WO2015094125A1 - Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication - Google Patents

Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication Download PDF

Info

Publication number
WO2015094125A1
WO2015094125A1 PCT/SI2013/000081 SI2013000081W WO2015094125A1 WO 2015094125 A1 WO2015094125 A1 WO 2015094125A1 SI 2013000081 W SI2013000081 W SI 2013000081W WO 2015094125 A1 WO2015094125 A1 WO 2015094125A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin fin
cooling system
arrangement means
inclined pin
fin
Prior art date
Application number
PCT/SI2013/000081
Other languages
English (en)
Inventor
Peter SERVER
Original Assignee
Sieva, Podjetje Za Razvoj In Trženje V Avtomobilski Industriji, D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sieva, Podjetje Za Razvoj In Trženje V Avtomobilski Industriji, D.O.O. filed Critical Sieva, Podjetje Za Razvoj In Trženje V Avtomobilski Industriji, D.O.O.
Priority to PCT/SI2013/000081 priority Critical patent/WO2015094125A1/fr
Publication of WO2015094125A1 publication Critical patent/WO2015094125A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the object of this patent application relates to the heat exchangers as
  • Such heat exchangers as Power Module Coolers are in the preferential embodiment designed as Pin Fin Coolers for high power applications in Motor and Motion Control, Hybrid Electric Vehicles and other Power Module systems.
  • Heat sinks are so-called extended surfaces that have been used to enhance cooling of heat dissipating surfaces. Such heat sinks have been fabricated in a number of designs. The designs are such as to decrease fluid flow impedance through the heat sink and thereby improve heat dissipation performance.
  • the pin fin heat sink is of particular interest because it is one of the commonly used heat sinks.
  • This invention relates to a cooling system having one or more inclined pin fins for an electric motor controller.
  • An object of the present invention is to provide a high performance heat sink for liquid cooled applications with controlled force for de-routing the stream of coolant fluid flow by means of the inclined pin fin array, wherein the coolant fluid flow is selectively focused and guided to the first surface by pushing force of inclined pin fins.
  • the invention is based on the insight that cooling fluid flow is selectively guided to the local heat sources by pushing force, rather than by the drag force.
  • Advanced heat exchanger with integrated array of inclined pin fins includes a base, i.e. first surface having the plurality of pin fins, wherein at least one pin fin comprises a central passage, where coolant fluid flow is selectively focused, thus the speed of the fluid is rapidly increased.
  • Second aspect of the present invention is to provide a method to manufacture the high performance heat sink, while maintaining the optimum of acceptable costs for production of high added value products.
  • Figure 1 is an isometric view of the advanced high performance pin fin (2) heat exchanger with inclined pin fin (2) array embodying a preferential embodiment of the present invention.
  • the following items are shown and marked in Figure 1: the heat sinks base plate (1), as part of the power electronics enclosure, which is not shown nor exposed in this patent application due to the figure clarity reasons.
  • the inlet aperture (1-1), the outlet aperture (1-0), a coolant fluid channel barrier (l-CB) and an inclined pin fin (2) as segment of pin fin (2) array is marked on the Figure 1, where for clarity of the figure only one random pin fin (2) in the array is labeled.
  • Figure 2 is a top view of the advanced high performance pin fin (2) heat exchanger with inclined pin fin (2) array.
  • the following items are shown and marked in Figure 2: a base plate (1), inlet aperture (1-1), outlet aperture (1-0), channel barrier (l-CB) and an inclined pin fin (2).
  • a cross section plane (A-A) and detailed view (B) are marked on the Figure 2.
  • Figure 3 is a section view of a cross section plane (A-A) as marked in the Figure 2.
  • the following items are shown and marked in Figure 3: a base plate (1) with bottom surface (1- BS), where at least one heat source shall apply, and first surface (1-FS), where an array of protruding inclined pin fins (2) is arranged.
  • first surface (1-FS) where an array of protruding inclined pin fins (2) is arranged.
  • scope of a detailed view (C) is shown and labeled on Figure 3.
  • Figure 4 is a top plan detailed view (B) of inclined pin fin (2) array as marked and labeled on Figure 3.
  • the following items are shown and marked in Figure 4: central aperture (2-CA) of an individual inclined pin fin (2), side passage (2-SP) between two neighbored pin fins (2), pin fin array pitch (2-P), pin fin array raster (2-R), pin fin top angle (TA), diameter of pin fin circumscribed circle (2-D), diameter of pin fin central aperture inscribed circle (2-CAD), and side passage distance (2-SPD).
  • Figure 5 is a detailed view (C) of the cross section plane (A-A), as marked on Figure 3.
  • the following items are shown and marked in Figure 5: a base plate (1) with first surface (1-FS), pin fin (2) and its central aperture (2-CA), height of the pin fin (2-H), height of the pin fin central aperture (2-CAH), pin fin inclination axis (2-A), pin fins inclination angle (A-2A), central aperture axis (2-CAA), central aperture axis angle (A-2CAA), first surface axis (1-FSA) defining the main coolant fluid flow direction and pin fin axis relative angle (A-RD).
  • Figure 6 is a side view of the advanced high performance pin fin (2) heat exchanger with inclined pin fin (2) array.
  • the following items are shown and marked in Figure 6: a base plate (1) with coolant fluid channel barrier (1-CB) and a randomly marked pin fin (2).
  • a scope of a detailed view (D) is marked on the Figure 6.
  • Figure 7 is a detailed view (D) as marked on Figure 6.
  • the following items are shown and marked in Figure 7: a base plate (1) with its first surface (1-FS) and coolant fluid channel barrier (1-CB), a pin fin (2) with its coolant fluid flow collector (2-FC) and a central aperture (2-CA).
  • pin fin height (2-H) is labeled on Figure 7.
  • side passage (2-SP) between two neighbored pin fins (2), diameter of pin fin circumscribed circle (2-D), diameter of pin fin central aperture inscribed circle (2-CAD), and side passage distance (2-SPD) are labeled on Figure 7.
  • Figure 8 is an isometric view of the advanced high performance heat sink with inclined pin fins (2), here shown in the wireframe view, where for clarity of the figure, elements of a heat sink are not labeled again.
  • the primary coolant fluid flow (P) and a redirected coolant fluid flow (R) is marked on figure 8.
  • illustrated streamlines of redirected coolant fluid flow (R) shows intensive turbulent coolant fluid flow in the area of inclined pin fin (2) array.
