WO2015096644A1 - 金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件 - Google Patents

金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件 Download PDF

Info

Publication number
WO2015096644A1
WO2015096644A1 PCT/CN2014/094008 CN2014094008W WO2015096644A1 WO 2015096644 A1 WO2015096644 A1 WO 2015096644A1 CN 2014094008 W CN2014094008 W CN 2014094008W WO 2015096644 A1 WO2015096644 A1 WO 2015096644A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
memory material
resistive memory
based resistive
doped germanium
Prior art date
Application number
PCT/CN2014/094008
Other languages
English (en)
French (fr)
Inventor
缪向水
许磊
李祎
徐荣刚
赵俊峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015096644A1 publication Critical patent/WO2015096644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the invention relates to the field of microelectronics, in particular to a metal doped yttrium-based resistive memory material, a preparation method and a resistive unit device.
  • the resistive-change unit device is considered to be a promising next-generation high-speed, high-density, low-power memory, and has received extensive attention from academia and industry.
  • the principle of the resistive unit device is to use a resistive material as a storage medium, and externally apply an electric pulse to form and break an oxygen vacancy conductive channel or a metal conductive wire in the resistive material to realize a high resistance state and a low resistance state of the device. Between the reversible transitions, the difference in resistance between the two states is used to store the 0 and 1 information.
  • GeTe As a solid electrolyte material, GeTe has high ion mobility and has been initially applied to the preparation of resistive memory materials. However, GeTe undergoes a phase transition from a high-resistance amorphous state to a low-resistance crystalline state at a temperature of 150 to 200 ° C, and the thermal stability is poor, which causes loss or disturbance of data storage and an increase in energy consumption. Therefore, how to improve the crystallization temperature of the bismuth material and improve the practical application value is very important.
  • the first aspect of the embodiments of the present invention provides a metal doped yttrium-based resistive memory material having a higher crystallization temperature and an amorphous heat. Steady The properties are good, and the resistance change characteristics are small due to the thermal disturbance factor, so as to solve the problem that the existing enamel material has a low crystallization temperature and the practical application value is poor.
  • a second aspect of the embodiments of the present invention provides a method for preparing a metal-doped bismuth-based resistive memory material, which has flexible operation and wide application range.
  • a third aspect of the embodiments of the present invention provides a resistive change cell device.
  • an M-Te bond is present in the metal doped cerium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag 14 Ge 40 Te 46 or Ag 16 Ge 40 Te 44 .
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the metal doped cerium-based resistive memory material is a thin film material. More preferably, the film material has a thickness of 5 to 100 nm.
  • the doping of the metal M in the metal-doped germanium-based resistive memory material provided by the first aspect of the present invention improves the crystallization temperature of the bismuth-based resistive memory material and improves the bismuth-based resistive memory material.
  • the thermal stability of the crystalline state, the resistive property of the metal-doped bismuth-based resistive memory material is less affected by thermal disturbance, which solves the loss or disturbance of data storage and the increase of energy consumption due to the low crystallization temperature of the existing bismuth material.
  • the metal doped cerium-based resistive memory material has a high ion mobility.
  • the metal doped bismuth-based resistive memory material provided by the first aspect of the present invention has high practical application value.
  • an embodiment of the present invention provides a method for preparing a metal-doped cerium-based resistive memory material, which is prepared by magnetron sputtering, chemical vapor deposition, or electron beam evaporation.
  • an M-Te bond is present in the metal doped cerium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag 14 Ge 40 Te 46 or Ag 16 Ge 40 Te 44 .
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the metal doped cerium-based resistive memory material is a thin film material. More preferably, the film material has a thickness of 5 to 100 nm.
  • the magnetron sputtering method is performed by magnetron sputtering of a Ge metal alloy target M metal foil or co-sputtering with a Ge metal alloy target and an M metal target.
  • the atomic ratio of Ge to Te in the GeTe alloy target is 1:1.
  • the sputtering power is 10 to 100 W, and the sputtering argon gas pressure is 0.25 to 0.85 Pa. More preferably, the sputtering power is 40 W in the magnetron sputtering method, and the sputtering argon pressure is 0.5 Pa.
  • the preparation method of the metal doped cerium-based resistive memory material provided by the second aspect of the present invention is flexible in operation and wide in application range.
  • an M-Te bond is present in the metal doped cerium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag 14 Ge 40 Te 46 or Ag 16 Ge 40 Te 44 .
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the resistive memory material film has a thickness of 5 to 100 nm.
  • the material of the reaction electrode is Cu, Al or Ag.
  • the reaction electrode has a thickness of 10 to 300 nm.
  • the material of the non-reactive electrode is Pt, Au, Ti, W, Ta, TiW, TiN or TaN.
  • the non-reactive electrode has a thickness of 10 to 300 nm.
  • the metal doped yttrium-based resistive memory material used in the resistive change device provided by the third aspect of the present invention has a higher crystallization temperature, and the resistive unit device has higher thermal stability and data reliability. High practical application value.
