WO2015098259A1 - Charge control device and charge control method - Google Patents

Charge control device and charge control method Download PDF

Info

Publication number
WO2015098259A1
WO2015098259A1 PCT/JP2014/078075 JP2014078075W WO2015098259A1 WO 2015098259 A1 WO2015098259 A1 WO 2015098259A1 JP 2014078075 W JP2014078075 W JP 2014078075W WO 2015098259 A1 WO2015098259 A1 WO 2015098259A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging rate
power
converter
load
Prior art date
Application number
PCT/JP2014/078075
Other languages
French (fr)
Japanese (ja)
Inventor
征志 城殿
慎司 広瀬
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015098259A1 publication Critical patent/WO2015098259A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/022Auxiliary drives directly from an engine shaft by a mechanical transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric

Definitions

  • the present invention relates to a charge control device and a charge control method for controlling charging of a battery.
  • Charging the lithium-ion battery that supplies power to the electric supercharger used to assist the supercharger that supercharges the intake air of the internal combustion engine is applied to auxiliary equipment loads such as auxiliary equipment and systems installed in the vehicle. It is carried out from a lead battery that supplies power via a power converter such as a DC / DC converter.
  • a power converter such as a DC / DC converter.
  • the DC / DC converter when the DC / DC converter is activated, for example, the current from the lead battery to the input side circuit of the DC / DC converter due to the influence of the input side circuit having a capacitor or the like provided on the input side of the DC / DC converter. May flow and the voltage of the lead battery may decrease.
  • the present invention distributes the load on the battery that supplies power to the auxiliary system load by changing the timing at which the power converter can be activated, thereby suppressing deterioration of the battery and avoiding system down
  • An object is to provide a device and a charge control method.
  • the charge control apparatus which is one of the embodiments includes a first battery, a second battery, a first power converter, a second power converter, and a control unit.
  • the first battery supplies power to the first load of the auxiliary system.
  • the second battery supplies power to the second load.
  • the first power converter is used when charging from the first battery to the second battery.
  • the second power converter is used when supplying power to the second load.
  • the controller does not activate the first power converter when it is determined that the charging rate of the second battery is greater than a predetermined charging rate threshold, and the charging rate is determined to be equal to or lower than the charging rate threshold
  • the start determination control is performed to make the first power converter startable.
  • the present embodiment by changing the timing at which the power converter can be activated, the load on the battery that supplies power to the auxiliary system load is distributed, the deterioration of the battery is suppressed, and the system is down. It can be avoided.
  • FIG. 1 is a diagram showing an embodiment of an apparatus mounted on a vehicle having an electric supercharger.
  • FIG. 2 is a diagram for explaining the activation determination control.
  • FIG. 3 is a flowchart showing an embodiment of the operation of the control unit.
  • FIG. 1 is a diagram showing an embodiment of an apparatus mounted on a vehicle having an electric supercharger. 1 includes an internal combustion engine 2, a supercharger 3, an electric supercharger 4, a battery pack 5, a power supply unit 6, a control unit 7, and the like.
  • the internal combustion engine 2 includes an output shaft 8, and in this example, drive wheels 9 are connected to the output shaft 8.
  • the supercharger 3 is a device that forcibly sends air to the internal combustion engine 2, and makes the output of the internal combustion engine 2 larger.
  • the pipe 10 (shaded dot pattern portion) is a pipe used for supercharging.
  • the electric supercharger 4 has a compressor 11 and an electric motor 12 (second load), and is a device for forcibly sending air to the internal combustion engine 2 and assists the supercharger 3. Electric power to the electric motor 12 that drives the compressor 11 is supplied from an inverter 13 (second power converter).
  • the inverter 13 supplies power to the electric motor 12 based on an instruction from the control unit 7.
  • the battery pack 5 includes a second battery 14, a temperature detection unit 15, a current detection unit 16, a charge state calculation unit 17, and a storage unit 18, and supplies power to the electric supercharger 4.
  • the second battery 14 is an assembled battery having one or more secondary batteries, and is charged by the power supplied from the power supply unit 6.
  • the secondary battery used in the second battery 14 is preferably a secondary battery that can be charged and discharged in a short time, such as a lithium ion battery.
  • the secondary battery is not limited to a lithium ion battery, and a storage element such as a nickel-hydrogen rechargeable battery (Ni-MH), a lead battery, or a capacitor may be used.
  • the temperature detection unit 15 is a sensor or element that detects the temperature of the second battery 14 or the ambient temperature of the battery pack 5, and may be measured using, for example, a thermistor.
  • the current detection unit 16 is a sensor or element that detects the current flowing through the second battery 14, and may be measured using a shunt resistor or a current transformer.
  • the battery pack 5 includes the second battery 14, the temperature detection unit 15, the current detection unit 16, the charge state calculation unit 17, and the storage unit 18. ) Is not necessary.
  • the charge state calculation unit 17 may be, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)), and the storage unit 18.
  • the CPU, multi-core CPU, or programmable device reads and executes a program that calculates a value representing a charging state such as a charging rate described later stored in the CPU.
  • the charging state calculation unit 17 uses the voltage of the second battery 14, the temperature detected by the temperature detection unit 15, the current detected by the current detection unit 16, etc.
  • the value (State of Charge (SOC)) indicating the ratio [%] of the current charge capacity [Ah] to the full charge capacity [Ah] of the battery 14 is obtained.
  • the voltage [V] of the second battery 14 and the charging rate of the second battery 14 are read from the storage unit 18 and the voltage of the second battery 14 is referred to by referring to the information.
  • the charging rate of the second battery 14 corresponding to [V] is acquired. Further, by calculating (current amount [Ah] obtained by integrating the current detected by the current detection unit 16 over time) / (full charge capacity [Ah] of the second battery 14) ⁇ 100 [%], The charging rate of the second battery 14 is obtained.
  • the full capacity of the second battery 14 may be the actual capacity or the nominal value of the product.
  • the storage unit 18 is a memory such as Read Only Memory (ROM) or Random Access Memory (RAM), and may store data such as parameter values and variable values, or may be used as a work area at the time of execution. Note that a storage unit provided in the charging state calculation unit 17 may be used instead of the storage unit 18. The storage unit 18 may be provided outside the battery pack 5.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the power supply unit 6 includes an alternator 19 (generator), a first battery 20, and a DC / DC converter 21 (first power converter).
  • An alternator 19 (generator) is connected to the output shaft 8 and generates electric power using rotational energy (power) of the output shaft 8, and the generated electric power is charged in the first battery 20 which is a secondary battery. . Further, the power generated by the alternator 19 includes power generated as brake regeneration. The electric power generated by the alternator 19 may be supplied to the second battery 14 of the battery pack 5 via the DC / DC converter 21.
  • the first battery 20 is a secondary battery for supplying electric power to an auxiliary machine or system (auxiliary machine / system 22: first load shown in FIG. 2) mounted on the vehicle, such as a lead battery. .
  • the first battery 20 is not limited to a lead battery.
