WO2015096805A1 - 自移动机器人的行走探测控制方法 - Google Patents

自移动机器人的行走探测控制方法 Download PDF

Info

Publication number
WO2015096805A1
WO2015096805A1 PCT/CN2014/095099 CN2014095099W WO2015096805A1 WO 2015096805 A1 WO2015096805 A1 WO 2015096805A1 CN 2014095099 W CN2014095099 W CN 2014095099W WO 2015096805 A1 WO2015096805 A1 WO 2015096805A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
mobile robot
moving robot
robot
walking
Prior art date
Application number
PCT/CN2014/095099
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
科沃斯机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人有限公司 filed Critical 科沃斯机器人有限公司
Publication of WO2015096805A1 publication Critical patent/WO2015096805A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle

Definitions

  • the invention relates to a walking detection control method for a self-mobile robot, belonging to the technical field of small household appliance manufacturing.
  • the self-mobile robot is a small, highly automated household appliance that can walk on its own within a specific work area.
  • the existing self-mobile robot detects the running surface condition in the working area by providing a displacement detecting sensor on the body.
  • the displacement detecting sensor is mainly installed in two ways, one of which is vertically mounted on the body, that is, the mounting position of the displacement detecting sensor is perpendicular to the bottom surface of the body, and the mounting method is such that The self-moving robot can only detect if there is a step directly under the machine, and the reaction time left to the machine after being detected is very short.
  • the other is inclined to be mounted on the body, that is, the installation position of the displacement detecting sensor forms an angle with the bottom surface of the body.
  • the working process of the existing displacement detecting sensor is to detect the walking surface and compare the detecting signal with the preset signal.
  • the control is stopped by the mobile robot or Turn.
  • the existing installation control method for a robot with a certain height, such as a shopping guide robot, sudden stop or steering is likely to cause the robot to fall and be damaged.
  • the technical problem to be solved by the present invention lies in the deficiencies of the prior art, and provides a walking detection control method for a self-mobile robot, which accurately determines the walking environment and effectively prevents malfunction and fall damage of the self-moving robot.
  • a walking detection control method for a self-mobile robot includes a body, a control unit, a driving unit and a sensing unit are disposed on the body, and the sensing unit sends the sensed signal to the control unit to control
  • the unit controls the driving unit according to the sensing signal to drive the movement of the body
  • the sensing unit includes a displacement detecting sensor, and the displacement detecting sensor is obliquely disposed on the body, and the angle between the center line and the bottom surface of the body is ⁇ , where 0° ⁇ ⁇ ⁇ 90°;
  • the method comprises the following steps:
  • Step 100 preset a basic displacement change value ⁇ S0 in the self-mobile robot
  • Step 200 placing the self-moving robot into the working area and starting normal walking.
  • the displacement detecting sensor scans the straight line distance between the set position and the walking surface of the working area in real time, and records the straight line distance S2 and the previous moment at the moment.
  • the straight line distance S1 the straight line distance difference between the two is calculated in real time, and the real-time displacement change value ⁇ S1 is obtained;
  • Step 300 Determine whether ⁇ S1 is greater than or equal to ⁇ S0. If not, the self-moving robot continues to walk normally; if yes, the control unit controls the deceleration from the mobile robot.