  • a first aspect of the present invention provides a metal-doped bismuth-based resistive memory material having a high crystallization temperature and a good thermal stability in an amorphous state.
  • the resistive property is less affected by the thermal disturbance factor, so as to solve the problem that the existing enamel material has a low crystallization temperature and the practical application value is poor.
  • a second aspect of the embodiments of the present invention provides a method for preparing a metal-doped bismuth-based resistive memory material, which has flexible operation and wide application range.
  • a third aspect of the embodiments of the present invention provides a resistive-change unit device, which has high thermal stability and high data reliability, and has high practical application value.
  • Example 1 is an EDS curve of a metal doped yttrium-based resistive memory material prepared in Example 1 of the present invention
  • Example 3 is a crystalline XRD curve of a metal doped yttrium-based resistive memory material prepared in Example 1 of the present invention at 400 ° C;
  • Example 4 is an XPS curve of a Te element in a metal-doped germanium-based resistive memory material prepared in Example 1 of the present invention
  • Example 5 is an XPS curve of an Ag element in a metal-doped germanium-based resistive memory material prepared in Example 1 of the present invention
  • Fig. 6 is a graph showing the volt-ampere characteristic curve of the resistive element device fabricated in the fourth embodiment of the present invention.
  • An M-Te bond is present in the metal-doped germanium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag14Ge40Te46 or Ag16Ge40Te44.
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the metal-doped germanium-based resistive memory material is a thin film material.
  • the film material has a thickness of 5 to 100 nm.
  • the doping of the metal M in the metal-doped germanium-based resistive memory material provided by the first aspect of the present invention improves the crystallization temperature of the bismuth-based resistive memory material and improves the bismuth-based resistive memory material.
  • the thermal stability of the crystalline state, the resistive property of the metal-doped bismuth-based resistive memory material is less affected by thermal disturbance, which solves the loss or disturbance of data storage and the increase of energy consumption due to the low crystallization temperature of the existing bismuth material.
  • the metal doped cerium-based resistive memory material has a high ion mobility.
  • the metal doped bismuth-based resistive memory material provided by the first aspect of the present invention has high practical application value.
  • an embodiment of the present invention provides a method for preparing a metal-doped cerium-based resistive memory material, which is prepared by magnetron sputtering, chemical vapor deposition, or electron beam evaporation.
  • An M-Te bond is present in the metal-doped germanium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag14Ge40Te46 or Ag16Ge40Te44.
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the metal-doped germanium-based resistive memory material is a thin film material.
  • the film material has a thickness of 5 to 100 nm.
  • the magnetron sputtering method is performed by magnetron sputtering of a Ge metal alloy target M metal foil or co-sputtering with a Ge metal alloy target and an M metal target.
  • the atomic ratio of Ge to Te in the GeTe alloy target is 1:1.
  • the sputtering power is 10 to 100 W, and the sputtering argon gas pressure is 0.25 to 0.85 Pa.
  • the sputtering power was 40 W, and the sputtering argon gas pressure was 0.5 Pa.
  • the preparation method of the metal doped cerium-based resistive memory material provided by the second aspect of the present invention is flexible in operation and wide in application range.
  • An M-Te bond is present in the metal-doped germanium-based resistive memory material.
  • the metal doped cerium-based resistive memory material has a molecular formula of Ag14Ge40Te46 or Ag16Ge40Te44.
  • the metal doped cerium-based resistive memory material has a crystallization temperature of 200 to 350 °C.
  • the film of the resistive memory material has a thickness of 5 to 100 nm.
  • the material of the reaction electrode is Cu, Al or Ag.
  • the thickness of the reaction electrode is 10 to 300 nm.
  • the material of the non-reactive electrode is Pt, Au, Ti, W, Ta, TiW, TiN or TaN.
  • the non-reactive electrode has a thickness of 10 to 300 nm.
  • the metal doped yttrium-based resistive memory material used in the resistive change device provided by the third aspect of the present invention has a higher crystallization temperature, and the resistive unit device has higher thermal stability and data reliability. High practical application value.
  • a first aspect of the present invention provides a metal-doped bismuth-based resistive memory material having a high crystallization temperature and a good thermal stability in an amorphous state.
  • the resistive property is less affected by the thermal disturbance factor, so as to solve the problem that the existing enamel material has a low crystallization temperature and the practical application value is poor.
  • a second aspect of the embodiments of the present invention provides a method for preparing a metal-doped bismuth-based resistive memory material, which has flexible operation and wide application range.
  • a third aspect of the embodiments of the present invention provides a resistive-change unit device, which has high thermal stability and high data reliability, and has high practical application value.
  • a method for preparing a metal-doped bismuth-based resistive memory material comprising the steps of:
  • a metal-doped yttrium-based resistive memory material was prepared by magnetron sputtering of a GeTe alloy target with a silver foil.