  • the DC / DC converter 21 converts the voltage output from the first battery 20 into a voltage that can be charged in the second battery 14 of the battery pack 5, and charges the second battery 14 from the first battery 20. Let In this example, the DC / DC converter 21 has been described. However, any power converter that can charge the first battery 20 to the second battery 14 may be used.
  • the control unit 7 is a circuit using, for example, a CPU, a multi-core CPU, and a programmable device (FPGA, PLD, etc.), and reads and executes a program for controlling each unit stored in the storage unit of the control unit 7.
  • FPGA programmable device
  • the storage unit is a memory such as a ROM or a RAM, and may store data such as parameter values and variable values, or may be used as a work area during execution. Note that the storage unit may be provided separately from the control unit 7.
  • the control unit 7 controls the DC / DC converter 21 based on the voltage of the first battery 20, the charging rate of the second battery 14 obtained by the charge state calculation unit 17, and the battery pack from the first battery 20. 5 is supplied with electric power. Further, when receiving an instruction for driving the electric supercharger 4 from the outside, based on the charging rate of the second battery 14 acquired from the charging state calculation unit 17, information stored in the storage unit 18, and the like, The output of the inverter 13 is controlled.
  • FIG. 2 is a diagram for explaining the activation determination control.
  • auxiliary machine or system auxiliary machine / system 22 mounted on the vehicle
  • the first battery 20 and the second battery 14 are sufficiently charged, the voltage of the first battery 20 is lower than the overdischarge voltage even if the control unit 7 activates or enables the DC / DC converter 21. Therefore, there is no problem that the first battery 20 is deteriorated or the auxiliary machine or the system cannot be controlled due to the voltage drop of the first battery 20 (system down). Therefore, the DC / DC converter 21 is activated, and the inverter 13 using the power output from the first battery 20 via the DC / DC converter 21 and the power output from the second battery 14.
  • the electric motor 12 can be driven via
  • the first battery 20 is sufficiently charged when, for example, the voltage of the first battery 20 supplies power to the auxiliary machine or system at the same timing as when the DC / DC converter 21 is activated. This is also the case where the voltage does not go down (voltage threshold) or higher.
  • the charge rate of the second battery 14 corresponds to the power required to drive the motor 12 via the inverter 13 (charge rate). This is the case where the threshold value is larger.
  • the charging rate threshold value and the voltage threshold value are stored in the storage unit, for example.
  • startable indicates that the DC / DC converter 21 that has received the startable signal output from the control unit 7 is in a ready state. For example, when a startable signal is received when there is a smoothing capacitor for preventing an inrush current on the input side of the DC / DC converter 21, the capacitor is precharged. When the start signal is received, the DC / DC converter 21 is always turned on. It can be driven. The activation is, for example, causing the DC / DC converter 21 to start a switching operation or the like by driving the DC / DC converter 21 that has received the activation signal output from the control unit 7.
  • the control unit 7 activates the DC / DC converter 21 to The second battery 14 can be charged from the battery 20 via the DC / DC converter 21.
  • the timing at which the DC / DC converter 21 can be activated can be shifted. That is, by shifting the timing at which power is supplied from the first battery 20 to the DC / DC converter 21 (or the current 23 flows) and the timing at which power is supplied to the auxiliary machine or system (or the current 24 flows), The load on the first battery 20 can be distributed.
  • the voltage of the first battery 20 is determined when starting power supply to the auxiliary machine or system.
  • the control unit 7 drives the auxiliary machine or system at the timing for starting the DC / DC converter 21.
  • the DC / DC converter 21 is activated after reaching a sufficient voltage. Therefore, even if the voltage of the first battery 20 decreases, deterioration due to falling below the overdischarge voltage can be suppressed, and the voltage has reached a sufficient voltage to drive the auxiliary machine and system, so that system down is avoided. Can do.
  • the control unit 7 may control each unit of the power supply unit 6 so as to gradually charge the second battery 14. For example, based on the voltage of the first battery 20 and the charging rate of the second battery 14, the voltage of the first battery 20 is preferably equal to or higher than the voltage threshold and the charging rate of the second battery 14 is more than the charging rate threshold.
  • Charging may be performed by determining a charging current and a charging time so as to increase.
  • the charging current may be a constant current.
  • FIG. 3 is a flowchart showing an embodiment of the operation of the control unit.
  • step S1 when the power supply from the first battery 20 to the load such as the auxiliary machine / system 22 is started, the control unit 7 determines that the charging rate of the second battery 14 is equal to or less than a predetermined charging rate threshold value. If NO is determined and it is determined that the charging rate is equal to or lower than the charging rate threshold (Yes), the process proceeds to step S3. That is, since it is necessary to avoid that the second battery 14 cannot drive the electric motor 12 and the inverter 13 due to insufficient charging of the second battery 14, when the charging of the second battery 14 is insufficient Then, the control unit 7 proceeds to step S3 so that the DC / DC converter 21 can be activated. Moreover, when it determines with a charging rate being larger than a charging rate threshold value in step S1, it transfers to step S2.
  • the second battery 14 is started when power supply to the auxiliary machine or system is started. Since it is not necessary to charge the battery, the timing at which the DC / DC converter 21 can be activated can be shifted. That is, by shifting the timing at which power is supplied from the first battery 20 to the DC / DC converter 21 (or the current 23 flows) and the timing at which power is supplied to the auxiliary machine or system (or the current 24 flows), The load on the first battery 20 can be distributed.
  • step S2 the control unit 7 determines whether or not the voltage of the first battery 20 is equal to or higher than a predetermined voltage threshold value. If the voltage of the first battery 20 is determined to be equal to or higher than the voltage threshold value (Yes) ), The process proceeds to step S3. If it is determined that the voltage of the first battery 20 is lower than the voltage threshold (No), the process proceeds to step S1.
  • the voltage of the first battery 20 is activated by the DC / DC converter 21 when power supply to the auxiliary machine or system is started.
  • the control unit 7 determines the timing for starting the DC / DC converter 21 at the time of starting the DC / DC converter 21. After determining that the voltage is sufficient to drive the system, the DC / DC converter 21 is activated. Therefore, even if the voltage of the first battery 20 decreases, deterioration due to falling below the overdischarge voltage can be suppressed, and the voltage has reached a sufficient voltage to drive the auxiliary machine and system, so that system down is avoided. Can do.
  • step S3 the control unit 7 makes the DC / DC converter 21 startable.
  • step S2 when the DC / DC converter 21 is activated when the voltage of the first battery 20 is equal to or higher than the voltage threshold and the charging rate of the second battery 14 is larger than the charging rate threshold, the first The control unit 7 may control each unit of the power supply unit 6 so as to gradually charge the second battery 14 from the battery 20. For example, based on the voltage of the first battery 20 and the charging rate of the second battery 14, the voltage of the first battery 20 is preferably equal to or higher than the voltage threshold and the charging rate of the second battery 14 is more than the charging rate threshold.
  • Charging may be performed by determining a charging current and a charging time so as to increase.
  • the charging current may be a constant current.
  • the present embodiment by changing the timing at which the first power converter such as the DC / DC converter 21 can be activated, the load on the battery that supplies power to the auxiliary load is distributed, Deterioration of the battery can be suppressed and system down can be avoided.

