WO2015096535A1 - 残缺或变形的四边形图像的校正方法 - Google Patents
残缺或变形的四边形图像的校正方法 Download PDFInfo
- Publication number
- WO2015096535A1 WO2015096535A1 PCT/CN2014/088484 CN2014088484W WO2015096535A1 WO 2015096535 A1 WO2015096535 A1 WO 2015096535A1 CN 2014088484 W CN2014088484 W CN 2014088484W WO 2015096535 A1 WO2015096535 A1 WO 2015096535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- index
- edge
- pointsset
- image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000012937 correction Methods 0.000 claims abstract description 36
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 230000002159 abnormal effect Effects 0.000 claims abstract description 22
- 238000003702 image correction Methods 0.000 claims abstract description 5
- 238000006073 displacement reaction Methods 0.000 claims description 30
- 238000013139 quantization Methods 0.000 claims description 6
- 230000007547 defect Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 230000037303 wrinkles Effects 0.000 claims description 3
- 238000003708 edge detection Methods 0.000 abstract description 15
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/18—Image warping, e.g. rearranging pixels individually
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
Definitions
- the invention relates to a technology for identifying documents of value documents, bills and certificates, in particular to a document for price documents such as banknotes in the financial field, a ticket for a ticket, and an edge detection and correction method for a quadrilateral image such as an ID card.
- an identification device such as a value document, a ticket, a document, or the like
- a positional inclination, a motion deformation, or the like is often caused by a process such as placement or high-speed movement, and thus the generated image is often an image that is inclined and deformed. Therefore, when performing its recognition, the first step is often to perform edge detection and tilt correction on the acquired image, thereby identifying the tilt-corrected image content. Therefore, edge detection and tilt correction are an important issue in the design of identification systems such as value documents, tickets, and documents.
- Valuable documents, notes, and ID images have the following characteristics during edge detection and tilt correction:
- the shape is quadrilateral, but there may be damage on the four edges, and we need to obtain the edge of the value document, the ticket, and the document without damage.
- the identification device has higher requirements for recognition time and storage space.
- Such as ordinary deposit and withdrawal machines the speed of processing valuable media is very fast.
- a plurality of identification items are included, such as identification of valuable document types, identification of valuable documents, identification of valuable documents, identification of valuable documents, identification, etc., and therefore The edge detection and tilt correction time is short.
- more valuable media are implemented on embedded hardware platforms, and strict requirements are imposed on storage space.
- Valuable documents During the movement of the identification device, there may be factors such as inconsistent friction coefficient, and the resulting image is deformed. Or there is an angle problem in the document scanning, and the resulting ID image has a ladder. Shape deformation, etc.
- the commonly used edge detection algorithm is Hough transform.
- Hough transform for edge detection, the edge points in the image are calculated, the corresponding points (r, ⁇ ) in the corresponding polar coordinate transformation domain are calculated, and the corresponding points in the transform domain are accumulated to obtain the points of maximum distribution. The point on the line where the edge is to be detected is then obtained and the point not on the edge is removed. Since the cosine and one sine calculation are needed for each point in the mapping process, the calculation amount is large, and the calculation is floating point, and the calculation time is long.
- Another common edge detection algorithm is Canny edge detection.
- the Canny operator is based on the edge detection operator of the optimization algorithm and has good signal-to-noise ratio and detection accuracy.
- Image denoising is first performed using Gaussian filtering.
- the magnitude and direction of the gradient are then calculated using the finite difference of the first-order partial derivative.
- Non-maximum suppression is then applied to the gradient magnitude.
- the edge is detected and connected using a double threshold algorithm. It has a large amount of calculation and a long calculation time.
- the present invention provides a method for quickly performing edge detection and tilt correction for a valuable document, a ticket, and a document image with defects and deformations.
- the method for correcting the incomplete or deformed quadrilateral image comprises: step one, edge point detection, using the difference of the gray value between the image area and the background area in the collected image, quickly detecting the edge point, and using the value document
- the quadrilateral feature of the image the edge is a straight line, the edge point of each edge is equally spaced ⁇ W in the X direction, the finite edge point is obtained, and the edge fitting is performed to obtain the straight line equation;
- the second step is to eliminate the abnormal edge point and eliminate the defect due to the defect. Abnormal points detected by wrinkles, etc.
