WO2015098328A1 - Rotating electric machine - Google Patents
Rotating electric machine Download PDFInfo
- Publication number
- WO2015098328A1 WO2015098328A1 PCT/JP2014/079909 JP2014079909W WO2015098328A1 WO 2015098328 A1 WO2015098328 A1 WO 2015098328A1 JP 2014079909 W JP2014079909 W JP 2014079909W WO 2015098328 A1 WO2015098328 A1 WO 2015098328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- passage
- coolant
- rotating electrical
- circumferential
- electrical machine
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
Definitions
- the present invention relates to a rotating electrical machine.
- Electric / electronic devices used in automobiles are required to be smaller and have higher output.
- the heat generated in the stator conductor is cooled by increasing the amount of current, so forced cooling with coolant or oil is required. Is becoming indispensable.
- an object of the present invention is to provide a cooling structure for a rotating electric machine that achieves both high cooling efficiency and low pressure loss.
- the present application includes a plurality of means for solving the above-described problems.
- a stator a rotor that is rotatably held inside the stator via a predetermined gap, and the fixed
- a coolant passage formed in the housing the coolant passage having a coolant introduction port provided at one end, and a coolant discharge port provided at the other end.
- a plurality of axially arranged circumferential passages that are perpendicular to the circumferential direction, and oblique passages that connect the circumferential passages in the axial direction, and the flow of the coolant in the circumferential passages.
- the circumferential passage and the skew passage are connected so that the direction is the same as the circumferential direction.
- FIG. 1 is a side sectional view showing Example 1.
- FIG. FIG. 3 is a top view showing a coolant passage inside the center bracket of the first embodiment.
- FIG. 3 is a perspective view illustrating a coolant passage shape according to the first embodiment. The perspective view which shows the coolant channel shape at the time of reducing the number of stages of a coolant channel. The perspective view which shows the coolant channel shape at the time of increasing the number of stages of a coolant channel.
- FIG. 3 is a conceptual diagram illustrating a mold structure for forming a coolant passage according to the first embodiment.
- FIG. 3 is a side cross-sectional view showing an example in which the type of the stator of Example 1 is changed.
- FIG. 6 is a side sectional view showing Example 2.
- FIG. 6 is a perspective view showing the shape of an inner housing of Example 2.
- the sectional side view which shows the example which changed the kind of stator of Example 2.
- a rotating electrical machine used for an electric vehicle is used as an example.
- This rotating electric machine has a function of a motor that drives wheels of a vehicle and a function of a generator that generates electric power using regeneration, and these functions are used by switching according to the traveling state of the vehicle. .
- the center housing 11 has a stator 3 that is fixed by shrink fitting or press fitting, and a rotor 4 that is rotatably held inside the center housing 11.
- the stator 3 is formed by winding a stator coil 32 around a plurality of slots provided in a stator core 31 formed by laminating electromagnetic steel plates.
- a rotor core 41 formed by laminating electromagnetic steel plates is fastened with a shaft 44 by shrink fitting or press fitting, and the shaft 44 is rotatable via a bearing 5 provided in the rear housing 11 and the front housing 12. Power is transmitted from a portion that is held and protrudes from the front housing 12.
- the rotating electrical machine having the above configuration is installed in an engine room of a vehicle (not shown), and transmits a driving force via a spline or the like provided at the tip of the shaft 44.
- a control device such as an inverter with a three-phase power cable to control drive and power generation.
- a coolant introduction port 111 and a coolant discharge port 112 are provided on the outer periphery of the center housing 11.
- the center housing 11 is sandwiched between the rear housing 11 and the front housing 12 at the end in the axial direction, and is fixed by bolts or the like.
- the coolant passage 15 formed integrally with the center housing 11 is formed in a belt shape on the outer periphery of the stator 3.
- the coolant passage 15 includes circumferential passages 151, 152, and 153 that are arranged in three stages in the axial direction, and skew passages 161 and 162 that connect the circumferential passages in series.
- the upstream end of the circumferential passage 151 is connected to the coolant introduction port 111, and the downstream end is connected to the skew passage 161.
- a series of coolant passages 15 is configured by continuously connecting to the skew passage 161, the middle circumferential passage 152, the skew passage 162, the circumferential passage 153, and the coolant discharge port 112. .
- the oblique passages connecting the circumferential passages are not folded back, and the flow direction of the circumferential passages is the same in each stage, so that there is no stagnation and an increase in pressure loss can be suppressed.
- the circumferential passages 151, 152, and 153 are provided so as to extend in the circumferential direction, that is, to extend in the circumferential direction on a plane orthogonal to the rotation axis of the rotor.
- it is not necessary to be disposed on a plane strictly perpendicular to the rotation axis of the rotor, and it is not necessary to be strictly disposed in a circumferential shape.
- the width of the oblique passage 161 is preferably the same as that of the circumferential passage 151, and the angle ⁇ formed by the circumferential passages 151, 152 and the oblique passages 161, 162 is preferably small.
- the coolant introduction port 111 and the coolant discharge port 112 are arranged on different axes in the rotation axis direction, so that the coolant introduction port 111 and the coolant discharge port are compared with the case where they are arranged on the same axis.