Abstract

A charge control device provided with: a first battery (20) which supplies power to a first load of an auxiliary machine system; a second battery (14) which supplies power to a second load; a first power converter (21) which is used when the second battery (14) is charged from the first battery (20); a second power converter (13) which is used when the power is supplied to the second load; and a control unit (7) which performs start determination control in which the first power converter (21) is not started when the charging rate of the second battery (14) is determined to be larger than a predetermined charging rate threshold value, and the first power converter (21) is brought into a startable state when the charging rate is determined to be less than or equal to the charging rate threshold value.

Description

充電制御装置および充電制御方法Charge control device and charge control method
 本発明は、電池への充電を制御する充電制御装置および充電制御方法に関する。 The present invention relates to a charge control device and a charge control method for controlling charging of a battery.
 内燃機関の吸気を過給する過給機の補助に用いられる電動過給機に電力を供給するリチウムイオン電池への充電は、車両に搭載されている補機やシステムなどの補機系負荷に電力を供給する鉛電池からDC/DCコンバータなどの電力変換器を介して行われている。しかしながら、DC/DCコンバータを起動させた場合、例えば、DC/DCコンバータの入力側に設けられているコンデンサなどを有する入力側回路の影響により、鉛電池からDC/DCコンバータの入力側回路へ電流が流れて鉛電池の電圧が低下してしまうことがある。また、車両に搭載されている補機やシステムを起動する際に、DC/DCコンバータを起動した場合には、鉛電池からDC/DCコンバータへ電流が流れるとともに、補機系負荷へも電流が流れるため、鉛電池の電圧がさらに低下することになる。その結果として、鉛電池の電圧が過放電電圧を下回った場合には鉛電池の劣化の原因となる。また、鉛電池の電圧低下により補機やシステムの制御ができなくなることがある(システムダウン)。 Charging the lithium-ion battery that supplies power to the electric supercharger used to assist the supercharger that supercharges the intake air of the internal combustion engine is applied to auxiliary equipment loads such as auxiliary equipment and systems installed in the vehicle. It is carried out from a lead battery that supplies power via a power converter such as a DC / DC converter. However, when the DC / DC converter is activated, for example, the current from the lead battery to the input side circuit of the DC / DC converter due to the influence of the input side circuit having a capacitor or the like provided on the input side of the DC / DC converter. May flow and the voltage of the lead battery may decrease. In addition, when starting a DC / DC converter when starting an auxiliary machine or system mounted on a vehicle, current flows from the lead battery to the DC / DC converter, and current also flows to the auxiliary load. Since it flows, the voltage of a lead battery will fall further. As a result, when the voltage of the lead battery is lower than the overdischarge voltage, the lead battery is deteriorated. Moreover, the auxiliary machine and the system may not be controlled due to the voltage drop of the lead battery (system down).
 関連する技術として、内燃機関のアイドル回転の安定を図りつつ、低温下におけるDC/DCコンバータ起動時において蓄電池(例えば鉛電池)からの放電を抑制して、蓄電池の一時的な電圧低下を防止することができるハイブリット車両とその制御方法が提案されている。例えば、特許文献1を参照。 As a related technique, while stabilizing the idling rotation of the internal combustion engine, the discharge from the storage battery (for example, a lead battery) is suppressed at the start of the DC / DC converter at a low temperature to prevent a temporary voltage drop of the storage battery. A hybrid vehicle and a control method therefor have been proposed. See, for example, US Pat.
 しかしながら、上記提案を実施したとしても、補機やシステムを起動する際に、DC/DCコンバータが起動された場合に、鉛電池の電圧低下に伴う鉛電池の劣化やシステムダウンという問題は依然として解決されない。 However, even if the above proposal is implemented, the problem of lead battery deterioration and system down due to the voltage drop of the lead battery is still solved when the DC / DC converter is started when starting the auxiliary machine or system. Not.
特開2003-189401号公報JP 2003-189401 A
 本発明は、電力変換器を起動可能にするタイミングを変えることにより、補機系負荷に電力を供給する電池への負荷を分散し、該電池の劣化を抑制するとともにシステムダウンを回避する充電制御装置および充電制御方法を提供することを目的とする。 The present invention distributes the load on the battery that supplies power to the auxiliary system load by changing the timing at which the power converter can be activated, thereby suppressing deterioration of the battery and avoiding system down An object is to provide a device and a charge control method.
 実施の態様のひとつである充電制御装置は、第1の電池、第2の電池、第1の電力変換器、第2の電力変換器、制御部を有する。 The charge control apparatus which is one of the embodiments includes a first battery, a second battery, a first power converter, a second power converter, and a control unit.
 第1の電池は補機系の第1の負荷に電力を供給する。第2の電池は第2の負荷に電力を供給する。 The first battery supplies power to the first load of the auxiliary system. The second battery supplies power to the second load.
 第1の電力変換器は第1の電池から第2の電池への充電をする際に用いられる。第2の電力変換器は第2の負荷に電力を供給する際に用いられる。 The first power converter is used when charging from the first battery to the second battery. The second power converter is used when supplying power to the second load.
 制御部は、第2の電池の充電率が予め決められた充電率閾値より大きいと判定された場合に第1の電力変換器を起動させず、充電率が充電率閾値以下と判定された場合に第1の電力変換器を起動可能な状態にさせる、起動判定制御をする。 The controller does not activate the first power converter when it is determined that the charging rate of the second battery is greater than a predetermined charging rate threshold, and the charging rate is determined to be equal to or lower than the charging rate threshold The start determination control is performed to make the first power converter startable.
 本実施の形態によれば、電力変換器を起動可能にするタイミングを変えることにより、補機系負荷に電力を供給する電池への負荷を分散し、該電池の劣化を抑制するとともにシステムダウンを回避することができる。 According to the present embodiment, by changing the timing at which the power converter can be activated, the load on the battery that supplies power to the auxiliary system load is distributed, the deterioration of the battery is suppressed, and the system is down. It can be avoided.
