WO2015096028A1 - 一种太阳能电池及其制备方法 - Google Patents

一种太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2015096028A1
WO2015096028A1 PCT/CN2013/090317 CN2013090317W WO2015096028A1 WO 2015096028 A1 WO2015096028 A1 WO 2015096028A1 CN 2013090317 W CN2013090317 W CN 2013090317W WO 2015096028 A1 WO2015096028 A1 WO 2015096028A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
transparent conductive
active layer
pedot
Prior art date
Application number
PCT/CN2013/090317
Other languages
English (en)
French (fr)
Inventor
李振声
张晓宏
刘振
冯敏强
Original Assignee
香港城市大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港城市大学 filed Critical 香港城市大学
Priority to PCT/CN2013/090317 priority Critical patent/WO2015096028A1/zh
Publication of WO2015096028A1 publication Critical patent/WO2015096028A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a solar cell and a preparation method thereof, in particular to a solar cell comprising an inorganic narrow band gap semiconductor nano material and a transparent conductive polymer phase heterojunction and a preparation method thereof.
  • polymers In conventional organic/inorganic nanowire hybrid phase heterojunction solar cells, polymers generally act as the main photoactive material, and inorganic nanowires are commonly used to improve the electrical conductivity of devices. Therefore, a series of inorganic nanowires such as zinc oxide, cadmium oxide, cadmium sulfide, titanium dioxide, etc. are applied to such solar cells, and an energy conversion efficiency of about 1 to 3% is obtained, which is far lower than the theoretical value.
  • inorganic nanowires such as zinc oxide, cadmium oxide, cadmium sulfide, titanium dioxide, etc.
  • the present invention provides a solar cell and a method of fabricating the same.
  • a solar cell comprising a first electrode, a second electrode, and a photoelectric conversion active layer disposed between the first electrode and the second electrode, wherein the photoelectric conversion active layer is an inorganic narrow band gap semiconductor nanometer A bulk heterojunction of a material and a transparent conductive polymer.
  • the mass ratio of the inorganic narrow band gap semiconductor nano material to the transparent conductive polymer is from 3:1 to 6:1.
  • the transparent conductive polymer is PEDOT:PSS or G-PEDOT:PSS.
  • the inorganic narrow band gap semiconductor is silicon.
  • the nanomaterial is a nanowire, a nanosphere or a nanotube.
  • the first electrode is a transparent or translucent electrode.
  • the first electrode is a bismuth glass.
  • a PEDOT:PSS buffer layer is disposed on the bismuth glass.
  • metal nanoparticles are modified on the surface of the inorganic narrow band gap semiconductor nanomaterial.
  • the metal is selected from the group consisting of platinum, gold or silver.
  • the present invention further provides a method of preparing a solar cell, comprising the steps of: preparing the first electrode; forming the photoelectric conversion active layer on the first electrode, and performing the photoelectric conversion activity a step of forming the second electrode on the layer; wherein the photoelectric conversion active layer is a bulk heterojunction comprising an inorganic narrow band gap semiconductor nano material and a transparent conductive polymer.
  • the step of performing metal nanoparticle modification on the narrow band gap semiconductor nanomaterial is further included.
  • the method further includes the step of providing a buffer layer between the first electrode and the photoelectric conversion active layer.
  • the step of preparing the photoelectric conversion active layer includes: preparing the inorganic narrow band gap semiconductor nano material; formulating the transparent conductive polymer into a solution; and using the inorganic narrow band gap semiconductor nano material Mixing with the solution of the transparent conductive polymer, moving the obtained mixture to the surface of the first electrode; drying the first electrode under the protection of argon gas.
  • the inorganic narrow band gap semiconductor nano material is a silicon nanowire
  • the step of preparing the silicon nanowire comprises: ultrasonicating the silicon wafer in acetone, ethanol and water respectively; using the silicon wafer The chromic acid washing solution is immersed and washed with water; the silicon wafer is etched in an aqueous solution of AgN0 3 in HF; the silicon wafer after etching is immersed in aqua regia; the silicon wafer is washed with water and dried.
  • the invention provides a solar cell comprising a bulk heterojunction of an inorganic narrow band gap semiconductor nano material and a transparent conductive polymer, wherein the carrier is only generated in the inorganic narrow band gap semiconductor nano material, inside the transparent conductive polymer No carriers are generated, and the transparent conductive polymer is used only for carrier transport.
  • a transparent conductive polymer can not only form a heterojunction that promotes carrier separation with inorganic narrow band gap semiconductor nanomaterials, but also serve as a vacancy transport material, and can also passivate the surface of inorganic narrow band gap semiconductor nanomaterials, reducing carriers in the nanometer.
  • the composite loss of the surface of the material, at the same time, the excellent transparent property of the transparent conductive polymer can ensure that it acts as a window material for the spectrum in the composite structure with the nano material, greatly improving the photoelectric conversion efficiency of the device, and also solving the traditional The problem of excessive consumption of silicon materials by silicon nanowire solar cells.
  • Embodiment 1 is a scanning electron microscope (SEM) diagram of a silicon nanowire array structure according to Embodiment 1 of the present invention
  • FIG. 2 is a graph showing changes in transmittance and reflectance of G-PEDOT, SiNWs, SiNWs-G-PEDOT:PSS films, silicon wafers, and SiNWs-PEDOT:PSS films in the wavelength range of 300-1 lOOnm according to the present invention; (b) ;
  • FIG. 3 is a schematic view showing the structure and principle of a photovoltaic device prepared in Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the relationship between ⁇ , ⁇ and FF of a photovoltaic device prepared in Example 1 of the present invention and the content of silicon nanowires in a photovoltaic device;
  • FIG. 5 is a current-voltage graph of a photovoltaic device prepared according to Embodiments 1 and 2 of the present invention
  • FIG. 6 is an SEM image of a silicon nanowire based on Pt nanoparticle modification according to Embodiment 3 of the present invention
  • Figure 9 is a graph showing the current-voltage of a photovoltaic device prepared in Example 4 of the present invention, wherein a gray curve indicates photocurrent and a black curve indicates dark current.
