WO2015098219A1 - Exhaust valve drive device and internal combustion engine equipped with same - Google Patents

Exhaust valve drive device and internal combustion engine equipped with same Download PDF

Info

Publication number
WO2015098219A1
WO2015098219A1 PCT/JP2014/075754 JP2014075754W WO2015098219A1 WO 2015098219 A1 WO2015098219 A1 WO 2015098219A1 JP 2014075754 W JP2014075754 W JP 2014075754W WO 2015098219 A1 WO2015098219 A1 WO 2015098219A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
piston
cylinder
hydraulic pressure
internal combustion
Prior art date
Application number
PCT/JP2014/075754
Other languages
French (fr)
Japanese (ja)
Inventor
石田 裕幸
村田 聡
直樹 奥村
晃洋 三柳
順之 溝口
潤 柳
浩二 江戸
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167035103A priority Critical patent/KR20160147070A/en
Priority to KR1020167011745A priority patent/KR101727872B1/en
Priority to CN201480062833.9A priority patent/CN105814290B/en
Publication of WO2015098219A1 publication Critical patent/WO2015098219A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically

Definitions

  • the present invention is a hydraulically operated exhaust valve drive apparatus in which a piston provided at a shaft end of an exhaust valve is pressed by a hydraulic pressure of hydraulic fluid discharged from a plunger driven by a cam to open the exhaust valve. And an internal combustion engine provided with the same.
  • This type of exhaust valve drive device can be controlled by operating the hydraulic pressure so that the open / close timing of the exhaust valve becomes optimal in accordance with the operation load of the internal combustion engine. For example, in a large marine low-speed two-stroke cycle diesel engine, by delaying the timing at which the exhaust valve closes during high load operation, the internal cylinder pressure can be prevented from becoming too high for compression of the internal combustion engine. It can be enhanced. In addition, it is possible to reduce the speed at which the exhaust valve closes and prevent the exhaust valve from being hit against the valve seat, thereby suppressing damage, wear and the like of the exhaust valve and the valve seat.
  • Patent Document 1 discloses a hydraulically operated exhaust valve drive device in which the timing at which the exhaust valve closes is delayed as described above.
  • the piston 10 provided at the axial end of the exhaust valve 5 and pressing the exhaust valve 5 in the valve opening direction is a two-stage piston provided with a large diameter portion and a small diameter portion.
  • the cylinder 4 with which it slides is also a two-stage cylindrical shape provided with a large diameter bore and a small diameter bore.
  • the hydraulic oil pumped from the hydraulic pump driven by the cam is supplied to the small diameter bore of the cylinder 4 through the oil passage 11, and the hydraulic pressure depresses the piston 10 to open the exhaust valve 5.
  • the exhaust valve 5 is closed, the exhaust valve 5 is closed at a high speed until the small diameter portion of the piston 10 enters the small diameter bore of the cylinder 4, and the small diameter portion of the piston 10 enters the small diameter bore of the cylinder 4
  • the hydraulic oil sealed between the small diameter portion of the piston 10 and the large diameter portion of the cylinder 4 flows into the small diameter portion of the cylinder 4 through the gap between the cylinder 4 and the piston 10
  • the flow resistance at this time acts as a buffer on the movement of the piston 10, and the closing speed of the exhaust valve 5 decreases. For this reason, the exhaust valve 5 seats at a relatively slow speed and is protected from the impact due to the collision with the valve seat.
  • the present invention has been made in view of such circumstances, and it is possible to change the timing at which the exhaust valve closes with a simple configuration suitable for a marine internal combustion engine, and to adapt the characteristics of the internal combustion engine to the operating situation.
  • an exhaust valve drive device and an internal combustion engine provided with the same.
  • an exhaust valve drive of the present invention and an internal combustion engine provided with the same adopt the following means.
  • a hydraulic pressure is intermittently supplied to the cylinder at a predetermined valve opening timing by being driven by a piston provided in an exhaust valve of an internal combustion engine, a cylinder in which the piston is accommodated, and a cam.
  • the recess of the cylinder can be varied in depth by the actuator and the control means.
  • the depth of the recess is small, the amount of hydraulic oil sealed between the protrusion and the cylinder decreases, so the shock absorbing action of the piston decreases and the exhaust valve is closed at the valve closing timing determined by the cam profile. Close, close at a relatively fast timing.
  • the exhaust valve closes at a timing later than the valve closing timing determined by the cam profile.
  • the timing at which the exhaust valve closes can be made earlier or later by changing the depth of the recess provided on the cylinder side, so that the characteristics of the internal combustion engine can be adapted to the operating situation.
  • control means controls the actuator such that the depth of the recess increases as the load on the internal combustion engine increases.
  • the timing at which the exhaust valve closes is delayed.
  • the durability of the internal combustion engine can be enhanced by preventing the compression pressure of the in-cylinder gas from becoming too high during high load operation.
  • a hydraulic pressure is intermittently supplied to the cylinder at a predetermined valve opening timing by being driven by a piston provided in an exhaust valve of an internal combustion engine, a cylinder in which the piston is accommodated, and a cam.
  • Hydraulic pressure supply means for pressing the piston to open the exhaust valve, a valve closing biasing means for biasing the exhaust valve in the valve closing direction, and a leak for releasing the hydraulic pressure generated by the hydraulic pressure supply means
  • the hydraulic pressure supply means when the hydraulic pressure supply means is driven by the cam, the hydraulic pressure is supplied to the cylinder at a predetermined valve opening timing, whereby the piston inside the cylinder is pressed and the exhaust valve Is opened. Further, when the hydraulic pressure supply to the cylinder is interrupted, the exhaust valve is closed by the biasing force of the valve closing and biasing means.
  • the flow rate adjustment means By controlling the flow rate adjustment means, it is possible to adjust the amount of leakage of the hydraulic oil supplied from the hydraulic pressure supply means to the outside. When the leak amount is reduced, the closing speed of the exhaust valve is decreased, and when the leak amount is increased, the closing speed of the exhaust valve is increased.
  • the timing at which the exhaust valve closes can be made earlier or later. It can be adapted.
  • control means controls the flow rate adjusting means such that the passage area of the leak passage decreases as the load on the internal combustion engine increases. According to this configuration, the timing at which the exhaust valve closes is delayed as the load on the internal combustion engine increases, and the compression pressure of the in-cylinder gas is prevented from becoming too high during high load operation to improve the durability of the internal combustion engine. it can.
  • a third aspect of the present invention is an internal combustion engine provided with the exhaust valve drive device described in any of the above.
  • the timing at which the exhaust valve closes can be changed by a simple configuration suitable as a marine internal combustion engine.
  • the characteristics of the internal combustion engine can be adapted to the operating conditions, and the reliability and durability of the internal combustion engine can be enhanced, and also contributing to fuel saving and the like.
  • FIG. 2 is an enlarged view of a portion II of FIG. 1, in which (a) shows a state before the projection of the piston is inserted into the recess of the cylinder, and (b) shows a state where the projection of the piston starts to be inserted into the recess of the cylinder It is a longitudinal cross-sectional view which shows.
  • FIG. 1 It is a figure which shows the other shape example of the convex part of a piston, and the recessed part of a cylinder, (a) shows the state before the convex part of a piston is inserted in the recessed part of a cylinder, (b) shows the convex part of a piston It is a longitudinal cross-sectional view which shows the state which began to be inserted in the recessed part of a cylinder.
  • (A) is a graph showing a cam lift amount in the first embodiment, (b) a working hydraulic pressure, and (c) a exhaust valve lift amount.
  • (A) is a graph showing a cam lift amount in the second embodiment, (b) a working hydraulic pressure, and (c) a exhaust valve lift amount.
  • FIG. 1 is a schematic configuration view showing an exhaust valve drive device according to a first embodiment of the present invention.
  • the exhaust valve drive device 1 is provided in a diesel engine (internal combustion engine) for a ship main engine.
  • a diesel engine for ship's main engine (hereinafter referred to as “diesel engine”) is, for example, a low-speed two-stroke cycle engine, and employs a uniflow type which scavenges unidirectionally so as to supply air from below and exhaust upward. ing.
  • the output from the diesel engine is directly or indirectly connected to the screw propeller via a propeller shaft (not shown).
  • the exhaust valve drive device 1 includes an exhaust valve 5 for opening and closing an exhaust flow path formed in a cylinder head 3 of a diesel engine, a piston 7 provided for the exhaust valve 5, and a piston
  • the apparatus (valve closing biasing means) 15, the actuator 17 and the control device (control means) 19 are provided.
  • the piston 7 is connected to the upper end of the shaft portion 5 a of the exhaust valve 5 extending in the vertical direction, and reciprocates in the cylinder 9 in the vertical direction as the exhaust valve 5 is opened and closed.
  • One end 11 a of the hydraulic path 11 is connected to the hydraulic chamber 21 formed by the piston 7 and the cylinder 9.
  • an orifice path 25 extends from the hydraulic chamber 21.
  • the orifice path 25 is provided with an orifice 27 which is a fixed throttle.
  • the exhaust valve 5 is always urged in the valve closing direction (upward) by the air spring device 15.
  • the hydraulic pressure supply device 13 includes a plunger 31, a cylinder 33, and a cam 35.
  • the plunger 31 is slidably inserted into the cylinder 33, and is in a pressure chamber 37 formed by the plunger 31 and the cylinder 33, which is always urged in the direction (downward) from the cylinder 33 by urging means not shown. Is connected to the other end 11 b of the hydraulic pressure passage 11.
  • a cam roller 41 is supported by a lower portion of the plunger 31 via a connecting shaft 39.
  • the cam roller 41 rolls on the outer peripheral surface of the cam 35 disposed below, that is, the cam profile.
  • the cam 35 is integrally provided on a cam shaft 43 that rotates in synchronization with the crankshaft of the diesel engine.
  • a low pressure hydraulic oil supply path 45 is branched from a branch point 11c.
  • a low pressure hydraulic oil source (not shown) is connected to the low pressure hydraulic oil supply path 45 via a check valve 47, and an oil pressure serving as a base used when opening and closing the exhaust valve 5 is supplied.
  • the check valve 47 is opened and the hydraulic oil (hydraulic pressure) is replenished from the low pressure hydraulic oil supply path 45. Further, the check valve 47 is closed when the pressure in the hydraulic path 11 is equal to or higher than a predetermined value, that is, at the time of the pressure stroke by the plunger 31.
  • a cylindrical convex 7a is formed at the center of the top of the piston 7.
  • the top area of the convex portion 7 a is smaller than the cross sectional area of the piston 7.
  • the diameter of the piston 7 is 80 mm
  • the diameter of the convex portion 7a may be about 50 mm
  • the height from the top surface of the convex portion 7 a may be about 60 mm. Or it is not limited to the ratio of this diameter.
  • a recess 9a in the form of a cylindrical hole is formed at the center.
  • the inner diameter of the recess 9a is set so that the protrusion 7a of the piston 7 is inserted through a gap of several millimeters when the piston 7 is lifted.
  • the depth h of the recess 9a can be changed in the range from zero to the same height as the height of the protrusion 7a.
  • the structure of the top portion of the cylinder 9 has a structure in which a cylindrical movable member 9c is densely provided around the cylindrical fixed member 9b located at the center and can be relatively moved up and down.
  • a space below the fixed member 9b and on the inner peripheral side of the movable member 9c is a recess 9a.
  • the hydraulic path 11 is open at the lower surface of the fixing member 9b.
  • the depth h of the recess 9a can be changed.
  • the movable member 9c is moved up and down by rotating the movable member 9c relative to the fixed member 9b with the power of the actuator 17 with a screw pair between the outer peripheral surface of the fixed member 9b and the inner peripheral surface of the movable member 9c. It is conceivable to change the depth of the recess 9a by moving it to. Note that a screw pair may be provided between the inner peripheral surface of the cylinder 9 and the outer peripheral surface of the movable member 9c.
  • control device 19 shown in FIG. 1 controls the actuator 17 to set the vertical position of the movable member 9c.
  • the controller 19 controls the actuator 17 so that the depth of the recess 9a increases as the load on the diesel engine increases.
  • the hydraulic pressure supply device 13 is driven by the cam 35 to intermittently supply the hydraulic pressure to the cylinder 9 at a predetermined valve opening timing, and presses the piston 7 to open the exhaust valve 5.
  • FIG. 4 is a graph showing the relationship between the lift amount (a) of the cam 35, the hydraulic pressure (b) in the hydraulic pressure chamber 21, and the lift amount (c) of the exhaust valve 5.
  • the solid line indicates the hydraulic pressure and the exhaust valve lift when the depth h of the recess 9a shown in FIG. 2A is zero.
  • the lift amount of the exhaust valve 5 increases, and the exhaust valve 5 is fully opened at time t3.
  • the piston 7 is pushed down, the volume of the hydraulic chamber 21 expands, so the hydraulic pressure in the hydraulic chamber 21 sharply decreases, but the hydraulic pressure necessary to keep the exhaust valve 5 open is maintained. Be done. Therefore, while the plunger 31 is maintained at the top dead center according to the profile of the cam 35, the lift amount of the exhaust valve 5 is also maintained at the maximum, and the exhaust valve 5 is maintained in the open state.
  • the hydraulic oil in the hydraulic chamber 21 smoothly flows into the hydraulic path 11 until the convex portion 7 a of the piston 7 is inserted into the concave portion 9 a of the cylinder 9.
  • the exhaust valve 5 is closed at a high speed.
  • the hydraulic pressure chamber 21 is formed in the room 21a formed around the convex portion 7a and inside the concave portion 9a. It is divided into rooms 21b.
  • the hydraulic oil in the room 21b is smoothly discharged from the hydraulic path 11 as it is, but the hydraulic oil sealed in the room 21a flows into the room 21b through the narrow gap between the room 21a and the room 21b. Are discharged from the hydraulic pressure path 11. For this reason, a large flow resistance accompanied by the hydraulic oil passing through the gap acts as a buffer action (cushion action) on the movement of the piston 7, the valve closing speed of the exhaust valve 5 decreases, and the exhaust valve 5 completely closes. Timing is delayed.
  • the exhaust valve 5 closes at a relatively early timing close to the valve closing timing determined by the profile of the cam 35.
  • the exhaust valve 5 is closed at a timing largely delayed from the valve closing timing determined by the profile of the cam 35.
  • the decreasing rate of the lift amount of the exhaust valve 5 is indicated by a broken line L1 when the pressure in the hydraulic chamber 21 is P1, and is indicated by a broken line L2 when the pressure in the hydraulic chamber 21 is P2. That is, as the depth h of the recess 9a becomes larger, the time until the exhaust valve 5 completely closes becomes longer (the valve closing timing becomes later). For this reason, the exhaust valve 5 is seated on the valve seat at a relatively slow speed, and is protected from an impact due to a collision with the valve seat.
  • the timing at which the exhaust valve 5 closes is made closer to the valve closing timing defined by the cam profile of the cam 35 or the valve closing specified.
  • the characteristics of the diesel engine can be adapted to the operating situation, as it can be later than the timing.
  • the controller 19 controls the actuator 17 such that the depth h of the recess 9a increases as the load on the diesel engine increases. Therefore, as the load on the diesel engine increases, the timing at which the exhaust valve 5 closes is delayed. As a result, it is possible to prevent the compression pressure of the in-cylinder gas from becoming too high during high load operation, and to improve the durability of the diesel engine.
  • FIGS. 3A and 3B are longitudinal sectional views showing another example of the shape of the convex portion 7 a of the piston 7 and the concave portion 9 a of the cylinder 9.
  • a convex portion 7 a provided on the top surface of the piston 7 is formed to cylindrically protrude from the periphery of the top surface of the piston 7.
  • the recess 9a provided on the ceiling surface of the cylinder 9 is formed as a cylindrical recess around the ceiling surface. That is, the radial inside / outside positional relationship between the convex portion 7a and the concave portion 9a shown in FIGS. 2 (a) and 2 (b) is reversed.
  • the depth h of the recess 9a can be changed in the range from zero to the same height as the height of the protrusion 7a.
  • the cylindrical movable member 9d provided at the center of the top of the cylinder 9 can move up and down, and when the movable member 9d protrudes from the ceiling surface of the cylinder 9, the inner peripheral surface of the cylinder 9 A recess 9a is formed between the and the outer peripheral surface of the movable member 9d.
  • the outer diameter of the movable member 9d is set such that the convex portion 7a of the piston 7 surrounds the periphery of the movable member 9d with a gap of about several millimeters when the piston 7 ascends.
  • the movable member 9d is driven up and down by the actuator 17 shown in FIG. 1, whereby the depth h of the recess 9a is changed.
  • the hydraulic path 11 opens at the lower surface of the movable member 9d.
  • the hydraulic oil in the room 21a is smoothly discharged from the hydraulic path 11 as it is, but the hydraulic oil sealed in the room 21b flows into the room 21a through the narrow gap between the room 21b and the room 21a. Are discharged from the hydraulic pressure path 11. For this reason, a large flow resistance accompanied by the hydraulic oil passing through the gap acts as a buffer action (cushion action) on the movement of the piston 7, the valve closing speed of the exhaust valve 5 decreases, and the exhaust valve 5 completely closes. Timing is delayed. As a result, the exhaust valve 5 can be protected from impact due to collision with the valve seat, and the characteristics of the diesel engine can be adapted to the operating conditions.
  • the length of time during which the buffer action (cushion action) by the flow resistance of the hydraulic oil acts becomes longer as the depth h of the recess 9a becomes larger, as in the case of the structure of FIGS. 2 (a) and 2 (b). . That is, the valve closing timing of the exhaust valve 5 can be delayed as the depth h of the recess 9a is increased.
  • the structure for changing the height of the recess 9a can be simplified as compared with the structure shown in FIGS. 2A and 2B.
  • FIG. 5 is a schematic configuration view showing an exhaust valve drive device according to a second embodiment of the present invention.
  • the exhaust valve drive device 51 differs from the exhaust valve drive device 1 of the first embodiment in that there are no convex portion on the top surface of the piston 7 and no concave portion on the ceiling surface of the cylinder 9, and a branch point of the hydraulic path 11
  • the leak passage 53 branches from 11 d, and a variable orifice (flow rate adjusting means) 55 for changing the passage area of the leak passage 53 is connected in the middle thereof.
  • the configuration and operation of the other parts are the same as those of the exhaust valve drive device 1 of the first embodiment, and therefore the same reference numerals are given to the respective parts and the description will be omitted.
  • the throttling amount of the variable orifice 55 is controlled by a controller (control means) 57.
  • the controller 57 controls the throttling amount of the variable orifice 55 so that the passage area of the leak passage 53 decreases as the load on the diesel engine increases.
  • a flow control valve or the like may be provided instead of the variable orifice 55.
  • the exhaust valve drive device 51 As in the exhaust valve drive device 1 of the first embodiment, when the hydraulic pressure supply device 13 is driven by the cam 35, the hydraulic pressure is supplied to the cylinder 9 at a predetermined valve opening timing. As a result, the piston 7 inside the cylinder 9 is pressed and the exhaust valve 5 is opened. When the hydraulic pressure supply to the cylinder 9 is discontinued, the exhaust valve 5 is closed by the biasing force of the air spring device 15.
  • a part of the hydraulic oil (hydraulic pressure) supplied from the hydraulic pressure supply device 13 leaks to the outside of the hydraulic path 11 from the variable orifice 55 provided in the leak passage 53.
  • the amount of oil returned from the cylinder 9 to the hydraulic pressure supply device 13 when the exhaust valve 5 is closed is smaller than the amount of oil pressure-fed to the cylinder 9 when pressurized by the hydraulic pressure supply device 13. Therefore, when the exhaust valve 5 is closed, the piston 7 can be properly raised to the top in the cylinder 9 to reliably close the exhaust valve 5.
  • variable orifice 55 By controlling the variable orifice 55, it is possible to adjust the amount of leakage of the hydraulic oil supplied from the hydraulic pressure supply device 13 to the outside. When the leak amount is reduced, the closing speed of the exhaust valve 5 is decreased, and when the leak amount is increased, the closing speed of the exhaust valve 5 is increased.
  • the timing at which the exhaust valve 5 closes can be made earlier or later. Can be adapted to the driving situation.
  • the leak passage 53 may not necessarily branch from the hydraulic pressure passage 11, and may branch from the cylinder 9, for example.
  • FIG. 6 is a graph showing the relationship between the lift amount (a) of the cam 35 in the exhaust valve drive device 51, the hydraulic pressure (b) in the hydraulic chamber 21 and the lift amount (c) of the exhaust valve 5.
  • the basic operation is the same as that of the exhaust valve drive device 1 according to the first embodiment described with reference to FIG.
  • the reduction state of the hydraulic pressure in the hydraulic chamber 21 corresponds to the reduction amount of the lift amount of the cam 35, as shown by the solid line in FIG. 6 (b). Further, the reduction state of the lift amount of the exhaust valve 5 is as shown by a solid line in FIG. 6C, and the timing at which the exhaust valve 5 is closed is delayed.
  • control device 57 controls the throttling amount of the variable orifice 55 so that the passage area of the leak passage 53 decreases as the load on the diesel engine increases. Therefore, as the load on the diesel engine increases, the timing at which the exhaust valve 5 closes can be delayed, and the compression pressure of the in-cylinder gas can be prevented from becoming too high during high load operation to improve the durability of the diesel engine.
  • a leak passage 53a connecting the hydraulic chamber 21 and the hydraulic passage 11 is provided, and a variable orifice 55a is provided in the leak passage 53a. It may be possible to adjust the time for the piston 7 to rise when the valve is closed.
  • the timing at which the exhaust valve 5 is closed by the simple configuration suitable for marine diesel engines As a result, the characteristics of the diesel engine can be adapted to the operating conditions, the reliability and durability of the internal combustion engine can be enhanced, and fuel consumption can be improved.