  • Figure 9 is a top plane view of the advanced high performance heat sink with inclined pin fins (2), here shown in the wireframe view, where for clarity of the figure elements of a heat sink are not labeled again.
  • P primary coolant fluid flow
  • R redirected coolant fluid flow
  • Figure 10 is a side view of the advanced high performance heat sink with inclined pin fins (2), here shown in the wireframe view, where for clarity of the figure elements of heat sink are not labeled again.
  • the primary coolant fluid flow (P) and a redirected coolant fluid flow (R) is marked on figure 9.
  • illustrated streamlines of redirected coolant fluid flow (R) are pressed toward to the first surface (1-FS) due to the intensive pushing force produced by inclined pin fins (2) with central apertures (2-CA).
  • the coolant fluid channel within the main cavity of the heat sink is designed as channel with its flat first surface (1-FS), and sideway channel barrier (1-CB), wherein the plurality of inclined pin fins (2) in array arrangement are protruding from the first surface (1-FS). Said inclined pin fins (2) are protruding up to the top of the coolant fluid channel, where the height of the pin fins (2-H) is approximately the same as the height of the coolant fluid channel.
  • the array of inclined pin fins (2) actually acts as an internal quasi perforated wall of the heat sinks main cavity, where individual inclined pin fin (2) with central aperture (2-CA) generates a positive force which forces the coolant fluid flow toward to the first surface (1-FS).
  • the figures in this application do not show the power electronics elements, i.e. enclosure, heat sources, etc. Instead, the figures of this application shows only the heat sink in preferential embodiment as a segment of the power electronics cooling system or housing, where other elements, such as cover of the coolant channel are present, but not shown on figures of this patent application.
  • each individual pin fin (2) comprises a central aperture (2-CA), where the main coolant fluid flow passes the pin fin (2) array quasi barrier, thus the force for de-routing the stream of the coolant fluid flow is generated by means of inclined pin fin (2) with central aperture (2-CA) within the array arrangement.
  • the pin fin (2) in exposed embodiment is designed as crescent moon type pin base, which is inclined at inclination axis (2-A) in relation to the first surface axis (1-FSA). Furthermore, the pin fin (2) in exposed embodiment comprises a second, pin fin (2) extraction area which consequently generates a pin fin (2) central aperture (2-CA) in accordance to the central aperture axis angle (A-2CAA). It can be understood, that the shape, area and height of the pin fin (2) central aperture (2-CA) is defined with shape, position and angle of extraction tool, which corresponds and thus exactly defines the shape of the pin fin (2).
  • an inclined pin fin (2) with central aperture (2-CA) further comprise a coolant fluid flow collector (2-FC), where the fluid flow is collected and directed toward central aperture (2-CA) of the pin fin (2) arrangement.
  • the pin fin (2) array is composed of pin fins (2), where a side passage (2-SP) between two neighbored pin fins (2) generates additional drag force due to the fluid flow principle, well known as Coanda effect.
  • a pin fin (2) array arrangement comprise a pin fin top angle (TA), which is defined by three neighbored pin fins (2) due to the pin fin array pitch (2-P) and pin fin array raster (2-R), as shown and defined on Figure 4.
  • TA pin fin top angle
  • the method for producing the exposed embodiment comprises at least six different approaches for manufacturing process.
  • First and preferential approach employ the technology of metal injection molding, well known as MI technology from prior art.
  • the manufacturing process of exposed preferential embodiment of advanced high performance heat sink with inclined pin fins (2) with central aperture (2-CA) comprises at least a production of pin fin (2) inserts by MIM technology, which are thereafter composed in pin fin (2) array arrangement and casted into the heat sink during the die casting process.
  • MIM technology i.e.
  • Third approach for manufacturing an advanced heat sink with inclined pin fins (2) comprises the step of die- casting, where due to the two simultaneous draft angles a complex at least two stage side die assembly is employed for manufacturing process.
  • the fourth approach for manufacturing an advanced heat sink with inclined pin fins (2) comprises an injection molding process, where high thermally conductive polymers are molded into its final shape.
  • the fifth approach for manufacturing an advanced heat sink with inclined pin fins (2) comprise additive technologies such as rapid manufacturing, where high thermally conductive materials shall be employed.
  • the heat sink in exposed embodiment comprises the crescent moon type pin fin (2) base, which are in preferential embodiment cylindrical in shape.
  • the pin fins (2) can equally be also conical, elliptical, diamond, raindrop or semicircular type or any other shape, where it is important to notice, that each individual pin fin (2) shall comprise a central aperture (2-CA).
  • the disclosed heat sink with inclined pin fins (2) is in its preferential embodiment made of aluminum, but it can be also made of any other relevant material, such as copper, or high thermally conductive plastics, polymer or elastomer with metal fillers included.
  • the preferential embodiment further comprises the boundary fins (2) integrated into the agitated channel boundary wall (1-CB) of the heat sinks in main cavity. Consequently the passing by coolant fluid flow is forced to follow and hit the pin fin (2) array configuration which contributes to enhanced efficiency of the heat sink.
  • the boundary pin fin (2) is actually designed as row of pin fins (2) integrated into the channel boundary wall (1-CB), thus the pattern of the boundary fin (2) is defined and dictated by the main, i.e. primary pattern of the pin fin (2) array, as shown and defined on Figure 4.
  • the boundary conditions of stated parameters for designing the advanced heat sink with inclined pin fins (2) and central aperture (2-CA) are provided, where the pin fin top angle (TA) is in the range of 15° to 70°, preferably 40°; diameter of pin fin circumscribed circle (2-D) is in the range of 0,5mm to 10mm, preferably 3mm; diameter of pin fin central aperture inscribed circle (2-CAD) is in the range of 0,3mm to 8mm, preferably 1,75mm; a side passage distance (2-SPD) is in the range of 0,25 to 5mm, preferably 0,5mm; a height of the pin fin (2-H) is in the range of 1mm to 15mm, preferably 7mm; height of the pin fin central aperture (2-CAH) is in the range of 0,5mm to 10mm, preferably 3mm, pin fin inclination angle (A-2A) is in the range of 30° to 150°, preferably 60°; and central aperture axis angle (A-2CAA) is in the range of 60° to 120°, preferably 90°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

