed of Polyethylene Glycol-Containing Organic Compounds with 8 to 200 Carbons>
As an example for explaining the effect of the present invention, a method for producing metal nanoparticles in which a polyethylene glycol-containing organic compound having 8 to 200 carbon atoms contained in the bonding material of the present invention is combined is described in the presence of a thioether type organic compound. It has the process of mixing a bivalent copper ion compound or a monovalent silver ion compound with a solvent, and the process of reduce | restoring a copper ion or a silver ion, It is characterized by the above-mentioned.
2価の銅イオン化合物としては、一般的に入手可能な銅化合物が利用可能であり、硫酸塩、硝酸塩、カルボン酸塩、炭酸塩、塩化物、アセチルアセトナート錯体等が利用できる。0価の銅ナノ粒子との複合体を得る場合には2価の化合物から出発しても1価の化合物から製造してもよく、水分や結晶水を有していても差し支えない。具体的には、結晶水を除いて表現すれば、CuSO4、Cu(NO3)2、Cu(OAc)2、Cu(CH3CH2COO)2、Cu(HCOO)2、CuCO3、CuCl2、Cu2O、C5H7CuO2などが挙げられる。さらに、上記塩類を加熱したり、塩基性雰囲気に曝したりすることにより得られる塩基性塩、たとえばCu(OAc)2・CuO、Cu(OAc)2・2CuO、Cu2Cl(OH)3等は最も好適に用いることができる。これら塩基性塩は、反応系内で調製してもよいし、反応系外で別途調製したものを使用してもよい。また、アンモニアやアミン化合物を加えて錯体形成し、溶解度を確保してから還元に用いる一般的な方法も適用可能である。
As the divalent copper ion compound, generally available copper compounds can be used, and sulfates, nitrates, carboxylates, carbonates, chlorides, acetylacetonate complexes and the like can be used. In the case of obtaining a complex with zero-valent copper nanoparticles, the complex may start from a divalent compound or may be produced from a monovalent compound, or may have moisture or crystal water. Specifically, if expressed excluding crystal water, CuSO 4 , Cu (NO 3 ) 2 , Cu (OAc) 2 , Cu (CH 3 CH 2 COO) 2 , Cu (HCOO) 2 , CuCO 3 , CuCl 3 2 , Cu 2 O, C 5 H 7 CuO 2 and the like. Further, basic salts obtained by heating the above salts or exposing them to a basic atmosphere, such as Cu (OAc) 2 .CuO, Cu (OAc) 2 .2CuO, Cu 2 Cl (OH) 3, etc. Most preferably, it can be used. These basic salts may be prepared within the reaction system, or those prepared separately outside the reaction system may be used. Further, a general method can be applied in which ammonia or an amine compound is added to form a complex to ensure solubility and then used for the reduction.
1価の銀イオン化合物としては、一般的に入手可能な銀化合物が利用可能であり、硝酸銀、酸化銀、酢酸銀、フッ化銀、銀アセチルアセトナート、安息香酸銀、炭酸銀、クエン酸銀、銀ヘキサフルオロフォスフェート、乳酸銀、亜硝酸銀、ペンタフルオロプロピオン酸銀等が挙げられ、取り扱い容易性、工業的入手容易性の観点から、硝酸銀または酸化銀を用いることが好ましい。
As the monovalent silver ion compound, generally available silver compounds can be used. Silver nitrate, silver oxide, silver acetate, silver fluoride, silver acetylacetonate, silver benzoate, silver carbonate, silver citrate Silver hexafluorophosphate, silver lactate, silver nitrite, silver pentafluoropropionate, and the like. From the viewpoint of ease of handling and industrial availability, silver nitrate or silver oxide is preferably used.
これらの銅又は銀イオン化合物を、予めチオエーテル型有機化合物を溶解又は分散した媒体に溶解、または混合する。このとき用いることができる媒体としては、使用する有機化合物の構造にもよるが、水、エタノール、アセトン、エチレングリコール、ジエチレングリコール、グリセリンおよびそれらの混合物が好適に用いられ、水-エチレングリコール混合物は特に好ましい。
These copper or silver ion compounds are dissolved or mixed in a medium in which a thioether type organic compound is previously dissolved or dispersed. As the medium that can be used at this time, although depending on the structure of the organic compound to be used, water, ethanol, acetone, ethylene glycol, diethylene glycol, glycerin and a mixture thereof are preferably used, and a water-ethylene glycol mixture is particularly preferable. preferable.
チオエーテル型有機化合物の、各種媒体中における濃度としては、引き続き行なう還元反応の制御が容易になる点から、0.3~10質量%の範囲に調整することが好ましい。
The concentration of the thioether-type organic compound in various media is preferably adjusted to a range of 0.3 to 10% by mass from the viewpoint of easy control of the subsequent reduction reaction.
上記で調製した媒体中に、前記銅又は銀イオン化合物を、一括又は分割して添加し、混合する。溶解しにくい媒体を使用する場合には、予め少量の良溶媒に溶解させておいてから、媒体中に添加する方法であっても良い。
In the medium prepared above, the copper or silver ion compound is added all at once or divided and mixed. In the case of using a medium that is difficult to dissolve, a method in which the medium is dissolved in a small amount of a good solvent in advance and then added to the medium may be used.
混合するチオエーテル型有機化合物と銅又は銀イオン化合物との使用割合としては、反応媒体中でのチオエーテル型有機化合物の保護能力に応じて適宜選択することが好ましいが、通常、銅又は銀イオン化合物1molあたりに、チオエーテル型有機化合物として1mmol~30mmol(分子量2000のポリマーを用いる場合、2~60g程度)の範囲で調製し、特に15~30mmolの範囲で用いることが好ましい。
The proportion of the thioether-type organic compound to be mixed and the copper or silver ion compound is preferably selected as appropriate according to the protective ability of the thioether-type organic compound in the reaction medium, but usually 1 mol of copper or silver ion compound. The thioether-type organic compound is prepared in the range of 1 mmol to 30 mmol (about 2 to 60 g when a polymer having a molecular weight of 2000 is used), and particularly preferably used in the range of 15 to 30 mmol.
引き続き、銅又は銀イオンの還元を、各種還元剤を用いて行なう。還元剤としては、ヒドラジン化合物、ヒドロキシルアミンおよびその誘導体、金属水素化物、ホスフィン酸塩類、アルデヒド類、エンジオール類、ヒドロキシケトン類など、氷冷温から80℃以下の温度で銅又は銀の還元反応を進行させることができる化合物であることが、沈殿物形成の少ない複合体を与えるため、好適である。
Subsequently, copper or silver ions are reduced using various reducing agents. Examples of reducing agents include hydrazine compounds, hydroxylamine and its derivatives, metal hydrides, phosphinates, aldehydes, enediols, hydroxyketones, etc. A compound that can be allowed to proceed is preferred because it provides a complex with less precipitate formation.
銅イオンの還元において、具体的にはヒドラジン水和物、非対称ジメチルヒドラジン、ヒドロキシルアミン水溶液、水素化ホウ素ナトリウムなどの強力な還元剤が好適である。これらは、銅化合物を0価まで還元する能力を有するので、2価および1価の銅化合物を還元銅とし、有機化合物とナノ銅粒子との複合体を製造する場合に適している。
In the reduction of copper ions, specifically, strong reducing agents such as hydrazine hydrate, asymmetric dimethylhydrazine, hydroxylamine aqueous solution, sodium borohydride and the like are suitable. Since these have the ability to reduce the copper compound to zero valence, the divalent and monovalent copper compounds are reduced copper and are suitable for producing a composite of an organic compound and nano-copper particles.
還元反応に適する条件は、原料として用いる銅化合物、還元剤の種類、錯化の有無、媒体、チオエーテル型有機化合物の種類によって様々である。例えば、水系で酢酸銅(II)を水素化ホウ素ナトリウムで還元する場合には、氷冷程度の温度でも0価のナノ銅粒子が調製できる。一方、ヒドラジンを用いる場合には、室温では反応は遅く、60℃程度に加熱してはじめて円滑な還元反応が起こり、エチレングリコール/水系で酢酸銅を還元する場合には、60℃で2時間程度の反応時間を要する。このようにして還元反応が終了すると、有機化合物と銅系ナノ粒子との複合体を含む反応混合物が得られる。
The conditions suitable for the reduction reaction vary depending on the copper compound used as a raw material, the type of reducing agent, the presence or absence of complexation, the medium, and the type of thioether type organic compound. For example, when copper (II) acetate is reduced with sodium borohydride in an aqueous system, zero-valent nano copper particles can be prepared even at a temperature of about ice cooling. On the other hand, when hydrazine is used, the reaction is slow at room temperature, and a smooth reduction reaction occurs only after heating to about 60 ° C., and when copper acetate is reduced in an ethylene glycol / water system, about 60 hours at 60 ° C. The reaction time is required. When the reduction reaction is completed in this manner, a reaction mixture containing a complex of an organic compound and copper-based nanoparticles is obtained.