  • control unit may further control the steering from the mobile robot after the self-mobile robot is decelerated in step 300.
  • the method further includes:
  • Step 010 preset a basic distance value S0 in the self-mobile robot
  • Step 020 placing the self-moving robot into the working area, before starting normal walking, the displacement detecting sensor first scans the linear distance between the set position and the walking surface of the working area to obtain an initial distance value S3;
  • Step 030 Compare the initial distance value S3 with the basic distance value S0 to determine whether S3 conforms to S0. If yes, the self-mobile robot continues to walk normally; if not, the mobile robot turns.
  • step 030 includes:
  • the basic displacement change value ⁇ S0 in the step 100 is 8-15 cm as needed; the basic distance value S0 in the step 010 is 60-70 cm.
  • the time difference between the current time and the previous time in the step 200 is 200 milliseconds to 500 milliseconds.
  • the preferred angle of ⁇ is 30°-40°.
  • the present invention presets and judges the distance value and the displacement change value by the control unit of the mobile robot, thereby preventing missed judgment and misjudgment; and when the displacement detecting sensor detects that the signal does not meet the predetermined requirement, First, the body is controlled to decelerate, and other actions are performed after deceleration, which can accurately judge the walking environment and effectively prevent the malfunction of the mobile robot from malfunctioning and falling.
  • FIG. 1 is a schematic view showing a motion state of a self-mobile robot according to the present invention
  • FIG. 2 is a schematic view of the initial position of the mobile robot from the step of the present invention.
  • the present invention provides a walking detection control method for a self-mobile robot.
  • the self-mobile robot includes a body 100.
  • the body 100 is provided with a control unit, a driving unit and a sensing unit, and the sensing unit will The sensed signal is sent to the control unit, and the control unit controls the drive unit according to the sensing signal to drive the movement of the body.
  • the sensing unit includes a displacement detecting sensor 200, and the displacement detecting sensor 200 is obliquely disposed on the body 100, and the angle between the center line and the bottom surface of the body is ⁇ , wherein 0° ⁇ 90° The preferred angle of ⁇ is 30°-40°.
  • the displacement detecting sensor 200 is installed obliquely so that the detecting head is outward, so that the ground situation in front can be detected in advance, and if there is a step, there is sufficient time for the processing.
  • the method includes the following steps:
  • Step 100 preset a basic displacement change value ⁇ S0 in the self-mobile robot
  • Step 200 placing the self-moving robot into the working area and starting normal walking.
  • the displacement detecting sensor scans the straight line distance between the set position and the walking surface of the working area in real time, and records the straight line distance S2 and the previous moment at the moment.
  • the straight line distance S1 the straight line distance difference between the two is calculated in real time, and the real-time displacement change value ⁇ S1 is obtained;
  • Step 300 Determine whether ⁇ S1 is greater than or equal to ⁇ S0. If not, the self-moving robot continues to walk normally; if yes, the control unit controls the deceleration from the mobile robot. In order to effectively prevent the self-moving robot from falling, the control unit may further control the steering from the mobile robot after the self-mobile robot is decelerated in step 300.
  • the size of the time difference between the current time and the previous time in the step 200 can be limited according to actual needs. In order to balance the sensitivity of the mobile robot while maintaining proper signal feedback operating time, it can usually be set to 200 milliseconds to 500 milliseconds.