Abstract

The objective of the present invention is to enable the timing for closing an exhaust valve to be changed by means of a simple configuration suitable for an internal combustion engine for a ship, and to adapt the characteristic of the internal combustion engine to the operating state. This exhaust valve drive device (1) is equipped with: a piston (7) provided on an exhaust valve (5) of an internal combustion engine; a cylinder (9) in which the piston (7) is housed; an oil pressure supply device (13) that is driven by a cam (35) and intermittently supplies oil pressure to the cylinder (9) with a prescribed valve-opening timing, thereby pressing the piston (7) and opening the exhaust valve (5); an air spring device (15) that biases the exhaust valve (5) in the direction of closing; a convex part (7a), which is formed on the top surface of the piston (7), and the top surface area of which is smaller than the cross-sectional surface area of the piston (7); a concave part (9a), which is formed in the ceiling surface of the cylinder (9), and into which the convex part (7a) is inserted with a gap therebetween when the piston (7) rises; an actuator (17) that changes the depth of the concave part (9a); and a control device (19) that controls the actuator (17).

Description

排気弁駆動装置およびこれを備えた内燃機関Exhaust valve drive device and internal combustion engine equipped with the same
 本発明は、カムに駆動されるプランジャから吐出された作動油の油圧により、排気弁の軸端部に設けられたピストンを押圧して排気弁を開くようにした油圧作動式の排気弁駆動装置およびこれを備えた内燃機関に関する。 The present invention is a hydraulically operated exhaust valve drive apparatus in which a piston provided at a shaft end of an exhaust valve is pressed by a hydraulic pressure of hydraulic fluid discharged from a plunger driven by a cam to open the exhaust valve. And an internal combustion engine provided with the same.
 この種の排気弁駆動装置は、油圧を操作することにより、内燃機関の運転負荷に応じて排気弁の開閉タイミングが最適になるように制御することができる。
 例えば、舶用の大型の低速2ストロークサイクルディーゼル機関においては、高負荷運転時に排気弁が閉じるタイミングを遅らせることで、筒内ガスの圧縮圧力が高くなり過ぎることを防止して内燃機関の耐久性を高めることができる。また、排気弁が閉じる速度を低下させて排気弁がバルブシートに叩き付けられないようにし、排気弁やバルブシートの損傷や摩耗等を抑制することができる。
This type of exhaust valve drive device can be controlled by operating the hydraulic pressure so that the open / close timing of the exhaust valve becomes optimal in accordance with the operation load of the internal combustion engine.
For example, in a large marine low-speed two-stroke cycle diesel engine, by delaying the timing at which the exhaust valve closes during high load operation, the internal cylinder pressure can be prevented from becoming too high for compression of the internal combustion engine. It can be enhanced. In addition, it is possible to reduce the speed at which the exhaust valve closes and prevent the exhaust valve from being hit against the valve seat, thereby suppressing damage, wear and the like of the exhaust valve and the valve seat.
 これに対し、カムで直接排気弁を駆動する一般的な機械式の排気弁駆動装置では、排気弁の動きがカムのプロファイルに依存するものとなるため、排気弁の開閉タイミングを変更するには、プロファイルの異なる複数のカムを設けたり、レバー比を変更できるロッカーアームを介在させたりする等、複雑な構成を必要とする。したがって、洋上での故障を避けたい舶用内燃機関の排気弁駆動装置としては好ましくない。 On the other hand, in a general mechanical exhaust valve drive device in which the exhaust valve is directly driven by the cam, the movement of the exhaust valve depends on the profile of the cam, so to change the opening / closing timing of the exhaust valve , And requires a complicated configuration, such as providing a plurality of cams having different profiles, or interposing a rocker arm capable of changing the lever ratio. Therefore, it is not preferable as an exhaust valve drive device for a marine internal combustion engine that wants to avoid a fault at sea.
 特許文献1には、上記のように排気弁が閉じるタイミングを遅らせるようにした油圧作動式の排気弁駆動装置が開示されている。同文献のFig.1に示されるように、排気弁5の軸端部に設けられて排気弁5を開弁方向に押圧するピストン10が大径部と小径部とを備えた二段ピストンであり、このピストン10がスライドするシリンダ4も大径ボアと小径ボアとを備えた二段筒形状である。 Patent Document 1 discloses a hydraulically operated exhaust valve drive device in which the timing at which the exhaust valve closes is delayed as described above. The same document, Fig. As shown in FIG. 1, the piston 10 provided at the axial end of the exhaust valve 5 and pressing the exhaust valve 5 in the valve opening direction is a two-stage piston provided with a large diameter portion and a small diameter portion. The cylinder 4 with which it slides is also a two-stage cylindrical shape provided with a large diameter bore and a small diameter bore.
 カムに駆動される油圧ポンプから圧送される作動油は、油路11を経てシリンダ4の小径ボアに供給され、その油圧によってピストン10が押し下げられ、排気弁5が開く。また、排気弁5が閉じる時は、ピストン10の小径部がシリンダ4の小径ボアに突入するまでは速い速度で排気弁5が閉じて行き、ピストン10の小径部がシリンダ4の小径ボア内に突入し始めると、ピストン10の小径部とシリンダ4の大径部との間に封じ込まれた作動油が、シリンダ4とピストン10との間の隙間を通ってシリンダ4の小径部に流れ込もうとし、この時の流動抵抗によってピストン10の動きに緩衝作用が働き、排気弁5の閉弁速度が低下する。このため、排気弁5は比較的ゆっくりした速度で着座し、バルブシートとの衝突による衝撃から守られる。 The hydraulic oil pumped from the hydraulic pump driven by the cam is supplied to the small diameter bore of the cylinder 4 through the oil passage 11, and the hydraulic pressure depresses the piston 10 to open the exhaust valve 5. When the exhaust valve 5 is closed, the exhaust valve 5 is closed at a high speed until the small diameter portion of the piston 10 enters the small diameter bore of the cylinder 4, and the small diameter portion of the piston 10 enters the small diameter bore of the cylinder 4 When it begins to rush, the hydraulic oil sealed between the small diameter portion of the piston 10 and the large diameter portion of the cylinder 4 flows into the small diameter portion of the cylinder 4 through the gap between the cylinder 4 and the piston 10 At this time, the flow resistance at this time acts as a buffer on the movement of the piston 10, and the closing speed of the exhaust valve 5 decreases. For this reason, the exhaust valve 5 seats at a relatively slow speed and is protected from the impact due to the collision with the valve seat.
特開平1-244111号公報Japanese Patent Application Laid-Open No. 1-244111
 しかしながら、特許文献1に記載された排気弁駆動装置では、排気弁5が閉じるタイミングが遅延する度合いが一定であり、例えば排気弁5が閉じるタイミングを遅らせないようにしたり、より遅くしたりすることができなかった。このため、内燃機関の特性を変化させて各種の運転状況に適合させ難かった。 However, in the exhaust valve drive device described in Patent Document 1, the degree to which the timing of closing the exhaust valve 5 is delayed is constant, and for example, the timing of closing the exhaust valve 5 is not delayed or delayed. I could not For this reason, it was difficult to change the characteristics of the internal combustion engine to match various operating conditions.
 本発明は、このような事情に鑑みてなされたものであって、舶用内燃機関に適した簡素な構成によって排気弁が閉じるタイミングを変更できるようにし、内燃機関の特性を運転状況に適合させ得る排気弁駆動装置およびこれを備えた内燃機関を提供する。 The present invention has been made in view of such circumstances, and it is possible to change the timing at which the exhaust valve closes with a simple configuration suitable for a marine internal combustion engine, and to adapt the characteristics of the internal combustion engine to the operating situation. Provided are an exhaust valve drive device and an internal combustion engine provided with the same.
 上記課題を解決するために、本発明の排気弁駆動装置およびこれを備えた内燃機関は以下の手段を採用する。
 本発明の第1の態様は、内燃機関の排気弁に設けられたピストンと、前記ピストンが収容されるシリンダと、カムに駆動されて前記シリンダに所定の開弁タイミングで間欠的に油圧を供給し、前記ピストンを押圧して前記排気弁を開弁させる油圧供給手段と、前記排気弁を閉弁方向に付勢する閉弁付勢手段と、前記ピストンの頂面に形成されて該ピストンの横断面積よりも小さな頂部面積を有する凸部と、前記シリンダの天井面に形成されて前記ピストンの上昇時に前記凸部が隙間を介して挿入される凹部と、前記凹部の深さを変更するアクチュエータと、前記アクチュエータを制御する制御手段と、を具備してなる排気弁駆動装置である。
In order to solve the above-mentioned subject, an exhaust valve drive of the present invention and an internal combustion engine provided with the same adopt the following means.
According to a first aspect of the present invention, a hydraulic pressure is intermittently supplied to the cylinder at a predetermined valve opening timing by being driven by a piston provided in an exhaust valve of an internal combustion engine, a cylinder in which the piston is accommodated, and a cam. A hydraulic pressure supply means for pressing the piston to open the exhaust valve, a valve closing means for biasing the exhaust valve in the valve closing direction, and a piston formed on the top surface of the piston A protrusion having a top area smaller than a cross sectional area, a recess formed on a ceiling surface of the cylinder and into which the protrusion is inserted via a gap when the piston is lifted, and an actuator for changing the depth of the recess And control means for controlling the actuator.
 上記構成によれば、油圧供給手段がカムに駆動されると、所定の開弁タイミングでシリンダに油圧が供給され、これによりシリンダ内部のピストンが押圧されて排気弁が開かれる。また、シリンダへの油圧が低下すると、閉弁付勢手段の付勢力により排気弁が閉じられる。 According to the above configuration, when the hydraulic pressure supply means is driven by the cam, the hydraulic pressure is supplied to the cylinder at a predetermined valve opening timing, whereby the piston inside the cylinder is pressed and the exhaust valve is opened. In addition, when the hydraulic pressure to the cylinder decreases, the exhaust valve is closed by the biasing force of the valve closing biasing means.
 排気弁が閉じられる時には、排気弁と一体に動くピストンがシリンダの奥に進み、ピストンの頂面に形成された凸部がシリンダの天井面に形成された凹部に挿入されるまでは速い速度で排気弁が閉じていく。そして、ピストンの凸部がシリンダの凹部に突入し始めると、凸部とシリンダとの間に封じ込まれた作動油が、凸部と凹部との間の狭い隙間を通ってシリンダ外に流出しようとし、この時の大きな流動抵抗によってピストンの動きに緩衝作用が働き、排気弁の閉弁速度が低下する。このため、排気弁は比較的ゆっくりした速度で着座し、バルブシートとの衝突による衝撃から守られる。 When the exhaust valve is closed, the piston moving integrally with the exhaust valve advances to the back of the cylinder, and at a high speed until the projection formed on the top surface of the piston is inserted into the recess formed on the cylinder ceiling surface The exhaust valve closes. Then, when the projection of the piston starts to penetrate into the recess of the cylinder, the hydraulic oil sealed between the projection and the cylinder will flow out of the cylinder through the narrow gap between the projection and the recess. The large flow resistance at this time acts as a buffer on the movement of the piston and reduces the closing speed of the exhaust valve. For this reason, the exhaust valve seats at a relatively slow speed and is protected from impact due to collision with the valve seat.
 シリンダの凹部は、アクチュエータおよび制御手段によって深さを変更することができる。凹部の深さが小さいと、凸部とシリンダとの間に封じ込まれる作動油の量が少なくなるため、ピストンの緩衝作用が少なくなり、排気弁はカムのプロファイルによって定められた閉弁タイミングに近い、比較的速いタイミングで閉じる。 The recess of the cylinder can be varied in depth by the actuator and the control means. When the depth of the recess is small, the amount of hydraulic oil sealed between the protrusion and the cylinder decreases, so the shock absorbing action of the piston decreases and the exhaust valve is closed at the valve closing timing determined by the cam profile. Close, close at a relatively fast timing.
 また、凹部の深さが大きいと、凸部とシリンダとの間に封じ込まれる作動油の量が多くなるため、その排出に時間が掛かるようになり、ピストンの緩衝作用が大きくなる。このため、排気弁はカムのプロファイルによって定められた閉弁タイミングよりも遅いタイミングで閉じる。 Further, when the depth of the recess is large, the amount of hydraulic oil sealed between the protrusion and the cylinder increases, so that it takes time to discharge the oil, and the shock absorbing action of the piston becomes large. Therefore, the exhaust valve closes at a timing later than the valve closing timing determined by the cam profile.
 このように、シリンダ側に設けられた凹部の深さを変更することによって排気弁が閉じるタイミングを早くしたり遅くしたりできるので、内燃機関の特性を運転状況に適合させることができる。 Thus, the timing at which the exhaust valve closes can be made earlier or later by changing the depth of the recess provided on the cylinder side, so that the characteristics of the internal combustion engine can be adapted to the operating situation.
