JP2011175871A - Joining material, and joining method - Google Patents

Joining material, and joining method Download PDF

Info

Publication number
JP2011175871A
JP2011175871A JP2010039267A JP2010039267A JP2011175871A JP 2011175871 A JP2011175871 A JP 2011175871A JP 2010039267 A JP2010039267 A JP 2010039267A JP 2010039267 A JP2010039267 A JP 2010039267A JP 2011175871 A JP2011175871 A JP 2011175871A
Authority
JP
Japan
Prior art keywords
powder
silver
average particle
joining
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039267A
Other languages
Japanese (ja)
Other versions
JP5620122B2 (en
Inventor
Yoshiaki Morisada
好昭 森貞
Toru Nagaoka
亨 長岡
Masao Fukuzumi
真男 福角
Yukiyasu Kashiwagi
行康 柏木
Mari Yamamoto
真理 山本
Masami Nakamoto
昌美 中許
Yukio Yoshida
幸雄 吉田
Hiroyuki Kakiuchi
宏之 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Osaka Municipal Technical Research Institute
Original Assignee
Daiken Kagaku Kogyo KK
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK, Osaka Municipal Technical Research Institute filed Critical Daiken Kagaku Kogyo KK
Priority to JP2010039267A priority Critical patent/JP5620122B2/en
Publication of JP2011175871A publication Critical patent/JP2011175871A/en
Application granted granted Critical
Publication of JP5620122B2 publication Critical patent/JP5620122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jointing material capable of obtaining a high jointing strength even under non-pressure or self-weight pressure. <P>SOLUTION: The jointing material contains two or more silver-based powder with different average particle sizes, and contains (1) as a first powder, the silver-based powder which consists of silver-based particles containing an organic component and silver and has an average particle size less than 10 nm, and (2) as a second powder, the silver-based powder which consists of silver-based particles containing silver and has an average particle size of 40 nm or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規な接合用材料及び接合方法に関する。   The present invention relates to a novel bonding material and bonding method.

一般に、金属ナノ粒子は、粒子径が1〜数百nmの超微粒子であり、バルク金属と異なり、低融点化・低温焼結性といった特異な物性を示すことから、例えば工学的応用として配線形成用、接合用の導電ペースト等に利用されている。   In general, metal nanoparticles are ultrafine particles with a particle size of 1 to several hundred nanometers. Unlike bulk metals, they exhibit unique physical properties such as low melting point and low temperature sintering. It is used as a conductive paste for bonding and bonding.

金属ナノ粒子の合成法は、バルク金属を粉砕して粒子を得る物理的方法と、金属塩や金属錯体等の前駆体からゼロ価の金属原子を生成し、それらを凝集させてナノ粒子を得る化学的方法との2つに大きく分類される。物理的方法のひとつである粉砕法は、ボールミル等の装置を用いて金属をすりつぶすことで微細化し、金属ナノ粒子を得る方法である。しかし、この手法で得られる粒子は粒子径分布が広く、数百nm以下のサイズの粒子を得ることは難しい。一方、化学的方法としては、1)レーザー合成法というCOレーザーで反応ガスを加熱して金属ナノ粒子を合成する方法、2)噴霧熱分解法という金属塩溶液を高温雰囲気中に噴霧して瞬間的な溶液の蒸発と熱分解を起こすことによって金属ナノ粒子を得る方法、3)還元法という金属塩溶液から還元反応により金属ナノ粒子を得る方法等があるが、いずれも大量合成が困難という欠点がある。 The synthesis method of metal nanoparticles is a physical method of pulverizing bulk metal to obtain particles, and generating zero-valent metal atoms from precursors such as metal salts and metal complexes, and aggregating them to obtain nanoparticles There are two major categories: chemical methods. The pulverization method, which is one of the physical methods, is a method of obtaining metal nanoparticles by grinding a metal using an apparatus such as a ball mill. However, particles obtained by this method have a wide particle size distribution, and it is difficult to obtain particles having a size of several hundred nm or less. On the other hand, as chemical methods, 1) a method of synthesizing metal nanoparticles by heating a reaction gas with a CO 2 laser called a laser synthesis method, and 2) a metal salt solution called a spray pyrolysis method is sprayed in a high temperature atmosphere. There are a method for obtaining metal nanoparticles by instantaneous evaporation and thermal decomposition of the solution, and 3) a method for obtaining metal nanoparticles by a reduction reaction from a metal salt solution called a reduction method. There are drawbacks.

これに対し、本発明者らは、このような既存の金属ナノ粒子合成法の問題を解決するため、金属源となる金属錯体を無溶媒で加熱するだけで金属ナノ粒子を合成できる熱分解制御法を先に開発している(特許文献1、特許文献2等)。この熱分解制御法の最大の特徴は、無溶媒で加熱するだけという簡便さであり、そのため大量合成も可能である。さらに、穏やかな還元性を有する有機化合物等を反応系に加えることによって反応条件が穏やかになり、また粒子径や形状、表面保護層の設計等が可能になることを見出している。   On the other hand, in order to solve the problems of the existing method for synthesizing metal nanoparticles, the present inventors have been able to synthesize metal nanoparticles simply by heating the metal complex as a metal source without solvent. The method has been developed first (Patent Document 1, Patent Document 2, etc.). The greatest feature of this thermal decomposition control method is the simplicity of heating without solvent, and therefore, mass synthesis is possible. Furthermore, it has been found that by adding an organic compound or the like having a mild reducing property to the reaction system, the reaction conditions become mild, and the particle diameter and shape, the design of the surface protective layer, and the like can be made.

一般に、金属ナノ粒子は、表面に存在する原子が非常に不安定であるために自発的に粒子間で融着を起こし、粗大化することが知られている。これに対し、上記のような熱分解制御法で得られる金属ナノ粒子は、その表面に有機保護基で覆う等の手段を講じることにより安定化することができる。このような有機保護基等で覆われた複合金属ナノ粒子は、通常の金属ナノ粒子よりも分散性等に優れるため、幅広い用途への応用に期待される。   In general, it is known that metal nanoparticles are coarsened by spontaneously causing fusion between particles because atoms existing on the surface are very unstable. On the other hand, the metal nanoparticles obtained by the thermal decomposition control method as described above can be stabilized by taking measures such as covering the surface with an organic protective group. Such composite metal nanoparticles covered with an organic protective group or the like are expected to be used in a wide range of applications because they are more dispersible than ordinary metal nanoparticles.

とりわけ、金属ナノ粒子は、鉛を大量に含む高温はんだ等の代替材料として期待され、金属ナノ粒子を用いた接合技術が盛んに研究されている。例えば、被接合部材同士を接合する接合材料であって、無機物からなる微小粒子の周囲を有機物で被覆した複合型ナノ粒子に、活性酸素を放出する酸化剤を接触または近接させた状態で介在させたことを特徴とする接合材料が提案されている(特許文献3)。このような金属ナノ粒子を用いることにより高い接合強度を得ることができるとされている。例えば、銀ナノ粒子を用いた銅板の接合では、せん断強度30MPa以上の高強度を得ることが可能となる。   In particular, metal nanoparticles are expected as an alternative material such as high-temperature solder containing a large amount of lead, and joining techniques using metal nanoparticles are actively studied. For example, it is a bonding material for bonding members to be bonded to each other, with an oxidant that releases active oxygen in contact with or in proximity to composite nanoparticles in which the periphery of fine particles made of an inorganic material is coated with an organic material. A bonding material characterized by this has been proposed (Patent Document 3). It is said that high bonding strength can be obtained by using such metal nanoparticles. For example, in joining copper plates using silver nanoparticles, it is possible to obtain a high strength with a shear strength of 30 MPa or more.

特開2007−63579号JP 2007-63579 A 特開2007−63580号JP 2007-63580 A 特開2007−204778JP2007-204778

上記のように、金属の接合において金属ナノ粒子(粉末)を用いることによって、これまで以上の高い接合強度を得ることができるが、そのためには接合プロセスにおける被接合材の加圧(〜15MPa)が必要不可欠である。   As described above, by using metal nanoparticles (powder) in metal bonding, it is possible to obtain higher bonding strength than before, but for that purpose, pressurization of materials to be bonded in the bonding process (up to 15 MPa). Is indispensable.