- the coolant passage 15 is integrally formed with a collapsible core made of sand or resin when the center housing 11 is produced by casting such as die casting. Since the collapsible core is formed by a mold or the like, for example, in the case of a spiral channel where all the circumferential passages are parallel, the number of mold divisions increases to avoid undercut. As shown in FIG. 6, in the coolant passage 15 of the present embodiment, the oblique passages are concentrated and arranged in one direction in the circumferential direction, so that the mold can be pulled out when the collapsible core is manufactured. By reducing and simplifying the configuration, costs can be reduced. Here, even if the protrusion for holding the collapsible core in the mold is provided in the coolant passage, the effect of the present invention does not change.
- the coolant passage 15 continuously circulates inside the center housing 11, and the walls that partition the coolant passage function as ribs, and the reduction in rigidity of the center housing 11 due to the provision of the coolant passage can be suppressed. Therefore, the stator 3 fixed inside the center housing 11 can be prevented from being deformed by the magnetic excitation force, and magnetic noise can be reduced.
- the stator 3 may be a combination of divided stator cores each having a stator coil wound thereon.
- a gap between the outer housing 17 and the inner housing 18 is sealed with an O-ring 19 to form a coolant passage 15.
- Boundary walls 181 for partitioning the circumferential passages and the oblique passages are formed on the outer periphery of the substantially cylindrical inner housing 18, and O-ring grooves 185 are formed on both ends of the outer periphery in the axial direction.
- the oblique passages connecting the circumferential passages of the coolant passage 15 partitioned by the boundary wall 181 are not folded back, and the flow direction of the circumferential passages is the same in each stage, so there is no stagnation and the pressure loss increases. Can be suppressed.
- the inner housing 18 is cast by die casting or the like, and the boundary wall 181 and the O-ring groove 185 are formed by a mold, which is suitable for mass production.
- a mold which is suitable for mass production.
- the outer periphery of the inner housing 18 is contacted and fixed to the inner peripheral portion of the outer housing 17 by a method such as shrink fitting or press-fitting, and is in contact with the inertial force caused by vibration acting on the inner housing 18 and the stator 3 or the torque reaction force of the motor.
- the fastening allowance is set so that a fastening force that does not slip the surface is generated.
- the fastening allowance is provided between the outer peripheral surface of the boundary wall 181 of the inner housing 18 and the inner peripheral surface of the outer housing 17.
- the stator 3 fixed to the inner side of the inner housing 18 is caused by the magnetic excitation force. Deformation can be suppressed and magnetic noise can be reduced.
- the O-ring that seals the coolant passage 15 is extrapolated from the outside in the axial direction to an O-ring groove 185 provided on the outer periphery of the inner housing 18.
- O-ring groove 185 is close to both ends of the inner housing 18.
- the inner housing 18 is fixed by shrink fitting or press-fitting, it is not necessary to provide a protrusion such as a flange for fixing on the outer periphery, so that the O-ring can be easily attached.
- the stator 3 may be a combination of divided stator cores each having a stator coil wound thereon.
- this invention is not limited to an above-described Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Provided is a rotating electric machine having both high cooling efficiency and low pressure loss. This rotating electric machine is configured so as to have: a stator; a rotor rotatably held within the stator with a prescribed gap therebetween; and a cooling liquid passage (15) located at the outer periphery of the stator and formed within a housing. The cooling liquid path comprises a cooling liquid inlet (111) provided at one end of the cooling liquid path, a cooling liquid outlet (112) provided at the other end, circumferential passages (151, 152, 153) arranged in multiple rows in the axial direction, orthogonal to the circumferential direction; and an oblique passage (161) connecting the circumferential passages in the axial direction. The circumferential passages and the oblique passage are connected such that the direction of flow of the cooling liquid in each circumferential passage is the same in the circumferential direction.
Description
本発明は回転電機に関する。
The present invention relates to a rotating electrical machine.
自動車に使用される電気/電子機器は小型化ならびに高出力化が求められており、回転電機においては電流量の増加によって固定子導体で発生した熱を冷却するため、冷却液やオイルによる強制冷却が不可欠になってきている。
Electric / electronic devices used in automobiles are required to be smaller and have higher output. In rotating electrical machines, the heat generated in the stator conductor is cooled by increasing the amount of current, so forced cooling with coolant or oil is required. Is becoming indispensable.
水冷式の回転電機としては、固定子を保持するハウジング内に帯状の冷却液通路と冷却液通路の境界壁とを設け、周方向に冷却液を流すものが知られている(例えば、特許文献1参照)。
As a water-cooled rotating electrical machine, there is known one in which a belt-shaped coolant passage and a boundary wall of the coolant passage are provided in a housing that holds a stator, and the coolant flows in the circumferential direction (for example, Patent Documents). 1).
また、固定子を効果的に冷却するために、冷却液通路内に別部材による境界壁を挿入したものが知られている(例えば、特許文献2参照)。
Further, in order to effectively cool the stator, there is known one in which a boundary wall made of another member is inserted in the coolant passage (for example, see Patent Document 2).