  • the preset basic displacement change value ⁇ S0 is not a fixed value but a range value, usually 8-15 cm. Once preset in the self-moving robot, it is used as a comparison between the fixed value and the ⁇ S0 judgment. use.
  • the embodiment is an optimization of the determining process of the embodiment. Specifically, before the step 100, the method further includes:
  • Step 010 preset a basic distance value S0 in the self-mobile robot, which is 60-70 cm;
  • Step 020 placing the self-moving robot into the working area, before starting normal walking, the displacement detecting sensor first scans the linear distance between the set position and the walking surface of the working area to obtain an initial distance value S3;
  • Step 030 Compare the initial distance value S3 with the basic distance value S0 to determine whether the two are equal. If the result is yes, the self-mobile robot continues to walk normally; if the result is no, the mobile robot turns.
  • the step 030 specifically includes:
  • the size of the preset basic distance value S0 is also a range value before the preset, and the same city is 60-70 cm. Once the preset is completed, it is used as a fixed value comparison.
  • the walking detection control method of the mobile robot of the present invention controls the body to decelerate in advance when the detection signal of the displacement detecting sensor installed obliquely with the body does not meet the predetermined requirement, thereby preventing the robot from suddenly stopping or turning and falling.
  • the detection of the walking environment in which the mobile robot is located by the displacement detecting sensor can be specifically distinguished into the detection of the starting state and the walking state. Each time the body starts to walk in the startup state, it is necessary to first determine the magnitude relationship between the initial distance value S3 and the basic distance value S0, thereby determining whether to directly start normal walking or steering.
  • the self-moving robot When the body enters the normal walking state, it is determined whether the self-moving robot is normally walking or decelerating by judging whether the real-time displacement change value ⁇ S1 is within the range value of the basic displacement change value ⁇ S0.
  • the displacement change value By using the displacement change value to judge and control the self-moving robot to decelerate in advance, it is possible to avoid the misjudgment that is easy to occur when the real-time displacement value is compared with the preset displacement value in the existing judgment control method, and By decelerating in advance, the self-moving robot is prevented from falling due to instability in the existing sudden turning or stopping action.
  • the body changes the displacement value ⁇ S ( ⁇ S tends to 0, less than ⁇ S0).
  • the magnitude relationship between the initial distance value S3 and the basic distance value S0 can be preferentially determined to determine whether the normal walking or the steering is directly initiated.
  • the key point of the present invention is that: First, the control unit of the mobile robot needs to preset and judge the distance value and the displacement change value respectively, thereby preventing missed judgment and misjudgment; secondly, when the displacement detecting sensor detects When the signal does not meet the predetermined requirements, the body is controlled to decelerate, thereby preventing the self-moving robot from falling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动机器人的行走探测控制方法,包括步骤100:在自移动机器人中预设基本位移变化值ΔS0;步骤200:将自移动机器人置入工作区域,开始正常行走,位移探测传感器对其设置位置与工作区域行走表面之间的直线距离进行实时扫描,记录本时刻的直线距离S2和前一时刻的直线距离S1,实时计算两者之间的直线距离差,得到实施位移变化值ΔS1;步骤300:判断ΔS1是否大于等于ΔS0,如果否,则自移动机器人继续正常行走;如果是,则控制单元控制自移动机器人减速。该方法能够对行走环境情况判断准确,有效防止自移动机器人误动作和跌倒损坏。

