JP2011010525A - Motor case - Google Patents

Motor case Download PDF

Info

Publication number
JP2011010525A
JP2011010525A JP2009153969A JP2009153969A JP2011010525A JP 2011010525 A JP2011010525 A JP 2011010525A JP 2009153969 A JP2009153969 A JP 2009153969A JP 2009153969 A JP2009153969 A JP 2009153969A JP 2011010525 A JP2011010525 A JP 2011010525A
Authority
JP
Japan
Prior art keywords
groove
motor case
outer member
inner member
refrigerant passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009153969A
Other languages
Japanese (ja)
Inventor
Satoshi Yamaguchi
山口  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009153969A priority Critical patent/JP2011010525A/en
Publication of JP2011010525A publication Critical patent/JP2011010525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor case which has a simplified structure, while securing the sealing performance of a refrigerant passage.SOLUTION: The motor case (1) has the refrigerant passage between a cylindrical outer member (2) and an inner member (6) disposed inside the outer member (2). A groove (3) is formed, in at least either of the inner peripheral surface of the outer member (2) and the outer peripheral surface of the inner member (6), and by press-fitting the inner member (6) into the outer member (2), the top face of the groove (3) is blocked in a liquidtight manner, and thereby the refrigerant passage is formed.

Description

この発明は、周壁部に冷媒通路を備えたモーターケースに関する。   The present invention relates to a motor case having a refrigerant passage in a peripheral wall portion.

自動車の走行用モーターの高出力化により発熱量が増大するため、モーターケースを水冷式にする傾向がある。   There is a tendency for the motor case to be water-cooled because the amount of heat generation is increased by increasing the output of the motor for driving the automobile.

水冷式モーターケースとして、アウター部材とインナー部材との間に水冷ジャケットを設けたものが知られている(特許文献1、2参照)。   A water-cooled motor case is known in which a water-cooling jacket is provided between an outer member and an inner member (see Patent Documents 1 and 2).

特許文献1に記載されモーターケースは、水路となる溝を有するブラケットとこのブラケットの外周を覆うスリーブを組み合わせたものである。このモーターケースにおいては、水冷ジャケットの液漏れを防ぐためにOリングを用いている(段落番号0013、図1等参照)。   The motor case described in Patent Document 1 is a combination of a bracket having a groove serving as a water channel and a sleeve covering the outer periphery of the bracket. In this motor case, an O-ring is used in order to prevent liquid leakage from the water cooling jacket (see paragraph number 0013, FIG. 1, etc.).

また、特許文献2に記載されたモーターケースは、アウター部材の凹部を有する筒形のアウター部材にインナー部材を挿入し、前記凹部とインナー部材の外周面とで水冷ジャケットを形成したものであり、Oリングを装着することで水冷ジャケットのシール性を確保している。そして、インナー部材の挿入時にアウター部材の溝からOリングが脱落することを防ぐために、インナー部材の先端側ガイド部の径をアウター部材の内径より小さく、かつOリングとの密着性を確保できる程度に加工することとした組み付け構造が採用されている。   In addition, the motor case described in Patent Document 2 is such that an inner member is inserted into a cylindrical outer member having a concave portion of the outer member, and a water cooling jacket is formed by the concave portion and the outer peripheral surface of the inner member. The O-ring is attached to ensure the sealing performance of the water-cooled jacket. And, in order to prevent the O-ring from dropping out of the groove of the outer member when the inner member is inserted, the diameter of the guide portion on the distal end side of the inner member is smaller than the inner diameter of the outer member and the adhesion to the O-ring can be secured. Assembling structure that is supposed to be processed is adopted.

特開平11−341744号公報JP 11-341744 A 特開昭64−46067号公報JP-A 64-46067

しかしながら、上記文献に記載された組み付け構造は、水冷ジャケットのシール性を確保するためにOリングを用いたものであり、特許文献2においてはさらにOリングの脱落防止のために加工がなされている。このため組み付け構造が複雑となり、複雑な組み付け構造がコストアップの原因となっている。   However, the assembly structure described in the above document uses an O-ring to ensure the sealing performance of the water-cooled jacket, and in Patent Document 2, it is further processed to prevent the O-ring from falling off. . For this reason, the assembly structure becomes complicated, and the complicated assembly structure causes a cost increase.

本発明は、上述した背景技術とその問題点に鑑み、冷媒通路のシール性を確保しつつ構造を簡素化したモーターケースの提供を目的とする。   The present invention has been made in view of the above-described background art and its problems, and an object of the present invention is to provide a motor case having a simplified structure while ensuring the sealability of the refrigerant passage.

即ち、本発明のモーターケースは下記[1]〜[5]に記載の構成を有する。   That is, the motor case of the present invention has the configurations described in [1] to [5] below.

[1]筒形アウター部材とこのアウター部材の内部に配置されるインナー部材との間に冷媒通路を有するモーターケースであって、
前記アウター部材の内周面およびインナー部材の外周面のうちの少なくとも一方の面に溝が設けられ、前記アウター部材内にインナー部材を圧入することにより前記溝の上面が液密状態に閉塞されて冷媒通路が形成されてなることを特徴とするモーターケース。
[1] A motor case having a refrigerant passage between a cylindrical outer member and an inner member disposed inside the outer member,
A groove is provided on at least one of the inner peripheral surface of the outer member and the outer peripheral surface of the inner member, and the upper surface of the groove is closed in a liquid-tight state by press-fitting the inner member into the outer member. A motor case comprising a refrigerant passage.