しかしながら、上記のような従来技術では液体の流れによどみが発生し、よどんだ部分の冷却効率が下がる。また、よどみを避けるために冷却液通路構造を複雑にしたものは、冷却液通路内の圧力損失を低く抑えることが困難であった。圧力損失が高いと、冷却液を循環させるためのポンプの出力を上げる必要があり、車両全体の効率が低下する。従来技術では、これらの問題が十分に考慮されていなかった。
However, in the prior art as described above, stagnation occurs due to the flow of the liquid, and the cooling efficiency of the stagnation portion decreases. In addition, in the case where the cooling fluid passage structure is complicated in order to avoid stagnation, it is difficult to keep the pressure loss in the cooling fluid passage low. When the pressure loss is high, it is necessary to increase the output of the pump for circulating the coolant, and the efficiency of the entire vehicle is reduced. The prior art has not fully considered these problems.
そこで本発明は、高い冷却効率と低い圧力損失とを両立した回転電機の冷却構造を提供することを目的とする。
Therefore, an object of the present invention is to provide a cooling structure for a rotating electric machine that achieves both high cooling efficiency and low pressure loss.
上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、固定子と、前記固定子の内部に所定のギャップを介して回転可能に保持された回転子と、前記固定子の外周に位置し、ハウジング内に形成された冷却液通路と、を有し、前記冷却液通路は、一端に設けられた冷却液導入口と、他端に設けられた冷却液排出口と、軸方向に複数段配置され、周方向に直行する周方向通路と、それぞれの前記周方向通路を軸方向に接続する斜行通路とにより構成され、それぞれの前記周方向通路の冷却液の流れる方向が、周方向に同じ方向になるように、前記周方向通路と前記斜行通路とが接続されていることを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a stator, a rotor that is rotatably held inside the stator via a predetermined gap, and the fixed A coolant passage formed in the housing, the coolant passage having a coolant introduction port provided at one end, and a coolant discharge port provided at the other end. A plurality of axially arranged circumferential passages that are perpendicular to the circumferential direction, and oblique passages that connect the circumferential passages in the axial direction, and the flow of the coolant in the circumferential passages. The circumferential passage and the skew passage are connected so that the direction is the same as the circumferential direction.
本発明によれば、高い冷却効率と低い圧力損失とを両立した回転電機を提供することができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
According to the present invention, it is possible to provide a rotating electrical machine that achieves both high cooling efficiency and low pressure loss. Problems, configurations, and effects other than those described above will become apparent from the description of the following examples.
以下、図面を用いて本発明の実施例を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
なお、以下の説明では、電動自動車に使用される回転電機を例として用いる。この回転電機は、車両の車輪を駆動するモータの機能と、回生を利用して発電を行う発電機の機能を有しており、車両の走行状況に応じてそれらの機能を切り替えて使用される。
In the following description, a rotating electrical machine used for an electric vehicle is used as an example. This rotating electric machine has a function of a motor that drives wheels of a vehicle and a function of a generator that generates electric power using regeneration, and these functions are used by switching according to the traveling state of the vehicle. .
本発明に係る実施例を図1から図7を用いて説明する。
Embodiments according to the present invention will be described with reference to FIGS.
略円筒型のセンターハウジング11と、その開口部を塞ぐフロントハウジング12、リアハウジング13を有する。センターハウジング11には焼き嵌め或いは圧入等により固定される固定子3を有し、その内側に回転可能に保持された回転子4を有する。固定子3は、電磁鋼板を積層してなる固定子鉄心31に設けられた複数のスロットに固定子コイル32を巻装してなる。
It has a substantially cylindrical center housing 11 and a front housing 12 and a rear housing 13 that close the opening. The center housing 11 has a stator 3 that is fixed by shrink fitting or press fitting, and a rotor 4 that is rotatably held inside the center housing 11. The stator 3 is formed by winding a stator coil 32 around a plurality of slots provided in a stator core 31 formed by laminating electromagnetic steel plates.
回転子4は、電磁鋼板を積層してなる回転子鉄心41は軸44と焼き嵌め或いは圧入によって締結され、軸44はリアハウジング11とフロントハウジング12に設けられた軸受5を介して回転可能に保持され、フロントハウジング12より突出した部分から動力を伝える。
In the rotor 4, a rotor core 41 formed by laminating electromagnetic steel plates is fastened with a shaft 44 by shrink fitting or press fitting, and the shaft 44 is rotatable via a bearing 5 provided in the rear housing 11 and the front housing 12. Power is transmitted from a portion that is held and protrudes from the front housing 12.
上記構成の回転電機は車両(図示せず)のエンジンルーム内に設置され、軸44の先端に設けられたスプライン等を介して駆動力を伝達する。また、3相の電源ケーブルでインバータ等の制御装置(図示せず)と接続され、駆動及び発電の制御が行われる。
The rotating electrical machine having the above configuration is installed in an engine room of a vehicle (not shown), and transmits a driving force via a spline or the like provided at the tip of the shaft 44. In addition, it is connected to a control device (not shown) such as an inverter with a three-phase power cable to control drive and power generation.
センターハウジング11の外周部には冷却液導入口111と冷却液排出口112を設けている。センターハウジング11は軸方向端部にてリアハウジング11とフロントハウジング12に挟まれており、ボルト等によって固定されている。センターハウジング11内に一体で成形された冷却液通路15は、固定子3の外周に帯状に形成されている。
A coolant introduction port 111 and a coolant discharge port 112 are provided on the outer periphery of the center housing 11. The center housing 11 is sandwiched between the rear housing 11 and the front housing 12 at the end in the axial direction, and is fixed by bolts or the like. The coolant passage 15 formed integrally with the center housing 11 is formed in a belt shape on the outer periphery of the stator 3.