  • organic solar cells prepared based on the electron donor/acceptor system.
  • One is that the electron donor and the electron acceptor are respectively stacked in the form of a layered film to form a photoelectric conversion active layer, that is, two or more layers.
  • the layered heterojunction type organic solar cell; the other is the blending of the acceptor and the acceptor material to form a photoelectric conversion active layer, that is, a bulk heterojunction organic solar cell.
  • the device efficiency is often low for three reasons: First, the contact area between the film and the film is limited, and the exciton separation is limited. Second, the excitons can only be separated in the near-interface region, and the excitons generated in the far interface region often recombine before they migrate to the interface. Third, the carrier mobility of the organic semiconductor material is usually low, and the interface is separated. The outgoing carriers will have a large amount of loss during the movement to the electrodes.
  • the active layer of the bulk heterojunction organic solar cell is formed by blending and receiving materials, and the two materials are interlaced to form a double continuous and interpenetrating network structure, thereby greatly increasing
  • the contact area of the donor and the acceptor forms numerous tiny pn junctions, and at the same time, the exciton diffusion distance is reduced, so that more excitons can be When the interface is separated, the energy conversion efficiency is also greatly improved.
  • the solar cell of the present invention includes a first electrode, a second electrode, and a photoelectric conversion active layer disposed between the first electrode and the second electrode, wherein the photoelectric conversion active layer is an inorganic narrow band gap semiconductor A bulk heterojunction of a nanomaterial and a transparent conductive polymer.
  • the invention replaces the conventional photoactive molecule with a transparent conductive polymer, forms a bulk heterojunction with the inorganic narrow band gap semiconductor nano material and the transparent conductive polymer, so that the photogenerated carriers are only produced in the inorganic narrow band gap semiconductor nano material, Carriers are not generated inside the transparent conductive polymer, and the transparent conductive polymer is used only for carrier transport, thereby solving the problem that excitons recombine within the polymer.
  • different inorganic narrow-bandgap semiconductor nanomaterials and transparent conductive polymers can be selected, and the energy conversion efficiency of the solar cell can be affected to different extents by changing the mixing ratio of the two materials.
  • the inorganic narrow band gap semiconductor according to the present invention refers to an inorganic semiconductor having a band gap of less than 2.0 eV, including GaAs, CdTe, CuInS3, Si, etc., among which Si is preferable.
  • the nano material is a nanowire, and the nanowire is more convenient for carrier transport than other structures, but the nano material of the present application is not limited to a nanowire, and may also be a nanosphere, a nanotube or the like.
  • the nanostructures of the present invention can be realized.
  • the inorganic narrow band gap semiconductor nano material is a silicon nanowire, and the length thereof is.
  • the silicon nanowire is obtained by etching a metal nanoparticle catalytic auxiliary method.
  • the silicon nanowires are obtained by the VLS method, wherein the silicon nanowires of the present invention are preferably obtained by an etching method, but the method for preparing the silicon nanowires is not limited by the present invention, and other silicon nanometers are prepared. The method of the wire can also be used in the present invention.
  • the transparent conductive polymer according to the present invention refers to a conductive polymer which does not absorb or absorb little incident light after forming a photoelectric conversion active layer together with an inorganic narrow band gap semiconductor nanomaterial.
  • the transparent conductive polymer is not limited to a polymer, and may be a mixture of a polymer after being doped with at least one polymer or small molecule.
  • the transparent conductive polymer is PEDOT: PSS
  • the eigenstate PEDOT has poor conductivity and is insoluble and infusible, which greatly limits the application of PEDOT, and passes through polyphenylene.
  • PSS ethylene sulfonate
  • the suspension can form a transparent conductive film on the substrate, which is not only easy to process, but also easy to process. It has the advantages of high conductivity, good light transmission and so on.
  • glycerin is added to PEDOT: PSS to form G-PEDOT: PSS, but not limited to glycerin, and sorbitol or methyl sulfoxide may be added. Or N,N-dimethylformamide to improve the electrical conductivity of PEDOT: PSS.
  • the transparent conductive polymer is not limited to the above, and may be a PEDOT-based substance modified by other methods, or another conductive polymer suitable for use in a solar cell and having transparency.
  • the first electrode for receiving incident light should be transparent or translucent.
  • ITO glass is used as the first electrode, and ITO is a mixture of indium oxide and tin oxide. In the wavelength range of 400-1000 nm, the transmittance can reach 80% or more.
  • a buffer layer for improving device performance can also be disposed on the ITO glass.
  • the buffer layer For PEDOT: PSS, but not limited to PEDOT: PSS, it can also be used for other materials that improve device performance.
  • the first electrode may also be an aluminum-doped zinc oxide prepared by magnetron sputtering, a silver nanowire coated with zinc oxide nanoparticles, ITO/Ag/ITO, ZnO/Ag/ZnO, ZnO/Cu/ ZnO, or other transparent or translucent electrode capable of carrying out the invention.
  • ⁇ : ⁇ 1 is a back electrode, that is, a second electrode, and the ⁇ : ⁇ 1 layer has the dual ability of collecting holes and electrons, and can also function as an anti-reflection layer to improve device performance. the goal of.
  • the solar cell of the present invention and a method for preparing the same will be further described with reference to specific embodiments.
  • the experimental methods described in the following examples, unless otherwise specified, are conventional methods, and the reagents and materials, except for silicon nanowires (SiNWs), are commercially available unless otherwise specified; The efficiency-related data were measured under the conditions of AM1.5.
  • the PEDOT:PSS purchased has a solids content of 1.7% by mass; used in the examples
  • G-PEDOT: PSS glycerol-poly 3,4-ethylenedioxythiophene: polystyrene sulfonate
  • PSS glycerol-poly 3,4-ethylenedioxythiophene: polystyrene sulfonate
  • PCE solar photovoltaic conversion efficiency
  • Open circuit voltage V oc
  • the output voltage of the solar cell under open circuit conditions is called open circuit voltage, at this time, the output current of the battery is zero;
  • Short-circuit current (I sc ), the operating current of the solar cell under short-circuit conditions is called short-circuit current;
  • the fill factor (FF) the ratio of the maximum power provided by the solar cell to the I sc xV 0C , illustrates the ability of the solar cell to provide the maximum output power to the outside, and is a comprehensive measure of the quality of the solar cell.