- step 3 the straight line is fitted, and the least square fitting is performed on the edge point point set after the abnormal point is removed to obtain the edge line equation; step 4, the vertex calculation is solved according to the first three steps.
- step five image correction, in the bilinear space, using the proportional relationship, obtain the correspondence between the points before and after the correction, and obtain the gray-scale interpolation A tilt corrected image of a value document image.
- the step of removing the abnormal point includes: two (1), slope calculation: assuming that two adjacent upper edge points are PointsSet_Up[index n-1 ] and PointsSet_Up[index n ], and the slope is:
- Ks PointsSet_Up[index n ].y-PointsSet_Up[index n-1 ].y,
- slope distribution statistics is performed with a quantization standard of 1. Generally, the angles of the upper, lower, left, and right edges are less than 90°. It is assumed that the inclination angle of the four sides in the system should be less than ⁇ , therefore, the slope calculated in the second (1) Ks is an integer, and its maximum value ks max , minimum value ks min , then:
- the method for obtaining the correspondence between the points before and after the correction in step 5 is:
- the points on the original image are shifted by X displacement and Y direction to obtain the corresponding points on the calibrated image. It is assumed that through the calculation of step four, four vertices A, B, C, and D are obtained. After the tilt correction, the corresponding points are A', B', C', D', and a point X' (x', y') in the obliquely corrected image is calculated and the corresponding point X (x, in the original image corresponding thereto is calculated. y) the relationship, including the steps:
- the displacement of the X' point in the y direction in the corrected image is y', and the y' displacement in the y direction is also the E' point and the F' point, and the points corresponding to the original picture are respectively X points. , point E and point F;
- the displacement of E' in the y direction corresponds to the image before the tilt correction, that is, the movement of the E point on the AC line, and the movement of the E' point on the A'C' line Proportional
- the displacement of the F' point in the y direction corresponds to the image before the tilt correction, that is, the movement of the F point on the BD line, and the point of the F' point on the B'D' line Move proportionally,
- the displacement of the X' point in the corrected image in the x direction is x', and the point X' moves in the x direction, that is, the movement on the E'F' line, and the movement of the X point on the EF line becomes proportion,
- the coordinates of the X point obtained from the coordinates of E and F points are:
- step 5 when the corresponding relationship between the points before and after the correction is obtained in step 5, if x' traverses from 0 to Width-1, y' traverses from 0 to Height-1, and the corrected image of the entire value document is obtained; when x' Only the partial values in [0, Width] and/or y' are taken only when the partial values in [0, Height] are taken, and the corrected image of the local region of interest on the image of the value document is obtained.
- the algorithm for gray interpolation in step 5 includes nearest neighbor interpolation, bilinear interpolation or high order interpolation.
- the method for correcting a defective or deformed quadrilateral image provided by the present invention is applied to a value document, a ticket
- the difference between the background and the foreground part in the acquired image is used to quickly detect the edge point and avoid using various gradient operators.
- the complicated calculation caused by the reduction of the edge point detection time, and the equal-point edge point detection in the image can reduce the edge point detection time.
- the information of the adjacent previous edge point can be used to narrow the detection range of the edge point and reduce the edge point detection. time.
- the method for correcting a defective or deformed quadrilateral image provided by the present invention can quickly perform edge detection and tilt correction on a value document, a ticket or a document image having a damaged or deformed shape.
- FIG. 1 is a flow chart of a method for correcting a broken or deformed quadrilateral image according to an embodiment of the present invention
- Figure 2 is a schematic diagram of an image with a missing edge
- Figure 3 is a schematic diagram of the result of edge fitting without abnormal point culling
- FIG. 5 is a schematic diagram of an image tilt correction map.
- WIDTH The width of the entire image.
- HEIGHT The height of the entire image.
- Width Image width after tilt correction
- ⁇ W step interval in the x direction when detecting the upper and lower edge points
- ⁇ y y-direction floating range when detecting upper and lower edge points
- ⁇ H y-direction step interval when detecting left and right edge points
- ⁇ x the x-direction floating range when detecting the left and right edge points
- a flowchart of a method for correcting a defective or deformed quadrilateral image includes five steps of edge point detection, abnormal edge point culling, line fitting, vertex calculation, and image correction. The following steps are described in detail:
- Step 1 Edge point detection.
