WO2015098318A1 - Chemical-heat-storage device - Google Patents

Chemical-heat-storage device Download PDF

Info

Publication number
WO2015098318A1
WO2015098318A1 PCT/JP2014/079744 JP2014079744W WO2015098318A1 WO 2015098318 A1 WO2015098318 A1 WO 2015098318A1 JP 2014079744 W JP2014079744 W JP 2014079744W WO 2015098318 A1 WO2015098318 A1 WO 2015098318A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
reaction medium
change
pressure
adsorbent
Prior art date
Application number
PCT/JP2014/079744
Other languages
French (fr)
Japanese (ja)
Inventor
研二 森
聡 針生
鈴木 秀明
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015098318A1 publication Critical patent/WO2015098318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical heat storage device for heating an object to be heated such as a catalyst provided in an exhaust system of an engine, for example.
  • a chemical heat storage device described in Patent Document 1 is arranged around a catalyst ceramic portion that purifies exhaust gas discharged from an engine, and includes a reactor including a heat storage material (reaction material) built in a housing portion, and a heat storage material And a water conduit that supplies water as a reaction medium for generating heat.
  • a reactor including a heat storage material (reaction material) built in a housing portion, and a heat storage material And a water conduit that supplies water as a reaction medium for generating heat.
  • gaseous ammonia may be used as a reaction medium.
  • a chemical heat storage device is provided with an adsorber having a porous adsorbent configured to be able to immobilize and desorb ammonia.
  • An object of the present invention is to provide a chemical heat storage device having an adsorber that can desorb a reaction medium in an amount necessary to obtain a desired calorific value and can be miniaturized.
  • the chemical heat storage device is connected to an adsorber having an adsorbent capable of physical adsorption and desorption of a gaseous reaction medium, and heats an object to be heated when chemically reacted with the reaction medium.
  • a reactor having a reaction material that desorbs the reaction medium when receiving heat from the heat source.
  • the adsorbent has a characteristic that the amount of adsorption of the reaction medium increases as the pressure in the adsorber increases.
  • the rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range can adsorb the adsorbent with respect to the pressure change in a pressure range lower than this operating pressure range It is higher than the rate of change of the amount of reaction medium.
  • the operating pressure range of the reactor is set according to the desired range of the exothermic temperature of the reaction material, and accordingly the pressure of the adsorber is set to the same operating pressure range. Maintained.
  • the adsorbent provided in the adsorber has a characteristic that the adsorption amount of the reaction medium increases as the pressure in the adsorber increases.
  • the pressure in the adsorber decreases due to the communication between the reactor and the adsorber, and the reaction medium adsorbed and held by the adsorbent desorbs and moves to the reactor side as the pressure decreases.
  • the reaction medium is desorbed from the adsorbent in the operating pressure range.
  • the amount (available amount of reaction medium) is reduced. Therefore, in order to desorb the reaction medium necessary for obtaining a desired calorific value, the amount of adsorbent must be increased, leading to an increase in the size of the adsorber.
  • the rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range is a pressure change in a pressure range lower than the operating pressure range.
  • the amount of reaction medium desorbed from the adsorbent in the operating pressure range (the amount of reaction medium available) by forming the adsorbent so that the rate of change of the amount of the reaction medium that can be adsorbed by Is larger than the desorption amount of the reaction medium from the adsorbent in the pressure range lower than the operating pressure range.
  • an amount of the reaction medium necessary for obtaining a desired calorific value can be efficiently taken out from the adsorbent in the operating pressure range without increasing the amount of the adsorbent. Thereby, it is possible to desorb an amount of the reaction medium necessary for obtaining a desired calorific value while reducing the size of the adsorber.
  • the inventors have increased the rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change by controlling the pore diameter (average pore diameter) of the porous adsorbent. I found the fact that the area can be different.
  • the adsorbent has a rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range, and the pressure change in a pressure range lower than this operating pressure range It is preferable to include a porous substance having a pore diameter that is higher than the rate of change in the amount of the reaction medium that can adsorb the adsorbent.
  • the pressure range where the rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change is highest depends on the pore diameter of the adsorbent that is a porous substance.
  • the larger the pore diameter of the adsorbent the higher the pressure range where the rate of change of the adsorption amount of the reaction medium is the highest. Therefore, as the porous material forming the adsorbent, the rate of change of the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range is an adsorption to the pressure change in the pressure range lower than the operating pressure range. It is preferable to use a material having a pore diameter higher than the rate of change in the amount of the reaction medium that can adsorb the material.
  • the pore diameter is preferably determined according to the heating object, the reaction medium, and the reaction material.
  • the pressure range where the rate of change of the adsorption amount of the reaction medium should be increased depends on the difference between the heating object, the reaction medium, and the reaction material. Therefore, the pore diameter of the porous material forming the adsorbent is preferably determined according to the heating object, the reaction medium, and the reaction material.
  • the reaction medium is ammonia
  • the adsorbent is preferably an adsorbing material by physical adsorption such as activated carbon, carbon black, mesoporous carbon, or nanocarbon.
  • activated carbon having a relatively large pore volume per unit volume is suitable as the adsorbent used.
  • ammonia is the most common.
  • the present invention it is possible to provide a chemical heat storage device having an adsorber that can efficiently desorb an amount of reaction medium necessary to obtain a desired calorific value and can be miniaturized. . Thereby, it becomes possible to hold down the cost concerning an adsorption machine. Moreover, it becomes easy to mount the adsorber on a vehicle or the like.
  • FIG. 2 It is a schematic block diagram which shows the exhaust gas purification system provided with one Embodiment of the chemical heat storage apparatus which concerns on this invention.
  • (A) and (b) of FIG. 2 are graphs showing the adsorption amount-pressure characteristic of the adsorber and the temperature-equilibrium pressure characteristic of the reactor in the present embodiment, respectively.
  • 6 is a graph showing a difference in adsorption amount-pressure characteristics of an adsorber when the pore diameter of activated carbon particles is variously changed.
  • 4A to 4C are image diagrams of three activated carbon particles having different pore diameters. It is a graph which shows the relationship between the pore diameter of the activated carbon particle obtained by Kelvin formula, and the relative pressure of an adsorber.
  • 6 (a) and 6 (b) show, as a comparative example, the adsorption amount-pressure characteristic of the adsorber and the temperature-equilibrium pressure characteristic of the reactor when activated carbon particles having a pore diameter smaller than that of the present embodiment are used. It is a graph which shows each.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of a chemical heat storage device according to the present invention.
  • an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2.
  • an engine 2 hereinafter simply referred to as an engine 2
  • harmful substances environmental pollutants
  • the exhaust purification system 1 includes an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 4 and a diesel exhaust particulate removal filter (DPF: Diesel) arranged in order from the upstream side to the downstream side in the exhaust passage 3 connected to the engine 2.
  • DOC Diesel Oxidation Catalyst
  • DPF diesel exhaust particulate removal filter
  • Particulate Filter (5), selective reduction catalyst (SCR: Selective Catalytic Reduction) 6 and oxidation catalyst (ASC: Ammonia Slip Catalyst) 7 are provided.
  • the oxidation catalyst 4 is a catalyst that oxidizes and purifies HC and CO contained in the exhaust gas.
  • the DPF 5 is a filter that collects and removes particulate matter (PM) contained in the exhaust gas.
  • the SCR 6 is a catalyst that reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ).
  • the oxidation catalyst 7 is a catalyst that oxidizes NH 3 that passes through the SCR 6 and flows downstream of the SCR 6.
  • the oxidation catalyst 4 has a temperature range (activation temperature) that exhibits the ability to purify environmental pollutants. Therefore, when the temperature of the exhaust gas is low immediately after the engine 2 is started, it is necessary to heat the oxidation catalyst 4 in order to bring the temperature of the oxidation catalyst 4 to the activation temperature.
  • the activation temperature of the oxidation catalyst 4 is, for example, about 170 ° C. to 270 ° C.
  • the exhaust purification system 1 includes the chemical heat storage device 10 of the present embodiment.
  • the chemical heat storage device 10 is a device that normally stores heat (exhaust heat) of exhaust gas and uses the exhaust heat when necessary to heat the oxidation catalyst 4 without energy.
  • the chemical heat storage device 10 includes a reactor 11 disposed around the oxidation catalyst 4, an adsorber 13 connected to the reactor 11 via a pipe 12, and an on-off valve 14 provided in the pipe 12. ing.
  • the reactor 11 includes a reaction material that generates heat when it chemically reacts with NH 3 that is a gaseous reaction medium, and desorbs NH 3 when it receives exhaust heat (heat from a heat source).
  • the reaction material include MgBr 2 , CaBr 2 , SrBr 2 , NiBr 2 , ZnBr 2 , MgCl 2 , CaCl 2 , SrCl 2 , NiCl 2 , and ZnCl 2 .