銀イオンの還元において、具体的にはジメチルアミノエタノール、クエン酸ナトリウム等の還元剤が好適である。これらは、比較的緩やかな条件下において銀イオンを0価に還元することが可能であり、水系において硝酸銀を還元する場合には40℃で2時間程反応を行うことで還元反応が終了し、有機化合物と銀系ナノ粒子との複合体を含む反応混合物が得られる。
In the reduction of silver ions, specifically, reducing agents such as dimethylaminoethanol and sodium citrate are suitable. These are capable of reducing silver ions to zero valence under relatively mild conditions. In the case of reducing silver nitrate in an aqueous system, the reduction reaction is completed by carrying out the reaction at 40 ° C. for about 2 hours, A reaction mixture containing a complex of organic compound and silver-based nanoparticles is obtained.
このように調製した金属ナノ粒子は保護剤の効果により、水分を完全に除去して乾燥体粉末とした後に、再び溶媒を添加しても乾燥前の状態と同じように高分散させることが可能である。
Due to the effect of the protective agent, the metal nanoparticles prepared in this way can be completely dispersed in the same way as before drying even after the solvent is added again after completely removing moisture to form a dry powder. It is.
また、チオエーテル型有機化合物と前記媒体、および銅イオン化合物の混合液中にナノ銀を添加した混合液をあらかじめ調整し、次いで還元剤を添加して銅イオンを前記方法で還元させると、ナノ銀表面を銅が被覆した、銀コア銅シェルナノ粒子を得ることができる。
In addition, when a mixed liquid in which nano silver is added to a mixed liquid of a thioether type organic compound, the medium, and the copper ion compound is prepared in advance, and then a reducing agent is added to reduce the copper ions by the above method, nano silver is obtained. Silver core copper shell nanoparticles whose surface is coated with copper can be obtained.
また、逆にチオエーテル型有機化合物と前記媒体、および銀イオン化合物の混合液中にナノ銅を添加した混合液をあらかじめ調整し、次いで還元剤を添加して銀イオンを前記方法で還元させると、ナノ銅表面を銀が被覆した、銅コア銀シェルナノ粒子を得ることができる。
Conversely, when a liquid mixture in which nanocopper is added to a liquid mixture of a thioether-type organic compound and the medium and a silver ion compound is prepared in advance, and then a reducing agent is added to reduce silver ions by the above method, The copper core silver shell nanoparticle which silver coat | covered the nanocopper surface can be obtained.
<分散液の製造方法>
還元反応後は、必要に応じて金属化合物残渣、還元試薬残渣、余剰のポリエチレングリコール含有有機化合物等を除く工程が設けられる。複合体の精製には、再沈殿、遠心沈降または限外濾過が適用可能であり、得られた複合体を含む反応混合物を洗浄溶媒、例えば水、エタノール、アセトンおよびこれらの混合物によって洗浄することで、前述の不純物を洗い流すことができる。 <Method for producing dispersion>
After the reduction reaction, a step of removing a metal compound residue, a reducing reagent residue, an excess polyethylene glycol-containing organic compound and the like is provided as necessary. For the purification of the complex, reprecipitation, centrifugal sedimentation or ultrafiltration can be applied, and the reaction mixture containing the resulting complex is washed with a washing solvent such as water, ethanol, acetone and a mixture thereof. The aforementioned impurities can be washed away.
還元反応後は、必要に応じて金属化合物残渣、還元試薬残渣、余剰のポリエチレングリコール含有有機化合物等を除く工程が設けられる。複合体の精製には、再沈殿、遠心沈降または限外濾過が適用可能であり、得られた複合体を含む反応混合物を洗浄溶媒、例えば水、エタノール、アセトンおよびこれらの混合物によって洗浄することで、前述の不純物を洗い流すことができる。 <Method for producing dispersion>
After the reduction reaction, a step of removing a metal compound residue, a reducing reagent residue, an excess polyethylene glycol-containing organic compound and the like is provided as necessary. For the purification of the complex, reprecipitation, centrifugal sedimentation or ultrafiltration can be applied, and the reaction mixture containing the resulting complex is washed with a washing solvent such as water, ethanol, acetone and a mixture thereof. The aforementioned impurities can be washed away.
<接合用材料の製造方法>
上述のように、金属ナノ粒子-有機化合物複合体は水分散体として得られるが、精製の最終段階において、複合体に洗浄用溶媒を加える代わりに、接合用材料として使い易い溶媒を加え、あるいは、媒体交換することにより、接合用材料としての適性を付与することができる。 <Method for manufacturing joining material>
As described above, the metal nanoparticle-organic compound composite is obtained as an aqueous dispersion. In the final stage of purification, instead of adding a cleaning solvent to the composite, an easy-to-use solvent is added as a bonding material, or By exchanging the medium, suitability as a bonding material can be imparted.
上述のように、金属ナノ粒子-有機化合物複合体は水分散体として得られるが、精製の最終段階において、複合体に洗浄用溶媒を加える代わりに、接合用材料として使い易い溶媒を加え、あるいは、媒体交換することにより、接合用材料としての適性を付与することができる。 <Method for manufacturing joining material>
As described above, the metal nanoparticle-organic compound composite is obtained as an aqueous dispersion. In the final stage of purification, instead of adding a cleaning solvent to the composite, an easy-to-use solvent is added as a bonding material, or By exchanging the medium, suitability as a bonding material can be imparted.
接合用材料は、材料中に含まれる金属濃度が高いほど高い接合強度を得ることができるが、一方で、材料を塗布、ディスペンサー、マスク印刷、スクリーン印刷等により接合部へ供給する必要があるので、その特性が好適となるよう粘度調整用の溶媒や添加剤を添加したり、材料中に含有する金属濃度を調整したりする必要がある。従って、印刷方式に見合った粘度範囲で最大の金属濃度となるように水分散体の金属濃度を調節する。一般的には50~95%程度が、接合部への供給がし易い点で好適である。
The bonding material can obtain higher bonding strength as the metal concentration in the material is higher, but on the other hand, it is necessary to supply the material to the bonding part by application, dispenser, mask printing, screen printing, etc. It is necessary to add a viscosity adjusting solvent or an additive or adjust the concentration of the metal contained in the material so that the characteristics are suitable. Therefore, the metal concentration of the aqueous dispersion is adjusted so that the maximum metal concentration is obtained in the viscosity range suitable for the printing method. Generally, about 50 to 95% is preferable because it can be easily supplied to the joint.
本発明の接合用材料は、200~1000nm程度の粒子径を持つ金属ナノ粒子を添加して使用することもできる。
The bonding material of the present invention can be used by adding metal nanoparticles having a particle size of about 200 to 1000 nm.
本発明の接合用材料は、フラックス成分を加えることで、より一層の還元力を持たせて使用することもできる。
The joining material of the present invention can be used with a further reducing power by adding a flux component.
このように調製した接合用材料は、密閉容器中で保存すれば、調製濃度によらず1~3月程度は安定である。
The bonding material prepared in this way is stable for about 1 to 3 months regardless of the preparation concentration if stored in a closed container.
本発明の技術分野において実用上充分といわれる水準は、後述のせん断強度試験において、15MPa以上の強度が得られるものである。本発明の接合用材料は、15MPa以上の強度を発揮し、好ましくは20MPa以上の強度を発揮する。また、本発明の接合用材料として特に好ましいものは、30MPa以上の強度を得られるものである。
The level said to be practically sufficient in the technical field of the present invention is that a strength of 15 MPa or more is obtained in a shear strength test described later. The bonding material of the present invention exhibits a strength of 15 MPa or more, and preferably exhibits a strength of 20 MPa or more. Moreover, a particularly preferable material for the bonding of the present invention is one that can obtain a strength of 30 MPa or more.
<本発明の溶媒(C)>
本発明で用いることができる溶媒(C)としては、沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒、沸点150℃以上のエステル系溶媒、沸点150℃以上のラクタム構造含有溶媒などを好適に用いることができる。 <Solvent (C) of the present invention>
Examples of the solvent (C) that can be used in the present invention include alcohol solvents having a boiling point of 150 ° C. or higher, ether solvents having a boiling point of 150 ° C. or higher, ester solvents having a boiling point of 150 ° C. or higher, and lactam structure-containing solvents having a boiling point of 150 ° C. or higher. Etc. can be used suitably.
本発明で用いることができる溶媒(C)としては、沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒、沸点150℃以上のエステル系溶媒、沸点150℃以上のラクタム構造含有溶媒などを好適に用いることができる。 <Solvent (C) of the present invention>
Examples of the solvent (C) that can be used in the present invention include alcohol solvents having a boiling point of 150 ° C. or higher, ether solvents having a boiling point of 150 ° C. or higher, ester solvents having a boiling point of 150 ° C. or higher, and lactam structure-containing solvents having a boiling point of 150 ° C. or higher. Etc. can be used suitably.