図1は、電動過給機を有する車両に搭載される装置の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of an apparatus mounted on a vehicle having an electric supercharger. 図2は、起動判定制御について説明するための図である。FIG. 2 is a diagram for explaining the activation determination control. 図3は、制御部の動作の一実施例を示すフロー図である。FIG. 3 is a flowchart showing an embodiment of the operation of the control unit.
 以下図面に基づいて実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 図1は、電動過給機を有する車両に搭載される装置の一実施例を示す図である。図1に示す装置1は内燃機関2、過給機3、電動過給機4、電池パック5、電力供給部6、制御部7などを有する。 FIG. 1 is a diagram showing an embodiment of an apparatus mounted on a vehicle having an electric supercharger. 1 includes an internal combustion engine 2, a supercharger 3, an electric supercharger 4, a battery pack 5, a power supply unit 6, a control unit 7, and the like.
 内燃機関2は出力軸8を備え、本例ではその出力軸8に駆動輪9が連結されている。過給機3は内燃機関2に強制的に空気を送り込む装置で、内燃機関2の出力をより大きくさせる。なお、配管10(網掛け点パターン部分)は過給に用いられる配管などである。 The internal combustion engine 2 includes an output shaft 8, and in this example, drive wheels 9 are connected to the output shaft 8. The supercharger 3 is a device that forcibly sends air to the internal combustion engine 2, and makes the output of the internal combustion engine 2 larger. The pipe 10 (shaded dot pattern portion) is a pipe used for supercharging.
 電動過給機4は、圧縮機11、電動機12(第2の負荷)を有し、内燃機関2に強制的に空気を送り込む装置で、過給機3の補助などをするものである。圧縮機11を駆動する電動機12への電力はインバータ13(第2の電力変換器)から供給される。 The electric supercharger 4 has a compressor 11 and an electric motor 12 (second load), and is a device for forcibly sending air to the internal combustion engine 2 and assists the supercharger 3. Electric power to the electric motor 12 that drives the compressor 11 is supplied from an inverter 13 (second power converter).
 インバータ13は制御部7からの指示に基づいて電動機12へ電力を供給する。 The inverter 13 supplies power to the electric motor 12 based on an instruction from the control unit 7.
 電池パック5は、第2の電池14、温度検出部15、電流検出部16、充電状態算出部17、記憶部18を備え、電動過給機4に電力を供給する。第2の電池14は1つ以上の二次電池を有する組電池で、電力供給部6から供給される電力により充電される。第2の電池14で用いる二次電池はリチウムイオン電池などの短時間での充放電が可能な二次電池であることが望ましい。なお、二次電池はリチウムイオン電池に限定されるものではなく、ニッケル・水素充電池(Ni-MH)、鉛電池、キャパシタなどの蓄電素子を用いてもよい。温度検出部15は第2の電池14の温度または電池パック5の周辺温度を検出するセンサや素子などで、例えば、サーミスタを用いて計測することが考えられる。電流検出部16は第2の電池14に流れる電流を検出するセンサや素子などで、シャント抵抗やカレントトランスを用いて計測することが考えられる。また、本例では電池パック5は、第2の電池14、温度検出部15、電流検出部16、充電状態算出部17、記憶部18を備えているが、各部14~18はパック(一体構造)にしなくてもよい。 The battery pack 5 includes a second battery 14, a temperature detection unit 15, a current detection unit 16, a charge state calculation unit 17, and a storage unit 18, and supplies power to the electric supercharger 4. The second battery 14 is an assembled battery having one or more secondary batteries, and is charged by the power supplied from the power supply unit 6. The secondary battery used in the second battery 14 is preferably a secondary battery that can be charged and discharged in a short time, such as a lithium ion battery. The secondary battery is not limited to a lithium ion battery, and a storage element such as a nickel-hydrogen rechargeable battery (Ni-MH), a lead battery, or a capacitor may be used. The temperature detection unit 15 is a sensor or element that detects the temperature of the second battery 14 or the ambient temperature of the battery pack 5, and may be measured using, for example, a thermistor. The current detection unit 16 is a sensor or element that detects the current flowing through the second battery 14, and may be measured using a shunt resistor or a current transformer. In this example, the battery pack 5 includes the second battery 14, the temperature detection unit 15, the current detection unit 16, the charge state calculation unit 17, and the storage unit 18. ) Is not necessary.
 充電状態算出部17は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられ、記憶部18に記憶されている後述する充電率などの充電状態を表す値を算出などするプログラムを、CPU、マルチコアCPUまたはプログラマブルなデバイスが読み出して実行する。充電状態算出部17は、第2の電池14の電圧、温度検出部15により検出される温度、電流検出部16により検出される電流などを用いて、第2の電池14の充電率(第2の電池14の満充電容量[Ah]に対する現在の充電容量[Ah]の割合[%]を示す値:State of Charge(SOC))を求める。例えば、第2の電池14の電圧[V]と第2の電池14の充電率とが対応付けられた情報を記憶部18から読み出し、その情報を参照することにより、第2の電池14の電圧[V]に対応する第2の電池14の充電率を取得する。また、(電流検出部16により検出される電流を時間経過とともに積算した電流量[Ah])/(第2の電池14の満充電容量[Ah])×100[%]を計算することによって、第2の電池14の充電率を求める。なお、第2の電池14の満充電容量は、実際の容量あるいは製品の公称値などを用いることが考えられる。記憶部18はRead Only Memory(ROM)、Random Access Memory(RAM)などのメモリで、パラメータ値、変数値などのデータを記憶してもよいし、実行時のワークエリアとして用いてもよい。なお、記憶部18の替わりに充電状態算出部17に設けられている記憶部を用いてもよい。また、記憶部18は電池パック5の外部に設けてもよい。 The charge state calculation unit 17 may be, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)), and the storage unit 18. The CPU, multi-core CPU, or programmable device reads and executes a program that calculates a value representing a charging state such as a charging rate described later stored in the CPU. The charging state calculation unit 17 uses the voltage of the second battery 14, the temperature detected by the temperature detection unit 15, the current detected by the current detection unit 16, etc. The value (State of Charge (SOC)) indicating the ratio [%] of the current charge capacity [Ah] to the full charge capacity [Ah] of the battery 14 is obtained. For example, the voltage [V] of the second battery 14 and the charging rate of the second battery 14 are read from the storage unit 18 and the voltage of the second battery 14 is referred to by referring to the information. The charging rate of the second battery 14 corresponding to [V] is acquired. Further, by calculating (current amount [Ah] obtained by integrating the current detected by the current detection unit 16 over time) / (full charge capacity [Ah] of the second battery 14) × 100 [%], The charging rate of the second battery 14 is obtained. Note that the full capacity of the second battery 14 may be the actual capacity or the nominal value of the product. The storage unit 18 is a memory such as Read Only Memory (ROM) or Random Access Memory (RAM), and may store data such as parameter values and variable values, or may be used as a work area at the time of execution. Note that a storage unit provided in the charging state calculation unit 17 may be used instead of the storage unit 18. The storage unit 18 may be provided outside the battery pack 5.