  • the adsorber 13 includes an adsorbent that can be held and desorbed by physical adsorption of NH 3 .
  • adsorbent porous substances such as activated carbon, carbon black, mesoporous carbon, and nanocarbon (for example, fullerene, nanotube, graphene) are used.
  • Adsorber 13 by physically adsorbed NH 3 to the adsorbent, storing NH 3. The adsorbent will be described in detail later.
  • FIG. 2A is a graph showing the relationship between the adsorption amount of NH 3 on the adsorbent (NH 3 adsorption amount) and the pressure of the adsorber 13 (adsorption amount-pressure characteristic of the adsorber 13).
  • the adsorbent used at this time is activated carbon. Further, the temperature of the adsorber 13 at this time is normal temperature (for example, 25 ° C.). As can be seen from the figure, the amount of NH 3 adsorbed on the activated carbon increases as the internal pressure of the adsorber 13 increases.
  • FIG. 2B is a graph showing the relationship between the exothermic temperature of the reaction material and the pressure of the reactor 11 (temperature-equilibrium pressure characteristics of the reactor 11). Incidentally, the reaction material to be used when this is MgBr 2. As can be seen from the figure, in order to increase the exothermic temperature of the reaction material, it is necessary to increase the operating pressure of the reactor 11.
  • the adsorption-pressure characteristics of the adsorber 13 vary depending on the diameter (pore diameter) r of the pores 21 in the particles 20 forming activated carbon (hereinafter referred to as activated carbon particles), as shown in FIGS.
  • the reason why the horizontal axis is the relative pressure in the adsorption-pressure characteristics shown in FIG. 3 is that the absolute pressure varies depending on the temperature of the adsorber 13.
  • FIG. 4 is a view showing an image of the activated carbon particles 20.
  • the activated carbon particles 20 have a structure in which a number of pores 21 are formed in the carbon 22.
  • the total volume of the pores 21 in the activated carbon particles 20 determines the total amount of NH 3 adsorbed on the activated carbon. Note that the total volume of the pores 21 of the activated carbon particles 20 corresponding to the adsorption amount-pressure characteristics P to R in FIG. 3 is equal.
  • the pore diameter r of the activated carbon particles 20 determines the pressure dependence of the NH 3 adsorption amount on the activated carbon.
  • the adsorption amount-pressure characteristic P is a characteristic when the pore diameter r is small as shown in FIG.
  • the adsorption amount-pressure characteristic Q is a characteristic when the pore diameter r is medium as shown in FIG.
  • the adsorption amount-pressure characteristic R is a characteristic when the pore diameter r is large as shown in FIG.
  • the activated carbon particles 20 having the pores 21 are formed, for example, by steaming carbon 22 using water vapor.
  • the pore diameter r of the activated carbon particles 20 can be changed by changing conditions such as steaming pressure and temperature.
  • pores may be formed using a chemical such as an alkali.
  • the pore diameter r of the activated carbon particles 20 can be changed depending on the process conditions such as the chemical type and temperature.
  • the pore diameter r is such that the rate of change of the NH 3 adsorption amount on the activated carbon with respect to the pressure change is the highest in the operating pressure range where the exothermic temperature of the reactant is within the desired range.
  • An adsorber 13 comprising activated carbon particles 20 having the following is used. That is, the activated carbon is formed so that the adsorption amount maximum increasing pressure region X (region including the maximum point of the change rate) where the change rate of the NH 3 adsorption amount with respect to the pressure change becomes the highest matches the operating pressure region. That is, the operating pressure range includes the maximum point of change rate.
  • activated carbon operation adsorbed NH 3 amount of change rate to pressure changes in the pressure range is, NH 3 is formed to be higher than the adsorption rate of change with respect to pressure changes at low pressures range than the operating pressure range Yes.
  • the pore diameter r is an average value of the pore diameters.
  • the adsorbed NH 3 amount of change rate refers to the difference between the adsorbed NH 3 amount in the unit pressure section.
  • FIG. 5 shows the relationship between the relative pressure of the adsorber 13 and the pore diameter r of the activated carbon particles 20 at which the rate of change of the NH 3 adsorption amount with respect to the pressure change is maximized.
  • the relationship shown in FIG. 5 is obtained by the Kelvin equation for obtaining the size of the pore diameter that can be adsorbed to a certain sample.
  • a desired range of the exothermic temperature of the reaction material is set to 250 ° C. to 260 ° C., for example.
  • the operating pressure range of the reactor 11 is set to 650 kPa to 850 kPa.
  • the internal pressure of the adsorber 13 is maintained at 650 kPa to 850 kPa.
  • the rate of change of the NH 3 adsorption amount on the activated carbon is made highest in the operating pressure range of 650 kPa to 850 kPa.
  • the pore diameter r of the activated carbon particles 20 is preferably 5 nm to 15 nm.
  • FIG. 6 is a graph showing the adsorption-pressure characteristics of the adsorber 13 when the activated carbon particles 20 having a pore diameter r smaller than that of the present embodiment are used as a comparative example.
  • the pore diameter r of the activated carbon particles 20 is 2.5 nm
  • the temperature of the adsorber 13 is 25 ° C.
  • FIG. 6B is a graph showing the temperature-equilibrium pressure characteristics of the reactor 11, which is the same as the graph shown in FIG. 2 and FIG. 6 use activated carbon having the same pore volume, that is, activated carbon having the same adsorption amount at 1000 kPa @ 25 ° C. (relative pressure of approximately 1.0). 2 and FIG. 6 have the same weight (filling amount) of activated carbon.
  • the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount on the activated carbon is the highest is lower than the operating pressure region of the adsorber 13.
  • NH 3 adsorption amount for maintaining the operating pressure range of the pressure of the adsorber 13 is about A 1
  • contributes adsorbed NH 3 amount to the heating of the reaction material is released in the operating pressure range is B 1 or so. That is, the amount of NH 3 desorbed from the activated carbon during the exothermic reaction (available amount of NH 3 ) is about B 1 .
  • the activated carbon particles 20 having a pore diameter r that match adsorbed NH 3 amount up to increase the pressure range X in which the adsorption rate of change is highest in activated carbon to operating pressure range of the adsorber 13 Is used.
  • the NH 3 adsorption amount for maintaining the pressure of the adsorber 13 in the operating pressure range is about A ( ⁇ A 1 ) and is released in the operating pressure range.
  • the NH 3 adsorption amount that contributes to the heat generation of the reaction material is about B (B> B 1 ). That is, the amount of NH 3 desorbed from the activated carbon during the exothermic reaction (amount of NH 3 available) is about B.
  • the activated carbon particles 20 so that the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount to the activated carbon with respect to the pressure change is the highest matches the operating pressure region of the adsorber 13. Therefore, more NH 3 can be used during the exothermic reaction. For this reason, it becomes possible to obtain NH 3 in an amount necessary for obtaining a desired calorific value without increasing the necessary amount of activated carbon. As a result, it is possible to obtain NH 3 in an amount necessary for obtaining a desired calorific value while reducing the size of the adsorber 13. As a result, it is possible to reduce the cost for the adsorber 13 and to easily mount the adsorber 13 on the vehicle. Moreover, utilization efficiency of NH 3 (B / (A + B)) for increases, it is possible to reduce the total amount of NH 3 to be mounted.
  • NH 3 is used as a gaseous reaction medium that chemically reacts with the reaction material of the reactor 11, but the reaction medium is not particularly limited to NH 3 and may be CO 2 or the like.
  • the reaction material that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3 , Fe 3 O 4 and the like can be used.
  • the NH 3 is used as the reaction medium of the gas, in case of heating the oxidation catalyst 4, the adsorption amount of adsorbed NH 3 amount of change rate to pressure changes is the highest
  • the activated carbon particles 20 having the pore diameter r such that the maximum increased pressure region X coincides with the operating pressure region are used.
  • the operating pressure region varies depending on the heating object, the reaction material used, and the reaction medium. Therefore, as the adsorbent particles such as the activated carbon particles 20, those having a pore diameter r that maximizes the change rate of the NH 3 adsorption amount in the operating pressure range corresponding to the heating object, the reaction medium, and the reaction material are used.
  • the operating pressure range also varies depending on the desired range of heat generation temperature. The desired range of exothermic temperatures can usually be 250-260 ° C.
  • the activated carbon particles 20 having the pore diameter r such that the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount with respect to the pressure change is the highest match the operating pressure region are selected.
  • the activated carbon particles 20 to be used are not particularly limited thereto.
  • the adsorbent particles are 20 or the like, the adsorbent particles may be formed such that the rate of change of the NH 3 adsorption amount is highest in a pressure range higher than the operating pressure range.
  • the chemical thermal storage apparatus 10 which heats the oxidation catalyst 4
  • the chemical thermal storage apparatus of this invention is provided in the exhaust system of a gasoline engine which is provided with the other catalyst provided in the exhaust system of the diesel engine. Any heating catalyst other than the catalyst provided in the exhaust system of the engine (for example, a heat exchanger) can be applied.
  • the chemical heat storage device of the present invention is also applicable to a device that heats a heating object other than the engine.
  • oxidation catalyst object to be heated
  • chemical heat storage device 11 ... reactor, 13 ... adsorber
  • 20 activated carbon particles (adsorbent particles), r ... pore diameter.