ここで、沸点150℃以上のアルコール系溶媒は、具体的には、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコールなどの一官能アルコール型や、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオールなどの二官能アルコール型や、プロパントリオール、ブタントリオール、ペンタントリオール、ヘキサントリオール、ヘプタントリオールなどの三官能アルコール型、プロパンテトラオール、ブタンテトラオール、ペンタンテトラオール、ヘキサンテトラオール、ヘプタンテトラオールなどの四官能アルコール型、ペンタンペンタオール、ヘキサンペンタオールなどの五官能アルコール型のものが挙げられる。また、ベンゼントリオール、ビフェニルペンタオール、ベンゼンペンタオール、シクロヘキサンヘキサオールなどの環状型の構造を有するアルコール化合物を用いることも可能である。それ以外にもクエン酸、アスコルビン酸等のアルコール基を有する化合物を用いてもよい。また、エーテル構造を含むアルコール誘導体である、プロピレングリコールモノメチルエーテル、3-メトキシブタノール、プロピレングリコール-n-プロピルエーテル、プロピレングリコール-n-ブチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル等を用いてもよい。
Here, the alcohol solvent having a boiling point of 150 ° C. or more specifically includes monofunctional alcohol types such as hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, and triethylene. Bifunctional alcohol types such as glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, trifunctional alcohol types such as propanetriol, butanetriol, pentanetriol, hexanetriol, heptanetriol, propanetetraol, butane Tetrafunctional alcohol types such as tetraol, pentanetetraol, hexanetetraol, heptanetetraol, pentanepentaol, hexa Those penta-functional alcohol type, such as penta ol. It is also possible to use alcohol compounds having a cyclic structure such as benzenetriol, biphenylpentaol, benzenepentaol, and cyclohexanehexaol. In addition, compounds having an alcohol group such as citric acid and ascorbic acid may be used. Further, alcohol derivatives containing an ether structure, such as propylene glycol monomethyl ether, 3-methoxybutanol, propylene glycol-n-propyl ether, propylene glycol-n-butyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether, dipropylene glycol -N-propyl ether, dipropylene glycol-n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol-n-butyl ether and the like may be used.
ここで、沸点150℃以上のエーテル系溶媒は、具体的には、分子量200~400までのポリエチレングリコール、ポリプロピレングリコールなどが挙げられる。
Here, specific examples of the ether solvent having a boiling point of 150 ° C. or higher include polyethylene glycol and polypropylene glycol having a molecular weight of 200 to 400.
ここで、沸点150℃以上のエステル系溶媒は、具体的には、シクロヘキサノールアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、環状構造を持つクラウンエーテル類などが挙げられる。
Here, the ester solvent having a boiling point of 150 ° C. or more specifically includes cyclohexanol acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether acetate, 1 , 4-butanediol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate, and crown ethers having a cyclic structure.
ここで、沸点150℃以上のラクタム構造含有溶媒は、具体的には、β-ラクタム、ε-カプロラクタム、σ-ラクタム、N-メチル-2-ピロリドン、ピログルタミン酸、ピラセタム、ペニシリンなどのβ-ラクタム系化合物などが挙げられる。
Here, the lactam structure-containing solvent having a boiling point of 150 ° C. or more specifically includes β-lactams such as β-lactam, ε-caprolactam, σ-lactam, N-methyl-2-pyrrolidone, pyroglutamic acid, piracetam, and penicillin. System compounds and the like.
なかでも、沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒を用いることが好ましい。
なかでも、より好ましくは、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオールなどの二官能アルコール型の沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒が好ましい。 Among them, it is preferable to use an alcohol solvent having a boiling point of 150 ° C. or higher and an ether solvent having a boiling point of 150 ° C. or higher.
Among them, more preferably, an alcohol solvent having a boiling point of 150 ° C. or higher of a bifunctional alcohol type such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, An ether solvent at 150 ° C. or higher is preferred.
なかでも、より好ましくは、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオールなどの二官能アルコール型の沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒が好ましい。 Among them, it is preferable to use an alcohol solvent having a boiling point of 150 ° C. or higher and an ether solvent having a boiling point of 150 ° C. or higher.
Among them, more preferably, an alcohol solvent having a boiling point of 150 ° C. or higher of a bifunctional alcohol type such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, An ether solvent at 150 ° C. or higher is preferred.
なかでも、さらに好ましくは、エチレングリコール、ジエチレングリコール、分子量200~400までのポリエチレングリコールが好ましい。
Of these, ethylene glycol, diethylene glycol, and polyethylene glycol having a molecular weight of 200 to 400 are more preferable.
使用量は金属に対し5~50%の範囲であれば使用可能であり、5~15%の範囲がより好ましい。
It can be used if the amount used is in the range of 5 to 50% with respect to the metal, and more preferably in the range of 5 to 15%.
<接合>
このように調製した接合用材料を、希塩酸で予め洗浄した2つの銅製棒材(直径10mm×厚み5mm、直径3mm×厚み2mm)に塗布し、そのまま、あるいは僅かに加圧しながら銅、又は、銀ナノ粒子が融着する温度まで加熱し、接合試験片を作製することができる。このとき、水素を含むフォーミングガス下、窒素雰囲気下又はギ酸を通過させて含ませたギ酸含有窒素の雰囲気下で行うこともできる。 <Joint>
The bonding material thus prepared is applied to two copper rods (diameter 10 mm × thickness 5 mm, diameter 3 mm × thickness 2 mm) previously washed with dilute hydrochloric acid, and the copper or silver is applied as it is or slightly pressed. It is possible to produce a joining test piece by heating to a temperature at which the nanoparticles are fused. At this time, it can also be carried out under a forming gas containing hydrogen, in a nitrogen atmosphere, or in an atmosphere of formic acid-containing nitrogen that has been passed through formic acid.
このように調製した接合用材料を、希塩酸で予め洗浄した2つの銅製棒材(直径10mm×厚み5mm、直径3mm×厚み2mm)に塗布し、そのまま、あるいは僅かに加圧しながら銅、又は、銀ナノ粒子が融着する温度まで加熱し、接合試験片を作製することができる。このとき、水素を含むフォーミングガス下、窒素雰囲気下又はギ酸を通過させて含ませたギ酸含有窒素の雰囲気下で行うこともできる。 <Joint>
The bonding material thus prepared is applied to two copper rods (diameter 10 mm × thickness 5 mm, diameter 3 mm × thickness 2 mm) previously washed with dilute hydrochloric acid, and the copper or silver is applied as it is or slightly pressed. It is possible to produce a joining test piece by heating to a temperature at which the nanoparticles are fused. At this time, it can also be carried out under a forming gas containing hydrogen, in a nitrogen atmosphere, or in an atmosphere of formic acid-containing nitrogen that has been passed through formic acid.
接合のために加熱すると、200℃以下で銅又は銀ナノ粒子と複合しているポリエチレングリコール部位及び金属配位部位は分解し揮発する。
When heated for bonding, the polyethylene glycol site and metal coordination site complexed with copper or silver nanoparticles at 200 ° C. or lower decompose and volatilize.
本発明において、接合すべき部材(被接合物)としては、金属(合金、金属間化合物も含む。)のほか、セラミック、プラスチック、これらの複合材料等を例示できるが、本発明では特に金属(合金、金属どうしの接合も含む。)が好ましい。また、部材の形状等も、これらの粉末又はペーストが部材間に適切に配置できる限り、特に限定されない。
In the present invention, examples of members to be bonded (bonded objects) include metals (including alloys and intermetallic compounds), ceramics, plastics, composite materials thereof, and the like. Including joining of alloys and metals) is preferred. Further, the shape of the member is not particularly limited as long as these powders or pastes can be appropriately disposed between the members.
<接合強度測定>
JIS Z-03918-5:2003「鉛フリーはんだ試験方法」に記載の方法で、上記の接合試験片にせん断力を印可し、接合強度を測定した。本明細書中、せん断強度試験ともいう。 <Bonding strength measurement>
In accordance with the method described in JIS Z-03918-5: 2003 “Lead-free solder test method”, a shear force was applied to the above-mentioned joint test piece, and the joint strength was measured. In this specification, it is also called a shear strength test.
JIS Z-03918-5:2003「鉛フリーはんだ試験方法」に記載の方法で、上記の接合試験片にせん断力を印可し、接合強度を測定した。本明細書中、せん断強度試験ともいう。 <Bonding strength measurement>
In accordance with the method described in JIS Z-03918-5: 2003 “Lead-free solder test method”, a shear force was applied to the above-mentioned joint test piece, and the joint strength was measured. In this specification, it is also called a shear strength test.
以下、本発明を実施例により説明する。特に断りのない限り「%」は質量基準である。
Hereinafter, the present invention will be described by way of examples. Unless otherwise specified, “%” is based on mass.