- the value documents, bills, and documents are quadrilateral-shaped, and the edges are straight lines. Therefore, it is not necessary to detect all the edge points, and each edge only needs to detect a limited edge point, and the edge fitting can be performed to obtain a straight line equation. Therefore, equally spaced edge point detection is performed in the image to reduce the edge point detection time.
- the information of the adjacent previous edge point can be used to narrow the detection range of the edge point and reduce the edge point detection. time.
- the detection of the above edge points is as an example:
- the detected upper edge point set is: (PointsSet_Up[index -lm ], PointsSet_Up[index -lm+1 ], ...PointsSet_Up[index -1 ], PointsSet_Up[index 0 ], PointsSet_Up[index 1 ], ...PointsSet_Up[index rm-1 ], PointsSet_Up[index rm ].
- step two the abnormal edge points are removed.
- the edge points detected on the image include the missing edge points, as shown in Figure 2, resulting in the detected edge point sets not being in a straight line, which affects The fitting accuracy of the subsequent edge line. Therefore, anomalous point culling of edge points is required before fitting.
- the edge of the value document, the ticket, and the image of the certificate is less than the non-damaged portion, and the slope distribution of the adjacent edge points is counted, and the statistical slope distribution is the largest to be fitted.
- the slope of the line is culled for edge points that are not in the maximum slope range.
- the edge points are detected at equal intervals ⁇ W in the x direction, and the adjacent two upper edge points are PointsSet_Up[index n-1 ] and PointsSet_Up[index n ], and the slope thereof is
- Ks PointsSet_Up[index n ].y-PointsSet_Up[index n-1 ].y,
- the slope statistics can be designed according to the accuracy of the slope solution. That is, the slope value can be calculated by using the slope value as 1 as the quantization standard, or the slope value can be calculated by using the slope value as 2 as the quantization standard.
- the quantization criterion is 2, it means that the distribution of the two slopes adjacent to the slope merges the cumulative statistics.
- the angles of the upper, lower, left and right edges are less than 90°. It is assumed that the inclination angle of the four sides in the system should be less than ⁇ . Therefore, the slope ks calculated in the first step above is an integer, and the maximum value ksmax is set. The minimum value ksmin, then:
- Ks min -[tan( ⁇ )* ⁇ W], where [] denotes rounding because ks is an integer.
- the edge point detected by the damaged portion is not in line with the actual edge, and the slope thereof is different from the actual edge slope.
- the most distributed ks calculated by the step (2) can be used, and the points corresponding to the ks that are not the most distributed are eliminated from the edge point set. Defines the upper edge point set after the exception point is removed as PointsSet_Up_New.
- Step 3 Straight line fitting, performing least square fitting on the point set after the abnormal point is removed, and obtaining a straight line equation.
- the corresponding edge line equations are respectively determined using the above steps.
- the edge fitting effect before and after the abnormal point culling is different. After the abnormal point is removed, the edge fitting effect is closer to the edge of the image without the defect.
- Step 4 the vertex calculation, using the four-edge edge straight line solution to obtain four vertices.
- the intersection is obtained, that is, the vertices of the quadrilateral.
- Step 5 Correct the image to obtain the image content after the tilt correction.
- ID card identification it may only be necessary to identify the ID number.
- ticket identification only the two-dimensional code in the lower right corner may be identified.
- the tilt correction proposed in this section can be applied not only to the tilt correction of the full image of the value document, the ticket and the document image, but also to the tilt correction of the local interest area of the value document, the ticket and the document image.
- the calibration process is divided into two steps:
- the points on the original image are shifted by X displacement and Y direction to obtain corresponding points on the calibrated image.
- step four Assume that through the calculation of step four, four vertices A, B, C, and D are obtained.
- the corresponding points after the tilt correction are A', B', C', D', respectively, as shown in FIG.
- the correlation between the point X' (x', y') in the obliquely corrected image and the corresponding point X (x, y) in the original image (the image before the tilt correction is not performed) is calculated as follows.
- the displacement of the X' point in the y direction in the corrected image is y', and also the y' displacement in the y direction is also the E' point and the F' point.
- the points corresponding to the original image are X point, E point and F point, respectively.
- the displacement of E' in the y direction that is, the displacement of the A'C' line.
- the movement of the E point on the AC straight line which is proportional to the movement of the E' point on the A'C' line.
- the displacement in the y direction of the point F' that is, the displacement of the B'D' line.
- the movement of the F point on the BD line which is proportional to the movement of the F' point on the B'D' line.