Abstract

A chemical-heat-storage device (10) equipped with a reactor (11) which is positioned around an oxidation catalyst (4) and contains a reaction material for generating heat as a result of a chemical reaction with NH3, and detaching the NH3 upon receiving the generated heat, and further equipped with an adsorber (13) containing an adsorption material capable of detachment and storage by physical adsorption of NH3. The adsorption material has the property of increasing the adsorption amount of a reaction medium as the pressure inside the adsorber increases. Furthermore, the rate of change in the amount of the reaction medium which the adsorption material is capable of adsorbing in relation to the pressure change in an operating-pressure region in which the heat-generation temperature of the reaction material is in a prescribed range is greater than the rate of change in the amount of the reaction material which the adsorption material is capable of adsorbing in relation to the pressure change in a pressure region lower than said operating-pressure region.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、例えばエンジンの排気系に設けられた触媒等の加熱対象物を加熱する化学蓄熱装置に関するものである。 The present invention relates to a chemical heat storage device for heating an object to be heated such as a catalyst provided in an exhaust system of an engine, for example.
 従来の化学蓄熱装置としては、例えば特許文献1に記載されているものが知られている。特許文献1に記載の化学蓄熱装置は、エンジンより排出された排ガスを浄化する触媒セラミック部の周囲に配置され、筐体部内に内蔵された蓄熱物質(反応材)を含む反応器と、蓄熱物質を発熱させるための反応媒体として水を供給する導水管部とを備えている。水と蓄熱物質とを発熱反応させると、反応器から熱が発生し、熱伝導により触媒セラミック部が加熱される。 As a conventional chemical heat storage device, for example, the one described in Patent Document 1 is known. A chemical heat storage device described in Patent Document 1 is arranged around a catalyst ceramic portion that purifies exhaust gas discharged from an engine, and includes a reactor including a heat storage material (reaction material) built in a housing portion, and a heat storage material And a water conduit that supplies water as a reaction medium for generating heat. When water and the heat storage material are reacted exothermically, heat is generated from the reactor, and the catalyst ceramic part is heated by heat conduction.
 また、例えば引用文献2に記載されているように、反応媒体として気体のアンモニアを使用することもある。このような化学蓄熱装置には、アンモニアの固定化及び脱離が可能に構成された多孔質性の吸着材を有する吸着器が設けられている。 Also, for example, as described in the cited document 2, gaseous ammonia may be used as a reaction medium. Such a chemical heat storage device is provided with an adsorber having a porous adsorbent configured to be able to immobilize and desorb ammonia.
特開昭59-208118号公報JP 59-208118 A 特開2013-72558号公報JP 2013-72558 A
 ところで、近年では、搭載性の問題から化学蓄熱装置の小型化が要求されている。化学蓄熱装置を小型化するためには、アンモニア等の反応媒体を吸着保持する吸着器を小型化する必要がある。しかし、単純に吸着器を小さくしただけでは、吸着器が吸着保持する反応媒体のうち反応材の発熱反応に寄与する反応媒体の量(吸着器から脱離する反応媒体の量)が少なくなり、所望の発熱量を得ることができなくなるという虞があった。従って、小型でありながら、所望の発熱量を得るために必要な量の反応媒体を脱離させることができる吸着器が求められていた。 By the way, in recent years, downsizing of the chemical heat storage device has been required due to the problem of mounting property. In order to downsize a chemical heat storage device, it is necessary to downsize an adsorber that adsorbs and holds a reaction medium such as ammonia. However, simply reducing the size of the adsorber reduces the amount of reaction medium that contributes to the exothermic reaction of the reaction material (the amount of reaction medium desorbed from the adsorber) out of the reaction medium adsorbed and held by the adsorber. There is a possibility that a desired calorific value cannot be obtained. Accordingly, there has been a demand for an adsorber that is capable of desorbing a necessary amount of reaction medium in order to obtain a desired calorific value while being small in size.
 本発明の目的は、所望の発熱量を得るために必要な量の反応媒体を脱離させることが可能であると共に小型化可能な吸着器を有する化学蓄熱装置を提供することである。 An object of the present invention is to provide a chemical heat storage device having an adsorber that can desorb a reaction medium in an amount necessary to obtain a desired calorific value and can be miniaturized.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、吸着材の構造によって、反応媒体の吸着量の変化率が高くなる圧力域が異なるという事実を見い出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found the fact that the pressure range in which the rate of change of the adsorption amount of the reaction medium is different depending on the structure of the adsorbent, and completes the present invention. It came to.
 即ち、本発明に係る化学蓄熱装置は、気体の反応媒体の物理吸着及び脱離が可能な吸着材を有する吸着器と、吸着器と接続され、反応媒体と化学反応すると加熱対象物を加熱するための熱を発生し、熱源からの熱を受けると反応媒体を脱離する反応材を有する反応器とを備える。吸着材は、吸着器内の圧力が増加するに従って反応媒体の吸着量が増加する特性を有する。反応材の発熱温度が所望の範囲となる動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が、この動作圧力域よりも低い圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率よりも高い。 That is, the chemical heat storage device according to the present invention is connected to an adsorber having an adsorbent capable of physical adsorption and desorption of a gaseous reaction medium, and heats an object to be heated when chemically reacted with the reaction medium. And a reactor having a reaction material that desorbs the reaction medium when receiving heat from the heat source. The adsorbent has a characteristic that the amount of adsorption of the reaction medium increases as the pressure in the adsorber increases. The rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range can adsorb the adsorbent with respect to the pressure change in a pressure range lower than this operating pressure range It is higher than the rate of change of the amount of reaction medium.
 吸着器及び反応器を備えた化学蓄熱装置においては、反応材の発熱温度の所望の範囲に応じて反応器の動作圧力域が設定され、これに伴って吸着器の圧力が同じ動作圧力域に維持される。ところで、吸着器内に設けられる吸着材は、吸着器内の圧力が増加するに従って反応媒体の吸着量が増加する特性を有している。そして、発熱反応時には、反応器と吸着器が連通されることで吸着器内の圧力が低下し、この圧力低下に伴って吸着材が吸着保持する反応媒体が脱離して反応器側に移動する。このため、反応材の発熱温度が所望の範囲となる動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が小さいと、動作圧力域における吸着材からの反応媒体の脱離量(反応媒体の利用可能量)が少なくなる。従って、所望の発熱量を得るために必要な量の反応媒体を脱離させるには、吸着材の量を多くせざるを得ず、吸着器の大型化につながる。そこで、本発明では、反応材の発熱温度が所望の範囲となる動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が、この動作圧力域よりも低い圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率よりも高くなるように、吸着材を形成することにより、動作圧力域における吸着材からの反応媒体の脱離量(反応媒体の利用可能量)が動作圧力域よりも低い圧力域における吸着材からの反応媒体の脱離量よりも多くなるようにしている。従って、吸着材の量を多くすること無く、所望の発熱量を得るために必要な量の反応媒体を動作圧力域において効率的に吸着材から取り出すことができる。これにより、吸着器の小型化を図りつつ、所望の発熱量を得るために必要な量の反応媒体を脱離させることができる。 In a chemical heat storage device equipped with an adsorber and a reactor, the operating pressure range of the reactor is set according to the desired range of the exothermic temperature of the reaction material, and accordingly the pressure of the adsorber is set to the same operating pressure range. Maintained. By the way, the adsorbent provided in the adsorber has a characteristic that the adsorption amount of the reaction medium increases as the pressure in the adsorber increases. At the time of the exothermic reaction, the pressure in the adsorber decreases due to the communication between the reactor and the adsorber, and the reaction medium adsorbed and held by the adsorbent desorbs and moves to the reactor side as the pressure decreases. . For this reason, if the rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range is small, the reaction medium is desorbed from the adsorbent in the operating pressure range. The amount (available amount of reaction medium) is reduced. Therefore, in order to desorb the reaction medium necessary for obtaining a desired calorific value, the amount of adsorbent must be increased, leading to an increase in the size of the adsorber. Therefore, in the present invention, the rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range is a pressure change in a pressure range lower than the operating pressure range. The amount of reaction medium desorbed from the adsorbent in the operating pressure range (the amount of reaction medium available) by forming the adsorbent so that the rate of change of the amount of the reaction medium that can be adsorbed by Is larger than the desorption amount of the reaction medium from the adsorbent in the pressure range lower than the operating pressure range. Therefore, an amount of the reaction medium necessary for obtaining a desired calorific value can be efficiently taken out from the adsorbent in the operating pressure range without increasing the amount of the adsorbent. Thereby, it is possible to desorb an amount of the reaction medium necessary for obtaining a desired calorific value while reducing the size of the adsorber.