L'invention porte sur un échangeur thermique haute performance amélioré avec un moyen d'agencement d'ailettes en forme de broches inclinées (2), qui est caractérisé par le fait que chaque ailette en forme de broche individuelle (2) comprend une ouverture centrale (2-CA), et présentant au moins deux jonctions adhérentes avec une première surface (1-FS), chaque ailette en forme de broche individuelle (2) comprenant en outre un collecteur de flux de fluide de refroidissement (2-FC), qui guide et contraint le flux principal de fluide de refroidissement à s'écouler en direction de la première surface (1-FS) de la plaque de base du dissipateur thermique (1). L'invention repose sur l'idée de guider sélectivement l'écoulement d'un flux de fluide de refroidissement vers les sources de chaleur locales au moyen d'ailettes en forme de broche inclinées (2) selon le principe d'une déviation et d'une réorientation de l'écoulement du flux de fluide de refroidissement, plutôt que selon le principe physique d'une force de traînée.
PCT/SI2013/000081 2013-12-16 2013-12-16 Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication WO2015094125A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/SI2013/000081 WO2015094125A1 (fr) 2013-12-16 2013-12-16 Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SI2013/000081 WO2015094125A1 (fr) 2013-12-16 2013-12-16 Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2015094125A1 true WO2015094125A1 (fr) 2015-06-25