冷却液通路15は軸方向に3段配置された周方向通路151、152、153と、各周方向通路を直列に接続する斜行通路161、162とにより構成される。周方向通路151の上流側端は冷却液導入口111と接続され、下流側端は斜行通路161と接続される。以降、斜行通路161、中段の周方向通路152、斜行通路162、周方向通路153、冷却液排出口112へと連続して接続されることで、一連の冷却液通路15が構成される。各周方向通路を接続する斜行通路は折り返しがなく、周方向通路の流れ方向が各段で同じ方向にすることでよどみがなく、圧力損失の上昇を抑えることができる。
The coolant passage 15 includes circumferential passages 151, 152, and 153 that are arranged in three stages in the axial direction, and skew passages 161 and 162 that connect the circumferential passages in series. The upstream end of the circumferential passage 151 is connected to the coolant introduction port 111, and the downstream end is connected to the skew passage 161. Subsequently, a series of coolant passages 15 is configured by continuously connecting to the skew passage 161, the middle circumferential passage 152, the skew passage 162, the circumferential passage 153, and the coolant discharge port 112. . The oblique passages connecting the circumferential passages are not folded back, and the flow direction of the circumferential passages is the same in each stage, so that there is no stagnation and an increase in pressure loss can be suppressed.
周方向通路151、152、153は、周方向に直行するように、すなわち回転子の回転軸と直交する面上において円周方向に延びるように設けられる。なお、冷却液通路として機能する範囲内であれば、厳密に回転子の回転軸と直交する面上に配置される必要はなく、また、厳密に円周状に設けられる必要もない。
The circumferential passages 151, 152, and 153 are provided so as to extend in the circumferential direction, that is, to extend in the circumferential direction on a plane orthogonal to the rotation axis of the rotor. In addition, as long as it is within a range that functions as a coolant passage, it is not necessary to be disposed on a plane strictly perpendicular to the rotation axis of the rotor, and it is not necessary to be strictly disposed in a circumferential shape.
圧力損失の上昇を抑えるために斜行通路161の幅は周方向通路151と同一で、周方向通路151、152と斜行通路161、162とがなす角度θが小さいことが好ましい。本実施例では冷却液導入口111と冷却液排出口112を回転軸方向において異なる軸上に配置することで、同一軸線上に配置する場合と比較して冷却液導入口111と冷却液排出口112との距離を長くすることで斜行通路を配置する領域を確保し、斜行通路幅、角度θを調整して冷却液通路15の圧力損失が抑えられる形状を実現している。図4、5に示すように、冷却液の流量やセンターハウジング11や固定子3の長さにより冷却液通路の幅や段数を変えることで調整が可能である。
In order to suppress an increase in pressure loss, the width of the oblique passage 161 is preferably the same as that of the circumferential passage 151, and the angle θ formed by the circumferential passages 151, 152 and the oblique passages 161, 162 is preferably small. In this embodiment, the coolant introduction port 111 and the coolant discharge port 112 are arranged on different axes in the rotation axis direction, so that the coolant introduction port 111 and the coolant discharge port are compared with the case where they are arranged on the same axis. By increasing the distance to 112, a region for arranging the skew passage is secured, and the shape in which the pressure loss of the coolant passage 15 is suppressed by adjusting the skew passage width and angle θ is realized. As shown in FIGS. 4 and 5, adjustment is possible by changing the width and the number of steps of the coolant passage according to the coolant flow rate and the length of the center housing 11 and the stator 3.
冷却液通路15はセンターハウジング11をダイカスト等の鋳造により生産する際に、砂や樹脂により構成された崩壊性中子により一体に成形される。崩壊性中子は金型等により成形されるため、例えばすべての周方向通路が平行ならせん型の水路の場合、アンダーカットを避けるために型分割数が増加する。図6に示すように、本実施例の冷却液通路15では斜行通路が周方向の一方向に集中して配置されることで、崩壊性中子を製作する際の金型の抜き方向を減らし、構成を単純にすることでコストを抑えることができる。ここで崩壊性中子を型内で保持するための突起が冷却液通路に設けられていても本発明による効果は変わらない。
The coolant passage 15 is integrally formed with a collapsible core made of sand or resin when the center housing 11 is produced by casting such as die casting. Since the collapsible core is formed by a mold or the like, for example, in the case of a spiral channel where all the circumferential passages are parallel, the number of mold divisions increases to avoid undercut. As shown in FIG. 6, in the coolant passage 15 of the present embodiment, the oblique passages are concentrated and arranged in one direction in the circumferential direction, so that the mold can be pulled out when the collapsible core is manufactured. By reducing and simplifying the configuration, costs can be reduced. Here, even if the protrusion for holding the collapsible core in the mold is provided in the coolant passage, the effect of the present invention does not change.
冷却液通路15はセンターハウジング11の内部を連続して周回しており、冷却液通路を仕切る壁がリブとして働き、冷却液通路を設けたことによるセンターハウジング11の剛性の低下を抑えることが出来るため、センターハウジング11の内側に固定される固定子3が磁気加振力によって変形することを抑え、磁気騒音を低減させることが出来る。
The coolant passage 15 continuously circulates inside the center housing 11, and the walls that partition the coolant passage function as ribs, and the reduction in rigidity of the center housing 11 due to the provision of the coolant passage can be suppressed. Therefore, the stator 3 fixed inside the center housing 11 can be prevented from being deformed by the magnetic excitation force, and magnetic noise can be reduced.