  • PEDOT poly 3,4-ethylenedioxythiophene transparent conductive polymer film
  • iridium indium tin oxide
  • the electrodeposition electrolyte was acetonitrile and the supporting electrolyte was Lithium perchlorate (LiC10 4 );
  • the initial silicon nanowire array sample was obtained by metal nanoparticle catalytic assisted etching (Kuiqing Peng,
  • the silicon wafers were ultrasonicated with acetone, ethanol and deionized water for 10 minutes to remove surface contaminants, and then immersed in a chromic acid solution for 1 hour and then washed with deionized water;
  • the ITO conductive glass is dried under the protection of argon, specifically, the ITO conductive glass is first kept at 50 ° C for 30 minutes, and then maintained at 120 ° C for 1 hour;
  • a SiNWs-PEDOT:PSS film of the same area is formed on the surface of the E-PEDOT film, and the thickness thereof is 3 ⁇ .
  • the film can fully absorb photons in the wavelength range of 300-1 100 nm, as shown in FIG. 2 Shown.
  • the amount of scattered silicon nanowires is 1 to 1.2 mg per square centimeter of device, and the amount of PEDOT:PSS is 15 to 28 microliters per square centimeter.
  • the back electrode was obtained by sequential magnetron sputtering deposition of amorphous silicon film, laser sputter deposition of zinc oxide film and thermal evaporation of metal aluminum film on the mixture film of ITO conductive glass substrate.
  • the thickness of all three films was 20 nm.
  • the structure and mechanism of the photovoltaic device are shown in Figure 3.
  • step 3 G-PEDOT: PSS is substituted for PEDOT: PSS to prepare a silicon nanowire SiNWs-G-PEDOT: PSS-based photovoltaic device, and The device was tested under the conditions of AM1.5, and the test results were compared with the SiNWs-PEDOT: PSS-based photovoltaic device of Example 1, as shown in FIG. 5.
  • Example 3
  • Fig. 6 is an SEM image reflecting the microscopic morphology thereof;
  • the obtained mixture is transferred to the upper surface of the N-type silicon wafer by a pipette, and the N-type silicon wafer is dried under the protection of argon gas, specifically, the N-type silicon wafer is first kept at 50 ° C. Minutes, then maintained at 120 ° C for 1 hour;
  • Example 4 Finally, a 3 nm thick metal copper film and a 20 nm thick metal copper grid electrode were magnetron sputtered on the surface of the N-type silicon wafer, and a 0.25 cm 2 sample was tested under the conditions of AM 1.5 under the same conditions. The test results of the photovoltaic device of Example 2 were compared, as specifically shown in FIG. Example 4
  • the temperature is raised in the system, the heating rate in the initial stage is controlled at 15 ° C / min, the temperature is raised to 800 ° C, the temperature is kept for 20 minutes, and then the temperature is further increased to 1350 ° C; After the reaction, the product grown in the tube fireplace was removed to obtain a silicon nanowire, which was subjected to SEM characterization, and the results are shown in Fig. 8.
  • the silicon nanowires obtained by the 20 mg VLS growth route were weighed, mixed with G-PEDOT:PSS and sonicated for 30 minutes; the obtained mixture was pipetted to the upper surface of the N-type silicon wafer, and under the protection of argon to N
  • the silicon wafer is subjected to a drying treatment, specifically, the N-type silicon wafer is first kept at 50 ° C for 30 minutes, and then maintained at a temperature of 120 ° C for 1 hour;
  • FIG. 2 is a transmission spectrum and a reflection spectrum in a UV-visible spectrum of a silicon nanowire/transparent conductive polymer composite film used in the present invention. It can be found that most of the ultraviolet visible light is absorbed by the silicon nanowires instead of being reflected or absorbed by the polymer.
  • the silicon nanowire content is 88%.
  • the values of short-circuit current I SC , open circuit voltage Vo C , and fill factor FF increase with the decrease of silicon nanowire content, which is caused by high polymer content in photovoltaic devices.
  • the blocking of the charge transport path, therefore, the silicon nanowire content is further preferably from 75% to 86%, that is, when the mass ratio of the silicon nanowire to the conductive polymer compound is from 3:1 to 6:1, the value of the fill factor FF is the largest.
  • the prepared photovoltaic device has the highest energy conversion efficiency.
  • FIG. 5 is a current-voltage graph of the photovoltaic device prepared in Examples 1 and 2 under illumination, and it can be seen from the two curves that the photovoltaic film obtained by adding glycerol to the silicon nanowire and the conductive polymer mixture is formed.
  • the short-circuit current and open-circuit voltage of the device are higher than those of the photovoltaic device without glycerol, that is, when the silicon nanowire film contains glycerin, the energy conversion efficiency of the photovoltaic device is improved.
  • Figure 7 is a current-voltage curve of the photovoltaic device of Examples 2 and 3 under illumination, wherein the gray curve represents the current-voltage curve of the photovoltaic device of SiNWs-G-PEDOT:PSS, and the black curve represents the modification by the metal Pt nanoparticle After the Pt-SiNWs-G-PEDOT:PSS photovoltaic device current-voltage curve, comparing the two curves, it can be seen that after the Pt nanoparticle modification, the short-circuit current of the photovoltaic device becomes larger, therefore, the metal Pt nanoparticle After modification, the energy conversion efficiency of the photovoltaic device is improved.
  • Figure 9 is a graph showing photocurrent and dark current of Example 4. Among them, the photocurrent exhibits a lower fill factor, and a short-circuit current of only 9.1 mA/cm 2 .
  • the results of the etched nanowires are more suitable than the results of the application of the etched nanowires. In the present invention.
