WO2015098629A1 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2015098629A1
WO2015098629A1 PCT/JP2014/083308 JP2014083308W WO2015098629A1 WO 2015098629 A1 WO2015098629 A1 WO 2015098629A1 JP 2014083308 W JP2014083308 W JP 2014083308W WO 2015098629 A1 WO2015098629 A1 WO 2015098629A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
skeleton
shape
cross
blood vessel
Prior art date
Application number
PCT/JP2014/083308
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 嘉彦
大山 靖
比恵島 徳寛
孝次 秋本
Original Assignee
二プロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014170640A external-priority patent/JP6380909B2/en
Priority claimed from JP2014170644A external-priority patent/JP6428050B2/en
Application filed by 二プロ株式会社 filed Critical 二プロ株式会社
Priority to CN201480070564.0A priority Critical patent/CN105848611B/en
Priority to EP14874864.3A priority patent/EP3087958B1/en
Priority to US15/103,645 priority patent/US10137014B2/en
Priority to EP19190271.7A priority patent/EP3583925B1/en
Publication of WO2015098629A1 publication Critical patent/WO2015098629A1/en
Priority to US16/199,547 priority patent/US20190091046A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0023Angular shapes triangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir

Definitions

  • the present invention relates to a stent that is inserted and placed in a body lumen such as a blood vessel.
  • a stent treatment is performed in which a stent is inserted into the lumen and the lumen is held in an expanded state.
  • the stent has a cylindrical shape as a whole, and has a small diameter when inserted into a lumen, but is expanded and placed in the lumen.
  • a method for expanding the diameter of the stent in the lumen there are self-expansion using a shape memory material and the like, mechanical expansion, and the like in addition to expansion using a balloon.
  • the stent can be expanded and contracted as described above, and has a porous structure or a linear shape in which a large number of through holes are provided in the peripheral wall portion in consideration of reducing the burden on the living body and improving biofusion.
  • the strut structure is connected to Specifically, as described in, for example, Japanese Patent Application Laid-Open No. 2007-267844 (Patent Document 1) and the like, a metal tube such as stainless steel or platinum is cut into an appropriate length, and the peripheral wall is cut. By forming through holes and struts by laser processing, a stent having a simple rectangular cross-sectional shape is formed.
  • the expanded state of the blood vessel is maintained immediately after placement of the stent.
  • blood vessels may restenect at the indwelling position of the stent due to adhesion of thrombus to the stent.
  • the presence or absence or degree of restenosis varies depending on the site where the stenosis occurs, the state of the stenosis site, the patient, etc., and it has been difficult to improve and cope with the conventional stent.
  • the stent when the stent is expanded with a balloon or the like and placed in the blood vessel, the stent may be displaced in the longitudinal direction in the blood vessel.
  • the presence / absence and extent of stent misalignment in the blood vessel also varies depending on the site and state of the stent, the patient, and the like, and it has been difficult to improve and cope with the stent with the conventional structure.
  • a stent having a conventional structure since the metal tube as a raw tube has a simple straight cylindrical shape, it is difficult to form a shape corresponding to an indwelling site in a lumen such as a blood vessel. . Therefore, there is a problem that it is difficult to prepare a stent that accurately matches the shape of the lumen in a lumen, for example, in a portion where the inner diameter dimension changes in a tapered shape or a branch portion such as a bifurcation.
  • the present invention has been made in the background of the above-mentioned circumstances, and a problem to be solved by the invention according to claim 1 is that a stenosis site or a stenosis site in a lumen where a stent is placed is generated. It is an object of the present invention to provide a stent having a novel structure capable of adjusting the performance and the like of the stent with a greater degree of design freedom in accordance with the state of the above.
  • the problem to be solved by the invention described in claim 5 is to provide a stent having a novel structure in which a shape corresponding to a lumen such as a blood vessel can be realized with a good yield.
  • a first aspect of the present invention is a stent that is formed into a cylindrical shape by a structure of a skeleton that can be expanded and contracted in a radial direction, and is placed in a body lumen, and the skeleton is deformed by a change in the thickness direction of a cross-sectional shape It is said that it is said.
  • the skeleton has a cross-sectional shape different from a conventional simple rectangular cross-sectional shape, so that the stenosis occurs in the lumen where the stent is placed, the state of the stenosis, or the like. Accordingly, the stent performance and the like can be adjusted efficiently with a large degree of design freedom.
  • a second aspect of the present invention is the stent according to the first aspect, wherein the width dimension is increased from the inner peripheral surface toward the outer peripheral surface in the cross-sectional shape of the skeleton.
  • the cross-sectional width dimension of the portion exposed to the fluid in the lumen such as blood can be reduced as compared with the stent having the conventional structure having a skeleton having a simple rectangular cross section. .
  • blood or the like can flow more easily in the placement position of the stent in the lumen of a blood vessel or the like than a stent having a conventional structure, and stagnation or turbulence of blood or the like can be suppressed.
  • troubles such as formation of thrombus and restenosis of the blood vessel at the indwelling position of the stent due to the attachment of the thrombus to the stent can be effectively avoided.
  • the cross-sectional width of the skeleton is relatively large in the circumferential direction on the outer peripheral surface of the stent, the pressing force on the inner surface of the lumen such as a blood vessel can be dispersed, resulting in local force concentration.
  • the occurrence of cracks in the lumen wall can be suppressed, and the healing period of the cracks generated in the lumen wall can be shortened. Thereby, for example, restenosis caused by enlargement of vascular endothelial cells in a cracked portion of the blood vessel can be effectively suppressed.
  • vascular endothelial cells are enlarged, a relatively large gap is provided between the skeletons having a reduced cross-sectional width on the inner peripheral surface side of the stent, so that the vascular endothelial cells are separated from the inner peripheral surface of the stent. Further, the enlargement toward the inside is suppressed, and a further inhibitory effect is exerted on the restenosis of the blood vessel.
  • the circumferential width dimension in the skeleton cross section is reduced toward the inner peripheral side, so that when the diameter is reduced by being attached to the delivery catheter, The problem that adjacent skeletons contact each other on the inner peripheral side having a small peripheral length and the amount of diameter reduction is limited is solved. Therefore, while ensuring the cross-sectional area of the skeleton and realizing the required strength and the like, it is possible to improve the delivery performance by setting the size capable of reducing the diameter sufficiently small.
  • the cross-sectional shape of the skeleton is not particularly limited as long as the width dimension is increased from the inner peripheral surface toward the outer peripheral surface, but it is particularly preferable that the skeleton is an approximately inverted triangle. More preferably, the cross-sectional shape is an approximately inverted isosceles triangle.
  • the included angles on both sides in the circumferential direction are made larger than the central angle in the arc of the outer peripheral surface. It is.
  • both side surfaces in the circumferential direction of the skeleton cross-section enter a direction approaching each other toward the inner circumferential side rather than the radial line in a state before the diameter reduction. Therefore, even when the diameter is reduced, it is avoided that the skeletons adjacent in the circumferential direction come into contact with each other on the inner circumference side at an early stage and the amount of diameter reduction is limited. As a result, it is possible to realize a stent that can be deformed to a smaller diameter while ensuring the circumferential length of the skeleton on the outer peripheral surface of the stent and avoiding the action of a local pressing force on a blood vessel or the like.
  • the skeleton is a metal skeleton formed by at least one of electroforming and etching. .
  • the skeleton is formed by electroforming or etching, so that the shape corresponds to the shape of the lumen from the beginning. Therefore, the portion to be excised can be reduced as compared with the stent manufactured by laser processing, and the stent can be manufactured with a good yield.
  • the adjustment of the rigidity at the end can be realized by increasing the thickness dimension or changing the material.
  • the fragile portion can be formed simultaneously with other portions of the skeleton by electroforming or etching, and the fragile portion is provided with high dimensional accuracy without the need for post-processing. It becomes possible.
  • a fifth aspect of the present invention is a stent that can be expanded and contracted in the radial direction and is placed in a body lumen, and has a deformed cylindrical shape whose cross-sectional shape changes in the length direction, and It has a metal skeleton formed by at least one of electroforming and etching.
  • the stent according to this embodiment gives a shape corresponding to the shape of the lumen from the beginning by a skeleton formed by electroforming or etching. It is done. Therefore, the portion to be excised can be reduced as compared with the conventional laser-processed stent, and the stent can be manufactured with a good yield.
  • the shape corresponding to the lumen is realized with high accuracy, reducing the labor burden of the procedure for the practitioner and the burden on the living body for the patient. Etc. are reduced. Further, even in the stent itself placed in a shape corresponding to the lumen, distortion and residual stress are reduced, and good shape stability and durability can be realized.
  • a sixth aspect of the present invention is a stent according to the fifth aspect, wherein a branched portion is provided and the number of tubular portions is changed in the length direction.
  • a stent that can be easily applied to a bifurcation portion such as a bifurcation in a lumen such as a blood vessel can be realized.
  • a seventh aspect of the present invention is a stent according to the fifth or sixth aspect, wherein the stent has a deformed cylindrical shape whose diameter is changed in the length direction.
  • a stent that can be applied satisfactorily to a site where the inner diameter changes in the length direction in a lumen such as a blood vessel can be realized.
  • the stent of this mode can be combined with the sixth mode, so that at least one tube portion of the stent having a branch portion can have a tapered tube shape or the like.
  • rigidity at at least one end in the axial direction is greater than that of the central portion.
  • the rigidity can be adjusted by increasing the thickness dimension of a specific portion in the length direction or changing the material. It becomes possible.
  • the rigidity of the axial end portion that is easily deformed is increased for structural reasons, so that the axial end portion is separated from the lumen while being placed in the lumen. It can also be effectively prevented from causing stenosis.
  • the rigidity of the axial end of the stent is improved because, for example, when the axial end of the stent is left in the blood vessel, the blood flow is disturbed and a thrombus is formed.
  • restenosis at the stent indwelling position can be effectively prevented.
  • a ninth aspect of the present invention is the stent according to the eighth aspect, wherein the end portion whose rigidity is increased as compared with the central portion is reduced in rigidity at the end portion on the axially outer side. Is.
  • the rigidity of the end portion at the end of the stent is reduced, the load exerted on the lumen by the end portion of the stent can be suppressed.
  • the rigidity adjustment at the end portion is realized by forming only the end portion of the stent with a soft metal, or by reducing the thickness or width. obtain.
  • the rigidity of the end portion is set to be substantially the same as or smaller than that of the central portion.
  • a tenth aspect of the present invention is the stent according to any one of the first to ninth aspects, wherein the skeleton has a laminated structure of a plurality of types of metals.
  • a laminated structure of a plurality of types of metals can be formed by, for example, electroforming.
  • the core layer ensures the strength of the stent while relaxing the stress on the surface when the stent expands or contracts and prevents cracks from occurring It is also possible to do.
  • a metal material with a smaller ionization tendency in the surface layer than in the core layer it is possible to achieve biocompatibility, radiopacity, etc. by the surface layer while ensuring the required strength characteristics in the core layer. It becomes possible.
  • it is sufficient that at least a part of the skeleton has a laminated structure, and the entire skeleton does not have to have a laminated structure.
  • a weakened portion partially reduced in strength is formed in the skeleton by at least one of electroforming and etching. It is what.
  • a stent having a structure according to this aspect by providing a weakened portion in the skeleton, for example, it is divided after placement to obtain a stent shape that conforms to the lumen shape, or is cut or deformed during placement treatment for branching. Forming the opening by a technique can be easily realized.
  • the fragile portion is easily deformed with a smaller cross-sectional area than other portions of the skeleton.
  • the fragile portion is stably cut by forming the fragile portion thinner than other portions of the skeleton, for example, to further facilitate the bending of the stent.
  • the fragile portion is formed by electroforming, for example, it is possible to reduce the thickness of the fragile portion only in the thickness direction, change the material, or the like.
  • a thirteenth aspect of the present invention is the stent according to any one of the first to twelfth aspects, wherein the skeleton is provided with a recess on the surface.
  • a recess is provided at the same time as molding on the surface of the skeleton, or a convex is provided at the same time as molding, so that a relatively concave Can be provided.
  • the surface uneven structure can improve the positioning performance with respect to the surface of the lumen, for example, or can retain the medicine in the recess and place it in the lumen.
  • the recessed part in this aspect can be formed in any surface of the internal peripheral surface and outer peripheral surface of the surrounding wall made into the cylinder shape.
  • the recess in this aspect may be not only a bottomed shape but also a through hole formed by electroforming, etching, or the like.
  • the size of the recess in this aspect is an opening size of about 10 to 30 ⁇ m, thereby further reducing the patient's feeling of foreign objects and adversely affecting the strength of the stent as much as possible. To be avoided.
  • a fourteenth aspect of the present invention is the stent according to any one of the first to thirteenth aspects, wherein the skeleton has a cross-sectional shape whose width dimension changes from the inner peripheral surface toward the outer peripheral surface. is there.
  • the design freedom of the shape of the outer peripheral surface of the stent peripheral wall pressed against the living body, the inner peripheral surface of the stent peripheral wall exposed to blood flow, and the like is improved.
  • the degree of freedom in design is greatly improved as compared to a conventional stent having a simple rectangular cross-sectional shape, whereby, for example, a stent corresponding to a patient or a symptom can be provided. Can be manufactured.
  • the portion protruding into the lumen is made smaller than a conventional simple rectangular cross-section stent. And turbulence of fluid in the lumen can be suppressed. Furthermore, when a stent is placed in a blood vessel, the formation of a thrombus associated with turbulent flow is avoided, and the risk of blood vessel restenosis at the stent placement position associated with the attachment of the thrombus to the stent may be reduced. . Further, when the stent is mounted with a reduced diameter on a delivery catheter or the like, the diameter can be further reduced as compared with a conventional stent, and the delivery performance can be improved.
  • the stent having the structure according to the invention described in claim 5 when an irregular shape is given by a skeleton formed by electroforming or etching, for example, it corresponds to a branch portion of a blood vessel from the beginning.
  • a stent can be obtained in the shape obtained.
  • the stent shape accurately corresponds to the lumen of a blood vessel or the like, the treatment is facilitated, compatibility with a living body is improved, and strain and residual stress of the placed stent itself can be reduced. .
  • the stent since a portion to be excised is reduced as compared with a conventional laser-processed stent, the stent can be formed with a good yield.
  • (A) is a perspective view which expands and shows the cross section of the axis-perpendicular direction in the stent shown by FIG. 7,
  • (b) is a principal part enlarged view in the axial direction view of (a).
  • size of the center angle of the outer peripheral surface and the depression angle of the circumferential direction both sides in sectional drawing of the frame
  • Explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. (A) is an axial view in the diameter-reduced state of the stent shown by FIG.
  • FIG. 1 shows a stent 10 as a first embodiment of the present invention in a molded state before being contracted or expanded.
  • the stent 10 is delivered to a stenotic site of a body lumen such as a blood vessel and is placed in an expanded state at the stenotic site, so that the body lumen is maintained in an expanded state.
  • the axial direction refers to the vertical direction in FIG.
  • the stent 10 of the present embodiment includes a trunk cylinder portion 12 and a branch cylinder portion 14 that are each substantially cylindrical and extend linearly. From the branch portion 13 provided in an intermediate portion in the length direction of the trunk cylinder portion 12. The branch cylinder part 14 is inclined to the side and extends so as to form a substantially Y-shaped branch shape as a whole.
  • the number of tube portions is different in the length direction (vertical direction in FIG. 1) by the branch portion 13, that is, the stent 10 has a cross-sectional shape in the length direction. It is an irregularly shaped cylinder shape that changes.
  • Each of the trunk tube portion 12 and the branch tube portion 14 is provided with a plurality of annular portions 16 that are continuously bent in the circumferential direction by repeatedly curving or bending in a wavy shape with a predetermined distance from each other in the axial direction.
  • a series of struts 19a constituting the trunk cylinder part 12 and a series of struts 19b constituting the branch cylinder part 14 are respectively formed.
  • the annular parts 16 and 16 adjacent to each other in the axial direction in the struts 19a and 19b are respectively connected by the link parts 18 extending in the substantially axial direction, thereby forming a cylindrical shape having a predetermined length.
  • the annular portion 16 constituting the trunk portion 12 and the annular portion 16 constituting the branch cylinder portion 14 are continuously provided on the circumference of the trunk cylinder portion 12 and the branch cylinder portion 14 in the branch portion. It extends.
  • the integral structure of each strut 19a, 19b is implement
  • the annular portions 16 and 16 adjacent in the axial direction are connected by the link portion 18, so that the skeleton of the stent 10 of the present embodiment is configured.
  • the strength and the degree of freedom of deformation of the stent 10 are improved, and local deformation such as buckling of the strut 19 during deformation is prevented.
  • the specific shapes of the annular portion 16 and the link portion 18 are not limited in the present invention, and the wave shape of the annular portion 16 and the connection by the link portion 18 are considered in consideration of the characteristics required for the stent 10. A part, the number of the link parts 18 on the periphery of the annular part 16, etc. can be set suitably.
  • the width dimension and thickness dimension of the annular portion 16 and the link portion 18 are not particularly limited, but the strut 19 constituting the annular portion 16 is about 30 to 200 ⁇ m for the purpose of ensuring the strength.
  • the width dimension and the thickness dimension are desirable, and the link portion 18 is desirably a width dimension and a thickness dimension of about 10 to 100 ⁇ m.
  • such a branched stent 10 is manufactured by integrally forming a plurality of annular portions 16 and link portions 18 constituting the strut 19 by electroforming.
  • a molded base having the shape and size of the target trunk cylinder 12 and branch cylinder 14 is prepared by using a conductor such as stainless steel. Then, an exposed surface is formed in a shape corresponding to each of the plurality of annular portions 16 and the link portions 18 on the surface of the molding base, and a non-conductive mask is applied to other regions. Then, it is immersed in an electrolytic bath in which a predetermined metal is ionized, and metal ions are electrodeposited on the exposed surface of the molding base to perform electroforming. After obtaining a metal having a predetermined thickness, the mask 10 is removed, and the molded base is removed or dissolved, whereby the stent 10 having the above-described target structure can be obtained.
  • a conductor such as stainless steel.
  • the stent 10 of the present embodiment having the above-described structure is capable of expanding and contracting in the radial direction in the trunk cylinder portion 12 and the branch cylinder portion 14, and is in a predetermined state from the state before contraction shown in FIG. 1.
  • the diameter is mechanically reduced to the size.
  • the stent 10 is delivered to, for example, a stenosis portion of a blood vessel by a delivery catheter or the like. Thereafter, the stent 10 is expanded by a balloon catheter, or when the stent 10 is formed of a shape memory material, the stent 10 is automatically expanded by being released from the delivery catheter, and in the state shown in FIG. Etc. are placed in the body lumen.
  • the stent 10 of the present embodiment is manufactured by electroforming, a branched shape having the trunk cylinder portion 12 and the branch cylinder portion 14 can be integrally formed. Therefore, compared to the case where two stents obtained by laser processing straight cylindrical metal fittings as in the conventional structure are joined to form a branched shape, the portion to be excised can be reduced, The yield can be improved and a complicated branch shape can be obtained with high accuracy. Therefore, it is possible to realize the stent 10 that accurately corresponds to a complicated shape portion such as a blood vessel of a living body with a good yield.
  • the stent 20 as the second embodiment of the present invention having a tapered cylindrical shape whose inner and outer diameter dimensions change in the axial direction also has an initial shape with a target taper angle. It can be integrally formed by casting.
  • the stent 20 of the present embodiment has such a tapered shape and a deformed cylindrical shape whose cross-sectional shape changes in the length direction.
  • the same members and parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment in the drawings, and detailed description thereof is omitted.
  • Such a stent 20 is tapered in an initial shape when placed in a blood vessel or the like whose diameter size changes, it is possible to suppress strain and residual stress in the placed state.
  • the skeletons of the stents 10 and 20 as described above, that is, the struts 19 and the link portions 18 are manufactured by electroforming, it is possible to have a laminated structure of different materials. Specifically, after forming a non-conductive mask on the surface of the molding base as described above and performing the first electroforming, the electroforming is performed in the second electrolytic bath of another metal ion. By performing the casting, a metal layer of another material can be formed on the surface of the metal formed by the first electroforming by the second electroforming.
  • Such a laminated structure of metals can be performed any number of times, for example, a structure in which a surface layer portion is provided by coating another metal so as to cover a core portion formed of a specific metal is also possible. It is. In that case, for example, it is preferable that the metal of the surface layer portion has a higher ductility than the metal of the core portion. As a result, the followability when the stent is bent is improved, and the concentration of strain and stress in the surface layer portion is avoided.
  • the metal in the surface layer portion has a smaller ionization tendency than the metal in the core portion.
  • the core portion is formed of stainless steel (SUS316L), CrCo alloy, tantalum, NiTi, etc., while the surface layer portion is Ni, NiCo, Cu, NiW, Pt, Au, Ag, Cr, Zn, etc.
  • it can be formed of Au or Pt. Accordingly, it is possible to improve biocompatibility by suppressing the potential difference from the living body with the metal in the surface layer portion while efficiently ensuring strength and rigidity with the metal constituting the core member.
  • the ionization tendency of Au, Pt, etc. is very low, metal elution can be suppressed.
  • the annular portion 16 and the link portion 18 can be formed of different metal materials, and the material of the annular portion 16 can be partially different in the length direction and the circumferential direction of the stent 10. become.
  • a third embodiment of the present invention in a straight cylindrical stent 30, one or a plurality of annular portions positioned at the axial ends thereof Only 16 can be made thicker by increasing the number of times of electroforming than the other annular portion 16 located in the central portion in the axial direction. That is, in the stent 30 of the present embodiment, the cross-sectional shape changes in the length direction with a shape in which the thickness dimension changes in the length direction.
  • the axial end portion may have a larger outer diameter size, a smaller inner diameter size, or both than the central portion. .
  • this thick part may be provided in one edge part of an axial direction, and may be provided in an axial direction both ends.
  • the rigidity of the axial end is made larger than that of the central portion, so that deformation in the central portion is achieved. It is also possible to prevent restenosis by suppressing the lifting from the blood vessel at the axial end while securing the degree of freedom.
  • the mask is formed again, and the second electroforming is performed so as to straddle the annular portions 16 and 16 located at the end portions in the axial direction and adjacent to each other. It is also possible to form the annular portion 16 shifted by a half pitch in the axial direction so as to cover the outer periphery. Since it is possible to reinforce the rigidity of the axial end portion with such a complicated structure, a large degree of freedom in design is realized.
  • the rigidity of the axially outer end portion is substantially the same as or smaller than that of the central portion at the axial end portion where the rigidity is increased compared to the central portion. .
  • the load which the axial direction terminal part of the stent detained so that it may bite into the blood vessel wall can exert on the blood vessel wall can be reduced.
  • Such a rigid end portion can be realized, for example, by forming only the end portion with a soft metal, or by adjusting the number of times of electroforming, a mask or the like to reduce the thickness or width of the end portion.
  • FIGS. 4A and 4B show a cross-sectional shape of the strut 19 in which the width dimension changes from the inner peripheral surface toward the outer peripheral surface. 4 (a) and 4 (b), the upper side is the side in contact with the blood vessel wall, and the lower side is the side located in the blood vessel lumen.
  • a strut 19 having a substantially triangular cross section can also be used.
  • the side in contact with the blood vessel wall is gradually narrowed, so that the pressing force against the blood vessel wall of the stent can be concentrated on the tapered portion of the strut 19 when the stent is expanded.
  • the blood vessel can be expanded with a smaller pressing pressure of the stent, in other words, with the expansion pressure of the stent.
  • the taper portion of the strut 19 bites in and breaks against the calcified lesion portion.
  • Vascularized vessels can also be dilated.
  • a strut 19 having a substantially inverted triangular cross section can also be used.
  • the strut 19 having such a shape since the side located in the blood vessel lumen is gradually narrowed, the area in contact with the blood flow is reduced, and the foreign body reaction can be suppressed as much as possible. Moreover, since it is difficult for stagnation to occur in the blood flow, the risk of blood clots and the like being generated can be reduced. Further, since the area exposed to the blood vessel lumen is small, the period until it is covered with the vascular endothelial cells can be shortened, and the strut 19 is buried in the blood vessel at an early stage. From this, the enlargement of the vascular endothelium can be suppressed, and the stent placement portion can be cured in a relatively short period of time.
  • the strut 19 having such a shape can be formed by adjusting the shape of the mask during electroforming to a desired shape by etching or the like, and can greatly improve the degree of freedom of setting the cross-sectional shape.
  • the cross-sectional shape of the strut 19 is not limited to the approximate triangular shape or the generally inverted triangular shape shown in FIGS. 4A and 4B, and for example, a semicircular shape or a double tapered shape is also employed. Can be done.
  • the stents 10, 20, and 30 as described above are manufactured by electroforming, the cross-sectional shape of the link portion 18 that connects the annular portions 16 and 16 and the degree of freedom in designing the strength and brittleness are also large. Can be secured.
  • the fragile portion applied when the expanded stent is bent is easily deformed or cut, so that the stent has a shape of a body lumen. It is easy to follow.
  • an opening is formed in a stent corresponding to a branched blood vessel or the like, an operator can easily perform an operation of cutting or expanding the fragile site.
  • the link portion 18 forms a weakened portion whose strength is smaller than that of the annular portion 16.
  • a link portion 18 By producing such a link portion 18 by electroforming, only a thin shape can be formed in the width direction of the strut 19 by the laser processing of the conventional structure, but not only the thin shape but also the thickness of the strut 19 is formed. Thin shapes can also be formed in the vertical direction.
  • the cross-sectional shape of the link portion 18 is only a simple rectangular cross-section in the conventional laser processing, but a shape other than the rectangular shape can be formed.
  • the position of the link portion 18 in the thickness direction can be appropriately changed with respect to the annular portions 16 and 16.
  • the upper side indicates the blood vessel wall side
  • the lower side indicates the blood vessel lumen side. That is, in FIG. 5 (a), the annular portions 16, 16 are connected by the link portion 18 on the blood vessel wall side, while in FIG. 5 (b), the annular portions 16, 16 are the link portion at the central portion in the thickness direction. 18 are connected.
  • the annular portions 16 are connected by a link portion 18 on the blood vessel lumen side. Furthermore, it is possible to combine the link portions 18 located on the blood vessel wall side, the central portion, and the blood vessel lumen side. In FIG.
  • FIG. 5 merely shows the relative positions of the annular portions 16 and 16 and the link portion 18, and the strut 19 and the link portion 18.
  • the shape of is not limited in any way.
  • the annular portion and the link portion can only be formed with the same thickness. , 20, and 30 can be manufactured by electroforming to reduce the thickness of the link portion 18.
  • the link part 18 can be formed thinly and thinly, and when the link part 18 is cut
  • a method in which the annular portion 16 and the link portion 18 are formed separately and then fixed together has been adopted.
  • the link portion 18 is integrally formed, and manufacturing can be facilitated while ensuring high dimensional accuracy.
  • the cut surface of the link part 18 is made small, irritation
  • the position of the link portion 18 can be appropriately changed in design with respect to the width direction of the strut 19 and can be formed at the end portion in the width direction with respect to the strut 19, but is shown in FIG.
  • the link portion 18 is preferably formed in the center portion in the width direction of the strut 19, that is, in the center portion in the width direction in the bent portion of the annular portion 16 in the above-described embodiment.
  • the link portion 18 is preferably located at the central portion of the strut 19 even in the thickness direction.
  • FIG. 6 the strut 19 and the link portion 18 are shown as a rectangular cross section, but FIG. 6 merely shows the relative positions of the annular portion 16 and the link portion 18.
  • the shape is not limited at all.
  • FIGS. 7 and 8 show a stent 32 as a fourth embodiment of the present invention.
  • the stent 32 is generally cylindrical and extends linearly as a whole.
  • the cross-sectional shape of the strut 19 in the stent 32 of the present embodiment is formed as a deformed structure that is different in the thickness direction (vertical direction in FIG. 4B) as shown in FIG. 4B.
  • the width dimension (the lateral dimension in FIG. 4B) is increased from the inner peripheral surface toward the outer peripheral surface.
  • the cross-sectional shape of the strut 19 is a substantially inverted triangle.
  • the edge portion in the inverted trapezoidal cross-sectional shape shown in FIG. 8B is subjected to chamfering such as sand blasting, chemical polishing, electrolytic polishing, etc., so that FIG.
  • the generally inverted triangular cross-sectional shape shown is formed.
  • W 125 mm.
  • the central angle ⁇ in the arc of the inner peripheral surface is made smaller than the central angle ⁇ in the arc of the outer peripheral surface of the strut 19 ( ⁇ ⁇ ). . That is, two points A and B on the outer peripheral surface having the largest width dimension in the cross-sectional shape of the strut 19 before chamfering processing (thick one-dot chain line in FIG. 9) pass through these points A and B and An arc Co that is convex to the side and a center of curvature O located on the inner peripheral side of the strut 19 are assumed as the center of curvature of the arc Co.
  • the depression angle ⁇ on both side surfaces is made larger ( ⁇ ⁇ ) than the central angle ⁇ in the arc of the outer peripheral surface of the strut 19.
  • the depression angle ⁇ is formed by the intersection of the straight line AD and the straight line BE in FIG. 9 in the cross-sectional shape of the strut 19 before the chamfering process.
  • the central angle ⁇ of the outer peripheral surface is preferably 1 ° ⁇ ⁇ ⁇ 45 °, and more preferably 4 ° ⁇ ⁇ ⁇ 15 °.
  • the central angle ⁇ of the inner peripheral surface is preferably set to 0 ° ⁇ ⁇ ⁇ 30 °, and more preferably set within a range of 0 ° ⁇ ⁇ ⁇ 10 °.
  • the depression angle ⁇ on both side surfaces is preferably set to 15 ° ⁇ ⁇ ⁇ 150 °, and more preferably set within a range of 30 ° ⁇ ⁇ ⁇ 100 °.
  • the stent 32 of this embodiment having such a shape is manufactured as a metal skeleton in which the struts 19 and the link portions 18 as the skeleton are integrally formed by electroforming.
  • the stent 32 of this embodiment can be expanded and contracted in the radial direction, and is mechanically reduced in diameter from a state before contraction shown in FIG. 7 to a predetermined size, and contracted as shown in FIGS.
  • the diameter state is assumed.
  • 10 shows one of the annular portions 16 constituting the stent 32, and the illustration of the other annular portion 16 and the link portion 18 connecting the annular portions 16, 16 is omitted.
  • the cross-sectional shape of the strut 19 is an approximately inverted triangle as shown in FIG. 4B, and when the diameter is reduced, the circumferential direction of the strut 19 is formed at both axial end portions of the annular portion 16. Adjacent parts abut. At that time, as shown in FIG. 11 (b), the peripheral end portions on the outer peripheral side in the cross-sectional shape of the strut 19 are in contact with each other, so that the diameter reduction of the stent 32 is limited, and in the reduced diameter state.
  • the outer diameter dimension of the stent 32 is defined.
  • the cross-sectional shape of the strut 19 is a substantially inverted triangle. Therefore, for example, the stent 32 has a skeleton having a rectangular cross section compared with a stent having a rectangular cross section. A portion exposed to the blood flow on the inner peripheral side can be reduced. Thereby, it is suppressed that the stent 32 inhibits the blood flow, and it is avoided that the blood flow becomes slow or the blood flow is disturbed (turbulent flow) due to the stent 32 being placed in the blood vessel. Is done.
  • the area exposed from the blood vessel wall is reduced, it is buried in the vascular endothelial cells at an early stage. That is, since the blood vessel wall that has cracked due to the placement of the stent 32 can be healed in a relatively short time, the enlargement of the vascular endothelial cells is suppressed and a thrombus adheres to the enlarged vascular endothelial cells. Thus, restenosis at the placement position of the stent 32 can be avoided.
  • the stent 32 of the form since the cross-sectional shape of the strut 19 is an approximately inverted triangle, the strut 19 does not abut on the inner peripheral side but abuts on the outer peripheral side. As a result, the stent 32 of the present embodiment is not further restricted in diameter as compared with a stent having a conventional structure, and the outer diameter at the time of diameter reduction can be further reduced.
  • the possibility of contact on the inner peripheral side is further reduced.
  • the dimensions can be reliably reduced.
  • the delivery of the stent 32 and the delivery catheter equipped with the stent 32 can be improved.
  • FIG. 12 shows a stent 34 as a fifth embodiment of the present invention.
  • the stent 34 of the present embodiment has a skeletal structure composed of the struts 19 and the link portions 18 as in the fourth embodiment, and the cross-sectional shape of the struts 19 is the same as that of the fourth embodiment as shown in FIG. The shape shown in FIG.
  • the stent 34 of the present embodiment has a deformed cylindrical shape in which the outer diameter dimension at both end portions in the axial direction (vertical direction in FIG. 12) is larger than the outer diameter dimension at the central portion in the axial direction.
  • the plurality of annular portions 16 positioned at both axial end portions are annular portions 16 positioned at the central portion in the axial direction. It can be formed by increasing the number of times of electroforming to make it thicker. That is, it is preferable that the stent 34 of this embodiment has a laminated structure made of a plurality of types of metals.
  • Such a laminated structure does not need to be formed over the entire stent, and a specific portion of the stent may be a laminated structure.
  • the shape of the inner hole of the stent 34 is not limited at all, and may be, for example, a straight shape extending in the axial direction, or both end portions may be larger in diameter than the central portion in the axial direction.
  • the stent 34 of the present embodiment has both end portions in the axial direction being thicker than the central portion in the axial direction, so that the rigidity of both end portions is increased compared to the central portion.
  • both end portions in the axial direction are larger in outer diameter than the central portion in the axial direction and have increased rigidity, so that the axial end portions of the stent 34 are lifted from the blood vessel. Is suppressed, and it is stably placed at the stenosis site of the blood vessel. In particular, when the axial end portion of the stent is separated from the blood vessel in the state where it is placed in the blood vessel, the risk of blood flow disturbance and the formation of a thrombus is improved.
  • the lift from the blood vessel is suppressed at both ends in the axial direction of the stent 34, so that restenosis at the stent placement position can be more effectively prevented. Furthermore, by reducing the rigidity of the axial end portion, the load exerted on the blood vessel wall by the axial end portion of the stent placed so as to bite can be reduced.
  • FIG. 13 shows a stent 36 as a sixth embodiment of the present invention.
  • the stent 36 of the present embodiment has a substantially Y-shaped skeleton structure composed of the struts 19 and the link portions 18 as in the first embodiment, and the cross-sectional shape of the struts 19 is the same as that of the fourth embodiment.
  • the shape shown in FIG. 4B is the same as in the embodiment.
  • the basic cylinder portion 38 and the branch cylinder portion 40 may be formed separately and joined together by means such as welding.
  • the part 38 and the branch cylinder part 40 may be formed integrally.
  • the stent 36 of this embodiment having such a shape, since the cross-sectional shape of the strut 19 is the same as that of the fourth embodiment, the same effect as the stent 32 of the fourth embodiment is obtained. Can be demonstrated.
  • the stent 36 of the present embodiment has a bifurcated shape and can correspond to a complex shape such as a blood vessel of a living body, and blood flow disturbance is also suppressed at the bifurcated portion of the blood vessel, thereby further reducing the restenosis of the blood vessel. It can be prevented more effectively.
  • Example 1 of the present invention a stent 32 having the structure according to the fourth embodiment shown in FIGS. 7 and 8 was virtually manufactured on a computer.
  • Example 2 of the present invention as shown in FIG. 14, a stent 42 is adopted in which the cross-sectional shape of the skeleton is reduced from the inner peripheral surface to the outer peripheral surface so that the width dimension is reduced to an approximate triangle.
  • a stent 44 having a rectangular skeleton having a conventional structure was adopted, and each was virtually manufactured on a computer.
  • the stents 42 and 44 of Example 2 and the comparative example shown in FIGS. 14 and 15 are in a molded state before the diameter reduction, and the stents 32 and 40 of Examples 1 and 2 and the comparative example are shown. 42 and 44 were prepared assuming that the edge portions had not been chamfered.
  • a perspective view and an axial view of the annular portion 16 obtained by reducing the diameter of the stent 32 of Example 1 are those shown in FIGS. 10 and 11 described above, and the stent 42 of Example 2 and the comparative example. , 44 are a perspective view and an axial view of the annular portion 16 in which the diameter reduction processing is performed.
  • the outer diameter dimensions of the stents 32, 42, and 44 of Examples 1 and 2 and the comparative example subjected to the diameter reduction treatment are ⁇ ′ (see FIG. 11A), ⁇ 1 (see FIG. 17), and ⁇ 2, respectively. (See FIG. 19).
  • ANSYS R14.5 manufactured by ANSYS was used as software for performing the analysis by reducing the diameter.
  • ⁇ ′ 1,68 mm. That is, the stent 32 in which the cross-sectional shape of the strut 19 is an approximately inverted triangle is changed to the stent 42 in which the cross-sectional shape of the strut 19 ′ is an approximate triangle or the stent 44 in which the cross-sectional shape of the strut 46 of the conventional structure is a rectangle.
  • the outer diameter size when the diameter reduction process is performed becomes smaller.
  • FIG. 11B the stent 32 of Example 1 has a skeleton that is adjacent in the circumferential direction because the width of the inner peripheral surface is smaller than the width of the outer peripheral surface. It is surmised that the diameter reduction is not limited until the outer peripheral sides of the two come into contact with each other, and the outer diameter dimension becomes smaller.
  • the stent 32 of the first embodiment can have a smaller outer diameter than the stent 42 of the general triangular cross section of the second embodiment and the stent 44 of the rectangular cross section of the conventional structure. Since the outer diameter at the time of mounting can be reduced, good delivery can be exhibited.
  • FIG. 20 (a) has large and many dark gray vector lines representing a generally fast flow. .
  • the reason why the number of vector lines is small in FIGS. 21 (a) and 22 (a) is that the line color is thin and the flow is slow, so it is not displayed large as a vector line, or there is almost no flow itself. This is because there seems to be no vector line.
  • 20 (b) shows many lighter portions as a whole.
  • the effect of preventing the occurrence of thrombus due to blood retention or turbulence, and restenosis at the stent indwelling position due to the thrombus adhering to the stent is further enhanced. It is suggested that it can be demonstrated.
  • the cross section of the strut 19 of the stent 32 of the first embodiment is a substantially inverted triangle, so that the strut 19 ′ having a cross section of the general triangle as in the second embodiment and a rectangular cross section as in the comparative example.
  • the portion protruding to the inner peripheral side can be made smaller, and the inhibition of the flow of fluid passing through the inside of the stent 32 is suppressed as much as possible.
  • the cross-sectional shape of the strut 19 ' is an approximate triangle, and the inner peripheral sides of the struts contact with each other relatively early. There is a possibility that the outer diameter reduction effect at the time cannot be fully enjoyed. Further, when the stent 42 is indwelled in the lumen, a portion that protrudes from the lumen wall to the inner peripheral side becomes relatively large, and the protruding portion serves as a barrier for the fluid. There is a risk that the flow of
  • the outer peripheral side is tapered in the cross-sectional shape of the strut 19 ′, and the stent 42 is positioned so that the tapered tip of the stent 42 bites into the lumen wall, thereby effectively positioning the stent 42 in the lumen.
  • the stent 42 is positioned so that the tapered tip of the stent 42 bites into the lumen wall, thereby effectively positioning the stent 42 in the lumen.
  • a stent having a substantially triangular cross-sectional shape can be suitably employed depending on the condition of the patient and the lesion site.
  • the stents 32, 34, 36, and 42 of the present invention have excellent technical significance because the stent corresponding to the state of the stenosis site and the site where the stenosis has occurred can be manufactured with a large degree of design freedom. It is what you do.
  • the surface of the stent may have an appropriate shape such as embossing, and when the stent is manufactured by electroforming, the shape of the molding base and mask used for electroforming is appropriately set.
  • an appropriate shape such as emboss can be easily transferred to the surface.
  • it can be effectively used as a drug-eluting stent. That is, for example, by applying or depositing a drug that suppresses cell growth or a resin layer containing such a drug on the outer peripheral surface of a stent with irregularities, the drug can be eluted from the blood vessel wall. it can. At that time, the wettability is improved by such unevenness, and the applied drug or the resin layer can be easily attached to the outer peripheral surface of the stent and can be made difficult to peel off.
  • a recess 48 may be formed in the skeleton of the stent, that is, the strut 19 or the link portion 18.
  • the stent is formed by electroforming, for example, by treating the surface of the molding base with a protrusion or the like, the inner peripheral surface of the stent formed by electrodeposition on the surface A recess having a size corresponding to can be formed by transferring.
  • a peripheral wall surrounding the island-shaped mask portion is formed by electroforming, It is also possible to form a recess opening in the outer peripheral surface of the stent in the mask portion.
  • Such a recess 48 can be formed in an arbitrary shape and size.
  • the groove shape extending in the length direction of the strut 19 and the link portion 18 as shown in FIG. It may be a hole.
  • the stent is formed by electroforming, for example, using a eutectoid plating technique using an electrolytic solution in which a non-conductive powder is dispersed, a porous structure or microporous corresponding to the eutectoid fine particles is used. It is also possible to give the structure to the strut 19 and the link part 18.
  • the amount of metal constituting the stent can be reduced.
  • a drug in the recess 48 or the porous structure for example, a drug-eluting stent as described above can be formed, and the drug can be effectively eluted into the blood vessel wall.
  • the recess 48 formed in the stent may be not only a bottomed shape but also a through hole.
  • the through hole in the stent in this way, the loading of the drug can be further facilitated and the amount of the drug loaded can be increased.
  • the through-hole becomes hollow after the drug or the like is eluted, blood can pass through the through-hole. For example, blood flow is inhibited as compared with the case where the recess is bottomed. Therefore, the turbulent flow and restenosis prevention effect of the present invention can be further exhibited.
  • the drug may be put directly into the recess 48, or for example, a biodegradable resin cotton impregnated with the drug or a capsule filled with the drug may be put into the recess 48.
  • the unevenness formed on the stent may be formed directly on the surface of the stent.
  • a convex portion on the surface of the stent, a relatively concave portion is formed. May be.
  • the stent does not need to be formed by electroforming, and may be formed, for example, by performing laser processing on a metal tube.
  • a strut having a quadrangular ADEB in cross-sectional shape as shown in FIG. 9 can be directly obtained by laser processing.
  • laser processing is first performed on the metal tube so as to have a large central angle ⁇ on the outer peripheral surface to obtain a strut having a cross-sectional shape of a quadrangle AD′E′B, and then on the side surface of the strut.
  • a strut having a quadrangular ADEB in cross-sectional shape may be formed by performing laser processing so that the central angle of the inner peripheral surface is ⁇ , in other words, the depression angle of both side surfaces is ⁇ . Then, by applying chamfering to the edge portion of the strut thus obtained, a strut having a cross-section of a generally inverted triangle as shown in FIG. 4B can be obtained.
  • arcs Co and Ci are the outer peripheral surface and the inner peripheral surface of the metal tube, respectively.
  • the inner peripheral surface has a small central angle ⁇ , or the both side surfaces have a depression angle ⁇ .
  • electroforming may be performed in the production of the stent.
  • the recess 48 formed in the stent does not need to be formed by electroforming.
  • a through hole as a recess may be formed by laser processing or the like simultaneously with or after the formation of the stent.
  • the stents 10, 20, 30, 32, 34, 36, and 42 described in the above embodiments all have an initial shape, and when inserted into a lumen such as a blood vessel, the diameter of the stent is reduced and deformed. Delivered with.
  • these stents 10, 20, 30, 32, 34, 36, 42 are of a balloon expandable type, they are expanded by using a balloon, and are placed in a state of being pressed against the inner peripheral surface of the blood vessel.
  • the metal material is a self-expanding type, it is automatically expanded by being released from the delivery catheter. It is also possible to have an almost initial shape in such an expanded state.
  • the shape in the expanded state is stably expressed, and strain and residual stress in the expanded indwelling state are also generated. Effectively suppressed.
  • the present invention is not limited to such an embodiment, and can be formed with an initial shape having a diameter different from the shape at the time of indwelling.
  • the shape of the stent is not limited to the Y-shaped branch shape, the tapered cylindrical shape, the thick end shape, the simple straight shape, etc., as exemplified in the above embodiment.
  • Stents with different diameter dimensions stents in which at least one of the basic cylinder part and the branch cylinder part is tapered, a stent partially tapered in the length direction, the end or center in the length direction
  • the present invention is applicable to various types of irregularly shaped stents, such as a stent having a thick-walled portion.
  • the rigidity is increased by making both end portions in the axial direction thick, but in the straight-shaped stent in the fourth embodiment, the rigidity is increased as both end portions in the axial direction.
  • the thickness dimension is substantially constant over the entire axial length. The rigidity may be increased.
  • the cross-sectional shapes of the strut 19 and the link portion 18 may be different.
  • the link portion is not essential, and the annular portions adjacent in the axial direction of the stent may be continuously connected in a spiral structure. In this way, when the link portion is not provided, the skeleton of the stent is configured only by the struts.
  • the strut thickness need not be uniform over the entire length.
  • it may be partially thick or thin in the length direction of the strut.
  • a weak part may be formed of the thin part of the strut.
  • the generally inverted triangle is exemplified as the shape in which the circumferential width dimension in the cross-sectional shape of the strut 19 gradually decreases from the outer peripheral side toward the inner peripheral side.
  • a trapezoid may be sufficient and the semicircle shape which becomes convex on the inner peripheral side may be sufficient.
  • the shape may be a trapezoid or a semicircular shape that protrudes toward the outer periphery.
  • a deformed structure in which the circumferential width dimension of the skeleton cross section is increased at the intermediate portion in the radial direction of the stent and gradually decreases toward both the outer peripheral side and the inner peripheral side that is, for example, a rhombic cross section or a circular shape.
  • a cross section or an elliptical cross section is also possible. This makes it possible to concentrate the pressing force on the blood vessel on the outer peripheral surface of the skeleton while suppressing mutual interference in the circumferential direction at the inner peripheral ends of the skeletons adjacent to each other in the circumferential direction, which tends to be an obstacle when the stent is reduced in diameter. Therefore, it is possible to improve positioning performance and blood vessel expansion performance.
  • a stent may be manufactured by using an etching technique instead of the laser cutting or electroforming described above.
  • the etching technique include the following techniques.
  • a molded base having the desired stent shape and size is prepared.
  • a corrosion-resistant mask is given in the shape corresponding to each some annular part and link part, and the non-masked part exposes a shaping
  • a polishing liquid composed of strong acid, strong alkali, strong oxidizing agent, etc., and the unmasked portion of the molding base is corroded and dissolved to obtain a stent having the target structure as described above. Can do.
  • a skeleton can be formed by appropriately combining laser cutting, electroforming, and etching. For example, a skeleton formed by electroforming can be partially etched.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 Provided is a stent having a novel structure, whereby the performance, etc., of the stent can be adjusted with an even greater degree of freedom of design in accordance with the location at which stenosis occurs in the lumen in which the stent is placed, the state of the stenosis location, etc. Also provided is a stent having a novel structure, whereby a shape corresponding to a lumen such as a blood vessel can be realized with good yield. A stent (32) placed in a body lumen and having a cylindrical shape formed by a structure of a radially expandable skeleton (18, 19), the skeleton (18, 19) having a heteromorphic structure due to variation of the cross-sectional shape thereof in the thickness direction. A stent (10) placed in a body lumen and configured so as to be radially expandable, the stent (10) having a heteromorphic cylindrical shape, the cross-sectional shape of which varies in the length direction, and having a metal-made skeleton (18, 19) formed by electroforming and/or etching.