他方、特に電子部品の実装分野等においては、その製造プロセス(又は製造装置)の関係上、外部からの加圧がなくても所定の接合強度が得られなければならない。   On the other hand, particularly in the field of mounting electronic components, a predetermined bonding strength must be obtained even without external pressure due to the manufacturing process (or manufacturing apparatus).

しかしながら、一般に、金属ナノ粒子を接合材として用いた金属どうしの接合において、無加圧(ないしは自重圧)で得られるせん断強度はせいぜい5MPa程度が限界であるが、より高い接合強度を実現するためにはさらなる改善が必要である。   However, in general, in the joining of metals using metal nanoparticles as a joining material, the shear strength obtained with no pressure (or self-weight) is at most about 5 MPa, but in order to achieve higher joining strength. Further improvements are needed.

従って、本発明の主な目的は、無加圧ないしは自重圧下でもより高い接合強度を得ることができる接合用材料を提供することにある。   Accordingly, a main object of the present invention is to provide a bonding material capable of obtaining higher bonding strength even under no pressure or under its own pressure.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、金属ナノ粒子からなる粉末を用いて特定の組成に制御することにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by controlling to a specific composition using a powder composed of metal nanoparticles, and completes the present invention. It came to.

すなわち、本発明は、下記の接合用材料及び接合方法に係る。
1. 平均粒径の異なる2種以上の銀系粉末を含有する接合用材料であって、
(1)第1粉末として、有機成分及び銀を含む銀系粒子からなり、平均粒径が10nm未満の銀系粉末、及び
(2)第2粉末として、銀を含む銀系粒子からなり、平均粒径が40nm以上である銀系粉末
を含むことを特徴とする接合用材料。
2. 第2粉末の平均粒径が100〜300nmである、前記項1に記載の接合用材料。
3. 第3粉末として、銀を含む銀系粒子からなり、平均粒径が15〜45nmである銀系粉末をさらに含む、前記項1又は2に記載の接合用材料。
4. 第1粉末の平均粒径が6〜9nm、第2粉末の平均粒径が150〜250nm、第3粉末の平均粒径が25〜30nmである、前記項1〜3のいずれかに記載の接合用材料。
5. 溶剤及び粘度調整用樹脂の少なくとも1種をさらに含む、前記項1〜4のいずれかに記載の接合用材料。
6. 無加圧又は自重圧下で接合するために用いる、前記項1〜5のいずれかに記載の接合用材料。
7. 接合すべき2つの部材の間に前記項1〜6のいずれかに記載の接合用材料を介在させた後、150〜400℃で加熱する工程を含む接合方法。
8. 前記工程を無加圧又は自重圧下で行う、前記項7に記載の接合方法。
That is, the present invention relates to the following bonding material and bonding method.
1. A joining material containing two or more kinds of silver-based powders having different average particle diameters,
(1) The first powder is composed of silver-based particles containing an organic component and silver, and the average particle diameter is less than 10 nm, and (2) the second powder is composed of silver-based particles containing silver, and the average A bonding material comprising a silver-based powder having a particle size of 40 nm or more.
2. Item 2. The bonding material according to Item 1, wherein the second powder has an average particle size of 100 to 300 nm.
3. Item 3. The bonding material according to Item 1 or 2, further comprising a silver-based powder having silver-containing particles and an average particle diameter of 15 to 45 nm as the third powder.
4). Item 4. The bonding according to any one of Items 1 to 3, wherein the average particle size of the first powder is 6 to 9 nm, the average particle size of the second powder is 150 to 250 nm, and the average particle size of the third powder is 25 to 30 nm. Materials.
5. Item 5. The bonding material according to any one of Items 1 to 4, further comprising at least one of a solvent and a viscosity adjusting resin.
6). Item 6. The bonding material according to any one of Items 1 to 5, which is used for bonding under no pressure or under its own pressure.
7). 7. A joining method including a step of heating at 150 to 400 ° C. after interposing the joining material according to any one of Items 1 to 6 between two members to be joined.
8). Item 8. The joining method according to Item 7, wherein the step is performed under no pressure or under its own pressure.

本発明によれば、特定の平均粒子径をもつ2種以上の銀系粉末の混合粉末を含むことから、適切な充填性、焼結性等が設定されることに起因して、より高い接合強度を得ることができる。特に、無加圧ないしは自重圧下であっても、従来技術に比して高い接合強度を発現することができる。しかも、さらに平均粒子径の異なる第3粉末を配合することにより、いっそう高い接合強度を実現することが可能となる。   According to the present invention, since a mixed powder of two or more kinds of silver-based powders having a specific average particle diameter is included, higher filling properties and sintering properties are set, resulting in higher bonding. Strength can be obtained. In particular, even under no pressure or under its own pressure, it is possible to develop a higher bonding strength than in the prior art. Moreover, by further blending the third powders having different average particle diameters, it is possible to achieve higher bonding strength.

このような特徴を有する本発明の接合用材料は、一般的な接合はもとより、無加圧ないしは自重圧下での接合が要求される電子部品又は配線の接合用として好適に用いることができる。すなわち、電気的接合領域の形成のために用いる接合用材料として特に有用である。   The bonding material of the present invention having such characteristics can be suitably used not only for general bonding but also for bonding electronic parts or wirings that are required to be bonded under no pressure or under its own pressure. That is, it is particularly useful as a bonding material used for forming an electrical bonding region.

接合試験に用いたサンプル片(部材)の形状及び配置方法を示す図である。図1(a)は、各部材の形状及びサイズ、両部材の接合方法を示す。図1(b)は、接合体にせん断試験を行うときの状態を示す図である。It is a figure which shows the shape and arrangement | positioning method of the sample piece (member) used for the joining test. Fig.1 (a) shows the shape and size of each member, and the joining method of both members. FIG.1 (b) is a figure which shows a state when performing a shear test to a conjugate | zygote. 接合されたサンプルの接合温度と接合強度の関係を示すグラフである。It is a graph which shows the relationship between the joining temperature and joining strength of the joined sample. 比較ペースト(接合温度300℃)によるサンプルのせん断試験後の破断面のSEM写真を示す。The SEM photograph of the torn surface after the shear test of the sample by a comparison paste (joining temperature of 300 degreeC) is shown. ペースト2(接合温度300℃)によるサンプルのせん断試験後の破断面のSEM写真を示す。The SEM photograph of the torn surface after the shear test of the sample by the paste 2 (joining temperature of 300 degreeC) is shown. ペースト1(接合温度300℃)によるサンプルのせん断試験後の破断面のSEM写真を示す。The SEM photograph of the torn surface after the shear test of the sample by the paste 1 (joining temperature of 300 degreeC) is shown. ペースト1(接合温度350℃)によるサンプルのせん断試験後の破断面のSEM写真を示す。The SEM photograph of the torn surface after the shear test of the sample by the paste 1 (joining temperature 350 degreeC) is shown. 試験例2において、200℃で接合された各サンプルのせん断強度を示すグラフである。In Test Example 2, it is a graph showing the shear strength of each sample joined at 200 ° C. ペースト1(接合温度200℃)によるサンプル1(図8(a))及びサンプル4(接合温度200℃)(図8(b))のせん断試験後の破断面のSEM写真を示す。The SEM photograph of the torn surface after the shear test of the sample 1 (FIG. 8 (a)) and the sample 4 (joining temperature 200 degreeC) (FIG.8 (b)) by the paste 1 (joining temperature 200 degreeC) is shown.

1.接合材料
本発明の接合材料(本発明材料)は、平均粒径の異なる2種以上の銀系粉末を含有する接合用材料であって、
(1)第1粉末として、有機成分及び銀を含む銀系粒子からなり、平均粒径が10nm未満の銀系粉末、及び
(2)第2粉末として、銀を含む銀系粒子からなり、平均粒径が40nm以上である銀系粉末
を含むことを特徴とする
1. Bonding material The bonding material of the present invention (the material of the present invention) is a bonding material containing two or more kinds of silver-based powders having different average particle sizes,
(1) The first powder is composed of silver-based particles containing an organic component and silver, and the average particle diameter is less than 10 nm, and (2) the second powder is composed of silver-based particles containing silver, and the average It contains a silver-based powder having a particle size of 40 nm or more.