[2]前記溝の端部がその溝を有する部材の端面に開口し、その開口部が冷媒通路の開口部を形成してなる前項1に記載のモーターケース。   [2] The motor case according to [1], wherein an end of the groove opens on an end surface of a member having the groove, and the opening forms an opening of the refrigerant passage.

[3]前記溝が、周方向に沿って旋回しながら軸線方向の一端側から他端側に進む螺旋状である前項1または2に記載のモーターケース。   [3] The motor case according to [1] or [2], wherein the groove has a spiral shape that advances from one end side to the other end side in the axial direction while turning along the circumferential direction.

[4]前記溝は、その両端部が軸線方向の一端側に位置し、一端側と他端側との間を往復する二重螺旋状である前項3に記載のモーターケース。   [4] The motor case according to [3], wherein both ends of the groove are located on one end side in the axial direction and have a double spiral shape reciprocating between one end side and the other end side.

[5]前記アウター部材の肉厚がインナー部材の肉厚の0.7〜2.6倍である前項1〜4のいずれかに記載のモーターケース。   [5] The motor case according to any one of [1] to [4], wherein a thickness of the outer member is 0.7 to 2.6 times a thickness of the inner member.

上記[1]に記載の発明においては、アウター部材の内周面およびインナー部材の外周面のうちの少なくとも一方に設けられた溝が、アウター部材内にインナー部材を圧入することによって液密状態に閉塞されて冷媒通路が形成される。冷媒通路のシール性は、圧入により両者の接触部分に面圧が生じることで達成される。また、シール性を確保するためにOリングを介在させる必要がなく、Oリングを装着しかつ抜け落ち防止用の複雑な構造も必要とせず、簡単な部材構造と圧入という簡単な組み立て作業によって、高いシール性が得られる。   In the invention described in [1] above, the groove provided in at least one of the inner peripheral surface of the outer member and the outer peripheral surface of the inner member is in a liquid-tight state by press-fitting the inner member into the outer member. The refrigerant passage is formed by being closed. The sealing performance of the refrigerant passage is achieved by generating a surface pressure at the contact portion between the two by press-fitting. In addition, it is not necessary to interpose an O-ring to ensure sealing performance, and does not require a complicated structure for mounting the O-ring and preventing it from falling off. Sealability is obtained.

上記[2]に記載の発明においては、部材の端面に開口させた溝の端部が、圧入後に冷媒通路の開口部となるので、別段冷媒通路の開口部を設ける必要がない。   In the invention described in [2] above, since the end of the groove opened on the end face of the member becomes the opening of the refrigerant passage after the press-fitting, it is not necessary to provide the opening of the separate refrigerant passage.

上記[3]に記載の発明においては、螺旋状の溝によって形成される螺旋状の冷媒通路により、周方向において均一な冷却を行える。   In the invention described in [3] above, uniform cooling can be performed in the circumferential direction by the spiral refrigerant passage formed by the spiral groove.

上記[4]に記載の発明においては、二重螺旋状の溝によって形成される冷媒通路、即ち螺旋状の冷媒通路が軸線方向に往復することにより、周方向および軸線方向の両方向において均一な冷却を行える。   In the invention described in [4] above, the coolant passage formed by the double spiral groove, that is, the spiral coolant passage reciprocates in the axial direction, whereby uniform cooling is performed in both the circumferential direction and the axial direction. Can be done.

上記[5]に記載の発明によれば、アウター部材とインナー部材の接触部分において高い面圧が発生し、その結果高いシール性が得られる。   According to the invention described in [5] above, high surface pressure is generated at the contact portion between the outer member and the inner member, and as a result, high sealing performance is obtained.

本発明にかかるモーターケースの第1実施形態であり、分解状態を示す斜視図である。It is 1st Embodiment of the motor case concerning this invention, and is a perspective view which shows a decomposition | disassembly state. 図1のモーターケースの組み立て状態を示す断面図である。It is sectional drawing which shows the assembly state of the motor case of FIG. 本発明にかかるモーターケースの第2実施形態であり、分解状態を示す斜視図である。It is 2nd Embodiment of the motor case concerning this invention, and is a perspective view which shows a decomposition | disassembly state. 本発明にかかるモーターケースの第3実施形態であり、分解状態を示す斜視図である。It is 3rd Embodiment of the motor case concerning this invention, and is a perspective view which shows a decomposition | disassembly state. アウター部材とインナー部材の肉厚比と面圧の関係を示す図である。It is a figure which shows the relationship between the wall thickness ratio of an outer member and an inner member, and surface pressure. 冷媒にかかる圧力と面圧との関係において水漏れの有無を示す図である。It is a figure which shows the presence or absence of water leakage in the relationship between the pressure concerning a refrigerant | coolant, and a surface pressure.

本発明のモーターケースについて、実施形態の図面を参照しつつ、以下に詳述する。   The motor case of the present invention will be described in detail below with reference to the drawings of the embodiments.

〔第1実施形態〕
図1および図2に示したモーターケースモーターケース(1)は、円筒形のアウター部材(2)とこのアウター部材(2)内に配置される円筒形のインナー部材(6)とにより構成されている。
[First Embodiment]
The motor case (1) shown in FIGS. 1 and 2 is composed of a cylindrical outer member (2) and a cylindrical inner member (6) disposed in the outer member (2). Yes.