Description

自移动机器人的行走探测控制方法 技术领域
本发明涉及一种自移动机器人的行走探测控制方法,属于小家电制造技术领域。
背景技术
自移动机器人是一种自动化程度较高的小型家用电器,能够在特定的工作区域内自行行走。但由于工作区域内行走表面的状况比较复杂,可能由于存在的凸起或凹陷导致的行走过程中遇到障碍物或坠落等情况,进而影响自移动机器人的正常行走和作业。为了解决这一问题,现有的自移动机器人通过在机体上设置位移探测传感器来对工作区域内的行走表面工况进行检测。在现有的自移动机器人中,位移探测传感器的安装方式主要包括两种,其中一种是垂直安装在机体上的,即:位移探测传感器的安装位置与机体的底面垂直,这种安装方式使自移动机器人只能探测到机器正下方是否有台阶,且待探测到后留给机器的反应时间很短。另一种是倾斜安装在机体上的,即:位移探测传感器的安装位置与机体的底面之间形成夹角。现有位移探测传感器的工作过程是对行走表面进行探测,并将探测信号与预设信号进行比较,当位移探测传感器接收到的探测信号与预设信号值时不符时,控制自移动机器人停止或转向。现有的安装控制方法,对于具有一定高度的机器人来说,如导购机器人,突然停止或转向容易导致机器人的跌倒而损坏。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种一种自移动机器人的行走探测控制方法,对行走环境情况判断准确,有效防止自移动机器人误动作和跌倒损坏。
本发明的所要解决的技术问题是通过如下技术方案实现的:
一种自移动机器人的行走探测控制方法,所述自移动机器人包括机体,机体上设有控制单元、驱动单元和感测单元,所述感测单元将感测到的信号发送给控制单元,控制单元根据感测信号控制驱动单元,驱动机体运动,所述的感测单元包括位移探测传感器,所述位移探测传感器倾斜设置在所述机体上,其设置中心线与机体底面之间的夹角为α,其中0°<α<90°;
该方法包括如下步骤:
步骤100:在自移动机器人中预设基本位移变化值△S0;
步骤200:将自移动机器人置入工作区域,开始正常行走,所述位移探测传感器对其设置位置与工作区域行走表面之间的直线距离进行实时扫描,记录本时刻的直线距离S2和前一时刻的直线距离S1,实时计算两者之间的直线距离差,得到实时位移变化值△S1;
步骤300:判断△S1是否大于等于△S0,如果否,则自移动机器人继续正常行走;如果是,则控制单元控制自移动机器人减速。
为了有效防止自移动机器人跌落,所述自移动机器人在步骤300中减速之后,控制单元还可以进一步控制自移动机器人转向。
为了防止自移动机器人在起始状态发生跌落,在所述步骤100之前还包括:
步骤010:在自移动机器人中预设基本距离值S0;
步骤020:将自移动机器人置入工作区域,在开始正常行走之前,所述位移探测传感器首先对其设置位置与工作区域行走表面之间的直线距离进行扫描,得到初始距离值S3;
步骤030:将初始距离值S3与基本距离值S0进行比较,判断S3是否符合S0,如果是,则自移动机器人继续正常行走;如果否,则自移动机器人转向。
更具体地,所述步骤030包括:
当S3>S0时,表示自移动机器人前方有下行台阶;
当S3<S0时,表示自移动机器人前方有上行台阶。
根据需要,所述步骤100中的基本位移变化值△S0为8-15厘米;所述步骤010中的基本距离值S0为60-70厘米。
综合考虑灵敏度和工作效率等因素的影响,所述步骤200中的本时刻和前一时刻之间的时间差为200毫秒-500毫秒。
为了保证位移探测传感器有效工作,所述α的优选角度为30°-40°。
综上所述,本发明通过自移动机器人的控制单元先后对距离值和位移变化值分别进行预设和判断,从而防止漏判和误判;且当位移探测传感器探测到信号不符合预定要求时,先控制机体减速,减速之后再进行其他动作,既能够对行走环境情况判断准确,又有效防止自移动机器人误动作和跌倒损坏。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明自移动机器人运动状态示意图;
图2为本发明自移动机器人初始位置靠近台阶的示意图。
具体实施方式
实施例一