Description

ステントStent
 本発明は、血管等の体内管腔へ挿入されて留置されるステントに関するものである。 The present invention relates to a stent that is inserted and placed in a body lumen such as a blood vessel.
 従来から、血管等の管腔に狭窄や閉塞などの異常が発生した場合に、例えば管腔内へステントを挿入して管腔を広げた状態に保持するステント治療が行われている。ステントは、全体として筒形状とされており、管腔へ挿入する際には小径とされるが、管腔内で拡径されて留置される。ステントの管腔内での拡径方法としては、バルーンによる拡張の他、形状記憶材料等による自己拡張や、機械的拡張などがある。 Conventionally, when an abnormality such as stenosis or occlusion occurs in a lumen of a blood vessel or the like, for example, a stent treatment is performed in which a stent is inserted into the lumen and the lumen is held in an expanded state. The stent has a cylindrical shape as a whole, and has a small diameter when inserted into a lumen, but is expanded and placed in the lumen. As a method for expanding the diameter of the stent in the lumen, there are self-expansion using a shape memory material and the like, mechanical expansion, and the like in addition to expansion using a balloon.
 そして、ステントは、上述のように拡縮変形を可能にすると共に、生体への負担軽減や生体融合性の向上などを考慮して、周壁部分に多くの貫通孔が設けられた多孔構造や線状に繋がったストラット構造とされている。具体的には、例えば特開2007-267844号公報(特許文献1)等に記載されているように、ステンレスや白金等の金属製チューブを適切な長さに切断すると共に、その周壁に対してレーザー加工で貫通孔やストラットを形成することによって、ストラットの断面形状が単純な矩形状とされたステントが構成されている。 The stent can be expanded and contracted as described above, and has a porous structure or a linear shape in which a large number of through holes are provided in the peripheral wall portion in consideration of reducing the burden on the living body and improving biofusion. The strut structure is connected to Specifically, as described in, for example, Japanese Patent Application Laid-Open No. 2007-267844 (Patent Document 1) and the like, a metal tube such as stainless steel or platinum is cut into an appropriate length, and the peripheral wall is cut. By forming through holes and struts by laser processing, a stent having a simple rectangular cross-sectional shape is formed.
 しかしながら、ストラットが単純な矩形状断面とされた従来構造のステントでは、各患者への適合性などを考慮した対応を実現するための設計自由度も未だ十分に得られ難く、医療現場における要求特性に対して十分に対応できるとは言い難かった。 However, with a conventional structure with struts having a simple rectangular cross-section, it is still difficult to obtain sufficient design flexibility to realize compatibility with each patient, and required characteristics in the medical field. It was hard to say that I was able to respond sufficiently.
 具体的には、例えば動脈硬化症の患者の狭窄部位に従来構造のステントを留置してステント治療を行うと、ステント留置直後は血管の拡張状態が維持されるものの、術後数週~数か月後には血栓がステントに付着することにより、ステントの留置位置で血管が再狭窄する場合があった。再狭窄の有無や程度は狭窄の生じる部位や当該狭窄部位の状態、患者等によっても異なり、その改善や対応が、従来構造のステントでは難しかったのである。 Specifically, for example, when a stent with a conventional structure is placed in a stenotic site of an arteriosclerotic patient and the stent treatment is performed, the expanded state of the blood vessel is maintained immediately after placement of the stent. After a month, blood vessels may restenect at the indwelling position of the stent due to adhesion of thrombus to the stent. The presence or absence or degree of restenosis varies depending on the site where the stenosis occurs, the state of the stenosis site, the patient, etc., and it has been difficult to improve and cope with the conventional stent.
 また一方、ステントをバルーン等で拡張させて血管内に留置する際に、ステントが血管内で長さ方向に位置ずれしてしまう場合があった。血管内でのステントの位置ずれの有無や程度も、ステントが留置される部位や状態、患者等によって異なることから、その改善や対応が、従来構造のステントでは難しかったのである。 On the other hand, when the stent is expanded with a balloon or the like and placed in the blood vessel, the stent may be displaced in the longitudinal direction in the blood vessel. The presence / absence and extent of stent misalignment in the blood vessel also varies depending on the site and state of the stent, the patient, and the like, and it has been difficult to improve and cope with the stent with the conventional structure.
 さらに、このような従来構造のステントでは、素管である金属製チューブが単純なストレートの円筒形状とされていることから、血管等の管腔における留置部位に対応した形状とすることが難しかった。それ故、管腔において、例えばテーパ状に内径寸法が変化している部位や、バイファーケーション等の分岐部位では、管腔の形状に精度良く適合したステントを準備し難いという問題があった。 Furthermore, in such a stent having a conventional structure, since the metal tube as a raw tube has a simple straight cylindrical shape, it is difficult to form a shape corresponding to an indwelling site in a lumen such as a blood vessel. . Therefore, there is a problem that it is difficult to prepare a stent that accurately matches the shape of the lumen in a lumen, for example, in a portion where the inner diameter dimension changes in a tapered shape or a branch portion such as a bifurcation.
 しかも、素管にレーザー加工を施して貫通孔やストラットを形成する際に、切除される領域が多くなると歩留りも悪いという問題があった。なお、歩留りを向上させるために、小径の円筒形状の素管をレーザー加工して得たステントを、縮径させて管腔内に挿入してから、初期の素管径より大きく拡径して留置することも考えられるが、拡径状態で歪や残留応力が大きくなり安定した形状や耐久性を得難くなるおそれがあった。 Moreover, when forming the through holes and struts by applying laser processing to the tube, there is a problem that the yield is poor when the area to be excised is large. In order to improve the yield, a stent obtained by laser processing of a small-diameter cylindrical tube is reduced in diameter and inserted into the lumen, and then expanded to a diameter larger than the initial tube diameter. Although it is conceivable to indwell, there is a possibility that strain and residual stress increase in a diameter-expanded state and it becomes difficult to obtain a stable shape and durability.
 また、レーザー加工を施した部位には、バリ状の粗さが発生し易く、化学的または機械的な後処理が必要になることから、製造が複雑になると共に、後処理の精度管理なども難しいという問題があった。 In addition, since the burr-like roughness tends to occur in the laser-processed part and chemical or mechanical post-processing is required, the manufacturing becomes complicated and the accuracy control of the post-processing is also performed. There was a problem that it was difficult.
特開2007-267844号公報JP 2007-267844 A
 本発明は、上述の事情を背景に為されたものであって、請求項1に記載の発明の解決課題とするところは、ステントが留置される管腔内の狭窄が生じる部位や当該狭窄部位の状態などに応じてステントの性能等を一層大きな設計自由度をもって調節することのできる、新規な構造のステントを提供することにある。 The present invention has been made in the background of the above-mentioned circumstances, and a problem to be solved by the invention according to claim 1 is that a stenosis site or a stenosis site in a lumen where a stent is placed is generated. It is an object of the present invention to provide a stent having a novel structure capable of adjusting the performance and the like of the stent with a greater degree of design freedom in accordance with the state of the above.
 また、請求項5に記載の発明の解決課題は、血管等の管腔に対応した形状が、良好な歩留りをもって実現可能とされる、新規な構造のステントを提供することにある。 The problem to be solved by the invention described in claim 5 is to provide a stent having a novel structure in which a shape corresponding to a lumen such as a blood vessel can be realized with a good yield.
 本発明の第1の態様は、径方向で拡縮可能な骨格の構造により筒状とされて体内管腔に留置されるステントであって、前記骨格が断面形状の厚さ方向における変化によって異形構造とされていることを、特徴とする。 A first aspect of the present invention is a stent that is formed into a cylindrical shape by a structure of a skeleton that can be expanded and contracted in a radial direction, and is placed in a body lumen, and the skeleton is deformed by a change in the thickness direction of a cross-sectional shape It is said that it is said.
 本態様に従う構造とされたステントでは、骨格の断面形状を、従来の単純な矩形断面形状から異ならせることにより、ステントが留置される管腔内の狭窄が生じる部位や当該狭窄部位の状態などに応じてステントの性能等を大きな設計自由度をもって且つ効率的に調節することが可能になる。 In the stent having the structure according to this aspect, the skeleton has a cross-sectional shape different from a conventional simple rectangular cross-sectional shape, so that the stenosis occurs in the lumen where the stent is placed, the state of the stenosis, or the like. Accordingly, the stent performance and the like can be adjusted efficiently with a large degree of design freedom.
 本発明の第2の態様は、第1の態様に係るステントであって、前記骨格の断面形状において、内周面から外周面に向かって幅寸法が大きくされているものである。 A second aspect of the present invention is the stent according to the first aspect, wherein the width dimension is increased from the inner peripheral surface toward the outer peripheral surface in the cross-sectional shape of the skeleton.
 本態様に従う構造とされたステントでは、単純な矩形断面とされた骨格を有する従来構造のステントに比べて、血液等の管腔内の流体に晒される部分の断面幅寸法を小さくすることができる。これにより、血管等の管腔内におけるステントの留置位置において、従来構造のステントに比べて血液等が流れやすくなり、血液等の淀みや乱流が抑えられる。その結果、血栓の形成、および血栓がステントに付着してステントの留置位置において血管が再狭窄してしまう等の不具合が効果的に回避され得る。 In the stent having the structure according to the present aspect, the cross-sectional width dimension of the portion exposed to the fluid in the lumen such as blood can be reduced as compared with the stent having the conventional structure having a skeleton having a simple rectangular cross section. . As a result, blood or the like can flow more easily in the placement position of the stent in the lumen of a blood vessel or the like than a stent having a conventional structure, and stagnation or turbulence of blood or the like can be suppressed. As a result, troubles such as formation of thrombus and restenosis of the blood vessel at the indwelling position of the stent due to the attachment of the thrombus to the stent can be effectively avoided.
 また、ステントの外周面では、骨格の断面幅寸法が周方向で比較的大きく確保されることから血管等の管腔内面への押付力が分散され得て、局所的な力の集中に起因する管腔壁の亀裂の発生を抑えることができると共に、管腔壁に発生した亀裂の治癒期間の短縮も図られ得る。これにより、例えば血管の亀裂部位における血管内皮細胞の肥大化に起因する再狭窄が効果的に抑えられる。仮に血管内皮細胞が肥大化しても、ステントの内周面側では、断面幅寸法が小さくされた骨格間で比較的に大きな隙間が設けられていることにより、血管内皮細胞がステント内周面から更に内方に向って肥大化することが抑えられて、血管の再狭窄に対して更なる抑制効果が発揮される。 In addition, since the cross-sectional width of the skeleton is relatively large in the circumferential direction on the outer peripheral surface of the stent, the pressing force on the inner surface of the lumen such as a blood vessel can be dispersed, resulting in local force concentration. The occurrence of cracks in the lumen wall can be suppressed, and the healing period of the cracks generated in the lumen wall can be shortened. Thereby, for example, restenosis caused by enlargement of vascular endothelial cells in a cracked portion of the blood vessel can be effectively suppressed. Even if the vascular endothelial cells are enlarged, a relatively large gap is provided between the skeletons having a reduced cross-sectional width on the inner peripheral surface side of the stent, so that the vascular endothelial cells are separated from the inner peripheral surface of the stent. Further, the enlargement toward the inside is suppressed, and a further inhibitory effect is exerted on the restenosis of the blood vessel.
 さらに、本態様に従う構造とされたステントでは、骨格断面における周方向幅寸法が内周側に向って小さくされていることから、デリバリ用カテーテルに装着されて縮径される際に、周方向で隣り合う骨格同士が、周長の小さい内周側で相互に当接してしまって縮径量が制限されてしまう問題が解消される。それ故、骨格の断面積を確保して要求強度等を実現しつつ、縮径可能寸法を十分に小さく設定してデリバリ性能を向上させることが可能になる。 Further, in the stent having the structure according to the present aspect, the circumferential width dimension in the skeleton cross section is reduced toward the inner peripheral side, so that when the diameter is reduced by being attached to the delivery catheter, The problem that adjacent skeletons contact each other on the inner peripheral side having a small peripheral length and the amount of diameter reduction is limited is solved. Therefore, while ensuring the cross-sectional area of the skeleton and realizing the required strength and the like, it is possible to improve the delivery performance by setting the size capable of reducing the diameter sufficiently small.
 なお、本態様におけるステントでは、骨格の断面形状は内周面から外周面に向かって幅寸法が大きくされていれば何等限定されるものではないが、特に概逆三角形とされることが好適であり、より好適には概逆二等辺三角形の断面形状とされる。 In the stent according to this aspect, the cross-sectional shape of the skeleton is not particularly limited as long as the width dimension is increased from the inner peripheral surface toward the outer peripheral surface, but it is particularly preferable that the skeleton is an approximately inverted triangle. More preferably, the cross-sectional shape is an approximately inverted isosceles triangle.
 本発明の第3の態様は、第1又は第2の態様に係るステントにおいて、前記骨格の断面形状において、周方向両側面の夾角が、外周面の円弧における中心角よりも大きくされているものである。 According to a third aspect of the present invention, in the stent according to the first or second aspect, in the cross-sectional shape of the skeleton, the included angles on both sides in the circumferential direction are made larger than the central angle in the arc of the outer peripheral surface. It is.
 本態様に従う構造のステントでは、縮径前の状態で、骨格断面における周方向両側面が、径方向線よりも内周側に向って相互に接近する方向に入り込むようにされる。それ故、縮径された際にも、周方向で隣り合う骨格同士が、内周側で早期に当接してしまって縮径量が制限されてしまうことが回避されることとなる。その結果、ステント外周面における骨格の周方向長さを確保して血管等への局所的な押付力の作用を回避しつつ、一層小さな径寸法まで縮径変形可能なステントが実現可能になる。 In the stent having the structure according to this aspect, both side surfaces in the circumferential direction of the skeleton cross-section enter a direction approaching each other toward the inner circumferential side rather than the radial line in a state before the diameter reduction. Therefore, even when the diameter is reduced, it is avoided that the skeletons adjacent in the circumferential direction come into contact with each other on the inner circumference side at an early stage and the amount of diameter reduction is limited. As a result, it is possible to realize a stent that can be deformed to a smaller diameter while ensuring the circumferential length of the skeleton on the outer peripheral surface of the stent and avoiding the action of a local pressing force on a blood vessel or the like.
 本発明の第4の態様は、第1~第3の何れかの態様に係るステントにおいて、前記骨格が、電鋳とエッチングの少なくとも一方で形成された金属製の骨格とされているものである。 According to a fourth aspect of the present invention, in the stent according to any one of the first to third aspects, the skeleton is a metal skeleton formed by at least one of electroforming and etching. .
 本態様に従う構造とされたステントでは、骨格が電鋳やエッチングで形成されていることにより、管腔の形状に当初から対応した形状とされる。従って、レーザー加工により製造されるステントに比べて切除される部分を少なくすることができて、良好な歩留りをもってステントが製造され得る。 In the stent having the structure according to this aspect, the skeleton is formed by electroforming or etching, so that the shape corresponds to the shape of the lumen from the beginning. Therefore, the portion to be excised can be reduced as compared with the stent manufactured by laser processing, and the stent can be manufactured with a good yield.
 また、後述する第8の態様と組み合わせることにより、端部における剛性の調節が、厚さ寸法を大きくしたり材質を異ならせることなどによって実現され得る。更に、後述する第11の態様と組み合わせることで、電鋳やエッチングにより脆弱部を骨格の他の部分と同時に形成することができて、脆弱部を後加工の必要なく、高度な寸法精度で設けることが可能になる。 Also, by combining with the eighth aspect described later, the adjustment of the rigidity at the end can be realized by increasing the thickness dimension or changing the material. Furthermore, by combining with the eleventh aspect to be described later, the fragile portion can be formed simultaneously with other portions of the skeleton by electroforming or etching, and the fragile portion is provided with high dimensional accuracy without the need for post-processing. It becomes possible.
 本発明の第5の態様は、径方向で拡縮可能とされて体内管腔に留置されるステントであって、断面形状が長さ方向で変化している異形筒形状を有しており、且つ、電鋳とエッチングの少なくとも一方で形成された金属製の骨格を有していることを、特徴とする。 A fifth aspect of the present invention is a stent that can be expanded and contracted in the radial direction and is placed in a body lumen, and has a deformed cylindrical shape whose cross-sectional shape changes in the length direction, and It has a metal skeleton formed by at least one of electroforming and etching.
 本態様に従う構造とされたステントでは、従来構造の素管をレーザー加工して得られたものと異なり、電鋳やエッチングで形成された骨格によって、管腔の形状に当初から対応した形状を与えられる。従って、従来構造のレーザー加工によるステントに比べて切除される部分を少なくすることができて、良好な歩留りをもってステントが製造され得る。 Unlike the stent obtained by laser processing a conventional elemental tube, the stent according to this embodiment gives a shape corresponding to the shape of the lumen from the beginning by a skeleton formed by electroforming or etching. It is done. Therefore, the portion to be excised can be reduced as compared with the conventional laser-processed stent, and the stent can be manufactured with a good yield.
 それ故、血管等の異形状の管腔へ留置される場合でも、管腔に精度良く対応した形状が実現されて、施術者にとって手技の労力負担が軽減されると共に、患者にとって生体への負担等が軽減される。また、管腔に対応した形状で留置されたステント自体においても、歪や残留応力が軽減されて、良好な形状安定性や耐久性が実現可能になる。 Therefore, even when placed in an irregularly shaped lumen such as a blood vessel, the shape corresponding to the lumen is realized with high accuracy, reducing the labor burden of the procedure for the practitioner and the burden on the living body for the patient. Etc. are reduced. Further, even in the stent itself placed in a shape corresponding to the lumen, distortion and residual stress are reduced, and good shape stability and durability can be realized.
 本発明の第6の態様は、第5の態様に係るステントにおいて、分岐部が設けられて筒部の数が長さ方向で変化した異形筒形状とされているものである。 A sixth aspect of the present invention is a stent according to the fifth aspect, wherein a branched portion is provided and the number of tubular portions is changed in the length direction.
 本態様に従う構造とされたステントでは、血管等の管腔におけるバイファーケーションなどの分岐部分へ容易に適用することのできるステントが実現され得る。 In the stent having the structure according to this aspect, a stent that can be easily applied to a bifurcation portion such as a bifurcation in a lumen such as a blood vessel can be realized.
 本発明の第7の態様は、第5又は第6の態様に係るステントにおいて、長さ方向で径寸法が変化した異形筒形状とされているものである。 A seventh aspect of the present invention is a stent according to the fifth or sixth aspect, wherein the stent has a deformed cylindrical shape whose diameter is changed in the length direction.
 本態様に従う構造とされたステントでは、血管等の管腔において内径が長さ方向で変化しているような部位へ良好に適用することのできるステントが実現され得る。なお、本態様のステントは、第6の態様と組み合わされることにより、分岐部を有するステントにおいて少なくとも一つの筒部がテーパ筒形状等とされることも可能である。 In the stent having the structure according to this aspect, a stent that can be applied satisfactorily to a site where the inner diameter changes in the length direction in a lumen such as a blood vessel can be realized. In addition, the stent of this mode can be combined with the sixth mode, so that at least one tube portion of the stent having a branch portion can have a tapered tube shape or the like.
 本発明の第8の態様は、第1~第7の何れかの態様に係るステントにおいて、軸方向の少なくとも一方の端部における剛性が中央部分よりも大きいものである。 According to an eighth aspect of the present invention, in the stent according to any one of the first to seventh aspects, rigidity at at least one end in the axial direction is greater than that of the central portion.
 本態様に従う構造とされたステントでは、例えば電鋳で形成されている場合には、長さ方向の特定部分の厚さ寸法を大きくしたり材質を異ならせることなどによって、剛性を調節することが可能となる。特に本態様のステントでは、構造上の理由から変形し易い軸方向端部の剛性が大きくされることで、例えば管腔に留置された状態で軸方向端部が管腔から離れるなどして再狭窄の原因となることも効果的に防止され得る。 In the case of a stent having a structure according to this aspect, for example, when it is formed by electroforming, the rigidity can be adjusted by increasing the thickness dimension of a specific portion in the length direction or changing the material. It becomes possible. In particular, in the stent of this aspect, the rigidity of the axial end portion that is easily deformed is increased for structural reasons, so that the axial end portion is separated from the lumen while being placed in the lumen. It can also be effectively prevented from causing stenosis.
 すなわち、例えば血管に留置された状態で軸方向端部が当該血管から離れることにより、血流の乱れが惹起されて血栓が形成されるおそれが向上することから、ステントの軸方向端部の剛性を大きくして安定して血管内に留置することにより、ステント留置位置における再狭窄が効果的に防止され得る。 That is, the rigidity of the axial end of the stent is improved because, for example, when the axial end of the stent is left in the blood vessel, the blood flow is disturbed and a thrombus is formed. By enlarging and stably indwelling in the blood vessel, restenosis at the stent indwelling position can be effectively prevented.
 本発明の第9の態様は、第8の態様に係るステントであって、前記中央部分に比べて剛性が大きくされた前記端部が、軸方向外側の末端部分において、剛性を小さくされているものである。 A ninth aspect of the present invention is the stent according to the eighth aspect, wherein the end portion whose rigidity is increased as compared with the central portion is reduced in rigidity at the end portion on the axially outer side. Is.
 本態様に従う構造とされたステントでは、ステントの端部における末端部分の剛性が小さくされていることから、ステントの末端部分が管腔に及ぼす負荷を抑えることができる。なお、骨格が金属で形成される場合には、かかる末端部分における剛性の調節は、ステントの末端部分のみを柔らかい金属で形成したり、肉厚寸法や幅寸法を小さくしたりすることで実現され得る。また、好適には、末端部分の剛性が中央部分と略同じか、またはそれより小さく設定される。 In the stent having the structure according to this aspect, since the rigidity of the end portion at the end of the stent is reduced, the load exerted on the lumen by the end portion of the stent can be suppressed. When the skeleton is made of metal, the rigidity adjustment at the end portion is realized by forming only the end portion of the stent with a soft metal, or by reducing the thickness or width. obtain. Preferably, the rigidity of the end portion is set to be substantially the same as or smaller than that of the central portion.
 本発明の第10の態様は、第1~第9の何れかの態様に係るステントにおいて、前記骨格が、複数種類の金属の積層構造とされているものである。 A tenth aspect of the present invention is the stent according to any one of the first to ninth aspects, wherein the skeleton has a laminated structure of a plurality of types of metals.
 本態様に従う構造とされたステントでは、複数種類の金属の積層構造を、例えば電鋳により形成することが可能となる。例えば、コア層よりも表層の方が延性の大きい金属材を採用することで、コア層でステント強度を確保しつつステントの拡縮や変形に際しての表面の応力を緩和してクラック等の発生を防止することも可能となる。また、コア層よりも表層の方がイオン化傾向が小さい金属材を採用することで、コア層で要求強度特性を確保しつつ、表層によって生体親和性やX線不透過性等を実現することも可能となる。なお、本態様では、骨格の少なくとも一部が積層構造とされていれば良く、骨格の全体が積層構造とされている必要はない。 In a stent having a structure according to this aspect, a laminated structure of a plurality of types of metals can be formed by, for example, electroforming. For example, by adopting a metal material whose surface layer is more ductile than the core layer, the core layer ensures the strength of the stent while relaxing the stress on the surface when the stent expands or contracts and prevents cracks from occurring It is also possible to do. In addition, by adopting a metal material with a smaller ionization tendency in the surface layer than in the core layer, it is possible to achieve biocompatibility, radiopacity, etc. by the surface layer while ensuring the required strength characteristics in the core layer. It becomes possible. In this embodiment, it is sufficient that at least a part of the skeleton has a laminated structure, and the entire skeleton does not have to have a laminated structure.