 また、排気弁が閉じるタイミングの変更は、シリンダに設けられた凹部の深さを変更するという簡単な構造で達成できるため、簡素な構成であることが望ましい舶用内燃機関に適している。 In addition, since the change of the timing at which the exhaust valve closes can be achieved with a simple structure in which the depth of the recess provided in the cylinder is changed, it is suitable for a marine internal combustion engine that preferably has a simple structure.
 上記構成において、前記制御手段は、前記内燃機関の負荷が上がるにつれて前記凹部の深さが大きくなるように前記アクチュエータを制御する構成であることが好ましい。
 この構成によれば、内燃機関の負荷が高まるにつれて排気弁が閉じるタイミングが遅くなる。これにより、高負荷運転時に筒内ガスの圧縮圧力が高くなり過ぎることを防止して内燃機関の耐久性を高めることができる。
In the above configuration, preferably, the control means controls the actuator such that the depth of the recess increases as the load on the internal combustion engine increases.
According to this configuration, as the load on the internal combustion engine increases, the timing at which the exhaust valve closes is delayed. Thus, the durability of the internal combustion engine can be enhanced by preventing the compression pressure of the in-cylinder gas from becoming too high during high load operation.
 本発明の第2の態様は、内燃機関の排気弁に設けられたピストンと、前記ピストンが収容されるシリンダと、カムに駆動されて前記シリンダに所定の開弁タイミングで間欠的に油圧を供給し、前記ピストンを押圧して前記排気弁を開弁させる油圧供給手段と、前記排気弁を閉弁方向に付勢する閉弁付勢手段と、前記油圧供給手段により生成された油圧を逃がすリーク通路と、前記リーク通路の通路面積を変化させる流量調整手段と、前記流量調整手段を制御する制御手段と、を具備してなる排気弁駆動装置である。 According to a second aspect of the present invention, a hydraulic pressure is intermittently supplied to the cylinder at a predetermined valve opening timing by being driven by a piston provided in an exhaust valve of an internal combustion engine, a cylinder in which the piston is accommodated, and a cam. Hydraulic pressure supply means for pressing the piston to open the exhaust valve, a valve closing biasing means for biasing the exhaust valve in the valve closing direction, and a leak for releasing the hydraulic pressure generated by the hydraulic pressure supply means It is an exhaust valve drive device which comprises a passage, flow rate adjustment means for changing the passage area of the leak passage, and control means for controlling the flow rate adjustment means.
 上記構成によれば、前記第1の態様と同じく、油圧供給手段がカムに駆動されると、所定の開弁タイミングでシリンダに油圧が供給され、これによりシリンダ内部のピストンが押圧されて排気弁が開かれる。また、シリンダへの油圧供給が途絶えると、閉弁付勢手段の付勢力により排気弁が閉じられる。 According to the above configuration, as in the first aspect, when the hydraulic pressure supply means is driven by the cam, the hydraulic pressure is supplied to the cylinder at a predetermined valve opening timing, whereby the piston inside the cylinder is pressed and the exhaust valve Is opened. Further, when the hydraulic pressure supply to the cylinder is interrupted, the exhaust valve is closed by the biasing force of the valve closing and biasing means.
 リーク通路に設けられた流量調整手段からは、油圧供給手段から供給される作動油(油圧)の一部が油圧経路の外部にリークする。これにより、油圧供給手段による加圧時にシリンダに圧送される油量よりも、排気弁の閉弁時にシリンダから油圧供給手段に戻される油量が少なくなるため、排気弁の閉弁時にはピストンが確実にシリンダ内に戻ることができ、このため排気弁を確実に閉じることができる。 Part of the hydraulic oil (hydraulic pressure) supplied from the hydraulic pressure supply means leaks to the outside of the hydraulic path from the flow rate adjusting means provided in the leak passage. As a result, the amount of oil returned from the cylinder to the hydraulic pressure supply means at the time of closing the exhaust valve is smaller than the amount of oil pumped to the cylinder at the time of pressurization by the hydraulic pressure supply means. Can be returned to the inside of the cylinder so that the exhaust valve can be closed reliably.
 流量調整手段を制御することにより、油圧供給手段から供給される作動油を外部にリークさせる量を調整することができる。このリーク量を小さくすると排気弁が閉じる速度が遅くなり、リーク量を大きくすると排気弁が閉じる速度が速くなる。 By controlling the flow rate adjustment means, it is possible to adjust the amount of leakage of the hydraulic oil supplied from the hydraulic pressure supply means to the outside. When the leak amount is reduced, the closing speed of the exhaust valve is decreased, and when the leak amount is increased, the closing speed of the exhaust valve is increased.
 このように、油圧供給手段によって生成された油圧を外部に逃がすリーク通路に流量調整手段を設けることにより、排気弁が閉じるタイミングを早くしたり遅くしたりできるので、内燃機関の特性を運転状況に適合させることができる。 As described above, by providing the flow rate adjustment means in the leak passage for releasing the hydraulic pressure generated by the hydraulic pressure supply means to the outside, the timing at which the exhaust valve closes can be made earlier or later. It can be adapted.
 しかも、排気弁が閉じるタイミングの変更は、油圧経路やシリンダ等にリーク通路と流量調整手段とを設けるという簡単な構造で達成できるため、簡素な構成であることが望ましい舶用内燃機関に適している。 Moreover, since the change of the timing at which the exhaust valve closes can be achieved with a simple structure in which the leak path and the flow rate adjusting means are provided in the hydraulic path, cylinder, etc., it is suitable for marine internal combustion engines that preferably have a simple configuration. .
 上記構成において、前記制御手段は、前記内燃機関の負荷が上がるにつれて前記リーク通路の通路面積が小さくなるように前記流量調整手段を制御する構成であることが好ましい。
 この構成によれば、内燃機関の負荷が上がるにつれて排気弁が閉じるタイミングを遅くし、高負荷運転時に筒内ガスの圧縮圧力が高くなり過ぎることを防止して内燃機関の耐久性を高めることができる。
In the above configuration, preferably, the control means controls the flow rate adjusting means such that the passage area of the leak passage decreases as the load on the internal combustion engine increases.
According to this configuration, the timing at which the exhaust valve closes is delayed as the load on the internal combustion engine increases, and the compression pressure of the in-cylinder gas is prevented from becoming too high during high load operation to improve the durability of the internal combustion engine. it can.
 本発明の第3の態様は、上記のいずれかに記載の排気弁駆動装置を備えた内燃機関である。 A third aspect of the present invention is an internal combustion engine provided with the exhaust valve drive device described in any of the above.
 これにより、舶用内燃機関に適した簡素な構成でありながら、排気弁が閉じるタイミングを変更できるようにし、内燃機関の特性を運転状況に適合させることができる。 As a result, it is possible to change the timing at which the exhaust valve closes, and to adapt the characteristics of the internal combustion engine to the operating condition, while having a simple configuration suitable for a marine internal combustion engine.
 以上のように、本発明に係る排気弁駆動装置およびこれを備えた内燃機関によれば、舶用内燃機関として好適である簡素な構成により、排気弁が閉じるタイミングを変更することができ、これによって内燃機関の特性を運転状況に適合させ、内燃機関の信頼性および耐久性を高めるとともに、省燃費化等に貢献することができる。 As described above, according to the exhaust valve drive device according to the present invention and the internal combustion engine provided with the same, the timing at which the exhaust valve closes can be changed by a simple configuration suitable as a marine internal combustion engine. The characteristics of the internal combustion engine can be adapted to the operating conditions, and the reliability and durability of the internal combustion engine can be enhanced, and also contributing to fuel saving and the like.
本発明の第1実施形態に係る排気弁駆動装置を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the exhaust valve drive device which concerns on 1st Embodiment of this invention. 図1のII部拡大図であり、(a)はピストンの凸部がシリンダの凹部に挿入される前の状態を示し、(b)はピストンの凸部がシリンダの凹部に挿入され始めた状態を示す縦断面図である。FIG. 2 is an enlarged view of a portion II of FIG. 1, in which (a) shows a state before the projection of the piston is inserted into the recess of the cylinder, and (b) shows a state where the projection of the piston starts to be inserted into the recess of the cylinder It is a longitudinal cross-sectional view which shows. ピストンの凸部とシリンダの凹部の別な形状例を示す図であり、(a)はピストンの凸部がシリンダの凹部に挿入される前の状態を示し、(b)はピストンの凸部がシリンダの凹部に挿入され始めた状態を示す縦断面図である。It is a figure which shows the other shape example of the convex part of a piston, and the recessed part of a cylinder, (a) shows the state before the convex part of a piston is inserted in the recessed part of a cylinder, (b) shows the convex part of a piston It is a longitudinal cross-sectional view which shows the state which began to be inserted in the recessed part of a cylinder. (a)は第1実施形態におけるカムリフト量、(b)は同じく作動油圧、(c)は同じく排気弁リフト量をそれぞれ示すグラフである。(A) is a graph showing a cam lift amount in the first embodiment, (b) a working hydraulic pressure, and (c) a exhaust valve lift amount. 本発明の第2実施形態に係る排気弁駆動装置を示す概略構成図である。It is a schematic block diagram which shows the exhaust valve drive device which concerns on 2nd Embodiment of this invention. (a)は第2実施形態におけるカムリフト量、(b)は同じく作動油圧、(c)は同じく排気弁リフト量をそれぞれ示すグラフである。(A) is a graph showing a cam lift amount in the second embodiment, (b) a working hydraulic pressure, and (c) a exhaust valve lift amount.
 以下に、本発明に係る排気弁駆動装置の実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of an exhaust valve drive device according to the present invention will be described with reference to the drawings.
[第1実施形態]
 図1は、本発明の第1実施形態に係る排気弁駆動装置を示した概略構成図である。この排気弁駆動装置1は、船舶主機用ディーゼルエンジン(内燃機関)に設けられている。
First Embodiment
FIG. 1 is a schematic configuration view showing an exhaust valve drive device according to a first embodiment of the present invention. The exhaust valve drive device 1 is provided in a diesel engine (internal combustion engine) for a ship main engine.
 船舶主機用ディーゼルエンジン(以下「ディーゼルエンジン」という。)は、例えば低速2ストロークサイクル機関とされており、下方から給気して上方へ排気するように一方向に掃気されるユニフロー型が採用されている。ディーゼルエンジンからの出力は、図示しないプロペラ軸を介してスクリュープロペラに直接的または間接的に接続されている。 A diesel engine for ship's main engine (hereinafter referred to as "diesel engine") is, for example, a low-speed two-stroke cycle engine, and employs a uniflow type which scavenges unidirectionally so as to supply air from below and exhaust upward. ing. The output from the diesel engine is directly or indirectly connected to the screw propeller via a propeller shaft (not shown).
 排気弁駆動装置1は、図1に示されているように、ディーゼルエンジンのシリンダヘッド3に形成された排気流路を開閉する排気弁5と、排気弁5に設けられたピストン7と、ピストン7が収容されるシリンダ9と、シリンダ9に油圧を供給する油圧経路11および油圧供給装置(油圧供給手段)13と、排気弁5を閉弁方向(図1では上方)に付勢する空気バネ装置(閉弁付勢手段)15と、アクチュエータ17および制御装置(制御手段)19と、を備えている。 As shown in FIG. 1, the exhaust valve drive device 1 includes an exhaust valve 5 for opening and closing an exhaust flow path formed in a cylinder head 3 of a diesel engine, a piston 7 provided for the exhaust valve 5, and a piston The cylinder 9 in which 7 is accommodated, the hydraulic path 11 for supplying hydraulic pressure to the cylinder 9 and the hydraulic supply device (hydraulic supply means) 13, and an air spring for biasing the exhaust valve 5 in the valve closing direction (upward in FIG. 1) The apparatus (valve closing biasing means) 15, the actuator 17 and the control device (control means) 19 are provided.
 ピストン7は、上下方向に延在する排気弁5の軸部5a上端に接続されており、排気弁5の開閉に伴ってシリンダ9内を上下方向に往復動するようになっている。ピストン7とシリンダ9とによって形成された油圧室21には、油圧経路11の一端11aが接続されている。また、この油圧室21からはオリフィス用経路25が延出しており、このオリフィス用経路25には固定絞りとされたオリフィス27が設けられている。なお、排気弁5は、空気バネ装置15によって常時閉弁方向(上方)に付勢されている。 The piston 7 is connected to the upper end of the shaft portion 5 a of the exhaust valve 5 extending in the vertical direction, and reciprocates in the cylinder 9 in the vertical direction as the exhaust valve 5 is opened and closed. One end 11 a of the hydraulic path 11 is connected to the hydraulic chamber 21 formed by the piston 7 and the cylinder 9. Further, an orifice path 25 extends from the hydraulic chamber 21. The orifice path 25 is provided with an orifice 27 which is a fixed throttle. The exhaust valve 5 is always urged in the valve closing direction (upward) by the air spring device 15.