  • the atomic ratio of Ge to Te in the GeTe alloy target was 1:1, and the size of the silver foil was 10 mm ⁇ 5 mm. ⁇ 1mm to control the approximate doping content of each piece of silver foil is about 7%.
  • the sputtering power is 30W DC
  • the sputtering Ar pressure is 0.5Pa
  • the background vacuum is
  • the metal doping bismuth-based resistive memory material was 4 ⁇ 10-4 Pa and the sputtering rate was 30 nm/min, and the thickness was 50 nm.
  • Example 1 is an EDS curve of a metal doped yttrium-based resistive memory material prepared in Example 1 of the present invention.
  • the atomic weight ratio of each element in the metal-doped germanium-based resistive memory material can be obtained by the EDS curve.
  • the doping content of silver in the metal-doped germanium-based resistive memory material prepared in this embodiment is 13.81%.
  • the metal-doped cerium-based resistive memory material has a molecular formula of Ag14Ge40Te46.
  • FIG. 2 is an XRD curve of an amorphous state of a metal-doped germanium-based resistive memory material obtained in Example 1 of the present invention.
  • 3 is a crystalline XRD curve of a metal doped yttrium-based resistive memory material prepared in Example 1 of the present invention at 400 ° C. It can be seen from Fig. 2 and Fig.
  • the phase curve of the amorphous metal doped yttrium-based resistive memory material has no diffraction peak; the crystalline silver-doped ruthenium-based resistive material is at 25.99919°, 29.8548 There are 7 diffraction peaks at °, 33.9754°, 43.1698°, 53.7245°, 62.1152°, 71.1697°, among which the three strong peaks are fcc(200), fcc(220), and fcc(222), indicating that the metal is doped with ruthenium.
  • the preferential orientation of the crystal of the resistive memory material is still a face-centered cubic structure, and the incorporation of silver does not cause a change in the crystal structure of the germanium material.
  • FIG. 4 is an XPS curve of a Te element in a metal-doped germanium-based resistive memory material prepared in Example 1 of the present invention.
  • 5 is an XPS curve of an Ag element in a metal-doped germanium-based resistive memory material prepared in Example 1 of the present invention. It can be seen from Fig. 4 and Fig.
  • Te3d5/2 bond can be reduced, that is, Te is electrons, Ag3d5/2 bond can be increased, Ag is de-electron, indicating that Ag- exists in the metal-doped germanium-based resistive memory material obtained in the first embodiment of the present invention.
  • a method for preparing a metal-doped bismuth-based resistive memory material comprising the steps of:
  • a metal-doped germanium-based resistive memory material was prepared by co-magnet sputtering of a GeTe alloy target and an Ag target.
  • the atomic ratio of Ge to Te in the GeTe alloy target is 1:1.
  • the GeTe alloy target and the Ag target are located at different target sites in the sputtering chamber.
  • sputtering power was applied to the GeTe and Ag targets to produce a sputtering glow.
  • Ag is doped in GeTe by high-speed revolution of the sample stage in which the substrate is placed in the sputtering chamber.
  • the background vacuum was 4 ⁇ 10 ⁇ 4 Pa
  • the sputtering Ar gas pressure was 0.5 Pa
  • the GeTe sputtering power was DC 30 W
  • the Ag sputtering power was DC 20 W
  • the common rotation speed was 60 rpm.
  • the Ag-doped germanium-based resistive memory material prepared in this embodiment is in the form of a film, and has a thickness of 50 nm.
  • the formula is Ag16Ge40Te44.
  • a method for preparing a metal-doped bismuth-based resistive memory material comprising the steps of:
  • the GeTe powder and Ag powder were placed at the evaporation source of the evaporation coater.
  • the substrate was heated to 150 ° C to 450 ° C under a vacuum of 4 ⁇ 10 -3 Pa, and then the evaporation source was heated at a rate of 350 to 450 ° C / min, and the temperature was raised to 1000 ° C, and the powder was heated for 1 to 5 minutes.
  • the powder is deposited on the substrate by evaporation to prepare an Ag-doped germanium-based resistive memory material.
  • the metal doped yttrium-based resistive memory material prepared in this embodiment is in the form of a film having a thickness of 50 nm and a molecular formula of Ag14Ge40Te46.
  • a resistive change cell device comprising a resistive memory material film, a non-reactive electrode and a reactive electrode, wherein the non-reactive electrode and the reactive electrode are respectively located on both sides of the resistive memory material film and are in contact with the resistive memory material film .
  • the material of the resistive memory material film is a metal doped yttrium-based resistive memory material prepared in the first embodiment, and has a molecular formula of Ag14Ge40Te46 and a thickness of 50 nm.
  • the material of the reaction electrode was Ag and the thickness was 100 nm.
  • the non-reactive electrode is made of Ta and has a thickness of 100 nm.
  • FIG. 6 is a graph showing the volt-ampere characteristic curve of the resistive element device fabricated in the fourth embodiment of the present invention.
  • the resistive-change cell device has a bipolar resistive characteristic, the SET threshold voltage is 0.3V, and the RESET threshold voltage is 0.12V.
  • the first aspect of the present invention provides a metal-doped bismuth-based resistive memory material having a high crystallization temperature and an amorphous thermal stability. The property is good, and the resistance change property is small due to the thermal disturbance factor, so as to solve the problem that the existing enamel material has a low crystallization temperature and the practical application value is poor.
  • a second aspect of the embodiments of the present invention provides a method for preparing a metal-doped bismuth-based resistive memory material, which has flexible operation and wide application range.
  • a third aspect of the embodiments of the present invention provides a resistive-change unit device, which has high thermal stability and high data reliability, and has high practical application value.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Semiconductor Memories (AREA)