図7に示すとおり、固定子3は分割した固定子鉄心に各々固定子コイルを巻装したものを結合したものでも良い。
As shown in FIG. 7, the stator 3 may be a combination of divided stator cores each having a stator coil wound thereon.
第2の実施例を図8、図9を用いて説明する。ただし、実施例1と同様の箇所は説明を省略する。
The second embodiment will be described with reference to FIGS. However, the description of the same parts as those in the first embodiment is omitted.
本実施例ではアウターハウジング17とインナーハウジング18とに挟まれた隙間をOリング19により封止し、冷却液通路15として形成している。略円筒形状のインナーハウジング18の外周には各周方向通路と斜行通路を仕切るための境界壁181が形成され、外周の軸方向両端にはOリング溝185が形成されている。境界壁181により仕切られた冷却液通路15の各周方向通路を接続する斜行通路は折り返しがなく、周方向通路の流れ方向が各段同じ方向になることでよどみがなく、圧力損失の上昇を抑えることができる。
In this embodiment, a gap between the outer housing 17 and the inner housing 18 is sealed with an O-ring 19 to form a coolant passage 15. Boundary walls 181 for partitioning the circumferential passages and the oblique passages are formed on the outer periphery of the substantially cylindrical inner housing 18, and O-ring grooves 185 are formed on both ends of the outer periphery in the axial direction. The oblique passages connecting the circumferential passages of the coolant passage 15 partitioned by the boundary wall 181 are not folded back, and the flow direction of the circumferential passages is the same in each stage, so there is no stagnation and the pressure loss increases. Can be suppressed.
インナーハウジング18はダイカスト等により鋳造され、境界壁181、Oリング溝185は金型により成形されるため、大量生産に好適である。冷却液導入口111、冷却液排出口112、斜行通路161、162を外周側面の一方向に集中して配置することでインナーハウジング18の金型の抜き方向を減らし、構成を単純にすることでコストを抑えることができる。
The inner housing 18 is cast by die casting or the like, and the boundary wall 181 and the O-ring groove 185 are formed by a mold, which is suitable for mass production. By arranging the coolant introduction port 111, the coolant discharge port 112, and the oblique passages 161 and 162 in one direction on the outer peripheral side, the direction of removing the mold of the inner housing 18 is reduced, and the configuration is simplified. Can reduce costs.
インナーハウジング18の外周はアウターハウジング17の内周部に焼き嵌めや圧入等の方法により接触固定され、インナーハウジング18と固定子3に働く振動による慣性力やモータのトルク反力に対して、接触面が滑らない締結力が発生するように締め代が設定される。締め代はインナーハウジング18の境界壁181の外周面と、アウターハウジング17の内周面との間に設けられている。境界壁181はインナーハウジング18の外周を連続して周回しており、インナーハウジング18の締結力を全周で得られるため、インナーハウジング18の内側に固定される固定子3が磁気加振力によって変形することを抑え、磁気騒音を低減させることが出来る。
The outer periphery of the inner housing 18 is contacted and fixed to the inner peripheral portion of the outer housing 17 by a method such as shrink fitting or press-fitting, and is in contact with the inertial force caused by vibration acting on the inner housing 18 and the stator 3 or the torque reaction force of the motor. The fastening allowance is set so that a fastening force that does not slip the surface is generated. The fastening allowance is provided between the outer peripheral surface of the boundary wall 181 of the inner housing 18 and the inner peripheral surface of the outer housing 17. Since the boundary wall 181 continuously circulates around the outer periphery of the inner housing 18 and the fastening force of the inner housing 18 can be obtained over the entire circumference, the stator 3 fixed to the inner side of the inner housing 18 is caused by the magnetic excitation force. Deformation can be suppressed and magnetic noise can be reduced.
冷却液通路15を封止するOリングは、インナーハウジング18の外周に設けられたOリング溝185に軸方向外側から外挿される。Oリングを外挿するためにはインナーハウジング18の外周には突起部がなく、Oリング溝185はインナーハウジング18の両端に近いことが望ましい。本発明によれば、インナーハウジング18は焼き嵌めや圧入で固定するため、固定のためのフランジ等の突起物を外周に設ける必要がないため、Oリングの装着を容易に行うことが出来る。
The O-ring that seals the coolant passage 15 is extrapolated from the outside in the axial direction to an O-ring groove 185 provided on the outer periphery of the inner housing 18. In order to extrapolate the O-ring, it is desirable that there is no protrusion on the outer periphery of the inner housing 18 and the O-ring groove 185 is close to both ends of the inner housing 18. According to the present invention, since the inner housing 18 is fixed by shrink fitting or press-fitting, it is not necessary to provide a protrusion such as a flange for fixing on the outer periphery, so that the O-ring can be easily attached.