合成例1
<炭素数8~200のポリエチレングリコール含有有機化合物(チオエーテル型有機化合物(A1)~(A4))が複合した銅ナノ粒子の合成>
酢酸銅(II)一水和物(3.00g、15.0mmol)、エチル 3-(3-(メトキシ(ポリエトキシ)エトキシ)-2-ヒドロキシプロピルスルファニル)プロピオナート〔ポリエチレングリコールメチルグリシジルエーテル(ポリエチレングリコール鎖の分子量200(炭素数8)、1000(炭素数46)2000(炭素数91)、3000(炭素数136))への3-メルカプトプロピオン酸メチルの付加化合物(前記ポリエチレングリコール鎖の分子量によって、それぞれ、チオエーテル型有機化合物(A1)、(A2)、(A3)、(A4)とする)、下記式〕(0.451g) Synthesis example 1
<Synthesis of Copper Nanoparticles Compounded with Polyethylene Glycol-Containing Organic Compounds (Thioether Type Organic Compounds (A1) to (A4)) having 8 to 200 carbon atoms>
Copper (II) acetate monohydrate (3.00 g, 15.0 mmol), ethyl 3- (3- (methoxy (polyethoxy) ethoxy) -2-hydroxypropylsulfanyl) propionate [polyethylene glycol methyl glycidyl ether (polyethylene glycol chain) The molecular weight of 200 (carbon number 8), 1000 (carbon number 46) 2000 (carbon number 91), 3000 (carbon number 136)) methyl 3-mercaptopropionate addition compound (depending on the molecular weight of the polyethylene glycol chain, respectively) Thioether type organic compounds (A1), (A2), (A3), (A4)), the following formula] (0.451 g)
<炭素数8~200のポリエチレングリコール含有有機化合物(チオエーテル型有機化合物(A1)~(A4))が複合した銅ナノ粒子の合成>
酢酸銅(II)一水和物(3.00g、15.0mmol)、エチル 3-(3-(メトキシ(ポリエトキシ)エトキシ)-2-ヒドロキシプロピルスルファニル)プロピオナート〔ポリエチレングリコールメチルグリシジルエーテル(ポリエチレングリコール鎖の分子量200(炭素数8)、1000(炭素数46)2000(炭素数91)、3000(炭素数136))への3-メルカプトプロピオン酸メチルの付加化合物(前記ポリエチレングリコール鎖の分子量によって、それぞれ、チオエーテル型有機化合物(A1)、(A2)、(A3)、(A4)とする)、下記式〕(0.451g) Synthesis example 1
<Synthesis of Copper Nanoparticles Compounded with Polyethylene Glycol-Containing Organic Compounds (Thioether Type Organic Compounds (A1) to (A4)) having 8 to 200 carbon atoms>
Copper (II) acetate monohydrate (3.00 g, 15.0 mmol), ethyl 3- (3- (methoxy (polyethoxy) ethoxy) -2-hydroxypropylsulfanyl) propionate [polyethylene glycol methyl glycidyl ether (polyethylene glycol chain) The molecular weight of 200 (carbon number 8), 1000 (carbon number 46) 2000 (carbon number 91), 3000 (carbon number 136)) methyl 3-mercaptopropionate addition compound (depending on the molecular weight of the polyethylene glycol chain, respectively) Thioether type organic compounds (A1), (A2), (A3), (A4)), the following formula] (0.451 g)
<水分散液の調製>
つづいて、この反応混合物をダイセン・メンブレン・システムズ社製の中空糸型限外濾過膜モジュール(HIT-1-FUS1582、145cm2、分画分子量15万)中に循環させ、滲出する濾液と同量の0.1%ヒドラジン水和物水溶液を加えながら、限外濾過モジュールからの濾液が約500mLとなるまで循環させて精製した。0.1%ヒドラジン水和物水溶液の供給を止め、そのまま限外濾過法により濃縮すると、2.85gのチオエーテル型有機化合物(A1)~(A4)がそれぞれ複合した銅ナノ粒子の水分散液(a1)~(a4)が得られた。水分散液(a1)~(a4)中の不揮発物含量は16%、不揮発物中の金属含量は95%であった。
なお、ポリエチレングリコール鎖の分子量が200のチオエーテル型有機化合物をチオエーテル型有機化合物(A1)、分子量が1000のものをチオエーテル型有機化合物(A2)、分子量が2000のものをチオエーテル型有機化合物(A3)、分子量が3000のものをチオエーテル型有機化合物(A4)とする。また、チオエーテル型有機化合物(A1)~(A4)が複合した銅ナノ粒子の水分散液を、それぞれ(a1)~(a4)とする。 <Preparation of aqueous dispersion>
Subsequently, this reaction mixture is circulated through a hollow fiber type ultrafiltration membrane module (HIT-1-FUS1582, 145 cm 2 , molecular weight cut off 150,000) manufactured by Daisen Membrane Systems Co., Ltd., and the same amount as the leached filtrate. A 0.1% hydrazine hydrate aqueous solution was added and circulated until the filtrate from the ultrafiltration module reached about 500 mL for purification. When the supply of the 0.1% hydrazine hydrate aqueous solution was stopped and the solution was directly concentrated by ultrafiltration, an aqueous dispersion of copper nanoparticles in which 2.85 g of the thioether-type organic compounds (A1) to (A4) were combined ( a1) to (a4) were obtained. The non-volatile content in the aqueous dispersions (a1) to (a4) was 16%, and the metal content in the non-volatile materials was 95%.
A thioether type organic compound (A1) having a molecular weight of polyethylene glycol chain of 200 is a thioether type organic compound (A1), a thioether type organic compound (A2) having a molecular weight of 1000, and a thioether type organic compound (A3) having a molecular weight of 2000. A compound having a molecular weight of 3000 is referred to as a thioether type organic compound (A4). Also, aqueous dispersions of copper nanoparticles combined with thioether-type organic compounds (A1) to (A4) are referred to as (a1) to (a4), respectively.
つづいて、この反応混合物をダイセン・メンブレン・システムズ社製の中空糸型限外濾過膜モジュール(HIT-1-FUS1582、145cm2、分画分子量15万)中に循環させ、滲出する濾液と同量の0.1%ヒドラジン水和物水溶液を加えながら、限外濾過モジュールからの濾液が約500mLとなるまで循環させて精製した。0.1%ヒドラジン水和物水溶液の供給を止め、そのまま限外濾過法により濃縮すると、2.85gのチオエーテル型有機化合物(A1)~(A4)がそれぞれ複合した銅ナノ粒子の水分散液(a1)~(a4)が得られた。水分散液(a1)~(a4)中の不揮発物含量は16%、不揮発物中の金属含量は95%であった。
なお、ポリエチレングリコール鎖の分子量が200のチオエーテル型有機化合物をチオエーテル型有機化合物(A1)、分子量が1000のものをチオエーテル型有機化合物(A2)、分子量が2000のものをチオエーテル型有機化合物(A3)、分子量が3000のものをチオエーテル型有機化合物(A4)とする。また、チオエーテル型有機化合物(A1)~(A4)が複合した銅ナノ粒子の水分散液を、それぞれ(a1)~(a4)とする。 <Preparation of aqueous dispersion>
Subsequently, this reaction mixture is circulated through a hollow fiber type ultrafiltration membrane module (HIT-1-FUS1582, 145 cm 2 , molecular weight cut off 150,000) manufactured by Daisen Membrane Systems Co., Ltd., and the same amount as the leached filtrate. A 0.1% hydrazine hydrate aqueous solution was added and circulated until the filtrate from the ultrafiltration module reached about 500 mL for purification. When the supply of the 0.1% hydrazine hydrate aqueous solution was stopped and the solution was directly concentrated by ultrafiltration, an aqueous dispersion of copper nanoparticles in which 2.85 g of the thioether-type organic compounds (A1) to (A4) were combined ( a1) to (a4) were obtained. The non-volatile content in the aqueous dispersions (a1) to (a4) was 16%, and the metal content in the non-volatile materials was 95%.
A thioether type organic compound (A1) having a molecular weight of polyethylene glycol chain of 200 is a thioether type organic compound (A1), a thioether type organic compound (A2) having a molecular weight of 1000, and a thioether type organic compound (A3) having a molecular weight of 2000. A compound having a molecular weight of 3000 is referred to as a thioether type organic compound (A4). Also, aqueous dispersions of copper nanoparticles combined with thioether-type organic compounds (A1) to (A4) are referred to as (a1) to (a4), respectively.
合成例2
<炭素数8~200のポリエチレングリコール含有有機化合物(チオエーテル型有機化合物(A3))が複合した銀ナノ粒子の合成>
硝酸銀(I)(2.55g、15.0mmol)、チオエーテル型有機化合物(A3)0.451g及び蒸留水(10mL)からなる混合物に、還元剤としてジメチルアミノエタノール(1.78g、20mmol)と蒸留水16.02gの混合液を、滴下ロートを用いて20分間かけて滴下した後、40℃で2時間加熱を行い、還元反応を終結させ、黒色の銀ナノ粒子反応混合物を得た。 Synthesis example 2
<Synthesis of Silver Nanoparticles Combining a Polyethylene Glycol-containing Organic Compound (Thioether Type Organic Compound (A3)) with 8 to 200 carbon atoms>
Distillation of dimethylaminoethanol (1.78 g, 20 mmol) as a reducing agent into a mixture of silver nitrate (I) (2.55 g, 15.0 mmol), 0.451 g of thioether type organic compound (A3) and distilled water (10 mL) A mixture of 16.02 g of water was dropped using a dropping funnel over 20 minutes, and then heated at 40 ° C. for 2 hours to terminate the reduction reaction, thereby obtaining a black silver nanoparticle reaction mixture.
<炭素数8~200のポリエチレングリコール含有有機化合物(チオエーテル型有機化合物(A3))が複合した銀ナノ粒子の合成>
硝酸銀(I)(2.55g、15.0mmol)、チオエーテル型有機化合物(A3)0.451g及び蒸留水(10mL)からなる混合物に、還元剤としてジメチルアミノエタノール(1.78g、20mmol)と蒸留水16.02gの混合液を、滴下ロートを用いて20分間かけて滴下した後、40℃で2時間加熱を行い、還元反応を終結させ、黒色の銀ナノ粒子反応混合物を得た。 Synthesis example 2
<Synthesis of Silver Nanoparticles Combining a Polyethylene Glycol-containing Organic Compound (Thioether Type Organic Compound (A3)) with 8 to 200 carbon atoms>
Distillation of dimethylaminoethanol (1.78 g, 20 mmol) as a reducing agent into a mixture of silver nitrate (I) (2.55 g, 15.0 mmol), 0.451 g of thioether type organic compound (A3) and distilled water (10 mL) A mixture of 16.02 g of water was dropped using a dropping funnel over 20 minutes, and then heated at 40 ° C. for 2 hours to terminate the reduction reaction, thereby obtaining a black silver nanoparticle reaction mixture.