前記アウター部材(2)の内周面において、周方向に沿って旋回しながら軸線方向の一端側から他端側へと進む1本の螺旋状の溝(3)が設けられている。この溝(3)は、長手方向における両端部(4)(5)がそれぞれ外方に屈曲してアウター部材(2)の端面に開口している。一方、前記インナー部材(6)は、溝のないフラットな外周面を有する円筒体である。   On the inner peripheral surface of the outer member (2), there is provided one spiral groove (3) that advances from one end side to the other end side in the axial direction while turning along the circumferential direction. In the groove (3), both end portions (4) and (5) in the longitudinal direction are bent outwardly and opened to the end surface of the outer member (2). On the other hand, the inner member (6) is a cylindrical body having a flat outer peripheral surface without a groove.

前記アウター部材(2)内にインナー部材(6)を圧入すると、溝(3)の上面がインナー部材(6)の外周面によって閉塞されて一本の螺旋状の冷媒通路(7)が形成される。圧入によってアウター部材(2)の内周面とインナー部材(6)の外周面との接触部分に面圧が生じ、その面圧によって冷媒通路(7)の液密状態が達成される。即ち、圧入前のインナー部材(6)の外径およびアウター部材(2)の内径は、圧入後に液密性を確保できる締め代が生じるように設定されている。   When the inner member (6) is press-fitted into the outer member (2), the upper surface of the groove (3) is closed by the outer peripheral surface of the inner member (6) to form one spiral refrigerant passage (7). The Due to the press-fitting, a surface pressure is generated at a contact portion between the inner peripheral surface of the outer member (2) and the outer peripheral surface of the inner member (6), and the liquid pressure state of the refrigerant passage (7) is achieved by the surface pressure. That is, the outer diameter of the inner member (6) and the inner diameter of the outer member (2) before press-fitting are set so that a tightening margin that can ensure liquid-tightness after press-fitting occurs.

また、溝(3)の両端部(4)(5)はアウター部材(2)の端面に開口しているので、圧入後にインナー部材(6)によって閉塞されることはなく、そのまま冷媒通路(7)の開口部(4)(5)となる。これらの開口部(4)(5)は、冷媒、例えば冷却水の入口および出口となる。このように、溝(3)の端部がアウター部材(2)の端面に開口していれば、その開口部がそのまま冷媒通路(7)の開口部(4)(5)となるので、別段冷媒通路の開口部を設ける必要がない。   In addition, since both end portions (4) and (5) of the groove (3) are open at the end face of the outer member (2), they are not blocked by the inner member (6) after the press-fitting, and the refrigerant passage (7 ) Opening (4) and (5). These openings (4) and (5) serve as inlets and outlets for refrigerant, for example, cooling water. In this way, if the end of the groove (3) is open to the end face of the outer member (2), the opening becomes the opening (4) (5) of the refrigerant passage (7). There is no need to provide an opening for the refrigerant passage.

以上より、前記アウター部材(2)内にインナー部材(6)を圧入することによって、アウター部材(2)の内周面とインナー部材(6)の外周面との間に、シール性が確保された冷媒通路(7)が形成される。シール性を確保するためにOリングを介在させる必要もなく、Oリングを装着しかつ抜け落ち防止用の複雑な構造も必要とせず、簡単な部材構造と圧入という簡単な組み立て作業で、高いシール性を有する冷媒通路を形成できる。   As described above, the inner member (6) is press-fitted into the outer member (2), thereby ensuring a sealing property between the inner peripheral surface of the outer member (2) and the outer peripheral surface of the inner member (6). A refrigerant passage (7) is formed. There is no need to interpose an O-ring to ensure sealing performance, and no complicated structure is required to prevent an o-ring from falling off. A refrigerant passage having

また、前記冷媒通路(7)は周方向に沿って旋回する螺旋状であるから、一方の開口部(4)から導入した冷媒が冷媒通路(7)を通って他方の開口部(5)から出るまでの間に、周方向において均一な冷却がなされる。また、螺旋状にすれば通路を屈曲させることなく周面全域に冷媒通路を形成できるので、冷媒は通路の壁面に衝突することなくスムーズに流通する。このようなスムーズな冷媒流通により冷却効率の向上を図ることができる。   In addition, since the refrigerant passage (7) has a spiral shape that swirls along the circumferential direction, the refrigerant introduced from one opening (4) passes through the refrigerant passage (7) from the other opening (5). Before exiting, uniform cooling is performed in the circumferential direction. In addition, since the refrigerant passage can be formed in the entire peripheral surface without bending the passage if it is formed in a spiral shape, the refrigerant flows smoothly without colliding with the wall surface of the passage. The cooling efficiency can be improved by such a smooth refrigerant flow.

また、本実施形態においては、溝(3)の両端部を屈曲させて溝(3)の螺旋状部分からアウター部材(6)の端面までの距離(A)をおいている(図2参照)。このようにアウター部材(6)の端面から溝(3)までの距離(A)をおくことにより、端部におけるアウター部材の内周面とインナー部材の外周面との接触面積が確保されるので、高いシール性を確実なものとすることができる。高いシール性を確保する上で、前記距離(A)は15mm以上に設定することが好ましく、特に好ましい距離(A)は20mm以上である。前記距離(A)の好ましい範囲は、後述する他の実施形態においても共通である。   In the present embodiment, both ends of the groove (3) are bent so that a distance (A) from the spiral portion of the groove (3) to the end surface of the outer member (6) is set (see FIG. 2). . Since the distance (A) from the end face of the outer member (6) to the groove (3) is thus provided, the contact area between the inner peripheral face of the outer member and the outer peripheral face of the inner member at the end is ensured. High sealing performance can be ensured. In order to ensure high sealing performance, the distance (A) is preferably set to 15 mm or more, and the particularly preferable distance (A) is 20 mm or more. The preferred range of the distance (A) is common to other embodiments described later.