 電力供給部6は、オルタネータ19(発電機)、第1の電池20、DC/DCコンバータ21(第1の電力変換器)を有している。オルタネータ19(発電機)は出力軸8に連結され、出力軸8の回転エネルギー(動力)を利用して発電をし、発電された電力は二次電池である第1の電池20に充電される。また、オルタネータ19により発電される電力は、ブレーキ回生として発電される電力も含む。なお、オルタネータ19により発電された電力は、DC/DCコンバータ21を介して電池パック5の第2の電池14に供給してもよい。第1の電池20は車両に搭載されている補機やシステム(図2に示す補機・システム22:第1の負荷)に電力を供給するための二次電池で、鉛電池などが考えられる。ただし、第1の電池20は鉛電池に限定されるものではない。DC/DCコンバータ21は、第1の電池20から出力される電圧を電池パック5の第2の電池14に充電可能な電圧に変換し、第1の電池20から第2の電池14に充電をさせる。なお、本例ではDC/DCコンバータ21を用いて説明をしたが、第1の電池20から第2の電池14に充電可能な電力変換器であればよい。 The power supply unit 6 includes an alternator 19 (generator), a first battery 20, and a DC / DC converter 21 (first power converter). An alternator 19 (generator) is connected to the output shaft 8 and generates electric power using rotational energy (power) of the output shaft 8, and the generated electric power is charged in the first battery 20 which is a secondary battery. . Further, the power generated by the alternator 19 includes power generated as brake regeneration. The electric power generated by the alternator 19 may be supplied to the second battery 14 of the battery pack 5 via the DC / DC converter 21. The first battery 20 is a secondary battery for supplying electric power to an auxiliary machine or system (auxiliary machine / system 22: first load shown in FIG. 2) mounted on the vehicle, such as a lead battery. . However, the first battery 20 is not limited to a lead battery. The DC / DC converter 21 converts the voltage output from the first battery 20 into a voltage that can be charged in the second battery 14 of the battery pack 5, and charges the second battery 14 from the first battery 20. Let In this example, the DC / DC converter 21 has been described. However, any power converter that can charge the first battery 20 to the second battery 14 may be used.
 制御部7は、例えば、CPU、マルチコアCPU、プログラマブルなデバイス(FPGAやPLDなど)を用いた回路で、制御部7の有する記憶部に記憶されている各部を制御するプログラムを読み出して実行する。なお、本例においては制御部7を用いて説明をするが、制御部7が実行する制御を車両に搭載されている複数のElectronic Control Unit(ECU)に行わせてもよい。記憶部はROM、RAMなどのメモリで、パラメータ値、変数値などのデータを記憶してもよいし、実行時のワークエリアとして用いてもよい。なお、記憶部は制御部7と別に設けてもよい。 The control unit 7 is a circuit using, for example, a CPU, a multi-core CPU, and a programmable device (FPGA, PLD, etc.), and reads and executes a program for controlling each unit stored in the storage unit of the control unit 7. In addition, in this example, although demonstrated using the control part 7, you may make the some electronic control (s) Unit (ECU) mounted in the vehicle perform the control which the control part 7 performs. The storage unit is a memory such as a ROM or a RAM, and may store data such as parameter values and variable values, or may be used as a work area during execution. Note that the storage unit may be provided separately from the control unit 7.
 制御部7は、第1の電池20の電圧、充電状態算出部17で求めた第2の電池14の充電率などに基づいてDC/DCコンバータ21を制御し、第1の電池20から電池パック5に電力を供給させる。また、外部から電動過給機4を駆動させるための指示を受信すると、充電状態算出部17から取得した第2の電池14の充電率や記憶部18に記憶されている情報などに基づいて、インバータ13の出力制御をする。 The control unit 7 controls the DC / DC converter 21 based on the voltage of the first battery 20, the charging rate of the second battery 14 obtained by the charge state calculation unit 17, and the battery pack from the first battery 20. 5 is supplied with electric power. Further, when receiving an instruction for driving the electric supercharger 4 from the outside, based on the charging rate of the second battery 14 acquired from the charging state calculation unit 17, information stored in the storage unit 18, and the like, The output of the inverter 13 is controlled.
 制御部7のDC/DCコンバータの起動判定制御について説明する。 The start determination control of the DC / DC converter of the control unit 7 will be described.
 図2は、起動判定制御について説明するための図である。第1の電池20から車両に搭載されている補機やシステム(補機・システム22)へ電力供給を開始する際、例えば、システム起動時(イグニッションスイッチのオン時)などに、第1の電池20と第2の電池14が十分に充電されている場合には、制御部7がDC/DCコンバータ21を起動または起動可能にさせても、第1の電池20の電圧が過放電電圧を下回ることによる第1の電池20の劣化や、第1の電池20の電圧低下による補機やシステムの制御ができなくなる(システムダウン)といった問題は発生しない。従って、DC/DCコンバータ21を起動して、第1の電池20からDC/DCコンバータ21を介して出力された電力と、第2の電池14から出力された電力と、を用いて、インバータ13を介して電動機12を駆動することができる。 FIG. 2 is a diagram for explaining the activation determination control. When power supply is started from the first battery 20 to an auxiliary machine or system (auxiliary machine / system 22) mounted on the vehicle, for example, at the time of starting the system (when the ignition switch is turned on), the first battery 20 and the second battery 14 are sufficiently charged, the voltage of the first battery 20 is lower than the overdischarge voltage even if the control unit 7 activates or enables the DC / DC converter 21. Therefore, there is no problem that the first battery 20 is deteriorated or the auxiliary machine or the system cannot be controlled due to the voltage drop of the first battery 20 (system down). Therefore, the DC / DC converter 21 is activated, and the inverter 13 using the power output from the first battery 20 via the DC / DC converter 21 and the power output from the second battery 14. The electric motor 12 can be driven via