 本発明者等は、更に研究を重ねた結果、多孔質性の吸着材の細孔径(平均細孔径)の制御によって、圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が高くなる圧力域を異ならせることができるという事実を見い出した。即ち、吸着材は、反応材の発熱温度が所望の範囲となる動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が、この動作圧力域よりも低い圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率よりも高くなる細孔径を有する多孔質性物質を含むと良い。圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が最も高くなる圧力域は、多孔質性物質である吸着材の細孔径によって異なる。具体的には、吸着材の細孔径が大きくなるほど、反応媒体の吸着量の変化率が最も高くなる圧力域が高くなる。そこで、吸着材を形成する多孔質性物質としては、上記動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率が、この動作圧力域よりも低い圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率よりも高くなる細孔径を有するものを用いるのが良い。 As a result of further research, the inventors have increased the rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change by controlling the pore diameter (average pore diameter) of the porous adsorbent. I found the fact that the area can be different. That is, the adsorbent has a rate of change in the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range where the exothermic temperature of the reaction material is in the desired range, and the pressure change in a pressure range lower than this operating pressure range It is preferable to include a porous substance having a pore diameter that is higher than the rate of change in the amount of the reaction medium that can adsorb the adsorbent. The pressure range where the rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change is highest depends on the pore diameter of the adsorbent that is a porous substance. Specifically, the larger the pore diameter of the adsorbent, the higher the pressure range where the rate of change of the adsorption amount of the reaction medium is the highest. Therefore, as the porous material forming the adsorbent, the rate of change of the amount of the reaction medium that can adsorb the adsorbent with respect to the pressure change in the operating pressure range is an adsorption to the pressure change in the pressure range lower than the operating pressure range. It is preferable to use a material having a pore diameter higher than the rate of change in the amount of the reaction medium that can adsorb the material.
 このとき、細孔径は、加熱対象物、反応媒体及び反応材に応じて決定されるのが良い。加熱対象物、反応媒体及び反応材の違いによって反応媒体の吸着量の変化率を高くするべき圧力域が変わってくる。従って、吸着材を形成する多孔質性物質の細孔径を、加熱対象物、反応媒体及び反応材に応じて決定するのが良い。 At this time, the pore diameter is preferably determined according to the heating object, the reaction medium, and the reaction material. The pressure range where the rate of change of the adsorption amount of the reaction medium should be increased depends on the difference between the heating object, the reaction medium, and the reaction material. Therefore, the pore diameter of the porous material forming the adsorbent is preferably determined according to the heating object, the reaction medium, and the reaction material.
 また、反応媒体はアンモニアであり、吸着材は、活性炭、カーボンブラック、メソポーラスカーボン及びナノカーボンのいずれか等の物理吸着による吸着材料であるのが良い。上記動作圧力域における圧力変化に対する吸着材が吸着できる反応媒体の量の変化率を高くするには、使用する吸着材としては、単位体積あたりの細孔容積が比較的大きい活性炭等が適している。また、使用する気体の反応媒体としては、アンモニアが最も一般的である。 Further, the reaction medium is ammonia, and the adsorbent is preferably an adsorbing material by physical adsorption such as activated carbon, carbon black, mesoporous carbon, or nanocarbon. In order to increase the rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change in the operating pressure range, activated carbon having a relatively large pore volume per unit volume is suitable as the adsorbent used. . As the gaseous reaction medium to be used, ammonia is the most common.
 本発明によれば、所望の発熱量を得るために必要な量の反応媒体を効率的に脱離させることが可能であると共に小型化可能な吸着器を有する化学蓄熱装置を提供することができる。これにより、吸着器にかかるコストを抑えることが可能となる。また、車両等への吸着器の搭載が容易となる。 According to the present invention, it is possible to provide a chemical heat storage device having an adsorber that can efficiently desorb an amount of reaction medium necessary to obtain a desired calorific value and can be miniaturized. . Thereby, it becomes possible to hold down the cost concerning an adsorption machine. Moreover, it becomes easy to mount the adsorber on a vehicle or the like.
本発明に係る化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。It is a schematic block diagram which shows the exhaust gas purification system provided with one Embodiment of the chemical heat storage apparatus which concerns on this invention. 図2の(a)及び(b)はそれぞれ本実施形態における吸着器の吸着量-圧力特性と反応器の温度-平衡圧特性とを示すグラフである。(A) and (b) of FIG. 2 are graphs showing the adsorption amount-pressure characteristic of the adsorber and the temperature-equilibrium pressure characteristic of the reactor in the present embodiment, respectively. 活性炭粒子の細孔径を種々変えた場合における吸着器の吸着量-圧力特性の違いを示すグラフである。6 is a graph showing a difference in adsorption amount-pressure characteristics of an adsorber when the pore diameter of activated carbon particles is variously changed. 図4の(a)~(c)はそれぞれ細孔径が異なる3つの活性炭粒子のイメージ図である。4A to 4C are image diagrams of three activated carbon particles having different pore diameters. Kelvin式によって得られる活性炭粒子の細孔径と吸着器の相対圧力との関係を示すグラフである。It is a graph which shows the relationship between the pore diameter of the activated carbon particle obtained by Kelvin formula, and the relative pressure of an adsorber. 図6の(a)及び(b)は、比較例として、本実施形態よりも細孔径の小さい活性炭粒子を使用した場合における吸着器の吸着量-圧力特性と反応器の温度-平衡圧特性とをそれぞれ示すグラフである。6 (a) and 6 (b) show, as a comparative example, the adsorption amount-pressure characteristic of the adsorber and the temperature-equilibrium pressure characteristic of the reactor when activated carbon particles having a pore diameter smaller than that of the present embodiment are used. It is a graph which shows each.
 以下、本発明に係る化学蓄熱装置の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of a chemical heat storage device according to the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係る化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。同図において、排気浄化システム1は、車両のディーゼルエンジン2(以下、単にエンジン2という)の排気系に設けられ、エンジン2から排出される排ガス中に含まれる有害物質(環境汚染物質)を浄化するシステムである。 FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of a chemical heat storage device according to the present invention. In the figure, an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. System.
 排気浄化システム1は、エンジン2と接続された排気通路3の途中に上流側から下流側に向けて順に配置された酸化触媒(DOC:Diesel Oxidation Catalyst)4、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)5、選択還元触媒(SCR:Selective Catalytic Reduction)6及び酸化触媒(ASC:Ammonia Slip Catalyst)7を備えている。 The exhaust purification system 1 includes an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 4 and a diesel exhaust particulate removal filter (DPF: Diesel) arranged in order from the upstream side to the downstream side in the exhaust passage 3 connected to the engine 2. Particulate Filter (5), selective reduction catalyst (SCR: Selective Catalytic Reduction) 6 and oxidation catalyst (ASC: Ammonia Slip Catalyst) 7 are provided.
 酸化触媒4は、排ガス中に含まれるHC及びCO等を酸化して浄化する触媒である。DPF5は、排ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集して取り除くフィルタである。SCR6は、尿素またはアンモニア(NH)によって、排ガス中に含まれるNOxを還元して浄化する触媒である。酸化触媒7は、SCR6をすり抜けてSCR6の下流側に流れたNHを酸化する触媒である。 The oxidation catalyst 4 is a catalyst that oxidizes and purifies HC and CO contained in the exhaust gas. The DPF 5 is a filter that collects and removes particulate matter (PM) contained in the exhaust gas. The SCR 6 is a catalyst that reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ). The oxidation catalyst 7 is a catalyst that oxidizes NH 3 that passes through the SCR 6 and flows downstream of the SCR 6.
 ところで、酸化触媒4には、環境汚染物質の浄化能力を発揮させる温度領域(活性温度)が存在する。従って、エンジン2の始動直後のような排ガスの温度が低いときは、酸化触媒4の温度を活性温度にするために、酸化触媒4を加熱する必要がある。なお、酸化触媒4の活性温度は、例えば170℃~270℃程度である。 By the way, the oxidation catalyst 4 has a temperature range (activation temperature) that exhibits the ability to purify environmental pollutants. Therefore, when the temperature of the exhaust gas is low immediately after the engine 2 is started, it is necessary to heat the oxidation catalyst 4 in order to bring the temperature of the oxidation catalyst 4 to the activation temperature. The activation temperature of the oxidation catalyst 4 is, for example, about 170 ° C. to 270 ° C.
 そこで、排気浄化システム1は、本実施形態の化学蓄熱装置10を備えている。化学蓄熱装置10は、通常は排ガスの熱(排熱)を蓄えておき、必要なときに排熱を使用することにより、エネルギーレスで酸化触媒4を加熱する装置である。 Therefore, the exhaust purification system 1 includes the chemical heat storage device 10 of the present embodiment. The chemical heat storage device 10 is a device that normally stores heat (exhaust heat) of exhaust gas and uses the exhaust heat when necessary to heat the oxidation catalyst 4 without energy.
 化学蓄熱装置10は、酸化触媒4の周囲に配置された反応器11と、この反応器11と配管12を介して接続された吸着器13と、配管12に設けられた開閉弁14とを備えている。 The chemical heat storage device 10 includes a reactor 11 disposed around the oxidation catalyst 4, an adsorber 13 connected to the reactor 11 via a pipe 12, and an on-off valve 14 provided in the pipe 12. ing.
 反応器11は、気体の反応媒体であるNHと化学反応すると熱を発生し、排熱(熱源からの熱)を受けるとNHを脱離する反応材を含んでいる。反応材としては、例えばMgBr、CaBr、SrBr、NiBr、ZnBr、MgCl、CaCl、SrCl、NiCl、ZnCl等が挙げられる。 The reactor 11 includes a reaction material that generates heat when it chemically reacts with NH 3 that is a gaseous reaction medium, and desorbs NH 3 when it receives exhaust heat (heat from a heat source). Examples of the reaction material include MgBr 2 , CaBr 2 , SrBr 2 , NiBr 2 , ZnBr 2 , MgCl 2 , CaCl 2 , SrCl 2 , NiCl 2 , and ZnCl 2 .
 吸着器13は、NHの物理吸着による保持及び脱離が可能な吸着材を含んでいる。吸着材としては、活性炭、カーボンブラック、メソポーラスカーボン及びナノカーボン(例えばフラーレン、ナノチューブ、グラフェン)等の多孔質性物質が用いられる。吸着器13は、NHを吸着材に物理吸着させることで、NHを貯蔵する。なお、吸着材については、後で詳述する。 The adsorber 13 includes an adsorbent that can be held and desorbed by physical adsorption of NH 3 . As the adsorbent, porous substances such as activated carbon, carbon black, mesoporous carbon, and nanocarbon (for example, fullerene, nanotube, graphene) are used. Adsorber 13, by physically adsorbed NH 3 to the adsorbent, storing NH 3. The adsorbent will be described in detail later.