〔第2実施形態〕
図3に示すモーターケース(10)は、第1実施形態とは逆に、冷媒通路を形成するための螺旋状の溝(12)をインナー部材(11)の外周面に設けたものである。このインナー部材(11)をアウター部材(15)に圧入すると、溝(12)の上面がアウター部材(15)の内周面で液密状態に閉塞されて冷媒通路(12)を形成し、インナー部材(11)の端面に開口する溝(12)の両端部(13)(14)が冷媒通路の開口部となる。
[Second Embodiment]
In contrast to the first embodiment, the motor case (10) shown in FIG. 3 is provided with a spiral groove (12) for forming a refrigerant passage on the outer peripheral surface of the inner member (11). When the inner member (11) is press-fitted into the outer member (15), the upper surface of the groove (12) is closed in a liquid-tight state on the inner peripheral surface of the outer member (15) to form a refrigerant passage (12), Both ends (13) and (14) of the groove (12) opened in the end surface of the member (11) serve as the opening of the refrigerant passage.

〔第3実施形態〕
図4に示すモーターケース(20)は、第1実施形態と同じくアウター部材(20)の内周面に溝(22)を設けたものであるが、第1実施形態とは溝形状が異なる。
[Third Embodiment]
The motor case (20) shown in FIG. 4 is provided with a groove (22) on the inner peripheral surface of the outer member (20) as in the first embodiment, but the groove shape is different from that in the first embodiment.

前記溝(22)は、周方向に沿って旋回しながら軸方向の一端側から他端側へと螺旋状に進み、他端側端面に開口することなく折り返し点(22a)で折り返し、再び螺旋状に進んで一端側に戻る二重螺旋状の溝である。このような二重螺旋状の溝(22)は、二重螺旋状の冷媒通路を形成し、端面に開口する両端部(23)(24)が軸線方向の同じ側に位置するので、冷媒通路の入口と出口は軸線方向の同じ側に形成される。そして、冷媒通路(22)は軸線方向における一端側と他端側との間を往復しているので、周方向および軸線方向の両方向における冷却能を均一化できる。   The groove (22) spirally advances from one end side in the axial direction to the other end side while turning along the circumferential direction, turns back at the turning point (22a) without opening in the end face on the other end, and spirals again. It is a double spiral groove that advances in a shape and returns to one end side. Such a double spiral groove (22) forms a double spiral refrigerant passage, and both ends (23) and (24) that open to the end face are located on the same side in the axial direction. The inlet and outlet are formed on the same side in the axial direction. And since the refrigerant path (22) reciprocates between the one end side and the other end side in the axial direction, the cooling ability in both the circumferential direction and the axial direction can be made uniform.

第1実施形態および第3実施形態におけるアウター部材(2)(21)、および第2実施例におけるインナー部材(11)は、例えば、アルミニウム等の金属製円筒形押出材を所要長さに切断し、その内周面または外周面に機械加工で溝(3)(22)(12)を形成することによって製作することができる。また、第1実施形態および第3実施形態におけるインナー部材(6)(25)、および第2実施例におけるアウター部材(15)は円筒形押出材を所要長さに切断することによって製作できる。   The outer members (2) and (21) in the first embodiment and the third embodiment, and the inner member (11) in the second example, for example, are made by cutting a metal cylindrical extruded material such as aluminum into a required length. The grooves (3), (22), and (12) can be manufactured by machining the inner peripheral surface or the outer peripheral surface thereof. Further, the inner members (6) and (25) in the first and third embodiments and the outer member (15) in the second example can be manufactured by cutting a cylindrical extruded material to a required length.

〔アウター部材とインナー部材の肉厚比〕
本発明のモーターケースは、圧入によって生じる面圧によって冷媒通路のシール性を確保するものであり、アウター部材の内周面とインナー部材の外周面との接触部分における面圧が高いほどシール性が高くなる。本発明においては、前記面圧がアウター部材とインナー部材の肉厚比に影響を受けることに着目し、高い面圧を得るための肉厚比として、アウター部材の肉厚をインナー部材の肉厚の0.7〜2.6倍とすることを推奨する。さらに、前記範囲のうちでも特に好ましい肉厚比は0.8〜2.1倍である。
[Thickness ratio of outer member and inner member]
The motor case of the present invention secures the sealability of the refrigerant passage by the surface pressure generated by the press-fitting, and the sealability becomes higher as the surface pressure at the contact portion between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member increases. Get higher. In the present invention, paying attention to the fact that the surface pressure is affected by the wall thickness ratio of the outer member and the inner member, the wall thickness of the outer member is set as the wall thickness ratio for obtaining a high surface pressure. It is recommended to be 0.7 to 2.6 times. Further, a particularly preferable thickness ratio in the above range is 0.8 to 2.1 times.

以下に、アウター部材とインナー部材との間に発生する面圧がこれらの肉厚比に影響を受けることについて詳述する。   Hereinafter, it will be described in detail that the surface pressure generated between the outer member and the inner member is affected by the thickness ratio.

まず、表1に示す3種類の直径の円筒形モーターケースにおいて、モーターケースの肉厚(アウター部材およびインナー部材の肉厚の合計)を一定値に固定し、アウター部材とインナー部材の肉厚比を変えた場合に生じる面圧をシミュレーションした。   First, in the cylindrical motor case of three diameters shown in Table 1, the thickness of the motor case (the total thickness of the outer member and the inner member) is fixed to a constant value, and the thickness ratio of the outer member and the inner member The surface pressure generated when the pressure is changed was simulated.