第1粉末
第1粉末は、有機成分及び銀を含む銀系粒子からなる粉末を用いる。有機成分の種類は特に限定されないが、通常は出発原料として用いる有機化合物又はその熱分解生成物から構成されていることが好ましい。この場合、有機成分の含有量も限定的ではないが、銀系微粒子の金属含有量が通常は60〜98重量%、特に75〜98重量%となるように調整することが好ましい。
The 1st powder 1st powder uses the powder which consists of an organic component and silver type particle | grains containing silver. Although the kind of organic component is not particularly limited, it is usually preferable that the organic component is composed of an organic compound used as a starting material or a thermal decomposition product thereof. In this case, the content of the organic component is not limited, but it is preferably adjusted so that the metal content of the silver-based fine particles is usually 60 to 98% by weight, particularly 75 to 98% by weight.

第1粉末(銀系粉末)の平均粒子径は、通常10nm以下であり、特に8nm以下とすることが好ましい。この範囲内に設定することにより、無加圧又は自重圧下でも高い接合強度を得ることができる。なお、平均粒子径の下限値は限定的ではないが、一般的には約1nm以上とすれば良い。   The average particle size of the first powder (silver-based powder) is usually 10 nm or less, and particularly preferably 8 nm or less. By setting within this range, high bonding strength can be obtained even under no pressure or under its own pressure. The lower limit value of the average particle diameter is not limited, but generally it may be about 1 nm or more.

第1粉末自体は、公知又は市販のものを使用することができる。また、公知の製法方法で得られる銀系粉末を用いることもできる。前記製造方法としては、液相法、固相法又は気相法のいずれであっても良い。例えば、以下の方法で得られる銀系粉末を好適に用いることができる。すなわち、本発明では、例えば金属塩を含む出発材料をアミン化合物の存在下で熱処理して得られた銀系粉末を好適に使用することができる。以下、この方法(本発明製造法)を代表例として説明する。   As the first powder itself, a known or commercially available product can be used. Moreover, the silver type powder obtained by a well-known manufacturing method can also be used. The production method may be any of a liquid phase method, a solid phase method, and a gas phase method. For example, a silver-based powder obtained by the following method can be suitably used. That is, in the present invention, for example, a silver-based powder obtained by heat-treating a starting material containing a metal salt in the presence of an amine compound can be preferably used. Hereinafter, this method (the production method of the present invention) will be described as a representative example.

金属塩(Ag塩)としては、例えば硝酸塩、塩化物、炭酸塩、硫酸塩等の無機酸塩;ステアリン酸塩、ミリスチン酸塩等の有機酸塩のほか、金属錯体(錯塩)等も用いることができる。特に、本発明では、(1)金属炭酸塩、(2)脂肪酸塩及び(3)金属錯体の少なくとも1種の金属塩(Ag塩)を好適に使用することができる。   Examples of metal salts (Ag salts) include inorganic acid salts such as nitrates, chlorides, carbonates and sulfates; organic acid salts such as stearates and myristates, and metal complexes (complex salts). Can do. In particular, in the present invention, at least one metal salt (Ag salt) of (1) metal carbonate, (2) fatty acid salt and (3) metal complex can be preferably used.

脂肪酸塩としては、R−COOH又はHOOC−R−COOH(ただし、Rは、炭素数7以上(特に7〜17)であって置換基を有していても良い炭化水素基を示す。)又はHOOC−R−COOH(ただし、Rは、炭素数3以上であって置換基を有していても良い炭化水素基を示す。)で示される脂肪酸の金属塩が好ましい。上記炭化水素基R及びRは、飽和又は不飽和のいずれであっても良い。 As the fatty acid salt, R 1 —COOH or HOOC—R 1 —COOH (where R 1 represents a hydrocarbon group having 7 or more carbon atoms (particularly 7 to 17) which may have a substituent. ) Or HOOC-R 2 —COOH (wherein R 2 represents a hydrocarbon group having 3 or more carbon atoms and optionally having a substituent), a metal salt of a fatty acid is preferred. The hydrocarbon groups R 1 and R 2 may be either saturated or unsaturated.

また、金属錯体としては、カルボキシレート配位子を含む金属錯体が好ましい。このような金属錯体としては、RCOO(ただし、Rは、炭素数7以上であって置換基を有していても良い炭化水素基を示す。)で示される単座配位子又はOOC−R−COO(ただし、Rは、炭化水素基を示す。)で示される二座配位子(キレート配位子を含む。)のいずれであっても良い。単座配位子の場合は直鎖状アルキル基が好ましい。二座配位子の場合は直鎖状メチレン基が好ましい。上記炭化水素基Rは、炭素数7〜30であることが好ましく、炭素数7〜17であることがより好ましい。また、上記炭化水素基Rは、メチレン基等の飽和炭化水素基;フェニル基、プロピレン基、ビニレン基等の不飽和炭化水素基のいずれであっても良い。上記炭化水素基Rの炭素数は限定的でないが、6〜12程度であることが好ましい。 Moreover, as a metal complex, the metal complex containing a carboxylate ligand is preferable. As such a metal complex, a monodentate ligand or OOC represented by R 1 COO (where R 1 represents a hydrocarbon group having 7 or more carbon atoms and optionally having a substituent). Any of bidentate ligands (including chelate ligands) represented by —R 2 —COO (where R 2 represents a hydrocarbon group) may be used. In the case of a monodentate ligand, a linear alkyl group is preferred. In the case of a bidentate ligand, a linear methylene group is preferred. The hydrocarbon group R 1 preferably has 7 to 30 carbon atoms, and more preferably has 7 to 17 carbon atoms. The hydrocarbon group R 2 may be any of a saturated hydrocarbon group such as a methylene group; and an unsaturated hydrocarbon group such as a phenyl group, a propylene group, and a vinylene group. The number of carbon atoms of the hydrocarbon group R 2 is not limited, but is preferably about 6 to 12.

金属錯体は、カルボキシレート配位子を有するものであれば、それ以外にホスフィン配位子等の他の配位子を有していても良い。   As long as the metal complex has a carboxylate ligand, the metal complex may have another ligand such as a phosphine ligand.

本発明における金属錯体としては、例えば一般式M(RP)(OCR’)(ただし、MはAgを示す。R〜R及びR’は、互いに同一又は別異で、シクロヘキシル基、フェニル基又は炭素数1〜30のアルキル基であって、置換基を有していても良いものを示す。)で示される金属錯体を用いることができる。上記a)における前記置換基としては、例えばメチル基、エチル基、プロピル基、スルホン基、OH基、ニトロ基、アミノ基、ハロゲン基(Cl、Br等)、メトキシ基、エトキシ基等が挙げられる。また、置換基の位置及び数は特に限定されない。これらの具体例としては、例えばM(PPh)(OCC2n+1)(ただし、MはAgを示す。Phはフェニル基を示す。nは7〜17を示す。)で表わされる金属錯体を用いることもできる。 Examples of the metal complex in the present invention include, for example, the general formula M (R 1 R 2 R 3 P) (O 2 CR ′) (M represents Ag. R 1 to R 3 and R ′ may be the same or different from each other). It is different and represents a cyclohexyl group, a phenyl group or an alkyl group having 1 to 30 carbon atoms which may have a substituent. Examples of the substituent in a) include a methyl group, an ethyl group, a propyl group, a sulfone group, an OH group, a nitro group, an amino group, a halogen group (Cl, Br, etc.), a methoxy group, and an ethoxy group. . The position and number of substituents are not particularly limited. Specific examples thereof include, for example, a metal represented by M (PPh 3 ) (O 2 CC n H 2n + 1 ) (where M represents Ag, Ph represents a phenyl group, and n represents 7 to 17). Complexes can also be used.

また、本発明では、必要に応じて、出発材料に他の成分を含有させることもできる。例えば、脂肪酸又はその塩を添加することができる。好ましくは、脂肪酸としては、上記の脂肪酸塩における脂肪酸と同様のものを使用することができる。その含有量等は、用いる出発物材料の種類等に応じて適宜設定することができる。   Moreover, in this invention, another component can also be made to contain in a starting material as needed. For example, a fatty acid or a salt thereof can be added. Preferably, as the fatty acid, the same fatty acid as that in the fatty acid salt can be used. The content and the like can be appropriately set according to the type of starting material used.