 このような化学蓄熱装置10において、エンジン2からの排ガスの温度が低いときは、開閉弁14が開弁された状態で、吸着器13から反応器11にNHが供給され、反応器11の反応材(例えばMgBr)とNHとが化学反応して化学吸着(配位結合)し、反応器11から熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応器11で発生した熱によって酸化触媒4が汚染物質の浄化に適した活性温度まで加熱される。
    MgBrNH ⇔ Mg(NHBr+熱   …(A)
In such a chemical heat storage device 10, when the temperature of the exhaust gas from the engine 2 is low, NH 3 is supplied from the adsorber 13 to the reactor 11 with the on-off valve 14 opened, and the reactor 11 The reaction material (for example, MgBr 2 ) and NH 3 chemically react and chemisorb (coordinate bond), and heat is generated from the reactor 11. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. And the oxidation catalyst 4 is heated to the activation temperature suitable for purification | cleaning of a pollutant with the heat which generate | occur | produced in the reactor 11. FIG.
MgBr 2 + x NH 3 ⇔ Mg (NH 3) x Br 2 + heat ... (A)
 一方、エンジン2からの排ガスの温度が高くなると、排熱が反応器11の反応材に与えられることで、反応材とNHとが分離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。そして、反応材から脱離したNHが吸着器13に回収される。 On the other hand, when the temperature of the exhaust gas from the engine 2 is increased, exhaust heat is given to the reaction material of the reactor 11 so that the reaction material and NH 3 are separated. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. Then, NH 3 desorbed from the reaction material is recovered in the adsorber 13.
 ここで、発熱反応においては、反応器11を反応材の発熱温度が所望の範囲となる動作圧力域で動作させる必要があり、これに伴って吸着器13を同じ動作圧力域で動作させる必要がある。 Here, in the exothermic reaction, it is necessary to operate the reactor 11 in an operating pressure range where the exothermic temperature of the reaction material is in a desired range, and accordingly, the adsorber 13 needs to be operated in the same operating pressure range. is there.
 図2の(a)は、吸着材へのNHの吸着量(NH吸着量)と吸着器13の圧力との関係(吸着器13の吸着量-圧力特性)を示すグラフである。なお、この時に使用される吸着材は活性炭である。また、この時の吸着器13の温度は常温(例えば25℃)である。同図から分かるように、吸着器13の内部圧力が高くなるに従って、活性炭へのNH吸着量が多くなっている。図2の(b)は、反応材の発熱温度と反応器11の圧力との関係(反応器11の温度-平衡圧特性)を示すグラフである。なお、この時に使用される反応材はMgBrである。同図から分かるように、反応材の発熱温度を高くしようとすると、反応器11の動作圧力を高くする必要がある。 FIG. 2A is a graph showing the relationship between the adsorption amount of NH 3 on the adsorbent (NH 3 adsorption amount) and the pressure of the adsorber 13 (adsorption amount-pressure characteristic of the adsorber 13). The adsorbent used at this time is activated carbon. Further, the temperature of the adsorber 13 at this time is normal temperature (for example, 25 ° C.). As can be seen from the figure, the amount of NH 3 adsorbed on the activated carbon increases as the internal pressure of the adsorber 13 increases. FIG. 2B is a graph showing the relationship between the exothermic temperature of the reaction material and the pressure of the reactor 11 (temperature-equilibrium pressure characteristics of the reactor 11). Incidentally, the reaction material to be used when this is MgBr 2. As can be seen from the figure, in order to increase the exothermic temperature of the reaction material, it is necessary to increase the operating pressure of the reactor 11.
 吸着器13の吸着-圧力特性は、図3及び図4に示すように、活性炭を形成する粒子(以下、活性炭粒子という)20における細孔21の径(細孔径)rによって異なる。なお、図3に示す吸着-圧力特性において横軸を相対圧力としたのは、吸着器13の温度によって絶対圧力が異なることを考慮したためである。また、図4は、活性炭粒子20のイメージを示した図である。 The adsorption-pressure characteristics of the adsorber 13 vary depending on the diameter (pore diameter) r of the pores 21 in the particles 20 forming activated carbon (hereinafter referred to as activated carbon particles), as shown in FIGS. The reason why the horizontal axis is the relative pressure in the adsorption-pressure characteristics shown in FIG. 3 is that the absolute pressure varies depending on the temperature of the adsorber 13. FIG. 4 is a view showing an image of the activated carbon particles 20.
 活性炭粒子20は、カーボン22中に幾つもの細孔21が形成された構造をなしている。活性炭粒子20における細孔21の総容積は、活性炭へのNH吸着量の総量を決定する。なお、図3の吸着量-圧力特性P~Rに対応する活性炭粒子20の細孔21の総容積は等しくなっている。活性炭粒子20の細孔径rは、活性炭へのNH吸着量の圧力依存度を決定する。 The activated carbon particles 20 have a structure in which a number of pores 21 are formed in the carbon 22. The total volume of the pores 21 in the activated carbon particles 20 determines the total amount of NH 3 adsorbed on the activated carbon. Note that the total volume of the pores 21 of the activated carbon particles 20 corresponding to the adsorption amount-pressure characteristics P to R in FIG. 3 is equal. The pore diameter r of the activated carbon particles 20 determines the pressure dependence of the NH 3 adsorption amount on the activated carbon.
 具体的には、図3に示すような吸着量-圧力特性P~Rでは、活性炭へのNH吸着量が急激に増加する圧力域が存在する。このとき、活性炭粒子20の細孔径rが大きくなるほど、NH吸着量が急激に増加する圧力域が高くなる。吸着量-圧力特性Pは、図4の(a)に示すように細孔径rが小である場合の特性である。吸着量-圧力特性Qは、図4の(b)に示すように細孔径rが中である場合の特性である。吸着量-圧力特性Rは、図4の(c)に示すように細孔径rが大である場合の特性である。 Specifically, in the adsorption amount-pressure characteristics P to R as shown in FIG. 3, there is a pressure region in which the NH 3 adsorption amount on the activated carbon rapidly increases. At this time, the larger the pore diameter r of the activated carbon particles 20, the higher the pressure range where the NH 3 adsorption amount increases rapidly. The adsorption amount-pressure characteristic P is a characteristic when the pore diameter r is small as shown in FIG. The adsorption amount-pressure characteristic Q is a characteristic when the pore diameter r is medium as shown in FIG. The adsorption amount-pressure characteristic R is a characteristic when the pore diameter r is large as shown in FIG.
 なお、細孔21を有する活性炭粒子20は、例えば水蒸気を用いてカーボン22を蒸し焼きすることで形成される。このとき、蒸し焼きの圧力及び温度等の条件を変えることで、活性炭粒子20の細孔径rを変えることができる。また、アルカリ等の薬品を用いて細孔を形成する場合もあるが、この場合も薬品種や温度等のプロセス条件で活性炭粒子20の細孔径rを変えることができる。 The activated carbon particles 20 having the pores 21 are formed, for example, by steaming carbon 22 using water vapor. At this time, the pore diameter r of the activated carbon particles 20 can be changed by changing conditions such as steaming pressure and temperature. In some cases, pores may be formed using a chemical such as an alkali. In this case as well, the pore diameter r of the activated carbon particles 20 can be changed depending on the process conditions such as the chemical type and temperature.
 本実施形態では、図2に示すように、圧力変化に対する活性炭へのNH吸着量の変化率を、反応材の発熱温度が所望の範囲となる動作圧力域で最も高くするような細孔径rを有する活性炭粒子20を含んでなる吸着器13が用いられている。つまり、活性炭は、圧力変化に対するNH吸着量の変化率が最も高くなる吸着量最大増加圧力域X(変化率の最大点を含む領域)が動作圧力域と一致するように形成されている。すなわち、動作圧力域が、変化率の最大点を含む。従って、活性炭は、動作圧力域における圧力変化に対するNH吸着量の変化率が、この動作圧力域よりも低い圧力域における圧力変化に対するNH吸着量の変化率よりも高くなるように形成されている。なお、ここでいう細孔径rは、細孔径の平均値である。また、NH吸着量の変化率とは、単位圧力区間におけるNH吸着量の差分を指す。 In the present embodiment, as shown in FIG. 2, the pore diameter r is such that the rate of change of the NH 3 adsorption amount on the activated carbon with respect to the pressure change is the highest in the operating pressure range where the exothermic temperature of the reactant is within the desired range. An adsorber 13 comprising activated carbon particles 20 having the following is used. That is, the activated carbon is formed so that the adsorption amount maximum increasing pressure region X (region including the maximum point of the change rate) where the change rate of the NH 3 adsorption amount with respect to the pressure change becomes the highest matches the operating pressure region. That is, the operating pressure range includes the maximum point of change rate. Thus, activated carbon, operation adsorbed NH 3 amount of change rate to pressure changes in the pressure range is, NH 3 is formed to be higher than the adsorption rate of change with respect to pressure changes at low pressures range than the operating pressure range Yes. Here, the pore diameter r is an average value of the pore diameters. Also, the adsorbed NH 3 amount of change rate refers to the difference between the adsorbed NH 3 amount in the unit pressure section.
 ここで、吸着器13の相対圧力と圧力変化に対するNH吸着量の変化率が最大となる活性炭粒子20の細孔径rとの関係を図5に示す。図5に示す関係は、ある試料に吸着可能な細孔径の大きさを求めるKelvin式によって得られる。反応材としてMgBrを用いて、酸化触媒4を加熱する場合に、反応材の発熱温度の所望の範囲を例えば250℃~260℃とする。そして、この発熱温度の所望の範囲を得るために、反応器11の動作圧力域が650kPa~850kPaに設定される。これに伴い、吸着器13の内部圧力は650kPa~850kPaに保持される。図5から分かるように、反応材としてMgBrを用いて、酸化触媒4を加熱する場合に、活性炭へのNH吸着量の変化率が650kPa~850kPaという動作圧力域で最も高くなるようにするためには、活性炭粒子20の細孔径rを5nm~15nmとすることが好ましい。 Here, FIG. 5 shows the relationship between the relative pressure of the adsorber 13 and the pore diameter r of the activated carbon particles 20 at which the rate of change of the NH 3 adsorption amount with respect to the pressure change is maximized. The relationship shown in FIG. 5 is obtained by the Kelvin equation for obtaining the size of the pore diameter that can be adsorbed to a certain sample. When the oxidation catalyst 4 is heated using MgBr 2 as a reaction material, a desired range of the exothermic temperature of the reaction material is set to 250 ° C. to 260 ° C., for example. In order to obtain a desired range of the exothermic temperature, the operating pressure range of the reactor 11 is set to 650 kPa to 850 kPa. Accordingly, the internal pressure of the adsorber 13 is maintained at 650 kPa to 850 kPa. As can be seen from FIG. 5, when the oxidation catalyst 4 is heated using MgBr 2 as the reaction material, the rate of change of the NH 3 adsorption amount on the activated carbon is made highest in the operating pressure range of 650 kPa to 850 kPa. For this purpose, the pore diameter r of the activated carbon particles 20 is preferably 5 nm to 15 nm.