シミュレーションに用いたモーターケースの直径(=アウター部材の直径)は240mm、280mm、320mmの3種類であり、肉厚(t)はそれぞれ40mmである。各直径のモーターケースにおいて、インナー部材の肉厚(t)を30mmから10mmまでを1mm単位で変化させるとともに、アウター部材の肉厚を10mmから30mmまでを1mm単位で変化させ、21通りの肉厚比(t/t)を設定した。t=t+t=40mmであり、設定された肉厚比(t/t)は0.33〜3.00である。表1に、3種類のモーターケースの各部の寸法を示す。 The diameter of the motor case used in the simulation (= the diameter of the outer member) is 240 mm, 280 mm, and 320 mm, and the wall thickness (t) is 40 mm. In the motor case of each diameter, the thickness (t 2 ) of the inner member is changed from 30 mm to 10 mm in 1 mm units, and the thickness of the outer member is changed from 10 mm to 30 mm in 1 mm units to obtain 21 types of meat. The thickness ratio (t 1 / t 2 ) was set. t = t 1 + t 2 = 40 mm, and the set thickness ratio (t 1 / t 2 ) is 0.33 to 3.00. Table 1 shows the dimensions of each part of the three types of motor cases.

Figure 2011010525
Figure 2011010525

アウター部材の内周面とインナー部材の外周面との間に生じる面厚(P)は、下記(f)式に基づいて求めることができる。
P={Eδ(R −R )(R −R )}/{2R (R −R )}…(f)
E:材料のヤング率(N/mm
δ:アウター部材とインナー部材の締め代(半径)(mm)
:インナー部材の内径(半径)
:インナー部材の外径(半径)およびアウター部材の外径(半径)
:アウター部材の外径(半径)
The surface thickness (P) generated between the inner peripheral surface of the outer member and the outer peripheral surface of the inner member can be obtained based on the following equation (f).
P = {Eδ (R 3 2 −R 2 2 ) (R 2 2 −R 1 2 )} / {2R 2 3 (R 3 2 −R 1 2 )} (f)
E: Young's modulus of material (N / mm 2 )
δ: Tightness of outer member and inner member (radius) (mm)
R 1 : Inner member inner diameter (radius)
R 2 : outer diameter (radius) of the inner member and outer diameter (radius) of the outer member
R 3 : Outer member outer diameter (radius)

(f)において、締め代(δ)とはインナー部材をアウター部材に圧入した状態における締まり具合である。上記Rが圧入後の寸法であるのに対して、締め代(δ)は圧入前のインナー部材の外径とアウター部材の内径の差である。本発明は圧入によって液密性を確保しているので、圧入前の寸法は(インナー部材の外径)>(アウター部材の内径)である。 In (f), the tightening allowance (δ) is the degree of tightening in a state where the inner member is press-fitted into the outer member. Whereas the R 2 is a dimension after press-fitting, interference ([delta]) is the difference between the inner diameter of the outer diameter of the outer member of the inner member prior to the press-fitting. Since the present invention secures liquid-tightness by press-fitting, the dimension before press-fitting is (outer diameter of inner member)> (inner diameter of outer member).

シミュレーションに用いたモーターケースの材料はA6063−T6であり、そのヤング率(E)は73500N/mmである。また、締め代(δ)は各直径毎に共通とし、表1に示すとおり、0.0315mm(直径240mm)、0.041mm(直径280mm)、0.0515mm(直径320mm)とした。 The material of the motor case used for the simulation is A6063-T6, and its Young's modulus (E) is 73500 N / mm 2 . The tightening allowance (δ) was common to each diameter, and as shown in Table 1, it was 0.0315 mm (diameter 240 mm), 0.041 mm (diameter 280 mm), and 0.0515 mm (diameter 320 mm).

上記の条件で(f)式に基づいて面圧(P)を求めた。肉厚比(t/t)と計算によって求めた面圧(P)との関係を図5に示す。図5より、面圧(P)は肉厚比(t/t)の増大とともに高くなり、一定の肉厚比(t/t)を超えてアウター部材が相対的に厚くなると面圧(P)が低下することがわかる。この面圧変化のパターンはモーターケースの3種類の直径(アウター部材の外径)において共通である。従って、高い面圧(P)を得られる肉厚比(t/t)の範囲が、高シール性を得るために推奨される範囲となる。本発明においては、高いシール性を得られる肉厚比(t/t)として、アウター部材の肉厚をインナー部材の肉厚の0.7〜2.6倍に設定することを推奨する。 The surface pressure (P) was determined based on the equation (f) under the above conditions. FIG. 5 shows the relationship between the wall thickness ratio (t 1 / t 2 ) and the surface pressure (P) obtained by calculation. From FIG. 5, the surface pressure (P) increases as the thickness ratio (t 1 / t 2 ) increases, and the surface thickness increases when the outer member becomes relatively thick beyond a certain thickness ratio (t 1 / t 2 ). It can be seen that the pressure (P) decreases. This surface pressure change pattern is common to the three types of diameters of the motor case (the outer diameter of the outer member). Therefore, the range of the thickness ratio (t 1 / t 2 ) at which a high surface pressure (P) can be obtained is a recommended range for obtaining a high sealing performance. In the present invention, it is recommended that the thickness of the outer member be set to 0.7 to 2.6 times the thickness of the inner member as the thickness ratio (t 1 / t 2 ) for obtaining high sealing performance. .

次に、図1および図2に示した第1実施形態のモーターケース(1)をA6063−T6で製作し、水漏れ試験を行った。   Next, the motor case (1) of the first embodiment shown in FIGS. 1 and 2 was manufactured by A6063-T6, and a water leak test was performed.