Family

ID=50390168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SI2013/000081 WO2015094125A1 (fr) 2013-12-16 2013-12-16 Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication

Country Status (1)

Country Link
WO (1) WO2015094125A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184728B2 (en) 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
EP3306659A4 (fr) * 2015-06-03 2019-06-19 Mitsubishi Electric Corporation Refroidisseur à refroidissement par liquide, et procédé de fabrication d'ailette de radiateur dans un refroidisseur à refroidissement par liquide
DE102018209586A1 (de) * 2018-06-14 2019-12-19 Volkswagen Aktiengesellschaft Elektronisches Bauteil mit verbesserter Kühlleistung und Kraftfahrzeug mit zumindest einem elektronischen Bauteil
CN110793370A (zh) * 2019-11-12 2020-02-14 山东大学 一种水冷管板式换热器的设计方法
EP4020043A1 (fr) * 2020-07-02 2022-06-29 Google LLC Optimisations thermiques pour les modules émetteurs-récepteurs optiques osfp
WO2022163418A1 (fr) * 2021-01-27 2022-08-04 昭和電工マテリアルズ株式会社 Structure de refroidissement
EP4293308A1 (fr) * 2022-06-14 2023-12-20 Hamilton Sundstrand Corporation Couche de noyau d'échangeur de chaleur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029501A2 (fr) * 1979-11-23 1981-06-03 International Business Machines Corporation Membre de dissipateur de chaleur et système de refroidissement à l'air pour modules semiconducteurs
US5763950A (en) 1993-07-30 1998-06-09 Fujitsu Limited Semiconductor element cooling apparatus
US5781411A (en) * 1996-09-19 1998-07-14 Gateway 2000, Inc. Heat sink utilizing the chimney effect
WO2002078417A1 (fr) * 2001-03-26 2002-10-03 Jong-Mahn Lee Plaque de refroidissement et procede de fabrication
JP2012019668A (ja) 2010-07-09 2012-01-26 Ritsumeikan 交流モータ及び交流モータの制御方法
US20120199336A1 (en) * 2011-02-08 2012-08-09 Hsu Takeho Heat sink with columnar heat dissipating structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029501A2 (fr) * 1979-11-23 1981-06-03 International Business Machines Corporation Membre de dissipateur de chaleur et système de refroidissement à l'air pour modules semiconducteurs
US5763950A (en) 1993-07-30 1998-06-09 Fujitsu Limited Semiconductor element cooling apparatus
US5781411A (en) * 1996-09-19 1998-07-14 Gateway 2000, Inc. Heat sink utilizing the chimney effect
WO2002078417A1 (fr) * 2001-03-26 2002-10-03 Jong-Mahn Lee Plaque de refroidissement et procede de fabrication
JP2012019668A (ja) 2010-07-09 2012-01-26 Ritsumeikan 交流モータ及び交流モータの制御方法
US20120199336A1 (en) * 2011-02-08 2012-08-09 Hsu Takeho Heat sink with columnar heat dissipating structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306659A4 (fr) * 2015-06-03 2019-06-19 Mitsubishi Electric Corporation Refroidisseur à refroidissement par liquide, et procédé de fabrication d'ailette de radiateur dans un refroidisseur à refroidissement par liquide
EP3627549A1 (fr) * 2015-06-03 2020-03-25 Mitsubishi Electric Corporation Appareil de refroidissement de type liquide et procédé de fabrication d'ailette de rayonnement thermique dans un appareil de refroidissement de type liquide
US10184728B2 (en) 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
US10434575B2 (en) 2017-02-28 2019-10-08 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
DE102018209586A1 (de) * 2018-06-14 2019-12-19 Volkswagen Aktiengesellschaft Elektronisches Bauteil mit verbesserter Kühlleistung und Kraftfahrzeug mit zumindest einem elektronischen Bauteil
CN110610909A (zh) * 2018-06-14 2019-12-24 大众汽车有限公司 具有改善的冷却功率的电子构件和具有电子构件的机动车
CN110793370A (zh) * 2019-11-12 2020-02-14 山东大学 一种水冷管板式换热器的设计方法
CN110793370B (zh) * 2019-11-12 2020-10-02 山东大学 一种水冷管板式换热器的设计方法
EP4020043A1 (fr) * 2020-07-02 2022-06-29 Google LLC Optimisations thermiques pour les modules émetteurs-récepteurs optiques osfp
US11650384B2 (en) 2020-07-02 2023-05-16 Google Llc Thermal optimizations for OSFP optical transceiver modules
WO2022163418A1 (fr) * 2021-01-27 2022-08-04 昭和電工マテリアルズ株式会社 Structure de refroidissement
EP4293308A1 (fr) * 2022-06-14 2023-12-20 Hamilton Sundstrand Corporation Couche de noyau d'échangeur de chaleur