図10に示すとおり、固定子3は分割した固定子鉄心に各々固定子コイルを巻装したものを結合したものでも良い。
As shown in FIG. 10, the stator 3 may be a combination of divided stator cores each having a stator coil wound thereon.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 回転電機
3 固定子
4 回転子
5 軸受
11 センターハウジング
12 フロントハウジング
13 リアハウジング
15 冷却液通路
16 斜行通路
17 アウターハウジング
18 インナーハウジング
19 Oリング
31 固定子鉄心
32 固定子コイル
41 回転子鉄心
44 回転子軸
111 冷却液導入口
112 冷却液排出口
151 周方向通路(1段目)
152 周方向通路(2段目)
153 周方向通路(3段目)
161 斜行通路(1段目)
162 斜行通路(2段目)
181 境界壁
185 Oリング溝 DESCRIPTION OFSYMBOLS 1 Rotating electrical machine 3 Stator 4 Rotor 5 Bearing 11 Center housing 12 Front housing 13 Rear housing 15 Coolant passage 16 Skew passage 17 Outer housing 18 Inner housing 19 O-ring 31 Stator core 32 Stator coil 41 Rotor core 44 Rotor shaft 111 Coolant inlet 112 Coolant outlet 151 Circumferential passage (first stage)
152 Circumferential passage (second stage)
153 Circumferential passage (third stage)
161 Skew passage (first stage)
162 Skew passage (second stage)
181 Boundary wall 185 O-ring groove
3 固定子
4 回転子
5 軸受
11 センターハウジング
12 フロントハウジング
13 リアハウジング
15 冷却液通路
16 斜行通路
17 アウターハウジング
18 インナーハウジング
19 Oリング
31 固定子鉄心
32 固定子コイル
41 回転子鉄心
44 回転子軸
111 冷却液導入口
112 冷却液排出口
151 周方向通路(1段目)
152 周方向通路(2段目)
153 周方向通路(3段目)
161 斜行通路(1段目)
162 斜行通路(2段目)
181 境界壁
185 Oリング溝 DESCRIPTION OF
152 Circumferential passage (second stage)
153 Circumferential passage (third stage)
161 Skew passage (first stage)
162 Skew passage (second stage)
181 Boundary wall 185 O-ring groove
Claims (6)
- 固定子と、
前記固定子の内部に所定のギャップを介して回転可能に保持された回転子と、
前記固定子の外周に位置し、ハウジング内に形成された冷却液通路と、を有し、
前記冷却液通路は、
一端に設けられた冷却液導入口と、
他端に設けられた冷却液排出口と、
軸方向に複数段配置され、周方向に直行する周方向通路と、
それぞれの前記周方向通路を軸方向に接続する斜行通路とにより構成され、
それぞれの前記周方向通路の冷却液の流れる方向が、周方向に同じ方向になるように、前記周方向通路と前記斜行通路とが接続されている回転電機。 A stator,
A rotor held rotatably inside the stator through a predetermined gap;
A coolant passage located in the outer periphery of the stator and formed in the housing,
The coolant passage is
A coolant inlet provided at one end;
A coolant outlet provided at the other end;
A plurality of axially arranged circumferential passages that go straight in the circumferential direction;
Each of the circumferential passages is configured by an oblique passage connecting the axial passages,
A rotating electrical machine in which the circumferential passage and the skew passage are connected such that the flow direction of the coolant in each circumferential passage is the same in the circumferential direction. - 請求項1に記載の回転電機において、
前記冷却液通路が、一体で形成されたハウジング内部に形成されている回転電機。 In the rotating electrical machine according to claim 1,
A rotating electrical machine in which the coolant passage is formed inside an integrally formed housing. - 請求項1に記載の回転電機において、
前記冷却液通路が、内側と外側の2つのハウジングに挟まれた隙間に形成されている回転電機。 In the rotating electrical machine according to claim 1,
A rotating electrical machine in which the coolant passage is formed in a gap between two inner and outer housings. - 請求項1乃至3のいずれかに記載の回転電機において、
前記冷却液導入口と冷却液排出口が、前記回転子の回転軸方向において、各々異なる軸線上に配置されている回転電機。 In the rotary electric machine according to any one of claims 1 to 3,
A rotating electrical machine in which the coolant introduction port and the coolant discharge port are arranged on different axes in the rotation axis direction of the rotor. - 固定子の外周に設けられた内壁部とその外周に設けられた外壁との間に周方向に周回する複数本の冷却流体通路を有する回転電機において、
前記冷却水通路は、
軸方向両側面を形成する2本の側壁と、
前記2本の側壁の間に形成された分割壁とを備え、
前記分割壁と側壁とで形成される連続した周回通路が形成されており、
前記周回通路の始端と終端にそれぞれ入口部と出口部が形成されており、
前記入口部と前記出口部との間に、前記分割壁の少なくとも一部が設けられ、
前記分割壁の一部によって、前記入り口部と出口部とが仕切られている回転電機。 In a rotating electrical machine having a plurality of cooling fluid passages that circulate in the circumferential direction between an inner wall portion provided on the outer periphery of the stator and an outer wall provided on the outer periphery thereof,
The cooling water passage is
Two side walls forming both axial side surfaces;
A dividing wall formed between the two side walls,
A continuous circulation path formed by the dividing wall and the side wall is formed,
An inlet and an outlet are formed at the start and end of the circuit path, respectively.