 油圧供給装置13は、プランジャ31と、シリンダ33と、カム35とを備えて構成されている。プランジャ31はシリンダ33内に摺動自在に挿入され、図示しない付勢手段によって常にシリンダ33から抜ける方向(下方)に付勢されているプランジャ31とシリンダ33とによって形成された加圧室37には油圧経路11の他端11bが接続されている。 The hydraulic pressure supply device 13 includes a plunger 31, a cylinder 33, and a cam 35. The plunger 31 is slidably inserted into the cylinder 33, and is in a pressure chamber 37 formed by the plunger 31 and the cylinder 33, which is always urged in the direction (downward) from the cylinder 33 by urging means not shown. Is connected to the other end 11 b of the hydraulic pressure passage 11.
 プランジャ31の下部には接続軸39を介してカムローラ41が軸支されている。カムローラ41は、下方に配置されたカム35の外周面、即ちカムプロファイル上を転動する。カム35は、ディーゼルエンジンのクランク軸と同期して回転するカム軸43に一体的に設けられている。 A cam roller 41 is supported by a lower portion of the plunger 31 via a connecting shaft 39. The cam roller 41 rolls on the outer peripheral surface of the cam 35 disposed below, that is, the cam profile. The cam 35 is integrally provided on a cam shaft 43 that rotates in synchronization with the crankshaft of the diesel engine.
 油圧経路11には、分岐点11cから低圧作動油供給経路45が分岐している。この低圧作動油供給経路45には逆止弁47を介して図示しない低圧作動油源が接続されており、排気弁5を開閉する際に用いるベースとなる油圧が供給される。油圧経路11内の油圧が所定値以下になった場合には、逆止弁47が開いて低圧作動油供給経路45から作動油(油圧)が補充される。また、逆止弁47は、油圧経路11内の圧力が所定値以上の場合、即ちプランジャ31による加圧行程時には閉じられる。 In the hydraulic path 11, a low pressure hydraulic oil supply path 45 is branched from a branch point 11c. A low pressure hydraulic oil source (not shown) is connected to the low pressure hydraulic oil supply path 45 via a check valve 47, and an oil pressure serving as a base used when opening and closing the exhaust valve 5 is supplied. When the hydraulic pressure in the hydraulic path 11 falls below a predetermined value, the check valve 47 is opened and the hydraulic oil (hydraulic pressure) is replenished from the low pressure hydraulic oil supply path 45. Further, the check valve 47 is closed when the pressure in the hydraulic path 11 is equal to or higher than a predetermined value, that is, at the time of the pressure stroke by the plunger 31.
 図2(a),(b)にも示すように、ピストン7の頂面には、その中央部に円柱状の凸部7aが形成されている。この凸部7aの頂部面積は、ピストン7の横断面積よりも小さい。例えば、ピストン7の直径が80ミリであるとすれば、凸部7aの直径は50ミリ程度、凸部7aの頂面からの高さは60ミリ程度を例示することができるが、この寸法、あるいはこの直径の比率に限定されるものではない。 As also shown in FIGS. 2 (a) and 2 (b), a cylindrical convex 7a is formed at the center of the top of the piston 7. As shown in FIG. The top area of the convex portion 7 a is smaller than the cross sectional area of the piston 7. For example, if the diameter of the piston 7 is 80 mm, the diameter of the convex portion 7a may be about 50 mm, and the height from the top surface of the convex portion 7 a may be about 60 mm. Or it is not limited to the ratio of this diameter.
 一方、シリンダ9の天井面には、その中央部に円柱孔状の凹部9aが形成されている。この凹部9aの内径は、ピストン7が上昇した時に、ピストン7の凸部7aが数ミリ程度の隙間を介して挿入される寸法に設定されている。 On the other hand, on the ceiling surface of the cylinder 9, a recess 9a in the form of a cylindrical hole is formed at the center. The inner diameter of the recess 9a is set so that the protrusion 7a of the piston 7 is inserted through a gap of several millimeters when the piston 7 is lifted.
 凹部9aの深さhは、ゼロから凸部7aの高さと同じ高さまでの範囲で変更することができる。例えば、シリンダ9の頂部の構造は、中心部に位置する円柱状の固定部材9bの周囲に、円筒状の可動部材9cが密に、且つ上下に相対移動可能に設けられた構造となっており、固定部材9bの下方、且つ可動部材9cの内周側の空間が凹部9aとなる。なお、油圧経路11は固定部材9bの下面に開口している。 The depth h of the recess 9a can be changed in the range from zero to the same height as the height of the protrusion 7a. For example, the structure of the top portion of the cylinder 9 has a structure in which a cylindrical movable member 9c is densely provided around the cylindrical fixed member 9b located at the center and can be relatively moved up and down. A space below the fixed member 9b and on the inner peripheral side of the movable member 9c is a recess 9a. The hydraulic path 11 is open at the lower surface of the fixing member 9b.
 そして、図1に示すアクチュエータ17で可動部材9cを上下に移動させることで、凹部9aの深さhを変更することができる。例えば、固定部材9bの外周面と可動部材9cの内周面との間をネジ対偶とし、アクチュエータ17の動力で可動部材9cを固定部材9bに対して相対回転させることにより、可動部材9cを上下に移動させて凹部9aの深さを変更することが考えられる。なお、シリンダ9の内周面と可動部材9cの外周面との間をネジ対偶としてもよい。 Then, by moving the movable member 9c up and down with the actuator 17 shown in FIG. 1, the depth h of the recess 9a can be changed. For example, the movable member 9c is moved up and down by rotating the movable member 9c relative to the fixed member 9b with the power of the actuator 17 with a screw pair between the outer peripheral surface of the fixed member 9b and the inner peripheral surface of the movable member 9c. It is conceivable to change the depth of the recess 9a by moving it to. Note that a screw pair may be provided between the inner peripheral surface of the cylinder 9 and the outer peripheral surface of the movable member 9c.
 また、図1に示す制御装置19は、アクチュエータ17を制御して可動部材9cの上下位置を設定する。例えば、制御装置19は、ディーゼルエンジンの負荷が上がるにつれて凹部9aの深さが大きくなるようにアクチュエータ17を制御する。 Further, the control device 19 shown in FIG. 1 controls the actuator 17 to set the vertical position of the movable member 9c. For example, the controller 19 controls the actuator 17 so that the depth of the recess 9a increases as the load on the diesel engine increases.
 次に、上記のように構成された排気弁駆動装置1の動作について説明する。
 油圧供給装置13のカム35(カム軸43)が回転すると、カムローラ41がカム35のカムプロファイルをなぞって回転しながら上下に移動し、その上下移動が接続軸39を介してプランジャ31をシリンダ33内で上下に摺動させる。
Next, the operation of the exhaust valve driving device 1 configured as described above will be described.
When the cam 35 (cam shaft 43) of the hydraulic pressure supply device 13 rotates, the cam roller 41 moves up and down while rotating along the cam profile of the cam 35, and the up and down movement moves the plunger 31 through the connecting shaft 39. Slide up and down inside.
 プランジャ31がシリンダ33内で上方に摺動すると、加圧室37に充填されている作動油が加圧され、この作動油が油圧経路11を経てシリンダ9とピストン7との間の油圧室21に圧送される。この作動油の油圧により油圧室21の容積が拡張し、ピストン7が空気バネ装置15の付勢力に抗して押し下げられ、排気弁5が開かれる。排気弁5の開弁量はカム35のベース円35aからの高さによって決定される。 When the plunger 31 slides upward in the cylinder 33, the hydraulic oil filled in the pressure chamber 37 is pressurized, and this hydraulic oil passes through the hydraulic path 11 and the hydraulic chamber 21 between the cylinder 9 and the piston 7 It is pumped to The volume of the hydraulic chamber 21 is expanded by the hydraulic pressure of the hydraulic fluid, the piston 7 is pushed down against the biasing force of the air spring device 15, and the exhaust valve 5 is opened. The opening amount of the exhaust valve 5 is determined by the height of the cam 35 from the base circle 35 a.
 また、カム35が下方に回動すると、プランジャ31が図示しない付勢手段によって下方に押し戻され、加圧室37および油圧室21に加わっていた油圧が低圧作動油供給経路45から供給される弱いベース油圧にまで降下する。このため、排気弁5が空気バネ装置15の付勢力により押し上げられて閉じられ、これによりピストン7が上昇して油圧室21の容積が最小になり、油圧室21の作動油が油圧経路11を経てシリンダ33の加圧室37に戻される。 In addition, when the cam 35 pivots downward, the plunger 31 is pushed back by the biasing means (not shown) and the hydraulic pressure applied to the pressure chamber 37 and the hydraulic chamber 21 is weakly supplied from the low pressure hydraulic oil supply path 45 Drop to base hydraulic pressure. Therefore, the exhaust valve 5 is pushed up and closed by the biasing force of the air spring device 15, whereby the piston 7 ascends to minimize the volume of the hydraulic chamber 21 and the hydraulic oil in the hydraulic chamber 21 Then, the pressure is returned to the pressure chamber 37 of the cylinder 33.
 このように、油圧供給装置13は、カム35に駆動されてシリンダ9に所定の開弁タイミングで間欠的に油圧を供給し、ピストン7を押圧して排気弁5を開弁させる。 As described above, the hydraulic pressure supply device 13 is driven by the cam 35 to intermittently supply the hydraulic pressure to the cylinder 9 at a predetermined valve opening timing, and presses the piston 7 to open the exhaust valve 5.
 なお、プランジャ31による加圧時には、油圧室21内の作動油の少量が、オリフィス用経路25のオリフィス27から油圧経路11の外部へと排出されるようになっている。これにより、プランジャ31による加圧時に加圧室37から油圧室21に送られる油量よりも、排気弁5の閉弁時に油圧室21から加圧室37に戻される油量を少なくし、ピストン7をシリンダ9の最上部まできちんと上昇させて排気弁5を確実に閉じることができる。オリフィス27から排出された分の作動油は、プランジャ31がカム35に押圧されていない時に低圧作動油供給経路45から油圧経路11に補充される。 When pressurized by the plunger 31, a small amount of hydraulic fluid in the hydraulic chamber 21 is discharged from the orifice 27 of the orifice path 25 to the outside of the hydraulic path 11. Thus, the amount of oil returned from the hydraulic chamber 21 to the pressurizing chamber 37 when the exhaust valve 5 is closed is smaller than the amount of oil sent from the pressurizing chamber 37 to the hydraulic chamber 21 when pressurized by the plunger 31 The exhaust valve 5 can be reliably closed by properly raising 7 to the top of the cylinder 9. The hydraulic oil discharged from the orifice 27 is replenished from the low pressure hydraulic oil supply path 45 to the hydraulic path 11 when the plunger 31 is not pressed by the cam 35.
 図4は、カム35のリフト量(a)と、油圧室21内の作動油圧(b)と、排気弁5のリフト量(c)との関係を示すグラフである。図4(b),(c)において、実線で示す線は、図2(a)に示す凹部9aの深さhがゼロの時の作動油圧と排気弁リフト量である。 FIG. 4 is a graph showing the relationship between the lift amount (a) of the cam 35, the hydraulic pressure (b) in the hydraulic pressure chamber 21, and the lift amount (c) of the exhaust valve 5. In FIGS. 4B and 4C, the solid line indicates the hydraulic pressure and the exhaust valve lift when the depth h of the recess 9a shown in FIG. 2A is zero.
 時刻t0にてカム35のプロファイルに従いカムリフト量が増大してプランジャ31が押し上げられ始めると、油圧室21の作動油圧がベース圧力から上昇し始める。時刻t1にてカムリフト量が最大値に達し、プランジャ31が上死点まで押し上げられ、作動油圧が最大値に達すると、時刻t2にて、油圧室21の油圧が空気バネ装置15の付勢力および筒内圧力に打ち勝ってピストン7を押し下げる。 When the cam lift amount increases according to the profile of the cam 35 at time t0 and the plunger 31 starts to be pushed up, the hydraulic pressure of the hydraulic chamber 21 starts to rise from the base pressure. When the cam lift amount reaches the maximum value at time t1, the plunger 31 is pushed up to the top dead center, and the hydraulic pressure reaches the maximum value, at time t2, the hydraulic pressure of the hydraulic chamber 21 is the biasing force of the air spring device 15 and Overcoming the pressure in the cylinder and pushing down the piston 7.
 これにより、排気弁5のリフト量が増大して、時刻t3にて排気弁5が全開となる。この時、ピストン7が押し下げられるに伴い、油圧室21の容積が拡張するため、油圧室21内の油圧は急激に減少するが、排気弁5を開弁させておくのに必要な油圧は維持される。このため、カム35のプロファイルに従いプランジャ31が上死点に維持されている期間は、排気弁5のリフト量も最大で維持されており、排気弁5は開弁状態を保持される。 As a result, the lift amount of the exhaust valve 5 increases, and the exhaust valve 5 is fully opened at time t3. At this time, as the piston 7 is pushed down, the volume of the hydraulic chamber 21 expands, so the hydraulic pressure in the hydraulic chamber 21 sharply decreases, but the hydraulic pressure necessary to keep the exhaust valve 5 open is maintained. Be done. Therefore, while the plunger 31 is maintained at the top dead center according to the profile of the cam 35, the lift amount of the exhaust valve 5 is also maintained at the maximum, and the exhaust valve 5 is maintained in the open state.