 本発明の第11の態様は、第1~第10の何れかの態様に係るステントにおいて、前記骨格には、部分的に強度が小さくされた脆弱部が電鋳とエッチングの少なくとも一方によって形成されているものである。 According to an eleventh aspect of the present invention, in the stent according to any one of the first to tenth aspects, a weakened portion partially reduced in strength is formed in the skeleton by at least one of electroforming and etching. It is what.
 本態様に従う構造とされたステントでは、骨格に脆弱部を設けることで、例えば留置後に分断されて管腔形状に沿ったステント形状を得ることや、留置処置に際して切ったり変形させたりして分岐用開口部を手技で形成することが容易に実現され得る。 In a stent having a structure according to this aspect, by providing a weakened portion in the skeleton, for example, it is divided after placement to obtain a stent shape that conforms to the lumen shape, or is cut or deformed during placement treatment for branching. Forming the opening by a technique can be easily realized.
 特に、かかる脆弱部を電鋳やエッチングによって形成することにより、骨格における他の部分と別体で作製して後固着する等という面倒な操作を必要とすることがなく、高度な寸法精度で設けることが可能になる。また、脆弱部の位置や形状を任意に設定することができて、設計自由度の向上が図られ得る。 In particular, by forming such a fragile portion by electroforming or etching, it is possible to provide it with a high degree of dimensional accuracy without the need for troublesome operations such as making it separately from other parts of the skeleton and fixing it later. It becomes possible. In addition, the position and shape of the fragile portion can be arbitrarily set, and the degree of freedom in design can be improved.
 本発明の第12の態様は、第11の態様に係るステントにおいて、前記脆弱部が前記骨格における他の部分よりも小さな断面積で変形容易とされているものである。 In a twelfth aspect of the present invention, in the stent according to the eleventh aspect, the fragile portion is easily deformed with a smaller cross-sectional area than other portions of the skeleton.
 本態様に従う構造とされたステントでは、脆弱部を骨格における他の部分よりも、例えば薄く形成してステントの屈曲を更に容易にすることで、脆弱部が安定して切断される。特に、脆弱部が電鋳により形成される場合には、例えば脆弱部のみの厚さ方向における薄肉化や材質の変更等が可能となる。 In the stent having the structure according to this aspect, the fragile portion is stably cut by forming the fragile portion thinner than other portions of the skeleton, for example, to further facilitate the bending of the stent. In particular, when the fragile portion is formed by electroforming, for example, it is possible to reduce the thickness of the fragile portion only in the thickness direction, change the material, or the like.
 本発明の第13の態様は、第1~第12の何れかの態様に係るステントにおいて、骨格には、表面に凹所が設けられているものである。 A thirteenth aspect of the present invention is the stent according to any one of the first to twelfth aspects, wherein the skeleton is provided with a recess on the surface.
 本態様に従う構造とされたステントでは、例えば電鋳で形成されている場合には、骨格の表面に対して凹所を成形と同時に設けたり、凸所を成形と同時に設けて相対的に凹所を設けることが可能となる。そして、表面の凹凸構造によって、例えば管腔の表面に対する位置決め性能を向上させたり、凹所に薬剤を保持させて管腔内へ留置することも可能となる。なお、本態様における凹所は、筒形状とされた周壁の内周面と外周面の何れの表面にも形成され得る。また、本態様における凹所は、有底形状だけでなく、電鋳やエッチング等により形成される貫通孔であってもよい。 In the case of a stent having a structure according to this aspect, for example, when formed by electroforming, a recess is provided at the same time as molding on the surface of the skeleton, or a convex is provided at the same time as molding, so that a relatively concave Can be provided. The surface uneven structure can improve the positioning performance with respect to the surface of the lumen, for example, or can retain the medicine in the recess and place it in the lumen. In addition, the recessed part in this aspect can be formed in any surface of the internal peripheral surface and outer peripheral surface of the surrounding wall made into the cylinder shape. Moreover, the recess in this aspect may be not only a bottomed shape but also a through hole formed by electroforming, etching, or the like.
 また、本態様における凹所のサイズは、開口寸法が10~30μm程度とされることが望ましく、それによって、患者の異物感が一層低減されると共に、ステントの強度等への悪影響も可及的に回避される。 In addition, it is desirable that the size of the recess in this aspect is an opening size of about 10 to 30 μm, thereby further reducing the patient's feeling of foreign objects and adversely affecting the strength of the stent as much as possible. To be avoided.
 本発明の第14の態様は、第1~第13の何れかの態様に係るステントにおいて、前記骨格が、内周面から外周面に向かって幅寸法が変化する断面形状とされているものである。 A fourteenth aspect of the present invention is the stent according to any one of the first to thirteenth aspects, wherein the skeleton has a cross-sectional shape whose width dimension changes from the inner peripheral surface toward the outer peripheral surface. is there.
 本態様に従う構造とされたステントでは、例えば生体に押し付けられるステント周壁の外周面や血流などに晒されるステント周壁の内周面等の形状の設計自由度が向上される。 In the stent having the structure according to this aspect, for example, the design freedom of the shape of the outer peripheral surface of the stent peripheral wall pressed against the living body, the inner peripheral surface of the stent peripheral wall exposed to blood flow, and the like is improved.
 請求項1に記載の発明によれば、従来の単純な矩形断面形状のステントに比べて、設計自由度が大きく向上しており、それによって、例えば患者に応じた、或いは症状に応じたステントを製造することができる。 According to the first aspect of the present invention, the degree of freedom in design is greatly improved as compared to a conventional stent having a simple rectangular cross-sectional shape, whereby, for example, a stent corresponding to a patient or a symptom can be provided. Can be manufactured.
 特に、請求項1に記載の発明では、例えばステントの骨格における断面形状を概逆三角形とすることによって、従来の単純な矩形断面とされたステントに比べて管腔内に突出する部分を小さくすることができて、管腔内の流体の乱流が抑制され得る。更に、血管内にステントが留置される場合には、乱流に伴う血栓の形成が回避されて、血栓がステントに付着することに伴うステント留置位置での血管の再狭窄のおそれが低減され得る。また、デリバリ用のカテーテル等にステントを縮径して装着する際には、従来のステントに比べて更に縮径することが可能となり、デリバリ性の向上が図られ得る。 In particular, in the first aspect of the present invention, for example, by making the cross-sectional shape of the skeleton of the stent an approximately inverted triangle, the portion protruding into the lumen is made smaller than a conventional simple rectangular cross-section stent. And turbulence of fluid in the lumen can be suppressed. Furthermore, when a stent is placed in a blood vessel, the formation of a thrombus associated with turbulent flow is avoided, and the risk of blood vessel restenosis at the stent placement position associated with the attachment of the thrombus to the stent may be reduced. . Further, when the stent is mounted with a reduced diameter on a delivery catheter or the like, the diameter can be further reduced as compared with a conventional stent, and the delivery performance can be improved.
 また、請求項5に記載の発明に従う構造とされたステントでは、例えば電鋳やエッチングで形成された骨格によって異形状が与えられる場合には、例えば血管の分岐部分などに対しても当初から対応した形状でステントを得ることができる。そして、血管等の管腔に精度良く対応したステント形状とされることで、施術も容易になると共に、生体への適合性も向上し、留置されたステント自体の歪や残留応力も軽減され得る。また、従来のレーザー加工によるステントに比べて、切除される部分が少なくされることから、良好な歩留りをもってステントが形成され得る。 Further, in the stent having the structure according to the invention described in claim 5, for example, when an irregular shape is given by a skeleton formed by electroforming or etching, for example, it corresponds to a branch portion of a blood vessel from the beginning. A stent can be obtained in the shape obtained. In addition, since the stent shape accurately corresponds to the lumen of a blood vessel or the like, the treatment is facilitated, compatibility with a living body is improved, and strain and residual stress of the placed stent itself can be reduced. . In addition, since a portion to be excised is reduced as compared with a conventional laser-processed stent, the stent can be formed with a good yield.
本発明の第1の実施形態としてのステントの全体形状を示す正面図。The front view which shows the whole shape of the stent as the 1st Embodiment of this invention. 本発明の第2の実施形態としてのステントの全体形状を示す正面図。The front view which shows the whole shape of the stent as the 2nd Embodiment of this invention. 本発明の第3の実施形態としてのステントの全体形状を示す正面図。The front view which shows the whole shape of the stent as the 3rd Embodiment of this invention. 本発明のステントにおいて採用可能な骨格の具体例を示す断面図であって、概三角形状(a)と概逆三角形状(b)を示す図。It is sectional drawing which shows the specific example of the frame | skeleton employable in the stent of this invention, Comprising: The figure which shows a substantially triangular shape (a) and a substantially inverted triangular shape (b). 本発明のステントにおいて採用可能な脆弱部の位置を概略的に示す説明図。Explanatory drawing which shows schematically the position of the weak part employable in the stent of this invention. 本発明のステントにおいて好適な脆弱部の位置を概略的に示す説明図。Explanatory drawing which shows schematically the position of the suitable weak part in the stent of this invention. 本発明の第4の実施形態としてのステントの成形状態における全体形状を示す正面図。The front view which shows the whole shape in the shaping | molding state of the stent as the 4th Embodiment of this invention. (a)は図7に示されたステントにおける軸直角方向の断面を拡大して示す斜視図であって、(b)は(a)の軸方向視における要部拡大図。(A) is a perspective view which expands and shows the cross section of the axis-perpendicular direction in the stent shown by FIG. 7, (b) is a principal part enlarged view in the axial direction view of (a). 図4(b)に示される骨格の断面図における外周面の中心角と周方向両側面の夾角との大きさを説明するための説明図。Explanatory drawing for demonstrating the magnitude | size of the center angle of the outer peripheral surface and the depression angle of the circumferential direction both sides in sectional drawing of the frame | skeleton shown by FIG.4 (b). 図7に示されるステントの縮径状態の要部を説明するための説明図。Explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. (a)は図10に示されるステントの縮径状態における軸方向視図であって、(b)は(a)の要部を拡大して示す説明図。(A) is an axial view in the diameter-reduced state of the stent shown by FIG. 10, Comprising: (b) is explanatory drawing which expands and shows the principal part of (a). 本発明の第5の実施形態としてのステントの全体形状を示す正面図。The front view which shows the whole shape of the stent as the 5th Embodiment of this invention. 本発明の第6の実施形態としてのステントの全体形状を示す正面図。The front view which shows the whole shape of the stent as the 6th Embodiment of this invention. 本発明の実施例としてのステントを示す説明図であって、図8に対応する図。It is explanatory drawing which shows the stent as an Example of this invention, Comprising: The figure corresponding to FIG. 本発明の比較例としてのステントを示す説明図であって、図8に対応する図。It is explanatory drawing which shows the stent as a comparative example of this invention, Comprising: The figure corresponding to FIG. 図14に示されるステントの縮径状態の要部を説明するための説明図であって、図10に対応する図。It is explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. 14, Comprising: The figure corresponding to FIG. 図16に示されるステントの縮径状態の要部を説明するための説明図であって、図11に対応する図。It is explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. 16, Comprising: The figure corresponding to FIG. 図15に示されるステントの縮径状態の要部を説明するための説明図であって、図10に対応する図。It is explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. 15, Comprising: The figure corresponding to FIG. 図18に示されるステントの縮径状態の要部を説明するための説明図であって、図11に対応する図。It is explanatory drawing for demonstrating the principal part of the diameter-reduced state of the stent shown by FIG. 18, Comprising: The figure corresponding to FIG. 本発明の実施例として図7に示されるステントを使用して流れ速度を確認した結果を説明するための説明図であって、(a)は血管壁面近傍の速度分布をベクトルで示しており、(b)は血管壁面近傍の速度分布を面で示している。It is explanatory drawing for demonstrating the result of having confirmed the flow velocity using the stent shown in FIG. 7 as an Example of this invention, Comprising: (a) has shown the velocity distribution near the blood vessel wall surface with a vector, (B) shows the velocity distribution in the vicinity of the blood vessel wall surface. 本発明の別の実施例として図14に示されるステントを使用して流れ速度を確認した結果を説明するための説明図であって、図20に対応する図。It is explanatory drawing for demonstrating the result of having confirmed the flow velocity using the stent shown by FIG. 14 as another Example of this invention, Comprising: The figure corresponding to FIG. 本発明の比較例として図15に示されるステントを使用して流れ速度を確認した結果を説明するための説明図であって、図20に対応する図。It is explanatory drawing for demonstrating the result of having confirmed the flow velocity using the stent shown by FIG. 15 as a comparative example of this invention, Comprising: The figure corresponding to FIG. 本発明のステントにおいて採用可能な凹所の構造例を示す正面拡大図。The front enlarged view which shows the structural example of the recess employable in the stent of this invention.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 先ず、図1には、本発明の第1の実施形態としてのステント10が、収縮や拡張される前の成形状態で示されている。このステント10は血管等の体内管腔の狭窄部位へデリバリされて、この狭窄部位において拡張状態で留置されることにより、体内管腔を広げた状態で維持するようにされている。なお、以下の説明において、軸方向とは図1中の上下方向を言う。 First, FIG. 1 shows a stent 10 as a first embodiment of the present invention in a molded state before being contracted or expanded. The stent 10 is delivered to a stenotic site of a body lumen such as a blood vessel and is placed in an expanded state at the stenotic site, so that the body lumen is maintained in an expanded state. In the following description, the axial direction refers to the vertical direction in FIG.
 本実施形態のステント10は、それぞれ略円筒形状で直線的に延びる基幹筒部12と分岐筒部14を備えており、基幹筒部12の長さ方向の中間部分に設けられた分岐部13から側方に傾斜して分岐筒部14が延び出すことで全体として略Y字状の分岐形状とされている。換言すれば、本実施形態のステント10では、分岐部13により長さ方向(図1中の上下方向)で筒部の数が異ならされており、即ち、ステント10は、長さ方向で断面形状が変化する異形の筒形状とされている。 The stent 10 of the present embodiment includes a trunk cylinder portion 12 and a branch cylinder portion 14 that are each substantially cylindrical and extend linearly. From the branch portion 13 provided in an intermediate portion in the length direction of the trunk cylinder portion 12. The branch cylinder part 14 is inclined to the side and extends so as to form a substantially Y-shaped branch shape as a whole. In other words, in the stent 10 of the present embodiment, the number of tube portions is different in the length direction (vertical direction in FIG. 1) by the branch portion 13, that is, the stent 10 has a cross-sectional shape in the length direction. It is an irregularly shaped cylinder shape that changes.
 基幹筒部12と分岐筒部14には、何れも、波状に湾曲又は屈曲を繰り返して周方向に連続して延びる環状部16が、軸方向で互いに所定距離を隔てて複数設けられている。これにより、基幹筒部12を構成する一連のストラット19aと分岐筒部14を構成する一連のストラット19bがそれぞれ形成されている。そして、ストラット19a,19bにおける軸方向で隣り合う環状部16,16が、略軸方向に延びるリンク部18でそれぞれ連結されることによって、所定長さの筒形状とされている。 Each of the trunk tube portion 12 and the branch tube portion 14 is provided with a plurality of annular portions 16 that are continuously bent in the circumferential direction by repeatedly curving or bending in a wavy shape with a predetermined distance from each other in the axial direction. Thereby, a series of struts 19a constituting the trunk cylinder part 12 and a series of struts 19b constituting the branch cylinder part 14 are respectively formed. And the annular parts 16 and 16 adjacent to each other in the axial direction in the struts 19a and 19b are respectively connected by the link parts 18 extending in the substantially axial direction, thereby forming a cylindrical shape having a predetermined length.
 特に本実施形態では、分岐部分において、基幹部分12を構成する環状部16と分岐筒部14を構成する環状部16とが、それら基幹筒部12と分岐筒部14の周上に連続して延びている。これにより、基幹筒部12と分岐筒部14の分岐部分において、それぞれのストラット19a,19bの一体構造が実現されて、一つながりのストラット19が構成されている。そして、かかるストラット19において、軸方向で隣り合う環状部16,16がリンク部18により連結されることで、本実施形態のステント10の骨格が構成されている。この結果、ステント10における強度や変形の自由度の向上が図られていると共に、変形に際してのストラット19の座屈等の局所的な変形の防止が図られている。 Particularly in the present embodiment, the annular portion 16 constituting the trunk portion 12 and the annular portion 16 constituting the branch cylinder portion 14 are continuously provided on the circumference of the trunk cylinder portion 12 and the branch cylinder portion 14 in the branch portion. It extends. Thereby, in the branch part of the basic cylinder part 12 and the branch cylinder part 14, the integral structure of each strut 19a, 19b is implement | achieved, and the continuous strut 19 is comprised. In the strut 19, the annular portions 16 and 16 adjacent in the axial direction are connected by the link portion 18, so that the skeleton of the stent 10 of the present embodiment is configured. As a result, the strength and the degree of freedom of deformation of the stent 10 are improved, and local deformation such as buckling of the strut 19 during deformation is prevented.
 なお、環状部16やリンク部18の具体的形状は、本発明において限定されるものでなく、ステント10に要求される特性を考慮して、環状部16の波形状や、リンク部18による連結部位、環状部16の周上でのリンク部18の数などが適宜に設定され得る。 The specific shapes of the annular portion 16 and the link portion 18 are not limited in the present invention, and the wave shape of the annular portion 16 and the connection by the link portion 18 are considered in consideration of the characteristics required for the stent 10. A part, the number of the link parts 18 on the periphery of the annular part 16, etc. can be set suitably.
 また、環状部16やリンク部18の幅寸法や厚さ寸法も、特に限定されるものでないが、環状部16を構成するストラット19としては、強度を確保する等の趣旨から30~200μm程度の幅寸法および厚さ寸法とすることが望ましく、リンク部18は、10~100μm程度の幅寸法および厚さ寸法とすることが望ましい。 Further, the width dimension and thickness dimension of the annular portion 16 and the link portion 18 are not particularly limited, but the strut 19 constituting the annular portion 16 is about 30 to 200 μm for the purpose of ensuring the strength. The width dimension and the thickness dimension are desirable, and the link portion 18 is desirably a width dimension and a thickness dimension of about 10 to 100 μm.
 そして、このような分岐形状のステント10は、ストラット19を構成する各複数の環状部16とリンク部18が電鋳により一体形成されることによって作製されている。 Then, such a branched stent 10 is manufactured by integrally forming a plurality of annular portions 16 and link portions 18 constituting the strut 19 by electroforming.
 具体的には、目的とする基幹筒部12と分岐筒部14の形状および大きさを有する成形ベースを、ステンレス等の導体で作製して準備する。そして、この成形ベースの表面において、各複数の環状部16およびリンク部18に対応する形状で露出面を形成すると共に、それ以外の領域には不導体のマスクを施す。その後、所定の金属をイオン化した電解浴槽中に浸漬して、成形ベースの露出面に金属イオンを電着させて電気鋳造を行う。所定厚さの金属を得た後、マスクを除去すると共に、成形ベースを抜き取る、或いは溶解することにより、上述の如き目的とする構造のステント10を得ることができる。 Specifically, a molded base having the shape and size of the target trunk cylinder 12 and branch cylinder 14 is prepared by using a conductor such as stainless steel. Then, an exposed surface is formed in a shape corresponding to each of the plurality of annular portions 16 and the link portions 18 on the surface of the molding base, and a non-conductive mask is applied to other regions. Then, it is immersed in an electrolytic bath in which a predetermined metal is ionized, and metal ions are electrodeposited on the exposed surface of the molding base to perform electroforming. After obtaining a metal having a predetermined thickness, the mask 10 is removed, and the molded base is removed or dissolved, whereby the stent 10 having the above-described target structure can be obtained.
 上記の如き構造とされた本実施形態のステント10は、基幹筒部12および分岐筒部14においてそれぞれの径方向で拡縮可能とされており、図1に示された収縮前の状態から所定の寸法まで機械的に縮径される。そして、使用時には、ステント10がデリバリ用のカテーテル等により、例えば血管の狭窄部位までデリバリされる。その後、ステント10は、バルーンカテーテルにより拡張されたり、ステント10が形状記憶材料で形成されている場合には、デリバリ用のカテーテルから解放することで自動的に拡張されて、図1の状態で血管等の体内管腔に留置される。 The stent 10 of the present embodiment having the above-described structure is capable of expanding and contracting in the radial direction in the trunk cylinder portion 12 and the branch cylinder portion 14, and is in a predetermined state from the state before contraction shown in FIG. 1. The diameter is mechanically reduced to the size. In use, the stent 10 is delivered to, for example, a stenosis portion of a blood vessel by a delivery catheter or the like. Thereafter, the stent 10 is expanded by a balloon catheter, or when the stent 10 is formed of a shape memory material, the stent 10 is automatically expanded by being released from the delivery catheter, and in the state shown in FIG. Etc. are placed in the body lumen.
 本実施形態のステント10は、電鋳によって作製されていることから、基幹筒部12と分岐筒部14を有する分岐形状を一体形成することができる。それ故、従来構造のようにストレートな円筒金具をレーザー加工して得られた2本のステントをつなぎ合わせて分岐形状とする場合に比して、切除される部分を少なくすることができて、歩留まりを改善することができると共に、複雑な分岐形状を精度良く得ることが可能になる。従って、生体の血管などの複雑な形状部位に対して精度良く対応したステント10が良好な歩留りをもって実現可能になる。 Since the stent 10 of the present embodiment is manufactured by electroforming, a branched shape having the trunk cylinder portion 12 and the branch cylinder portion 14 can be integrally formed. Therefore, compared to the case where two stents obtained by laser processing straight cylindrical metal fittings as in the conventional structure are joined to form a branched shape, the portion to be excised can be reduced, The yield can be improved and a complicated branch shape can be obtained with high accuracy. Therefore, it is possible to realize the stent 10 that accurately corresponds to a complicated shape portion such as a blood vessel of a living body with a good yield.
 そして、このように電鋳によって作製されることでステント10の一体成形性を確保しつつ、形状の設計自由度が大幅に向上されることから、従来構造のストレートな円筒金具をレーザー加工して得られたステントに比して、各種の異形の初期形状をもってステントを得ることが可能になる。 In addition, since it is manufactured by electroforming as described above, the degree of freedom in design of the shape is greatly improved while ensuring the integral formability of the stent 10, so that a straight cylindrical metal fitting having a conventional structure is laser processed. Compared to the obtained stent, it is possible to obtain a stent with various irregular initial shapes.
 例えば、図2に示されているように、内外径寸法が軸方向で変化するテーパ筒形状を有する本発明の第2の実施形態としてのステント20も、目的とするテーパ角度の初期形状をもって電鋳で一体形成することができる。本実施形態のステント20は、かかるテーパ形状をもって、断面形状が長さ方向で変化する異形筒形状とされている。なお、以下の説明において、前記第1の実施形態と同一の部材および部位には、図中に、前記第1の実施形態と同一の符号を付すことにより詳細な説明を省略する。 For example, as shown in FIG. 2, the stent 20 as the second embodiment of the present invention having a tapered cylindrical shape whose inner and outer diameter dimensions change in the axial direction also has an initial shape with a target taper angle. It can be integrally formed by casting. The stent 20 of the present embodiment has such a tapered shape and a deformed cylindrical shape whose cross-sectional shape changes in the length direction. In the following description, the same members and parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment in the drawings, and detailed description thereof is omitted.