本発明製造法では、上記のような金属成分を含む出発材料をアミン化合物の存在下において熱処理する。特に、本発明では、有機溶媒を用いることなく、金属成分を含む出発材料とアミンを反応容器に仕込んで、熱処理するだけでも良い。アミンが固体の場合は、金属成分を含む出発材料とアミンを固体のまま熱処理すれば良い。   In the production method of the present invention, the starting material containing the metal component as described above is heat-treated in the presence of an amine compound. In particular, in the present invention, a starting material containing a metal component and an amine may be charged into a reaction vessel and heat-treated without using an organic solvent. When the amine is solid, the starting material containing the metal component and the amine may be heat-treated while being solid.

上記アミン化合物の種類は、1級アミン、2級アミン又は3級アミンのいずれであっても特に限定されない。   The kind of the amine compound is not particularly limited even if it is any of primary amine, secondary amine, and tertiary amine.

1級アミンとしては、特に一般式RNH(ただし、Rは、炭素数8以上の炭化水素基を示す。)で示されるものが好ましい。例えば、オクチルアミンC17NH、ラウリルアミンC1225NH、ステアリルアミンC1837NH等が挙げられる。 As the primary amine, those represented by the general formula RNH 2 (where R represents a hydrocarbon group having 8 or more carbon atoms) are particularly preferred. For example, octylamine C 8 H 17 NH 2, laurylamine C 12 H 25 NH 2, stearylamine C 18 H 37 NH 2 and the like.

2級アミンとしては、特に一般式RNH(ただし、R及びRは、互いに同一又は別異であって、炭素数2〜8の炭化水素基を示す。)で示されるものが好ましい。例えば、ジエチルアミン(CNH、ジヘキシルアミン(C13NH、ジオクチルアミン(C17NH等が挙げられる。 The secondary amine is particularly represented by the general formula R 1 R 2 NH (wherein R 1 and R 2 are the same or different from each other and represent a hydrocarbon group having 2 to 8 carbon atoms). Is preferred. For example, diethylamine (C 2 H 5) 2 NH , dihexylamine (C 6 H 13) 2 NH , dioctylamine (C 8 H 17) 2 NH, and the like.

3級アミンとしては、特に一般式RN(ただし、R〜Rは、互いに同一又は別異であって、炭素数2〜8の炭化水素基を示す。)で示されるものが好ましい。例えば、トリエチルアミン(CN、トリプロピルアミン(CN、トリオクチルアミン(C17N等が挙げられる。 The tertiary amine is particularly represented by the general formula R 1 R 2 R 3 N (wherein R 1 to R 3 are the same or different from each other and represent a hydrocarbon group having 2 to 8 carbon atoms). Are preferred. Examples thereof include triethylamine (C 2 H 5 ) 3 N, tripropylamine (C 3 H 7 ) 3 N, trioctylamine (C 8 H 17 ) 3 N, and the like.

アミン化合物の使用量は、金属成分を含む出発材料と等モル以上であれば特に限定されない。従って、必要に応じて過剰量を用いても良い。なお、アミン化合物は、あらかじめ適当な有機溶媒に溶解又は分散させた上で使用することもできる。   The usage-amount of an amine compound will not be specifically limited if it is equimolar or more with the starting material containing a metal component. Therefore, an excessive amount may be used as necessary. The amine compound can also be used after being dissolved or dispersed in a suitable organic solvent in advance.

熱処理温度は、金属塩がアミン化合物と反応して所定の金属ナノ粒子が得られる限り特に制限されず、用いる金属塩及びアミン化合物の種類等に応じて適宜決定することができる。一般的には50℃以上の範囲で設定すれば良く、特に、出発材料とアミン化合物との混合物が最終的に液状になる温度以上で、かつ、アミン化合物の沸点未満の温度領域とすることが好ましい。すなわち、上記混合物が最終的にすべて溶融状態になる温度以上での熱処理により、P、N及びOを少なくとも1種を含む物質で構成される金属ナノ粒子の形成をより効果的に進行させることができる。   The heat treatment temperature is not particularly limited as long as the metal salt reacts with the amine compound to obtain predetermined metal nanoparticles, and can be appropriately determined according to the type of metal salt and amine compound used. In general, the temperature may be set in a range of 50 ° C. or higher, and in particular, the temperature may be set to a temperature range above the temperature at which the mixture of the starting material and the amine compound finally becomes liquid and below the boiling point of the amine compound. preferable. That is, the formation of metal nanoparticles composed of a substance containing at least one of P, N, and O can be more effectively advanced by heat treatment at a temperature equal to or higher than the temperature at which the mixture finally becomes a molten state. it can.

熱処理時間は、使用する出発材料の種類、熱処理温度等に応じて適宜設定すれば良いが、通常は1〜10時間程度、好ましくは3〜8時間とすれば良い。   The heat treatment time may be appropriately set according to the type of starting material to be used, the heat treatment temperature, etc., but is usually about 1 to 10 hours, preferably 3 to 8 hours.

熱処理雰囲気は、酸化性雰囲気中、大気中、還元性雰囲気中、不活性ガス中等のいずれであっても良く、例えば金属塩の金属種に応じて適宜設定することができる。また、前記の不活性ガスとしては、例えば窒素、二酸化炭素、アルゴン、ヘリウム等の不活性ガスを使用すれば良い。   The heat treatment atmosphere may be any of an oxidizing atmosphere, air, reducing atmosphere, inert gas, and the like, and can be appropriately set according to, for example, the metal species of the metal salt. Moreover, as said inert gas, what is necessary is just to use inert gas, such as nitrogen, a carbon dioxide, argon, helium, for example.

熱処理が終了した後、必要に応じて精製を行う。精製方法は、公知の精製法も適用でき、例えば洗浄、遠心分離、膜精製、溶媒抽出等により行えば良い。   After the heat treatment is completed, purification is performed as necessary. As a purification method, a known purification method can be applied, and for example, washing, centrifugation, membrane purification, solvent extraction and the like may be performed.

第2粉末
第2粉末は、銀を含む銀系粒子からなる。第2粉末は、第1粉末が充填される空隙を含む骨格を形成するものであり、第1粉末との併用によって所望の高強度を実現することができる。第2粉末としては、銀を含むものであれば限定的でなく、銀粒子(銀単体の粒子)からなる粉末のほか、第1粉末のような有機成分及び銀を含む銀系粒子からなる粉末であっても良い。有機成分及び銀を含む銀系粒子からなる粉末を用いる場合は、第1粉末と同様のものを使用することができ、また前記の本発明製造法により製造することもできる。
Second powder The second powder is composed of silver-based particles containing silver. The second powder forms a skeleton including voids filled with the first powder, and a desired high strength can be achieved by the combined use with the first powder. The second powder is not limited as long as it contains silver, and in addition to powder made of silver particles (particles of silver alone), powder made of silver-based particles containing organic components and silver like the first powder. It may be. When using the powder which consists of an organic component and silver type particle | grains containing silver, the thing similar to a 1st powder can be used, and it can also manufacture by the said this invention manufacturing method.

第2粉末の平均粒子径は、通常40nm以上であり、特に100nm以上であることが好ましく、さらには150nm以上であることがより好ましい。第2粉末の平均粒子径の上限値は特に制限されないが、一般的には400nm以下とし、好ましくは300nm以下、より好ましくは250nm以下とする。   The average particle diameter of the second powder is usually 40 nm or more, particularly preferably 100 nm or more, and more preferably 150 nm or more. The upper limit of the average particle diameter of the second powder is not particularly limited, but is generally 400 nm or less, preferably 300 nm or less, more preferably 250 nm or less.

第3粉末
また、本発明では、さらに第1粉末と第2粉末との間の平均粒子径を有する銀系粉末を第3粉末として含むことが好ましい。第3粉末を含むことにより、いっそう高い接合強度を実現することが可能となる。
Third Powder In the present invention, it is preferable that a silver-based powder having an average particle diameter between the first powder and the second powder is further included as the third powder. By including the third powder, it is possible to achieve higher bonding strength.