At least a part of the dividing wall is provided between the inlet portion and the outlet portion,
A rotating electrical machine in which the entrance and the exit are partitioned by a part of the dividing wall. - 請求項5に記載された回転電機において、
前記入り口部と出口部とを仕切る前記分割壁の一部が、前記周回流体通路に対して斜行している回転電機。 In the rotating electrical machine according to claim 5,
A rotating electrical machine in which a part of the dividing wall that partitions the inlet portion and the outlet portion is skewed with respect to the circulating fluid passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015554665A JP6314158B2 (en) | 2013-12-27 | 2014-11-12 | Rotating electric machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-270813 | 2013-12-27 | ||
JP2013270813 | 2013-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098328A1 true WO2015098328A1 (en) | 2015-07-02 |
Family
ID=53478205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079909 WO2015098328A1 (en) | 2013-12-27 | 2014-11-12 | Rotating electric machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6314158B2 (en) |
WO (1) | WO2015098328A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017029041A1 (en) * | 2015-08-20 | 2017-02-23 | Robert Bosch Gmbh | Electric machine having a housing jacket consisting of two jacket segments |
JP2017046478A (en) * | 2015-08-27 | 2017-03-02 | 日産自動車株式会社 | Rotary electric machine cooling structure and manufacturing method therefor |
FR3077939A1 (en) * | 2018-02-14 | 2019-08-16 | Psa Automobiles Sa | ELECTRIC MACHINE HOUSING WITH COOLING CIRCUIT |
WO2019171535A1 (en) * | 2018-03-08 | 2019-09-12 | 日産自動車株式会社 | Dynamo-electric machine and method for manufacturing dynamo-electric machine |
WO2019230202A1 (en) * | 2018-05-29 | 2019-12-05 | 日立オートモティブシステムズ株式会社 | Rotating electrical machine |
WO2020003661A1 (en) * | 2018-06-28 | 2020-01-02 | 株式会社Ihi | Rotary machine and method for manufacturing inner body part of rotary machine |
US10941788B2 (en) | 2017-01-25 | 2021-03-09 | Ihi Corporation | Electric compressor |
JP2021069179A (en) * | 2019-10-23 | 2021-04-30 | 株式会社明電舎 | Cooling liquid passage structure of motor |
JP2021151060A (en) * | 2020-03-18 | 2021-09-27 | 東芝産業機器システム株式会社 | Cooling structure of rotary electric machine and rotary electric machine |
JP2021154299A (en) * | 2020-03-25 | 2021-10-07 | 株式会社アイシン | Method for production of collapsible core |
WO2021234425A1 (en) | 2020-05-22 | 2021-11-25 | 日産自動車株式会社 | Drive unit for series hybrid vehicle |
WO2022158051A1 (en) * | 2021-01-19 | 2022-07-28 | 日立Astemo株式会社 | Drive unit |
CN115053434A (en) * | 2020-02-07 | 2022-09-13 | 株式会社明电舍 | Cooling liquid passage structure of motor and manufacturing method of motor |
WO2022190183A1 (en) | 2021-03-08 | 2022-09-15 | 日産自動車株式会社 | Rotating electrical machine |
US20220302795A1 (en) * | 2021-03-18 | 2022-09-22 | Cummins Inc. | Cooling a rotating electrical machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112022016609A2 (en) | 2020-02-20 | 2022-10-04 | Nissan Motor | DYNAMO-ELECTRIC MACHINE AND VEHICLE MOUNTING STRUCTURE FOR DYNAMO-ELECTRIC MACHINE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1710648A (en) * | 1927-05-21 | 1929-04-23 | Thompson Emery | Ice-cream-freezing cylinder |
JPH0688170U (en) * | 1993-05-28 | 1994-12-22 | 株式会社荏原電産 | Electric motor with water cooling room |
JP2009017777A (en) * | 2007-07-03 | 2009-01-22 | Caterpillar Inc | Cast groove cooling mechanism for electric motor/power generator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011010525A (en) * | 2009-06-29 | 2011-01-13 | Showa Denko Kk | Motor case |
-
2014
- 2014-11-12 JP JP2015554665A patent/JP6314158B2/en active Active
- 2014-11-12 WO PCT/JP2014/079909 patent/WO2015098328A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1710648A (en) * | 1927-05-21 | 1929-04-23 | Thompson Emery | Ice-cream-freezing cylinder |
JPH0688170U (en) * | 1993-05-28 | 1994-12-22 | 株式会社荏原電産 | Electric motor with water cooling room |
JP2009017777A (en) * | 2007-07-03 | 2009-01-22 | Caterpillar Inc | Cast groove cooling mechanism for electric motor/power generator |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107925306A (en) * | 2015-08-20 | 2018-04-17 | 罗伯特·博世有限公司 | Motor with the housing shells being made of two outer cover sections |
WO2017029041A1 (en) * | 2015-08-20 | 2017-02-23 | Robert Bosch Gmbh | Electric machine having a housing jacket consisting of two jacket segments |
JP2017046478A (en) * | 2015-08-27 | 2017-03-02 | 日産自動車株式会社 | Rotary electric machine cooling structure and manufacturing method therefor |
US10941788B2 (en) | 2017-01-25 | 2021-03-09 | Ihi Corporation | Electric compressor |