 このようなステント20は、径寸法が変化する血管等へ留置するに際して、初期形状でテーパが与えられていることから、留置状態での歪や残留応力を抑えることが可能になる。 Since such a stent 20 is tapered in an initial shape when placed in a blood vessel or the like whose diameter size changes, it is possible to suppress strain and residual stress in the placed state.
 また、上述の如きステント10,20の骨格、即ちストラット19およびリンク部18は電鋳によって作製されていることから、異なる材質の積層構造とすることも可能となる。具体的には、上述のように成形ベースの表面に不導体のマスクを形成して第1回目の電鋳を行ったあと、別の金属イオンの電解浴槽中で電鋳を第2回目の電鋳を実施することで、第1回目の電鋳で形成された金属の表面に第2回目の電鋳により別の材質の金属層を形成することができる。 Further, since the skeletons of the stents 10 and 20 as described above, that is, the struts 19 and the link portions 18 are manufactured by electroforming, it is possible to have a laminated structure of different materials. Specifically, after forming a non-conductive mask on the surface of the molding base as described above and performing the first electroforming, the electroforming is performed in the second electrolytic bath of another metal ion. By performing the casting, a metal layer of another material can be formed on the surface of the metal formed by the first electroforming by the second electroforming.
 このような金属の積層構造は、任意の回数行うことも可能であり、例えば、特定金属で形成されたコア部分を覆うように別金属を被覆して表層部分を設けた構造とすることも可能である。その際には、例えばコア部分の金属よりも表層部分の金属の方が延性が大きい方が好ましい。これにより、ステントが屈曲する際の追従性が向上されて、表層部分の歪や応力の集中が回避される。 Such a laminated structure of metals can be performed any number of times, for example, a structure in which a surface layer portion is provided by coating another metal so as to cover a core portion formed of a specific metal is also possible. It is. In that case, for example, it is preferable that the metal of the surface layer portion has a higher ductility than the metal of the core portion. As a result, the followability when the stent is bent is improved, and the concentration of strain and stress in the surface layer portion is avoided.
 また、コア部分の金属よりも表層部分の金属の方がイオン化傾向が小さい方が好ましい。具体的には、例えばコア部分をステンレス鋼(SUS316L)やCrCo合金、タンタル、NiTiなどで形成する一方、表層部分をNi,NiCo,Cu,NiW,Pt,Au,Ag,Cr,Znなど、特に好適にはAu,Ptで形成することも可能である。これにより、コア部材を構成する金属で強度や剛性を効率的に確保しつつ、表層部分の金属により生体との電位差を抑えて生体適合性を向上させることも可能となる。また、Au,Ptなどはイオン化傾向が非常に低いことから、金属溶出を抑えることもできる。更にまた、コア材となる合金に使用されているNiなど金属アレルギーの原因となる金属イオンの溶出も抑制できる。しかも、Au,Ptなどは比重が大きく、X線不透過性が良好であるため、X線を用いたステントの視認性も向上され得る。 Further, it is preferable that the metal in the surface layer portion has a smaller ionization tendency than the metal in the core portion. Specifically, for example, the core portion is formed of stainless steel (SUS316L), CrCo alloy, tantalum, NiTi, etc., while the surface layer portion is Ni, NiCo, Cu, NiW, Pt, Au, Ag, Cr, Zn, etc. Preferably, it can be formed of Au or Pt. Accordingly, it is possible to improve biocompatibility by suppressing the potential difference from the living body with the metal in the surface layer portion while efficiently ensuring strength and rigidity with the metal constituting the core member. Moreover, since the ionization tendency of Au, Pt, etc. is very low, metal elution can be suppressed. Furthermore, elution of metal ions that cause metal allergy such as Ni used in the alloy as the core material can be suppressed. Moreover, since Au, Pt, etc. have a large specific gravity and good radiopacity, the visibility of a stent using X-rays can be improved.
 なお、第1回目の電鋳を行ったあと、マスクを形成しなおして第2回目の電鋳を行うことも可能である。これにより、例えば環状部16とリンク部18を異なる金属材で形成することも可能になるし、ステント10の長さ方向や周方向において、環状部16の材質を部分的に異ならせることも可能になる。 In addition, after performing the first electroforming, it is also possible to re-form the mask and perform the second electroforming. Accordingly, for example, the annular portion 16 and the link portion 18 can be formed of different metal materials, and the material of the annular portion 16 can be partially different in the length direction and the circumferential direction of the stent 10. become.
 具体的には、本発明の第3の実施形態として、図3に示されているように、ストレートな円筒形状のステント30において、その軸方向の端部に位置する一つ又は複数の環状部16だけを、軸方向の中央部分に位置する他の環状部16よりも電鋳の回数を多くすることで、厚肉にすることができる。即ち、本実施形態のステント30では、長さ方向で厚さ寸法が変化する形状をもって、断面形状が長さ方向で変化している。なお、中央部分より軸方向端部を厚肉とすることで、中央部分に比べて軸方向端部の方が、外径寸法が大きく、または内径寸法が小さく、或いはその両方とされてもよい。また、かかる厚肉部分は、軸方向の一方の端部に設けられてもよいし、軸方向両端部に設けられてもよい。 Specifically, as shown in FIG. 3, as a third embodiment of the present invention, in a straight cylindrical stent 30, one or a plurality of annular portions positioned at the axial ends thereof Only 16 can be made thicker by increasing the number of times of electroforming than the other annular portion 16 located in the central portion in the axial direction. That is, in the stent 30 of the present embodiment, the cross-sectional shape changes in the length direction with a shape in which the thickness dimension changes in the length direction. In addition, by making the axial end portion thicker than the central portion, the axial end portion may have a larger outer diameter size, a smaller inner diameter size, or both than the central portion. . Moreover, this thick part may be provided in one edge part of an axial direction, and may be provided in an axial direction both ends.
 このように軸方向の端部が中央部分に比して厚肉とされた異形筒形状のステント30においては、軸方向端部の剛性が中央部分よりも大きくされることにより、中央部分における変形自由度を確保しつつ、軸方向端部の血管からの浮き上がりを抑えて、再狭窄を防止することも可能になる。 As described above, in the deformed cylindrical stent 30 in which the axial end is thicker than the central portion, the rigidity of the axial end is made larger than that of the central portion, so that deformation in the central portion is achieved. It is also possible to prevent restenosis by suppressing the lifting from the blood vessel at the axial end while securing the degree of freedom.
 また、第1回目の電鋳を行ったあと、マスクを形成しなおして第2回目の電鋳により、軸方向の端部に位置して互いに隣り合う環状部16,16の上に跨がって外周を覆うように、軸方向に半ピッチ分だけずれた環状部16を形成することも可能である。このような複雑な構造をもって軸方向端部の剛性を補強することも可能であることから、大きな設計自由度が実現される。 In addition, after the first electroforming, the mask is formed again, and the second electroforming is performed so as to straddle the annular portions 16 and 16 located at the end portions in the axial direction and adjacent to each other. It is also possible to form the annular portion 16 shifted by a half pitch in the axial direction so as to cover the outer periphery. Since it is possible to reinforce the rigidity of the axial end portion with such a complicated structure, a large degree of freedom in design is realized.
 なお、本実施形態のステント30では、中央部分に比べて剛性が大きくされた軸方向端部において、軸方向外側の末端部分の剛性が中央部分と略同じか、それより小さくされることが好ましい。これにより、血管壁に食込むように留置されるステントの軸方向末端部分が血管壁へ及ぼす負荷を小さく抑えることができる。かかる剛性の小さい末端部分は、例えば末端部分のみを柔らかい金属で形成したり、電鋳の回数やマスク等を調節して末端部分の肉厚寸法や幅寸法を小さくすることで実現され得る。 In addition, in the stent 30 of this embodiment, it is preferable that the rigidity of the axially outer end portion is substantially the same as or smaller than that of the central portion at the axial end portion where the rigidity is increased compared to the central portion. . Thereby, the load which the axial direction terminal part of the stent detained so that it may bite into the blood vessel wall can exert on the blood vessel wall can be reduced. Such a rigid end portion can be realized, for example, by forming only the end portion with a soft metal, or by adjusting the number of times of electroforming, a mask or the like to reduce the thickness or width of the end portion.
 さらに、上述の如きステント10,20,30は、電鋳によって作製されていることから、その骨格を構成するストラット19の断面形状の設計自由度も、従来構造のレーザー加工では、単純な矩形断面でしかなかったのに対して、大きな自由度が確保され得る。例えば、図4(a),(b)には、内周面から外周面に向かって幅寸法が変化するストラット19の断面形状が示されている。なお、図4(a),(b)中においては、上側が血管壁に当接する側であり、下側が血管内腔に位置する側である。 Furthermore, since the stents 10, 20, and 30 as described above are manufactured by electroforming, the design freedom of the cross-sectional shape of the strut 19 constituting the skeleton is also a simple rectangular cross-section in the conventional laser processing. On the other hand, a large degree of freedom can be secured. For example, FIGS. 4A and 4B show a cross-sectional shape of the strut 19 in which the width dimension changes from the inner peripheral surface toward the outer peripheral surface. 4 (a) and 4 (b), the upper side is the side in contact with the blood vessel wall, and the lower side is the side located in the blood vessel lumen.
 具体的には、図4(a)に示されているように、断面が概三角形状とされたストラット19も採用可能である。かかる形状のストラット19では、血管壁に当接する側が次第に細くされていることから、ステントの拡張時において、ステントの血管壁への押付力をストラット19の先細部分に集中することができる。これにより、より小さいステントの押付圧、換言すればステントの拡張圧で血管を拡張させることができる。また、血管の石灰化病変など、血管壁が硬い場合であっても、ストラット19の先細部分が食い込み、石灰化病変部に対して割るという作用が働くため、従来の矩形断面では拡張が困難とされた血管も拡張することができる。 Specifically, as shown in FIG. 4A, a strut 19 having a substantially triangular cross section can also be used. In the strut 19 having such a shape, the side in contact with the blood vessel wall is gradually narrowed, so that the pressing force against the blood vessel wall of the stent can be concentrated on the tapered portion of the strut 19 when the stent is expanded. As a result, the blood vessel can be expanded with a smaller pressing pressure of the stent, in other words, with the expansion pressure of the stent. In addition, even when the blood vessel wall is hard, such as a calcified lesion of a blood vessel, the taper portion of the strut 19 bites in and breaks against the calcified lesion portion. Vascularized vessels can also be dilated.
 また、図4(b)に示されているように、断面が概逆三角形状とされたストラット19も採用可能である。かかる形状のストラット19では、血管内腔に位置する側が次第に細くされていることから、血流に接する面積が小さくされて、異物反応を可及的に抑制することができる。また、血液の流れに淀みが生じにくいことから、血栓等が発生するおそれを低減させることができる。更に、血管内腔に露出している面積が小さいことから、血管内皮細胞に覆われるまでの期間を短くすることができて、ストラット19が早期に血管に埋没することとなる。このことから、血管内皮の肥大化を抑制することができて、ステント留置部が比較的短期間で治癒され得る。 Further, as shown in FIG. 4 (b), a strut 19 having a substantially inverted triangular cross section can also be used. In the strut 19 having such a shape, since the side located in the blood vessel lumen is gradually narrowed, the area in contact with the blood flow is reduced, and the foreign body reaction can be suppressed as much as possible. Moreover, since it is difficult for stagnation to occur in the blood flow, the risk of blood clots and the like being generated can be reduced. Further, since the area exposed to the blood vessel lumen is small, the period until it is covered with the vascular endothelial cells can be shortened, and the strut 19 is buried in the blood vessel at an early stage. From this, the enlargement of the vascular endothelium can be suppressed, and the stent placement portion can be cured in a relatively short period of time.
 なお、かかる形状のストラット19は、電鋳の際のマスクの形状をエッチング等で所望の形状に整えることにより形成され得て、断面形状の設定自由度を大きく向上させることができる。尤も、ストラット19の断面形状は、図4(a),(b)に示されている概三角形状や概逆三角形状に限定されるものではなく、例えば半円形状や両テーパ形状等も採用され得る。 The strut 19 having such a shape can be formed by adjusting the shape of the mask during electroforming to a desired shape by etching or the like, and can greatly improve the degree of freedom of setting the cross-sectional shape. However, the cross-sectional shape of the strut 19 is not limited to the approximate triangular shape or the generally inverted triangular shape shown in FIGS. 4A and 4B, and for example, a semicircular shape or a double tapered shape is also employed. Can be done.
 さらに、上述の如きステント10,20,30は、電鋳によって作製されていることから、その環状部16,16を連結するリンク部18の断面形状ひいては強度や脆弱性の設計自由度も、大きく確保され得る。このように、ステントの骨格に、部分的に強度の低い部位を設けることにより、拡張されたステントの屈曲時にかかる脆弱部位が容易に変形したり切断されたりして、ステントが体内管腔の形状に追従しやすくされる。また、分岐した血管等に対応して、ステントに開口部を形成する場合にも、かかる脆弱部位を切断したり押し広げたりする操作を施術者が容易に行うことができる。 Furthermore, since the stents 10, 20, and 30 as described above are manufactured by electroforming, the cross-sectional shape of the link portion 18 that connects the annular portions 16 and 16 and the degree of freedom in designing the strength and brittleness are also large. Can be secured. In this way, by providing a partially low-strength portion in the skeleton of the stent, the fragile portion applied when the expanded stent is bent is easily deformed or cut, so that the stent has a shape of a body lumen. It is easy to follow. In addition, when an opening is formed in a stent corresponding to a branched blood vessel or the like, an operator can easily perform an operation of cutting or expanding the fragile site.
 ここにおいて、ステント10,20,30では、その骨格において、リンク部18により、環状部16よりも強度が小さくされた脆弱部が構成されている。かかるリンク部18を電鋳によって作製することにより、従来構造のレーザー加工ではストラット19の幅方向に対して細い形状しか形成し得なかったのに対して、かかる細い形状だけでなくストラット19の厚さ方向において薄い形状も形成することができる。また、リンク部18の断面形状も、従来のレーザー加工では単純な矩形断面でしかなかったのに対して、矩形以外の形状も形成し得る。 Here, in the stents 10, 20, and 30, in the skeleton, the link portion 18 forms a weakened portion whose strength is smaller than that of the annular portion 16. By producing such a link portion 18 by electroforming, only a thin shape can be formed in the width direction of the strut 19 by the laser processing of the conventional structure, but not only the thin shape but also the thickness of the strut 19 is formed. Thin shapes can also be formed in the vertical direction. Further, the cross-sectional shape of the link portion 18 is only a simple rectangular cross-section in the conventional laser processing, but a shape other than the rectangular shape can be formed.
 具体的には、例えば、図5(a)~(c)に示されているように、環状部16,16に対して、厚さ方向におけるリンク部18の位置を適宜設計変更可能である。なお、図5中において、上方が血管壁側を示しており、下方が血管内腔側を示している。即ち、図5(a)では、環状部16,16が血管壁側でリンク部18により連結されている一方、図5(b)では、環状部16,16が厚さ方向中央部分でリンク部18により連結されている。また、図5(c)では、環状部16,16が血管内腔側でリンク部18により連結されている。更に、これら血管壁側、中央部分、血管内腔側に位置するリンク部18をそれぞれ組み合わせることも可能である。なお、図5ではストラット19およびリンク部18が矩形断面として示されているが、図5は単に環状部16,16とリンク部18の相対位置を示すものであって、ストラット19およびリンク部18の形状を何等限定するものではない。 Specifically, for example, as shown in FIGS. 5A to 5C, the position of the link portion 18 in the thickness direction can be appropriately changed with respect to the annular portions 16 and 16. In FIG. 5, the upper side indicates the blood vessel wall side, and the lower side indicates the blood vessel lumen side. That is, in FIG. 5 (a), the annular portions 16, 16 are connected by the link portion 18 on the blood vessel wall side, while in FIG. 5 (b), the annular portions 16, 16 are the link portion at the central portion in the thickness direction. 18 are connected. In FIG. 5C, the annular portions 16 are connected by a link portion 18 on the blood vessel lumen side. Furthermore, it is possible to combine the link portions 18 located on the blood vessel wall side, the central portion, and the blood vessel lumen side. In FIG. 5, the strut 19 and the link portion 18 are shown as a rectangular cross section, but FIG. 5 merely shows the relative positions of the annular portions 16 and 16 and the link portion 18, and the strut 19 and the link portion 18. The shape of is not limited in any way.
 このように、従来のレーザー加工では1本のパイプを厚さ方向に貫通して形成することから、環状部とリンク部を同じ厚さで形成することしかできなかったのに対して、ステント10,20,30を電鋳で製造することによりリンク部18の厚さ寸法を薄くすることができる。これにより、リンク部18を薄く且つ細く形成することができて、リンク部18が切断される際には、従来より更に容易に切断され易くされている。また、従来では、環状部16とリンク部18を別体で形成して、後固着する方法も採用されていたが、ステント10,20,30を電鋳で製造することにより、環状部16とリンク部18が一体で形成されて、高度な寸法精度を確保しつつ、製造が容易とされ得る。更に、リンク部18の切断面が小さくされることから、切断面が血管壁に接触すること等による刺激をできるだけ抑制することができる。 As described above, in the conventional laser processing, since one pipe is formed penetrating in the thickness direction, the annular portion and the link portion can only be formed with the same thickness. , 20, and 30 can be manufactured by electroforming to reduce the thickness of the link portion 18. Thereby, the link part 18 can be formed thinly and thinly, and when the link part 18 is cut | disconnected, it is made easy to cut | disconnect more easily than before. Conventionally, a method in which the annular portion 16 and the link portion 18 are formed separately and then fixed together has been adopted. However, by manufacturing the stents 10, 20, and 30 by electroforming, The link portion 18 is integrally formed, and manufacturing can be facilitated while ensuring high dimensional accuracy. Furthermore, since the cut surface of the link part 18 is made small, irritation | stimulation by a cut surface contacting a blood vessel wall etc. can be suppressed as much as possible.
 さらに、リンク部18の位置は、ストラット19の幅方向に対しても適宜設計変更可能であり、ストラット19に対して幅方向端部に形成することも可能であるが、図6に示されているように、リンク部18はストラット19の幅方向中央部分、即ち前述の実施形態では、環状部16の屈曲部分における幅方向中央部分に形成されることが好ましい。特に、リンク部18は、図6に示されているように、厚さ方向においても、ストラット19の中央部分に位置していることが好ましい。これにより、更にリンク部18の切断面が血管壁に接触するおそれが一層低減されて、患者に与える不快感が更に軽減され得る。 Further, the position of the link portion 18 can be appropriately changed in design with respect to the width direction of the strut 19 and can be formed at the end portion in the width direction with respect to the strut 19, but is shown in FIG. As described above, the link portion 18 is preferably formed in the center portion in the width direction of the strut 19, that is, in the center portion in the width direction in the bent portion of the annular portion 16 in the above-described embodiment. In particular, as shown in FIG. 6, the link portion 18 is preferably located at the central portion of the strut 19 even in the thickness direction. Thereby, the possibility that the cut surface of the link portion 18 contacts the blood vessel wall is further reduced, and the discomfort given to the patient can be further reduced.
 なお、図6においても、ストラット19およびリンク部18が矩形断面として示されているが、図6は単に環状部16とリンク部18の相対位置を示すものであり、ストラット19およびリンク部18の形状を何等限定するものではない。 6, the strut 19 and the link portion 18 are shown as a rectangular cross section, but FIG. 6 merely shows the relative positions of the annular portion 16 and the link portion 18. The shape is not limited at all.
 次に、図7,8には、本発明の第4の実施形態としてのステント32が示されている。このステント32は全体として略円筒形状で直線的に延びている。 Next, FIGS. 7 and 8 show a stent 32 as a fourth embodiment of the present invention. The stent 32 is generally cylindrical and extends linearly as a whole.
 ここにおいて、本実施形態のステント32におけるストラット19の断面形状は、図4(b)に示されるように厚さ方向(図4(b)中の上下方向)で異ならされた異形構造として形成されており、内周面から外周面に向かって幅寸法(図4(b)中の左右方向寸法)が大きくされている。 Here, the cross-sectional shape of the strut 19 in the stent 32 of the present embodiment is formed as a deformed structure that is different in the thickness direction (vertical direction in FIG. 4B) as shown in FIG. 4B. The width dimension (the lateral dimension in FIG. 4B) is increased from the inner peripheral surface toward the outer peripheral surface.
 すなわち、本実施形態では、ストラット19の断面形状が概逆三角形とされている。また、本実施形態では、図8(b)に示される逆台形の断面形状におけるエッジ部分に対してサンドブラスト、化学研磨、電解研磨等の面取り加工が施されることにより、図4(b)に示される概逆三角形の断面形状が形成されている。なお、図8(b)に示される面取り加工前の断面形状において、外周面の幅寸法をWとすると、好適には60mm≦W≦180mmとされて、更に好適には80mm≦W≦130mmの範囲内に設定されて、本実施形態では、W=125mmとされている。 That is, in this embodiment, the cross-sectional shape of the strut 19 is a substantially inverted triangle. Further, in this embodiment, the edge portion in the inverted trapezoidal cross-sectional shape shown in FIG. 8B is subjected to chamfering such as sand blasting, chemical polishing, electrolytic polishing, etc., so that FIG. The generally inverted triangular cross-sectional shape shown is formed. In the cross-sectional shape before chamfering shown in FIG. 8B, if the width dimension of the outer peripheral surface is W, 60 mm ≦ W ≦ 180 mm is preferable, and 80 mm ≦ W ≦ 130 mm is more preferable. It is set within the range, and in this embodiment, W = 125 mm.
 従って、本実施形態では、図9に示されているように、ストラット19の外周面の円弧における中心角αに比べて内周面の円弧における中心角βが小さくされている(β<α)。即ち、面取り処理前のストラット19の断面形状(図9中の太い一点鎖線)において幅寸法が最も大きくなる外周面の2点A,Bに対して、これらの点A,Bを通過して外周側に凸となる円弧Coおよび該円弧Coの曲率中心としてストラット19よりも内周側に位置する曲率中心Oを想定する。また、面取り処理前のストラット19の断面形状において点Oを曲率中心とする円弧Ciを想定して、当該円弧Ci上に位置して幅寸法が最も小さくなるストラット19の内周面の2点をD,Eとする。ここで、∠AOBをストラット19の外周面の円弧における中心角αとする一方、∠DOEをストラット19の内周面の円弧における中心角βとすると、ストラット19において中心角βは中心角αよりも小さくされている。 Therefore, in this embodiment, as shown in FIG. 9, the central angle β in the arc of the inner peripheral surface is made smaller than the central angle α in the arc of the outer peripheral surface of the strut 19 (β <α). . That is, two points A and B on the outer peripheral surface having the largest width dimension in the cross-sectional shape of the strut 19 before chamfering processing (thick one-dot chain line in FIG. 9) pass through these points A and B and An arc Co that is convex to the side and a center of curvature O located on the inner peripheral side of the strut 19 are assumed as the center of curvature of the arc Co. Further, assuming the arc Ci having the center of curvature at the point O in the cross-sectional shape of the strut 19 before the chamfering process, two points on the inner peripheral surface of the strut 19 that are located on the arc Ci and have the smallest width dimension are shown. Let D, E. Here, when ∠AOB is the central angle α in the arc of the outer peripheral surface of the strut 19, and ∠ DOE is the central angle β in the arc of the inner peripheral surface of the strut 19, the central angle β in the strut 19 is greater than the central angle α. It is also small.
 また、本実施形態では、ストラット19の外周面の円弧における中心角αに比べて、両側面の夾角θが大きくされている(α<θ)。この夾角θは、面取り処理前のストラット19の断面形状において、図9中における直線ADと直線BEが交わることによって形成されている。 Further, in this embodiment, the depression angle θ on both side surfaces is made larger (α <θ) than the central angle α in the arc of the outer peripheral surface of the strut 19. The depression angle θ is formed by the intersection of the straight line AD and the straight line BE in FIG. 9 in the cross-sectional shape of the strut 19 before the chamfering process.