モーターケース(1)は、内周面に螺旋状の溝(3)を形成したアウター部材(2)と溝の無い円筒体からなるインナー部材(6)との組み合わせであり、アウター部材(2)の外径(D)は上記のシミュレーションと同じく、240mm、280mm、320mmの3種類とした。3種類の外径のモーターケースにおいて、アウター部材(2)の肉厚(t)とインナー部材(6)の肉厚(t)の合計肉厚(t)は40mmの一定値に固定し、アウター部材(2)の肉厚(t)がインナー部材(6)の肉厚(t)の0.33〜3.00倍となる範囲でアウター部材(2)の肉厚(t)およびインナー部材(6)の肉厚(t)を6通りに設定し、かつ締め代(δ)を3種類の外径(D)毎に設定した。各肉厚(t)(t)、肉厚比(t/t)および締め代(δ)を表2に示す。また、また、アウター部材(2)およびインナー部材(6)の長さ(L)、溝(3)の幅(w)、溝(3)の間隔(p)、溝(3)の深さ(d)、アウター部材(2)の端面から溝(3)までの距離(A)は全てのモーターケースで共通であり、表2に示す寸法で製作した。 The motor case (1) is a combination of an outer member (2) having a spiral groove (3) formed on the inner peripheral surface and an inner member (6) made of a cylindrical body without a groove. The outer member (2) The outer diameter (D) of each was 240 mm, 280 mm, and 320 mm as in the above simulation. In three motor case having an outer diameter, the total thickness of the thickness of the wall thickness (t 1) and the inner member (6) of the outer member (2) (t 2) (t) is fixed to a constant value of 40mm The thickness (t 1 ) of the outer member (2) is within a range where the thickness (t 1 ) of the outer member (2) is 0.33 to 3.00 times the thickness (t 2 ) of the inner member (6). ) And the thickness (t 2 ) of the inner member (6) were set in six ways, and the interference (δ) was set for each of the three types of outer diameters (D). Table 2 shows each wall thickness (t 1 ) (t 2 ), wall thickness ratio (t 1 / t 2 ), and interference (δ). Also, the length (L) of the outer member (2) and the inner member (6), the width (w) of the groove (3), the interval (p) of the groove (3), the depth of the groove (3) ( d) The distance (A) from the end face of the outer member (2) to the groove (3) is common to all the motor cases, and was manufactured with the dimensions shown in Table 2.

製作したモーターケースにおいて、表2に示す面圧(P)は上記(f)式に基づいて計算したものである。   In the manufactured motor case, the surface pressure (P) shown in Table 2 is calculated based on the above formula (f).

Figure 2011010525
Figure 2011010525

製作した各モーターケースについて、水(冷媒)を0.1MPa、0.2MPa、0.3MPa、0.4MPaの4通りの(P)で流通させて漏れの有無を調べた。その結果を表3に示す。また、図6は表3の数値をグラフにプロットしたものである。 For each motor case fabricated, water (coolant) 0.1 MPa, 0.2 MPa, 0.3 MPa, and allowed to flow in the ways 4 (P H) of 0.4MPa was checked for leaks. The results are shown in Table 3. FIG. 6 is a graph in which the numerical values in Table 3 are plotted.

Figure 2011010525
Figure 2011010525

表3に示した試験結果より、冷媒にかかる圧力(P)が0.3MPaのときに水漏れを発生させないために必要な最小面圧(P)は1.63MPaであり、同じく0.4MPaのときに必要な最小面圧(P)は2.11MPaである。 From the test results shown in Table 3, the minimum surface pressure (P) required to prevent water leakage when the pressure (P H ) applied to the refrigerant is 0.3 MPa is 1.63 MPa, which is also 0.4 MPa. The minimum surface pressure (P) required at this time is 2.11 MPa.

さらに、上記の水漏れを発生させないために必要な最小面圧(P、P)として(0.3、1.63)および(0.4、2.11)の2点に(0.0)を加え、この3点を一次近似した直線を図6に示す。この直線は、冷媒にかかる圧力(P)に対して水漏れを発生させないための最小面圧を示すものであり、ほぼP=5.31Pである。従って、冷媒にかかる圧力(P)に基づいてP≧5.31Pを満足するように面圧(P)を設定すれば、図5に示した前記面圧(P)と肉厚比(t/t)との関係に基づいて、その圧力(P)において水漏れを発生させない肉厚比(t/t)を設定することができる。 Further, the minimum surface pressure (P H , P) necessary to prevent the occurrence of the above water leakage is (0.0, 1.63) and (0.4, 2.11) at two points (0.0 ), And a straight line obtained by linear approximation of these three points is shown in FIG. This straight line, which indicates a minimum surface pressure for the pressure exerted on the refrigerant (P H) does not generate water leakage, is approximately P = 5.31P H. Therefore, by setting the surface pressure (P) so as to satisfy P ≧ 5.31P H based on the pressure (P H) in accordance with the coolant, the surface pressure (P) and thickness ratio shown in FIG. 5 ( Based on the relationship with t 1 / t 2 ), the thickness ratio (t 1 / t 2 ) that does not cause water leakage at the pressure (P H ) can be set.

本発明のモーターケースは上記実施形態に限定されるものではなく、種々の変形が可能である。   The motor case of the present invention is not limited to the above embodiment, and various modifications are possible.