第3粉末としては、銀を含む銀系粒子からなる粉末を用いることができる。すなわち、第2粉末と同様、銀粒子(銀単体の粒子)からなる粉末のほか、第1粉末のような有機成分及び銀を含む銀系粒子からなる粉末であっても良い。有機成分及び銀を含む銀系粒子からなる粉末を用いる場合は、第1粉末と同様のものを使用することができ、また前記の本発明製造法により製造することもできる。   As the third powder, a powder made of silver-based particles containing silver can be used. That is, similar to the second powder, in addition to the powder made of silver particles (particles of silver alone), the powder made of silver-based particles containing an organic component and silver like the first powder may be used. When using the powder which consists of an organic component and silver type particle | grains containing silver, the thing similar to a 1st powder can be used, and it can also manufacture by the said this invention manufacturing method.

第3粉末の平均粒子径は、前記の通り、用いる第1粉末と第2粉末との間の平均粒子径を有するものであれば限定されない。例えば、第2粉末の平均粒子径が100〜300nm程度である場合は、第3粉末として平均粒子径15〜45nm程度の銀系粉末を好適に用いることができる。   The average particle diameter of the third powder is not limited as long as it has an average particle diameter between the first powder and the second powder used as described above. For example, when the average particle size of the second powder is about 100 to 300 nm, a silver-based powder having an average particle size of about 15 to 45 nm can be suitably used as the third powder.

なお、本発明では、第3粉末は、1種であっても良いし、2種以上(すなわち、平均粒子径の異なる2種以上)を採用しても良い。   In the present invention, the third powder may be one type or two or more types (that is, two or more types having different average particle diameters).

混合粉末の調製
本発明では、これらの銀系粉末を均一に混合することにより本発明材料を得ることができる。すなわち、少なくとも第1粉末及び第2粉末を混合してなる混合粉末を含む接合用材料として提供することができる。
Preparation of mixed powder In the present invention, the material of the present invention can be obtained by uniformly mixing these silver-based powders. That is, it can be provided as a bonding material including a mixed powder obtained by mixing at least the first powder and the second powder.

混合方法は、乾式混合であっても良いし、溶媒等を用いて湿式混合を実施しても良い。 各粉末の混合割合は限定的ではなく、所望の接合強度、粉末の平均粒子径等に応じて適宜設定することができる。例えば、第2粉末は、第1粉末100重量部に対して100〜800重量部、好ましくは150〜600重量部、より好ましくは150〜550重量部とすることができる。第3成分は、第1粉末100重量部に対して100〜300重量部、好ましくは150〜250重量部、より好ましくは150〜200重量部とすることができる。   The mixing method may be dry mixing or wet mixing using a solvent or the like. The mixing ratio of each powder is not limited, and can be appropriately set according to desired bonding strength, average particle diameter of powder, and the like. For example, the second powder can be 100 to 800 parts by weight, preferably 150 to 600 parts by weight, and more preferably 150 to 550 parts by weight with respect to 100 parts by weight of the first powder. The third component can be 100 to 300 parts by weight, preferably 150 to 250 parts by weight, and more preferably 150 to 200 parts by weight with respect to 100 parts by weight of the first powder.

本発明材料は、混合粉末(固形分)のままでも良いし、液状(ペースト状)であっても良い。液状とする場合は、混合粉末と、溶剤及び粘度調整用樹脂の少なくとも1種とを含むペーストとして提供することができる。   The material of the present invention may be a mixed powder (solid content) or a liquid (paste). When it is made liquid, it can be provided as a paste containing the mixed powder and at least one of a solvent and a viscosity adjusting resin.

溶剤としては特に限定されない。例えば、テルペン系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が挙げられる。より具体的には、ターピネオール、メチルエチルケトン、アセトン、イソプロパノール、ブチルカービトール、デカン、ウンデカン、テトラデカン、ベンゼン、トルエン、ヘキサン、ジエチルエーテル、ケロシン等の有機溶剤を用いることができる。   The solvent is not particularly limited. Examples include terpene solvents, ketone solvents, alcohol solvents, ester solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cellosolve solvents, carbitol solvents, and the like. More specifically, organic solvents such as terpineol, methyl ethyl ketone, acetone, isopropanol, butyl carbitol, decane, undecane, tetradecane, benzene, toluene, hexane, diethyl ether, and kerosene can be used.

また、粘度調整用樹脂としても特に制限されない。例えば、フェノール樹脂、メラミン樹脂、アルキド樹脂等の熱硬化性樹脂、フェノキシ樹脂、アクリル樹脂等の熱可塑性樹脂、エポキシ樹脂等の硬化剤硬化性樹脂等を用いることができる。   The viscosity adjusting resin is not particularly limited. For example, a thermosetting resin such as a phenol resin, a melamine resin, or an alkyd resin, a thermoplastic resin such as a phenoxy resin or an acrylic resin, a curing agent curable resin such as an epoxy resin, or the like can be used.

なお、ペーストを調製する場合、混合粉末の固形分含有量は20〜90重量%程度の範囲で適宜設定することができる。   In addition, when preparing paste, solid content of mixed powder can be suitably set in the range of about 20 to 90% by weight.

本発明材料は、特に接合用として好適に用いることができる。例えば、金属どうしの接合用(例えば、銅系金属−銅系金属、銀系金属−銅系金属等)として好適に用いることができる。より具体的には、本発明材料を用いて電気的接合領域を好適に形成することができる。これにより、2つの回路を接合することができる。接合方法は、例えば後記2.の方法に従って実施することができる。   The material of the present invention can be suitably used particularly for bonding. For example, it can be suitably used for joining metals (for example, copper-based metal-copper-based metal, silver-based metal-copper-based metal, etc.). More specifically, an electrical junction region can be suitably formed using the material of the present invention. Thereby, two circuits can be joined. The joining method is, for example, 2. It can carry out according to the method of.

2.接合方法
本発明は、接合すべき2つの部材の間に本発明材料を介在させた後、150〜400℃で加熱する工程を含む接合方法を包含する。
2. Joining Method The present invention includes a joining method including a step of heating at 150 to 400 ° C. after interposing the material of the present invention between two members to be joined.

接合すべき部材としては、金属(合金、金属間化合物も含む。)のほか、セラミックス、プラスチックス、これらの複合材料等を例示できるが、本発明では特に金属(金属どうしの接合)が好ましい。また、部材の形状等も、本発明材料が部材間に適切に配置できる限り、特に限定されない。   Examples of members to be joined include metals (including alloys and intermetallic compounds), ceramics, plastics, composite materials of these, and the like. In the present invention, metals (joining of metals) are particularly preferable. Further, the shape of the member is not particularly limited as long as the material of the present invention can be appropriately disposed between the members.

本発明の接合方法では、接合すべき部材の間に本発明材料(粉末状、ペースト状等)を介在させる。   In the joining method of the present invention, the material of the present invention (powder, paste, etc.) is interposed between the members to be joined.

本発明材料の使用量は特に限定されず、接合面全体に亘り均一に介在できる量となるように適宜設定すれば良い。なお、溶剤を含むペーストを用いる場合は、部材間にペーストを介在させた後、熱処理に先立って、その溶剤の一部又は全部を蒸発させるための前処理を実施することが好ましい。前処理の方法としては、例えば100〜150℃程度で加熱する方法等が挙げられる。   The amount of the material of the present invention is not particularly limited, and may be set as appropriate so that the amount can be uniformly interposed over the entire bonding surface. In addition, when using the paste containing a solvent, after interposing a paste between members, it is preferable to implement the pre-processing for evaporating one part or all part of the solvent prior to heat processing. Examples of the pretreatment method include a method of heating at about 100 to 150 ° C.

次いで、150〜400℃で熱処理を行う。熱処理温度は、例えば用いる混合粉末の種類、所望の接合強度、部材の材質等に応じて適宜設定することができる。熱処理雰囲気は特に限定されず、例えば酸化性雰囲気中、大気中、還元性雰囲気中、不活性ガス中のいずれでも実施することができる。   Next, heat treatment is performed at 150 to 400 ° C. The heat treatment temperature can be appropriately set according to, for example, the type of mixed powder to be used, the desired bonding strength, the material of the member, and the like. The heat treatment atmosphere is not particularly limited, and for example, the heat treatment atmosphere can be performed in any of an oxidizing atmosphere, air, reducing atmosphere, and inert gas.