<水分散液の調製>
つづいて、この反応混合物をダイセン・メンブレン・システムズ社製の中空糸型限外濾過膜モジュール(HIT-1-FUS1582、145cm2、分画分子量15万)中に循環させ、限外濾過モジュールからの濾液が約500mLとなるまで循環させて精製した。そのまま限外濾過法により濃縮すると、2.15gのチオエーテル型有機化合物(A3)と銀ナノ粒子との複合体の水分散液(b)が得られた。水分散液(b)中の不揮発物含量は16%、不揮発物中の金属含量は95%であった。 <Preparation of aqueous dispersion>
Subsequently, this reaction mixture was circulated in a hollow fiber type ultrafiltration membrane module (HIT-1-FUS1582, 145 cm 2 , molecular weight cut off 150,000) manufactured by Daisen Membrane Systems Co., Ltd. Purification by circulating until the filtrate was about 500 mL. When concentrated as it was by ultrafiltration, an aqueous dispersion (b) of a complex of 2.15 g of the thioether type organic compound (A3) and silver nanoparticles was obtained. The non-volatile content in the aqueous dispersion (b) was 16%, and the metal content in the non-volatile was 95%.
つづいて、この反応混合物をダイセン・メンブレン・システムズ社製の中空糸型限外濾過膜モジュール(HIT-1-FUS1582、145cm2、分画分子量15万)中に循環させ、限外濾過モジュールからの濾液が約500mLとなるまで循環させて精製した。そのまま限外濾過法により濃縮すると、2.15gのチオエーテル型有機化合物(A3)と銀ナノ粒子との複合体の水分散液(b)が得られた。水分散液(b)中の不揮発物含量は16%、不揮発物中の金属含量は95%であった。 <Preparation of aqueous dispersion>
Subsequently, this reaction mixture was circulated in a hollow fiber type ultrafiltration membrane module (HIT-1-FUS1582, 145 cm 2 , molecular weight cut off 150,000) manufactured by Daisen Membrane Systems Co., Ltd. Purification by circulating until the filtrate was about 500 mL. When concentrated as it was by ultrafiltration, an aqueous dispersion (b) of a complex of 2.15 g of the thioether type organic compound (A3) and silver nanoparticles was obtained. The non-volatile content in the aqueous dispersion (b) was 16%, and the metal content in the non-volatile was 95%.
試験例1
上記の水分散液(a1)~(a4)5mLをそれぞれ50mL三口フラスコに封入し、ウォーターバスを用いて40℃に加温を行いながら、減圧下、窒素を5ml/minの流速で流すことで、水を完全に除去し、銅ナノ粒子複合体乾燥粉末1.0gを得た。次に得られた乾燥粉末にアルゴンガス置換したグローブバッグ内で、30分間窒素バブリングしたエチレングリコールを0.1g添加した後、乳鉢で10分間混合することで不揮発分91%の銅ナノ粒子ペーストを得た。
得られた銅ナノ粒子ペーストを直径4mm、厚さ150μmのステンレス製のマスクを用いて前述の直径10mm、厚さ5mmの銅製棒剤に金属ヘラを用いてスクリーン塗布した。その後、直径3mm、厚さ2mmの銅製棒材を塗布面にマウントし、窒素雰囲気下で、200℃で無加圧条件下、接合を行った。焼成は43℃/minで昇温を行い、それぞれの温度で10分間保持した後、自然冷却を行うことで、銅製棒材接合体(実施例1(使用した水分散液は(a1))、実施例2(使用した水分散液は(a2))、実施例3(使用した水分散液は(a3))、実施例4(使用した水分散液は(a4)))を得た。 Test example 1
By enclosing 5 mL of each of the above aqueous dispersions (a1) to (a4) in a 50 mL three-necked flask and heating them to 40 ° C. using a water bath, flowing nitrogen at a flow rate of 5 ml / min under reduced pressure. The water was completely removed to obtain 1.0 g of a dry powder of copper nanoparticle composite. Next, 0.1 g of ethylene glycol bubbled with nitrogen for 30 minutes was added in the glove bag substituted with argon gas to the obtained dry powder, and then mixed for 10 minutes in a mortar to obtain a copper nanoparticle paste having a nonvolatile content of 91%. Obtained.
The obtained copper nanoparticle paste was screen-coated with a metal spatula on a copper bar having a diameter of 10 mm and a thickness of 5 mm using a stainless steel mask having a diameter of 4 mm and a thickness of 150 μm. Thereafter, a copper bar having a diameter of 3 mm and a thickness of 2 mm was mounted on the coated surface, and bonding was performed in a nitrogen atmosphere at 200 ° C. under no pressure condition. Firing is carried out at 43 ° C./min, held at the respective temperatures for 10 minutes, and then naturally cooled, whereby a copper bar joined body (Example 1 (the aqueous dispersion used is (a1)), Example 2 (the aqueous dispersion used was (a2)), Example 3 (the aqueous dispersion used was (a3)), and Example 4 (the aqueous dispersion used was (a4))) were obtained.
上記の水分散液(a1)~(a4)5mLをそれぞれ50mL三口フラスコに封入し、ウォーターバスを用いて40℃に加温を行いながら、減圧下、窒素を5ml/minの流速で流すことで、水を完全に除去し、銅ナノ粒子複合体乾燥粉末1.0gを得た。次に得られた乾燥粉末にアルゴンガス置換したグローブバッグ内で、30分間窒素バブリングしたエチレングリコールを0.1g添加した後、乳鉢で10分間混合することで不揮発分91%の銅ナノ粒子ペーストを得た。
得られた銅ナノ粒子ペーストを直径4mm、厚さ150μmのステンレス製のマスクを用いて前述の直径10mm、厚さ5mmの銅製棒剤に金属ヘラを用いてスクリーン塗布した。その後、直径3mm、厚さ2mmの銅製棒材を塗布面にマウントし、窒素雰囲気下で、200℃で無加圧条件下、接合を行った。焼成は43℃/minで昇温を行い、それぞれの温度で10分間保持した後、自然冷却を行うことで、銅製棒材接合体(実施例1(使用した水分散液は(a1))、実施例2(使用した水分散液は(a2))、実施例3(使用した水分散液は(a3))、実施例4(使用した水分散液は(a4)))を得た。 Test example 1
By enclosing 5 mL of each of the above aqueous dispersions (a1) to (a4) in a 50 mL three-necked flask and heating them to 40 ° C. using a water bath, flowing nitrogen at a flow rate of 5 ml / min under reduced pressure. The water was completely removed to obtain 1.0 g of a dry powder of copper nanoparticle composite. Next, 0.1 g of ethylene glycol bubbled with nitrogen for 30 minutes was added in the glove bag substituted with argon gas to the obtained dry powder, and then mixed for 10 minutes in a mortar to obtain a copper nanoparticle paste having a nonvolatile content of 91%. Obtained.
The obtained copper nanoparticle paste was screen-coated with a metal spatula on a copper bar having a diameter of 10 mm and a thickness of 5 mm using a stainless steel mask having a diameter of 4 mm and a thickness of 150 μm. Thereafter, a copper bar having a diameter of 3 mm and a thickness of 2 mm was mounted on the coated surface, and bonding was performed in a nitrogen atmosphere at 200 ° C. under no pressure condition. Firing is carried out at 43 ° C./min, held at the respective temperatures for 10 minutes, and then naturally cooled, whereby a copper bar joined body (Example 1 (the aqueous dispersion used is (a1)), Example 2 (the aqueous dispersion used was (a2)), Example 3 (the aqueous dispersion used was (a3)), and Example 4 (the aqueous dispersion used was (a4))) were obtained.
試験例2
上記水分散体(a3)を用いて、300℃、250℃でそれぞれ接合を行う以外は試験例1と同様にして銅製棒材接合体(順に、実施例5、実施例6とする)を得た。 Test example 2
Using the water dispersion (a3), a copper bar joined body (in order, Example 5 and Example 6) was obtained in the same manner as in Test Example 1 except that joining was performed at 300 ° C. and 250 ° C., respectively. It was.
上記水分散体(a3)を用いて、300℃、250℃でそれぞれ接合を行う以外は試験例1と同様にして銅製棒材接合体(順に、実施例5、実施例6とする)を得た。 Test example 2
Using the water dispersion (a3), a copper bar joined body (in order, Example 5 and Example 6) was obtained in the same manner as in Test Example 1 except that joining was performed at 300 ° C. and 250 ° C., respectively. It was.