 時刻t5にてカム35のプロファイルに従いカムリフト量が減少してプランジャ31が下降し始めると、油圧室21の作動油圧も低下し始める。作動油圧が所定値を下回ると、空気バネ装置15の付勢力および筒内圧力が打ち勝ち、時刻t6からピストン7が上方へと押し上げられることによって排気弁5のリフト量が減少し始める。カム35のリフト量がゼロになってプランジャ31が下死点まで下げられると、排気弁5が時刻t7にて全閉となる。また、油圧経路11の作動油圧がベース圧力に戻る。 When the cam lift amount decreases according to the profile of the cam 35 at time t5 and the plunger 31 starts to descend, the hydraulic pressure of the hydraulic chamber 21 also begins to decrease. When the hydraulic pressure falls below the predetermined value, the biasing force of the air spring device 15 and the pressure in the cylinder are overcome, and the lift amount of the exhaust valve 5 starts to be reduced by pushing up the piston 7 from time t6. When the lift amount of the cam 35 becomes zero and the plunger 31 is lowered to the bottom dead center, the exhaust valve 5 is fully closed at time t7. Also, the hydraulic pressure of the hydraulic path 11 returns to the base pressure.
 図2(a)に示すように、シリンダ9の固定部材9bに対して可動部材9cが下げられて深さhの凹部9aが形成されている時には、排気弁5が閉じると、排気弁5と一体に動くピストン7がシリンダ9の奥に進むことによって油圧室21の容積が減少し、油圧室21内に充填されている作動油が油圧経路11から放出されて加圧室37に戻される。 As shown in FIG. 2A, when the movable member 9c is lowered relative to the fixed member 9b of the cylinder 9 to form a recess 9a of a depth h, the exhaust valve 5 is closed when the exhaust valve 5 is closed. As the integrally moving piston 7 advances to the back of the cylinder 9, the volume of the hydraulic chamber 21 is reduced, and the hydraulic oil filled in the hydraulic chamber 21 is discharged from the hydraulic path 11 and returned to the pressurizing chamber 37.
 この時、ピストン7の凸部7aがシリンダ9の凹部9aに挿入されるまでは、油圧室21内の作動油がスムーズに油圧経路11に流れ込むため、ピストン7は比較的速い速度でシリンダ9の奥に進み、排気弁5は速い速度で閉じていく。そして、図2(b)に示すように、凸部7aが凹部9aに挿入され始めると、油圧室21が、凸部7aの周囲に形成される部屋21aと、凹部9aの内部に形成される部屋21bとに分断される。 At this time, the hydraulic oil in the hydraulic chamber 21 smoothly flows into the hydraulic path 11 until the convex portion 7 a of the piston 7 is inserted into the concave portion 9 a of the cylinder 9. The exhaust valve 5 is closed at a high speed. Then, as shown in FIG. 2B, when the convex portion 7a starts to be inserted into the concave portion 9a, the hydraulic pressure chamber 21 is formed in the room 21a formed around the convex portion 7a and inside the concave portion 9a. It is divided into rooms 21b.
 部屋21bにある作動油は、そのまま油圧経路11からスムーズに排出されるが、部屋21aに封じ込まれた作動油は、部屋21aと部屋21bとの間の狭い隙間を通って部屋21bに流れ込んでから油圧経路11より排出される。このため、作動油が隙間を通る際に伴う多大な流動抵抗によってピストン7の動きに緩衝作用(クッション作用)が働き、排気弁5の閉弁速度が低下し、排気弁5が完全に閉じるまでのタイミングが遅延される。 The hydraulic oil in the room 21b is smoothly discharged from the hydraulic path 11 as it is, but the hydraulic oil sealed in the room 21a flows into the room 21b through the narrow gap between the room 21a and the room 21b. Are discharged from the hydraulic pressure path 11. For this reason, a large flow resistance accompanied by the hydraulic oil passing through the gap acts as a buffer action (cushion action) on the movement of the piston 7, the valve closing speed of the exhaust valve 5 decreases, and the exhaust valve 5 completely closes. Timing is delayed.
 凹部9aの深さhが小さければ、部屋21aから部屋21bに流れ込まなければならない油量が少なくなるため、ピストン7の上昇運動に緩衝作用が加わる時間が短くなる。このため、排気弁5はカム35のプロファイルによって定められた閉弁タイミングに近い、比較的速いタイミングで閉じる。 If the depth h of the recess 9a is small, the amount of oil that has to flow from the room 21a to the room 21b decreases, so the time during which the cushioning action is added to the upward movement of the piston 7 becomes short. Therefore, the exhaust valve 5 closes at a relatively early timing close to the valve closing timing determined by the profile of the cam 35.
 また、凹部9aの深さhが大きくなるにつれ、部屋21aから部屋21bに流れ込まなければならない油量が多くなっていくため、その排出に時間が掛かるようになり、ピストン7の上昇運動に緩衝作用が加わる時間も長くなる。このため、排気弁5はカム35のプロファイルによって定められた閉弁タイミングよりも大きく遅れたタイミングで閉じる。 In addition, as the depth h of the recess 9a increases, the amount of oil that must flow into the room 21b from the room 21a increases, so it takes time to discharge the oil, and the upward movement of the piston 7 is buffered. The time to join will also be longer. Therefore, the exhaust valve 5 is closed at a timing largely delayed from the valve closing timing determined by the profile of the cam 35.
 このように、ピストン7の上昇行程の終了間際に、ピストン7の凸部7aがシリンダ9の凹部9aに挿入されると、部屋21bに封じ込まれる作動油の流動抵抗が生じるために、油圧室21(部屋21a)内の圧力が、図4(b)中に破線P1,P2で示すように急激に上昇する。破線P1は凹部9aの深さhが小さい時の圧力上昇率を示し、破線P2は凹部9aの深さhが大きい時の圧力上昇率を示している。 Thus, when the convex portion 7a of the piston 7 is inserted into the concave portion 9a of the cylinder 9 at the end of the upward stroke of the piston 7, a flow resistance of the hydraulic oil sealed in the chamber 21b is generated. The pressure in the chamber 21a (room 21a) rises sharply as shown by broken lines P1 and P2 in FIG. 4 (b). The broken line P1 indicates the pressure increase rate when the depth h of the recess 9a is small, and the broken line P2 indicates the pressure increase rate when the depth h of the recess 9a is large.
 こうして油圧室21内の圧力P1,P2が急激に高まるため、図4(c)中に破線L1,L2で示すように、排気弁5が閉じる間際には、そのリフト量の減少率が緩やかな傾きとなる。排気弁5のリフト量の減少率は、油圧室21内の圧力がP1の時に破線L1で示すものとなり、油圧室21内の圧力がP2の時に破線L2で示すものとなる。つまり、凹部9aの深さhが大きくなるほど排気弁5が完全に閉じるまでの時間が長くなる(閉弁タイミングが遅くなる)。このため、排気弁5は比較的ゆっくりした速度でバルブシート(弁座)に着座し、バルブシートとの衝突による衝撃から守られる。 Thus, since the pressures P1 and P2 in the hydraulic pressure chamber 21 rapidly increase, as shown by the broken lines L1 and L2 in FIG. 4C, while the exhaust valve 5 is closing, the decreasing rate of the lift amount is moderate. It becomes inclination. The decreasing rate of the lift amount of the exhaust valve 5 is indicated by a broken line L1 when the pressure in the hydraulic chamber 21 is P1, and is indicated by a broken line L2 when the pressure in the hydraulic chamber 21 is P2. That is, as the depth h of the recess 9a becomes larger, the time until the exhaust valve 5 completely closes becomes longer (the valve closing timing becomes later). For this reason, the exhaust valve 5 is seated on the valve seat at a relatively slow speed, and is protected from an impact due to a collision with the valve seat.
 このように、シリンダ9側に設けられた凹部9aの深さを変更することにより、排気弁5が閉じるタイミングを、カム35のカムプロフィールにより規定される閉弁タイミングに近付けたり、規定の閉弁タイミングよりも遅くしたりすることができるので、ディーゼルエンジンの特性を運転状況に適合させることができる。 Thus, by changing the depth of the recess 9a provided on the cylinder 9 side, the timing at which the exhaust valve 5 closes is made closer to the valve closing timing defined by the cam profile of the cam 35 or the valve closing specified. The characteristics of the diesel engine can be adapted to the operating situation, as it can be later than the timing.
 また、排気弁5が閉じるタイミングの変更は、シリンダ9に設けられた凹部9aの深さを変更する、即ちシリンダ9の固定部材9bに対して可動部材9cをアクチュエータ17で軸方向に相対移動させるという簡単な構造で達成できるため、簡素な構成であることが望ましい舶用のディーゼルエンジンに適した構造とすることができる。 Further, changing the timing at which the exhaust valve 5 closes changes the depth of the recess 9a provided in the cylinder 9, that is, moves the movable member 9c relative to the fixed member 9b of the cylinder 9 in the axial direction by the actuator 17. Since this can be achieved with such a simple structure, a structure suitable for marine diesel engines where a simple structure is desirable can be obtained.
 さらに、制御装置19は、ディーゼルエンジンの負荷が増大するにつれて凹部9aの深さhが大きくなるようにアクチュエータ17を制御する。このため、ディーゼルエンジンの負荷が高まるにつれて排気弁5が閉じるタイミングが遅くなる。これにより、高負荷運転時に筒内ガスの圧縮圧力が高くなり過ぎることを防止してディーゼルエンジンの耐久性を高めることができる。 Furthermore, the controller 19 controls the actuator 17 such that the depth h of the recess 9a increases as the load on the diesel engine increases. Therefore, as the load on the diesel engine increases, the timing at which the exhaust valve 5 closes is delayed. As a result, it is possible to prevent the compression pressure of the in-cylinder gas from becoming too high during high load operation, and to improve the durability of the diesel engine.
 図3(a),(b)は、ピストン7の凸部7aとシリンダ9の凹部9aの別な形状例を示す縦断面図である。
 ここでは、ピストン7の頂面に設けられている凸部7aが、ピストン7の頂面の周囲から円筒状に突出するように形成されている。一方、シリンダ9の天井面に設けられている凹部9aは、天井面の周囲に筒状の凹みとして形成される。つまり、図2(a),(b)に示す凸部7aと凹部9aの径方向の内外位置関係を逆転させたものとなっている。
FIGS. 3A and 3B are longitudinal sectional views showing another example of the shape of the convex portion 7 a of the piston 7 and the concave portion 9 a of the cylinder 9.
Here, a convex portion 7 a provided on the top surface of the piston 7 is formed to cylindrically protrude from the periphery of the top surface of the piston 7. On the other hand, the recess 9a provided on the ceiling surface of the cylinder 9 is formed as a cylindrical recess around the ceiling surface. That is, the radial inside / outside positional relationship between the convex portion 7a and the concave portion 9a shown in FIGS. 2 (a) and 2 (b) is reversed.
 凹部9aの深さhは、ゼロから凸部7aの高さと同じ高さまでの範囲で変更することができる。例えば、シリンダ9の頂部の中心に設けられた円柱状の可動部材9dが上下に移動できるようになっており、この可動部材9dがシリンダ9の天井面から突き出した時に、シリンダ9の内周面と可動部材9dの外周面との間に凹部9aが形成される。 The depth h of the recess 9a can be changed in the range from zero to the same height as the height of the protrusion 7a. For example, the cylindrical movable member 9d provided at the center of the top of the cylinder 9 can move up and down, and when the movable member 9d protrudes from the ceiling surface of the cylinder 9, the inner peripheral surface of the cylinder 9 A recess 9a is formed between the and the outer peripheral surface of the movable member 9d.
 可動部材9dの外径は、ピストン7が上昇した時に、ピストン7の凸部7aが数ミリ程度の隙間を介して可動部材9dの周囲を取り囲む寸法に設定されている。可動部材9dは、図1に示すアクチュエータ17によって上下に駆動され、これによって凹部9aの深さhが変更される。なお、油圧経路11は可動部材9dの下面に開口している。 The outer diameter of the movable member 9d is set such that the convex portion 7a of the piston 7 surrounds the periphery of the movable member 9d with a gap of about several millimeters when the piston 7 ascends. The movable member 9d is driven up and down by the actuator 17 shown in FIG. 1, whereby the depth h of the recess 9a is changed. The hydraulic path 11 opens at the lower surface of the movable member 9d.
 図3(a)に示すように、シリンダ9の可動部材9dが下がって深さhの凹部9aが形成されている時において、排気弁5が閉じると、排気弁5と一体に動くピストン7がシリンダ9の奥に進むことによって油圧室21の容積が減少し、油圧室21内に充填されている作動油が油圧経路11から放出されて加圧室37に戻される。 As shown in FIG. 3A, when the movable member 9d of the cylinder 9 is lowered to form the recess 9a of the depth h, the piston 7 which moves integrally with the exhaust valve 5 when the exhaust valve 5 is closed. By advancing to the back of the cylinder 9, the volume of the hydraulic pressure chamber 21 is reduced, and the hydraulic oil filled in the hydraulic pressure chamber 21 is discharged from the hydraulic pressure passage 11 and returned to the pressure chamber 37.
 この時、ピストン7の凸部7aがシリンダ9の凹部9aに挿入されるまでは、油圧室21内の作動油がスムーズに油圧経路11に流れ込むため、ピストン7は比較的速い速度でシリンダ9の奥に進み、排気弁5は速い速度で閉じていく。そして、図3(b)に示すように、凸部7aが凹部9aに挿入され始めると、油圧室21が、凸部7aの内周側に形成される部屋21aと、凹部9aの内部に形成される部屋21bとに分断される。 At this time, the hydraulic oil in the hydraulic chamber 21 smoothly flows into the hydraulic path 11 until the convex portion 7 a of the piston 7 is inserted into the concave portion 9 a of the cylinder 9. The exhaust valve 5 is closed at a high speed. Then, as shown in FIG. 3B, when the convex portion 7a starts to be inserted into the concave portion 9a, the hydraulic pressure chamber 21 is formed in the chamber 21a formed on the inner peripheral side of the convex portion 7a and inside the concave portion 9a. Divided into rooms 21b.