 なお、第1の電池20が十分に充電されている場合とは、例えば、第1の電池20の電圧が、DC/DCコンバータ21起動時と同タイミングで補機やシステムへ電力供給をしてもシステムダウンしない電圧(電圧閾値)以上の場合である。第2の電池14が十分に充電されている場合とは、例えば、第2の電池14の充電率がインバータ13を介して電動機12を駆動するのに必要な電力に対応する充電率(充電率閾値)より大きい場合である。充電率閾値と電圧閾値は、例えば、記憶部に記憶されている。 The first battery 20 is sufficiently charged when, for example, the voltage of the first battery 20 supplies power to the auxiliary machine or system at the same timing as when the DC / DC converter 21 is activated. This is also the case where the voltage does not go down (voltage threshold) or higher. When the second battery 14 is sufficiently charged, for example, the charge rate of the second battery 14 corresponds to the power required to drive the motor 12 via the inverter 13 (charge rate). This is the case where the threshold value is larger. The charging rate threshold value and the voltage threshold value are stored in the storage unit, for example.
 また、起動可能とは、制御部7から出力された起動可能信号を受信したDC/DCコンバータ21がレディー状態になったことを示している。例えば、DC/DCコンバータ21の入力側に突入電流防止用の平滑コンデンサなどがある場合に起動可能信号を受信するとこのコンデンサにプリチャージがされ、起動信号を受信すればいつでもDC/DCコンバータ21が駆動できる状態である。起動とは、制御部7から出力された起動信号を受信したDC/DCコンバータ21を駆動させることで、例えば、DC/DCコンバータ21にスイッチング動作などを開始させることである。 Further, “startable” indicates that the DC / DC converter 21 that has received the startable signal output from the control unit 7 is in a ready state. For example, when a startable signal is received when there is a smoothing capacitor for preventing an inrush current on the input side of the DC / DC converter 21, the capacitor is precharged. When the start signal is received, the DC / DC converter 21 is always turned on. It can be driven. The activation is, for example, causing the DC / DC converter 21 to start a switching operation or the like by driving the DC / DC converter 21 that has received the activation signal output from the control unit 7.
 続いて、第2の電池14の充電の不足により第2の電池14が電動機12およびインバータ13を駆動できなくなることは回避しなければならない。そのため、第2の電池14の充電が不足している場合(第2の電池14の充電率が充電率閾値以下の場合)には、制御部7がDC/DCコンバータ21を起動させ、第1の電池20からDC/DCコンバータ21を介して第2の電池14に充電ができるようにさせる。 Subsequently, it must be avoided that the second battery 14 cannot drive the motor 12 and the inverter 13 due to insufficient charging of the second battery 14. Therefore, when the charging of the second battery 14 is insufficient (when the charging rate of the second battery 14 is equal to or lower than the charging rate threshold), the control unit 7 activates the DC / DC converter 21 to The second battery 14 can be charged from the battery 20 via the DC / DC converter 21.
 また、第2の電池14の充電が、インバータ13を介して電動機12を駆動可能にされている場合には、補機やシステムへ電力供給を開始する際に、第2の電池14への充電をしなくてもよいので、DC/DCコンバータ21を起動可能にさせるタイミングをずらすことができる。すなわち、第1の電池20からDC/DCコンバータ21へ電力を供給する(または電流23が流れる)タイミングと補機やシステムへ電力を供給する(または電流24が流れる)タイミングとをずらすことにより、第1の電池20への負荷を分散することができる。 Further, when charging of the second battery 14 is enabled to drive the electric motor 12 via the inverter 13, the charging of the second battery 14 is started when power supply to the auxiliary machine or system is started. Therefore, the timing at which the DC / DC converter 21 can be activated can be shifted. That is, by shifting the timing at which power is supplied from the first battery 20 to the DC / DC converter 21 (or the current 23 flows) and the timing at which power is supplied to the auxiliary machine or system (or the current 24 flows), The load on the first battery 20 can be distributed.
 さらに、第2の電池14の充電が、インバータ13を介して電動機12を駆動可能にされている場合に、補機やシステムへ電力供給を開始する際に、第1の電池20の電圧が、DC/DCコンバータ21起動時に、補機やシステムを駆動するのに十分な電圧に達していないときは、制御部7はDC/DCコンバータ21を起動するタイミングを、補機やシステムを駆動するのに十分な電圧に達したのちにDC/DCコンバータ21を起動させる。従って、第1の電池20の電圧が低下したとしても過放電電圧を下回ることによる劣化を抑制できるとともに、補機やシステムを駆動するのに十分な電圧に達しているのでシステムダウンを回避することができる。 Furthermore, when charging of the second battery 14 is enabled to drive the electric motor 12 via the inverter 13, the voltage of the first battery 20 is determined when starting power supply to the auxiliary machine or system. When the DC / DC converter 21 is activated, if the voltage is not sufficient to drive the auxiliary machine or system, the control unit 7 drives the auxiliary machine or system at the timing for starting the DC / DC converter 21. The DC / DC converter 21 is activated after reaching a sufficient voltage. Therefore, even if the voltage of the first battery 20 decreases, deterioration due to falling below the overdischarge voltage can be suppressed, and the voltage has reached a sufficient voltage to drive the auxiliary machine and system, so that system down is avoided. Can do.
 なお、第1の電池20の電圧が電圧閾値以上で且つ第2の電池14の充電率が充電率閾値より大きい場合に、DC/DCコンバータ21を起動した場合は、第1の電池20から第2の電池14への充電を徐々に行うように、制御部7が電力供給部6の各部を制御してもよい。例えば、第1の電池20の電圧と第2の電池14の充電率とに基づいて、なるべく第1の電池20の電圧が電圧閾値以上で且つ第2の電池14の充電率が充電率閾値より大きくなるように、充電電流と充電時間を決めて充電をしてもよい。なお、充電電流は定電流でもよい。 When the DC / DC converter 21 is activated when the voltage of the first battery 20 is equal to or higher than the voltage threshold value and the charging rate of the second battery 14 is higher than the charging rate threshold value, the first battery 20 changes to the first battery 20. The control unit 7 may control each unit of the power supply unit 6 so as to gradually charge the second battery 14. For example, based on the voltage of the first battery 20 and the charging rate of the second battery 14, the voltage of the first battery 20 is preferably equal to or higher than the voltage threshold and the charging rate of the second battery 14 is more than the charging rate threshold. Charging may be performed by determining a charging current and a charging time so as to increase. The charging current may be a constant current.
 制御部の起動判定制御について説明する。 The start determination control of the control unit will be described.