試験例3
上記水分散体(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりにジエチレングリコール、分子量200~400のポリエチレングリコール(PEG200、PEG300、PEG400)を添加混合する以外は試験例1と同様にして銅ナノ粒子ペーストを得た。
上記銅ナノ粒子ペーストを用いて、接合温度を350℃とした以外は試験例1と同様にして接合を行うことで、銅製棒材接合体(順に実施例7~実施例10とする)を得た。 Test example 3
The same procedure as in Test Example 1 was conducted except that diethylene glycol and polyethylene glycol having a molecular weight of 200 to 400 (PEG200, PEG300, PEG400) were added to and mixed with the copper nanoparticle composite dry powder of the aqueous dispersion (a3) instead of ethylene glycol. A copper nanoparticle paste was obtained.
Using the copper nanoparticle paste, bonding was performed in the same manner as in Test Example 1 except that the bonding temperature was set to 350 ° C., thereby obtaining a copper bar joined body (in order of Example 7 to Example 10). It was.
上記水分散体(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりにジエチレングリコール、分子量200~400のポリエチレングリコール(PEG200、PEG300、PEG400)を添加混合する以外は試験例1と同様にして銅ナノ粒子ペーストを得た。
上記銅ナノ粒子ペーストを用いて、接合温度を350℃とした以外は試験例1と同様にして接合を行うことで、銅製棒材接合体(順に実施例7~実施例10とする)を得た。 Test example 3
The same procedure as in Test Example 1 was conducted except that diethylene glycol and polyethylene glycol having a molecular weight of 200 to 400 (PEG200, PEG300, PEG400) were added to and mixed with the copper nanoparticle composite dry powder of the aqueous dispersion (a3) instead of ethylene glycol. A copper nanoparticle paste was obtained.
Using the copper nanoparticle paste, bonding was performed in the same manner as in Test Example 1 except that the bonding temperature was set to 350 ° C., thereby obtaining a copper bar joined body (in order of Example 7 to Example 10). It was.
試験例4
上記水分散液(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりにN-メチル―2-ピロリドン、プロピレングリコールジアセテートを添加混合する以外は試験例1と同様にして、また、上記水分散液(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりに、比較例として、テルピネオール、ジメチルホルムアミドを添加混合する以外は試験例1と同様にして、銅ナノ粒子ペーストを得た。
上記銅ナノ粒子ペーストを用いて、接合温度を200℃とした以外は実施例1と同様にして接合を行うことで、銅製棒材接合体(順に、実施例11、実施例12、比較例1、比較例2)を得た。 Test example 4
The same procedure as in Test Example 1 was conducted except that N-methyl-2-pyrrolidone and propylene glycol diacetate were added and mixed in place of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3). A copper nanoparticle paste was obtained in the same manner as in Test Example 1 except that terpineol and dimethylformamide were added and mixed as a comparative example instead of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3). .
By using the copper nanoparticle paste, bonding was performed in the same manner as in Example 1 except that the bonding temperature was set to 200 ° C., so that the copper bar joined bodies (in order of Example 11, Example 12, and Comparative Example 1). Comparative Example 2) was obtained.
上記水分散液(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりにN-メチル―2-ピロリドン、プロピレングリコールジアセテートを添加混合する以外は試験例1と同様にして、また、上記水分散液(a3)の銅ナノ粒子複合体乾燥粉末にエチレングリコールの代わりに、比較例として、テルピネオール、ジメチルホルムアミドを添加混合する以外は試験例1と同様にして、銅ナノ粒子ペーストを得た。
上記銅ナノ粒子ペーストを用いて、接合温度を200℃とした以外は実施例1と同様にして接合を行うことで、銅製棒材接合体(順に、実施例11、実施例12、比較例1、比較例2)を得た。 Test example 4
The same procedure as in Test Example 1 was conducted except that N-methyl-2-pyrrolidone and propylene glycol diacetate were added and mixed in place of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3). A copper nanoparticle paste was obtained in the same manner as in Test Example 1 except that terpineol and dimethylformamide were added and mixed as a comparative example instead of ethylene glycol to the copper nanoparticle composite dry powder of the aqueous dispersion (a3). .
By using the copper nanoparticle paste, bonding was performed in the same manner as in Example 1 except that the bonding temperature was set to 200 ° C., so that the copper bar joined bodies (in order of Example 11, Example 12, and Comparative Example 1). Comparative Example 2) was obtained.
試験例5
上記水分散液(a3)の代わりに、上記水分散液(b)を用いた以外は試験例1と同様の手法を用いてペースト調整を行い、銀ナノ粒子ペーストを得た。
次いで、上記銅ナノ粒子ペースト(a)の代わりに銀ナノ粒子ペースト(b)を用いた以外は試験例1と同様にして350℃、300℃、250℃、200℃でそれぞれ接合を行うことで、銅製棒材接合体(実施例13~実施例16)を得た。 Test Example 5
Paste adjustment was performed using the same method as in Test Example 1 except that the aqueous dispersion (b) was used instead of the aqueous dispersion (a3) to obtain a silver nanoparticle paste.
Next, bonding was performed at 350 ° C., 300 ° C., 250 ° C., and 200 ° C. in the same manner as in Test Example 1 except that the silver nanoparticle paste (b) was used instead of the copper nanoparticle paste (a). Copper rod joined bodies (Examples 13 to 16) were obtained.
上記水分散液(a3)の代わりに、上記水分散液(b)を用いた以外は試験例1と同様の手法を用いてペースト調整を行い、銀ナノ粒子ペーストを得た。
次いで、上記銅ナノ粒子ペースト(a)の代わりに銀ナノ粒子ペースト(b)を用いた以外は試験例1と同様にして350℃、300℃、250℃、200℃でそれぞれ接合を行うことで、銅製棒材接合体(実施例13~実施例16)を得た。 Test Example 5
Paste adjustment was performed using the same method as in Test Example 1 except that the aqueous dispersion (b) was used instead of the aqueous dispersion (a3) to obtain a silver nanoparticle paste.
Next, bonding was performed at 350 ° C., 300 ° C., 250 ° C., and 200 ° C. in the same manner as in Test Example 1 except that the silver nanoparticle paste (b) was used instead of the copper nanoparticle paste (a). Copper rod joined bodies (Examples 13 to 16) were obtained.
評価1
上記試験例1の銅製棒材接合体(実施例1~実施例3)を用いてせん断強度試験を実施した。結果を第1表に示す。 Evaluation 1
A shear strength test was carried out using the copper bar joined body of Examples 1 to 3 (Examples 1 to 3). The results are shown in Table 1.
上記試験例1の銅製棒材接合体(実施例1~実施例3)を用いてせん断強度試験を実施した。結果を第1表に示す。 Evaluation 1
A shear strength test was carried out using the copper bar joined body of Examples 1 to 3 (Examples 1 to 3). The results are shown in Table 1.
評価2
上記試験例2の銅製棒材接合体(実施例5~実施例6)を用いてせん断強度試験を実施した。結果を第2表に示す。 Evaluation 2
A shear strength test was performed using the copper bar joined body of Examples 2 to 6 (Examples 5 to 6). The results are shown in Table 2.
上記試験例2の銅製棒材接合体(実施例5~実施例6)を用いてせん断強度試験を実施した。結果を第2表に示す。 Evaluation 2
A shear strength test was performed using the copper bar joined body of Examples 2 to 6 (Examples 5 to 6). The results are shown in Table 2.
試験の結果、全ての温度条件で20MPaを超える高いせん断強度を示した。
As a result of the test, a high shear strength exceeding 20 MPa was exhibited under all temperature conditions.
評価3
上記試験例3の銅製棒材接合体(実施例7~実施例10)を用いてせん断強度試験を実施した。結果を第3表に示す。 Evaluation 3
A shear strength test was performed using the copper bar joined body of Example 3 (Examples 7 to 10). The results are shown in Table 3.
上記試験例3の銅製棒材接合体(実施例7~実施例10)を用いてせん断強度試験を実施した。結果を第3表に示す。 Evaluation 3
A shear strength test was performed using the copper bar joined body of Example 3 (Examples 7 to 10). The results are shown in Table 3.
試験の結果から明らかなように、溶媒として、エチレングリコールだけでなく、ジエチレングリコール、分子量200のポリエチレングリコールを用いることでも200℃の接合温度において20MPa以上の高いせん断強度を得た。一方で、分子量300、及び、400のポリエチレングリコールを用いた場合は、20MPa以上のせん断強度を示さなかったものの、15MPa以上の実用上充分なせん断強度を示した。
As is clear from the test results, not only ethylene glycol but also diethylene glycol and polyethylene glycol having a molecular weight of 200 were used as the solvent, and a high shear strength of 20 MPa or more was obtained at a bonding temperature of 200 ° C. On the other hand, when polyethylene glycols having molecular weights of 300 and 400 were used, the shear strength of 20 MPa or more was not exhibited, but practically sufficient shear strength of 15 MPa or more was exhibited.
評価4
上記試験例4の銅製棒材接合体(実施例11、実施例12、比較例1、2)を用いてせん断強度試験を実施した。結果を第4表に示す。 Evaluation 4
A shear strength test was conducted using the copper bar joined body of Example 4 (Example 11, Example 12, Comparative Examples 1 and 2). The results are shown in Table 4.
上記試験例4の銅製棒材接合体(実施例11、実施例12、比較例1、2)を用いてせん断強度試験を実施した。結果を第4表に示す。 Evaluation 4
A shear strength test was conducted using the copper bar joined body of Example 4 (Example 11, Example 12, Comparative Examples 1 and 2). The results are shown in Table 4.