冷媒通路の形成するための溝は、上記実施形態のようにアウター部材の内周面またはインナー部材の外周面に形成する他、アウター部材およびインナー部材の両方に形成されていても良い。両方に溝を形成する場合、アウター部材の溝とインナー部材の溝は組み合わせ状態において合わさって1つの冷媒通路を形成するようになされていても良いし、それぞれに独立した冷媒通路を形成するようになされていても良い。   The groove for forming the refrigerant passage may be formed on both the outer member and the inner member, as well as the inner surface of the outer member or the outer surface of the inner member as in the above embodiment. When the grooves are formed in both, the groove of the outer member and the groove of the inner member may be combined to form one refrigerant passage in a combined state, or an independent refrigerant passage may be formed for each. May have been made.

溝の形状は螺旋状に限定されない。螺旋状でなくとも、溝を屈曲させたり分岐させることで周面の全域に冷媒通路を形成することができ、これらの形状の溝も本発明に含まれる。また、溝の端部はアウター部材またはインナー部材の端面に開口していることにも限定されず、端部をアウター部材の外周面またはインナー部材の内周面に開口させた溝も本発明に含まれる。さらに、一方の部材に端部を開口させない溝(行き止まりの溝)を形成し、他方の部材に前記一方の部材の溝に連通する開口部のみを形成した場合も本発明に含まれる。   The shape of the groove is not limited to a spiral. Even if it is not spiral, the groove can be bent or branched to form a refrigerant passage all over the peripheral surface, and grooves having these shapes are also included in the present invention. Further, the end of the groove is not limited to being open on the end face of the outer member or the inner member, and a groove having the end opened on the outer peripheral face of the outer member or the inner peripheral face of the inner member is also included in the present invention. included. Further, the present invention includes a case where a groove (a dead end groove) whose end is not opened is formed in one member and only an opening communicating with the groove of the one member is formed in the other member.

また、溝の幅、深さ、間隔、溝の本数も限定されず、任意に設定することができる。   Further, the width, depth, interval, and number of grooves of the grooves are not limited and can be arbitrarily set.

本発明は、冷却が必要とされるモーターケース、例えば自動車の走行用モーターのケースとして利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a motor case that requires cooling, for example, a case of a motor for driving an automobile.

1、10、20…モーターケース
2、15、21…アウター部材
3、12、22…溝
4、5、13、14、23、24…溝の両端部(冷媒通路の開口部)
6、11、25…インナー部材
7…冷媒通路
…アウター部材の肉厚
…インナー部材の肉厚
1, 10, 20 ... motor case
2, 15, 21 ... outer member
3, 12, 22 ... groove
4, 5, 13, 14, 23, 24 ... both ends of the groove (opening of the refrigerant passage)
6, 11, 25 ... inner member
7: Refrigerant passage t 1 ... Thickness t 2 of outer member ... Thickness of inner member

Claims (5)

筒形アウター部材とこのアウター部材の内部に配置されるインナー部材との間に冷媒通路を有するモーターケースであって、
前記アウター部材の内周面およびインナー部材の外周面のうちの少なくとも一方の面に溝が設けられ、前記アウター部材内にインナー部材を圧入することにより前記溝の上面が液密状態に閉塞されて冷媒通路が形成されてなることを特徴とするモーターケース。
A motor case having a refrigerant passage between a cylindrical outer member and an inner member disposed inside the outer member,
A groove is provided on at least one of the inner peripheral surface of the outer member and the outer peripheral surface of the inner member, and the upper surface of the groove is closed in a liquid-tight state by press-fitting the inner member into the outer member. A motor case comprising a refrigerant passage.
前記溝の端部がその溝を有する部材の端面に開口し、その開口部が冷媒通路の開口部を形成してなる請求項1に記載のモーターケース。   2. The motor case according to claim 1, wherein an end of the groove opens to an end surface of a member having the groove, and the opening forms an opening of the refrigerant passage. 前記溝が、周方向に沿って旋回しながら軸線方向の一端側から他端側に進む螺旋状である請求項1または2に記載のモーターケース。   The motor case according to claim 1, wherein the groove has a spiral shape that advances from one end side to the other end side in the axial direction while turning along the circumferential direction. 前記溝は、その両端部が軸線方向の一端側に位置し、一端側と他端側との間を往復する二重螺旋状である請求項3に記載のモーターケース。   4. The motor case according to claim 3, wherein both ends of the groove are located on one end side in the axial direction, and are reciprocating between one end side and the other end side. 前記アウター部材の肉厚がインナー部材の肉厚の0.7〜2.6倍である請求項1〜4のいずれかに記載のモーターケース。   The motor case according to claim 1, wherein a thickness of the outer member is 0.7 to 2.6 times a thickness of the inner member.
JP2009153969A 2009-06-29 2009-06-29 Motor case Pending JP2011010525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153969A JP2011010525A (en) 2009-06-29 2009-06-29 Motor case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153969A JP2011010525A (en) 2009-06-29 2009-06-29 Motor case

Publications (1)

Publication Number Publication Date
JP2011010525A true JP2011010525A (en) 2011-01-13

Family

ID=43566503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153969A Pending JP2011010525A (en) 2009-06-29 2009-06-29 Motor case

Country Status (1)