  • the SiNWs-PEDOT:PSS-based photovoltaic device of the present invention has high energy conversion efficiency, low silicon usage, and no limitation on the preparation method of the silicon nanowire, and the preparation process is flexible, and the silicon nanowire solar cell is reduced. Production cost; It is also possible to further improve the conversion efficiency of photovoltaic devices by adding glycerol to the silicon nanowires and the conductive polymer to form a film together, or by modifying the silicon nanowires with Pt metal nanoparticles.

Abstract

一种太阳能电池,包括第一电极、第二电极以及设置在第一电极和第二电极之间的光电转换活性层,其中光电转换活性层为包含无机窄带隙半导体纳米材料和透明导电高分子的体相异质结。还公开太阳能电池的制备方法。该太阳能电池中,透明导电高分子的存在不仅与无机窄带隙半导体纳米材料形成促进载流子分离的异质结和充当空位传输材料,还能钝化无机窄带隙半导体纳米材料的表面,减少载流子在纳米材料表面的复合。

Description

一种太阳能电池及其制备方法 技术领域
本发明涉及太阳能电池及其制备方法,具体为一种含无机窄带隙半导体纳米材料和透 明导电高分子体相异质结的太阳能电池及其制备方法。 背景技术
在传统的有机 /无机纳米线杂化体相异质结太阳能电池中, 高分子一般充当主要的光 活性材料, 无机纳米线通常用于提高器件的导电性能。 因此, 一系列无机纳米线诸如氧化 鋅、 氧化镉、 硫化镉、 二氧化钛等被应用于该类太阳能电池, 并取得大约 1〜3%的能量转 换效率, 这远远低于理论值。
导致该类太阳能电池效率较低的因素主要有两个: 一是光生激子在高分子内部的复 合, 这是由微观形貌的不可控和激子在高分子半导体中较短的迁移距离造成的; 另一个主 要因素是载流子在无机纳米线 /高分子界面的复合。 为了减少界面上载流子的复合, 现有 技术中主要采用两种策略:一是在无机纳米线上修饰一些染料, 二是通过在无机纳米线表 面沉积 Ti02 等。 然而, 激子在高分子内部复合的问题始终未被解决。
另外,传统报道的基于刻蚀硅纳米线阵列的光伏器件虽然己经被广泛报道并取得良好 进展, 但是目前尚无希望在工业中应用, 究其原因除了光电转换效率比较低之外, 同面积 的该类光伏器件所消耗的硅亦与传统的单晶硅片器件相当,不能真正体现硅纳米线光伏器 件结构的廉价优势。 发明内容
为解决上述问题, 本发明提供了一种太阳能电池及其制备方法。
一种太阳能电池, 包括第一电极、 第二电极以及设置在所述第一电极和所述第二电极 之间的光电转换活性层, 其中, 所述光电转换活性层为包含无机窄带隙半导体纳米材料和 透明导电高分子的体相异质结。
根据本发明的一实施方式,所述无机窄带隙半导体纳米材料与所述透明导电高分子的 质量比为 3:1到 6:1。
根据本发明的另一实施方式, 所述透明导电高分子为 PEDOT:PSS或 G-PEDOT:PSS。 根据本发明的另一实施方式, 所述无机窄带隙半导体为硅。 根据本发明的另一实施方式, 所述纳米材料为纳米线、 纳米球或纳米管。
根据本发明的另一实施方式, 所述第一电极为透明或半透明电极。
根据本发明的另一实施方式, 所述第一电极为 ΠΌ玻璃。
根据本发明的另一实施方式, 在所述 ΠΌ玻璃上设置有 PED0T:PSS缓冲层。
根据本发明的另一实施方式,在所述无机窄带隙半导体纳米材料表面修饰有金属纳米 颗粒。
根据本发明的另一实施方式, 所述金属选自铂、 金或银。
本发明进一步提供了一种制备太阳能电池的方法, 包括如下步骤: 制备所述第一电极 的步骤; 在所述第一电极上形成所述光电转换活性层的步骤, 以及在所述光电转换活性层 上形成所述第二电极的步骤; 其中, 所述光电转换活性层为包含无机窄带隙半导体纳米材 料和透明导电高分子的体相异质结。
根据本发明的一实施方式,还包括对所述窄带隙半导体纳米材料进行金属纳米颗粒修 饰的步骤。
根据本发明的另一实施方式,还包括在所述第一电极和所述光电转换活性层之间设置 缓冲层的步骤。
根据本发明的另一实施方式, 制备所述光电转换活性层的步骤包括: 制备所述无机窄 带隙半导体纳米材料; 将所述透明导电高分子配制成溶液; 将所述无机窄带隙半导体纳米 材料与所述透明导电高分子的溶液混合, 将得到的混合物移至所述第一电极的表面; 将所 述第一电极在氩气的保护下进行干燥处理。
根据本发明的另一实施方式, 所述无机窄带隙半导体纳米材料为硅纳米线, 所述硅纳 米线的制备步骤包括: 将硅片分别在丙酮、 乙醇及水中超声; 将所述硅片使用铬酸洗液浸 泡后使用水清洗;将所述硅片在 AgN03的 HF水溶液中进行刻蚀;将刻蚀完成后的硅片在 王水中浸泡; 将所述硅片用水清洗, 晾干。
本发明提供了一种包含无机窄带隙半导体纳米材料和透明导电高分子的体相异质结 的太阳能电池, 其中, 载流子只产生在无机窄带隙半导体纳米材料中, 在透明导电高分子 内部不产生载流子, 透明导电高分子仅用于载流子的传输。
透明导电高分子的存在不仅能够与无机窄带隙半导体纳米材料形成促进载流子分离 的异质结和充当空位传输材料, 亦能够钝化无机窄带隙半导体纳米材料的表面, 减少载流 子在纳米材料表面的复合损失, 同时, 透明导电高分子优异的透明特性可以保证其在与纳 米材料的复合结构中充当光谱的窗口材料, 大大提高器件的光电转换效率, 也解决了传统 硅纳米线太阳能电池对硅材料的过度消耗问题。 附图说明
图 1为本发明实施例 1的硅纳米线阵列结构的扫描电子显微镜 (SEM)图;
图 2 为本发明的 G-PEDOT、 SiNWs、 SiNWs-G-PEDOT:PSS 薄膜、 硅片及 SiNWs-PEDOT:PSS薄膜在 300-1 lOOnm波长范围内对光的透射率变化图 、 反射率变化 图 (b);
图 3为本发明实施例 1所制备的光伏器件的结构及原理示意图;