Abstract

 本发明实施例提供了一种金属掺杂锗碲基阻变存储材料,分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn,其中金属M的掺杂提高了锗碲基阻变存储材料的晶化温度从而提高了非晶态的热稳定性,阻变特性受热扰动因素较小,解决了现有锗碲材料晶化温度低导致数据存储的丢失或扰动以及能耗增高的问题,具有较高的实际应用价值。本发明实施例还提供了该金属掺杂锗碲基阻变存储材料的制备方法,该制备方法操作灵活,适用范围广。本发明实施例提供了包括该金属掺杂锗碲基阻变存储材料的阻变单元器件。

Description

金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件
本申请要求于2013年12月23日提交中国专利局、申请号为201310719978.9、发明名称为“金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微电子领域,特别是涉及金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件。
背景技术
阻变单元器件被认为是有希望的下一代高速、高密度、低功耗存储器,受到学术界和工业界的广泛关注。阻变单元器件的原理是用阻变材料作为存储介质,通过外部施加电脉冲,在阻变材料中发生氧空位导电通道或金属导电丝的形成和断裂,实现器件在高阻态和低阻态之间的可逆转变,两态之间的电阻差异用来存储0和1信息。
锗碲材料GeTe作为一种固体电解质材料,具有高的离子迁移率,已初步应用于制备阻变存储材料。但GeTe在150~200℃温度下会发生从高电阻值的非晶态到低阻值的晶态的相变,热稳定性差,这将导致数据存储的丢失或扰动以及能耗增高的问题。因此,如何提高锗碲材料的晶化温度从而提高实际应用价值显得十分重要。
发明内容
有鉴于此,本发明实施例第一方面提供了一种金属掺杂锗碲基阻变存储材料,该金属掺杂锗碲基阻变存储材料具有较高的晶化温度,非晶态的热稳 定性好,阻变特性受热扰动因素小,以解决现有锗碲材料晶化温度低导致实际应用价值差的问题。本发明实施例第二方面提供了一种金属掺杂锗碲基阻变存储材料的制备方法,操作灵活,适用范围广。本发明实施例第三方面提供了一种阻变单元器件。
第一方面,本发明实施例提供了一种金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
优选地,所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
优选地,所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44
优选地,所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
优选地,所述金属掺杂锗碲基阻变存储材料为薄膜材料。更优选地,所述薄膜材料的厚度为5~100nm。
本发明实施例第一方面提供的金属掺杂锗碲基阻变存储材料中通过金属M的掺杂提高了锗碲基阻变存储材料的晶化温度从而提高了锗碲基阻变存储材料非晶态的热稳定性,所述金属掺杂锗碲基阻变存储材料阻变特性受热扰动因素较小,解决了现有锗碲材料晶化温度低导致数据存储的丢失或扰动以及能耗增高的问题。此外,所述金属掺杂锗碲基阻变存储材料具有较高的离子迁移率。本发明实施例第一方面提供的金属掺杂锗碲基阻变存储材料具有较高的实际应用价值。
第二方面,本发明实施例提供了一种金属掺杂锗碲基阻变存储材料的制备方法,所述制备方法为通过磁控溅射法、化学气相沉积法或电子束蒸镀法制备金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
优选地,所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
优选地,所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44
优选地,所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
优选地,所述金属掺杂锗碲基阻变存储材料为薄膜材料。更优选地,所述薄膜材料的厚度为5~100nm。
优选地,所述磁控溅射法为在GeTe合金靶材贴M金属箔片磁控溅射或采用GeTe合金靶材与M金属靶材共溅射。所述GeTe合金靶材中Ge与Te的原子比为1:1。