 部屋21aにある作動油は、そのまま油圧経路11からスムーズに排出されるが、部屋21bに封じ込まれた作動油は、部屋21bと部屋21aとの間の狭い隙間を通って部屋21aに流れ込んでから油圧経路11より排出される。このため、作動油が隙間を通る際に伴う多大な流動抵抗によってピストン7の動きに緩衝作用(クッション作用)が働き、排気弁5の閉弁速度が低下し、排気弁5が完全に閉じるまでのタイミングが遅延される。これにより、排気弁5をバルブシートとの衝突による衝撃から守るとともに、ディーゼルエンジンの特性を運転状況に適合させることができる。 The hydraulic oil in the room 21a is smoothly discharged from the hydraulic path 11 as it is, but the hydraulic oil sealed in the room 21b flows into the room 21a through the narrow gap between the room 21b and the room 21a. Are discharged from the hydraulic pressure path 11. For this reason, a large flow resistance accompanied by the hydraulic oil passing through the gap acts as a buffer action (cushion action) on the movement of the piston 7, the valve closing speed of the exhaust valve 5 decreases, and the exhaust valve 5 completely closes. Timing is delayed. As a result, the exhaust valve 5 can be protected from impact due to collision with the valve seat, and the characteristics of the diesel engine can be adapted to the operating conditions.
 この作動油の流動抵抗による緩衝作用(クッション作用)が作用する時間の長さは、図2(a),(b)の構造の場合と同様に、凹部9aの深さhが大きくなるほど長くなる。即ち、凹部9aの深さhを大きくするほど排気弁5の閉弁タイミングを遅くすることができる。 The length of time during which the buffer action (cushion action) by the flow resistance of the hydraulic oil acts becomes longer as the depth h of the recess 9a becomes larger, as in the case of the structure of FIGS. 2 (a) and 2 (b). . That is, the valve closing timing of the exhaust valve 5 can be delayed as the depth h of the recess 9a is increased.
 この図3(a),(b)の構成によれば、凹部9aの高さを変更する構造を、図2(a),(b)に示した構造よりも簡素にすることができる。 According to the configuration of FIGS. 3A and 3B, the structure for changing the height of the recess 9a can be simplified as compared with the structure shown in FIGS. 2A and 2B.
[第2実施形態]
 図5は、本発明の第2実施形態に係る排気弁駆動装置を示した概略構成図である。この排気弁駆動装置51において、第1実施形態の排気弁駆動装置1と異なる点は、ピストン7の頂面の凸部およびシリンダ9の天井面の凹部が無いことと、油圧経路11の分岐点11dからリーク通路53が分岐し、その途中にリーク通路53の通路面積を変化させる可変オリフィス(流量調整手段)55が接続されていることである。その他の部分の構成および作用は第1実施形態の排気弁駆動装置1を同様であるため、各部に同一の符号を付して説明を省略する。
Second Embodiment
FIG. 5 is a schematic configuration view showing an exhaust valve drive device according to a second embodiment of the present invention. The exhaust valve drive device 51 differs from the exhaust valve drive device 1 of the first embodiment in that there are no convex portion on the top surface of the piston 7 and no concave portion on the ceiling surface of the cylinder 9, and a branch point of the hydraulic path 11 The leak passage 53 branches from 11 d, and a variable orifice (flow rate adjusting means) 55 for changing the passage area of the leak passage 53 is connected in the middle thereof. The configuration and operation of the other parts are the same as those of the exhaust valve drive device 1 of the first embodiment, and therefore the same reference numerals are given to the respective parts and the description will be omitted.
 可変オリフィス55の絞り量は制御装置(制御手段)57によって制御される。制御装置57は、ディーゼルエンジンの負荷が上がるにつれてリーク通路53の通路面積が小さくなるように可変オリフィス55の絞り量を制御する。なお、可変オリフィス55の代わりに流量調整弁等を設けてもよい。 The throttling amount of the variable orifice 55 is controlled by a controller (control means) 57. The controller 57 controls the throttling amount of the variable orifice 55 so that the passage area of the leak passage 53 decreases as the load on the diesel engine increases. A flow control valve or the like may be provided instead of the variable orifice 55.
 この排気弁駆動装置51によれば、第1実施形態の排気弁駆動装置1と同じく、油圧供給装置13がカム35に駆動されると、所定の開弁タイミングでシリンダ9に油圧が供給され、これによりシリンダ9内部のピストン7が押圧されて排気弁5が開かれる。また、シリンダ9への油圧供給が途絶えると、空気バネ装置15の付勢力により排気弁5が閉じられる。 According to the exhaust valve drive device 51, as in the exhaust valve drive device 1 of the first embodiment, when the hydraulic pressure supply device 13 is driven by the cam 35, the hydraulic pressure is supplied to the cylinder 9 at a predetermined valve opening timing. As a result, the piston 7 inside the cylinder 9 is pressed and the exhaust valve 5 is opened. When the hydraulic pressure supply to the cylinder 9 is discontinued, the exhaust valve 5 is closed by the biasing force of the air spring device 15.
 リーク通路53に設けられた可変オリフィス55からは、油圧供給装置13から供給される作動油(油圧)の一部が油圧経路11の外部にリークする。これにより、油圧供給装置13による加圧時にシリンダ9に圧送される油量よりも、排気弁5の閉弁時にシリンダ9から油圧供給装置13に戻される油量が少なくなる。このため、排気弁5の閉弁時にはピストン7をシリンダ9内の最上部まできちんと上昇させて排気弁5を確実に閉じることができる。 A part of the hydraulic oil (hydraulic pressure) supplied from the hydraulic pressure supply device 13 leaks to the outside of the hydraulic path 11 from the variable orifice 55 provided in the leak passage 53. As a result, the amount of oil returned from the cylinder 9 to the hydraulic pressure supply device 13 when the exhaust valve 5 is closed is smaller than the amount of oil pressure-fed to the cylinder 9 when pressurized by the hydraulic pressure supply device 13. Therefore, when the exhaust valve 5 is closed, the piston 7 can be properly raised to the top in the cylinder 9 to reliably close the exhaust valve 5.
 可変オリフィス55を制御することにより、油圧供給装置13から供給される作動油を外部にリークさせる量を調整することができる。このリーク量を小さくすると排気弁5が閉じる速度が遅くなり、リーク量を大きくすると排気弁5が閉じる速度が速くなる。 By controlling the variable orifice 55, it is possible to adjust the amount of leakage of the hydraulic oil supplied from the hydraulic pressure supply device 13 to the outside. When the leak amount is reduced, the closing speed of the exhaust valve 5 is decreased, and when the leak amount is increased, the closing speed of the exhaust valve 5 is increased.
 このように、油圧供給装置13とシリンダ9との間の油圧経路11から分岐するリーク通路53に可変オリフィス55を設けることによって排気弁5が閉じるタイミングを早くしたり遅くしたりできるので、ディーゼルエンジンの特性を運転状況に適合させることができる。 As described above, by providing the variable orifice 55 in the leak passage 53 branched from the hydraulic pressure passage 11 between the hydraulic pressure supply device 13 and the cylinder 9, the timing at which the exhaust valve 5 closes can be made earlier or later. Can be adapted to the driving situation.
 しかも、排気弁5が閉じるタイミングの変更は、油圧経路11にリーク通路53と可変オリフィス55とを設けるという簡単な構造で達成できるため、簡素な構成であることが望ましい舶用のディーゼルエンジンには適している。なお、リーク通路53は必ずしも油圧経路11から分岐させなくてもよく、例えばシリンダ9から分岐させてもよい。 Moreover, since the change of the timing at which the exhaust valve 5 closes can be achieved with a simple structure in which the leak passage 53 and the variable orifice 55 are provided in the hydraulic path 11, it is suitable for marine diesel engines where a simple configuration is desirable. ing. The leak passage 53 may not necessarily branch from the hydraulic pressure passage 11, and may branch from the cylinder 9, for example.
 図6は、排気弁駆動装置51におけるカム35のリフト量(a)と、油圧室21内の作動油圧(b)と、排気弁5のリフト量(c)との関係を示すグラフである。基本的な動作は図4で説明した第1実施形態の排気弁駆動装置1の場合と同様であるため、重複する説明は省略する。 FIG. 6 is a graph showing the relationship between the lift amount (a) of the cam 35 in the exhaust valve drive device 51, the hydraulic pressure (b) in the hydraulic chamber 21 and the lift amount (c) of the exhaust valve 5. The basic operation is the same as that of the exhaust valve drive device 1 according to the first embodiment described with reference to FIG.
 リーク通路53の可変オリフィス55の絞り量が最小であると、排気弁5の閉弁時に、油圧室21内の作動油があまり多くリークせずに油圧供給装置13に戻されるため、シリンダ9内でピストン7が上昇するのに時間が掛かる。したがって、油圧室21内における作動油圧の低下状況は、図6(b)中に実線で示すように、カム35のリフト量の減少量に見合ったものとなる。また、排気弁5のリフト量の減少状況は、図6(c)中に実線で示すようになり、排気弁5が閉じられるタイミングが遅くなる。 If the throttling amount of the variable orifice 55 of the leak passage 53 is minimum, the hydraulic oil in the hydraulic pressure chamber 21 is returned to the hydraulic pressure supply device 13 without leaking too much when the exhaust valve 5 is closed. It takes time for the piston 7 to ascend. Therefore, the reduction state of the hydraulic pressure in the hydraulic chamber 21 corresponds to the reduction amount of the lift amount of the cam 35, as shown by the solid line in FIG. 6 (b). Further, the reduction state of the lift amount of the exhaust valve 5 is as shown by a solid line in FIG. 6C, and the timing at which the exhaust valve 5 is closed is delayed.
 そして、可変オリフィス55の絞り量が拡大されると、油圧室21内の作動油がリークする量が多くなるため、油圧室21内から油圧供給装置13に戻される作動油の量が減り、シリンダ9内でピストン7が上昇する時間が短縮される。したがって、油圧室21内における作動油圧の低下状況は、図6(b)中に破線で示すように、カム35のリフト量の減少量よりも速く低下するようになる。また、排気弁5のリフト量の減少状況は、図6(c)中に破線で示すようになり、排気弁5が閉じられるタイミングが早くなる。 Then, when the throttling amount of the variable orifice 55 is expanded, the amount of leakage of the hydraulic oil in the hydraulic chamber 21 increases, so the amount of hydraulic oil returned from the hydraulic chamber 21 to the hydraulic pressure supply device 13 decreases. Within 9, the time for the piston 7 to rise is reduced. Therefore, the reduction state of the hydraulic pressure in the hydraulic chamber 21 is reduced more quickly than the reduction amount of the lift amount of the cam 35, as shown by a broken line in FIG. 6 (b). Further, the reduction state of the lift amount of the exhaust valve 5 is as shown by a broken line in FIG. 6C, and the timing at which the exhaust valve 5 is closed becomes earlier.
 前述のように、制御装置57は、ディーゼルエンジンの負荷が上がるにつれてリーク通路53の通路面積が小さくなるように可変オリフィス55の絞り量を制御する。このため、ディーゼルエンジンの負荷が上がるにつれて排気弁5が閉じるタイミングを遅くし、高負荷運転時に筒内ガスの圧縮圧力が高くなり過ぎることを防止してディーゼルエンジンの耐久性を高めることができる。 As described above, the control device 57 controls the throttling amount of the variable orifice 55 so that the passage area of the leak passage 53 decreases as the load on the diesel engine increases. Therefore, as the load on the diesel engine increases, the timing at which the exhaust valve 5 closes can be delayed, and the compression pressure of the in-cylinder gas can be prevented from becoming too high during high load operation to improve the durability of the diesel engine.
 なお、変形例として、図5中に破線で示すように、油圧室21と油圧経路11との間を接続するリーク通路53aを設け、このリーク通路53aに可変オリフィス55aを設けて、排気弁5の閉弁時にピストン7が上昇する時間を調整できるようにしてもよい。 As a modification, as indicated by a broken line in FIG. 5, a leak passage 53a connecting the hydraulic chamber 21 and the hydraulic passage 11 is provided, and a variable orifice 55a is provided in the leak passage 53a. It may be possible to adjust the time for the piston 7 to rise when the valve is closed.
 以上説明したように、本発明の実施形態に係る排気弁駆動装置1,51、およびこれを備えたディーゼルエンジンによれば、舶用のディーゼルエンジンに適した簡素な構成により、排気弁5が閉じるタイミングを変更可能にし、ディーゼルエンジンの特性を運転状況に適合させ、内燃機関の信頼性および耐久性を高めるとともに、省燃費化等にも貢献することができる。 As explained above, according to the exhaust valve drive device 1, 51 according to the embodiment of the present invention and the diesel engine provided with the same, the timing at which the exhaust valve 5 is closed by the simple configuration suitable for marine diesel engines As a result, the characteristics of the diesel engine can be adapted to the operating conditions, the reliability and durability of the internal combustion engine can be enhanced, and fuel consumption can be improved.
 なお、本発明は、上記実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。 The present invention is not limited to only the configuration of the above embodiment, and modifications and improvements can be made as appropriate without departing from the scope of the present invention, and such modifications and improvements can be made. The form is also included in the scope of the present invention.
1,51 排気弁駆動装置
5 排気弁
7 ピストン
7a 凸部
9 シリンダ
9a 凹部
11 油圧経路
13 油圧供給装置(油圧供給手段)
15 空気バネ装置(閉弁付勢手段)
17 アクチュエータ
19,57 制御装置(制御手段)と、
21 油圧室
31 プランジャ
35 カム
37 加圧室
53 リーク通路
55 可変オリフィス(流量調整手段)
1, 51 exhaust valve drive device 5 exhaust valve 7 piston 7 a convex portion 9 cylinder 9 a concave portion 11 hydraulic path 13 hydraulic pressure supply device (hydraulic pressure supply means)
15 Air spring device (valve closing biasing means)
17 actuators 19, 57 control devices (control means),
21 oil pressure chamber 31 plunger 35 cam 37 pressure chamber 53 leak passage 55 variable orifice (flow rate adjusting means)