また、熱処理する際は、接合すべき部材どうしを加圧しながら熱処理しても良いし、無加圧ないしは自重圧下で熱処理しても良い。特に、本発明では、無加圧ないしは自重圧下でも比較的高い接合強度を得ることができる点に特徴がある。加圧する場合において、その圧力としては、例えば1〜20MPa程度の範囲内で適宜設定することができる。   Moreover, when heat-treating, the members to be joined may be heat-treated while being pressed, or may be heat-treated under no pressure or under its own pressure. In particular, the present invention is characterized in that a relatively high bonding strength can be obtained even under no pressure or under its own pressure. In the case of pressurization, the pressure can be appropriately set within a range of, for example, about 1 to 20 MPa.

熱処理時間は、熱処理温度等に応じて適宜設定することができるが、通常はおよそ1秒〜60分程度とすれば良い。このようにして、部材どうしの間に本発明材料の焼成体(焼結体)が接着剤として介在した状態の接合体を得ることができる。   The heat treatment time can be appropriately set according to the heat treatment temperature and the like, but is usually about 1 second to 60 minutes. In this way, it is possible to obtain a joined body in which a fired body (sintered body) of the material of the present invention is interposed as an adhesive between members.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、実施例における物性等の測定は、以下の方法に従って実施した。   The features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples. In addition, the measurement of the physical property etc. in an Example was implemented in accordance with the following method.

(1)定性分析
金属成分の同定は、強力X線回折装置「RINT2500V」(リガク社製)を用い、粉末X線回折分析法で行った。
(2)平均粒子径
透過型電子顕微鏡(TEM)「JEM−2100」(日本電子社製)により測定し、任意に選んだ粒子100個の直径の算術平均値を求め、その値をもって平均粒子径とした。
(3)金属成分の含有量
熱分析装置「SSC/5200」(セイコー電子工業)を用い、TG/DTA分析することにより求めた。
(4)有機成分等の分析
金属ナノ粒子におけるP(リン成分)、N(窒素成分)とO(酸素成分)の確認は、X線光電子スペクトル装置「ESCA−700」(アルバックファイ社製)、FT−IR装置「GX I−RO」(パーキンエルマー社製)により行った。有機成分の確認は、FT−NMR装置「JNM−EX270」(日本電子製)、GC/MS(ガスクロマトグラフ質量分析)装置「5973Network MSD」(ヒューレットパッカード社製)を用いて行った。
(1) Qualitative analysis The metal component was identified by powder X-ray diffraction analysis using a powerful X-ray diffractometer "RINT 2500V" (manufactured by Rigaku Corporation).
(2) Average particle diameter Measured with a transmission electron microscope (TEM) “JEM-2100” (manufactured by JEOL Ltd.), an arithmetic average value of the diameters of 100 arbitrarily selected particles was obtained, and the average particle diameter was obtained from the value. It was.
(3) Content of metal component The content was determined by TG / DTA analysis using a thermal analyzer “SSC / 5200” (Seiko Electronics Co., Ltd.).
(4) Analysis of organic component etc. Confirmation of P (phosphorus component), N (nitrogen component) and O (oxygen component) in metal nanoparticles is performed by X-ray photoelectron spectrum apparatus “ESCA-700” (manufactured by ULVAC-PHI), FT-IR apparatus “GX I-RO” (manufactured by PerkinElmer) was used. The organic component was confirmed using an FT-NMR apparatus “JNM-EX270” (manufactured by JEOL Ltd.) and a GC / MS (gas chromatograph mass spectrometer) apparatus “5973 Network MSD” (manufactured by Hewlett-Packard Company).

実施例1
(1)第1粉末等の調製
(1−1)第1粉末の調製
炭酸銀(41.4g)とオクチルアミン(40.7g)をパイレックス(登録商標)製三つ口フラスコに固体のまま入れ、大気中100℃まで徐々に加熱した。100℃で4時間保持した後、70℃まで放冷し、メタノールを加えて数回洗浄し、生成した粉末を桐山ロートでろ別し、減圧下で乾燥させ、銀系粉末を得た。得られた粉末の平均粒子径は7.9nmであり、金属含有量は72重量%であった。
(1−2)第2粉末の調製
前記(1−1)の方法に準じて銀系粉末を得た。得られた粉末の平均粒子径は200nmであり、金属含有量は97重量%であった。
(1−3)第3粉末の調製
前記(1−1)の方法に準じて銀系粉末を得た。得られた粉末の平均粒子径は28nmであり、金属含有量は94重量%であった。
Example 1
(1) Preparation of first powder, etc. (1-1) Preparation of first powder Silver carbonate (41.4 g) and octylamine (40.7 g) are placed in a solid state in a Pyrex (registered trademark) three-necked flask. And gradually heated to 100 ° C. in the atmosphere. After maintaining at 100 ° C. for 4 hours, the mixture was allowed to cool to 70 ° C., washed with methanol several times, and the produced powder was filtered off with a Kiriyama funnel and dried under reduced pressure to obtain a silver-based powder. The obtained powder had an average particle size of 7.9 nm and a metal content of 72% by weight.
(1-2) Preparation of Second Powder A silver-based powder was obtained according to the method (1-1). The average particle size of the obtained powder was 200 nm, and the metal content was 97% by weight.
(1-3) Preparation of Third Powder A silver-based powder was obtained according to the method (1-1). The obtained powder had an average particle size of 28 nm and a metal content of 94% by weight.

(2)混合粉末の調製
(2−1)ペースト1の調製
前記の第1粉末、第2粉末及び第3粉末をそれぞれ12.25重量%、65重量%及び22.75重量%で混合することにより混合粉末を調製した。得られた混合粉末をターピネオールに分散させて固形分濃度約70重量%のペースト1を調製した。
(2−2)ペースト2の調製
前記の第1粉末及び第2粉末をそれぞれ35重量%及び65重量%で混合することにより混合粉末を調製した。得られた混合粉末をターピネオールに分散させて固形分濃度約70重量%のペースト2を調製した。
(2) Preparation of mixed powder (2-1) Preparation of paste 1 The above-mentioned first powder, second powder and third powder are mixed at 12.25 wt%, 65 wt% and 22.75 wt%, respectively. A mixed powder was prepared. The obtained mixed powder was dispersed in terpineol to prepare paste 1 having a solid concentration of about 70% by weight.
(2-2) Preparation of Paste 2 A mixed powder was prepared by mixing the first powder and the second powder at 35 wt% and 65 wt%, respectively. The obtained mixed powder was dispersed in terpineol to prepare paste 2 having a solid concentration of about 70% by weight.

試験例1
実施例で得られたペーストを用いて接合試験を実施した。なお、比較のため、第1粉末のみを用いて同様に調製された比較ペーストを用い、同様の接合試験を実施した。
Test example 1
The joining test was implemented using the paste obtained in the Example. For comparison, a similar joining test was performed using a comparative paste prepared in the same manner using only the first powder.

接合試験に用いた無酸素銅からなる接合試験片の形状を図1(a)に示す。それぞれの試験片の接合面はRmax=3.2Sとなるように旋盤加工により仕上げ、アセトン中での超音波洗浄と塩酸中での酸洗いを行った後、水洗と乾燥を経て試験に供した。大きい方の円板試験片の接合面にペーストを一定量塗布し、小さい方の試験片を重ねて軽く圧しつけながらペーストが接合面全体に広がるように接合試験片を調整した。当該試験片を所定の保持温度まで5分間かけて昇温した後、250〜350℃の接合温度(熱処理温度)で大気中での接合試験を行なった。接合に際しては、外部からの加圧を行わず、自重圧のみとして、1)保持温度250℃×保持時間5分のサンプル、2)保持温度300℃×保持時間5分のサンプル、3)保持温度350℃×保持時間5分としてサンプルをそれぞれ作製した。   The shape of a joining test piece made of oxygen-free copper used in the joining test is shown in FIG. The joint surface of each test piece was finished by lathe processing so that Rmax = 3.2S, and after ultrasonic cleaning in acetone and pickling in hydrochloric acid, it was subjected to water washing and drying, and then subjected to the test. . A fixed amount of paste was applied to the joining surface of the larger disc test piece, and the joining test piece was adjusted so that the paste spread over the entire joining surface while overlapping and lightly pressing the smaller test piece. The test piece was heated to a predetermined holding temperature over 5 minutes, and then a bonding test in the atmosphere was performed at a bonding temperature (heat treatment temperature) of 250 to 350 ° C. When joining, no external pressure is applied and only the self-weight pressure is used. 1) Sample with holding temperature 250 ° C. × holding time 5 minutes, 2) Sample with holding temperature 300 ° C. × holding time 5 minutes, 3) Holding temperature Samples were prepared at 350 ° C. and holding time of 5 minutes.