优选地,所述磁控溅射法中溅射功率为10~100W,溅射氩气压为0.25~0.85Pa。更优选地,所述磁控溅射法中溅射功率为40W,溅射氩气压为0.5Pa。
本发明实施例第二方面提供的金属掺杂锗碲基阻变存储材料的制备方法操作灵活,适用范围广。
本发明实施例第三方面提供了一种阻变单元器件,包括阻变存储材料薄膜,非反应电极和反应电极,非反应电极和反应电极分别位于所述阻变存储材料薄膜的两侧并均与所述阻变存储材料薄膜接触,所述阻变存储材料薄膜的材质为金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
优选地,所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
优选地,所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44
优选地,所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
优选地,所述阻变存储材料薄膜的厚度为5~100nm。
优选地,所述反应电极的材质为Cu、Al或Ag。优选地,所述反应电极的厚度为10~300nm。
优选地,所述非反应电极的材质为Pt、Au、Ti、W、Ta、TiW、TiN或TaN。优选地,所述非反应电极的厚度为10~300nm。
本发明实施例第三方面提供的阻变单元器件中采用的金属掺杂锗碲基阻变存储材料具有较高的晶化温度,该阻变单元器件热稳定性和数据可靠性高,具有较高的实际应用价值。
本发明实施例第一方面提供了一种金属掺杂锗碲基阻变存储材料,该金属掺杂锗碲基阻变存储材料具有较高的晶化温度,非晶态的热稳定性好,阻变特性受热扰动因素小,以解决现有锗碲材料晶化温度低导致实际应用价值差的问题。本发明实施例第二方面提供了一种金属掺杂锗碲基阻变存储材料的制备方法,操作灵活,适用范围广。本发明实施例第三方面提供了一种阻变单元器件,其热稳定性和数据可靠性高,具有较高的实际应用价值。
本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一制得的金属掺杂锗碲基阻变存储材料的EDS曲线;
图2是本发明实施例一制得的金属掺杂锗碲基阻变存储材料非晶态的XRD曲线;
图3是本发明实施例一制得的金属掺杂锗碲基阻变存储材料400℃下晶态XRD曲线;
图4是本发明实施例一制得的金属掺杂锗碲基阻变存储材料中Te元素的XPS曲线;
图5是本发明实施例一制得的金属掺杂锗碲基阻变存储材料中Ag元素的XPS曲线;
图6是本发明实施例四制得的阻变单元器件的伏安特性曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
第一方面,本发明实施例提供了一种金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44。
所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
所述金属掺杂锗碲基阻变存储材料为薄膜材料。所述薄膜材料的厚度为5~100nm。
本发明实施例第一方面提供的金属掺杂锗碲基阻变存储材料中通过金属M的掺杂提高了锗碲基阻变存储材料的晶化温度从而提高了锗碲基阻变存储材料非晶态的热稳定性,所述金属掺杂锗碲基阻变存储材料阻变特性受热扰动因素较小,解决了现有锗碲材料晶化温度低导致数据存储的丢失或扰动以及能耗增高的问题。此外,所述金属掺杂锗碲基阻变存储材料具有较高的离子迁移率。本发明实施例第一方面提供的金属掺杂锗碲基阻变存储材料具有较高的实际应用价值。
第二方面,本发明实施例提供了一种金属掺杂锗碲基阻变存储材料的制备方法,所述制备方法为通过磁控溅射法、化学气相沉积法或电子束蒸镀法制备金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44。
所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
所述金属掺杂锗碲基阻变存储材料为薄膜材料。所述薄膜材料的厚度为5~100nm。
所述磁控溅射法为在GeTe合金靶材贴M金属箔片磁控溅射或采用GeTe合金靶材与M金属靶材共溅射。所述GeTe合金靶材中Ge与Te的原子比为1:1。
所述磁控溅射法中溅射功率为10~100W,溅射氩气压为0.25~0.85Pa。所述磁控溅射法中溅射功率为40W,溅射氩气压为0.5Pa。