Claims (5)

  1.  内燃機関の排気弁に設けられたピストンと、
     前記ピストンが収容されるシリンダと、
     カムに駆動されて前記シリンダに所定の開弁タイミングで間欠的に油圧を供給し、前記ピストンを押圧して前記排気弁を開弁させる油圧供給手段と、
     前記排気弁を閉弁方向に付勢する閉弁付勢手段と、
     前記ピストンの頂面に形成されて該ピストンの横断面積よりも小さな頂部面積を有する凸部と、
     前記シリンダの天井面に形成されて前記ピストンの上昇時に前記凸部が隙間を介して挿入される凹部と、
     前記凹部の深さを変更するアクチュエータと、
     前記アクチュエータを制御する制御手段と、
    を具備してなることを特徴とする排気弁駆動装置。
    A piston provided at an exhaust valve of the internal combustion engine,
    A cylinder in which the piston is accommodated;
    Hydraulic pressure supply means driven by a cam to intermittently supply hydraulic pressure to the cylinder at a predetermined valve opening timing, and pressing the piston to open the exhaust valve;
    Valve closing means for urging the exhaust valve in the valve closing direction;
    A projection formed on a top surface of the piston and having a top area smaller than a cross-sectional area of the piston;
    A recess formed on a ceiling surface of the cylinder and into which the protrusion is inserted via a gap when the piston is lifted;
    An actuator for changing the depth of the recess;
    Control means for controlling the actuator;
    An exhaust valve drive device comprising:
  2.  前記制御手段は、前記内燃機関の負荷が上がるにつれて前記凹部の深さが大きくなるように前記アクチュエータを制御することを特徴とする請求項1に記載の排気弁駆動装置。 The exhaust valve drive apparatus according to claim 1, wherein the control means controls the actuator such that the depth of the recess increases as the load on the internal combustion engine increases.
  3.  内燃機関の排気弁に設けられたピストンと、
     前記ピストンが収容されるシリンダと、
     カムに駆動されて前記シリンダに所定の開弁タイミングで間欠的に油圧を供給し、前記ピストンを押圧して前記排気弁を開弁させる油圧供給手段と、
     前記排気弁を閉弁方向に付勢する閉弁付勢手段と、
     前記油圧供給手段により生成された油圧を逃がすリーク通路と、
     前記リーク通路の通路面積を変化させる流量調整手段と、
     前記流量調整手段を制御する制御手段と、
    を具備してなることを特徴とする排気弁駆動装置。
    A piston provided at an exhaust valve of the internal combustion engine,
    A cylinder in which the piston is accommodated;
    Hydraulic pressure supply means driven by a cam to intermittently supply hydraulic pressure to the cylinder at a predetermined valve opening timing, and pressing the piston to open the exhaust valve;
    Valve closing means for urging the exhaust valve in the valve closing direction;
    A leak passage for releasing the hydraulic pressure generated by the hydraulic pressure supply means;
    Flow rate adjusting means for changing the passage area of the leak passage;
    Control means for controlling the flow rate adjusting means;
    An exhaust valve drive device comprising:
  4.  前記制御手段は、前記内燃機関の負荷が上がるにつれて前記リーク通路の通路面積が小さくなるように前記流量調整手段を制御することを特徴とする請求項3に記載の排気弁駆動装置。 4. The exhaust valve driving apparatus according to claim 3, wherein the control means controls the flow rate adjusting means such that a passage area of the leak passage decreases as a load on the internal combustion engine increases.
  5.  請求項1から4のいずれかに記載の排気弁駆動装置を備えていることを特徴とする内燃機関。 An internal combustion engine comprising the exhaust valve drive device according to any one of claims 1 to 4.
PCT/JP2014/075754 2013-12-25 2014-09-26 Exhaust valve drive device and internal combustion engine equipped with same WO2015098219A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167035103A KR20160147070A (en) 2013-12-25 2014-09-26 Exhaust valve drive device and internal combustion engine equipped with same
KR1020167011745A KR101727872B1 (en) 2013-12-25 2014-09-26 Exhaust valve drive device and internal combustion engine equipped with same
CN201480062833.9A CN105814290B (en) 2013-12-25 2014-09-26 Exhaust valve actuator and internal combustion engine with the exhaust valve actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267798A JP6092090B2 (en) 2013-12-25 2013-12-25 Exhaust valve driving device and internal combustion engine provided with the same
JP2013-267798 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098219A1 true WO2015098219A1 (en) 2015-07-02