图 4为本发明实施例 1所制备的光伏器件的 、1及 FF与光伏器件中硅纳米线含量 的关系图;
图 5为本发明实施例 1、 2所制备的光伏器件在光照下的电流-电压曲线图; 图 6为本发明实施例 3基于 Pt纳米颗粒修饰的硅纳米线的 SEM图;
图 7为本发明实施例 2、 3的光伏器件在光照下的电流 -电压曲线;
图 8为本发明实施例 4通过 VLS法制备的硅纳米线的 SEM图;
图 9为本发明实施例 4制备的光伏器件的电流 -电压曲线, 其中灰色曲线表示光电流, 黑色曲线表示暗电流。 具体实施方式
下面, 结合具体实施方式对本发明一种太阳能电池及其制备方法做详细说明。
基于电子给体 /受体体系而制备的有机太阳能电池主要有两种, 一种是电子给体与电 子受体分别以层状薄膜的形式先后叠加, 组成光电转换活性层, 即双层或多层状异质结型 有机太阳能电池; 另一种则是给、 受体材料共混形成光电转换活性层, 即体相异质结型有 机太阳能电池 (Bulk heteroj unction organic solar cells)。
上述两种有机太阳能电池,前者活性层中虽然含有促进激子分离的异质结界面,但是, 器件效率往往很低, 原因有三: 一是膜与膜之间接触面积有限, 限制了激子分离; 二是激 子只能在近界面区域分离, 远界面区域产生的激子往往还没迁移到界面上就复合了; 三是 有机半导体材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过 程中会存在大量的损失。
相比较于前者, 体相异质结型有机太阳能电池的活性层则是由给、 受材料共混形成, 两种材料相互交错, 形成一个双连续、 互相贯穿的网络结构, 由此极大地增加了给、 受体 的接触面积, 形成了无数微小的 p-n结, 同时, 减小了激子扩散距离, 使更多激子可以到 达界面进行分离, 能量转换效率也由此得到较大提高。
本发明的太阳能电池, 包括第一电极、 第二电极以及设置在所述第一电极和所述第二 电极之间的光电转换活性层, 其中, 所述光电转换活性层为包含无机窄带隙半导体纳米材 料和透明导电高分子的体相异质结。
本发明通过以透明导电高分子代替传统的光活性分子, 以无机窄带隙半导体纳米材料 和透明导电高分子形成体相异质结, 使光生载流子仅产生在无机窄带隙半导体纳米材料 中, 在透明导电高分子内部不产生载流子, 透明导电高分子仅用于载流子的传输, 从而解 决了激子在高分子内部复合的问题。
本发明中可以选择不同的无机窄带隙半导体纳米材料和透明导电高分子相配合,还可 通过改变两种材料的混合比例, 不同程度地影响太阳能电池的能量转换效率。
本发明所述的无机窄带隙半导体指带隙低于 2.0eV的无机半导体,包括 GaAs、 CdTe、 CuInS¾、 Si等, 其中, 优选为 Si。
在本发明的实施方式中, 纳米材料为纳米线, 较之其它结构, 纳米线更便于载流子的 传输, 但本申请的纳米材料不限于纳米线, 还可以为纳米球、 纳米管或其它能实现本发明 的纳米结构。
在本发明的一实施方式中, 所述无机窄带隙半导体纳米材料为硅纳米线, 其长度为 在本发明的另一实施方式中, 硅纳米线由金属纳米颗粒催化辅助方法刻蚀获得, 在本 发明的另一实施方式中, 硅纳米线通过 VLS法制得, 其中, 本发明的硅纳米线优选为以 刻蚀方法获得, 但本发明对硅纳米线的制备方法没有限定, 其它制备硅纳米线的方法也可 用于本发明。
本发明所述的透明导电高分子指的是,与无机窄带隙半导体纳米材料共同形成光电转 换活性层后, 不吸收或吸收很少的入射光的导电高分子。
所述透明导电高分子不限于一种高分子,可以为一种高分子经至少一种高分子或小分 子掺杂以后形成的混合物。
在本发明的另一实施方式中,所述透明导电高分子为 PEDOT : PSS, 本征态的 PEDOT 导电性能很差, 且不溶不熔, 在很大程度上限制了 PEDOT的应用, 经过聚苯乙烯磺酸盐 (PSS)掺杂后,分散在水溶液中能形成一种稳定的 PEDOT : PSS悬浮液,该悬浮液在基片上 可以形成一种透明导电膜, 此种薄膜不仅易于加工, 同时还具有导电率高、 透光性好等优 点。 在本发明的另一实施方式中, 为增强透明导电高分子的导电率, 在 PEDOT : PSS中加 入甘油, 形成 G-PEDOT : PSS, 但不限于甘油, 还可以加入山梨醇、 甲基亚砜或 N,N-二甲 基甲酰胺以提高 PEDOT : PSS的导电性能。
在本发明中, 透明导电高分子不限于上述物质, 还可以为经其它方法改性的 PEDOT 类物质, 或适于应用于太阳能电池中且具有透明性的其它导电高分子。
在本发明中, 用于接收入射光的第一电极应为透明或半透明, 在本发明的一实施方式 中, 以 ITO玻璃作为第一电极, ITO是铟氧化物和锡氧化物的混合物, 在 400-1000nm的 波长范围内, 透过率可达 80%以上, 为提高第一电极的性能, 还可以在 ITO玻璃上设置提 高器件性能的缓冲层, 在本发明的实施方式中, 缓冲层为 PEDOT : PSS, 但不限于 PEDOT : PSS, 还可以为其它能提高器件性能的材料。
在本发明中, 第一电极还可以为磁控溅射制备的铝掺杂氧化鋅, 涂布氧化鋅纳米粒子 的银纳米线, ITO/Ag/ITO、 ZnO/Ag/ZnO、 ZnO/Cu/ZnO, 或其它能实现本发明的透明或半 透明电极。
在本发明的另一实施方式中, 采用 ΖηΟ:Α1为背电极即第二电极, ΖηΟ:Α1层具有收集 空穴和电子的双重能力, 同时还可以充当减反射层的角色, 实现改善器件性能的目的。 以下, 结合具体实施例对本发明的太阳能电池及其制备方法做进一步说明。 下述实施 例中所述实验方法,如无特殊说明, 均为常规方法,所述试剂和材料, 除硅纳米线 (SiNWs) 夕卜, 如无特殊说明, 均可从商业途径获得; 能量转换效率相关数据的测定均在 AM1.5 的 条件下进行。
所购买的 PEDOT:PSS 的固体含量为 1.7%质量比; 实施例中所使用的
G-PEDOT : PSS (甘油-聚 3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐)为将购买所得的 PEDOT:PSS 与 8%体积的甘油混合得到。
其中, 对太阳能光电转换效率 (PCE)的评定, 主要以下列参数为依据:
开路电压 (Voc), 太阳能电池在开路条件下的输出电压称为开路电压, 此时, 电池的 输出电流为零;
短路电流 (Isc), 太阳能电池在短路条件下的工作电流称为短路电流;
填充因子 (FF), 为太阳能电池提供的最大功率与 IscxV0C之比, 它说明了太阳能电池 能够对外提供的最大输出功率的能力, 是全面衡量太阳能电池品质的参数。 实施例 1