Country Link
JP (1) JP2011010525A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172564A (en) * 2012-02-21 2013-09-02 Mitsubishi Electric Corp Mechano-electric integrated module
JP2016504522A (en) * 2012-12-20 2016-02-12 ヴァレオ システム ドゥ コントロール モトゥール Valves, especially exhaust gas recirculation valves
JPWO2015098328A1 (en) * 2013-12-27 2017-03-23 日立オートモティブシステムズ株式会社 Rotating electric machine
JP2017081514A (en) * 2015-10-30 2017-05-18 川崎重工業株式会社 Cooling device of rotary electric machine mounted on ship
CN110389057A (en) * 2018-04-23 2019-10-29 上海伯顿医疗设备有限公司 Integrated multi-functional biological sample processor
CN111092512A (en) * 2020-01-10 2020-05-01 葛素琴 Assembled water-cooling machine shell convenient to assemble
CN112740517A (en) * 2018-09-18 2021-04-30 施乐百汽车有限两合公司 Heat sink for electric motor, and method of cooling electric motor
JP7092294B2 (en) 2017-12-13 2022-06-28 学校法人東海大学 A material for coating a biological tissue made of an ultra-thin film, and a biological tissue coated with the material.
US11780000B2 (en) * 2020-04-29 2023-10-10 Deere & Company Method of forming parallel spiral channels in housing to be formed by casting or molding process
US11788552B2 (en) 2018-06-28 2023-10-17 Ihi Corporation Rotary machine with cooling jacket including helical groove

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662547A (en) * 1992-08-05 1994-03-04 Fanuc Ltd Liquid-cooled motor of small diameter
JPH0767292A (en) * 1993-06-18 1995-03-10 Ebara Corp Motor with water cooled jacket
JPH09308183A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Liquid-cooled motor frame
JPH10210702A (en) * 1995-12-06 1998-08-07 Fuji Electric Co Ltd Refrigerant and cooling rotating electric machine
JP2008527955A (en) * 2005-11-02 2008-07-24 シーメンス アクチエンゲゼルシヤフト Electric motor
JP2009017777A (en) * 2007-07-03 2009-01-22 Caterpillar Inc Cast groove cooling mechanism for electric motor/power generator
JP2009518997A (en) * 2005-12-05 2009-05-07 シーメンス アクチエンゲゼルシヤフト Electric machine with cooling jacket
JP2010178598A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662547A (en) * 1992-08-05 1994-03-04 Fanuc Ltd Liquid-cooled motor of small diameter
JPH0767292A (en) * 1993-06-18 1995-03-10 Ebara Corp Motor with water cooled jacket
JPH10210702A (en) * 1995-12-06 1998-08-07 Fuji Electric Co Ltd Refrigerant and cooling rotating electric machine
JPH09308183A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Liquid-cooled motor frame
JP2008527955A (en) * 2005-11-02 2008-07-24 シーメンス アクチエンゲゼルシヤフト Electric motor
JP2009518997A (en) * 2005-12-05 2009-05-07 シーメンス アクチエンゲゼルシヤフト Electric machine with cooling jacket
JP2009017777A (en) * 2007-07-03 2009-01-22 Caterpillar Inc Cast groove cooling mechanism for electric motor/power generator
JP2010178598A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172564A (en) * 2012-02-21 2013-09-02 Mitsubishi Electric Corp Mechano-electric integrated module
JP2016504522A (en) * 2012-12-20 2016-02-12 ヴァレオ システム ドゥ コントロール モトゥール Valves, especially exhaust gas recirculation valves
JPWO2015098328A1 (en) * 2013-12-27 2017-03-23 日立オートモティブシステムズ株式会社 Rotating electric machine
JP2017081514A (en) * 2015-10-30 2017-05-18 川崎重工業株式会社 Cooling device of rotary electric machine mounted on ship
JP7092294B2 (en) 2017-12-13 2022-06-28 学校法人東海大学 A material for coating a biological tissue made of an ultra-thin film, and a biological tissue coated with the material.
CN110389057A (en) * 2018-04-23 2019-10-29 上海伯顿医疗设备有限公司 Integrated multi-functional biological sample processor
US11788552B2 (en) 2018-06-28 2023-10-17 Ihi Corporation Rotary machine with cooling jacket including helical groove
CN112740517A (en) * 2018-09-18 2021-04-30 施乐百汽车有限两合公司 Heat sink for electric motor, and method of cooling electric motor
CN111092512A (en) * 2020-01-10 2020-05-01 葛素琴 Assembled water-cooling machine shell convenient to assemble
US11780000B2 (en) * 2020-04-29 2023-10-10 Deere & Company Method of forming parallel spiral channels in housing to be formed by casting or molding process

Similar Documents

Publication Publication Date Title
JP2011010525A (en) Motor case
JP7456481B2 (en) valve device
US4371053A (en) Perforate tube muffler
US7009317B2 (en) Cooling system for an electric motor
EP2071266A1 (en) Corrugated heat exchanger tube for hot water supply
US20170244305A1 (en) Fluid-cooled housing for an electrical machine
KR102376662B1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
DE69905922D1 (en) Heat Exchanger
AU2005301832A1 (en) Radiator shroud structure
JP2003079101A (en) Cooling structure for rotating electric machine
US20230336048A1 (en) Cooling jacket and motor
JP2009052849A (en) Vehicular oil cooler
CN211573631U (en) Expansion kettle, thermal management system and new energy automobile
US6102653A (en) Feed pump
AU2005301831A1 (en) Radiator shroud structure
US20230291269A1 (en) Electric drive unit and vehicle comprising a corresponding electric drive unit
KR100763055B1 (en) Side channel pump
US20150182886A1 (en) Filter Element Having Dual Filtration Capacity and Filter Assembly
JP2005016522A (en) Fuel pump
JP2018066403A (en) Passage switching valve and vehicular heat medium system
JP2020180767A (en) Joint structure of double pipe
US9915263B2 (en) Gear pump with deflector in fluid intake for diverting fluid towards voids in housing
JP2020088929A (en) Rotary electric machine
RU2739102C1 (en) Central housing in a spiral heat exchanger
JP6881223B2 (en) Water outlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813