 なお、外周面の中心角αは、好適には1°≦α≦45°とされて、更に好適には4°≦α≦15°の範囲内に設定される。一方、内周面の中心角βは、好適には0°≦β≦30°とされて、更に好適には0°≦β≦10°の範囲内に設定される。また、両側面の夾角θは、好適には15°≦θ≦150°とされて、更に好適には30°≦θ≦100°の範囲内に設定される。外周面と内周面の中心角α,βおよび両側面の夾角θを上記の範囲内に設定することにより、後述する流体の乱流防止効果や縮径時における外径縮小効果が安定して発揮され得る。 The central angle α of the outer peripheral surface is preferably 1 ° ≦ α ≦ 45 °, and more preferably 4 ° ≦ α ≦ 15 °. On the other hand, the central angle β of the inner peripheral surface is preferably set to 0 ° ≦ β ≦ 30 °, and more preferably set within a range of 0 ° ≦ β ≦ 10 °. Further, the depression angle θ on both side surfaces is preferably set to 15 ° ≦ θ ≦ 150 °, and more preferably set within a range of 30 ° ≦ θ ≦ 100 °. By setting the center angles α and β of the outer peripheral surface and the inner peripheral surface and the depression angles θ of both side surfaces within the above ranges, the effect of preventing fluid turbulence and the effect of reducing the outer diameter during diameter reduction described later are Can be demonstrated.
 かかる形状とされた本実施形態のステント32は、その骨格であるストラット19と各リンク部18が、電鋳により一体的に形成された金属製の骨格として作製されている。 The stent 32 of this embodiment having such a shape is manufactured as a metal skeleton in which the struts 19 and the link portions 18 as the skeleton are integrally formed by electroforming.
 本実施形態のステント32は、径方向で拡縮可能とされており、図7に示された収縮前の状態から所定の寸法まで機械的に縮径されて、図10,11に示される如き縮径状態とされる。なお、図10はステント32を構成する環状部16のうちの1つを示すものであり、他の環状部16および環状部16,16を接続するリンク部18の図示は省略されている。 The stent 32 of this embodiment can be expanded and contracted in the radial direction, and is mechanically reduced in diameter from a state before contraction shown in FIG. 7 to a predetermined size, and contracted as shown in FIGS. The diameter state is assumed. 10 shows one of the annular portions 16 constituting the stent 32, and the illustration of the other annular portion 16 and the link portion 18 connecting the annular portions 16, 16 is omitted.
 ここにおいて、ストラット19の断面形状は図4(b)に示される如き概逆三角形とされており、縮径状態とされることにより、環状部16の軸方向両端部分において、ストラット19における周方向で隣り合う部分が当接する。その際、図11(b)に示されているように、ストラット19の断面形状における外周側の周方向端部同士が当接することにより、ステント32の縮径が制限されて、縮径状態におけるステント32の外径寸法が規定される。 Here, the cross-sectional shape of the strut 19 is an approximately inverted triangle as shown in FIG. 4B, and when the diameter is reduced, the circumferential direction of the strut 19 is formed at both axial end portions of the annular portion 16. Adjacent parts abut. At that time, as shown in FIG. 11 (b), the peripheral end portions on the outer peripheral side in the cross-sectional shape of the strut 19 are in contact with each other, so that the diameter reduction of the stent 32 is limited, and in the reduced diameter state. The outer diameter dimension of the stent 32 is defined.
 上記の如き構造とされた本実施形態のステント32では、ストラット19の断面形状が概逆三角形とされていることから、例えば従来構造の骨格が矩形断面とされたステントに比べて、ステント32の内周側の血流に晒される部分を小さくすることができる。これにより、ステント32が血液の流れを阻害することが抑制されて、ステント32を血管内に留置することに伴って血流が緩慢になったり血流が乱れたり(乱流)することが回避される。それ故、乱流により血管や心臓内で血栓が形成されることが抑制されると共に、かかる血栓がステント32に付着することに起因するステント32の留置位置での再狭窄が効果的に防止され得る。 In the stent 32 of the present embodiment having the above-described structure, the cross-sectional shape of the strut 19 is a substantially inverted triangle. Therefore, for example, the stent 32 has a skeleton having a rectangular cross section compared with a stent having a rectangular cross section. A portion exposed to the blood flow on the inner peripheral side can be reduced. Thereby, it is suppressed that the stent 32 inhibits the blood flow, and it is avoided that the blood flow becomes slow or the blood flow is disturbed (turbulent flow) due to the stent 32 being placed in the blood vessel. Is done. Therefore, formation of a thrombus in a blood vessel or a heart due to turbulent flow is suppressed, and restenosis at the indwelling position of the stent 32 due to the attachment of the thrombus to the stent 32 is effectively prevented. obtain.
 また、血管壁から露出する面積が小さくされることから、早期に血管内皮細胞に埋没することとなる。即ち、ステント32の留置に伴って亀裂が生じた血管壁が比較的短時間で治癒され得ることから、血管内皮細胞の肥大化が抑制されると共に、肥大化した血管内皮細胞に血栓が付着してステント32の留置位置において再狭窄することが回避され得る。尤も、血管内皮細胞が肥大化したとしても、ステント32の内周側に隙間が多く形成されることから、当該隙間に血管内皮細胞が入り込み、内周側への血管内皮細胞の成長が抑制されて、ステント32の留置位置における再狭窄のおそれが一層低減され得る。 Moreover, since the area exposed from the blood vessel wall is reduced, it is buried in the vascular endothelial cells at an early stage. That is, since the blood vessel wall that has cracked due to the placement of the stent 32 can be healed in a relatively short time, the enlargement of the vascular endothelial cells is suppressed and a thrombus adheres to the enlarged vascular endothelial cells. Thus, restenosis at the placement position of the stent 32 can be avoided. However, even if the vascular endothelial cells are enlarged, a lot of gaps are formed on the inner peripheral side of the stent 32, so that the vascular endothelial cells enter the gap and the growth of the vascular endothelial cells to the inner peripheral side is suppressed. Thus, the risk of restenosis at the indwelling position of the stent 32 can be further reduced.
 更にまた、例えば従来構造の骨格が矩形断面とされたステントでは、縮径時において、骨格断面における内周側の角部がいち早く当接して、それ以上の縮径が制限されるが、本実施形態のステント32では、ストラット19の断面形状が概逆三角形とされていることから、ストラット19の内周側では当接せず、外周側で当接することとなる。これにより、本実施形態のステント32は、従来構造のステントに比べて一層縮径が制限されることがなく、縮径時の外径寸法をより小さくすることができる。特に、本実施形態のように、外周面の中心角αに比べて両側面の夾角θを大きくすることにより、一層内周側で当接するおそれが軽減されることから、縮径時の外径寸法を確実に小さくすることができる。この結果、ステント32、およびステント32を装着したデリバリ用カテーテルのデリバリ性の向上が図られ得る。 Furthermore, for example, in a stent in which the skeleton of the conventional structure has a rectangular cross section, when the diameter is reduced, the corners on the inner peripheral side in the skeleton cross section quickly contact each other, and further reduction in diameter is limited. In the stent 32 of the form, since the cross-sectional shape of the strut 19 is an approximately inverted triangle, the strut 19 does not abut on the inner peripheral side but abuts on the outer peripheral side. As a result, the stent 32 of the present embodiment is not further restricted in diameter as compared with a stent having a conventional structure, and the outer diameter at the time of diameter reduction can be further reduced. In particular, as in this embodiment, by increasing the depression angle θ on both sides compared to the central angle α of the outer peripheral surface, the possibility of contact on the inner peripheral side is further reduced. The dimensions can be reliably reduced. As a result, the delivery of the stent 32 and the delivery catheter equipped with the stent 32 can be improved.
 次に、図12には、本発明の第5の実施形態としてのステント34が示されている。本実施形態のステント34は、前記第4の実施形態と同様にストラット19とリンク部18からなる骨格構造を有しており、ストラット19の断面形状も前記第4の実施形態と同様に図4(b)に示される形状とされている。 Next, FIG. 12 shows a stent 34 as a fifth embodiment of the present invention. The stent 34 of the present embodiment has a skeletal structure composed of the struts 19 and the link portions 18 as in the fourth embodiment, and the cross-sectional shape of the struts 19 is the same as that of the fourth embodiment as shown in FIG. The shape shown in FIG.
 本実施形態のステント34は、軸方向(図12中の上下方向)両端部分における外径寸法が軸方向中央部分における外径寸法より大きくされた異形筒形状とされている。本実施形態のステント34は、例えば、図7に示されるストレートな円筒状のステント32に対して、軸方向両端部分に位置する複数の環状部16を軸方向の中央部分に位置する環状部16よりも電鋳の回数を多くして、厚肉とすることで形成され得る。即ち、本実施形態のステント34は、複数種類の金属からなる積層構造とされることが好適である。なお、かかる積層構造は、ステントの全体に亘ってなされる必要はなく、ステントの特定の部分が積層構造とされてもよい。また、ステント34の内孔の形状は何等限定されるものではなく、例えば軸方向に延びるストレート形状であってもよいし、軸方向中央部分よりも両端部分が大径とされていてもよい。 The stent 34 of the present embodiment has a deformed cylindrical shape in which the outer diameter dimension at both end portions in the axial direction (vertical direction in FIG. 12) is larger than the outer diameter dimension at the central portion in the axial direction. In the stent 34 of the present embodiment, for example, with respect to the straight cylindrical stent 32 shown in FIG. 7, the plurality of annular portions 16 positioned at both axial end portions are annular portions 16 positioned at the central portion in the axial direction. It can be formed by increasing the number of times of electroforming to make it thicker. That is, it is preferable that the stent 34 of this embodiment has a laminated structure made of a plurality of types of metals. Such a laminated structure does not need to be formed over the entire stent, and a specific portion of the stent may be a laminated structure. Moreover, the shape of the inner hole of the stent 34 is not limited at all, and may be, for example, a straight shape extending in the axial direction, or both end portions may be larger in diameter than the central portion in the axial direction.
 さらに、本実施形態のステント34は、軸方向両端部分が軸方向中央部分に比べて厚肉とされていることにより、これら両端部分の剛性が中央部分に比べて大きくされている。 Furthermore, the stent 34 of the present embodiment has both end portions in the axial direction being thicker than the central portion in the axial direction, so that the rigidity of both end portions is increased compared to the central portion.
 上記の如き形状とされた本実施形態のステント34においても、骨格の断面形状が前記第4の実施形態と同様の形状とされていることから、前記第4の実施形態と同様の効果が発揮され得る。それに加えて、本実施形態では、軸方向両端部分が軸方向中央部分よりも外径寸法が大きくされて、且つ剛性が大きくされていることから、ステント34の軸方向両端部分の血管からの浮き上がりが抑制されて、血管の狭窄部位で安定して留置される。特に、血管内に留置された状態でステントの軸方向端部が血管から離れることにより、血流の乱れが惹起されて血栓が形成されるおそれが向上する。従って、本実施形態のようにステント34の軸方向両端部において血管からの浮き上がりが抑えられることにより、ステント留置位置における再狭窄が一層効果的に防止され得る。更に、軸方向末端部分の剛性が小さくされることにより、食い込むように留置されるステントの軸方向末端部分が血管壁へ及ぼす負荷を小さく抑えることができる。 Also in the stent 34 of the present embodiment having the above-described shape, the same effect as that of the fourth embodiment is exhibited because the cross-sectional shape of the skeleton is the same as that of the fourth embodiment. Can be done. In addition, in this embodiment, both end portions in the axial direction are larger in outer diameter than the central portion in the axial direction and have increased rigidity, so that the axial end portions of the stent 34 are lifted from the blood vessel. Is suppressed, and it is stably placed at the stenosis site of the blood vessel. In particular, when the axial end portion of the stent is separated from the blood vessel in the state where it is placed in the blood vessel, the risk of blood flow disturbance and the formation of a thrombus is improved. Therefore, as in this embodiment, the lift from the blood vessel is suppressed at both ends in the axial direction of the stent 34, so that restenosis at the stent placement position can be more effectively prevented. Furthermore, by reducing the rigidity of the axial end portion, the load exerted on the blood vessel wall by the axial end portion of the stent placed so as to bite can be reduced.
 次に、図13には、本発明の第6の実施形態としてのステント36が示されている。本実施形態のステント36は、前記第1の実施形態と同様にストラット19とリンク部18からなる略Y字状の骨格構造を有していると共に、ストラット19の断面形状は、前記第4の実施形態と同様に図4(b)に示される形状とされている。 Next, FIG. 13 shows a stent 36 as a sixth embodiment of the present invention. The stent 36 of the present embodiment has a substantially Y-shaped skeleton structure composed of the struts 19 and the link portions 18 as in the first embodiment, and the cross-sectional shape of the struts 19 is the same as that of the fourth embodiment. The shape shown in FIG. 4B is the same as in the embodiment.
 なお、本実施形態のステント36は、例えば基幹筒部38と分岐筒部40が別体で形成されて溶着等の手段により繋ぎ合わされてもよいが、電鋳で形成されることにより、基幹筒部38と分岐筒部40が一体的に形成され得る。 In the stent 36 of the present embodiment, for example, the basic cylinder portion 38 and the branch cylinder portion 40 may be formed separately and joined together by means such as welding. The part 38 and the branch cylinder part 40 may be formed integrally.
 かかる形状とされた本実施形態のステント36においても、ストラット19の断面形状が前記第4の実施形態と同様の形状とされていることから、前記第4の実施形態のステント32と同様の効果が発揮され得る。特に、本実施形態のステント36は分岐形状とされて生体の血管などの複雑な形状に対応し得るものであり、血管の分岐部分においても血流の乱れが抑制されて血管の再狭窄がより一層効果的に防止され得る。 Also in the stent 36 of this embodiment having such a shape, since the cross-sectional shape of the strut 19 is the same as that of the fourth embodiment, the same effect as the stent 32 of the fourth embodiment is obtained. Can be demonstrated. In particular, the stent 36 of the present embodiment has a bifurcated shape and can correspond to a complex shape such as a blood vessel of a living body, and blood flow disturbance is also suppressed at the bifurcated portion of the blood vessel, thereby further reducing the restenosis of the blood vessel. It can be prevented more effectively.
[実施例]
 本発明の実施例1として、図7,8に示される、前記第4の実施形態に従う構造のステント32をコンピュータ上で仮想的に作製した。また、本発明の実施例2として、図14に示されるように骨格の断面形状を内周面から外周面に向かって幅寸法を小さくして概三角形としたステント42を採用すると共に、本発明の比較例として、図15に示されるように従来構造の骨格が矩形断面とされたステント44を採用して、それぞれコンピュータ上で仮想的に作製した。なお、図14,15に示されている実施例2および比較例のステント42,44は縮径前の成形状態のものを示していると共に、これら実施例1,2および比較例のステント32,42,44はそれぞれエッジ部分に面取り処理を行う前のものを想定して作製した。
[Example]
As Example 1 of the present invention, a stent 32 having the structure according to the fourth embodiment shown in FIGS. 7 and 8 was virtually manufactured on a computer. Further, as Example 2 of the present invention, as shown in FIG. 14, a stent 42 is adopted in which the cross-sectional shape of the skeleton is reduced from the inner peripheral surface to the outer peripheral surface so that the width dimension is reduced to an approximate triangle. As a comparative example, as shown in FIG. 15, a stent 44 having a rectangular skeleton having a conventional structure was adopted, and each was virtually manufactured on a computer. The stents 42 and 44 of Example 2 and the comparative example shown in FIGS. 14 and 15 are in a molded state before the diameter reduction, and the stents 32 and 40 of Examples 1 and 2 and the comparative example are shown. 42 and 44 were prepared assuming that the edge portions had not been chamfered.
 また、縮径前の実施例1,2および比較例のステント32,42,44の外径寸法はそれぞれφ=3mm(図7参照)として作製した。更に、実施例1におけるストラット19断面の外周面の幅寸法をW=125mm(図8(b)参照)とする一方、実施例2におけるストラット19’断面の内周面の幅寸法(図14(b)参照)を同じくWとした。更にまた、比較例におけるストラット46断面の外周面の幅寸法をW1=100mm(図15(b)参照)とした。また、実施例1,2および比較例のストラット19,19’,46の厚さ寸法を、それぞれ同じT=0.1mm(図8(b)等参照)とした。 Further, the outer diameter dimensions of the stents 32, 42, and 44 of Examples 1 and 2 and the comparative example before the diameter reduction were each set to φ = 3 mm (see FIG. 7). Furthermore, while the width dimension of the outer peripheral surface of the cross section of the strut 19 in the first embodiment is W = 125 mm (see FIG. 8B), the width dimension of the inner peripheral surface of the cross section of the strut 19 ′ in the second embodiment (see FIG. b) was also designated W. Furthermore, the width dimension of the outer peripheral surface of the cross section of the strut 46 in the comparative example was set to W1 = 100 mm (see FIG. 15B). In addition, the thickness dimensions of the struts 19, 19 'and 46 of Examples 1 and 2 and the comparative example were set to the same T = 0.1 mm (see FIG. 8B and the like).
 そして、コンピュータ上で仮想的に作製した実施例1,2および比較例のステント32,42,44に対して縮径処理を施し、それぞれの外径寸法を比較した。なお、実施例1のステント32に対して縮径処理を施した環状部16の斜視図および軸方向視図は前述の図10,11に示すものであり、実施例2および比較例のステント42,44に対して縮径処理を施した環状部16の斜視図および軸方向視図を図16~19に示す。このように、縮径処理を施した実施例1,2および比較例のステント32,42,44の外径寸法をそれぞれφ’(図11(a)参照)、φ1(図17参照)、φ2(図19参照)として比較した。なお、かかる縮径処理を施して解析するソフトウェアとしては、ANSYS社製「ANSYS R14.5」を用いた。 Then, diameter reduction processing was performed on the stents 32, 42, and 44 of Examples 1 and 2 and the comparative example that were virtually manufactured on a computer, and the respective outer diameter dimensions were compared. A perspective view and an axial view of the annular portion 16 obtained by reducing the diameter of the stent 32 of Example 1 are those shown in FIGS. 10 and 11 described above, and the stent 42 of Example 2 and the comparative example. , 44 are a perspective view and an axial view of the annular portion 16 in which the diameter reduction processing is performed. Thus, the outer diameter dimensions of the stents 32, 42, and 44 of Examples 1 and 2 and the comparative example subjected to the diameter reduction treatment are φ ′ (see FIG. 11A), φ1 (see FIG. 17), and φ2, respectively. (See FIG. 19). Note that “ANSYS R14.5” manufactured by ANSYS was used as software for performing the analysis by reducing the diameter.
 その結果、φ1=1.80mm、φ2=1.70mmであったのに対して、φ’=1,68mmであった。即ち、ストラット19の断面形状が概逆三角形とされるステント32は、ストラット19’の断面形状が概三角形とされるステント42や従来構造であるストラット46の断面形状が矩形とされるステント44に対して、縮径処理を施した際の外径寸法がより小さくなることが示されている。 As a result, φ1 = 1.80 mm and φ2 = 1.70 mm, whereas φ ′ = 1,68 mm. That is, the stent 32 in which the cross-sectional shape of the strut 19 is an approximately inverted triangle is changed to the stent 42 in which the cross-sectional shape of the strut 19 ′ is an approximate triangle or the stent 44 in which the cross-sectional shape of the strut 46 of the conventional structure is a rectangle. On the other hand, it is shown that the outer diameter size when the diameter reduction process is performed becomes smaller.
 縮径処理後に実施例2のステント42や比較例のステント44に対して実施例1のステント32における外径寸法が小さくなる理由としては、実施例2および比較例のステント42,44では、図17(b),図19(b)に示されているように、縮径処理が施されると周方向で隣り合う骨格の内周側同士がいち早く当接して、それ以上の縮径が制限される。それに対して、実施例1のステント32は図11(b)に示されているように、内周面の幅寸法が外周面の幅寸法より小さくされていることから、周方向で隣り合う骨格の外周側同士が当接するまで縮径が制限されず、外径寸法がより小さくなるものと推察される。 The reason why the outer diameter of the stent 32 of Example 1 is smaller than that of the stent 42 of Example 2 and the stent 44 of Comparative Example after the diameter reduction processing is that in the stents 42 and 44 of Example 2 and Comparative Example, FIG. As shown in FIGS. 17 (b) and 19 (b), when the diameter reducing process is performed, the inner peripheral sides of the skeletons adjacent to each other in the circumferential direction are brought into contact with each other quickly, and further diameter reduction is limited. Is done. On the other hand, as shown in FIG. 11B, the stent 32 of Example 1 has a skeleton that is adjacent in the circumferential direction because the width of the inner peripheral surface is smaller than the width of the outer peripheral surface. It is surmised that the diameter reduction is not limited until the outer peripheral sides of the two come into contact with each other, and the outer diameter dimension becomes smaller.
 これにより、実施例1のステント32は縮径時の外径寸法を実施例2の概三角形断面のステント42や従来構造である矩形断面のステント44よりも小さくすることができて、デリバリ用カテーテル装着時の外径寸法も小さくできることから、良好なデリバリ性を発揮することができる。 As a result, the stent 32 of the first embodiment can have a smaller outer diameter than the stent 42 of the general triangular cross section of the second embodiment and the stent 44 of the rectangular cross section of the conventional structure. Since the outer diameter at the time of mounting can be reduced, good delivery can be exhibited.
 また、上記実施例1,2および比較例のステント32,42,44を使用して、それぞれのストラット近傍における流れ速度を確認した。実施例1,2の結果をそれぞれ図20,21に示すと共に、比較例の結果を図22に示す。なお、図20~22に示されるステント32,42,44は、それぞれ図8,14,15に示される成形状態のものであって、それぞれの外径寸法はφ=3mmとされている。また、図20(a),21(a),22(a)は血管壁面近傍の速度分布をベクトルで示しており、更に、図20(b)、21(b)、22(b)は血管壁面近傍の速度分布を面で示している。なお、図20~22は、色付き画像で出力表示された解析結果を特許出願用にグレースケール表示したものであるから見難いが、図中の濃い灰色の部分では流れが速いことを示している一方、薄い色の部分では流れが遅いことを示しており、濃い灰色の部分から薄い色の部分への変化に対応して流れ速度が段階的に変化していることを示している。なお、かかる解析は、ANSYS社製「ANSYS R14.5」のソフトウェアを用いて実施した。 In addition, the flow velocity in the vicinity of each strut was confirmed using the stents 32, 42, and 44 of Examples 1 and 2 and the comparative example. The results of Examples 1 and 2 are shown in FIGS. 20 and 21, respectively, and the result of the comparative example is shown in FIG. The stents 32, 42, and 44 shown in FIGS. 20 to 22 are in the molded state shown in FIGS. 8, 14, and 15, respectively, and their outer diameters are set to φ = 3 mm. 20 (a), 21 (a), and 22 (a) show the velocity distribution in the vicinity of the blood vessel wall surface as vectors, and FIGS. 20 (b), 21 (b), and 22 (b) show blood vessels. The velocity distribution in the vicinity of the wall surface is shown by a plane. 20 to 22 are difficult to see because the analysis results output and displayed as colored images are displayed in gray scale for patent application, but the flow is fast in the dark gray part in the figure. On the other hand, the light color portion indicates that the flow is slow, and the flow velocity changes stepwise corresponding to the change from the dark gray portion to the light color portion. This analysis was performed using software “ANSYS R14.5” manufactured by ANSYS.
 図20~22を比較した結果、図21(a),22(a)に比べて図20(a)は全体的に速い流れを表す濃い灰色のベクトルの線が大きく、且つ多く示されている。なお、図21(a),22(a)においてベクトルの線の数量が少ない理由は、線の色が薄く、流れが遅いためベクトルの線として大きく表示されていないか、または流れ自体がほとんどないためにベクトルの線が無いように見えるからである。一方、図21(b)、22(b)に比べて20(b)は全体的に色が薄い部分が多く示されている。このことから、実施例1のステント32のストラット近傍を通過する流体の流速が実施例2のステント42および比較例のステント44のストラット近傍を通過する流体の流速よりも速いことが示されている。この結果、実施例1のステント32では、実施例2のステント42および比較例のステント44に対して、管腔内におけるステント留置位置において流体が淀みなく流れることができる。特に、ステント32が血管に留置される場合には、血液の滞留や乱流に伴う血栓の発生、および当該血栓がステントに付着することに伴うステント留置位置での再狭窄の防止効果をより一層発揮し得ることが示唆される。 As a result of comparing FIGS. 20 to 22, compared to FIGS. 21 (a) and 22 (a), FIG. 20 (a) has large and many dark gray vector lines representing a generally fast flow. . The reason why the number of vector lines is small in FIGS. 21 (a) and 22 (a) is that the line color is thin and the flow is slow, so it is not displayed large as a vector line, or there is almost no flow itself. This is because there seems to be no vector line. On the other hand, as compared with FIGS. 21 (b) and 22 (b), 20 (b) shows many lighter portions as a whole. From this, it is shown that the flow velocity of the fluid passing near the strut of the stent 32 of Example 1 is faster than the flow velocity of the fluid passing near the strut of the stent 42 of Example 2 and the stent 44 of the comparative example. . As a result, in the stent 32 of Example 1, the fluid can flow without stagnation at the stent placement position in the lumen compared to the stent 42 of Example 2 and the stent 44 of Comparative Example. In particular, when the stent 32 is indwelled in a blood vessel, the effect of preventing the occurrence of thrombus due to blood retention or turbulence, and restenosis at the stent indwelling position due to the thrombus adhering to the stent is further enhanced. It is suggested that it can be demonstrated.