FR3077939A1 (en) * | 2018-02-14 | 2019-08-16 | Psa Automobiles Sa | ELECTRIC MACHINE HOUSING WITH COOLING CIRCUIT |
JPWO2019171535A1 (en) * | 2018-03-08 | 2021-02-12 | 日産自動車株式会社 | Rotating machine and manufacturing method of rotating machine |
WO2019171535A1 (en) * | 2018-03-08 | 2019-09-12 | 日産自動車株式会社 | Dynamo-electric machine and method for manufacturing dynamo-electric machine |
WO2019230202A1 (en) * | 2018-05-29 | 2019-12-05 | 日立オートモティブシステムズ株式会社 | Rotating electrical machine |
JP2019208311A (en) * | 2018-05-29 | 2019-12-05 | 日立オートモティブシステムズ株式会社 | Rotary electric machine |
CN112136267A (en) * | 2018-05-29 | 2020-12-25 | 日立汽车系统株式会社 | Rotating electrical machine |
CN112119225A (en) * | 2018-06-28 | 2020-12-22 | 株式会社Ihi | Rotary machine and method for manufacturing inner cylinder of rotary machine |
JPWO2020003661A1 (en) * | 2018-06-28 | 2021-06-24 | 株式会社Ihi | Manufacturing method of rotating machine and inner body of rotating machine |
US11788552B2 (en) | 2018-06-28 | 2023-10-17 | Ihi Corporation | Rotary machine with cooling jacket including helical groove |
WO2020003661A1 (en) * | 2018-06-28 | 2020-01-02 | 株式会社Ihi | Rotary machine and method for manufacturing inner body part of rotary machine |
CN112119225B (en) * | 2018-06-28 | 2022-04-26 | 株式会社Ihi | Rotary machine and method for manufacturing inner cylinder of rotary machine |
JP7020552B2 (en) | 2018-06-28 | 2022-02-16 | 株式会社Ihi | Manufacturing method of rotary machine and inner body of rotary machine |
JP7053554B2 (en) | 2019-10-23 | 2022-04-12 | 株式会社明電舎 | Motor coolant passage structure |
JP2021069179A (en) * | 2019-10-23 | 2021-04-30 | 株式会社明電舎 | Cooling liquid passage structure of motor |
CN115053434A (en) * | 2020-02-07 | 2022-09-13 | 株式会社明电舍 | Cooling liquid passage structure of motor and manufacturing method of motor |
CN115053434B (en) * | 2020-02-07 | 2023-01-31 | 株式会社明电舍 | Cooling liquid passage structure of motor and manufacturing method of motor |
JP2021151060A (en) * | 2020-03-18 | 2021-09-27 | 東芝産業機器システム株式会社 | Cooling structure of rotary electric machine and rotary electric machine |
JP7410763B2 (en) | 2020-03-18 | 2024-01-10 | 東芝産業機器システム株式会社 | Cooling structure for rotating electrical machines, rotating electrical machines |
JP2021154299A (en) * | 2020-03-25 | 2021-10-07 | 株式会社アイシン | Method for production of collapsible core |
JP7414610B2 (en) | 2020-03-25 | 2024-01-16 | 株式会社アイシン | Manufacturing method of collapsible core |
WO2021234425A1 (en) | 2020-05-22 | 2021-11-25 | 日産自動車株式会社 | Drive unit for series hybrid vehicle |
WO2022158051A1 (en) * | 2021-01-19 | 2022-07-28 | 日立Astemo株式会社 | Drive unit |
WO2022190183A1 (en) | 2021-03-08 | 2022-09-15 | 日産自動車株式会社 | Rotating electrical machine |
EP4307535A4 (en) * | 2021-03-08 | 2024-05-29 | Nissan Motor Co., Ltd. | Rotating electrical machine |
US20220302795A1 (en) * | 2021-03-18 | 2022-09-22 | Cummins Inc. | Cooling a rotating electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015098328A1 (en) | 2017-03-23 |
JP6314158B2 (en) | 2018-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6314158B2 (en) | Rotating electric machine | |
JP2009247085A (en) | Rotary electric machine | |
JP5274613B2 (en) | Outer-cooled rotary electric machine and casing used therefor | |
CA2993512C (en) | Cooling structure for dynamo-electric machine | |
US8067865B2 (en) | Electric motor/generator low hydraulic resistance cooling mechanism | |
JP5445675B2 (en) | Rotating machine | |
JP5134064B2 (en) | Rotating electric machine | |
JP6318056B2 (en) | Rotating electric machine housing and rotating electric machine equipped with the same | |
JP5392101B2 (en) | Motor cooling structure | |
US8497608B2 (en) | Electric machine cooling system and method | |
JP2013141334A (en) | Rotary electric machine | |
JP4082359B2 (en) | Cooling structure of rotating electric machine | |
US11114924B2 (en) | Squirrel-cage rotor for an asynchronous machine | |
KR20130141511A (en) | Coolant channels for electric machine stator | |
US20130342052A1 (en) | Electric machine with circumferential rotor and housing fins | |
CN110957842B (en) | Rotary electric machine | |
CN111416463B (en) | Rotating electrical machine provided with cooling structure | |
JP5240174B2 (en) | Motor cooling structure | |
JP6072199B1 (en) | Rotating electric machine | |
JP5392012B2 (en) | Electric motor | |
JP5304617B2 (en) | Motor cooling structure | |
JP5892091B2 (en) | Multi-gap rotating electric machine | |
US9257881B2 (en) | Rotating electric machine | |
EP3764524B1 (en) | Dynamo-electric machine | |
JP5552688B2 (en) | Motor cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554665 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14873642 Country of ref document: EP Kind code of ref document: A1 |