本发明实施例第二方面提供的金属掺杂锗碲基阻变存储材料的制备方法操作灵活,适用范围广。
本发明实施例第三方面提供了一种阻变单元器件,包括阻变存储材料薄膜,非反应电极和反应电极,非反应电极和反应电极分别位于所述阻变存储材料薄膜的两侧并均与所述阻变存储材料薄膜接触,所述阻变存储材料薄膜的材质为金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或 Ag16Ge40Te44。
所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
所述阻变存储材料薄膜的厚度为5~100nm。
所述反应电极的材质为Cu、Al或Ag。所述反应电极的厚度为10~300nm。
所述非反应电极的材质为Pt、Au、Ti、W、Ta、TiW、TiN或TaN。所述非反应电极的厚度为10~300nm。
本发明实施例第三方面提供的阻变单元器件中采用的金属掺杂锗碲基阻变存储材料具有较高的晶化温度,该阻变单元器件热稳定性和数据可靠性高,具有较高的实际应用价值。
本发明实施例第一方面提供了一种金属掺杂锗碲基阻变存储材料,该金属掺杂锗碲基阻变存储材料具有较高的晶化温度,非晶态的热稳定性好,阻变特性受热扰动因素小,以解决现有锗碲材料晶化温度低导致实际应用价值差的问题。本发明实施例第二方面提供了一种金属掺杂锗碲基阻变存储材料的制备方法,操作灵活,适用范围广。本发明实施例第三方面提供了一种阻变单元器件,其热稳定性和数据可靠性高,具有较高的实际应用价值。
实施例一
一种金属掺杂锗碲基阻变存储材料的制备方法,包括以下步骤:
通过GeTe合金靶材贴银箔片磁控溅射制备金属掺杂锗碲基阻变存储材料,GeTe合金靶材中Ge与Te的原子比为1:1,银箔片的尺寸为10mm×5mm×1mm以控制每片银箔片的近似掺杂含量约为7%,贴片溅射制备时,使用2片银箔片,溅射功率为直流30W,溅射Ar气压为0.5Pa,背景真空为4×10-4Pa,溅射速率为30nm/min,制得的金属掺杂锗碲基阻变存储材料为薄膜状,厚度为50nm。
图1是本发明实施例一制得的金属掺杂锗碲基阻变存储材料的EDS曲线。通过EDS曲线可以得到金属掺杂锗碲基阻变存储材料中各个元素的原子量比例。本实施例制得的金属掺杂锗碲基阻变存储材料中银掺杂含量为 13.81%。该金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46。
图2是本发明实施例一制得的金属掺杂锗碲基阻变存储材料非晶态的XRD曲线。图3是本发明实施例一制得的金属掺杂锗碲基阻变存储材料400℃下晶态XRD曲线。从图2和图3中可以看出,非晶态的金属掺杂锗碲基阻变存储材料物相曲线没有衍射峰的出现;晶态的掺银锗碲基阻变材料在25.9819°、29.8548°、33.9754°、43.1698°、53.7245°、62.1152°、71.1697°处有7个衍射峰,其中三强峰为fcc(200)、fcc(220)、fcc(222),说明金属掺杂锗碲基阻变存储材料结晶的优先取向依旧为面心立方结构,银的掺入不会导致锗碲材料晶体结构的改变。
图4是本发明实施例一制得的金属掺杂锗碲基阻变存储材料中Te元素的XPS曲线。图5是本发明实施例一制得的金属掺杂锗碲基阻变存储材料中Ag元素的XPS曲线。从图4和图5中可以看出,Te3d5/2单质的将能为572.7eV,Ag3d5/2单质的键能为367.8eV,Te3d5/2的键能为572.6eV,Ag3d5/2的键能为367.9eV,Te3d5/2键能减少,即Te得电子,Ag3d5/2键能增加,Ag失电子,说明在本发明实施例一制得的金属掺杂锗碲基阻变存储材料中存在Ag-Te键。
实施例二
一种金属掺杂锗碲基阻变存储材料的制备方法,包括以下步骤:
通过GeTe合金靶材与Ag靶材共磁控溅射制备金属掺杂锗碲基阻变存储材料。GeTe合金靶材中Ge与Te的原子比为1:1。溅射制备时,GeTe合金靶材和Ag靶材至于溅射腔内不同靶材位。同时向GeTe和Ag靶材施加溅射功率,产生溅射辉光。利用溅射腔内放置基片的样品台的高速公转旋转实现在GeTe中掺杂Ag。背景真空为4×10-4Pa,溅射Ar气压为0.5Pa,GeTe溅射功率为直流30W,Ag溅射功率为直流20W,公转速率为60转/分钟。本实施例制得的Ag掺杂锗碲基阻变存储材料为薄膜状,厚度为50nm,分子 式为Ag16Ge40Te44。
实施例三