- the displacement of the X' point in the x direction in the corrected image is x'.
- the point X' moves in the x direction, that is, on the E'F' line, which is proportional to the movement of the X point on the EF line.
- the coordinates of the X point obtained from the coordinates of E and F points are:
- x' traverses from 0 to Width-1
- y' traverses from 0 to Height-1
- a corrected image of the entire value document, ticket, and certificate image can be obtained.
- x' only takes a partial value in [0, Width]
- y' only takes a partial value in [0, Height]
- the corrected image of the local interest region on the value document, the ticket, and the document image is obtained.
- the range of values of x', y' can be set according to the needs of the application.
- an algorithm of gray level interpolation is needed to obtain the final corrected image, so that the corrected image maintains good continuity and consistency.
- Specific interpolation methods include nearest neighbor interpolation, bilinear interpolation, and high order interpolation.
- the nearest neighbor interpolation is the shortest in the calculation time, the bilinear interpolation is the second, and the high-order interpolation time is the longest.
- the degree of smoothing after interpolation is the best for high-order interpolation, followed by bilinear interpolation, and the nearest neighbor is the worst.
- the corresponding interpolation method can be selected according to the identification needs.
- the incomplete or deformed quadrilateral image correction method provided by the embodiment is applied to the identification technology of documents such as value documents, tickets and documents, and the recognition speed and precision are improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Geometry (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Abstract
Description
Claims (7)
- 一种残缺或变形的四边形图像的校正方法,包括:步骤一、边缘点检测,利用采集到的图像中图像区域与背景区域的灰度值差异,快速地进行边缘点的检测,且利用有价文件图像的四边形特征,边缘为直线,对每条边在X方向进行等间隔ΔW的边缘点检测,获取有限的边缘点,进行边缘拟合获取直线方程;步骤二、异常边缘点剔除,剔除由于残缺、褶皱等情况而检测到的异常点,提高直线拟合精度;利用有价文件图像的边缘残损的部分小于非残损部分的特点,统计其相邻边缘点的斜率分布,统计斜率分布最大的作为待拟合直线的斜率,对于不在最大斜率范围的边缘点进行剔除;步骤三、直线拟合,对剔除异常点后的边缘点点集进行最小二乘拟合,获得其边缘直线方程;步骤四、顶点计算,根据前三个步骤求解得到的四条边缘直线,利用直线交点求解获得四边形的四个顶点;步骤五、图像校正,在双线性空间内,利用比例关系,获取校正前后各点的对应关系,并通过灰度插值,从而获得有价文件图像的倾斜校正图像。
- 如权利要求1所述的残缺或变形的四边形图像的校正方法,其特征在于,步骤一中,检测上边缘点的方法包括:一(1),在x=WIDTH/2直线上自上而下搜索上边缘点,得到的边缘点为PointsSet_Up[index0]=(x_up_index0,y_up_index0);一(2),在x=x_up_index0-ΔW直线上检测边缘点,其y的搜索范围是[y_up_index0-Δy,y_up_index0+Δy],搜索到的边缘点为 PointsSet_Up[index-1]=(x_up_index-1,y_up_index-1);一(3),以PointsSet_Up[index-1]为原点,重复进行一(2)的操作,进行边缘点检测,直到在设定的搜索范围内检测不到边缘点为止;一(4),在x=x_up_index0+ΔW直线上检测边缘点,其y的搜索范围是[y_up_index0-Δy,y_up_index0+Δy],搜索到的边缘点为PointsSet_Up[index1]=(x_up_index1,y_up_index1);一(5),以PointsSet_Up[index1]为原点,重复进行一(4)的操作,进行边缘点检测,直到在设定的搜索范围内检测不到边缘点为止;以及一(6),检测到的上边缘点集为:(PointsSet_Up[index-lm],PointsSet_Up[index-lm+1],……PointsSet_Up[index-1],PointsSet_Up[index0],PointsSet_Up[index1],……PointsSet_Up[indexrm-1],PointsSet_Up[indexrm]。
- 如权利要求2所述的残缺或变形的四边形图像的校正方法,其特征在于,步骤二中,剔除异常点的步骤包括:二(1),斜率计算:假设相邻的两个上边缘点为PointsSet_Up[indexn-1]和PointsSet_Up[indexn],其斜率为:由于PointsSet_Up[indexn].x-PointsSet_Up[indexn-1].x=ΔW,由于ΔW为常量,因此评估斜率时,直接利用ks表示k,ks=PointsSet_Up[indexn].y-PointsSet_Up[indexn-1].yk~=ks;二(2),斜率分布统计:以量化标准为1进行斜率分布统计示例,一般而言,上、下、左、右边缘的角度小于90°,现假设系统中四边倾斜角度应小于θ,因此,二(1)中计算的斜率ks为整数,设其最大值ksmax,最小值ksmin,则:因此,ksmax=[tan(θ)*ΔW],ksmin=-[tan(θ)*ΔW],其中[]表示取整;对[-[tan(θ)*ΔW],[tan(θ)*ΔW]]范围内的ks进行累计统计,得到最多的斜率分布;二(3),边缘点异常点剔除根据二(2)步计算得到的最多分布的ks,将不是最多分布的ks对应的点从边缘点集中剔除,定义剔除了异常点后的上边缘点集为PointsSet_Up_New。
- 如权利要求4所述的残缺或变形的四边形图像的校正方法,其特征在于,步骤五中获取校正前后各点的对应关系的方法为:在双线性变换空间中,原图像上的点经过X位移、Y方向位移,得到校准后图像上的对应点,假设通过步骤四的计算,得到四个顶点A、B、C、D,其通过倾斜校正后对应点分别为A’,B’,C’,D’,计算倾斜校正后图像中的一点X’(x’,y’)与其对应的原图像中的对应点X(x,y)的相互关系,包括步骤:五(1),计算y方向上产生的位移:X’点在校正后图像中的在y方向上的位移为y’,同样在y方向上有y’位移的还有E’点和F’点,其对应原图的点分别为为X点、E点和F点;E点坐标:E’在y方向的位移,即A’C’直线的位移,对应于倾斜校正前的图像,即为E点在AC直线上的移动,其与E’点在A’C’直线上的移动成比例;也即【式1】:F点坐标:F’点在y方向的位移,即B’D’直线的位移,对应于倾斜校正前的图像,即为F点在BD直线上的移动,其与F’点在B’D’直线上的移动成比例,利用校正后图像为四边形,yD'=yC',yB'=yA',yF'=yE';因此,也即【式2】:五(2),计算x方向上的位移:X’点在校正后图像中的在x方向上的位移为x’,X’点在x方向移动,也就是在E’F’直线上的移动,其与X点在EF直线上的移动成比例,由E、F点坐标得到X点坐标为:也即【式3】:通过【式1】【式2】【式3】,得到校正后图像上任何一点(x’,y’)其对应原图像上的点(x,y)的对应关系。
- 如权利要求5所述的残缺或变形的四边形图像的校正方法,其特征在于,步骤五中获取校正前后各点的对应关系时,若x’从0遍历到Width-1,y’从0遍历到Height-1,得到整幅有价文件的校正图像;当x’只取[0,Width]中的部分值和/或y’只取[0,Height]中的部分值时,得到有价文件图像上局部感兴趣区域的校正图像。
- 如权利要求4~6中任意一项所述的残缺或变形的四边形图像的校正方法,其特征在于,步骤五中灰度插值的算法包括最近邻插值法、双线性插值法或高阶插值法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14875817.0A EP3089103B1 (en) | 2013-12-25 | 2014-10-13 | Method for correcting fragmentary or deformed quadrangular image |
US15/104,334 US9773299B2 (en) | 2013-12-25 | 2014-10-13 | Method for correcting fragmentary or deformed quadrangular image |
AU2014373249A AU2014373249B2 (en) | 2013-12-25 | 2014-10-13 | Method for correcting fragmentary or deformed quadrangular image |
ZA2016/04301A ZA201604301B (en) | 2013-12-25 | 2016-06-24 | Method for correcting fragmentary or deformed quadrangular image |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310733877.7 | 2013-12-25 | ||
CN201310733877.7A CN103679638A (zh) | 2013-12-25 | 2013-12-25 | 残缺或变形的四边形图像的校正方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096535A1 true WO2015096535A1 (zh) | 2015-07-02 |
Family
ID=50317095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088484 WO2015096535A1 (zh) | 2013-12-25 | 2014-10-13 | 残缺或变形的四边形图像的校正方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9773299B2 (zh) |
EP (1) | EP3089103B1 (zh) |
CN (1) | CN103679638A (zh) |
AU (1) | AU2014373249B2 (zh) |
CL (1) | CL2016001485A1 (zh) |
TR (1) | TR201819357T4 (zh) |
WO (1) | WO2015096535A1 (zh) |
ZA (1) | ZA201604301B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106874818A (zh) * | 2016-08-30 | 2017-06-20 | 阿里巴巴集团控股有限公司 | 一种数字对象唯一标识符doi识别方法与装置 |
CN112085708A (zh) * | 2020-08-19 | 2020-12-15 | 浙江华睿科技有限公司 | 产品外轮廓中的直线边缘的缺陷检测方法及设备 |
CN112633275A (zh) * | 2020-12-22 | 2021-04-09 | 航天信息股份有限公司 | 一种基于深度学习的多票据混拍图像校正方法及系统 |
CN113052896A (zh) * | 2019-12-27 | 2021-06-29 | 大族激光科技产业集团股份有限公司 | 视觉定位方法及装置 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103679638A (zh) | 2013-12-25 | 2014-03-26 | 广州广电运通金融电子股份有限公司 | 残缺或变形的四边形图像的校正方法 |
CN104361672B (zh) * | 2014-10-14 | 2017-03-15 | 深圳怡化电脑股份有限公司 | 一种对纸币折角进行检测的方法 |
KR102279026B1 (ko) * | 2014-11-07 | 2021-07-19 | 삼성전자주식회사 | 적어도 하나의 객체를 포함하는 영상에서 객체를 추출하여 보정한 영상을 제공하는 장치 및 방법 |
CN106845508B (zh) | 2015-12-07 | 2019-05-17 | 腾讯科技(深圳)有限公司 | 一种检测图像中信息卡的方法、装置和系统 |
CN106023136B (zh) * | 2016-04-29 | 2019-02-12 | 北京小米移动软件有限公司 | 边界优化方法及装置 |
JP6714477B2 (ja) * | 2016-09-09 | 2020-06-24 | 株式会社アドテックエンジニアリング | 基板角位置特定方法 |
CN106898083A (zh) * | 2017-03-01 | 2017-06-27 | 深圳怡化电脑股份有限公司 | 一种用于纸币的图像处理方法及装置 |
CN106960184B (zh) * | 2017-03-08 | 2020-03-31 | 南昌航空大学 | 一种书本边框的图像定位方法 |
US10140693B2 (en) * | 2017-03-23 | 2018-11-27 | Intergraph Corporation | Motion imagery corner point sequencer |
CN107169493A (zh) * | 2017-05-31 | 2017-09-15 | 北京小米移动软件有限公司 | 信息识别方法及装置 |
CN109035266B (zh) * | 2017-06-08 | 2022-11-15 | 杭州睿沃科技有限公司 | 一种利用普通摄像完成身份证便携扫描的方法 |
CN107451569A (zh) * | 2017-08-04 | 2017-12-08 | 深圳易嘉恩科技有限公司 | 一种自动识别并裁切扫描件中票据的方法 |
CN107563330B (zh) * | 2017-09-04 | 2020-10-16 | 南京邮电大学 | 一种监控视频中的水平倾斜车牌矫正方法 |
EP3786844A4 (en) * | 2018-07-06 | 2021-05-05 | Rakuten, Inc. | IMAGE PROCESSING SYSTEM, IMAGE PROCESSING METHOD AND PROGRAM |
US11881043B2 (en) | 2018-07-06 | 2024-01-23 | Rakuten Group, Inc. | Image processing system, image processing method, and program |
CN109034050B (zh) * | 2018-07-23 | 2022-05-03 | 顺丰科技有限公司 | 基于深度学习的身份证图像文本识别方法及装置 |
CN109413330A (zh) * | 2018-11-07 | 2019-03-01 | 深圳市博纳思信息技术有限公司 | 一种证件照片智能换背景方法 |
CN109493383B (zh) * | 2018-11-23 | 2022-02-11 | 深圳市威尔德医疗电子有限公司 | 超声图像中内中膜厚度的测量方法、服务器及存储介质 |
CN110490886B (zh) * | 2019-07-31 | 2022-04-01 | 武汉大学 | 一种针对倾斜视角下证件图像的自动纠正方法及系统 |
CN111091505B (zh) * | 2019-11-26 | 2022-06-24 | 浙江大学 | 基于古典概型的影印图像倾斜纠正方法 |
CN113255579B (zh) * | 2021-06-18 | 2021-09-24 | 上海建工集团股份有限公司 | 一种施工监测异常采集数据自动识别与处理的方法 |
CN114022661B (zh) * | 2021-11-08 | 2024-10-15 | 广东电网有限责任公司 | 应用于票据影像字符识别的数字图像处理系统及方法 |
CN114240983A (zh) * | 2021-12-21 | 2022-03-25 | 哈尔滨工业大学芜湖机器人产业技术研究院 | 一种圆形物体检测方法及系统 |
CN114648542A (zh) * | 2022-03-11 | 2022-06-21 | 联宝(合肥)电子科技有限公司 | 一种目标物提取方法、装置、设备及可读存储介质 |
CN115082935A (zh) * | 2022-07-04 | 2022-09-20 | 网易有道信息技术(北京)有限公司 | 用于对文档图像进行矫正的方法、设备及存储介质 |
CN116030120B (zh) * | 2022-09-09 | 2023-11-24 | 北京市计算中心有限公司 | 一种识别并校正六边形的方法 |
CN115861357B (zh) * | 2023-02-27 | 2023-06-20 | 常州微亿智造科技有限公司 | 基于k均值聚类与点位规划的工件过渡边缘检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111996A (en) * | 1998-03-13 | 2000-08-29 | Northern Telecom Limited | Optical multiplexer/demultiplexer |
CN102222229A (zh) * | 2011-07-28 | 2011-10-19 | 陈庆武 | 手指静脉图像预处理方法 |
CN103679638A (zh) * | 2013-12-25 | 2014-03-26 | 广州广电运通金融电子股份有限公司 | 残缺或变形的四边形图像的校正方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208056A (ja) * | 1997-01-16 | 1998-08-07 | Honda Motor Co Ltd | 直線検出方法 |
US6433896B1 (en) * | 1997-06-10 | 2002-08-13 | Minolta Co., Ltd. | Image processing apparatus |
JP4508553B2 (ja) * | 2003-06-02 | 2010-07-21 | カシオ計算機株式会社 | 撮影画像投影装置、及び撮影画像の補正方法 |
JP2005316755A (ja) * | 2004-04-28 | 2005-11-10 | Nec Electronics Corp | 2次元矩形コードシンボル読み取り装置及び2次元矩形コードシンボル読み取り方法 |
JP4289414B2 (ja) * | 2007-03-27 | 2009-07-01 | セイコーエプソン株式会社 | 画像変形のための画像処理 |
CN102521806B (zh) * | 2011-12-04 | 2014-10-22 | 山东大学 | 基于消失线的长方体表面透视变形的矫正方法 |
US8855375B2 (en) * | 2012-01-12 | 2014-10-07 | Kofax, Inc. | Systems and methods for mobile image capture and processing |
-
2013
- 2013-12-25 CN CN201310733877.7A patent/CN103679638A/zh active Pending
-
2014
- 2014-10-13 AU AU2014373249A patent/AU2014373249B2/en not_active Ceased
- 2014-10-13 US US15/104,334 patent/US9773299B2/en not_active Expired - Fee Related
- 2014-10-13 EP EP14875817.0A patent/EP3089103B1/en not_active Not-in-force
- 2014-10-13 TR TR2018/19357T patent/TR201819357T4/tr unknown
- 2014-10-13 WO PCT/CN2014/088484 patent/WO2015096535A1/zh active Application Filing
-
2016
- 2016-06-13 CL CL2016001485A patent/CL2016001485A1/es unknown
- 2016-06-24 ZA ZA2016/04301A patent/ZA201604301B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111996A (en) * | 1998-03-13 | 2000-08-29 | Northern Telecom Limited | Optical multiplexer/demultiplexer |
CN102222229A (zh) * | 2011-07-28 | 2011-10-19 | 陈庆武 | 手指静脉图像预处理方法 |
CN103679638A (zh) * | 2013-12-25 | 2014-03-26 | 广州广电运通金融电子股份有限公司 | 残缺或变形的四边形图像的校正方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106874818A (zh) * | 2016-08-30 | 2017-06-20 | 阿里巴巴集团控股有限公司 | 一种数字对象唯一标识符doi识别方法与装置 |
WO2018040948A1 (zh) * | 2016-08-30 | 2018-03-08 | 阿里巴巴集团控股有限公司 | 一种数字对象唯一标识符doi识别方法与装置 |
CN106874818B (zh) * | 2016-08-30 | 2019-11-22 | 阿里巴巴集团控股有限公司 | 一种数字对象唯一标识符doi识别方法与装置 |
US10664674B2 (en) | 2016-08-30 | 2020-05-26 | Alibaba Group Holding Limited | Digital object unique identifier (DOI) recognition method and device |
CN113052896A (zh) * | 2019-12-27 | 2021-06-29 | 大族激光科技产业集团股份有限公司 | 视觉定位方法及装置 |
CN112085708A (zh) * | 2020-08-19 | 2020-12-15 | 浙江华睿科技有限公司 | 产品外轮廓中的直线边缘的缺陷检测方法及设备 |
CN112085708B (zh) * | 2020-08-19 | 2023-07-07 | 浙江华睿科技股份有限公司 | 产品外轮廓中的直线边缘的缺陷检测方法及设备 |
CN112633275A (zh) * | 2020-12-22 | 2021-04-09 | 航天信息股份有限公司 | 一种基于深度学习的多票据混拍图像校正方法及系统 |