接合試験により得られたサンプルについて、インストロン万能材料試験機を用いて図1(b)に示すようにせん断試験を行い、それぞれの接合強度を求めた。その結果を図2に示す。図2には、なお、図2中、「▲」がペースト1を用いた場合、「■」がペースト2を用いた場合、「●」印が比較ペーストを用いた場合の結果をそれぞれ示す。   About the sample obtained by the joining test, the shear test was performed as shown in FIG.1 (b) using the Instron universal material testing machine, and each joining strength was calculated | required. The result is shown in FIG. FIG. 2 shows the results in FIG. 2 where “▲” uses the paste 1, “■” uses the paste 2, and “●” denotes the comparison paste.

図2の結果からも明らかなように、比較ペーストでは接合温度250℃では比較的高い強度を示すものの、接合温度の上昇に伴って低下することがわかる。これに対し、ペースト2では接合温度の上昇に伴って強度が高くなり、またペースト1では接合温度350℃で約250Nに到達しており、100N(特に200N)以上の高強度を達成できることがわかる。すなわち、ペースト1のように、第1粉末の平均粒径が6〜9nm、第2粉末の平均粒径が150〜250nm、第3粉末の平均粒径が25〜30nmという特定の平均粒子径の範囲内で制御することによって、自重圧下であってもより高い接合強度が得られることがわかる。   As is clear from the results of FIG. 2, the comparative paste shows a relatively high strength at a bonding temperature of 250 ° C., but decreases with an increase in the bonding temperature. On the other hand, with paste 2, the strength increases as the bonding temperature increases, and with paste 1, it reaches about 250 N at a bonding temperature of 350 ° C., indicating that high strength of 100 N (particularly 200 N) or more can be achieved. . That is, like paste 1, the average particle diameter of the first powder is 6 to 9 nm, the average particle diameter of the second powder is 150 to 250 nm, and the average particle diameter of the third powder is 25 to 30 nm. It can be seen that by controlling within the range, higher bonding strength can be obtained even under the self-weight.

図3〜図6には、各種金属ナノ粒子ペーストを用いて接合したサンプルについて、せん断試験後の破断面のSEM写真を示す。図3は比較ペーストによるサンプル(接合温度:300℃)、図4はペースト2によるサンプル(接合温度:300℃)、図5はペースト1によるサンプル(接合温度:300℃)、図6はペースト1によるサンプル(接合温度350℃)をそれぞれ示す。比較ペーストによるサンプルではひび割れが目立つのに対し、ペースト1及び2によるサンプルではそのような欠陥がない一方、明瞭な伸長ディンプルが認められた。   In FIGS. 3-6, the SEM photograph of the torn surface after a shear test is shown about the sample joined using various metal nanoparticle paste. 3 is a sample by comparison paste (joining temperature: 300 ° C.), FIG. 4 is a sample by paste 2 (joining temperature: 300 ° C.), FIG. 5 is a sample by paste 1 (joining temperature: 300 ° C.), and FIG. Samples with a bonding temperature of 350 ° C. are shown. In the sample using the comparative paste, cracks were conspicuous, whereas in the samples using pastes 1 and 2, there was no such defect, but a clear elongated dimple was observed.

試験例2
接合温度を200℃(保持時間30分)としたほかは試験例1と同様にしてペースト1によるサンプル(サンプル1)を作製し、接合強度を測定した。対比のため、下記の3つのサンプルの接合強度を測定した。その結果を図7に示す。
Test example 2
A sample (sample 1) made of paste 1 was prepared in the same manner as in Test Example 1 except that the bonding temperature was 200 ° C. (holding time 30 minutes), and the bonding strength was measured. For comparison, the bonding strength of the following three samples was measured. The result is shown in FIG.

サンプル2:有機成分を含まない市販の銀粉末(平均粒径5μm)65重量%と前記第1粉末35重量%とをターピネオールに分散させて固形分濃度約70重量%のペーストを調製した。得られたペーストを用い、接合温度を200℃としたほかは試験例1と同様にしてサンプルを作製した。   Sample 2: A paste having a solid content concentration of about 70% by weight was prepared by dispersing 65% by weight of a commercially available silver powder (average particle size: 5 μm) containing no organic component and 35% by weight of the first powder in terpineol. A sample was prepared in the same manner as in Test Example 1 except that the obtained paste was used and the bonding temperature was set to 200 ° C.

サンプル3:有機成分を含まない市販の銀粉末(平均粒径300nm)65重量%と前記第1粉末35重量%とをターピネオールに分散させて固形分濃度約70重量%のペーストを調製した。得られたペーストを用い、接合温度を200℃としたほかは試験例1と同様にしてサンプルを作製した。   Sample 3: A commercially available silver powder (average particle size: 300 nm) containing 65% by weight and organic powder containing 35% by weight of the first powder was dispersed in terpineol to prepare a paste having a solid content of about 70% by weight. A sample was prepared in the same manner as in Test Example 1 except that the obtained paste was used and the bonding temperature was set to 200 ° C.

サンプル4:前記第1粉末のみをターピネオールに分散させて固形分濃度約70重量%のペーストを調製した。得られたペーストを用い、接合温度を200℃としたほかは試験例1と同様にしてサンプルを作製した。   Sample 4: A paste having a solid content of about 70% by weight was prepared by dispersing only the first powder in terpineol. A sample was prepared in the same manner as in Test Example 1 except that the obtained paste was used and the bonding temperature was set to 200 ° C.

図7の結果からも明らかなように、銀系ナノ粒子単独を用いたサンプル4(比較品)では接合強度が80N程度であるのに対し、サンプル1〜3(本発明品)ではサンプル4よりも高い強度を示すことがわかる。また、サンプル2〜3のように、第2粉末として有機成分を含まない銀系粉末であっても所望の強度が達成できることがわかる。   As is clear from the results of FIG. 7, the sample 4 (comparative product) using silver-based nanoparticles alone has a bonding strength of about 80 N, while the samples 1 to 3 (product of the present invention) are more than the sample 4. As can be seen from FIG. Moreover, it turns out that desired intensity | strength can be achieved even if it is the silver type powder which does not contain an organic component as a 2nd powder like the samples 2-3.

また、サンプル1とサンプル4について、せん断試験後の破断面のSEM写真を図8(a)及び(b)に示す。図8の結果からも明らかなように、サンプル4では破断面に多くの空隙が認められたのに対し(図8(b))、サンプル1では比較的緻密な破断面が維持されていることがわかる(図8(a))。すなわち、本発明の接合用材料では、緻密であるがゆえに高強度の接合層を形成できることがわかる。   Moreover, about the sample 1 and the sample 4, the SEM photograph of the torn surface after a shear test is shown to Fig.8 (a) and (b). As is clear from the results of FIG. 8, in Sample 4, many voids were observed on the fracture surface (FIG. 8B), while in Sample 1, a relatively dense fracture surface was maintained. (FIG. 8A). That is, it can be seen that the bonding material of the present invention can form a high-strength bonding layer because it is dense.