 かかる効果を発揮する理由としては、実施例1のステント32のストラット19断面が概逆三角形とされていることから、実施例2の如き概三角形断面のストラット19’や比較例の如き矩形断面のストラット46に比べて、内周側に突出する部分を小さくすることができて、ステント32内部を通過する流体の流れに対する阻害が可及的に抑制されているからであると推察される。 The reason for exhibiting such an effect is that the cross section of the strut 19 of the stent 32 of the first embodiment is a substantially inverted triangle, so that the strut 19 ′ having a cross section of the general triangle as in the second embodiment and a rectangular cross section as in the comparative example. Compared to the struts 46, it is presumed that the portion protruding to the inner peripheral side can be made smaller, and the inhibition of the flow of fluid passing through the inside of the stent 32 is suppressed as much as possible.
 なお、上記実施例2のステント42ではストラット19’の断面形状が概三角形とされており、比較的早期にストラットの内周側同士が当接することから、実施例2のステント42では、縮径時における外径縮小効果が十分に享受され得ないおそれがある。また、このステント42が管腔内に留置される場合には、管腔壁から内周側に突出する部分が比較的大きくなって、かかる突出部分が流体にとって障壁となることから、円滑な流体の流れが阻害されるおそれがある。 In the stent 42 of the second embodiment, the cross-sectional shape of the strut 19 'is an approximate triangle, and the inner peripheral sides of the struts contact with each other relatively early. There is a possibility that the outer diameter reduction effect at the time cannot be fully enjoyed. Further, when the stent 42 is indwelled in the lumen, a portion that protrudes from the lumen wall to the inner peripheral side becomes relatively large, and the protruding portion serves as a barrier for the fluid. There is a risk that the flow of
 しかしながら、ストラット19’の断面形状において外周側が先細形状とされており、ステント42の先細先端が管腔壁に食い込むように留置されることにより、管腔内におけるステント42の位置決め作用が効果的に発揮され得る。特に、石灰化病変のように血管壁が硬質化して、従来構造の骨格が矩形断面とされたステントでは血管の拡張が困難である場合であっても、ストラット19’の外周側の先細部分がかかる病変部位に対して割るという作用を及ぼすことから、従来の矩形断面では拡張が困難とされた血管も上記実施例2の如きステント42を採用することにより拡張することができる。 However, the outer peripheral side is tapered in the cross-sectional shape of the strut 19 ′, and the stent 42 is positioned so that the tapered tip of the stent 42 bites into the lumen wall, thereby effectively positioning the stent 42 in the lumen. Can be demonstrated. In particular, even in the case where the blood vessel wall is hardened like a calcified lesion and the skeleton of the conventional structure has a rectangular cross section, it is difficult to expand the blood vessel. Since the effect of splitting on the lesion site is exerted, a blood vessel that is difficult to expand with a conventional rectangular cross section can be expanded by employing the stent 42 as in the second embodiment.
 従って、患者や病変部位の状態によっては、骨格の断面形状が概三角形とされるステントも好適に採用され得る。このように、狭窄部位の状態や狭窄が生じている部位に対応したステントを、大きな設計自由度をもって製造できることからも、本発明のステント32,34,36,42は優れた技術的意義を有しているものである。 Therefore, depending on the condition of the patient and the lesion site, a stent having a substantially triangular cross-sectional shape can be suitably employed. As described above, the stents 32, 34, 36, and 42 of the present invention have excellent technical significance because the stent corresponding to the state of the stenosis site and the site where the stenosis has occurred can be manufactured with a large degree of design freedom. It is what you do.
 以上、本発明の実施形態および実施例について詳述してきたが、本発明はその具体的な記載によって限定されることなく、当業者の知識に基づいて種々なる変更,修正,改良などを加えた態様で実施され得るものであり、また、そのような実施態様も、本発明の趣旨を逸脱しない限り、何れも本発明の範囲内に含まれる。 Although the embodiments and examples of the present invention have been described in detail above, the present invention is not limited to the specific descriptions, and various changes, modifications, improvements, and the like have been added based on the knowledge of those skilled in the art. Any embodiment may be implemented within the scope of the present invention without departing from the spirit of the present invention.
 例えば、ステントの表面にはエンボス等の適宜の形状が付されていてもよく、ステントが電鋳によって作製される場合には、電鋳に用いられる成形ベースやマスクの形状等を適切に設定することで、表面にエンボス等の適宜の形状を容易に転写することができる。このように、ステントの外周面に凹凸を付すことにより、例えば薬剤溶出性ステントとして効果的に利用可能である。即ち、例えば、凹凸が付されたステントの外周面に細胞増殖を抑制する薬剤や、かかる薬剤を含有した樹脂層を塗布または被着することで、この薬剤を血管壁に対して溶出させることができる。その際、かかる凹凸により濡れ性が向上されて、塗布または被着される薬剤や樹脂層がステント外周面に付着され易くされると共に、剥がれにくくすることができる。 For example, the surface of the stent may have an appropriate shape such as embossing, and when the stent is manufactured by electroforming, the shape of the molding base and mask used for electroforming is appropriately set. Thus, an appropriate shape such as emboss can be easily transferred to the surface. Thus, by providing unevenness on the outer peripheral surface of the stent, for example, it can be effectively used as a drug-eluting stent. That is, for example, by applying or depositing a drug that suppresses cell growth or a resin layer containing such a drug on the outer peripheral surface of a stent with irregularities, the drug can be eluted from the blood vessel wall. it can. At that time, the wettability is improved by such unevenness, and the applied drug or the resin layer can be easily attached to the outer peripheral surface of the stent and can be made difficult to peel off.
 また、図23に示されるようにステントの骨格、即ちストラット19やリンク部18には凹所48が形成されてもよい。具体的には、ステントが電鋳により形成される場合には、例えば成形ベースの表面に突部等の処理を施しておくことで、その表面への電着で形成されるステントの内周面に対応する大きさの凹所を転写して形成することができる。また、予め電鋳で形成された骨格の表面の中央部分に島状のマスクを形成して電鋳を実施することにより、島状のマスクの部分を囲む周壁が電鋳により形成されて、中央のマスクの部分においてステントの外周面に開口する凹所を形成することも可能である。このような凹所48は任意の形状や大きさで形成することが可能であり、図23に示されているようなストラット19やリンク部18の長さ方向に延びる溝形状の他、円形等の穴であってもよい。かかるステントが電鋳によって作製される場合には、電鋳に用いられる成形ベースやマスクの形状等を適切に設定することで、表面に任意の大きさの凹所を形成することも可能であり、その設計自由度も大きく確保され得る。 Further, as shown in FIG. 23, a recess 48 may be formed in the skeleton of the stent, that is, the strut 19 or the link portion 18. Specifically, when the stent is formed by electroforming, for example, by treating the surface of the molding base with a protrusion or the like, the inner peripheral surface of the stent formed by electrodeposition on the surface A recess having a size corresponding to can be formed by transferring. In addition, by forming an island-shaped mask on the central portion of the surface of the skeleton formed in advance by electroforming and performing electroforming, a peripheral wall surrounding the island-shaped mask portion is formed by electroforming, It is also possible to form a recess opening in the outer peripheral surface of the stent in the mask portion. Such a recess 48 can be formed in an arbitrary shape and size. In addition to the groove shape extending in the length direction of the strut 19 and the link portion 18 as shown in FIG. It may be a hole. When such a stent is produced by electroforming, it is possible to form a recess of any size on the surface by appropriately setting the shape of the molding base and mask used for electroforming. The design freedom can be greatly secured.
 さらに、ステントが電鋳により形成される場合には、例えば不導体粉体を分散させた電解液を利用した共析メッキ技術などを利用して、共析した微粒子に対応したポーラス構造やマイクロポーラス構造をストラット19やリンク部18に与えることも可能である。 Further, when the stent is formed by electroforming, for example, using a eutectoid plating technique using an electrolytic solution in which a non-conductive powder is dispersed, a porous structure or microporous corresponding to the eutectoid fine particles is used. It is also possible to give the structure to the strut 19 and the link part 18.
 このように凹所48やポーラス構造をもってストラット19やリンク部18を形成することにより、ステントを構成する金属量を減少させることができる。また、かかる凹所48やポーラス構造に薬剤を担持させることにより、例えば上述の如き薬剤溶出性ステントを構成することができて、薬剤を効果的に血管壁に溶出させることができる。 Thus, by forming the strut 19 and the link portion 18 with the recess 48 and the porous structure, the amount of metal constituting the stent can be reduced. In addition, by loading a drug in the recess 48 or the porous structure, for example, a drug-eluting stent as described above can be formed, and the drug can be effectively eluted into the blood vessel wall.
 さらに、ステントに形成される凹所48は有底形状だけでなく、貫通孔であってもよい。このようにステントに貫通孔を形成することにより、薬剤の担持が更に容易とされ得ると共に、薬剤の担持量を増加させることができる。また、薬剤等が溶出した後は貫通孔が空洞となることから、かかる貫通孔内を血液が通過することができて、例えば凹所が有底とされる場合に比べて血流が阻害されず、本発明の乱流および再狭窄防止効果がより一層発揮され得る。 Further, the recess 48 formed in the stent may be not only a bottomed shape but also a through hole. By forming the through hole in the stent in this way, the loading of the drug can be further facilitated and the amount of the drug loaded can be increased. In addition, since the through-hole becomes hollow after the drug or the like is eluted, blood can pass through the through-hole. For example, blood flow is inhibited as compared with the case where the recess is bottomed. Therefore, the turbulent flow and restenosis prevention effect of the present invention can be further exhibited.
 また、凹所48内には、薬剤を直接入れてもよいし、例えば薬剤が含浸された生分解性樹脂綿や、薬剤が封入されたカプセル剤を凹所48内にいれてもよい。 Further, the drug may be put directly into the recess 48, or for example, a biodegradable resin cotton impregnated with the drug or a capsule filled with the drug may be put into the recess 48.
 更にまた、ステントに形成される凹凸はステントの表面に直接形成されてもよいが、例えばステントの表面に凸状の部分を形成することにより、相対的に凹状となる部分が形成されるようにしてもよい。 Furthermore, the unevenness formed on the stent may be formed directly on the surface of the stent. For example, by forming a convex portion on the surface of the stent, a relatively concave portion is formed. May be.
 尤も、ステントは電鋳により形成される必要はなく、例えば金属製のチューブにレーザー加工を施すことによって形成されてもよい。かかる場合には、前述の図9に示されているような、断面形状が四角形ADEBとされたストラットをレーザー加工により直接得ることもできる。或いは、最初に外周面の大きな中心角αを有するように金属製チューブに対してレーザー加工を施して、断面形状を四角形AD’E’Bとしたストラットを得て、その後、当該ストラットの側面に対して内周面の中心角がβの大きさとなる、換言すれば両側面の夾角がθとなるようにレーザー加工を施すことによって断面形状が四角形ADEBとされたストラットを形成してもよい。そして、このようにして得られたストラットのエッジ部分に対して面取り加工を施すことにより、前述の図4(b)の如き概逆三角形の断面形状としたストラットを得ることができる。なお、図9中、円弧Co,Ciはそれぞれ金属製チューブの外周面および内周面である。また、例えば外周面の大きな中心角αを有するように電鋳で形成した後、内周面の小さな中心角βを有する、または両側面の夾角がθとなるようにレーザーカットを施してもよく、ステントの製造に際して電鋳とレーザーカットによる加工の何れもが施されてもよい。更に、ステントに形成される凹所48も電鋳により形成される必要はなく、例えばステントの形成と同時に、或いは形成後に、レーザー加工等により凹所としての貫通孔が形成されてもよい。 However, the stent does not need to be formed by electroforming, and may be formed, for example, by performing laser processing on a metal tube. In such a case, a strut having a quadrangular ADEB in cross-sectional shape as shown in FIG. 9 can be directly obtained by laser processing. Alternatively, laser processing is first performed on the metal tube so as to have a large central angle α on the outer peripheral surface to obtain a strut having a cross-sectional shape of a quadrangle AD′E′B, and then on the side surface of the strut. On the other hand, a strut having a quadrangular ADEB in cross-sectional shape may be formed by performing laser processing so that the central angle of the inner peripheral surface is β, in other words, the depression angle of both side surfaces is θ. Then, by applying chamfering to the edge portion of the strut thus obtained, a strut having a cross-section of a generally inverted triangle as shown in FIG. 4B can be obtained. In FIG. 9, arcs Co and Ci are the outer peripheral surface and the inner peripheral surface of the metal tube, respectively. Further, for example, after forming by electroforming so as to have a large central angle α on the outer peripheral surface, laser cutting may be performed so that the inner peripheral surface has a small central angle β, or the both side surfaces have a depression angle θ. In the production of the stent, either electroforming or laser cutting may be performed. Further, the recess 48 formed in the stent does not need to be formed by electroforming. For example, a through hole as a recess may be formed by laser processing or the like simultaneously with or after the formation of the stent.
 さらに、前記実施形態に記載のステント10,20,30,32,34,36,42は、何れも初期形状であって、血管等の管腔に挿し入れる際には、縮径変形されてカテーテルでデリバリされる。これらのステント10,20,30,32,34,36,42がバルーン拡張型とされる場合には、バルーンを用いて拡張されることで、血管の内周面に押し付けられた状態で留置される一方、金属材として自己拡張型であれば、デリバリ用のカテーテルから解放されることで自動的に拡張される。そして、かかる拡張状態で略初期形状となるようにすることも可能であり、この場合には、拡張状態の形状が安定して発現されると共に、拡張された留置状態での歪や残留応力も効果的に抑えられる。しかし、本発明では、そのような態様に限定されるものでなく、留置時の形状とは異なる径寸法の初期形状をもって形成することも可能である。 Furthermore, the stents 10, 20, 30, 32, 34, 36, and 42 described in the above embodiments all have an initial shape, and when inserted into a lumen such as a blood vessel, the diameter of the stent is reduced and deformed. Delivered with. When these stents 10, 20, 30, 32, 34, 36, 42 are of a balloon expandable type, they are expanded by using a balloon, and are placed in a state of being pressed against the inner peripheral surface of the blood vessel. On the other hand, if the metal material is a self-expanding type, it is automatically expanded by being released from the delivery catheter. It is also possible to have an almost initial shape in such an expanded state. In this case, the shape in the expanded state is stably expressed, and strain and residual stress in the expanded indwelling state are also generated. Effectively suppressed. However, the present invention is not limited to such an embodiment, and can be formed with an initial shape having a diameter different from the shape at the time of indwelling.
 また、ステントの形状は前記実施形態に例示の如きY字形の分岐形状、テーパ筒形状、端部厚肉形状、単純なストレート形状等に限定されるものではなく、基幹筒部と分岐筒部の径寸法が異なるステントや、それら基幹筒部と分岐筒部の少なくとも一方がテーパ筒形状とされたステント、長さ方向で部分的にテーパが付されたステントや、長さ方向の端部や中央部分に厚肉部分が設けられたステントなど、本発明は各種の異形状のステントに対して適用可能である。 In addition, the shape of the stent is not limited to the Y-shaped branch shape, the tapered cylindrical shape, the thick end shape, the simple straight shape, etc., as exemplified in the above embodiment. Stents with different diameter dimensions, stents in which at least one of the basic cylinder part and the branch cylinder part is tapered, a stent partially tapered in the length direction, the end or center in the length direction The present invention is applicable to various types of irregularly shaped stents, such as a stent having a thick-walled portion.
 更にまた、前記第5の実施形態では、軸方向の両端部分が厚肉とされることで剛性が大きくされていたが、前記第4の実施形態におけるストレート形状のステントにおいて軸方向両端部分として剛性の大きい金属を採用したり、前記第5の実施形態におけるステントにおいて厚さ寸法を軸方向全長に亘って略一定として、軸方向両端部分として剛性の大きい金属を採用することにより、軸方向両端部分の剛性を大きくしてもよい。 Furthermore, in the fifth embodiment, the rigidity is increased by making both end portions in the axial direction thick, but in the straight-shaped stent in the fourth embodiment, the rigidity is increased as both end portions in the axial direction. By adopting a metal having a large rigidity, or by adopting a metal having a large rigidity as both axial end portions in the stent according to the fifth embodiment, the thickness dimension is substantially constant over the entire axial length. The rigidity may be increased.
 さらに、ステントの骨格において、ストラット19とリンク部18の断面形状を異ならせてもよい。尤も、本発明のステントにおいては、リンク部は必須ではなく、ステントの軸方向で隣り合う環状部が螺旋構造で連続して繋がっていてもよい。このように、リンク部を設けない場合には、ストラットのみによりステントの骨格が構成される。 Further, in the skeleton of the stent, the cross-sectional shapes of the strut 19 and the link portion 18 may be different. However, in the stent of the present invention, the link portion is not essential, and the annular portions adjacent in the axial direction of the stent may be continuously connected in a spiral structure. In this way, when the link portion is not provided, the skeleton of the stent is configured only by the struts.
 更にまた、ストラットの厚さ寸法も全長に亘って均一とされる必要はない。例えば、ストラットの長さ方向において、部分的に厚肉としたり薄肉としてもよい。また、上記のようにリンク部を設けない場合には、ストラットの薄肉とされた部分により脆弱部が形成されてもよい。 Furthermore, the strut thickness need not be uniform over the entire length. For example, it may be partially thick or thin in the length direction of the strut. Moreover, when not providing a link part as mentioned above, a weak part may be formed of the thin part of the strut.
 なお、前記第4~第6の実施形態では、ストラット19の断面形状における周方向幅寸法が外周側から内周側に向って次第に小さくなる形状として概逆三角形が例示されていたが、例えば逆台形でもよいし、内周側に凸となる半円状であってもよい。尤も、本発明では、前述の実施例2のステント42のように、骨格断面の周方向幅寸法が外周側から内周側に向って次第に大きくなる異形構造とすることも可能である。かかる形状としても例示の概三角形の他、例えば台形や外周側に凸となる半円状であってもよい。これにより、骨格におけるステント外周面の血管への押付面積を小さくして押付力を集中的に作用させることで、ステントの血管への位置決め作用を向上させて、バルーン等による拡張等に際してのステントの位置ずれを抑えることもできる。また、血管壁に対して押付力が集中的に作用させられることから、石灰化病変の如き硬質化した血管に対しても効果的な拡張作用が発揮され得るだけでなく、硬質化していない血管に対してもより小さい拡張力をもって所望の寸法まで拡張することが可能となる。 In the fourth to sixth embodiments, the generally inverted triangle is exemplified as the shape in which the circumferential width dimension in the cross-sectional shape of the strut 19 gradually decreases from the outer peripheral side toward the inner peripheral side. A trapezoid may be sufficient and the semicircle shape which becomes convex on the inner peripheral side may be sufficient. However, in the present invention, like the stent 42 of Example 2 described above, it is also possible to have a deformed structure in which the circumferential width dimension of the skeleton cross section gradually increases from the outer peripheral side toward the inner peripheral side. In addition to the illustrated approximate triangle, the shape may be a trapezoid or a semicircular shape that protrudes toward the outer periphery. This reduces the pressing area of the outer peripheral surface of the stent to the blood vessel in the skeleton and concentrates the pressing force, thereby improving the positioning action of the stent on the blood vessel and Misalignment can also be suppressed. In addition, since the pressing force is concentrated on the blood vessel wall, not only can an effective expansion action be exerted on a hardened blood vessel such as a calcified lesion, but also a non-hardened blood vessel However, it is possible to expand to a desired dimension with a smaller expansion force.
 さらに、本発明では、骨格断面の周方向幅寸法を、ステント径方向の中間部分で大きくして外周側と内周側の両方に向かって次第に小さくなる異形構造、即ち、例えば菱形状断面や円形断面、楕円形断面とすることも可能である。これにより、ステントの縮径に際して障害となりやすい、周方向で隣り合う骨格同士の内周端における周方向での相互干渉を抑えつつ、骨格の外周面では血管への押付力を集中的に作用させて位置決め性能の向上、および血管の拡張性能の向上を図ることも可能になる。 Furthermore, in the present invention, a deformed structure in which the circumferential width dimension of the skeleton cross section is increased at the intermediate portion in the radial direction of the stent and gradually decreases toward both the outer peripheral side and the inner peripheral side, that is, for example, a rhombic cross section or a circular shape. A cross section or an elliptical cross section is also possible. This makes it possible to concentrate the pressing force on the blood vessel on the outer peripheral surface of the skeleton while suppressing mutual interference in the circumferential direction at the inner peripheral ends of the skeletons adjacent to each other in the circumferential direction, which tends to be an obstacle when the stent is reduced in diameter. Therefore, it is possible to improve positioning performance and blood vessel expansion performance.
 また、本発明は、前述のレーザーカットや電鋳に代えて、エッチング技術を用いてステントを製造してもよい。エッチング技術とは、例えば次の技術が挙げられる。目的とするステントの形状および大きさを有する成形ベースを準備する。そして、この成形ベースの表面において、各複数の環状部およびリンク部に対応する形状で耐食性のマスクを施し、マスクされていない部分は成形ベースを露出させる。その後、強酸、強アルカリ、強酸化剤などで構成される研磨液中に浸漬して、成形ベースのマスクされていない部分を腐食溶解することにより、上述の如き目的とする構造のステントを得ることができる。 Further, in the present invention, a stent may be manufactured by using an etching technique instead of the laser cutting or electroforming described above. Examples of the etching technique include the following techniques. A molded base having the desired stent shape and size is prepared. And on the surface of this shaping | molding base, a corrosion-resistant mask is given in the shape corresponding to each some annular part and link part, and the non-masked part exposes a shaping | molding base. Thereafter, it is immersed in a polishing liquid composed of strong acid, strong alkali, strong oxidizing agent, etc., and the unmasked portion of the molding base is corroded and dissolved to obtain a stent having the target structure as described above. Can do.
 エッチング技術は、成形ベースのマスクされていない部分を腐食溶解してステントを製造するため、成形ベースの肉厚が仕上がり品の肉厚とほぼ同等であって、仕上がり品の肉厚を時間をかけず大きく設定できる。また、エッチング技術は、電鋳専用の液体試料が不要なため、材料の選択性が増える。更に、エッチング技術は、電流を流す必要がないので、電流密度や電圧等の電気的な調整の必要がなく製造条件の設定及び管理が容易である。なお、本発明はレーザーカット、電鋳及びエッチングを適宜に組み合わせて骨格を形成することも可能であり、例えば電鋳で形成した骨格に部分的なエッチング処理を施すこと等も可能である。 Since the etching technology produces the stent by corrosive dissolution of the unmasked part of the molded base, the thickness of the molded base is almost the same as the thickness of the finished product, and the thickness of the finished product takes time. Can be set larger. In addition, since the etching technique does not require a liquid sample dedicated to electroforming, the material selectivity is increased. Furthermore, since the etching technique does not require a current to flow, it is not necessary to electrically adjust the current density, voltage, etc., and manufacturing conditions can be easily set and managed. In the present invention, a skeleton can be formed by appropriately combining laser cutting, electroforming, and etching. For example, a skeleton formed by electroforming can be partially etched.
10,20,30,32,34,36,42:ステント、13:分岐部、16:環状部、18:リンク部(脆弱部)、19:ストラット、48:凹所 10, 20, 30, 32, 34, 36, 42: stent, 13: branching portion, 16: annular portion, 18: link portion (fragile portion), 19: strut, 48: recess