CN112633275B (zh) * | 2020-12-22 | 2023-07-18 | 航天信息股份有限公司 | 一种基于深度学习的多票据混拍图像校正方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
US9773299B2 (en) | 2017-09-26 |
EP3089103A4 (en) | 2017-01-11 |
AU2014373249A1 (en) | 2016-06-30 |
ZA201604301B (en) | 2017-08-30 |
EP3089103B1 (en) | 2018-12-05 |
TR201819357T4 (tr) | 2019-01-21 |
US20160314563A1 (en) | 2016-10-27 |
AU2014373249B2 (en) | 2017-08-31 |
EP3089103A1 (en) | 2016-11-02 |
CL2016001485A1 (es) | 2016-12-30 |
CN103679638A (zh) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015096535A1 (zh) | 残缺或变形的四边形图像的校正方法 | |
US8509536B2 (en) | Character recognition device and method and computer-readable medium controlling the same | |
JP5844783B2 (ja) | テキスト領域を含むグレースケール文書画像を処理する方法、グレースケール文書画像の少なくともテキスト領域を二値化する方法、グレースケール文書画像においてグリッドを形成するテーブルの抽出方法及びプログラム | |
CN106934803B (zh) | 电子器件表面缺陷的检测方法及装置 | |
CN105447512B (zh) | 一种精粗结合的光学表面缺陷的检测方法及装置 | |
US20120294528A1 (en) | Method of Detecting and Correcting Digital Images of Books in the Book Spine Area | |
US8805117B2 (en) | Methods for improving image search in large-scale databases | |
CN107045634B (zh) | 一种基于最大稳定极值区域与笔画宽度的文本定位方法 | |
CN112233116B (zh) | 基于邻域决策与灰度共生矩阵描述的凹凸痕视觉检测方法 | |
US20120093434A1 (en) | Edge detection | |
US10586321B2 (en) | Automatic detection, counting, and measurement of lumber boards using a handheld device | |
CN109632808A (zh) | 棱边缺陷检测方法、装置、电子设备及存储介质 | |
EP2536123B1 (en) | Image processing method and image processing apparatus | |
Jipeng et al. | Skew correction for Chinese character using Hough transform | |
Pan et al. | An efficient method for skew correction of license plate | |
Magnier et al. | Ridges and valleys detection in images using difference of rotating half smoothing filters | |
Hadi et al. | A novel approach of skew estimation and correction in persian manuscript text using radon transform | |
CN107092909B (zh) | 基于三角形相似定理的角度检测算法 | |
Yang et al. | Grid-based modelling and correction of arbitrarily warped historical document images for large-scale digitisation | |
CN109643451B (zh) | 线检测方法 | |
CN116228601B (zh) | 一种火车双向平煤的平煤效果视觉监控方法 | |
CN117495799A (zh) | 一种由边缘成像引起的缺陷检测方法、装置及电子设备 | |
Li et al. | A novel method of straight-line extraction based on Wallis filtering for the close-range building | |
Ding et al. | A correction algorithm for document images based on edge contour | |
CN114219951A (zh) | 形状匹配方法、装置、计算机设备以及存储装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875817 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15104334 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014875817 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014875817 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014373249 Country of ref document: AU Date of ref document: 20141013 Kind code of ref document: A |