 図6の(a)は、比較例として、本実施形態よりも細孔径rの小さい活性炭粒子20を使用した場合における吸着器13の吸着-圧力特性を示すグラフである。このとき、活性炭粒子20の細孔径rは2.5nmであり、吸着器13の温度は25℃である。図6の(b)は、反応器11の温度-平衡圧特性を示すグラフであり、図2の(b)に示すグラフと同様である。なお、図2に示すものと図6に示すものとでは、細孔容積が同じ活性炭、つまり1000kPa@25℃(相対圧ほぼ1.0)での吸着量が同じ活性炭が用いられている。また、図2に示すものと図6に示すものとでは、活性炭の重量(充填量)は同じである。 (A) of FIG. 6 is a graph showing the adsorption-pressure characteristics of the adsorber 13 when the activated carbon particles 20 having a pore diameter r smaller than that of the present embodiment are used as a comparative example. At this time, the pore diameter r of the activated carbon particles 20 is 2.5 nm, and the temperature of the adsorber 13 is 25 ° C. FIG. 6B is a graph showing the temperature-equilibrium pressure characteristics of the reactor 11, which is the same as the graph shown in FIG. 2 and FIG. 6 use activated carbon having the same pore volume, that is, activated carbon having the same adsorption amount at 1000 kPa @ 25 ° C. (relative pressure of approximately 1.0). 2 and FIG. 6 have the same weight (filling amount) of activated carbon.
 図6の(a)から分かるように、活性炭へのNH吸着量の変化率が最も高くなる吸着量最大増加圧力域Xは、吸着器13の動作圧力域よりも低くなっている。この場合には、吸着器13の圧力を動作圧力域に維持するためのNH吸着量はA程度であり、動作圧力域において放出されて反応材の発熱に寄与するNH吸着量はB程度である。つまり、発熱反応時における活性炭からのNHの脱離量(NHの利用可能量)はB程度である。この場合には、発熱反応時に利用可能なNHが少ないため、所望の発熱量を得るために必要な量のNHを脱離させるには、活性炭の必要量を多くせざるを得ず、吸着器13の大型化につながる。また、NHの利用効率(B/(A+B))が低いため、搭載するNHの総量が増えてしまう。 As can be seen from FIG. 6A, the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount on the activated carbon is the highest is lower than the operating pressure region of the adsorber 13. In this case, NH 3 adsorption amount for maintaining the operating pressure range of the pressure of the adsorber 13 is about A 1, contributes adsorbed NH 3 amount to the heating of the reaction material is released in the operating pressure range is B 1 or so. That is, the amount of NH 3 desorbed from the activated carbon during the exothermic reaction (available amount of NH 3 ) is about B 1 . In this case, since there is little NH 3 available at the time of the exothermic reaction, in order to desorb an amount of NH 3 necessary for obtaining a desired exothermic amount, the necessary amount of activated carbon must be increased, This leads to an increase in the size of the adsorber 13. Moreover, due to the low efficiency of NH 3 (B 1 / (A 1 + B 1)), thus increasing the total amount of NH 3 to be mounted.
 これに対し本実施形態では、活性炭へのNH吸着量の変化率が最も高くなる吸着量最大増加圧力域Xを吸着器13の動作圧力域に一致させるような細孔径rを有する活性炭粒子20を含んでなる吸着器13を使用している。このとき、図2の(a)から分かるように、吸着器13の圧力を動作圧力域に維持するためのNH吸着量はA(<A)程度であり、動作圧力域において放出される反応材の発熱に寄与するNH吸着量はB(B>B)程度である。つまり、発熱反応時における活性炭からのNHの脱離量(NHの利用可能量)はB程度である。 In contrast, in the present embodiment, the activated carbon particles 20 having a pore diameter r that match adsorbed NH 3 amount up to increase the pressure range X in which the adsorption rate of change is highest in activated carbon to operating pressure range of the adsorber 13 Is used. At this time, as can be seen from FIG. 2A, the NH 3 adsorption amount for maintaining the pressure of the adsorber 13 in the operating pressure range is about A (<A 1 ) and is released in the operating pressure range. The NH 3 adsorption amount that contributes to the heat generation of the reaction material is about B (B> B 1 ). That is, the amount of NH 3 desorbed from the activated carbon during the exothermic reaction (amount of NH 3 available) is about B.
 このように本実施形態においては、圧力変化に対する活性炭へのNH吸着量の変化率が最も高くなる吸着量最大増加圧力域Xが吸着器13の動作圧力域と一致するように、活性炭粒子20が形成されているので、発熱反応時に利用可能なNHが多くなる。このため、活性炭の必要量を多くすること無く、所望の発熱量を得るために必要な量のNHを得ることが可能となる。これにより、吸着器13の小型化を図りつつ、所望の発熱量を得るために必要な量のNHを得ることができる。その結果、吸着器13にかかるコストを抑えることが可能となると共に、車両への吸着器13の搭載を容易に行うことが可能となる。また、NHの利用効率(B/(A+B))が高くなるため、搭載するNHの総量を少なくすることができる。 Thus, in the present embodiment, the activated carbon particles 20 so that the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount to the activated carbon with respect to the pressure change is the highest matches the operating pressure region of the adsorber 13. Therefore, more NH 3 can be used during the exothermic reaction. For this reason, it becomes possible to obtain NH 3 in an amount necessary for obtaining a desired calorific value without increasing the necessary amount of activated carbon. As a result, it is possible to obtain NH 3 in an amount necessary for obtaining a desired calorific value while reducing the size of the adsorber 13. As a result, it is possible to reduce the cost for the adsorber 13 and to easily mount the adsorber 13 on the vehicle. Moreover, utilization efficiency of NH 3 (B / (A + B)) for increases, it is possible to reduce the total amount of NH 3 to be mounted.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、反応器11の反応材と化学反応する気体の反応媒体としてNHを使用したが、反応媒体としては、特にNHには限られず、CO等を使用しても良い。反応媒体としてCOを使用する場合、COと化学反応する反応材としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、Fe、Fe等を使用することができる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, NH 3 is used as a gaseous reaction medium that chemically reacts with the reaction material of the reactor 11, but the reaction medium is not particularly limited to NH 3 and may be CO 2 or the like. . When CO 2 is used as the reaction medium, the reaction material that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3 , Fe 3 O 4 and the like can be used.
 また、上記実施形態では、反応材としてMgBrを用い、気体の反応媒体としてNHを用い、酸化触媒4を加熱する場合に、圧力変化に対するNH吸着量の変化率が最も高くなる吸着量最大増加圧力域Xが動作圧力域と一致するような細孔径rを有する活性炭粒子20を使用したが、動作圧力域は、加熱対象物、使用する反応材及び反応媒体によって変わってくる。従って、活性炭粒子20等の吸着材粒子としては、加熱対象物、反応媒体及び反応材に応じた動作圧力域においてNH吸着量の変化率を最も高くするような細孔径rを有するものを使用する。また、動作圧力域は、発熱温度の所望の範囲によっても変わる。発熱温度の所望の範囲は、通常、250~260℃であることができる。 In the above embodiment, using MgBr 2 as a reaction material, the NH 3 is used as the reaction medium of the gas, in case of heating the oxidation catalyst 4, the adsorption amount of adsorbed NH 3 amount of change rate to pressure changes is the highest The activated carbon particles 20 having the pore diameter r such that the maximum increased pressure region X coincides with the operating pressure region are used. However, the operating pressure region varies depending on the heating object, the reaction material used, and the reaction medium. Therefore, as the adsorbent particles such as the activated carbon particles 20, those having a pore diameter r that maximizes the change rate of the NH 3 adsorption amount in the operating pressure range corresponding to the heating object, the reaction medium, and the reaction material are used. To do. The operating pressure range also varies depending on the desired range of heat generation temperature. The desired range of exothermic temperatures can usually be 250-260 ° C.
 さらに、上記実施形態では、圧力変化に対するNH吸着量の変化率が最も高くなる吸着量最大増加圧力域Xが動作圧力域と一致するような細孔径rを有する活性炭粒子20を選定したが、使用する活性炭粒子20としては特にそれには限られない。例えば、動作圧力域における圧力変化に対するNH吸着量の変化率をこの動作圧力域よりも低い圧力域における圧力変化に対するNH吸着量の変化率よりも高くするような細孔径rを有する活性炭粒子20等の吸着材粒子であれば、この動作圧力域よりも高い圧力域においてNH吸着量の変化率が最も高くなるように形成されていても良い。 Further, in the above embodiment, the activated carbon particles 20 having the pore diameter r such that the adsorption amount maximum increasing pressure region X where the change rate of the NH 3 adsorption amount with respect to the pressure change is the highest match the operating pressure region are selected. The activated carbon particles 20 to be used are not particularly limited thereto. For example, activated carbon particles having a pore diameter r as higher than adsorbed NH 3 amount of change rate to pressure changes in the NH 3 adsorption rate of change lower pressure range than the operating pressure range to pressure changes in the operating pressure range If the adsorbent particles are 20 or the like, the adsorbent particles may be formed such that the rate of change of the NH 3 adsorption amount is highest in a pressure range higher than the operating pressure range.
 また、上記実施形態は、酸化触媒4を加熱する化学蓄熱装置10についてであるが、本発明の化学蓄熱装置は、ディーゼルエンジンの排気系に設けられた他の触媒、ガソリンエンジンの排気系に設けられた何れかの触媒、エンジンの排気系に設けられた触媒以外の加熱対象物(例えば熱交換器等)を加熱するものであれば適用可能である。また、本発明の化学蓄熱装置は、エンジン以外の加熱対象物を加熱するものにも適用可能である。 Moreover, although the said embodiment is about the chemical thermal storage apparatus 10 which heats the oxidation catalyst 4, the chemical thermal storage apparatus of this invention is provided in the exhaust system of a gasoline engine which is provided with the other catalyst provided in the exhaust system of the diesel engine. Any heating catalyst other than the catalyst provided in the exhaust system of the engine (for example, a heat exchanger) can be applied. The chemical heat storage device of the present invention is also applicable to a device that heats a heating object other than the engine.
 4…酸化触媒(加熱対象物)、10…化学蓄熱装置、11…反応器、13…吸着器、20…活性炭粒子(吸着材の粒子)、r…細孔径。 4 ... oxidation catalyst (object to be heated), 10 ... chemical heat storage device, 11 ... reactor, 13 ... adsorber, 20 ... activated carbon particles (adsorbent particles), r ... pore diameter.