图1为本发明自移动机器人运动状态示意图。本发明提供一种自移动机器人的行走探测控制方法,如图1所示,所述自移动机器人包括机体100,机体100上设有控制单元、驱动单元和感测单元,所述感测单元将感测到的信号发送给控制单元,控制单元根据感测信号控制驱动单元,驱动机体运动。所述的感测单元包括位移探测传感器200,所述位移探测传感器200倾斜设置在所述机体100上,其设置中心线与机体底面之间的夹角为α,其中0°<α<90°,α的优选角度为30°-40°。结合图1所示,将位移探测传感器200倾斜安装,使探测头向外,这样即可提前探测到前方的地面情况,若出现台阶,则也有充足的时间进行应对处理。
具体来说,为了有效防止自移动机器人在运动过程中因运到障碍而停止或因行走地面的高度差异而坠落,比如,上、下行台阶,该方法包括如下步骤:
步骤100:在自移动机器人中预设基本位移变化值△S0;
步骤200:将自移动机器人置入工作区域,开始正常行走,所述位移探测传感器对其设置位置与工作区域行走表面之间的直线距离进行实时扫描,记录本时刻的直线距离S2和前一时刻的直线距离S1,实时计算两者之间的直线距离差,得到实时位移变化值△S1;
步骤300:判断△S1是否大于等于△S0,如果否,则自移动机器人继续正常行走;如果是,则控制单元控制自移动机器人减速。为了有效防止自移动机器人跌落,所述自移动机器人在步骤300中减速之后,控制单元还可以进一步控制自移动机器人转向。
可以根据实际的需要,对所述步骤200中的本时刻和前一时刻之间时间差的大小进行限制。为了兼顾自移动机器人的灵敏度同时留有适当的信号反馈工作时间,通常可以设置为200毫秒-500毫秒。
另外需要说明的是,预设的基本位移变化值△S0不是定值而是一个范围值,通常为8-15厘米,一旦在自移动机器人中预设完成,就作为定值与△S0判断对照使用。
实施例二
前述实施例中,是在自移动机器人的行进过程中对行走环境的判断和控制。除了上述判断控制过程之外,如果自移动机器人刚刚开机处于初始位置,还没有进入运动状态之前,也需要对所处状态进行判断。因此,本实施例是对实施例判断控制过程的优化,具体来说,在所述步骤100之前还包括:
步骤010:在自移动机器人中预设基本距离值S0,为60-70厘米;
步骤020:将自移动机器人置入工作区域,在开始正常行走之前,所述位移探测传感器首先对其设置位置与工作区域行走表面之间的直线距离进行扫描,得到初始距离值S3;
步骤030:将初始距离值S3与基本距离值S0进行比较,判断两者是否相等,如果结果为是,则自移动机器人继续正常行走;如果结果为否,则自移动机器人转向。
其中,所述步骤030具体包括:
当S3>S0时,表示自移动机器人前方有下行台阶;
当S3<S0时,表示自移动机器人前方有上行台阶。
同样地,预设的基本距离值S0的大小在预设之前也是一个范围值,同城为60-70厘米。一旦预设完成,则作为定值对照使用。
本实施例中的其他技术特征与前述实施例一相同,参见前述内容,在此不再赘述。
综合上述两个实施例可知,本发明自移动机器人的行走探测控制方法,当与机体倾斜安装的位移探测传感器探测信号不符合预定要求时,提前控制机体减速,防止机器人突然停止或转向而跌倒。特别的,本发明通过位移探测传感器对自移动机器人所处行走环境的探测还可以具体区分为启动状态和行走状态的探测。机体每次在启动状态下启动行走时,都需要先行判断初始距离值S3与基本距离值S0之间的大小关系,进而确定直接启动正常行走还是转向。当机体进入正常行走状态时,再通过后续对实时位移变化值△S1是否处于基本位移变化值△S0的范围值内的判断,确定自移动机器人正常行走或者减速。这种通过利用位移变化值进行判断,控制自移动机器人提前减速的控制方式,既可以避免现有判断控制方法中采用实时位移值与预设位移值比对时,易产生的误判,又可以通过提前减速的方式,防止自移动机器人在现有突然转向或停止的动作中不稳而摔倒。
换句话说,如实施例一中单纯利用位移变化值△S与预设值比较来判断机体前方或后方是否具有障碍物的方法,可以准确判断控制行走过程中的状况,但对于启动初 期仍然不够安全。尤其是当自移动机器人的初始位置A刚好位于台阶附近时,如图2所示,机体通过位移变化值△S(△S趋于0,小于△S0)是无法判断前方存在台阶的,刚启动开始行走就面临坠落的危险。此时,如实施例二所述,可优先通过判断初始距离值S3与基本距离值S0之间的大小关系,进而确定直接启动正常行走还是转向。
因此,本发明的关键点在于:其一,自移动机器人的控制单元需要先后对距离值和位移变化值分别进行预设和判断,从而防止漏判和误判;其二,当位移探测传感器探测到信号不符合预定要求时,控制机体减速,从而防止自移动机器人摔倒。