 図3は、制御部の動作の一実施例を示すフロー図である。ステップS1では、第1の電池20から補機・システム22などの負荷へ電力供給を開始する際に、制御部7が第2の電池14の充電率が決められた充電率閾値以下であるか否を判定し、充電率が充電率閾値以下と判定された場合(Yes)にはステップS3に移行する。すなわち、第2の電池14の充電不足により第2の電池14が電動機12およびインバータ13を駆動できなくなることは回避しなければならないため、第2の電池14の充電が不足している場合には、制御部7がDC/DCコンバータ21を起動可能にさせるためにステップS3に移行する。また、ステップS1で充電率が充電率閾値より大きいと判定された場合(No)にはステップS2に移行する。 FIG. 3 is a flowchart showing an embodiment of the operation of the control unit. In step S1, when the power supply from the first battery 20 to the load such as the auxiliary machine / system 22 is started, the control unit 7 determines that the charging rate of the second battery 14 is equal to or less than a predetermined charging rate threshold value. If NO is determined and it is determined that the charging rate is equal to or lower than the charging rate threshold (Yes), the process proceeds to step S3. That is, since it is necessary to avoid that the second battery 14 cannot drive the electric motor 12 and the inverter 13 due to insufficient charging of the second battery 14, when the charging of the second battery 14 is insufficient Then, the control unit 7 proceeds to step S3 so that the DC / DC converter 21 can be activated. Moreover, when it determines with a charging rate being larger than a charging rate threshold value in step S1, it transfers to step S2.
 ステップS1において、第2の電池14の充電が、インバータ13を介して電動機12を駆動可能にされている場合であれば、補機やシステムへ電力供給を開始する際に、第2の電池14への充電をしなくてもよいので、DC/DCコンバータ21を起動可能にさせるタイミングをずらすことができる。すなわち、第1の電池20からDC/DCコンバータ21へ電力を供給する(または電流23が流れる)タイミングと補機やシステムへ電力を供給する(または電流24が流れる)タイミングとをずらすことにより、第1の電池20への負荷を分散することができる。 If charging of the second battery 14 is enabled to drive the electric motor 12 via the inverter 13 in step S1, the second battery 14 is started when power supply to the auxiliary machine or system is started. Since it is not necessary to charge the battery, the timing at which the DC / DC converter 21 can be activated can be shifted. That is, by shifting the timing at which power is supplied from the first battery 20 to the DC / DC converter 21 (or the current 23 flows) and the timing at which power is supplied to the auxiliary machine or system (or the current 24 flows), The load on the first battery 20 can be distributed.
 ステップS2では、制御部7が第1の電池20の電圧が予め決められた電圧閾値以上であるか否かを判定し、第1の電池20の電圧が電圧閾値以上と判定された場合(Yes)にはステップS3に移行し、第1の電池20の電圧が電圧閾値より低いと判定された場合(No)にはステップS1に移行する。第2の電池14の充電がインバータ13を介して電動機12を駆動可能な場合に、補機やシステムへ電力供給を開始する際に、第1の電池20の電圧が、DC/DCコンバータ21起動時に、補機やシステムを駆動するのに十分な電圧に達していないと判定したときは、制御部7はDC/DCコンバータ21を起動するタイミングを、DC/DCコンバータ21起動時に、補機やシステムを駆動するのに十分な電圧と判定したのちにDC/DCコンバータ21を起動させる。従って、第1の電池20の電圧が低下したとしても過放電電圧を下回ることによる劣化を抑制できるとともに、補機やシステムを駆動するのに十分な電圧に達しているのでシステムダウンを回避することができる。 In step S2, the control unit 7 determines whether or not the voltage of the first battery 20 is equal to or higher than a predetermined voltage threshold value. If the voltage of the first battery 20 is determined to be equal to or higher than the voltage threshold value (Yes) ), The process proceeds to step S3. If it is determined that the voltage of the first battery 20 is lower than the voltage threshold (No), the process proceeds to step S1. When charging of the second battery 14 can drive the electric motor 12 via the inverter 13, the voltage of the first battery 20 is activated by the DC / DC converter 21 when power supply to the auxiliary machine or system is started. When it is determined that the voltage sufficient to drive the auxiliary machine or system is not reached, the control unit 7 determines the timing for starting the DC / DC converter 21 at the time of starting the DC / DC converter 21. After determining that the voltage is sufficient to drive the system, the DC / DC converter 21 is activated. Therefore, even if the voltage of the first battery 20 decreases, deterioration due to falling below the overdischarge voltage can be suppressed, and the voltage has reached a sufficient voltage to drive the auxiliary machine and system, so that system down is avoided. Can do.
 ステップS3では、制御部7がDC/DCコンバータ21を起動可能な状態にする。 In step S3, the control unit 7 makes the DC / DC converter 21 startable.
 なお、ステップS2において、第1の電池20の電圧が電圧閾値以上で且つ第2の電池14の充電率が充電率閾値より大きい場合に、DC/DCコンバータ21を起動した場合は、第1の電池20から第2の電池14への充電を徐々に行うように、制御部7が電力供給部6の各部を制御してもよい。例えば、第1の電池20の電圧と第2の電池14の充電率とに基づいて、なるべく第1の電池20の電圧が電圧閾値以上で且つ第2の電池14の充電率が充電率閾値より大きくなるように、充電電流と充電時間を決めて充電をしてもよい。なお、充電電流は定電流でもよい。 In step S2, when the DC / DC converter 21 is activated when the voltage of the first battery 20 is equal to or higher than the voltage threshold and the charging rate of the second battery 14 is larger than the charging rate threshold, the first The control unit 7 may control each unit of the power supply unit 6 so as to gradually charge the second battery 14 from the battery 20. For example, based on the voltage of the first battery 20 and the charging rate of the second battery 14, the voltage of the first battery 20 is preferably equal to or higher than the voltage threshold and the charging rate of the second battery 14 is more than the charging rate threshold. Charging may be performed by determining a charging current and a charging time so as to increase. The charging current may be a constant current.
 本実施の形態によれば、DC/DCコンバータ21などの第1の電力変換器を起動可能にするタイミングを変えることにより、補機系負荷に電力を供給する電池への負荷を分散して、該電池の劣化を抑制するとともにシステムダウンを回避することができる。 According to the present embodiment, by changing the timing at which the first power converter such as the DC / DC converter 21 can be activated, the load on the battery that supplies power to the auxiliary load is distributed, Deterioration of the battery can be suppressed and system down can be avoided.
 また、本発明は、上記実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 Further, the present invention is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the gist of the present invention.
 1 装置
 2 内燃機関
 3 過給機
 4 電動過給機
 5 電池パック
 6 電力供給部
 7 制御部
 8 出力軸
 9 駆動輪
 10 配管
 11 圧縮機
 12 電動機
 13 インバータ
 14 第2の電池
 15 温度検出部
 16 電流検出部
 17 充電状態算出部
 18 記憶部
 19 オルタネータ
 20 第1の電池
 21 DC/DCコンバータ
 22 補機・システム
 