Claims (8)

平均粒径の異なる2種以上の銀系粉末を含有する接合用材料であって、
(1)第1粉末として、有機成分及び銀を含む銀系粒子からなり、平均粒径が10nm未満の銀系粉末、及び
(2)第2粉末として、銀を含む銀系粒子からなり、平均粒径が40nm以上である銀系粉末
を含むことを特徴とする接合用材料。
A joining material containing two or more kinds of silver-based powders having different average particle diameters,
(1) The first powder is composed of silver-based particles containing an organic component and silver, and the average particle diameter is less than 10 nm, and (2) the second powder is composed of silver-based particles containing silver, and the average A bonding material comprising a silver-based powder having a particle size of 40 nm or more.
第2粉末の平均粒径が100〜300nmである、請求項1に記載の接合用材料。 The bonding material according to claim 1, wherein the second powder has an average particle size of 100 to 300 nm. 第3粉末として、銀を含む銀系粒子からなり、平均粒径が15〜45nmである銀系粉末をさらに含む、請求項1又は2に記載の接合用材料。 The bonding material according to claim 1 or 2, further comprising a silver-based powder having silver-containing particles and an average particle diameter of 15 to 45 nm as the third powder. 第1粉末の平均粒径が6〜9nm、第2粉末の平均粒径が150〜250nm、第3粉末の平均粒径が25〜30nmである、請求項3に記載の接合用材料。 The bonding material according to claim 3, wherein the average particle diameter of the first powder is 6 to 9 nm, the average particle diameter of the second powder is 150 to 250 nm, and the average particle diameter of the third powder is 25 to 30 nm. 溶剤及び粘度調整用樹脂の少なくとも1種をさらに含む、請求項1〜4のいずれかに記載の接合用材料。 The bonding material according to claim 1, further comprising at least one of a solvent and a viscosity adjusting resin. 無加圧又は自重圧下で接合するために用いる、請求項1〜5のいずれかに記載の接合用材料。 The bonding material according to claim 1, which is used for bonding under no pressure or under its own pressure. 接合すべき2つの部材の間に請求項1〜6のいずれかに記載の接合用材料を介在させた後、150〜400℃で加熱する工程を含む接合方法。 The joining method including the process of heating at 150-400 degreeC, after interposing the joining material in any one of Claims 1-6 between the two members which should be joined. 前記工程を無加圧又は自重圧下で行う、請求項7に記載の接合方法。 The joining method according to claim 7, wherein the step is performed under no pressure or under its own pressure.
JP2010039267A 2010-02-24 2010-02-24 Joining material and joining method Active JP5620122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039267A JP5620122B2 (en) 2010-02-24 2010-02-24 Joining material and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039267A JP5620122B2 (en) 2010-02-24 2010-02-24 Joining material and joining method

Publications (2)

Publication Number Publication Date
JP2011175871A true JP2011175871A (en) 2011-09-08
JP5620122B2 JP5620122B2 (en) 2014-11-05

Family

ID=44688548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039267A Active JP5620122B2 (en) 2010-02-24 2010-02-24 Joining material and joining method

Country Status (1)

Country Link
JP (1) JP5620122B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145554A1 (en) * 2014-03-25 2015-10-01 本田技研工業株式会社 Bonded metal product
JP2016000861A (en) * 2010-11-22 2016-01-07 Dowaエレクトロニクス株式会社 Joining material and joint body
JP2017106086A (en) * 2015-12-11 2017-06-15 三菱マテリアル株式会社 Bond and method of manufacturing bonded body
WO2018062220A1 (en) * 2016-09-30 2018-04-05 Dowaエレクトロニクス株式会社 Bonding material and bonding method using same
JP2018059192A (en) * 2016-09-30 2018-04-12 Dowaエレクトロニクス株式会社 Joining material and joining method using same
WO2020148960A1 (en) * 2019-01-15 2020-07-23 株式会社日本マイクロニクス Probe substrate and electrical connection device
WO2022045263A1 (en) * 2020-08-31 2022-03-03 株式会社大阪ソーダ Electroconductive adhesive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958434B2 (en) * 2018-03-06 2021-11-02 三菱マテリアル株式会社 Metal particle agglomerates and a method for producing the same, and a paste-like metal particle agglomerate composition and a method for producing a bonded body using the same.
US11515281B2 (en) 2019-04-22 2022-11-29 Panasonic Holdings Corporation Bonded structure and bonding material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
JP2008161907A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Low-temperature joining material and joining method
WO2009116136A1 (en) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 Composite silver nanopaste, process for producing the composite silver nanopaste, and method for bonding the nanopaste
JP2011021255A (en) * 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
JP2008161907A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Low-temperature joining material and joining method
WO2009116136A1 (en) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 Composite silver nanopaste, process for producing the composite silver nanopaste, and method for bonding the nanopaste
JP2011021255A (en) * 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000861A (en) * 2010-11-22 2016-01-07 Dowaエレクトロニクス株式会社 Joining material and joint body
WO2015145554A1 (en) * 2014-03-25 2015-10-01 本田技研工業株式会社 Bonded metal product
CN106132624A (en) * 2014-03-25 2016-11-16 本田技研工业株式会社 Jointing metal goods
JPWO2015145554A1 (en) * 2014-03-25 2017-04-13 本田技研工業株式会社 Metal bonded product and manufacturing method thereof
JP2017106086A (en) * 2015-12-11 2017-06-15 三菱マテリアル株式会社 Bond and method of manufacturing bonded body
JP7007140B2 (en) 2016-09-30 2022-01-24 Dowaエレクトロニクス株式会社 Joining material and joining method using it
JP2018059192A (en) * 2016-09-30 2018-04-12 Dowaエレクトロニクス株式会社 Joining material and joining method using same
KR20190064605A (en) * 2016-09-30 2019-06-10 도와 일렉트로닉스 가부시키가이샤 Bonding material and bonding method using it
TWI716639B (en) * 2016-09-30 2021-01-21 日商同和電子科技有限公司 Bonding material and bonding method using same
KR102354209B1 (en) 2016-09-30 2022-01-20 도와 일렉트로닉스 가부시키가이샤 Bonding material and bonding method using the same
WO2018062220A1 (en) * 2016-09-30 2018-04-05 Dowaエレクトロニクス株式会社 Bonding material and bonding method using same
US12048964B2 (en) * 2016-09-30 2024-07-30 Dowa Electronics Materials Co., Ltd. Bonding material and bonding method using same
WO2020148960A1 (en) * 2019-01-15 2020-07-23 株式会社日本マイクロニクス Probe substrate and electrical connection device
KR20210096258A (en) * 2019-01-15 2021-08-04 가부시키가이샤 니혼 마이크로닉스 Probe board and electrical connection device
US11747365B2 (en) 2019-01-15 2023-09-05 Kabushiki Kaisha Nihon Micronics Probe substrate and electrical connecting apparatus
KR102659300B1 (en) 2019-01-15 2024-04-19 가부시키가이샤 니혼 마이크로닉스 Probe board and electrical connection device
WO2022045263A1 (en) * 2020-08-31 2022-03-03 株式会社大阪ソーダ Electroconductive adhesive

Also Published As

Publication number Publication date
JP5620122B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5620122B2 (en) Joining material and joining method
JP5580562B2 (en) Silver-copper mixed powder and bonding method using the same
JP5858374B2 (en) Method for producing coated copper fine particles
TWI518036B (en) Copper-based nanoparticles and method for the production thereof
Jianfeng et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding
Zhang et al. The sintering behavior of electrically conductive adhesives filled with surface modified silver nanowires
JP4662829B2 (en) Silver nanoparticles and method for producing the same
EP2906027A1 (en) Lead solder-free electronics
JP6979150B2 (en) Coated silver particles and their manufacturing methods, conductive compositions, and conductors
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2013047365A (en) Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor
JP6422289B2 (en) Nickel particle composition, bonding material and bonding method
JP6072117B2 (en) Copper fine particle paste and method for producing the same
WO2016002741A1 (en) Nickel particle composition, bonding material, and bonding method in which said material is used
JP2020143375A (en) Coated silver particle and manufacturing method therefor, conductive composition and conductor
JP5707133B2 (en) Method for producing composite nanoparticles
WO2018030173A1 (en) Bonding composition and method for preparing same
JP6099160B2 (en) Complex compounds and suspensions
JP6270241B2 (en) Bonding material and semiconductor device using the same
JP6463195B2 (en) Nickel particle composition, bonding material, and bonding method using the same
TW201920074A (en) Low-temperature-sinterable surface-treated copper microparticle manufacturing method
JP6338419B2 (en) Metal particle composition, bonding material, and bonding method using the same
JP6603989B2 (en) COMPOSITE PARTICLE AND ITS MANUFACTURING METHOD, ELECTRIC CONDUCTIVE PASTE, SINTERED BODY AND SEMICONDUCTOR DEVICE
JPWO2018030173A1 (en) Bonding composition and method for producing the same
Zhang et al. Electrically conductive adhesives with sintered silver nanowires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250