Claims (13)

  1.  径方向で拡縮可能な骨格の構造により筒状とされて体内管腔に留置されるステントであって、
     前記骨格が断面形状の厚さ方向における変化によって異形構造とされていることを特徴とするステント。
    It is a stent that is made into a cylindrical shape by a skeletal structure that can be expanded and contracted in a radial direction and is placed in a body lumen,
    A stent characterized in that the skeleton has a deformed structure by a change in the thickness direction of the cross-sectional shape.
  2.  前記骨格の断面形状において、内周面から外周面に向かって幅寸法が大きくされている請求項1に記載のステント。 The stent according to claim 1, wherein in the cross-sectional shape of the skeleton, the width dimension is increased from the inner peripheral surface toward the outer peripheral surface.
  3.  前記骨格の断面形状において、周方向両側面の夾角が、外周面の円弧における中心角よりも大きくされている請求項1又は2に記載のステント。 The stent according to claim 1 or 2, wherein in the cross-sectional shape of the skeleton, the depression angles on both sides in the circumferential direction are made larger than the central angle in the arc on the outer circumferential surface.
  4.  前記骨格が、電鋳とエッチングの少なくとも一方で形成された金属製の骨格とされている請求項1~3の何れか1項に記載のステント。 The stent according to any one of claims 1 to 3, wherein the skeleton is a metal skeleton formed by at least one of electroforming and etching.
  5.  径方向で拡縮可能とされて体内管腔に留置されるステントであって、
     断面形状が長さ方向で変化している異形筒形状を有しており、且つ、電鋳とエッチングの少なくとも一方で形成された金属製の骨格を有していることを特徴とするステント。
    A stent that is radially expandable and contracted and is placed in a body lumen,
    A stent having a deformed cylindrical shape whose cross-sectional shape changes in the length direction and a metal skeleton formed by at least one of electroforming and etching.
  6.  分岐部が設けられて筒部の数が長さ方向で変化した異形筒形状とされている請求項5に記載のステント。 6. The stent according to claim 5, wherein the stent has a deformed cylindrical shape in which a branch portion is provided and the number of the cylindrical portions is changed in the length direction.
  7.  長さ方向で径寸法が変化した異形筒形状とされている請求項5又は6に記載のステント。 The stent according to claim 5 or 6, wherein the stent has a deformed cylindrical shape whose diameter is changed in the length direction.
  8.  軸方向の少なくとも一方の端部における剛性が中央部分よりも大きい請求項1~7の何れか1項に記載のステント。 The stent according to any one of claims 1 to 7, wherein rigidity at at least one end in the axial direction is larger than that of the central portion.
  9.  前記中央部分に比べて剛性が大きくされた前記端部が、軸方向外側の末端部分において、剛性を小さくされている請求項8に記載のステント。 The stent according to claim 8, wherein the end portion whose rigidity is increased compared to the central portion is reduced in rigidity at an end portion on the outer side in the axial direction.
  10.  前記骨格が、複数種類の金属の積層構造とされている請求項1~9の何れか1項に記載のステント。 The stent according to any one of claims 1 to 9, wherein the skeleton has a laminated structure of a plurality of types of metals.
  11.  前記骨格には、部分的に強度が小さくされた脆弱部が電鋳とエッチングの少なくとも一方によって形成されている請求項1~10の何れか1項に記載のステント。 The stent according to any one of claims 1 to 10, wherein the skeleton is formed with at least one of electroforming and etching in which a weakened portion having a partially reduced strength is formed.
  12.  前記脆弱部が前記骨格における他の部分よりも小さな断面積で変形容易とされている請求項11に記載のステント。 The stent according to claim 11, wherein the fragile portion is easily deformed with a smaller cross-sectional area than other portions of the skeleton.
  13.  前記骨格には、表面に凹所が設けられている請求項1~12の何れか1項に記載のステント。 The stent according to any one of claims 1 to 12, wherein the skeleton is provided with a recess in the surface.
PCT/JP2014/083308 2013-12-24 2014-12-16 Stent WO2015098629A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480070564.0A CN105848611B (en) 2013-12-24 2014-12-16 Bracket
EP14874864.3A EP3087958B1 (en) 2013-12-24 2014-12-16 Stent
US15/103,645 US10137014B2 (en) 2013-12-24 2014-12-16 Stent
EP19190271.7A EP3583925B1 (en) 2013-12-24 2014-12-16 Stent
US16/199,547 US20190091046A1 (en) 2013-12-24 2018-11-26 Stent