Claims (8)

  1. 一种自移动机器人的行走探测控制方法,所述自移动机器人包括机体,机体上设有控制单元、驱动单元和感测单元,所述感测单元将感测到的信号发送给控制单元,控制单元根据感测信号控制驱动单元,驱动机体运动,所述的感测单元包括位移探测传感器,所述位移探测传感器倾斜设置在所述机体上,其设置中心线与机体底面之间的夹角为α,其中0°<α<90°;
    其特征在于,该方法包括如下步骤:
    步骤100:在自移动机器人中预设基本位移变化值△S0;
    步骤200:将自移动机器人置入工作区域,开始正常行走,所述位移探测传感器对其设置位置与工作区域行走表面之间的直线距离进行实时扫描,记录本时刻的直线距离S2和前一时刻的直线距离S1,实时计算两者之间的直线距离差,得到实时位移变化值△S1;
    步骤300:判断△S1是否大于等于△S0,如果否,则自移动机器人继续正常行走;如果是,则控制单元控制自移动机器人减速。
  2. 如权利要求1所述的方法,其特征在于,所述步骤300具体包括:所述自移动机器人减速后,控制单元控制自移动机器人转向。
  3. 如权利要求2所述的方法,其特征在于,所述步骤100之前还包括:
    步骤010:在自移动机器人中预设基本距离值S0;
    步骤020:将自移动机器人置入工作区域,在开始正常行走之前,所述位移探测传感器首先对其设置位置与工作区域行走表面之间的直线距离进行扫描,得到初始距离值S3;
    步骤030:将初始距离值S3与基本距离值S0进行比较,判断S3是否符合S0,如果是,则自移动机器人继续正常行走;如果否,则自移动机器人转向。
  4. 如权利要求3所述的方法,其特征在于,所述步骤030具体包括:
    当S3>S0时,表示自移动机器人前方有下行台阶;
    当S3<S0时,表示自移动机器人前方有上行台阶。
  5. 如权利要求1所述的方法,其特征在于,所述步骤100中的基本位移变化值△ S0为8-15厘米。
  6. 如权利要求1所述的方法,其特征在于,所述步骤200中的本时刻和前一时刻之间的时间差为200毫秒-500毫秒。
  7. 如权利要求1所述的方法,其特征在于,所述α的优选角度为30°-40°。
  8. 如权利要求3所述的方法,其特征在于,所述步骤010中的基本距离值S0为60-70厘米。
PCT/CN2014/095099 2013-12-27 2014-12-26 自移动机器人的行走探测控制方法 WO2015096805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310738096.7 2013-12-27
CN201310738096.7A CN104750105A (zh) 2013-12-27 2013-12-27 自移动机器人的行走探测控制方法

Publications (1)

Publication Number Publication Date
WO2015096805A1 true WO2015096805A1 (zh) 2015-07-02

Family

ID=53477588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095099 WO2015096805A1 (zh) 2013-12-27 2014-12-26 自移动机器人的行走探测控制方法

Country Status (2)