Similar Documents

Publication Publication Date Title
WO2015094125A1 (fr) Échangeur thermique haute performance ayant un moyen d'agencement d'ailettes en forme de broches inclinées et son procédé de fabrication
EP2941784B1 (fr) Échangeur de chaleur avancé comportant un déflecteur intégré d'écoulement de fluide de refroidissement
US8391008B2 (en) Power electronics modules and power electronics module assemblies
JP5608187B2 (ja) ヒートシンク
US9131631B2 (en) Jet impingement cooling apparatuses having enhanced heat transfer assemblies
WO2016194158A1 (fr) Refroidisseur à refroidissement par liquide, et procédé de fabrication d'ailette de radiateur dans un refroidisseur à refroidissement par liquide
US20170012504A1 (en) Electric machine heat sink with incorporated pin fin arangement means
EP2289098B1 (fr) Refroidisseur a liquide et procede de fabrication de celui-ci
US20100276135A1 (en) Cooling fin and manufacturing method of the cooling fin
US20120170222A1 (en) Cold plate assemblies and power electronics modules
JP5955651B2 (ja) ヒートシンク及びヒートシンク製造方法
US20120012284A1 (en) heat sink with staggered heat exchange elements
CN105188307B (zh) 用于高功率电子应用的局部增强流体冷却组件及电子装置
US20170280588A1 (en) Heat dissipating device
JP6138197B2 (ja) 液冷冷却器、及び液冷冷却器に於ける放熱フィンの製造方法
JP5498135B2 (ja) ヒートシンク
CN105514064A (zh) 散热器
CN105161472A (zh) 一种端面叶序排布结构的针柱式微型散热器
CN110600444A (zh) 液冷式散热头结构
KR101239172B1 (ko) 다방향 방열판
CN115621221A (zh) 散热部件
JPH07218174A (ja) 放熱フィン
CN210112533U (zh) 一种风冷和水冷一体式散热器
CN106550586B (zh) 散热器
JP2001133174A (ja) 冷却体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843026

Country of ref document: EP

Kind code of ref document: A1