上記試験例5の銅製棒材接合体(実施例13~実施例16)を用いてせん断強度試験を実施した。結果を第5表に示す。
A shear strength test was carried out using the copper bar joined body of Example 5 (Example 13 to Example 16). The results are shown in Table 5.
本発明の接合用材料は、接合後は、接合部がバルク銅に近い融点と放熱性を有することを利用し、半導体チップの実装、LED照明の製造工程における接合、パワーデバイスの組立てにおける接合など、とりわけ高温に曝されるデバイス、高温での信頼性が必要なデバイスの組立てに好適に利用可能である。また、加熱を繰り返しても接合部が再溶融しないので、リフロー温度の制約なしに二次・三次の実装ができ、実装手順の拡大にも寄与できる。
After joining, the joining material of the present invention utilizes the fact that the joining part has a melting point close to that of bulk copper and heat dissipation, so that mounting of semiconductor chips, joining in LED lighting manufacturing processes, joining in power device assembly, etc. In particular, it can be suitably used for assembling devices that are exposed to high temperatures and devices that require reliability at high temperatures. In addition, since the joint does not remelt even when heating is repeated, secondary and tertiary mounting can be performed without restriction of the reflow temperature, which can contribute to the expansion of the mounting procedure.
Claims (7)
- 炭素数8~200のポリエチレングリコール含有有機化合物(A)が複合した金属ナノ粒子(B)と沸点150℃以上のアルコール系溶媒、沸点150℃以上のエーテル系溶媒、沸点150℃以上のエステル系溶媒及び沸点150℃以上のラクタム構造含有溶媒からなる群より選ばれる少なくとも一種の溶媒(C)とを含有することを特徴とする接合用材料。 Metal nanoparticles (B) in which a polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is combined, an alcohol solvent having a boiling point of 150 ° C. or higher, an ether solvent having a boiling point of 150 ° C. or higher, and an ester solvent having a boiling point of 150 ° C. or higher. And at least one solvent (C) selected from the group consisting of lactam structure-containing solvents having a boiling point of 150 ° C. or higher.
- 炭素数8~200のポリエチレングリコール、含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物、又は少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖にポリエチレングリコール鎖(P)を有する(メタ)アクリル系重合体(重合体α)と、少なくとも一つの末端に下記一般式(4)で表される構造を有し且つ側鎖に-OP(O)(OH)2で表されるリン酸エステル残基を有する(メタ)アクリル系重合体(重合体β)とを含有する化合物である、請求項1記載の接合用材料。
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕
R-S- (4)
〔一般式(4)中、Rは、炭素原子数1~18の直鎖若しくは分岐状のアルキル基、又は、水酸基、炭素原子数1~18の直鎖アルコキシ基、炭素原子数1~18の分岐状アルコキシ基、アラルキルオキシ基、置換フェニルオキシ基、炭素原子数1~18の直鎖アルキルカルボニルオキシ基、炭素原子数1~18の分岐状アルキルカルボニルオキシ基、カルボキシ基、カルボキシ基の塩、炭素原子数1~18の直鎖アルコキシカルボニル基、炭素原子数1~18の分岐状アルコキシカルボニル基、リン酸基、炭素原子数1~6の直鎖アルキルリン酸基、炭素原子数1~6の分岐状アルキルリン酸基、スルホン酸基、炭素原子数1~6の直鎖アルキルスルホン酸基、及び炭素原子数1~6の分岐状アルキルスルホン酸基からなる群から選ばれる少なくとも1つの官能基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基を表す。〕 The polyethylene glycol having 8 to 200 carbon atoms and the contained organic compound (A) are represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), and the following general formula (3). Or a (meth) acrylic polymer (polymer α) having a structure represented by the following general formula (4) at least at one end and having a polyethylene glycol chain (P) in the side chain, (Meth) acrylic polymer having a structure represented by the following general formula (4) at one end and a phosphate ester residue represented by —OP (O) (OH) 2 in the side chain ( The bonding material according to claim 1, which is a compound containing a polymer β).
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.]
RS (4)
[In the general formula (4), R represents a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atom. A branched alkoxy group, an aralkyloxy group, a substituted phenyloxy group, a linear alkylcarbonyloxy group having 1 to 18 carbon atoms, a branched alkylcarbonyloxy group having 1 to 18 carbon atoms, a carboxy group, a salt of a carboxy group, Straight chain alkoxycarbonyl group having 1 to 18 carbon atoms, branched alkoxycarbonyl group having 1 to 18 carbon atoms, phosphoric acid group, straight chain alkylphosphoric acid group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms Selected from the group consisting of branched alkyl phosphate groups, sulfonic acid groups, linear alkyl sulfonic acid groups having 1 to 6 carbon atoms, and branched alkyl sulfonic acid groups having 1 to 6 carbon atoms. Even without a linear or branched alkyl group having 1 to 8 carbon atoms having a single functional group. ] - 炭素数8~200のポリエチレングリコール含有有機化合物(A)が、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物又は下記一般式(3)で表される化合物である、請求項1記載の接合用材料。
W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-X (1)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-]dY (2)
[W-(OCH2CH2)n-O-CH2-CH(OH)-CH2-S-Ra-]tZ (3)
〔式(1)、(2)及び(3)中のWはC1~C8のアルキル基であり、nは4~100の繰り返し数を示す整数であって、XはC2~C12のアルキル基、アリル基、アリール基、アリールアルキル基、-R1-OH、-R1-NHR2、又は-R1-(COR3)m(但し、R1はC1~C4の飽和炭化水素基であり、R2は水素原子、C2~C4のアシル基、C2~C4のアルコキシカルボニル基、又は芳香環上にC1~C4のアルキル基又はC1~C8のアルコキシ基を置換基として有していても良いベンジルオキシカルボニル基であり、R3はヒドロキシ基、C1~C4のアルキル基又はC1~C8のアルコキシ基であり、mは1~3の整数である。)であり、Yは硫黄原子と直接結合するものが炭素原子である2~4価の基であって、C1~C4の飽和炭化水素基又はC1~C4の飽和炭化水素基が-O-、-S-若しくは-NHRb-(RbはC1~C4の飽和炭化水素基である。)で2~3個連結した基であり、dは2~4の整数であり、RaはC2~C5のアルキルカルボニルオキシ基であり、Zは硫黄原子と直接結合するものが炭素原子である2~6価の基であって、C2~C6の飽和炭化水素基、C2~C6飽和炭化水素基が-O-、-S-若しくは-NHRc-(RcはC1~C4の飽和炭化水素基である。)で2~3個連結した基、又はイソシアヌル酸-N,N’,N”-トリエチレン基であり、tは2~6の整数である。〕 The polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms is represented by the compound represented by the following general formula (1), the compound represented by the following general formula (2), or the following general formula (3). The bonding material according to claim 1, which is a compound.
W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —SX (1)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—] d Y (2)
[W— (OCH 2 CH 2 ) n —O—CH 2 —CH (OH) —CH 2 —S—R a —] t Z (3)
[W in the formulas (1), (2) and (3) is a C 1 to C 8 alkyl group, n is an integer indicating the number of repetitions of 4 to 100, and X is C 2 to C 12 Alkyl group, allyl group, aryl group, arylalkyl group, —R 1 —OH, —R 1 —NHR 2 , or —R 1 — (COR 3 ) m (where R 1 is C 1 -C 4 saturation) R 2 is a hydrogen atom, a C 2 -C 4 acyl group, a C 2 -C 4 alkoxycarbonyl group, or a C 1 -C 4 alkyl group or C 1 -C 8 on the aromatic ring. A benzyloxycarbonyl group optionally having an alkoxy group as a substituent, R 3 is a hydroxy group, a C 1 -C 4 alkyl group or a C 1 -C 8 alkoxy group, and m is 1 to 3 is an integer of 3), and Y is carbon directly bonded to a sulfur atom. A is a divalent to tetravalent radical atom, a saturated hydrocarbon group having a saturated hydrocarbon group or a C 1 ~ C 4 of C 1 ~ C 4 is -O -, - S- or -NHR b - (R b Is a C 1 to C 4 saturated hydrocarbon group), d is an integer of 2 to 4, and R a is a C 2 to C 5 alkylcarbonyloxy group. Z is a divalent to hexavalent group in which a carbon atom is directly bonded to a sulfur atom, and a C 2 to C 6 saturated hydrocarbon group or a C 2 to C 6 saturated hydrocarbon group is —O— , —S— or —NHR c — (R c is a saturated hydrocarbon group of C 1 to C 4 ), or isocyanuric acid —N, N ′, N ″ -triethylene And t is an integer of 2 to 6.] - 溶媒(C)が、沸点150℃以上のアルコール系溶媒及び沸点150℃以上のエーテル系溶媒からなる群より選ばれる少なくとも一種の溶媒である、請求項1記載の接合用材料。 The bonding material according to claim 1, wherein the solvent (C) is at least one solvent selected from the group consisting of an alcohol solvent having a boiling point of 150 ° C or higher and an ether solvent having a boiling point of 150 ° C or higher.