Country Link
CN (1) CN104750105A (zh)
WO (1) WO2015096805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814555A (zh) * 2019-01-18 2019-05-28 浙江大华机器人技术有限公司 一种机器人防跌落反应距离调节的方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824313A (zh) * 2016-03-15 2016-08-03 深圳市华讯方舟科技有限公司 障碍物躲避方法及装置
CN105945956A (zh) * 2016-05-13 2016-09-21 深圳市华科安测信息技术有限公司 医用机器人控制系统及方法
US10245730B2 (en) 2016-05-24 2019-04-02 Asustek Computer Inc. Autonomous mobile robot and control method thereof
WO2017211308A1 (zh) * 2016-06-07 2017-12-14 苏州宝时得电动工具有限公司 自移动园艺设备
EP3592178B1 (en) 2017-03-10 2024-02-21 SharkNinja Operating LLC Agitator with debrider and hair removal
US11202542B2 (en) 2017-05-25 2021-12-21 Sharkninja Operating Llc Robotic cleaner with dual cleaning rollers
WO2019104733A1 (zh) * 2017-12-01 2019-06-06 深圳市沃特沃德股份有限公司 扫地机器人和扫地机器人的避障方法及装置
CN112204486A (zh) 2018-04-03 2021-01-08 尚科宁家运营有限公司 机器人导航的飞行时间传感器布置及用其定位的方法
CN110786784B (zh) 2018-08-01 2022-09-06 尚科宁家运营有限公司 机器人真空清洁器
CN110216661B (zh) * 2019-04-29 2020-12-22 北京云迹科技有限公司 跌落区域识别的方法及装置
CN114211512B (zh) * 2022-02-23 2022-05-13 中铁十二局集团山西建筑构件有限公司 一种隧道衬砌检测攀爬机器人整面回形巡检方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162112A (ja) * 1986-01-10 1987-07-18 Matsushita Electric Ind Co Ltd 移動装置
JP2004139264A (ja) * 2002-10-16 2004-05-13 Toshiba Tec Corp 自律走行ロボット
JP2006146376A (ja) * 2004-11-17 2006-06-08 Mitsubishi Heavy Ind Ltd 自立移動ロボット及び移動不能領域検出方法
CN101088720A (zh) * 2006-06-15 2007-12-19 财团法人工业技术研究院 避障与防掉落系统及其方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520079B1 (ko) * 2003-08-01 2005-10-12 삼성전자주식회사 로봇시스템 및 그 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162112A (ja) * 1986-01-10 1987-07-18 Matsushita Electric Ind Co Ltd 移動装置
JP2004139264A (ja) * 2002-10-16 2004-05-13 Toshiba Tec Corp 自律走行ロボット
JP2006146376A (ja) * 2004-11-17 2006-06-08 Mitsubishi Heavy Ind Ltd 自立移動ロボット及び移動不能領域検出方法
CN101088720A (zh) * 2006-06-15 2007-12-19 财团法人工业技术研究院 避障与防掉落系统及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814555A (zh) * 2019-01-18 2019-05-28 浙江大华机器人技术有限公司 一种机器人防跌落反应距离调节的方法及装置
CN109814555B (zh) * 2019-01-18 2022-02-18 浙江华睿科技股份有限公司 一种机器人防跌落反应距离调节的方法及装置

Also Published As

Publication number Publication date
CN104750105A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015096805A1 (zh) 自移动机器人的行走探测控制方法
EP2783798A2 (en) Robot system and method for controlling robot system
AU2015207833B9 (en) Steer control maneuvers for materials handling vehicles
US11440188B2 (en) Robot system
JP6426098B2 (ja) ガラスクリーニングロボットの給電停止緊急処理方法
US9403276B2 (en) Robot system and method for controlling robot system
US8452464B2 (en) Steer correction for a remotely operated materials handling vehicle
US9162359B2 (en) Robot system and method for controlling robot system
US9919896B2 (en) Detection method for elevator brake moment
US20130024065A1 (en) Autonomous Electronic Device and Method of Controlling Motion of the Autonomous Electronic Device Thereof
WO2017211308A1 (zh) 自移动园艺设备
AU2009351340A2 (en) Steer correction for a remotely operated materials handling vehicle
US10048674B2 (en) Machining system having function of restricting operations of robot and machine tool
CN107632605A (zh) 一种基于磁吸附爬壁机器人的控制方法
JP2006146376A (ja) 自立移動ロボット及び移動不能領域検出方法
KR20190027618A (ko) 컨테이너 안전 감시 방법
JP2006334836A (ja) 成形品取出機
CN105997392A (zh) 一种无线双核双轮驱动机器人电动病床控制系统
KR101467742B1 (ko) 끼임 방지 이동로봇 및 이동로봇 끼임 방지 방법
CN201634349U (zh) 用于履带起重机弹簧管结构可调式防后倾装置
JP2017226064A (ja) 障害物判定装置
CN110083150B (zh) 机器人以及机器人控制方法
CN211034725U (zh) 一种涡流纺自动落筒小车锭位检测系统
US20220126450A1 (en) Control system and method for a safety state of a robot
KR20190027619A (ko) 트럭헤드 인식 및 인접 컨테이너 감지 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875726

Country of ref document: EP

Kind code of ref document: A1