Family

ID=53478099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075754 WO2015098219A1 (en) 2013-12-25 2014-09-26 Exhaust valve drive device and internal combustion engine equipped with same

Country Status (4)

Country Link
JP (1) JP6092090B2 (en)
KR (2) KR20160147070A (en)
CN (1) CN105814290B (en)
WO (1) WO2015098219A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034922B1 (en) 2015-06-22 2016-11-30 富士重工業株式会社 Vehicle control device
CN106703928B (en) * 2016-12-28 2022-07-15 沪东重机有限公司 Exhaust valve control execution system directly driven by servo oil
CN108868936B (en) * 2018-06-13 2020-09-08 中国北方发动机研究所(天津) High-compactness hydraulic tappet of internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0158740U (en) * 1987-10-06 1989-04-12
JPH0726922A (en) * 1993-07-07 1995-01-27 Zexel Corp Valve control device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK157145C (en) * 1987-11-05 1990-05-14 Man B & W Diesel Gmbh PROCEDURE FOR CONTROLING THE CLUTCH MOVEMENT OF A HYDRAULIC ACTIVATED EXHAUST VALVE IN A MARINE DIESEL ENGINE AND EXHAUST VALVE FOR USE IN EXERCISING THE PROCEDURE
JPH094425A (en) * 1995-06-19 1997-01-07 Nissan Motor Co Ltd Variable valve gear for internal combustion engine
JP3160502B2 (en) * 1995-09-01 2001-04-25 日鍛バルブ株式会社 Hydraulic intake and exhaust valve drive with damper
JP2964235B2 (en) 1998-03-04 1999-10-18 株式会社グリーンライフ Planter suspension
JP4043136B2 (en) * 1999-03-30 2008-02-06 三菱重工業株式会社 Hydraulic exhaust valve drive device
CN103277163B (en) * 2013-05-07 2015-06-24 宁波华液机器制造有限公司 Variable-lift driver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0158740U (en) * 1987-10-06 1989-04-12
JPH0726922A (en) * 1993-07-07 1995-01-27 Zexel Corp Valve control device for internal combustion engine

Also Published As

Publication number Publication date
KR101727872B1 (en) 2017-04-17
KR20160147070A (en) 2016-12-21
JP6092090B2 (en) 2017-03-08
CN105814290B (en) 2018-11-02
CN105814290A (en) 2016-07-27
KR20160067918A (en) 2016-06-14
JP2015124631A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
US9562448B2 (en) Compression-release engine brake system for lost motion rocker arm assembly and method of operation thereof
JP4601014B2 (en) Large two-stroke diesel engine with improved fuel efficiency
EP2722499B1 (en) Variable valve timing apparatus
KR20110044977A (en) Control unit of piston engine
WO2015098219A1 (en) Exhaust valve drive device and internal combustion engine equipped with same
EP3137743A1 (en) Valve timing system
US20090308340A1 (en) Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
US20100180875A1 (en) Seating control device for a valve for a split-cycle engine
US9157338B2 (en) Lash adjuster
KR101698301B1 (en) Exhaust-valve drive device and internal combustion engine provided with same
JP6254245B2 (en) Exhaust valve driving device and internal combustion engine provided with the same
JP4176031B2 (en) Variable valve operating device for internal combustion engine
JP6000726B2 (en) Valve operating device for internal combustion engine
JP4056362B2 (en) Exhaust valve hydraulic drive
JPH0726922A (en) Valve control device for internal combustion engine
JP2004084626A (en) Valve mechanism
KR102185712B1 (en) Variable valve timing apparatus
JP5463837B2 (en) Internal combustion engine
JP6497409B2 (en) Engine valve gear
WO2013147078A1 (en) Hydraulic-drive fuel injection device and internal combustion engine
JP6141209B2 (en) Exhaust valve driving device and internal combustion engine provided with the same
JP2004084627A (en) Valve mechanism
US8251033B2 (en) System and method for varying a duration of a closing phase of an intake valve of an engine
JPH0228687B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167011745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873322

Country of ref document: EP

Kind code of ref document: A1