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013264823 2013-12-24
JP2013-264823 2013-12-24
JP2014-034486 2014-02-25
JP2014034486 2014-02-25
JP2014170640A JP6380909B2 (en) 2013-12-24 2014-08-25 Stent
JP2014170644A JP6428050B2 (en) 2014-02-25 2014-08-25 Stent
JP2014-170644 2014-08-25
JP2014-170640 2014-08-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/103,645 A-371-Of-International US10137014B2 (en) 2013-12-24 2014-12-16 Stent
US16/199,547 Continuation US20190091046A1 (en) 2013-12-24 2018-11-26 Stent

Publications (1)

Publication Number Publication Date
WO2015098629A1 true WO2015098629A1 (en) 2015-07-02

Family

ID=53478493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083308 WO2015098629A1 (en) 2013-12-24 2014-12-16 Stent

Country Status (1)

Country Link
WO (1) WO2015098629A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718713A (en) * 1997-04-10 1998-02-17 Global Therapeutics, Inc. Surgical stent having a streamlined contour
JP2003520055A (en) * 1998-09-08 2003-07-02 インターベンショナル テクノロジィーズ インコーポレイテッド Low pressure stent
JP2003521995A (en) * 2000-02-14 2003-07-22 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Stent matrix
JP2005021504A (en) * 2003-07-04 2005-01-27 Terumo Corp Stents for indwelling in living body
WO2006011523A1 (en) * 2004-07-30 2006-02-02 Kaneka Corporation Stent
JP2007125394A (en) * 2005-11-03 2007-05-24 Cordis Corp Intraluminal medical device with strain concentrating bridge
JP2007267844A (en) 2006-03-30 2007-10-18 Terumo Corp Stent for expanding organ and production method of it
JP2008518681A (en) * 2004-11-04 2008-06-05 ボストン サイエンティフィック リミテッド Stents for delivering treatments with increased contact area with living tissue
WO2008073496A2 (en) * 2006-12-12 2008-06-19 Ladisa John F Jr Apparatus and method for minimizing flow disturbances in a stented region of a lumen
WO2011021566A1 (en) * 2009-08-17 2011-02-24 川澄化学工業株式会社 Medical instrument and metal product
WO2012071075A1 (en) * 2010-11-24 2012-05-31 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
WO2013040373A1 (en) * 2011-09-16 2013-03-21 W. L. Gore & Associates, Inc. Medical device fixation anchors

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718713A (en) * 1997-04-10 1998-02-17 Global Therapeutics, Inc. Surgical stent having a streamlined contour
JP2003520055A (en) * 1998-09-08 2003-07-02 インターベンショナル テクノロジィーズ インコーポレイテッド Low pressure stent
JP2003521995A (en) * 2000-02-14 2003-07-22 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Stent matrix
JP2005021504A (en) * 2003-07-04 2005-01-27 Terumo Corp Stents for indwelling in living body
WO2006011523A1 (en) * 2004-07-30 2006-02-02 Kaneka Corporation Stent
JP2008518681A (en) * 2004-11-04 2008-06-05 ボストン サイエンティフィック リミテッド Stents for delivering treatments with increased contact area with living tissue
JP2007125394A (en) * 2005-11-03 2007-05-24 Cordis Corp Intraluminal medical device with strain concentrating bridge
JP2007267844A (en) 2006-03-30 2007-10-18 Terumo Corp Stent for expanding organ and production method of it
WO2008073496A2 (en) * 2006-12-12 2008-06-19 Ladisa John F Jr Apparatus and method for minimizing flow disturbances in a stented region of a lumen
WO2011021566A1 (en) * 2009-08-17 2011-02-24 川澄化学工業株式会社 Medical instrument and metal product
WO2012071075A1 (en) * 2010-11-24 2012-05-31 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
WO2013040373A1 (en) * 2011-09-16 2013-03-21 W. L. Gore & Associates, Inc. Medical device fixation anchors

Similar Documents

Publication Publication Date Title
US20190091046A1 (en) Stent
US8273117B2 (en) Low texture, quasi-isotropic metallic stent
JP5661334B2 (en) Stent
US9056351B2 (en) Stent with improved flexibility and method for making same
JP2011177557A (en) Stent with optimal strength and radiopacity characteristics
US20240016630A1 (en) Stents having a hybrid pattern and methods of manufacture
US10744011B2 (en) Monolithic medical devices and methods of use
JP6428050B2 (en) Stent
JP6558569B2 (en) Stent
US10420660B2 (en) Flexible stent
JP6380909B2 (en) Stent
WO2015098629A1 (en) Stent
WO2016163339A1 (en) Stent
JP5573911B2 (en) Indwelling stent
JP2019195673A (en) Stent
JP3145720U (en) Stent
JPWO2017158985A1 (en) Stent
WO2015190541A1 (en) Stent
JP4815057B2 (en) Stent
JP4654361B2 (en) Stent
US20120232642A1 (en) Punching-based stent and its manufacturing method
JP2016059506A (en) Stent which can be properly placed to lesioned part
JP2012196499A (en) Endoprosthesis
JP2018114242A (en) Medical tubular body
JPWO2017159033A1 (en) Stent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15103645

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014874864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874864

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE