WO2015096768A1 - 一种利用固定床褐煤干燥器干馏褐煤工艺及系统 - Google Patents

一种利用固定床褐煤干燥器干馏褐煤工艺及系统 Download PDF

Info

Publication number
WO2015096768A1
WO2015096768A1 PCT/CN2014/094934 CN2014094934W WO2015096768A1 WO 2015096768 A1 WO2015096768 A1 WO 2015096768A1 CN 2014094934 W CN2014094934 W CN 2014094934W WO 2015096768 A1 WO2015096768 A1 WO 2015096768A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignite
fixed bed
dry distillation
dryer
working medium
Prior art date
Application number
PCT/CN2014/094934
Other languages
English (en)
French (fr)
Inventor
聂红军
Original Assignee
聂红军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聂红军 filed Critical 聂红军
Publication of WO2015096768A1 publication Critical patent/WO2015096768A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10FDRYING OR WORKING-UP OF PEAT
    • C10F5/00Drying or de-watering peat
    • C10F5/06Drying or de-watering peat combined with a carbonisation step for producing turfcoal

Definitions

  • the invention relates to a dry-calculated lignite process using a fixed bed lignite dryer for dry distillation of lignite, and a system used for carrying out the process, which is mainly used for dry distillation of granular materials such as lignite.
  • Lignite is a kind of coal resource with high moisture, high ash, high volatile matter, low calorific value, low ash melting point, heavy pollution and relatively low utilization rate.
  • the brown coal has a water content of 25%-55% and is divided into external water, capillary water, adsorbed water and crystal water.
  • the treatment of lignite can remove the external water, capillary water and part of the adsorbed water of lignite at 105 °C-110 °C, and then increase the temperature to above 150 °C, which can remove the crystal water and cause the structural change of lignite.
  • the above process is a drying process of lignite; when the temperature is raised to 260 ° C, the tar content and methane and hydrogen contained in the lignite are separated and analyzed, and the process continues until 1000 ° C or above, which is a dry distillation process of lignite.
  • the lignite After removing moisture, the lignite is dry, and the volatiles remain in the dry lignite.
  • the dry lignite is exposed to air, the activity of the volatiles is high, the oxidation reaction is accelerated, and it is easy to spontaneously ignite under the unfavorable heat dissipation.
  • Inhibition of lignite spontaneous combustion requires dry distillation of lignite, reduction of volatile content of lignite, especially volatile matter content of higher activity, stabilization of lignite, improvement of calorific value of dry-burned lignite, and presentation of tar contained in lignite for chemical and Producing fuel, this is the ultimate goal of lignite upgrading.
  • the lignite dry distillation process includes: Luqi furnace process, solid heat storage and dry distillation process, gas heat storage and dry distillation process, and external heating dry distillation process. All lignite treatment processes are provided with a three-step process of drying, dry distillation and cooling.
  • the conventional drying method of the drying process section is described in the background art of the Japanese Patent Application No. 201320166864.1, the disclosure of which is hereby incorporated by reference.
  • the lignite which has entered the dry distillation process after completion of the two drying processes has a high total water content, that is, the dryness which should be achieved by the drying process is not reached.
  • the drying operation temperature of the fixed bed lignite dryer disclosed in Patent 201320166864.1 is also low, the drying working temperature should be increased, and the dry lignite water should be reduced as much as possible with less loss of volatiles, which is beneficial to the dry distillation quality of the dry distillation process and The amount of tar precipitated.
  • lignite During the dry distillation of lignite, the properties of lignite vary greatly, including polycondensation, collapse of capillary pores, and other coking reactions. Moreover, since lignite is non-bonded coal, dry-distilled lignite is prone to disintegration, pulverization and even pulverization of lignite. If the process is applied by external force (such as pressurization, moving materials) or airflow scouring, lignite pulverization will be intensified. The powdered lignite coal powder is discharged with dry distillation gas or heat carrier gas, and it is difficult to add atmospheric-solid separation, and due to the strong adsorption of coal powder, the oil recovery rate of tar will be greatly reduced. Greatly affect economics and increase pollution.
  • the lignite dry distillation process should avoid external force application or airflow scouring.
  • the above-mentioned lignite dry distillation process inevitably has external force application (such as roller) and airflow scouring (such as fluidized bed) or increased airflow scouring due to insufficient drying.
  • the problem leads to the disintegration and pulverization of the lignite after dry distillation, which leads to the reduction of the availability and quality of the final product and the reduction of the tar oil recovery rate, and the process operation is complicated and the equipment is complicated.
  • Patent 201320166864.1 The structure of the fixed bed dryer described in Patent 201320166864.1 is suitable for lignite, but the use temperature is low and the application range is narrow.
  • the existing dry distillation process has the disadvantages of disintegration and pulverization of lignite after retorting, reduction of quality of final product and reduction of tar oil recovery rate, complicated process operation, complicated equipment, and the application scope of patent 201320166864.1. narrow.
  • the object of the present invention is to provide a dry-distilled lignite process and system using a fixed bed lignite dryer to solve the disintegration and pulverization of the lignite after the dry distillation process and the device, the quality of the final product and the tar oil recovery.
  • the technical scheme of the invention is: a process for dry-collecting lignite by using a fixed bed lignite dryer, comprising the following process steps:
  • the lignite is placed in a fixed bed lignite dryer, and the low temperature working medium with a temperature between 105 ° C and 260 ° C is introduced into the wall heat exchanger of the fixed bed lignite dryer to dry the lignite to the next process requirement. Evaporation of water leads to a fixed bed lignite dryer.
  • Forming a system for realizing a dry-pulverized lignite process using a fixed bed lignite dryer comprising a fixed bed lignite dryer of patent 201320166864.1, a low temperature heat source, a high temperature heat source, a dry distillation gas treatment device, a steam condensing device or a dispersing device, and an adapted connecting pipe,
  • the working medium outlet and the inlet of the low-temperature heat source and the high-temperature heat source are connected in parallel to the partition wall heat exchanger of the fixed bed lignite dryer to heat the working medium inlet and the outlet
  • the dry distillation gas treatment device is connected in parallel with the inlet of the steam condensing device or the dispersing device to the fixed bed.
  • the gaseous product outlet of the lignite dryer, the working medium outlet and inlet of the low temperature heat source and the high temperature heat source, the dry distillation gas treatment device and the steam condensing device or the inlet of the discharge device are all equipped with switching valves.
  • the high temperature heat source uses a pressurized inert gas as a working medium.
  • the lignite does not need to be turned over in a process, the process is prolonged, the process is mild, the lignite particle size is intact, and the quality of dry-burned lignite is high;
  • the amount of dry steam and dry distillation gas discharged through the pores of lignite is small, the gas flow rate is low, and the gas discharge speed can be controlled by the heating speed.
  • the coal powder entrainment is slight, which has little effect on subsequent treatment, and the condensed water is clean and the tar oil collection rate is low. high;
  • the dry retorting system includes at least one fixed bed reactor, a low temperature heat source, a high temperature heat source, a dry distillation gas treatment device, and a steam condensing device or a dispersing device, wherein the fixed bed reactor includes a reactor main body, and the reactor main body has a fixed bed outer casing and a partition heat exchanger installed in a space defined by the outer casing, an inlet port and a gaseous product outlet port are disposed at an upper portion of the fixed bed reactor, and a discharge port is disposed at a lower portion;
  • the working medium outlet of the low temperature heat source and the working medium outlet and inlet of the inlet and high temperature heat source are respectively connected in parallel to the working medium inlet and outlet of the partition heat exchanger of the fixed bed reactor;
  • the inlet of the dry distillation treatment unit is connected in parallel with the inlet of the steam condensing unit or the discharge unit to the gaseous product outlet of the fixed bed reactor;
  • the fixed bed reactor further includes: switching valves respectively disposed on a line connecting the inlet of the gaseous product treatment device to the inlet of the dry distillation gas treatment device and the inlet of the steam condensation device or the discharge device, and respectively disposed at the The working medium inlet and outlet of the inter-wall heat exchanger respectively connect the switching valves on the working medium outlet and inlet lines of the low temperature heat source and the high temperature heat source.
  • the system comprises two or more fixed bed reactors connected in parallel with one another.
  • the high temperature heat source may be a regenerative combustion device, which reduces the exhaust gas temperature of the high temperature heat source and improves the heat efficiency.
  • the outer casing of the fixed bed reactor may be of any suitable shape, such as circular or rectangular, composed of an inner metal layer and an outer insulating layer.
  • the partition heat exchanger may be a tubular heat exchanger or a membrane tube heat exchanger.
  • the spacing a between two adjacent rows of tubes of the tubular heat exchanger is 25-200 mm, preferably 60-160 mm.
  • the heating medium inlet and outlet are respectively connected in parallel with the upper and lower ends of the respective tubes.
  • Each tube panel of the membrane tube panel heat exchanger is composed of a plurality of tubes and a membrane connecting the adjacent two tubes.
  • Each piece The tube panel may comprise a plurality of tubes, each tube having a distance of 30-300, preferably 80-240 mm.
  • the membrane tube panels should be arranged parallel to each other with a spacing b of 30-300 mm, preferably 100-300 mm.
  • the two ends of each tube in each membrane type tube screen are respectively connected by a parallel tube, and are respectively connected to the heating medium inlet and the outlet through two upper and lower parallel tubes.
  • the above tube may have an outer diameter of 10 to 50 mm, preferably 20 to 40 mm, more preferably 25 to 35 mm, for example 32 mm.
  • the column tube may also be equipped with a throttling device, such as an orifice plate, or a structure formed by shrinking the heat exchange tube, or a thinner tube section with a smaller flow area.
  • a throttling device such as an orifice plate, or a structure formed by shrinking the heat exchange tube, or a thinner tube section with a smaller flow area.
  • the system of the present invention further includes means for detecting the extent of the drying and/or retorting process.
  • a specific example is that a temperature detecting device is further mounted inside the fixed bed reactor body, and the mounting position is in the middle of any adjacent four column tubes or in the middle of any two adjacent membrane tube panels.
  • the temperature is detected to be 100-260 ° C, the drying process ends; when the temperature is detected to be 350-650 ° C, the dry distillation process ends.
  • a volatile pyrolysis detecting means may be provided at the gas product outlet, such as a detecting means of hydrogen, methane, carbon dioxide or carbon monoxide.
  • a flow detecting device can be provided at the gas product outlet to detect the flow rate of the discharged gaseous matter.
  • the discharge rate of gaseous products such as water vapor is detected to be less than 0.02 m 3 /t ⁇ min in the drying process
  • the drying process ends;
  • a gaseous product such as the volatile matter pyrolysis discharge rate is less than 0.03 m 3 /t ⁇ min, the dry distillation process ends.
  • the above detection devices can be installed in any one or a plurality of types. According to one embodiment, it is also possible to determine the end point of each process based on the drying and retorting process times obtained in advance of the experiment, without installing any detecting means.
  • the system completes the two-step process of drying and retorting the volatile matter in a device, especially a material such as lignite which is easily broken and/or dust-generating, which can maintain the integrity of the material particles and hardly generate dust. Therefore, the treatment of the steam generated by the drying and the volatile pyrolysis produced by the dry distillation becomes simple and easy to recover; and the yield of the tar is correspondingly increased, thereby maximizing the utilization of the economic value of the material.
  • the device has a simple structure and is easy to operate. A process only loads and unloads materials once, which has low wear and long life.
  • Another aspect of the invention discloses a process for treating a volatile containing material using the dry distillation system described above, comprising the following process steps:
  • Drying step the volatile matter-containing material is charged into the fixed bed reactor main body, and the low temperature working medium having a temperature of 105 ° C to 280 ° C is introduced into the partition wall heat exchanger of the fixed bed reactor, and the indirect heat exchange is performed. Heating the material for drying, will The evaporated evaporated water is taken out of the fixed bed reactor body and then condensed or directly discharged;
  • Dry distillation step replacing the low temperature working medium in the partition heat exchanger of the fixed bed reactor with a high temperature working medium having a temperature of 400 ° C - 1000 ° C, or continuing to heat the low temperature working medium to a temperature of 400 ° C - 1000 ° C Indirect heat exchange heating the material for dry distillation, and the dry distillation gaseous material is taken out of the fixed bed reactor, and then the components are cooled and separated;
  • the volatile matter-containing material refers to one or more of non-stick coal, oil sand, oil shale, and biomass.
  • non-stick coal such as lignite, long-flame coal, and the like
  • biomass such as domestic garbage, straw, wood, rot plants, and the like.
  • the temperature of the working medium of the low temperature heat source is preferably from 105 ° C to 260 ° C, more preferably from 150 ° C to 260 ° C, still more preferably from 180 ° C to 260 ° C.
  • the low temperature working medium may be steam (such as water vapor), heat transfer oil, molten salt, and the like.
  • the temperature of the working medium of the high temperature heat source is preferably from 400 ° C to 800 ° C, more preferably from 450 ° C to 700 ° C.
  • the high temperature working medium may be the same as or different from the low temperature working medium.
  • it may be steam (such as water vapor) or a pressurized inert gas such as carbon dioxide, nitrogen or the like.
  • Whether or not the drying process is completed can be monitored by a temperature detecting device installed inside the reactor main body, a volatile pyrolysis detecting device installed at the gas product outlet, and/or a flow detecting device installed at the gas product outlet.
  • a temperature detecting device installed inside the reactor main body
  • a volatile pyrolysis detecting device installed at the gas product outlet
  • a flow detecting device installed at the gas product outlet.
  • the steam condensing device or the dispersing device condenses or directly discharges water vapor discharged from the drying process.
  • the working medium in the heat exchanger is evacuated, the valve of the working medium inlet and outlet of the low-temperature heat source is turned off, and the working medium outlet and the inlet valve of the high-temperature heat source are turned on, and the high-temperature working medium is introduced into the heat exchanger of the fixed-bed dryer.
  • the dry distillation process is started; if the high temperature and low temperature working mediums are the same, the valve of the working medium inlet and outlet of the low temperature heat source is turned off, and the working medium outlet and the inlet valve of the high temperature heat source are turned on, and the low temperature working medium is introduced into the high temperature heat source for heating; The working medium is introduced into the partition heat exchanger of the fixed bed reactor, and the indirect heat exchange heats the material for dry distillation.
  • the dry distillation gaseous substance may be treated by means of cooling to separate the tar and the combustible gas, or may be provided with a staged cooling temperature for the stepwise collection of different fractions of the tar.
  • Pyrolysis pyrolysis installed at the gas product outlet through a temperature detecting device installed inside the reactor body
  • the substance detecting device and/or the flow detecting device installed at the gas product outlet can monitor whether the dry distillation process is completed.
  • the material is discharged through a discharge port at the lower portion of the reactor body.
  • the hot material can be used for the corresponding purpose or other processing after being hot pressed or cooled.
  • the process only needs to carry out the loading and unloading of the material once, and the whole process does not need to transfer or turn the animal material, and there is no airflow flushing, the process is simple and easy to control, and the final material particles are complete and the quality is high. Therefore, the dust caused by the pulverization of the material is reduced, which is beneficial to the recycling of the by-products of the material dry distillation and improves the economic utilization value of the material. Therefore, the process is applicable not only to non-stick coals represented by lignite containing volatiles, long-flame coals, but also oil sands, oil shale, etc., and also to biomass, such as domestic garbage, straw, wood, rot plants, etc. Utilization and processing. The treatment process is simple, the cost is low, and the components with valuable value in the materials are recycled as much as possible.
  • Fig. 1 is a schematic view of the system of the present invention, and the contents of the drawings of the Chinese Patent 201320166864.1 are included in the frame.
  • Figure 2 is a schematic view of the structure of a fixed bed reactor.
  • Figure 3 is a schematic cross-sectional view of a tube heat exchanger in a fixed bed reactor.
  • Figure 4 is a schematic illustration of another embodiment of the invention in which a plurality of parallel fixed bed reactors are employed.
  • a fixed bed lignite dryer of the patent 201320166864.1 comprises a casing and a partition heat exchanger 5 installed in the casing, the casing being composited by the inner metal layer 1 and the outer insulation layer 2 Made.
  • a feeding port 3 and a discharge port 4 are respectively provided, and both ends of the partition wall heat exchanger 5 are provided with a heating working medium inlet (tube) 51 and an outlet (tube) 52 which pass through the outer casing;
  • the bed lignite dryer housing is provided with a gaseous product outlet (tube) 10 that exits the outer casing.
  • the shape of the outer casing can be circular or rectangular.
  • the partition heat exchanger 5 connected in parallel to the fixed bed lignite dryer heats the working medium inlet (tube) 51 and the outlet (tube) 52, the inlet of the dry gas treatment unit 8 (tube) 82 and the inlet of the steam condensing unit or the concentrating unit 9.
  • the connecting pipes of 10 are equipped with switching valves 61, 62, 71, 72, 81, 91, and each connection selects a suitable connecting pipe.
  • the high temperature heat source 7 uses a pressurized inert gas as a working medium, such as carbon dioxide gas, and the pressure is adjusted as needed.
  • a pressurized inert gas such as carbon dioxide gas
  • the lignite is installed in the fixed bed lignite dryer, the dryer is closed, the switching valves 71, 72 of the high temperature heat source 7 are turned off, the switching valve 81 of the dry gas processing device 8 is turned off, the switching valves 61, 62 of the low temperature heat source 6 are turned on, and the steam condensation is turned on.
  • a switching valve 91 of the device or the dispersing device 9 the low-temperature heat source 6 is supplied with a low-temperature working medium having a temperature between 105 ° C and 260 ° C to the partition heat exchanger 5 to dry the lignite in the fixed bed; and the steam generated by the drying is introduced through the gaseous product.
  • the outlet (tube) 10 is discharged into a steam condensing unit or a dispersing unit 9, and the condensing steam is liquid water or discharged to the atmosphere.
  • the low temperature heat source 6 is stopped, the switching valves 61, 62 of the low temperature heat source 6 are turned off, the switching valve 91 of the steam condensing device or the dispersing device 9 is turned off, and the high temperature heat source 7 is turned on.
  • the high temperature heat source 7 is supplied to the partition heat exchanger 5 with a high temperature working medium having a temperature between 400 ° C and 1000 ° C, and performing dry distillation of the lignite in the fixed bed;
  • the produced dry distillation gas is discharged into the dry distillation gas treatment unit 8 through the gaseous product outlet (tube) 10, and the dry distillation gas is separated and treated.
  • the switching valves 71, 72 of the high temperature heat source 7 are turned off, the switching valve 81 of the dry gas processing device 8 is turned off, and the hot lignite is discharged to the cooling device or the hot lignite treatment device.
  • the low-temperature heat source 6 uses steam as the working medium, which can make the drying temperature uniform, the temperature is easy to control, and no local over-temperature occurs during drying, and volatile matter and tar loss occur.
  • the high-temperature heat source 7 uses a pressurized inert gas as a working medium to reduce pipeline corrosion.
  • the working medium circulation of the low temperature heat source 6 and the high temperature heat source 7 can be changed, that is, the partition wall heat exchanger 5 can be entered from the lower portion of the partition wall heat exchanger 5.
  • the initial temperature of the circulating working medium entering the high-temperature heat source 7 is high, and the regenerative combustion technology can be adopted to reduce the exhaust gas temperature of the high-temperature heat source 7 and improve the thermal efficiency.
  • the process requirements for drying and dry-burning lignite are judged by other technical measures, it may be determined by detecting the temperature by a temperature detecting device installed in the fixed bed, or by detecting the discharge rate of the gaseous product of the gaseous product outlet (tube) 10. . Or according to the dry distillation time of the corresponding process parameters obtained by the material drying and dry distillation experiments, after the time is reached, it is determined that the temperature in the reactor reaches the process requirement.
  • the treatment method of the dry distillation gas treatment device 8 uses a cooling method to separate the tar and the combustible gas, and different cooling temperature segments can be set, and the segment cooling temperature is set for each of the tar temperature, and the tar fractions are collected in stages.
  • the fixed bed lignite dryer constituting the system does not have any running parts, completes the drying and retorting process on one bed, greatly simplifies the operation, meets the special requirements of the lignite dry distillation, and improves The quality of the dry distillation product of lignite, and the total water of lignite after deep drying is very low, which is advantageous for the clean and efficient separation of dry distillation gas.
  • multiple systems can be operated in parallel, so that high and low temperature heat sources are in continuous operation, which is beneficial for energy saving.
  • One variation of the invention is a dry retorting system.
  • the system can similarly treat any volatile matter-containing volatiles in the material and obtain corresponding gas products, liquid products and solid products.
  • the volatile matter may be a fossil fuel, such as non-stick coal represented by lignite and long flame coal, oil sands, oil shale, etc., or biomass, such as domestic garbage, straw, wood, rot, etc. .
  • the volatile matter mentioned in this paper refers to the pyrolyzable organic matter in the material, mainly composed of hydrocarbon components, organic compounds, nitrogen, sulfur, oxygen and other elements, and its pyrolysis products except methane, hydrogen, carbon monoxide and carbon dioxide.
  • gases such as hydrogen sulfide
  • there are also extremely complex liquid organic compounds such as alkanes, hydrocarbons, phenols, and esters.
  • the dry retorting system comprises at least one fixed bed reactor, a low temperature heat source 6, a high temperature heat source 7, a dry distillation gas treatment unit 8, and a steam condensing unit or a dispersing unit 9, wherein the fixed bed reactor comprises a reactor a main body, the reactor main body having a fixed bed outer casing and a partition heat exchanger installed in a space defined by the outer casing, and an inlet port 3 and a gaseous product outlet (tube) are disposed at an upper portion of the fixed bed reactor 10, the lower part is provided with a discharge port 4.
  • the fixed bed reactor comprises a reactor a main body, the reactor main body having a fixed bed outer casing and a partition heat exchanger installed in a space defined by the outer casing, and an inlet port 3 and a gaseous product outlet (tube) are disposed at an upper portion of the fixed bed reactor 10, the lower part is provided with a discharge port 4.
  • the working medium outlet (tube) 63 and the inlet (tube) 64 of the low temperature heat source and the working medium outlet (tube) 73 and the inlet (tube) 74 of the high temperature heat source are respectively connected in parallel to the partition wall heat exchanger of the fixed bed reactor
  • the working medium inlet (tube) 51 and the outlet (tube) 52 are respectively connected in parallel to the partition wall heat exchanger of the fixed bed reactor.
  • the inlet (tube) 82 of the dry distillation treatment unit is connected in parallel with the inlet (tube) 92 of the vapor condensing unit or the discharge unit to the gaseous product outlet (tube) 10 of the fixed bed reactor.
  • the fixed bed reactor further includes an inlet (tube) 82 respectively disposed at the gaseous product outlet (tube) 10 to connect the dry distillation treatment device, and an inlet (tube) 92 of the vapor condensation device or the discharge device
  • the switching valves 81, 91 on the pipeline, and the working medium inlet (tube) 51 and the outlet (tube) 52 respectively disposed in the partition heat exchanger are respectively connected to the working medium outlet (tube) of the low-temperature heat source and the high-temperature heat source.
  • Switching valves 61, 62, 71, 72 on the lines of 63, 73 and inlet (tube) 64, 74.
  • the working medium of the low temperature heat source is a low temperature working medium having a temperature of from 105 ° C to 280 ° C, preferably from 150 ° C to 260 ° C, more preferably from 180 ° C to 260 ° C. If the temperature of the low-temperature heat source is too low, the drying is insufficient, and if it is too high, part of the volatile pyrolysis material is lost.
  • the low temperature working medium may be, for example, steam (such as water vapor), heat transfer oil, or the like. When steam is used, the drying temperature is uniform, the temperature is easy to control, and it is not easy to cause the loss of volatile pyrolysis products such as methane and tar caused by local over-temperature.
  • the working medium of the high temperature heat source has a temperature of from 400 ° C to 1000 ° C, preferably from 400 ° C to 800 ° C, more preferably from 450 ° C to 650 ° C.
  • the high temperature working medium may be the same as or different from the low temperature working medium.
  • it may be steam or a pressurized inert gas such as carbon dioxide, nitrogen or the like. Inert gas can reduce pipe corrosion.
  • the operation of the switching medium can be dispensed with, and the working medium can be heated to the dry distillation temperature with a high temperature heat source.
  • the high temperature heat source may be a regenerative combustion device, which reduces the exhaust gas temperature of the high temperature heat source and improves the heat efficiency.
  • the enlarged and internal structure of the body of the fixed bed reactor is shown in Figures 2 and 3.
  • the outer casing of the reactor may be circular or rectangular and consists of an inner 1 metal layer and an outer 2 insulating layer.
  • the partition wall heat exchanger 5 may be a tubular heat exchanger or a membrane tube heat exchanger.
  • the aspect ratio of the fixed bed reactor body is not limited and can be determined according to the site and actual needs. For example, it can be 1:1-10:1.
  • the arrangement of the tubes 53 of the tube-and-tube heat exchanger 5 can be determined according to specific needs, for example, the rows can be aligned with each other (see FIG. 3A), or the rows can be arranged offset from each other (see FIG. 3B).
  • the spacing a between two adjacent rows of tubes 53 is 25-200 mm, preferably 60-160 mm.
  • the heating medium inlet (tube) 51 and the outlet (tube) 52 in the heat exchanger 53 are connected in parallel with the upper and lower ends of the respective tubes, respectively.
  • the membrane tube panel heat exchanger comprises a plurality of membrane tube panels (see Fig. 3C), each tube panel being connected by a plurality of tubes 54 and a membrane 55 between adjacent tubes.
  • Each of the tube panels may include a plurality of tubes, each of which has a distance of 30-300, preferably 80-240 mm.
  • the membrane tube panels are arranged parallel to each other with a spacing b of 30-300 mm, preferably 100-300 mm.
  • the two ends of each tube in each membrane tube screen are respectively connected by a parallel tube, and respectively exchange heat through two upper and lower parallel tubes
  • the heating medium inlet (tube) 51 and the outlet (tube) 52 are connected.
  • the above tube may have an outer diameter of 10 to 50 mm, preferably 20 to 40 mm, more preferably 25 to 35 mm, for example 32 mm.
  • a tubular device such as a tubular tube heat exchanger or a membrane tube heat exchanger, may be equipped with a throttling device, such as an orifice plate, or a structure formed by shrinking a heat exchange tube, or A thinner tube section having a smaller flow area is used to access the inside of the tube or one end of the tube to equalize the flow rate of the working medium in each tube in the heat exchanger.
  • a temperature detecting device is also mounted inside the material of the fixed bed reactor body, the mounting position being in the middle of any four tube tubes or in the middle of any two adjacent membrane tube panels. It is also possible to provide a volatile pyrolysis detecting device such as hydrogen, methane, carbon dioxide or carbon monoxide at a gas product outlet (tube). It is also possible to provide a flow detecting device such as a flow meter at the gas product outlet (tube). Whether the drying process is completed can be monitored by the temperature detecting device, the volatile pyrolysis inspection device, and/or the flow detecting device.
  • the temperature in the reactor reaches 100-260 ° C, or the volatile pyrolyzate (such as hydrogen, methane, carbon dioxide or carbon monoxide) is detected to meet the process requirements (ie, a pyrolysis)
  • the amount of release changes, it means the end of the corresponding process stage, which is different for different volatile-containing materials, but is easily determined by experiment, or the emission rate of gaseous products is detected. Below 0.02 m 3 /t/min, the drying process is completed.
  • the working medium in the heat exchanger is evacuated, the working medium inlet (tube) 64 of the low temperature heat source and the valves 62, 61 of the outlet (tube) 63 are closed, and the working medium outlet (tube) 74 and inlet of the high temperature heat source are simultaneously turned on.
  • the valves 71, 72 of the (tube) 73 introduce the high temperature working medium into the heat exchanger of the fixed bed dryer to start the dry distillation process. If the high temperature and low temperature working medium are the same, the valve of the working medium inlet and outlet of the low temperature heat source is turned off, and the working medium outlet and the inlet valve of the high temperature heat source are turned on, and the low temperature working medium is introduced into the high temperature heat source for heating.
  • the steam condensing device or the dispersing device 9 condenses or directly discharges the water vapor discharged from the drying process.
  • the treatment method of the dry distillation gas treatment device 8 may be performed by means of cooling to separate the tar and the combustible gas, or different cooling temperature segments may be set, and the segment cooling temperature is set for each tar temperature, and the tar fractions are collected in stages.
  • Whether or not the dry distillation process is completed can be judged by the above detecting means.
  • the temperature in the reactor body reaches 350-650, or when the amount of volatile pyrolysis (such as hydrogen, methane, carbon dioxide or carbon monoxide, etc.) is detected to meet the process requirements, or the discharge of gaseous products is detected.
  • the rate is lower than 0.03 m 3 /t/min, the dry distillation process is completed.
  • the material is discharged through a discharge port 4 at the lower portion of the reactor body.
  • the above temperature detecting device, the volatile pyrolysis detecting device or the flow detecting device are not essential, and the time required for each process can be obtained according to the drying-dry distillation experiment of the corresponding material performed in advance, thereby judging the drying according to the process duration. Whether the dry distillation process is completed.
  • the dry retorting system of the present invention may comprise two or more fixed bed reactors connected in parallel with one another.
  • the specific number can be selected according to the production site and production needs.
  • FIG 4 is a schematic illustration of one embodiment of the invention in which a plurality of parallel fixed bed reactors (only two are shown) are employed.
  • the fixed bed retorting system of the present embodiment includes a plurality of, for example, 2-100 or more parallel fixed bed reactors, inlets (tubes) of working media of the fixed bed reactor.
  • the outlet (tube) is connected in parallel to the outlets (tubes) 63, 73 and the inlets (tubes) 64, 74 of the low-temperature heat source 6 and the high-temperature heat source 7.
  • the gaseous product outlet (tube) 10 of each fixed bed reactor is connected in parallel to the inlet (tube) 82 of the dry distillation treatment unit 8 and the inlet (tube) 92 of the vapor condensation unit/distribution unit 9.
  • Other structures of the present embodiment are similar to those of the previous embodiment and will not be described again.
  • the system completes the two-step process of drying and retorting the volatile matter in a device, especially a material such as lignite which is easily broken and/or dust-generating, which can maintain the integrity of the material particles and hardly generate dust. Therefore, the treatment of the steam generated by the drying and the volatile pyrolysis produced by the dry distillation becomes simple and easy to recover; and the yield of the tar is correspondingly increased, thereby maximizing the utilization of the economic value of the material.
  • the device has a simple structure and is easy to operate. A process only loads and unloads materials once, which has low wear and long life.
  • the dry distillation of lignite is carried out specifically using different drying and dry distillation temperatures.
  • the dry retorting system of the present embodiment including the main body of the fixed bed reactor, is a rectangular reactor having a length of 3 m, a width of 2 m, and a height of 12 m.
  • the heat exchanger is a tubular heat exchanger, and the tubes are seamless tubes with a diameter of 32 mm, arranged as shown in FIG. 3A, and the tube spacing is 100 mm.
  • the low temperature working medium is water vapor
  • the high temperature working medium is carbon dioxide
  • the circulation is driving cycle
  • the heat source is a multi-purpose boiler
  • the fuel is gas.
  • Whether lignite has reached the drying requirement is determined mainly by the temperature detecting device installed in the fixed bed, or by the volatile pyrolysis detecting device at the gas product outlet, or through the flow at the gas product outlet It is determined by measuring the discharge rate of the gaseous product.
  • the temperature of the lignite in the reactor reaches 195 ° C, it indicates that the lignite of the present embodiment has completed the drying purpose, and at this time, the water content is 2.2%, and the dry distillation step can be carried out.
  • Whether the lignite has reached the dry distillation requirement is determined mainly by detecting the temperature by a temperature detecting device installed in the fixed bed, or by the volatile pyrolysis detecting device of the gaseous product outlet (tube) 10, or by detecting the gaseous product.
  • the discharge rate is determined.
  • the volatile matter Vdaf in the analyzed lignite is 19.2%, which is in the range of 15% to 25%, indicating that the lignite has completed the purpose of dry distillation.
  • the hot lignite is discharged from the discharge port at the lower portion of the reactor main body and cooled. Finally, 8 tons of treated lignite was obtained; the volatile pyrolyzate was condensed stepwise to obtain 0.82 tons of tar and 1200 cubic meters of combustible gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种利用固定床褐煤干燥器干馏褐煤工艺及系统,将褐煤装入固定床褐煤干燥器内,通入温度介于105℃-260℃的低温工作介质至固定床褐煤干燥器的间壁换热器内,干燥褐煤至达到下一工艺要求,更换或加热介质,通入温度介于400℃-1000℃的高温工作介质至固定床褐煤干燥器的间壁换热器内,干馏褐煤至达到工艺要求,然后卸出热褐煤,以及组成实现利用固定床褐煤干燥器干馏褐煤工艺的系统,在本发明中,固定床褐煤干燥器没有任何运转部件,在一个床体上完成干燥和干馏过程,大大的简化了操作,满足褐煤干馏的特殊性要求,提高褐煤的干馏产品质量,并且,褐煤在深度干燥后的全水很低,对干馏气的洁净高效分离有利,提高焦油收油率,提高褐煤干馏的经济性。