一种金属掺杂锗碲基阻变存储材料的制备方法,包括以下步骤:
将GeTe粉末与Ag粉末至于蒸发镀膜机的蒸发源处。在真空度4×10-3Pa条件下,加热衬底到150℃至450℃,然后蒸发源以350~450℃/min的速率升温,升温至1000℃,对粉末进行加热1~5min。粉末经蒸发沉积与衬底上,制得Ag掺杂锗碲基阻变存储材料。本实施例制得的金属掺杂锗碲基阻变存储材料为薄膜状,厚度为50nm,分子式为Ag14Ge40Te46。
实施例四
一种阻变单元器件,包括阻变存储材料薄膜,非反应电极和反应电极,非反应电极和反应电极分别位于所述阻变存储材料薄膜的两侧并均与所述阻变存储材料薄膜接触。所述阻变存储材料薄膜的材质为实施例一所制得的金属掺杂锗碲基阻变存储材料,分子式为Ag14Ge40Te46,厚度为50nm。反应电极的材质为Ag,厚度为100nm。非反应电极的材质为Ta,厚度为100nm。图6是本发明实施例四制得的阻变单元器件的伏安特性曲线。从图6中可以看出,阻变单元器件具有双极性阻变特性,SET阈值电压为0.3V,RESET阈值电压为0.12V。
综上,本发明实施例第一方面提供了一种金属掺杂锗碲基阻变存储材料,该金属掺杂锗碲基阻变存储材料具有较高的晶化温度,非晶态的热稳定性好,阻变特性受热扰动因素小,以解决现有锗碲材料晶化温度低导致实际应用价值差的问题。本发明实施例第二方面提供了一种金属掺杂锗碲基阻变存储材料的制备方法,操作灵活,适用范围广。本发明实施例第三方面提供了一种阻变单元器件,其热稳定性和数据可靠性高,具有较高的实际应用价值。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种金属掺杂锗碲基阻变存储材料,其特征在于,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
  2. 如权利要求1所述的一种金属掺杂锗碲基阻变存储材料,其特征在于,所述金属掺杂锗碲基阻变存储材料中存在M-Te键。
  3. 如权利要求1所述的一种金属掺杂锗碲基阻变存储材料,其特征在于,所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44。
  4. 如权利要求1所述的一种金属掺杂锗碲基阻变存储材料,其特征在于,所述金属掺杂锗碲基阻变存储材料的晶化温度为200~350℃。
  5. 如权利要求1所述的一种金属掺杂锗碲基阻变存储材料,其特征在于,所述金属掺杂锗碲基阻变存储材料为薄膜材料。
  6. 如权利要求5所述的一种金属掺杂锗碲基阻变存储材料,其特征在于,所述薄膜材料的厚度为5~100nm。
  7. 一种金属掺杂锗碲基阻变存储材料的制备方法,其特征在于,所述制备方法为通过磁控溅射法、化学气相沉积法或电子束蒸镀法制备金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
  8. 如权利要求7所述的一种金属掺杂锗碲基阻变存储材料的制备方法,其特征在于,所述金属掺杂锗碲基阻变存储材料的分子式为Ag14Ge40Te46或Ag16Ge40Te44。
  9. 如权利要求7所述的一种金属掺杂锗碲基阻变存储材料的制备方法,其特征在于,所述磁控溅射法为在GeTe合金靶材贴M金属箔片磁控溅射或采用GeTe合金靶材与M金属靶材共溅射。
  10. 一种阻变单元器件,包括阻变存储材料薄膜,非反应电极和反应电极,非反应电极和反应电极分别位于所述阻变存储材料薄膜的两侧并均与所述阻变存储材料薄膜接触,其特征在于,所述阻变存储材料薄膜的材质为金属掺杂锗碲基阻变存储材料,所述金属掺杂锗碲基阻变存储材料的分子式为MxGeyTez,其中0<x≤20,35≤y≤55,z=100-x-y,M为Ag、Al、Au、Ti、W、Ta、Fe或Mn。
PCT/CN2014/094008 2013-12-23 2014-12-17 金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件 WO2015096644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310719978.9A CN104733610B (zh) 2013-12-23 2013-12-23 金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件
CN201310719978.9 2013-12-23