Claims (5)

  1.  気体の反応媒体の物理吸着及び脱離が可能な吸着材を有する吸着器と、
     前記吸着器と接続され、前記反応媒体と化学反応すると加熱対象物を加熱するための熱を発生し、熱源からの熱を受けると前記反応媒体を脱離する反応材を有する反応器とを備え、
     前記吸着材は、前記吸着器内の圧力が増加するに従って前記反応媒体の吸着量が増加する特性を有し、
     前記反応材の発熱温度が所望の範囲となる動作圧力域における圧力変化に対する前記吸着材が吸着できる前記反応媒体の量の変化率が、前記動作圧力域よりも低い圧力域における圧力変化に対する前記吸着材が吸着できる前記反応媒体の量の変化率よりも高い化学蓄熱装置。
    An adsorber having an adsorbent capable of physical adsorption and desorption of a gaseous reaction medium;
    A reactor connected to the adsorber and having a reaction material that generates heat for heating an object to be heated when chemically reacted with the reaction medium and desorbs the reaction medium upon receiving heat from a heat source; ,
    The adsorbent has the property that the amount of adsorption of the reaction medium increases as the pressure in the adsorber increases,
    The adsorption with respect to the pressure change in the pressure range where the change rate of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to the pressure change in the operating pressure range in which the exothermic temperature of the reaction material is in a desired range. A chemical heat storage device having a higher rate of change in the amount of the reaction medium that can adsorb the material.
  2.  前記吸着材は、前記反応材の発熱温度が前記所望の範囲となる前記動作圧力域における圧力変化に対する前記吸着材が吸着できる前記反応媒体の量の変化率が、前記動作圧力域よりも低い圧力域における圧力変化に対する前記吸着材が吸着できる前記反応媒体の量の変化率よりも高くなる細孔径を有する多孔質性物質を含む請求項1記載の化学蓄熱装置。 The adsorbent has a lower rate of change in the amount of the reaction medium that can be adsorbed by the adsorbent with respect to a pressure change in the operating pressure range where the exothermic temperature of the reaction material falls within the desired range. The chemical heat storage device according to claim 1, further comprising a porous substance having a pore diameter higher than a rate of change of the amount of the reaction medium that can be adsorbed by the adsorbent with respect to a pressure change in a region.
  3.  前記反応媒体はアンモニアであり、
     前記吸着材は、活性炭、カーボンブラック、メソポーラスカーボン及びナノカーボンのいずれかである請求項1または2記載の化学蓄熱装置。
    The reaction medium is ammonia;
    The chemical heat storage device according to claim 1, wherein the adsorbent is any one of activated carbon, carbon black, mesoporous carbon, and nanocarbon.
  4.  前記所望の発熱温度は250~260℃である、請求項1~3のいずれか1項に記載の化学蓄熱装置。 The chemical heat storage device according to any one of claims 1 to 3, wherein the desired exothermic temperature is 250 to 260 ° C.
  5.  前記動作圧力域は650~850kPaである、請求項1~4のいずれか1項に記載の化学蓄熱装置。 The chemical heat storage device according to any one of claims 1 to 4, wherein the operating pressure range is 650 to 850 kPa.
PCT/JP2014/079744 2013-12-27 2014-11-10 Chemical-heat-storage device WO2015098318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013271811A JP2015124980A (en) 2013-12-27 2013-12-27 Chemical heat storage device
JP2013-271811 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098318A1 true WO2015098318A1 (en) 2015-07-02