Description

一种利用固定床褐煤干燥器干馏褐煤工艺及系统 技术领域
本发明涉及一种用于褐煤干馏的利用固定床褐煤干燥器干馏褐煤工艺,以及实施该工艺所使用的系统,主要用于褐煤等颗粒状物料的干馏。
背景技术
褐煤是一种高水分、高灰分、高挥发分、低热值、低灰熔点、污染重且利用率相对较低的煤炭资源。褐煤含水量为25%-55%,分为外在水、毛细水、吸附水和结晶水。对褐煤的处理在105℃-110℃条件下,可以脱除褐煤的外在水、毛细水以及部分吸附水,再升高温度至150℃以上,可以脱除结晶水,并引起褐煤结构改变,上述为褐煤的干燥过程;温度升高到260℃时,褐煤内所含焦油质和甲烷、氢气开始分解析出,这个过程一直持续到1000℃以上,此为褐煤的干馏过程。
脱除水分后,褐煤是干燥的,挥发分留存在干燥褐煤里,干燥褐煤接触空气,挥发分的活性较高,氧化反应加快,在散热不利的情况下,容易自燃。抑制褐煤自燃要对褐煤进行干馏,降低褐煤挥发分含量,特别是活性较高部分的挥发分含量,安定褐煤,同时提高干馏褐煤的热值,并将褐煤里所含焦油提出,用于化工和生产燃油,这是褐煤提质的最终目的。
褐煤干馏工艺有:鲁奇炉类工艺、固体载热干馏工艺、气体载热干馏工艺、外加热干馏工艺等。所有褐煤处理工艺,均设有干燥、干馏、冷却三步工艺部分。干燥工艺部分的常规干燥方法在申请号为201320166864.1中国专利(该专利公开的内容通过引用并入本文)的背景技术中有阐述,主要有热烟气直接干燥和蒸汽干燥两种方法。经这两种干燥工艺完成后进入干馏工艺部分的褐煤,全水含量均较高,即没有达到干燥工艺应达到的干燥程度。而专利201320166864.1所公开的固定床褐煤干燥器的干燥工作温度也偏低,应提高干燥工作温度,尽可能在少损失挥发分的情况下降低干燥褐煤全水,这样有利于干馏工艺的干馏质量和焦油析出量。
褐煤干馏时,褐煤性质发生很大改变,包括缩聚、毛细孔倒塌,以及其他焦化反应。并且由于褐煤为不粘结煤,所以干馏褐煤易发生褐煤崩解粉碎甚至粉化,若工艺有外力施加(如加压、移动物料)或气流冲刷,将加剧褐煤粉化。粉化的褐煤煤粉随干馏气体或载热气体排出,加大气-固分离难度,并且由于煤粉的强吸附作用,将大大减少焦油收油率, 极大的影响经济性,并加大污染。
褐煤干馏工艺应避免外力施加或气流冲刷,上述所列出的褐煤干馏工艺,均不可避免的有外力施加(例如滚筒)和气流冲刷(例如流化床)或因干燥程度不够而加大气流冲刷的问题,导致褐煤干馏后形体崩解和粉化,带来最终产品的可用性和质量降低以及焦油收油率的降低,并且工艺操作环节多,设备复杂。
专利201320166864.1记载的固定床干燥器的结构适合褐煤,但是使用温度低,应用范围窄。
综上所述,已有的干馏工艺均存在褐煤干馏后形体崩解和粉化、最终产品的质量降低和焦油收油率的降低、工艺操作环节多、设备复杂等缺点,以及专利201320166864.1应用范围窄。
发明内容
本发明目的是提供一种利用固定床褐煤干燥器干馏褐煤工艺及系统,以解决现有技术干馏工艺及装置均存在的褐煤干馏后形体崩解和粉化、最终产品的质量降低和焦油收油率的降低、以及工艺操作环节多、设备复杂等缺点,拓宽专利201320166864.1应用范围。
本发明的技术方案是:一种利用固定床褐煤干燥器干馏褐煤工艺,包括以下工艺步骤:
(1)、将褐煤装入固定床褐煤干燥器内,通入温度介于105℃-260℃的低温工作介质至固定床褐煤干燥器的间壁换热器内,干燥褐煤至达到下一工艺要求;蒸发水分引出固定床褐煤干燥器。
(2)、更换或加热介质,通入温度介于400℃-1000℃的高温工作介质至固定床褐煤干燥器的间壁换热器内,干馏褐煤至达到工艺要求;干馏气引出固定床褐煤干燥器。
(3)、卸出热褐煤至冷却装置或热褐煤处理装置。
组成实现利用固定床褐煤干燥器干馏褐煤工艺的系统,包括专利201320166864.1的固定床褐煤干燥器、低温热源、高温热源、干馏气处理装置、蒸汽冷凝装置或放散装置以及相适应的连接管道,所述的低温热源和高温热源的工作介质出口和入口并联连接于固定床褐煤干燥器的间壁换热器加热工作介质入口和出口,干馏气处理装置与蒸汽冷凝装置或放散装置的入口并联连接于固定床褐煤干燥器的气态产物引出口,低温热源和高温热源的工作介质出口和入口、干馏气处理装置与蒸汽冷凝装置或放散装置的入口均装有切换阀门。
所述的高温热源采用有压的惰性气体为工作介质。
本发明的有益效果是:
1、在干燥、干馏褐煤时,在一个设备完成工艺过程,褐煤不需要翻动,工艺过程延长,工艺温和,保持了褐煤粒度的完整,干馏褐煤质量高;
2、干燥蒸汽和干馏气通过褐煤孔隙排出的量不大,气体流速低,并可通过加热速度控制气体排出速度,煤粉夹带轻微,对后续处理影响很小,冷凝水洁净、焦油收油率高;
3、固定床结构,一个工艺循环褐煤装卸一次,对换热器结构磨损极小,设备简单、寿命长。
换句话说,本发明一方面公开了一种干燥干馏系统。所述干燥干馏系统包括至少一个固定床反应器、低温热源、高温热源、干馏气处理装置以及蒸汽冷凝装置或放散装置,其中,所述固定床反应器包括反应器主体,所述反应器主体具有固定床外壳和安装在所述外壳限定的空间内的间壁换热器,在所述固定床反应器的上部设置有进料口和气态产物引出口,下部设置有出料口;
所述低温热源的工作介质出口和入口和高温热源的工作介质出口和入口分别并联连接于所述固定床反应器的间壁换热器的工作介质入口和出口;
所述干馏气处理装置的入口与蒸汽冷凝装置或放散装置的入口并联连接于所述固定床反应器的气态产物引出口;
所述固定床反应器还包括:分别布置在所述气态产物引出口连接所述干馏气处理装置的入口以及所述蒸汽冷凝装置或放散装置的入口的管线上的切换阀门,和分别布置在所述间壁换热器的工作介质入口和出口分别连接所述低温热源和高温热源的工作介质出口和入口的管线上的切换阀门。
根据一种实施方式,所述系统包括2个或更多个相互并联的固定床反应器。
高温热源和低温热源可采用任何适宜的加热装置。高温热源优选可以采用蓄热式燃烧装置,这样降低排出高温热源的排烟温度,提高热效率。
固定床反应器的外壳可以是任何适宜的形状,例如圆形或矩形,由内侧金属层和外侧保温层构成。
所述间壁换热器可采用列管式换热器或膜式管屏换热器。
所述列管式换热器的两个相邻列管之间的间距a为25-200mm,优选为60-160mm。加热介质入口和出口分别与各列管的上端和下端以任意方式并联。
所述膜式管屏换热器的每片管屏由多个列管和连接相邻两列管之间的膜片构成。每片 管屏可包括多个列管,各列管间距离为30-300,优选为80-240mm。各膜式管屏应相互平行排列,间距b为30-300mm,优选为100-300mm。每一片膜式管屏中的各列管的两端分别由一根并联管联通,并通过上下两根并联管分别与加热介质入口和出口连接。
上述列管的外径可为10-50mm,优选20-40mm,更优选25-35mm,例如32mm。
优选地,所述列管内还可装有节流装置,例如节流孔板,也可以是为将换热管缩颈加工形成的结构,或者采用更细的、通流面积更小的管段接入列管内或列管一端。
根据一种实施方式,本发明的系统中还包括用于检测干燥和/或干馏工艺进行程度的装置。
具体的例子为,在所述固定床反应器主体内部还安装有温度检测装置,安装位置在任意相邻的4个列管的中间或任意相邻的2个膜式管屏的中间。当检测到温度为100-260℃时,干燥工艺结束;当检测到温度为350-650℃时,干馏工艺结束。
另一种方式为,在气态产物引出口处设置挥发分热解物检测装置,所述检测装置例如是氢气、甲烷、二氧化碳或一氧化碳等的检测装置。当检测到相应热解物的量发生符合工艺要求的变化时,干燥工艺结束;当检测到相应的热解物的量发生符合工艺要求的变化时,干馏工艺结束。
再一种方式为,可在气态产物引出口处设置流量检测装置,检测排出的气态物质的流速。当干燥工艺中检测到气态产物如水蒸汽的排出速率低于0.02m3/t·min时,干燥工艺结束;当检测到气态产物,如挥发分热解物的排出速率低于0.03m3/t·min时,干馏工艺结束。
以上检测装置可以安装任何一种,也可安装多种。根据一种实施方式,也可不安装任何检测装置,而是根据预先进行的实验获得的干燥和干馏工艺时间来判定各工艺的终点。
该系统在一个设备中完成对含挥发分的物料干燥和干馏两步工艺,特别是像褐煤这种易破碎和/产生粉尘的物料,可保持物料颗粒的完整度好,几乎不产生粉尘。因此,对干燥产生的蒸汽以及干馏产生的挥发分热解物的处理变得简单,易于回收;而且焦油的收率也相应提高,从而达到物料经济价值的最大化利用。此外,该设备结构简单,操作简便。一个工艺仅装卸物料一次,对设备磨损小,寿命长。
本发明另一方面公开了一种利用上述干燥干馏系统处理含挥发分的物料的工艺,包括以下工艺步骤:
(1)、干燥步骤:将含挥发分的物料装入固定床反应器主体内,通入温度为105℃-280℃的低温工作介质至固定床反应器的间壁换热器内,间接换热加热所述物料以进行干燥,将 干燥所蒸发的水分引出所述固定床反应器主体后冷凝回收或直接排放;