制备基于 SiNWs -PEDOT: PSS的光伏器件 1)第一电极的制备
在 ΠΌ (氧化铟锡)导电玻璃表面经电沉积制得 10纳米厚的 PEDOT (聚 3,4-乙撑二氧噻 吩)透明导电高分子薄膜, 其中, 电沉积电解液为乙腈, 支持电解质为高氯酸锂 (LiC104) ;
2)零散硅纳米线的制备
初始硅纳米线阵列样品通过金属纳米颗粒催化辅助方法刻蚀获得 (Kuiqing Peng,
Angew. Chem. Int. Ed. 2005, 44, 2737 -2742.):
将硅片分别使用丙酮、 乙醇及去离子水超声 10分钟除去表面污染物, 再使用铬酸洗 液浸泡 1小时后使用去离子水清洗;
在 0.04M AgN03的 20%HF酸水溶液中于 50 °C水浴中进行刻蚀;
将刻蚀完成后带有硅线阵列的硅片在王水溶液 (VHa:VHN03=3 : l) 中浸泡 1 小时以除去 表面的 Ag纳米颗粒, 用去离子水反复清洗, 晾干, 对其进行 SEM表征, 结果如图 1所 示;
最后用医用柳叶刀将刻蚀成功的硅纳米线从硅片上分离, 阵列结构被破坏, 得到零散 的硅纳米线。
3)SiNWs-PEDOT: PSS薄膜的制备
将上述分离的零散硅纳米线用少量乙醇润湿, 并与购买所得的 PEDOT:PSS混合, 超 声 30分钟后用移液管将得到的混合物移至经步骤 1)处理过的 ITO导电玻璃的 PEDOT薄 膜表面 (即 E-PEDOT, E代表电沉积);
然后, 在氩气的保护下对 ITO导电玻璃进行干燥处理, 具体为先将上述 ITO导电玻 璃在 50°C下保持 30分钟, 随后在 120°C的温度下保持 1小时;
上述步骤完成后, 在 E-PEDOT薄膜表面形成了一层同面积的 SiNWs-PEDOT:PSS薄 膜, 其厚度为 3μηι, 该薄膜能够充分吸收 300-1 100纳米波长范围内的光子, 具体如图 2 所示。
其中,零散硅纳米线的用量为每平方厘米器件 1〜1.2毫克, PEDOT:PSS的用量为 15〜28 微升每平方厘米器件。
4)第二电极的制备
在基于 ITO 导电玻璃基底的混合物薄膜上依次进行非晶硅薄膜磁控溅射沉积、 氧化 鋅薄膜激光溅射沉积以及金属铝薄膜热蒸发获得背电极, 三种薄膜的厚度均为 20nm, 最 后得到的光伏器件结构及作用机理如图 3所示。
采用相同的条件、 步骤, 仅改变 SiNWs-PEDOT : PSS薄膜中硅纳米线的质量百分含 量, 分别制作出几组光伏器件, 并在 AM1.5的条件下, 对这些器件进行了测试, 结果如图 4所示。 实施例 2
制备基于 SiNWs -G-PEDOT :PSS的光伏器件
本实施例中,所有步骤均与实施例 1相同,不同之处仅在于步骤 3)中以 G-PEDOT : PSS 替代 PEDOT : PSS制备基于硅纳米线 SiNWs-G-PEDOT : PSS的光伏器件,并在 AM1.5的条 件下, 对该器件进行测试, 将测试结果与实施例 1的基于 SiNWs -PEDOT : PSS的光伏器 件进行比较, 具体如图 5所示。 实施例 3
制备硅纳米线基于金属 Pt纳米颗粒修饰的 Pt-SiNWs-G-PEDOT: PSS的光伏器件
1)首先通过已经报道的方法 (Peng) , 在硅纳米线表面修饰 Pt 纳米颗粒, 得到 Pt-SiNWs (铂 -硅纳米线), 图 6为反映其微观形态的 SEM图;
2)将 Pt-SiNWs与 G-PEDOT : PSS混合并超声 30分钟,所得的混合物中硅纳米线与透 明导电高分子的质量比为 9:1 ;
3)用移液管将得到的混合物移至 N型硅片的上表面, 在氩气的保护下对 N型硅片进 行干燥处理, 具体为先将 N型硅片保持在 50°C下 30分钟, 随后在 120°C的温度下保持 1 小时;
4)最后,在 N型硅片的表面磁控溅射 3nm厚的金属铜薄膜和 20nm厚的金属铜栅线电 极, 0.25cm2样品在 AM 1.5的条件下进行了测试, 并与相同条件下实施例 2的光伏器件的 测试结果进行比较, 具体如图 7所示。 实施例 4
制备基于 VLS生长的硅纳米线的 SiNWs -G-PEDOT : PSS的光伏器件
1)VLS法制备硅纳米线
将 SiO与 Sn粉以 10: 1的质量比混合后, 均匀覆盖于瓷舟底部, 将瓷舟放置于高温管 式炉的中部;
用机械泵将系统压强抽至 O.lPa以下, 关闭机械泵, 向系统中通入氢氩混合气, 将系 统压力控制在 104Pa, 停止通气, 将此抽气、 通气操作循环三次;
给系统升温, 起始阶段升温速度控制在 15°C/min, 温度升至 800°C后, 恒温 20分钟, 随后继续升温至 1350°C ; 反应结束后, 将生长在管式壁炉的产品取下, 得到硅纳米线, 对其进行 SEM表征, 结果如图 8所示。
2) SiNWs -G-PEDOT: PSS膜的制备
称取 20mg VLS 生长途径得到的硅纳米线, 与 G-PEDOT:PSS混合并超声 30分钟; 用移液管将得到的混合物移至 N型硅片的上表面, 在氩气的保护下对 N型硅片进行 干燥处理, 具体为先将 N型硅片保持在 50°C下 30分钟, 随后在 120°C的温度下保持 1小 时;
3)电极的制备
在上述 N型硅片的表面磁控溅射 3nm厚的金属铜薄膜和 20nm厚的金属铜栅线电极, 0.25cm2样品在 AM 1.5的条件下进行了测试, 结果如图 9所示。 图 2 为本发明所用的硅纳米线 /透明导电高分子复合薄膜的紫外可见光谱下的透过光 谱和反射光谱。 比较可发现, 大部分的紫外可见光会被硅纳米线吸收, 而不是被反射或被 高分子吸收。
图 4示出了本发明实施例 1所制备的光伏器件的 VoC、 ISC及 FF与光伏器件中硅纳米 线含量的关系, 从图 4 的曲线可以看出, 硅纳米线含量在 88%-94%的范围内, 短路电流 ISC、 开路电压 VoC、 填充因子 FF的数值随硅纳米线含量的减小而增大, 由于光伏器件中 高分子含量过高会造成硅纳米线之间的电荷传输通路的阻断, 因此, 硅纳米线含量进一步 优选为 75%-86%, 即硅纳米线与导电高分子化合物的质量比为 3:1到 6:1时, 填充因子 FF 的数值最大, 所制备的光伏器件的能量转换效率最高。
图 5为实施例 1、 2所制备的光伏器件在光照下的电流-电压曲线图, 从两条曲线可以 看出, 向硅纳米线、 导电高分子混合物中加入甘油成膜后制得的光伏器件的短路电流和开 路电压均高于未加入甘油的光伏器件, 即硅纳米线薄膜中含有甘油时, 其光伏器件的能量 转换效率得到了提高。
图 7 为实施例 2、 3 的光伏器件在光照下的电流 -电压曲线, 其中, 灰色曲线表示 SiNWs-G-PEDOT:PSS的光伏器件的电流 -电压曲线, 黑色曲线表示经金属 Pt纳米颗粒修 饰后的 Pt-SiNWs-G-PEDOT:PSS 的光伏器件的电流 -电压曲线, 比较两条曲线可以看出, 经 Pt纳米颗粒修饰后, 光伏器件的短路电流变大, 因此, 经金属 Pt纳米颗粒修饰后, 光 伏器件的能量转换效率得到了提高。
图 9为实施例 4的光电流和暗电流曲线。 其中, 光电流表现出较低的填充因子, 和只 有 9.1mA/cm2的短路电流。相对于其应用刻蚀的纳米线的结果, 说明刻蚀的纳米线更适用 于本发明。
综上所述,本发明的基于 SiNWs-PEDOT:PSS的光伏器件能量转换效率高,硅用量少, 且对硅纳米线的制备方法没有限定, 制备工艺灵活, 降低了硅纳米线太阳能电池的制作成 本; 还可以通过向硅纳米线和导电高分子中加入甘油共同成膜, 或是用 Pt金属纳米颗粒 修饰硅纳米线, 进一步提高光伏器件的转换效率。
除非特别限定, 本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的, 并非用以限制本发明的保护范围, 本领 域技术人员可在本发明的范围内作出各种其他替换、 改变和改进, 因而, 本发明不限于上 述实施方式, 而仅由权利要求限定。

Claims

权利要求
I、 一种太阳能电池, 包括第一电极、 第二电极以及设置在所述第一电极和所述第二 电极之间的光电转换活性层,其中,所述光电转换活性层为包含无机窄带隙半导体纳米材 料和透明导电高分子的体相异质结。
2、 根据权利要求 1的太阳能电池, 其中, 所述无机窄带隙半导体纳米材料与所述透 明导电高分子的质量比为 3:1到 6:1。
3、 根据权利要求 1 的太阳能电池, 其中, 所述透明导电高分子为 PEDOT : PSS 或 G-PEDOT : PSS。
4、 根据权利要求 1的太阳能电池, 其中, 所述无机窄带隙半导体为硅。
5、 根据权利要求 1的太阳能电池, 其中, 所述纳米材料为纳米线、 纳米球或纳米管。
6、 根据权利要求 1-5任一项的太阳能电池, 其中, 所述第一电极为透明或半透明电 极。
7、 根据权利要求 6的太阳能电池, 其中, 所述第一电极为 ITO玻璃。
8、 根据权利要求 7的太阳能电池, 其中, 在所述 ITO玻璃上设置有 PEDOT : PSS缓 冲层。
9、 根据权利要求 1-5任一项的太阳能电池, 其中, 在所述无机窄带隙半导体纳米材 料表面修饰有金属纳米颗粒。
10、 根据权利要求 9的太阳能电池, 其中, 所述金属选自铂、 金或银。
I I、 一种制备太阳能电池的方法, 其中, 包括如下步骤:
制备所述第一电极的步骤;
在所述第一电极上形成所述光电转换活性层的步骤, 以及
在所述光电转换活性层上形成所述第二电极的步骤;
其中,所述光电转换活性层为包含无机窄带隙半导体纳米材料和透明导电高分子的体 相异质结。
12、 根据权利要求 11的方法, 其中, 还包括对所述窄带隙半导体纳米材料进行金属 纳米颗粒修饰的步骤。
13、 根据权利要求 11的方法, 其中, 还包括在所述第一电极和所述光电转换活性层 之间设置缓冲层的步骤。
14、 根据权利要求 11的方法, 其中, 制备所述光电转换活性层的步骤包括: 制备所述无机窄带隙半导体纳米材料; 将所述透明导电高分子配制成溶液;
将所述无机窄带隙半导体纳米材料与所述透明导电高分子的溶液混合,将得到的混合 物移至所述第一电极的表面;
将所述第一电极在氩气的保护下进行干燥处理。
15、根据权利要求 11至 14任一项的方法, 其中, 所述无机窄带隙半导体纳米材料为 硅纳米线, 所述硅纳米线的制备步骤包括:
将硅片分别在丙酮、 乙醇及水中超声;
将所述硅片使用铬酸洗液浸泡后使用水清洗;
将所述硅片在 AgN03的 HF水溶液中进行刻蚀;
将刻蚀完成后的硅片在王水中浸泡;
将所述硅片用水清洗, 晾干。
PCT/CN2013/090317 2013-12-24 2013-12-24 一种太阳能电池及其制备方法 WO2015096028A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090317 WO2015096028A1 (zh) 2013-12-24 2013-12-24 一种太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090317 WO2015096028A1 (zh) 2013-12-24 2013-12-24 一种太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2015096028A1 true WO2015096028A1 (zh) 2015-07-02

Family

ID=53477309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090317 WO2015096028A1 (zh) 2013-12-24 2013-12-24 一种太阳能电池及其制备方法

Country Status (1)

Country Link
WO (1) WO2015096028A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258124A (zh) * 2018-01-24 2018-07-06 南通壹选工业设计有限公司 一种异质结光伏电池及其制备方法
CN114921804A (zh) * 2022-04-26 2022-08-19 华南理工大学 一种基于InN/有机异质结构光电极材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249238A (zh) * 2011-02-22 2011-11-23 中国科学院理化技术研究所 一种硅纳米线-导电高分子复合物及其制备方法与应用
CN102280588A (zh) * 2011-08-02 2011-12-14 中国科学院苏州纳米技术与纳米仿生研究所 硅基核壳纳米线光伏电池及其制备工艺
CN103022359A (zh) * 2011-09-21 2013-04-03 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249238A (zh) * 2011-02-22 2011-11-23 中国科学院理化技术研究所 一种硅纳米线-导电高分子复合物及其制备方法与应用