DESCRIPTION OF SYMBOLS 1 Apparatus 2 Internal combustion engine 3 Supercharger 4 Electric supercharger 5 Battery pack 6 Electric power supply part 7 Control part 8 Output shaft 9 Drive wheel 10 Piping 11 Compressor 12 Electric motor 13 Inverter 14 Second battery 15 Temperature detection part 16 Current Detection unit 17 Charging state calculation unit 18 Storage unit 19 Alternator 20 First battery 21 DC / DC converter 22 Auxiliary machine / system

Claims (4)

  1.  補機系の第1の負荷に電力を供給する第1の電池と、
     第2の負荷に電力を供給する第2の電池と、
     前記第1の電池から前記第2の電池への充電をする際に用いる第1の電力変換器と、
     前記第2の負荷に電力を供給する際に用いる第2の電力変換器と、
     前記第2の電池の充電率が予め決められた充電率閾値より大きいと判定された場合に前記第1の電力変換器を起動させず、前記充電率が前記充電率閾値以下と判定された場合に前記第1の電力変換器を起動可能な状態にさせる、起動判定制御をする制御部と、
     を備えることを特徴とする充電制御装置。
    A first battery for supplying power to a first load of the auxiliary system;
    A second battery for supplying power to a second load;
    A first power converter for use in charging from the first battery to the second battery;
    A second power converter for use in supplying power to the second load;
    When it is determined that the charging rate of the second battery is greater than a predetermined charging rate threshold value, the first power converter is not activated, and the charging rate is determined to be equal to or lower than the charging rate threshold value. A control unit for starting determination control, which makes the first power converter startable.
    A charge control device comprising:
  2.  請求項1に記載の充電制御装置であって、
     前記制御部は、前記第1の電池から前記第1の負荷へ電力供給を開始する際に、前記起動判定制御を行う、ことを特徴とする充電制御装置。
    The charge control device according to claim 1,
    The said control part performs the said start determination control, when starting electric power supply from the said 1st battery to the said 1st load, The charge control apparatus characterized by the above-mentioned.
  3.  請求項1に記載の充電制御装置であって、
     前記制御部は、前記第1の電池から前記第1の負荷へ電力供給を開始する際に、前記充電率が前記充電率閾値より大きいと判定された場合で、前記第1の電池の電圧が予め決められた電圧閾値以上である場合に、前記第1の電力変換器を起動可能にさせる、ことを特徴とする充電制御装置。
    The charge control device according to claim 1,
    When the control unit determines that the charging rate is greater than the charging rate threshold when starting to supply power from the first battery to the first load, the voltage of the first battery is The charge control device, wherein the first power converter is enabled to start when the voltage threshold is equal to or higher than a predetermined voltage threshold.
  4.  補機系の第1の負荷に電力を供給する第1の電池と、第2の負荷に電力を供給する第2の電池と、前記第1の電池から前記第2の電池への充電をする際に用いる第1の電力変換器と、前記第2の負荷に電力を供給する際に用いる第2の電力変換器と、前記第1の電力変換器の起動判定制御を行う制御部と、を備える充電制御装置の充電制御方法であって、
     前記制御部が、前記第2の電池の充電率が予め決められた充電率閾値より大きいと判定された場合に前記第1の電力変換器を起動させず、前記充電率が前記充電率閾値以下と判定された場合に前記第1の電力変換器を起動可能な状態にさせる、処理を実行することを特徴とする充電制御方法。
     
    A first battery for supplying power to the first load of the auxiliary system, a second battery for supplying power to the second load, and charging from the first battery to the second battery A first power converter to be used at the time, a second power converter to be used when power is supplied to the second load, and a control unit that performs start-up determination control of the first power converter, A charge control method for a charge control device comprising:
    When the control unit determines that the charging rate of the second battery is greater than a predetermined charging rate threshold, the first power converter is not activated, and the charging rate is equal to or lower than the charging rate threshold. When it is determined that the first power converter is in a startable state, a process is executed.
PCT/JP2014/078075 2013-12-25 2014-10-22 Charge control device and charge control method WO2015098259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-266281 2013-12-25
JP2013266281A JP2015120463A (en) 2013-12-25 2013-12-25 Charge control device and charge control method

Publications (1)

Publication Number Publication Date
WO2015098259A1 true WO2015098259A1 (en) 2015-07-02

Family

ID=53478137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078075 WO2015098259A1 (en) 2013-12-25 2014-10-22 Charge control device and charge control method

Country Status (2)

Country Link
JP (1) JP2015120463A (en)
WO (1) WO2015098259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115774A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Power supply system for engine with electrically-driven type supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189760A (en) * 2006-01-11 2007-07-26 Fujitsu Ten Ltd Power controller for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189760A (en) * 2006-01-11 2007-07-26 Fujitsu Ten Ltd Power controller for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115774A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Power supply system for engine with electrically-driven type supercharger

Also Published As

Publication number Publication date
JP2015120463A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP4327143B2 (en) Secondary battery control device, secondary battery output control method, and secondary battery output control execution program
JP6465907B2 (en) Vehicle power supply system
JP7294493B2 (en) Storage device monitoring device, storage device, and storage device monitoring method
US20140176085A1 (en) Battery controller of vehicle
JP2006304393A (en) Power supply, its control method and vehicle
US20160193940A1 (en) Vehicle and control method for vehicle
WO2016021136A1 (en) In-vehicle electricity storage system
JP2002325373A (en) Control device for battery capacity
JP2019205316A (en) Battery discharge control arrangement
US10498154B2 (en) Electric power system
JP6186248B2 (en) Inverter abnormality determination device
JP2004166350A (en) Battery controller
JP6638650B2 (en) Lead storage battery deterioration determination apparatus and lead storage battery deterioration determination method
JP7373113B2 (en) Vehicle power control device
WO2015098259A1 (en) Charge control device and charge control method
JP2017192272A (en) Power supply controller
JP2014011826A (en) Battery state of charge controller for vehicle
JP2006158161A (en) Charge/discharge control device for motor battery
JP2000217206A (en) Charging controller of electric vehicle
JP2020089031A (en) Power supply control device of vehicle
JP2006180665A (en) Charger for hybrid vehicle
JP7114026B2 (en) vehicle power supply controller
CN108988715B (en) Power generation control device
JP2015156337A (en) Charge control device and charge control method
JP5954188B2 (en) Secondary battery management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875572

Country of ref document: EP

Kind code of ref document: A1