(2)、干馏步骤:更换固定床反应器的间壁换热器内的低温工作介质为温度在400℃-1000℃的高温工作介质,或继续加热所述低温工作介质至400℃-1000℃高温,间接换热加热所述物料以进行干馏,将干馏气态物质引出所述固定床反应器后冷却分离各组分;
(3)、卸出经处理的含挥发分的物料。
所述含挥发分的物料是指不粘煤、油砂、油页岩及生物质中的一种或多种。其中不粘煤例如褐煤、长焰煤等,生物质例如生活垃圾、秸秆、木质、腐植物等。
根据一种实施方式,所述低温热源的工作介质的温度优选为105℃-260℃,更优选为150℃-260℃,又优选为180℃-260℃。低温工作介质可为蒸汽(如水蒸汽)、导热油、熔盐等。
所述高温热源的工作介质的温度优选为400℃-800℃,更优选450℃-700℃。所述高温工作介质可以与所述低温工作介质相同或不同。例如可为蒸汽(如水蒸汽),或为加压的惰性气体,例如二氧化碳、氮气等。
通过安装在反应器主体内部的温度检测装置、安装在气体产物引出口处的挥发分热解物检测装置和/或安装在气体产物引出口处的流量检测装置可以监测干燥工艺是否完成。当达反应器主体内物料温度达到100℃-260℃时、当检测到挥发分热解物(如氢气、甲烷、二氧化碳或一氧化碳等)的量发生符合工艺要求的变化时和/或检测到气态产物如水蒸汽的排出速率低于0.02m3/t·min时,干燥工艺完成。
或者依据物料干燥实验得出的对应工艺参数的干燥时间,达到时间后即确定反应器内温度达到100℃-260℃,干燥工艺完成。
所述蒸汽冷凝装置或放散装置将干燥工艺中排出的水蒸汽冷凝回收或者直接排放。
这时排空换热器中的工作介质,关闭低温热源的工作介质入口和出口的阀门,同时开启高温热源的工作介质出口和入口的阀门,将高温工作介质引入固定床干燥器的换热器中,开始干馏工艺;如果高温和低温工作介质相同,则关闭低温热源的工作介质入口和出口的阀门,同时开启高温热源的工作介质出口和入口的阀门,将低温工作介质引入高温热源进行加热;通入工作介质至固定床反应器的间壁换热器内,间接换热加热物料进行干馏。
所述干馏气态物质的处理方式可以采用冷却的方式来分离焦油和可燃气体,也可以设置分段冷却温度进行焦油不同馏分的分段收集。
通过安装在反应器主体内部的温度检测装置、安装在气体产物引出口处的挥发分热解 物检测装置和/或安装在气体产物引出口处的流量检测装置可以监测干馏工艺是否完成。
当反应器主体内物料的温度达到350℃-650℃时、当检测到挥发分热解物(如氢气、甲烷、二氧化碳或一氧化碳等)的量发生符合工艺要求的变化时和/或检测到气态产物如挥发分热解物的排出速率低于0.03m3/t·min时,干馏工艺完成。
或者依据物料干馏实验得出的对应工艺参数的干馏时间,达到相应时间后即确定反应器内温度达到350℃-650℃,干馏工艺完成。
通过反应器主体下部的出料口将物料卸出。热物料进行热压型或进行冷却后可用于相应的用途或进行其他加工处理。
该工艺方法只需进行一次物料的装卸,且整个工艺中不需转移或翻动物料,也没有气流冲刷,工艺简单、容易控制,而且最终物料颗粒完整,质量高。也因此减少了因物料粉化而带来的粉尘,有利于物料干馏副产物的回收利用,提高了物料的经济利用价值。因此,该工艺不仅适用于含挥发分的褐煤、长焰煤为代表的不粘煤,以及油砂、油页岩等,也适用于生物质,例如生活垃圾、秸秆、木质、腐植物等的利用和处理。处理工艺简单,成本低,且尽可能地对物料中有利用价值的成分进行回收利用。
附图说明
图1是本发明系统示意图,框线内是中国专利201320166864.1的说明书附图内容。
图2是固定床反应器结构示意图。
图3是固定床反应器中列管换热器的截面示意图。
图4是本发明另一实施例示意图,其中采用多个并联固定床反应器。
具体实施方式
以下通过对本发明具体实施方式的说明来更详细地说明本发明。本领域技术人员应理解,以下具体实施方式仅为说明性的,而非对本发明的限制。
参见图1,框线内专利201320166864.1的固定床褐煤干燥器,更具体如图2所示包括外壳和安装在外壳内的间壁换热器5,外壳由内侧金属层1和外侧的保温层2复合而成。在外壳的上端和下端分别设有进料口3和出料口4,间壁换热器5的两端设有穿出外壳的加热工作介质入口(管)51和出口(管)52;在固定床褐煤干燥器外壳设有穿出外壳的气态产物引出口(管)10。外壳的形状可以是圆形或矩形。
参见图1,低温热源6和高温热源7的工作介质出口(管)63、73和入口(管)64、 74并联连接于固定床褐煤干燥器的间壁换热器5加热工作介质入口(管)51和出口(管)52,干馏气处理装置8入口(管)82与蒸汽冷凝装置或放散装置9的入口(管)92并联连接于固定床褐煤干燥器的气态产物引出口(管)10;低温热源6和高温热源7的工作介质出口(管)63、73和入口(管)64、74、干馏气处理装置8入口(管)82与蒸汽冷凝装置或放散装置9的入口(管)92,与间壁换热器加热工作介质入口(管)51和出口(管)52、气态产物引出口(管)10的连接管道均装有切换阀门61、62、71、72、81、91,各连接选择相适应的连接管道。
高温热源7采用有压的惰性气体为工作介质,如二氧化碳气体,压力大小根据需要调节。
工艺过程:
在固定床褐煤干燥器内装入褐煤,封闭干燥器,关闭高温热源7的切换阀门71、72,关闭干馏气处理装置8的切换阀门81,开启低温热源6的切换阀门61、62,开启蒸汽冷凝装置或放散装置9的切换阀门91,低温热源6向间壁换热器5通入温度介于105℃-260℃的低温工作介质,对固定床内褐煤进行干燥;干燥产生的蒸汽经过气态产物引出口(管)10排入蒸汽冷凝装置或放散装置9,冷凝蒸汽为液态水或排向大气。
在通过其他技术措施判断干燥褐煤至达到下一工艺要求,则停止低温热源6,关闭低温热源6的切换阀门61、62,关闭蒸汽冷凝装置或放散装置9的切换阀门91,开启高温热源7的切换阀门71、72,开启干馏气处理装置8的切换阀门81,高温热源7向间壁换热器5通入温度介于400℃-1000℃的高温工作介质,对固定床内褐煤进行干馏;干馏产生的干馏气经过气态产物引出口(管)10排入干馏气处理装置8,对干馏气进行分离和处理。
在通过其他技术措施判断干馏褐煤至达到工艺要求后,关闭高温热源7的切换阀门71、72,关闭干馏气处理装置8的切换阀门81,卸出热褐煤至冷却装置或热褐煤处理装置。
低温热源6采用蒸汽为工作介质,可以使干燥温度均匀,温度易于控制,不发生在干燥时出现局部超温而出现挥发分和焦油损失。
高温热源7采用有压的惰性气体为工作介质,可以减轻管路腐蚀。
低温热源6和高温热源7的工作介质循环均可改变,即可以从间壁换热器5的下部进入间壁换热器5。
重复以上工艺过程,进行连续化生产。
高温热源7在加热工作介质时,因进入高温热源7的循环工作介质初温较高,可以采用蓄热式燃烧技术,降低排出高温热源7的排烟温度,提高热效率。
在通过其他技术措施判断干燥和干馏褐煤的工艺要求时,可以通过安装在固定床里的温度检测装置检测温度来判定,或通过检测气态产物引出口(管)10的气态产物的排出速率来判定。或者依据物料干燥和干馏实验得出的对应工艺参数的干馏时间,达到时间后即确定反应器内温度达到工艺要求。
干馏气处理装置8的处理方式采用冷却的方式来分离焦油和可燃气体,可以设置不同冷却温度段,对于焦油各馏分温度设定分段冷却温度,进行焦油各馏分分段收集。
本发明和已有技术的明显区别是:组成系统的固定床褐煤干燥器没有任何运转部件,在一个床体上完成干燥和干馏过程,大大的简化了操作,满足褐煤干馏的特殊性要求,提高褐煤的干馏产品质量,并且,褐煤在深度干燥后的全水很低,对干馏气的洁净高效分离有利。在实际应用中,可以多个系统并联工作,使高、低温热源处于连续工作中,对于节能是有利的。
本发明的一个变形是一种干燥干馏系统。该系统除了可以对褐煤进行干燥干馏处理,还可对任何含挥发分的物料进行类似处理提取物料中的挥发分热解物,并获得相应的气体产物、液体产物和固体产物。含挥发分的物料可以是矿物燃料,如以褐煤、长焰煤为代表的不粘煤,以及油砂、油页岩等;也可以是生物质,例如生活垃圾、秸秆、木质、腐植物等。
本文提及的挥发分是指物料中可热解的有机质,主要是以碳氢组分为主有机化合物,还含有氮、硫、氧等元素,其热解产物除甲烷、氢气、一氧化碳、二氧化碳和硫化氢等气体外,还有极为复杂的液态有机化合物,例如烷类、烃类、酚类、酯类等。
参考图1,所述干燥干馏系统包括至少一个固定床反应器、低温热源6、高温热源7、干馏气处理装置8以及蒸汽冷凝装置或放散装置9,其中,所述固定床反应器包括反应器主体,所述反应器主体具有固定床外壳和安装在所述外壳限定的空间内的间壁换热器,在所述固定床反应器的上部设置有进料口3和气态产物引出口(管)10,下部设置有出料口4。
所述低温热源的工作介质出口(管)63和入口(管)64和高温热源的工作介质出口(管)73和入口(管)74分别并联连接于所述固定床反应器的间壁换热器的工作介质入口(管)51和出口(管)52。
所述干馏气处理装置的入口(管)82与蒸汽冷凝装置或放散装置的入口(管)92并联连接于所述固定床反应器的气态产物引出口(管)10。