Publications (1)

Publication Number Publication Date
WO2015096644A1 true WO2015096644A1 (zh) 2015-07-02

Family

ID=53457298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094008 WO2015096644A1 (zh) 2013-12-23 2014-12-17 金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件

Country Status (2)

Country Link
CN (1) CN104733610B (zh)
WO (1) WO2015096644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909168A (zh) * 2021-03-23 2021-06-04 湖北大学 一种基于锂掺杂氧化铌的多功能存储器件及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208855B1 (en) * 2016-02-17 2019-06-26 Heraeus Deutschland GmbH & Co. KG Resistive switching memory cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181499A1 (en) * 2011-01-19 2012-07-19 Macronix International Co., Ltd. QUATERNARY GALLIUM TELLURIUM ANTIMONY (M-GaTeSb) BASED PHASE CHANGE MEMORY DEVICES
CN102832339A (zh) * 2012-09-11 2012-12-19 中国科学院上海微系统与信息技术研究所 用于相变存储器的Al-Ge-Te相变材料
CN102832340A (zh) * 2012-09-11 2012-12-19 中国科学院上海微系统与信息技术研究所 一种相变存储器单元及其制备方法
CN103035841A (zh) * 2012-12-26 2013-04-10 中国科学院上海微系统与信息技术研究所 用于相变存储器的Ti-Ge-Te系列材料及其制备方法
CN103236495A (zh) * 2013-04-12 2013-08-07 中国科学院上海微系统与信息技术研究所 用于相变存储器的Sn-Ge-Te薄膜材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004779A (ko) * 2004-03-26 2007-01-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상변화 물질을 구비한 전기장치
CN101556986B (zh) * 2009-05-20 2010-08-25 南京大学 多态阻变材料、用其制得的薄膜、多态阻变储存元件及所述储存元件在储存装置中的应用
CN102931336B (zh) * 2012-10-19 2016-08-03 深圳大学 一种GeTe基复合热电材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181499A1 (en) * 2011-01-19 2012-07-19 Macronix International Co., Ltd. QUATERNARY GALLIUM TELLURIUM ANTIMONY (M-GaTeSb) BASED PHASE CHANGE MEMORY DEVICES
CN102832339A (zh) * 2012-09-11 2012-12-19 中国科学院上海微系统与信息技术研究所 用于相变存储器的Al-Ge-Te相变材料
CN102832340A (zh) * 2012-09-11 2012-12-19 中国科学院上海微系统与信息技术研究所 一种相变存储器单元及其制备方法
CN103035841A (zh) * 2012-12-26 2013-04-10 中国科学院上海微系统与信息技术研究所 用于相变存储器的Ti-Ge-Te系列材料及其制备方法
CN103236495A (zh) * 2013-04-12 2013-08-07 中国科学院上海微系统与信息技术研究所 用于相变存储器的Sn-Ge-Te薄膜材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909168A (zh) * 2021-03-23 2021-06-04 湖北大学 一种基于锂掺杂氧化铌的多功能存储器件及其制备方法
CN112909168B (zh) * 2021-03-23 2024-01-30 湖北大学 一种基于锂掺杂氧化铌的多功能存储器件及其制备方法

Also Published As

Publication number Publication date
CN104733610A (zh) 2015-06-24
CN104733610B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
Peng et al. Performance improvement of Sb2Te3 phase change material by Al doping
CN102569652B (zh) 一种Ti-Sb2Te相变存储材料
Song et al. Bidirectional threshold switching in engineered multilayer (Cu2O/Ag: Cu2O/Cu2O) stack for cross-point selector application
WO2014040357A1 (zh) 一种用于相变存储器的富锑高速相变材料及其制备方法和应用
WO2020215423A1 (zh) 一种相变材料、相变存储单元及其制备方法
CN108075039B (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
WO2013139162A1 (zh) 一种Sb-Te-Ti相变存储材料及Ti-Sb2Te3相变存储材料
CN102134698B (zh) 用于相变存储器的Al-Sb-Te系列相变材料及其制备方法
CN106992251A (zh) 一种基于VOx选通管的相变存储单元
CN107425118A (zh) 一种高性能锗锑碲相变薄膜材料及其制备方法
CN106374043A (zh) 一种Si‑Sb‑Se纳米相变薄膜材料及其制备方法与用途
CN108899417A (zh) Ta-Sb-Te相变材料、相变存储器单元及其制备方法
WO2015096644A1 (zh) 金属掺杂锗碲基阻变存储材料及制备方法和阻变单元器件
CN110635033A (zh) 一种B-Sb-Te相变材料、相变存储单元及其制备方法
WO2024001426A1 (zh) 一种相变薄膜、薄膜制备方法及相变存储器
Woo et al. Effect of interfacial oxide layer on the switching uniformity of Ge2Sb2Te5-based resistive change memory devices
CN102130296A (zh) 一种基于掺杂氧化钒薄膜的阻变存储器及其制备方法
Song et al. Sb2Te3–Ta2O5 nano-composite films for low-power phase-change memory application
CN107342362A (zh) 一种Mg‑Sb‑Se纳米相变薄膜及其制备方法
CN105742489A (zh) 一种用于相变存储器的Zr掺杂Ge2Sb2Te5薄膜材料及其制备方法
JP6598166B2 (ja) 相変化材料および相変化型メモリ素子
CN106206942B (zh) 稀土Er掺杂改性的GeSb纳米薄膜及其制备方法
CN106185800B (zh) 一种GeTe/Ge类超晶格纳米相变薄膜材料及其制备方法和应用
CN106229408A (zh) 一种高速的伪纳米复合Mg‑Sb‑Te可逆相变薄膜及其制备方法
Wang et al. Investigation of GeTe/Ge2Sb2Te5 nanocomposite multilayer films for phase-change memory applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874387

Country of ref document: EP

Kind code of ref document: A1