- 金属ナノ粒子(B)が、銀ナノ粒子、銅ナノ粒子、銀コア銅シェルナノ粒子又は銅コア銀シェルナノ粒子であることを特徴とする、請求項1記載の接合用材料。 The bonding material according to claim 1, wherein the metal nanoparticles (B) are silver nanoparticles, copper nanoparticles, silver core copper shell nanoparticles, or copper core silver shell nanoparticles.
- 前記金属ナノ粒子中、炭素数8~200のポリエチレングリコール含有有機化合物(A)の含有率が2~15質量%である、請求項1記載の接合用材料。 The bonding material according to claim 1, wherein the content of the polyethylene glycol-containing organic compound (A) having 8 to 200 carbon atoms in the metal nanoparticles is 2 to 15% by mass.
- 接合すべき被接合物が、金属又は金属酸化物である請求項1~6の何れか一項に記載の接合用材料。 The bonding material according to any one of claims 1 to 6, wherein the objects to be bonded are metals or metal oxides.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013265258 | 2013-12-24 | ||
JP2013-265258 | 2013-12-24 | ||
JP2013-266990 | 2013-12-25 | ||
JP2013266990 | 2013-12-25 | ||
JP2014-231597 | 2014-11-14 | ||
JP2014231597 | 2014-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098658A1 true WO2015098658A1 (en) | 2015-07-02 |
Family
ID=53478522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083442 WO2015098658A1 (en) | 2013-12-24 | 2014-12-17 | Bonding material containing metal nanoparticles |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201538537A (en) |
WO (1) | WO2015098658A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043545A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Copper paste for joining, method for producing joined body, and method for producing semiconductor device |
WO2017043540A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Assembly and semiconductor device |
WO2017043541A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device |
JP2017110295A (en) * | 2015-12-11 | 2017-06-22 | Dic株式会社 | Conductive paste |
JP2017157329A (en) * | 2016-02-29 | 2017-09-07 | 三井金属鉱業株式会社 | Copper paste and manufacturing method of sintered body of copper |
JP2017214609A (en) * | 2016-05-30 | 2017-12-07 | Dic株式会社 | Manufacturing method of joined body |
JP2020053404A (en) * | 2019-12-11 | 2020-04-02 | 三井金属鉱業株式会社 | Copper paste and manufacturing method of sintered body of copper |
FR3101794A1 (en) * | 2019-10-10 | 2021-04-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Sintering composition comprising metallic nanoparticles with a core-shell structure |
US20210162551A1 (en) * | 2017-12-18 | 2021-06-03 | Dic Corporation | Copper fine particle sintered body |
JP7515770B1 (en) | 2024-03-19 | 2024-07-12 | 株式会社タムラ製作所 | Joining material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109317859B (en) * | 2018-11-05 | 2021-05-07 | 复旦大学 | Nano copper soldering paste, preparation method thereof and copper-copper bonding method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4697356B1 (en) * | 2009-10-20 | 2011-06-08 | Dic株式会社 | Metal nanoparticle-containing composite, dispersion thereof, and production method thereof |
WO2011155055A1 (en) * | 2010-06-11 | 2011-12-15 | Dowaエレクトロニクス株式会社 | Low-temperature-sintering bonding material and bonding method using the bonding material |
JP2012023014A (en) * | 2010-06-16 | 2012-02-02 | National Institute For Materials Science | Metal nanoparticle paste, electronic component assembly using metal nanoparticle paste, led module and method for forming circuit of printed wiring board |
JP5077728B1 (en) * | 2011-03-31 | 2012-11-21 | Dic株式会社 | Composite of organic compound and silver core copper shell nanoparticles and method for producing the same |
JP2013060637A (en) * | 2011-09-14 | 2013-04-04 | Dic Corp | Complex of organic compound and nano copper particle, complex of organic compound and nano copper oxide (i) particle, and method for manufacturing them |
-
2014
- 2014-12-17 WO PCT/JP2014/083442 patent/WO2015098658A1/en active Application Filing
- 2014-12-19 TW TW103144647A patent/TW201538537A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4697356B1 (en) * | 2009-10-20 | 2011-06-08 | Dic株式会社 | Metal nanoparticle-containing composite, dispersion thereof, and production method thereof |
WO2011155055A1 (en) * | 2010-06-11 | 2011-12-15 | Dowaエレクトロニクス株式会社 | Low-temperature-sintering bonding material and bonding method using the bonding material |
JP2012023014A (en) * | 2010-06-16 | 2012-02-02 | National Institute For Materials Science | Metal nanoparticle paste, electronic component assembly using metal nanoparticle paste, led module and method for forming circuit of printed wiring board |
JP5077728B1 (en) * | 2011-03-31 | 2012-11-21 | Dic株式会社 | Composite of organic compound and silver core copper shell nanoparticles and method for producing the same |
JP2013060637A (en) * | 2011-09-14 | 2013-04-04 | Dic Corp | Complex of organic compound and nano copper particle, complex of organic compound and nano copper oxide (i) particle, and method for manufacturing them |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107921540B (en) * | 2015-09-07 | 2020-03-03 | 日立化成株式会社 | Copper paste for bonding, method for producing bonded body, and method for producing semiconductor device |
WO2017043540A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Assembly and semiconductor device |
WO2017043541A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device |
WO2017043545A1 (en) * | 2015-09-07 | 2017-03-16 | 日立化成株式会社 | Copper paste for joining, method for producing joined body, and method for producing semiconductor device |
CN111283206A (en) * | 2015-09-07 | 2020-06-16 | 日立化成株式会社 | Copper paste for bonding, method for producing bonded body, and method for producing semiconductor device |
CN107921541B (en) * | 2015-09-07 | 2020-04-28 | 日立化成株式会社 | Bonded body and semiconductor device |
CN107921540A (en) * | 2015-09-07 | 2018-04-17 | 日立化成株式会社 | The manufacture method of engagement copper thickener, the manufacture method of conjugant and semiconductor device |
CN107921541A (en) * | 2015-09-07 | 2018-04-17 | 日立化成株式会社 | Conjugant and semiconductor device |
JP2017110295A (en) * | 2015-12-11 | 2017-06-22 | Dic株式会社 | Conductive paste |
JP2017157329A (en) * | 2016-02-29 | 2017-09-07 | 三井金属鉱業株式会社 | Copper paste and manufacturing method of sintered body of copper |
JP2017214609A (en) * | 2016-05-30 | 2017-12-07 | Dic株式会社 | Manufacturing method of joined body |
US20210162551A1 (en) * | 2017-12-18 | 2021-06-03 | Dic Corporation | Copper fine particle sintered body |
FR3101794A1 (en) * | 2019-10-10 | 2021-04-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Sintering composition comprising metallic nanoparticles with a core-shell structure |
JP2020053404A (en) * | 2019-12-11 | 2020-04-02 | 三井金属鉱業株式会社 | Copper paste and manufacturing method of sintered body of copper |
JP7515770B1 (en) | 2024-03-19 | 2024-07-12 | 株式会社タムラ製作所 | Joining material |
Also Published As
Publication number | Publication date |
---|---|
TW201538537A (en) | 2015-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015098658A1 (en) | Bonding material containing metal nanoparticles | |
JP5833447B2 (en) | Method for producing metal nanoparticles | |
JP4784847B1 (en) | COMPOSITE OF ORGANIC COMPOUND AND NANO-COPPER PARTICLE, COMPOSITE OF ORGANIC COMPOUND AND NANO-COPPER OXIDE PARTICLE, AND METHOD FOR PRODUCING THEM | |
KR101007326B1 (en) | Alloy Nano Particle of Sn-Cu-Ag, Preparation Method Thereof and Ink or Paste Using The Alloy Nano Particle | |
KR100754326B1 (en) | Manufacturing Method of Metal Nanoparticle | |
JP5717147B2 (en) | Solder paste composition, solder paste and soldering flux | |
EP2883922A1 (en) | Metal nanoparticle synthesis and conductive ink formulation | |
JP2009535497A (en) | Nanoparticles, method for producing the same, and use thereof | |
WO2014017443A1 (en) | Metal nanoparticle composite body, metal colloidal solution, and method for producing metal colloidal solution | |
JP5493398B2 (en) | Protective agent for metal nanoparticles, metal nanoparticle dispersion, and method for producing metal nanoparticle dispersion | |
CN103210452A (en) | Conductive paste and base with conductive film | |
JP6638863B2 (en) | Copper fine particle sintered body | |
JP5861912B2 (en) | COMPOSITE OF ORGANIC COMPOUND AND NANO-COPPER PARTICLE, COMPOSITE OF ORGANIC COMPOUND AND NANO-COPPER OXIDE (I) PARTICLE, AND METHOD FOR PRODUCING THEM | |
JP2011175871A (en) | Joining material, and joining method | |
KR101495698B1 (en) | Composite of organic compound and silver core/copper shell nanoparticles and method for producing same | |
JP6812768B2 (en) | Conductive paste | |
JP6819079B2 (en) | Manufacturing method of joint | |
EP3466564A1 (en) | Metal joining material, production method for same, and method for producing metal joined body using same | |
JP5912888B2 (en) | Method for producing alloy particles | |
JP2021147684A (en) | Copper and copper oxide-containing fine particle and manufacturing method thereof | |
JP2019026885A (en) | Method for producing copper nanoparticle powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873891 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14873891 Country of ref document: EP Kind code of ref document: A1 |