所述固定床反应器还包括:分别布置在所述气态产物引出口(管)10连接所述干馏气处理装置的入口(管)82以及所述蒸汽冷凝装置或放散装置的入口(管)92的管线上的切换阀门81,91,和分别布置在所述间壁换热器的工作介质入口(管)51和出口(管)52分别连接所述低温热源和高温热源的工作介质出口(管)63,73和入口(管)64,74的管线上的切换阀门61,62,71,72。
根据一种实施方式,所述低温热源的工作介质为温度在105℃-280℃,优选150℃-260℃,更优选180℃-260℃的低温工作介质。低温热源的温度过低则干燥不充分,过高则会损失部分挥发分热解物。低温工作介质例如可为蒸汽(如水蒸汽)、导热油等。采用蒸汽时干燥温度均匀、温度易于控制,不容易出现局部超温导致的挥发分热解物,如甲烷、焦油的损失。
所述高温热源的工作介质的温度为400℃-1000℃,优选400℃-800℃,更优选450℃-650℃的高温工作介质。所述高温工作介质可以与所述低温工作介质相同或不同。例如可为蒸汽或为加压的惰性气体,例如二氧化碳、氮气等。采用惰性气体可以减轻管路腐蚀。采用与低温工作介质相同的工作介质时,可免除切换介质的操作,只需用高温热源将工作介质加热至干馏温度即可。
高温热源和低温热源可采用任何适宜的加热装置。高温热源优选可以采用蓄热式燃烧装置,这样降低排出高温热源的排烟温度,提高热效率。
固定床反应器的主体的放大及内部结构见图2和3。反应器的外壳可以是圆形或矩形,由内侧1金属层和外侧2保温层构成。其中的间壁换热器5可采用列管式换热器或膜式管屏换热器。
固定床反应器主体的长径比没有限制,可根据场地和实际需要确定。例如可为1:1-10:1。
所述列管式换热器5的列管53的排列方式可根据具体需要确定,例如可以以各排相互对齐排列(见图3A),也可以各排相互错位排列(见图3B)。优选地,两个相邻列管53之间的间距a为25-200mm,优选为60-160mm。换热器53中加热介质入口(管)51和出口(管)52分别与各列管的上端和下端以任意方式并联。
所述膜式管屏换热器包括多片膜式管屏(见图3C),每片管屏由多个列管54和相邻两列管之间的膜片55连接。每片管屏可包括多个列管,各列管54间距离为30-300,优选为80-240mm。各膜式管屏相互平行排列,间距b为30-300mm,优选为100-300mm。每一片膜式管屏中的各列管的两端分别由一根并联管联通,并通过上下两根并联管分别与换热 器中加热介质入口(管)51和出口(管)52连接。
上述列管的外径可为10-50mm,优选20-40mm,更优选25-35mm,例如32mm。无论是列管式换热器还是膜式管屏换热器中的列管内还可装有节流装置,例如节流孔板,也可以是为将换热管缩颈加工形成的结构,或者采用更细的、通流面积更小的管段接入列管内或列管一端,以使换热器内各个列管中的工作介质流量均衡。
根据一种实施方式,在所述固定床反应器主体的物料内部还安装有温度检测装置,安装位置为任意4个列管的中间或任意相邻的2个膜式管屏的中间。也可在气态产物引出口(管)处设置挥发分热解物检测装置,例如氢气、甲烷、二氧化碳或一氧化碳等的检测装置。还可以通过在气态产物引出口(管)处设置流量检测装置,如流量计。通过所述温度检测装置、挥发分热解物检查装置和/或流量检测装置可以监测干燥工艺是否完成。
具体来说,当达反应器内温度达到100-260℃时,或者检测到挥发分热解物(例如氢气、甲烷、二氧化碳或一氧化碳)发生符合工艺要求的变化(即,某种热解物的释放量发生某种改变时,意味着相应的工艺阶段的结束,这种变化对于不同的含挥发分的物料来说是不同的,但是容易通过实验确定)时,或者检测到气态产物的排出速率低于0.02m3/t/min时,干燥工艺完成。这时排空换热器中的工作介质,关闭控制低温热源的工作介质入口(管)64和出口(管)63的阀门62,61,同时开启高温热源的工作介质出口(管)74和入口(管)73的阀门71,72,将高温工作介质引入固定床干燥器的换热器中,开始干馏工艺。如果高温和低温工作介质相同,则关闭低温热源的工作介质入口和出口的阀门,同时开启高温热源的工作介质出口和入口的阀门,将低温工作介质引入高温热源进行加热。
所述蒸汽冷凝装置或放散装置9将干燥工艺中排出的水蒸汽冷凝回收或者直接排放。所述干馏气处理装置8的处理方式可以采用冷却的方式来分离焦油和可燃气体,也可以设置不同冷却温度段,对于焦油各馏分温度设定分段冷却温度,进行焦油各馏分分段收集。
通过上述检测装置可判断干馏工艺是否完成。当反应器主体内的温度达到350-650时,或者当检测到挥发分热解物(如氢气、甲烷、二氧化碳或一氧化碳等)的量发生符合工艺要求的变化时,或者检测到气态产物的排出速率低于0.03m3/t/min时,干馏工艺完成。
通过反应器主体下部的出料口4将物料卸出。
当然,上述温度检测装置、挥发分热解物检测装置或流量检测装置不是必须的,可以根据预先进行的相应物料的干燥-干馏实验获得各工艺所需的时间,从而根据工艺持续时间来判断干燥、干馏工艺是否完成。
以上按照褐煤的处理方式对本发明的一种实施方式进行了详细描述。然而本领域的普 通技术人员应理解,本发明的干燥干馏系统并不仅限于干燥和干馏两个工艺过程,根据具体被处理的物料以及具体需要,可以增加其他在所述固定床反应器中进行的其他工艺过程或减少某些不必要的工艺过程或步骤。这些变形均在本发明的范围之内。
根据另一种实施方式,本发明的干燥干馏系统可包括2个或更多个相互并联的固定床反应器。固定床反应器的数量原则上没有上限,但是考虑场地以及动力系统的供给能力,合适地为,例如3、4、5、8、10直至20个互为并联的固定床反应器。具体数目可根据生产场地以及生产需要选择。
图4为本发明一种实施方式的示意图,其中采用多个并联固定床反应器(图中仅示出两个)。如图所示,本实施例所述的固定床干馏系统,包括多个,例如可以是2-100或更多个并联的固定床反应器,固定床反应器的各工作介质的入口(管)、出口(管)并联接入低温热源6和高温热源7的出口(管)63、73和入口(管)64、74。各固定床反应器的气态产物引出口(管)10并联连接于干馏气处理装置8入口(管)82与蒸汽冷凝装置/放散装置9的入口(管)92。本实施方式的其他结构与上一实施例的结构相似,不再赘述。
该系统在一个设备中完成对含挥发分的物料干燥和干馏两步工艺,特别是像褐煤这种易破碎和/产生粉尘的物料,可保持物料颗粒的完整度好,几乎不产生粉尘。因此,对干燥产生的蒸汽以及干馏产生的挥发分热解物的处理变得简单,易于回收;而且焦油的收率也相应提高,从而达到物料经济价值的最大化利用。此外,该设备结构简单,操作简便。一个工艺仅装卸物料一次,对设备磨损小,寿命长。
所用工艺方法中只需进行一次物料装卸,且整个工艺中不需转移或翻动物料,也没有气流冲刷,工艺简单、容易控制,而且最终物料颗粒完整,质量高。也因此减少了因褐物料化而带来的粉尘,有利于物料干馏副产物的回收利用,提高了物料的经济利用价值。
根据以上实施方式,具体采用不同干燥和干馏温度进行褐煤的干燥干馏。
实施例:
本实施例的干燥干馏系统,包括固定床反应器的主体为长3m、宽2m、高12m的矩形反应器。其中,换热器为列管式换热器,列管为直径32mm的无缝管,如图3A所示方式排列,管间距为100mm。反应器中部有热电偶温度检测器。低温工作介质为水蒸汽,高温工作介质为二氧化碳,循环为驱动循环,热源为多用途锅炉,燃料为燃气。
将15吨褐煤(购自内蒙古白音华煤矿褐煤、含水量(Mt,全水重量百分比含量)=32.3%,灰分A=19.7%,挥发分(Vdaf,干燥无灰基挥发份)=46.5%,余量为固定碳)从固定床反应 器主体上部的进料口装入反应器中。关闭进料口,通入低温工作介质(热源出口处工作介质温度为220℃)开始干燥工艺。蒸发的水分直接排放进入大气。干燥5小时后测得反应器中温度为195℃,停止干燥。通入625℃的高温工作介质,干馏4小时。分别取干燥工艺结束后的褐煤样品和干馏工艺结束后的褐煤样品测定其中所含的水分和挥发分的量。结果见下表1和表2。
表1褐煤经干燥后的各项指标:
工作介质温度(℃) 加热时间(h) 褐煤含水量Mt 挥发分含量Vdaf
220 5 2.2% 46.3%
褐煤是否已达到干燥要求,主要通过安装在固定床里的温度检测装置检测温度来判定,或通过气态产物引出口处的挥发分热解物检测装置来判定,或通过气态产物引出口处的流量计来检测气态产物的排出速率来判定。在本实施例中,当反应器中的褐煤温度达到195℃时,表明本实施例的褐煤已完成干燥目的,此时含水量为2.2%,可进行干馏步骤。
表2褐煤经干馏后的各项指标
工作介质温度(℃) 加热时间(h) 挥发分Vdaf
625 4 19.2%
褐煤是否已达到干馏要求,主要通过安装在固定床里的温度检测装置检测温度来判定,或通过气态产物引出口(管)10的挥发分热解物检测装置来判定,或通过检测气态产物的排出速率来判定。在本实施例中,当反应器中的褐煤温度达到520℃时,分析褐煤中的挥发分Vdaf为19.2%,在15%-25%的范围内,表明褐煤已完成干馏目的。
干馏工艺结束后,从反应器主体下部的出料口将热褐煤卸出,冷却。最后获得处理后的褐煤8吨;挥发分热解物经分步冷凝后获得焦油0.82吨,可燃气体1200立方米。