Family

ID=53478196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079744 WO2015098318A1 (en) 2013-12-27 2014-11-10 Chemical-heat-storage device

Country Status (2)

Country Link
JP (1) JP2015124980A (en)
WO (1) WO2015098318A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132690A (en) * 2002-08-15 2004-04-30 Denso Corp Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method
JP2012172902A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Heat transfer system and heat exchanger type reactor
JP2013064413A (en) * 2013-01-15 2013-04-11 Toyota Central R&D Labs Inc Chemical thermal storage system for vehicle
JP2013072558A (en) * 2011-09-26 2013-04-22 Toyota Central R&D Labs Inc Heat recovery type heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132690A (en) * 2002-08-15 2004-04-30 Denso Corp Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method
JP2012172902A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Heat transfer system and heat exchanger type reactor
JP2013072558A (en) * 2011-09-26 2013-04-22 Toyota Central R&D Labs Inc Heat recovery type heating device
JP2013064413A (en) * 2013-01-15 2013-04-11 Toyota Central R&D Labs Inc Chemical thermal storage system for vehicle

Also Published As

Publication number Publication date
JP2015124980A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5860852B2 (en) Catalytic reaction apparatus and vehicle
JP5949318B2 (en) Catalytic reaction apparatus and vehicle
JP5954123B2 (en) Exhaust gas purification system
US20160298520A1 (en) Chemical heat storage device
WO2015098318A1 (en) Chemical-heat-storage device
JP6131777B2 (en) Chemical heat storage device
JP6102527B2 (en) Chemical heat storage device
JP2014152997A (en) Chemical heat storage device
JP6019913B2 (en) Catalytic reaction apparatus and vehicle
JP2009195803A (en) Absorbent of volatile organic compound
WO2016163167A1 (en) Chemical heat-storage device
JP2016053439A (en) Chemical heat storage device
JP2015108471A (en) Chemical heat storage device
JP2016148482A (en) Chemical heat storage device
WO2016056488A1 (en) Chemical heat storage apparatus
JP2010513004A (en) Method and device for storage and supply of ammonia utilizing in-situ re-saturation of the supply unit
JP2014214650A (en) Chemical heat storage device
JP2015052442A (en) Chemical heat storage device
JP6320551B2 (en) Chemical heat storage device
JP6187418B2 (en) Chemical heat storage device
JP2016044860A (en) Gas occlusion device and chemical heat storage device
WO2017013907A1 (en) Chemical heat storage device
JP2012066175A (en) Exhaust gas treatment device
JP2015087082A (en) Chemical heat storage device
WO2016194682A1 (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874366

Country of ref document: EP

Kind code of ref document: A1