CN102280588A (zh) * 2011-08-02 2011-12-14 中国科学院苏州纳米技术与纳米仿生研究所 硅基核壳纳米线光伏电池及其制备工艺
CN103022359A (zh) * 2011-09-21 2013-04-03 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258124A (zh) * 2018-01-24 2018-07-06 南通壹选工业设计有限公司 一种异质结光伏电池及其制备方法
WO2019144335A1 (zh) * 2018-01-24 2019-08-01 南通壹选工业设计有限公司 一种异质结光伏电池及其制备方法
CN108258124B (zh) * 2018-01-24 2020-09-08 绍兴利方惠能新能源科技有限公司 一种异质结光伏电池及其制备方法
CN114921804A (zh) * 2022-04-26 2022-08-19 华南理工大学 一种基于InN/有机异质结构光电极材料及其制备方法与应用
CN114921804B (zh) * 2022-04-26 2023-06-20 华南理工大学 一种基于InN/有机异质结构光电极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
KR102595057B1 (ko) 멕신-변형 하이브리드 광변환기
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Wang et al. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells
Pudasaini et al. High efficiency hybrid silicon nanopillar–polymer solar cells
Chen et al. Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances
Yang et al. Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI PIN photodiode application
US20090151787A1 (en) Organic thin-film photoelectric conversion element and method of manufacturing the same
JP2007273939A (ja) 有機薄膜光電変換素子及びその製造方法
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Fan et al. Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells
Kyaw et al. Improved inverted organic solar cells with a sol–gel derived indium-doped zinc oxide buffer layer
Gupta et al. Highly conformal Ni micromesh as a current collecting front electrode for reduced cost Si solar cell
Tao et al. Polyoxometalate doped tin oxide as electron transport layer for low cost, hole-transport-material-free perovskite solar cells
Chang et al. Preparation and characterization of MoSe2/CH3NH3PbI3/PMMA perovskite solar cells using polyethylene glycol solution
CN107359243A (zh) 一种三元共混有机聚合物太阳能电池器件
Subramani et al. Highly air-stable solution-processed and low-temperature organic/inorganic nanostructure hybrid solar cells
Amin et al. Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells
US11557689B2 (en) Integrated tandem solar cell and manufacturing method thereof
Bae et al. All-self-metered solution-coating process in ambient air for the fabrication of efficient, large-area, and semitransparent perovskite solar cells
Plank et al. The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells
Xiao et al. Enhancing the efficiency and stability of Organic/Silicon solar cells using graphene electrode and Double-layer Anti-reflection coating
Tang et al. Dopant-free random inverted nanopyramid ultrathin c-Si solar cell via low work function metal modified ITO and TiO2 electron transporting layer
CN104733616A (zh) 一种太阳能电池及其制备方法
WO2018186542A1 (ko) 정공수송재료 및 이를 포함하는 광전 소자
WO2015096028A1 (zh) 一种太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900004

Country of ref document: EP

Kind code of ref document: A1