Claims (3)

  1. 一种利用固定床褐煤干燥器干馏褐煤工艺,其特征是:包括以下工艺步骤:
    (1)、将褐煤装入固定床褐煤干燥器内,通入温度介于105℃-260℃的低温工作介质至固定床褐煤干燥器的间壁换热器内,干燥褐煤至达到下一工艺要求;蒸发水分引出固定床褐煤干燥器;
    (2)、更换或加热介质,通入温度介于400℃-1000℃的高温工作介质至固定床褐煤干燥器的间壁换热器内,干馏褐煤至达到工艺要求;干馏气引出固定床褐煤干燥器;
    (3)、卸出热褐煤至冷却装置或热褐煤处理装置。
  2. 一种实现权利要求1所述的利用固定床褐煤干燥器干馏褐煤工艺的系统,包括固定床褐煤干燥器、低温热源、高温热源、干馏气处理装置、蒸汽冷凝装置或放散装置以及相适应的连接管道,其特征是:低温热源和高温热源的工作介质出口和入口并联连接于固定床褐煤干燥器的间壁换热器加热工作介质入口和出口,干馏气处理装置与蒸汽冷凝装置或放散装置的入口并联连接于固定床褐煤干燥器的气态产物引出口,低温热源和高温热源的工作介质出口和入口、干馏气处理装置与蒸汽冷凝装置或放散装置的入口均装有切换阀门。
  3. 根据权利要求2所述的利用固定床褐煤干燥器干馏褐煤系统,其特征是:高温热源采用有压的惰性气体为工作介质。
PCT/CN2014/094934 2013-12-26 2014-12-25 一种利用固定床褐煤干燥器干馏褐煤工艺及系统 WO2015096768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310728650.3 2013-12-26
CN201310728650.3A CN104046371B (zh) 2013-12-26 2013-12-26 一种利用固定床褐煤干燥器干馏褐煤工艺及系统

Publications (1)

Publication Number Publication Date
WO2015096768A1 true WO2015096768A1 (zh) 2015-07-02

Family

ID=51499775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094934 WO2015096768A1 (zh) 2013-12-26 2014-12-25 一种利用固定床褐煤干燥器干馏褐煤工艺及系统

Country Status (2)

Country Link
CN (1) CN104046371B (zh)
WO (1) WO2015096768A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682713A (zh) * 2019-02-21 2019-04-26 吉林大学 一种油页岩含油率自动测定装置及测定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046371B (zh) * 2013-12-26 2016-05-25 聂红军 一种利用固定床褐煤干燥器干馏褐煤工艺及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134465A (ja) * 1994-11-14 1996-05-28 Mitsubishi Chem Corp コークスの製造方法
US5639353A (en) * 1994-11-09 1997-06-17 Calderon; Albert Apparatus for carbonizing material
CN101787291A (zh) * 2009-12-28 2010-07-28 曲靖众一精细化工股份有限公司 褐煤高效快速热解方法
CN103090642A (zh) * 2013-01-17 2013-05-08 聂红军 颗粒状物料的回热式固定床干燥工艺及装置
CN104046371A (zh) * 2013-12-26 2014-09-17 聂红军 一种利用固定床褐煤干燥器干馏褐煤工艺及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845312B (zh) * 2010-05-13 2013-04-17 河北理工大学 往复折返滚动床褐煤干燥干馏提质塔
CN101955782B (zh) * 2010-09-17 2013-05-15 富熙能源工程技术(上海)有限公司 一种煤的热解方法
CN102965127A (zh) * 2012-11-07 2013-03-13 中国重型机械研究院股份公司 一种步进式褐煤低温干馏系统
CN103074093B (zh) * 2013-01-30 2014-07-02 南京工业大学 一种褐煤直接干燥和热解一体化工艺和系统
CN203216215U (zh) * 2013-04-07 2013-09-25 聂红军 固定床褐煤干燥器
CN203807397U (zh) * 2013-12-26 2014-09-03 聂红军 一种利用固定床褐煤干燥器干馏褐煤系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639353A (en) * 1994-11-09 1997-06-17 Calderon; Albert Apparatus for carbonizing material
JPH08134465A (ja) * 1994-11-14 1996-05-28 Mitsubishi Chem Corp コークスの製造方法
CN101787291A (zh) * 2009-12-28 2010-07-28 曲靖众一精细化工股份有限公司 褐煤高效快速热解方法
CN103090642A (zh) * 2013-01-17 2013-05-08 聂红军 颗粒状物料的回热式固定床干燥工艺及装置
CN104046371A (zh) * 2013-12-26 2014-09-17 聂红军 一种利用固定床褐煤干燥器干馏褐煤工艺及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682713A (zh) * 2019-02-21 2019-04-26 吉林大学 一种油页岩含油率自动测定装置及测定方法
CN109682713B (zh) * 2019-02-21 2024-04-19 吉林大学 一种油页岩含油率自动测定装置及测定方法

Also Published As

Publication number Publication date
CN104046371B (zh) 2016-05-25
CN104046371A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
CN103011157B (zh) 一种生物质蒸汽低温热解生产活性炭和氢气的系统和方法
JP5756814B2 (ja) 石炭物質の分解設備
Choi et al. Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal
CN102766475B (zh) 一种基于过热蒸气介质的流化床粉煤干燥、干馏方法及系统
CA2806493C (en) Electrical-heating coal material decomposition device
EP2607453B1 (en) Vertical pyrolysis equipment for coal substance
CN102585863B (zh) 筒套型煤物质分解装置
CN104745222B (zh) 一种移动床自热式加压气化富氢环境干馏炉及其干馏方法
Liu et al. Experimental and simulation investigations on self-heat recuperative fluidized bed dryer for biomass drying with superheated steam
CN103980920B (zh) 一种低质燃料热解工艺
WO2015096768A1 (zh) 一种利用固定床褐煤干燥器干馏褐煤工艺及系统
EP3031880A1 (en) Dry distillation reactor and method for raw material of hydrocarbon with solid heat carrier
CN102492445A (zh) 一种粉煤的多管回转低温干馏工艺方法
CN102994103A (zh) 一种生物质干燥炭化炉
CN106698424A (zh) 一种旋转式热解处理生活污泥的系统及方法
CN103571508A (zh) 连续蓄热式干馏工艺和干馏炉
US9862890B2 (en) Apparatus and method for pyrolyzing coal with wide particle size distribution
CN105368472A (zh) 热解设备和方法
CN203216215U (zh) 固定床褐煤干燥器
CN202808713U (zh) 连续蓄热式干馏炉
CN106629726A (zh) 一种污泥制备活性炭的系统和方法
CN203807397U (zh) 一种利用固定床褐煤干燥器干馏褐煤系统
WO2013127159A1 (zh) 一种蓄热式生物质热解方法及其系统
CN206204183U (zh) 一种热解煤制备苯的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875145

Country of ref document: EP

Kind code of ref document: A1