WO2015093591A1 - Roller bearing and method for manufacturing same - Google Patents

Roller bearing and method for manufacturing same Download PDF

Info

Publication number
WO2015093591A1
WO2015093591A1 PCT/JP2014/083675 JP2014083675W WO2015093591A1 WO 2015093591 A1 WO2015093591 A1 WO 2015093591A1 JP 2014083675 W JP2014083675 W JP 2014083675W WO 2015093591 A1 WO2015093591 A1 WO 2015093591A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
ring
coating layer
inner ring
raceway
Prior art date
Application number
PCT/JP2014/083675
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 橋本
上野 弘
Original Assignee
ダイベア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイベア株式会社 filed Critical ダイベア株式会社
Priority to JP2015553618A priority Critical patent/JPWO2015093591A1/en
Publication of WO2015093591A1 publication Critical patent/WO2015093591A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/783Details of the sealing or parts thereof, e.g. geometry, material of the mounting region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7846Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
    • F16C33/785Bearing shields made of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/60Oil repelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/66Water repelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/30Fluoropolymers
    • F16C2208/32Polytetrafluorethylene [PTFE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Definitions

  • the present invention relates to a rolling bearing and a manufacturing method thereof.
  • the general rolling bearing includes an inner ring 91, an outer ring 92, a plurality of rolling elements (balls) 93, and a cage 94 that holds these rolling elements 93.
  • the rolling bearing further includes a shield 96 for preventing foreign matter from entering the bearing interior 95 where the rolling elements 93 are present.
  • a circumferential groove 97 for mounting the shield 96 is formed on the outer ring 92. Then, the shield 96 is elastically deformed by pressing, and the shield 96 is fitted into the circumferential groove 97 by fitting (forced fitting). Further, in order to ensure the mounting of the shield 96, the circumferential groove 97 is a groove that expands in the axial direction.
  • a narrow groove is provided in the outer ring, and a metal shield is attached to the groove of the outer ring by welding, so that the shield can be provided even in a rolling bearing that has a reduced axial dimension and is slimmed. It can be provided.
  • a gap formed between the shield and the outer peripheral surface of the inner ring is small.
  • the gap dimensions should be set as set values (design values) over the entire circumference. It is difficult. That is, in order to reduce the axial dimension of the rolling bearing and make it slim, it is difficult to improve the sealing performance by reducing the gap between the shield and the inner ring, while the shield is welded to the outer ring.
  • the present invention is a structure in which a shield is attached to one of the inner ring and the outer ring by welding, and the gap between the inner ring and the outer ring of the inner ring and the outer ring is reduced to achieve a sealing performance. It is an object of the present invention to provide a rolling bearing capable of increasing the height and a manufacturing method thereof.
  • the rolling bearing according to the present invention includes an inner ring, an outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage that holds the plurality of rolling elements, and the inner ring and the outer ring.
  • An annular metal shield that is attached by welding to at least one side in the axial direction of one of the bearing rings to prevent foreign matter from entering the bearing in which the rolling elements exist, and the inner ring and the A coating layer that peels or wears when it comes into sliding contact with the other raceway is provided in a region facing the other raceway in the radial direction of the outer race.
  • a coating layer that peels or wears when it comes into sliding contact with the other raceway is provided in a region facing the other raceway of the inner race and the outer race in the radial direction. ing.
  • the shield and the other ring are brought close to each other along the axial direction, and the shield is moved in the axial direction of the one ring.
  • the coating layer can be slid in contact with the other race.
  • the shield is guided to the other race by the coating layer, and the shield can be positioned with respect to the one race so that the center of the shield coincides with the center of the other race.
  • the shield can be welded and fixed to one of the race rings.
  • the rolling bearing assembled in this manner rotates and the coating layer of the shield and the other bearing ring are in sliding contact with each other, a part of this coating layer is peeled off or worn away, and the shield (coating layer) is removed.
  • a minute gap is formed around the entire circumference between the other race ring. As described above, a minute gap is formed between the shield and the other raceway ring, and a rolling bearing with high sealing performance is obtained.
  • the coating layer is preferably made of a resin. Thereby, the coating layer can be peeled off or worn when it comes into sliding contact with the other race ring.
  • the coating layer is preferably made of a fluororesin, whereby when the rolling bearing rotates and the coating layer and the other race ring are in sliding contact with each other, the resistance generated between them is small. Since the layer is provided with water repellency and oil repellency, it is possible to effectively suppress the intrusion of foreign matter including moisture and oil from a gap formed between the coating layer and another race.
  • the gap between the shield and the other race ring is formed very narrow, and the surface of the shield is attached with fluororesin having high water and oil repellency. It is difficult for the liquid to cause a capillary phenomenon that attempts to reduce the surface area, and it is possible to effectively suppress entry of foreign matter including the liquid from the outside and outflow of lubricating oil from the inside.
  • the shield is provided with an annular part whose one side in the radial direction is attached to the one race ring by welding, and extending from an end on the other side in the radial direction of the annular part to the bearing inner side.
  • the other raceway ring has a short cylindrical portion opposed in the radial direction, and the coating layer is provided on the short cylindrical portion.
  • the short cylindrical portion can function as a reinforcing material to increase rigidity.
  • the region where the coating layer is provided from the outside in the axial direction of the rolling bearing toward the inside of the bearing can be enlarged, and it is possible to more effectively prevent the entry of foreign matter.
  • the shield and the other ring are brought close to each other along the axial direction, and the coating layer is made to the other ring.
  • the short cylindrical portion serves as a guide, and the center line of the shield is difficult to tilt with respect to the center line of the other track ring. , Make it easier to install the shield.
  • the said coating layer has the smooth surface formed when the said coating layer peeled or worn partly by sliding-contacting with said other track ring. By forming such a smooth surface, a minute gap is obtained between the coating layer and the other raceway ring.
  • the present invention also includes an inner ring, an outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage for holding the plurality of rolling elements, and the inner ring and the outer ring.
  • a rolling bearing manufacturing method comprising an annular metal shield that is attached to at least one side in the axial direction of one of the bearing rings and prevents foreign matter from entering the inside of the bearing in which the rolling element is present, the inner ring and the The step of incorporating a plurality of the rolling elements and the cage between the outer ring and the other raceway in a region of the shield that is radially opposed to the other raceway of the inner ring and the outer ring.
  • the shield and the other raceway are brought close to each other along the axial direction, and the shield is brought into sliding contact with the other raceway while the shield is placed in the axial direction of the one raceway.
  • At least one side is positioned, and the shield is welded and fixed to the one raceway.
  • the shield and the other race are brought close to each other along the axial direction, and the shield is placed on one side while the coating layer provided on the shield is in sliding contact with the other race. It is located on one side in the axial direction of the raceway. For this reason, the annular shield is guided to the other race by the coating layer, and the shield can be positioned with respect to the one race so that the center of the shield coincides with the center of the other race. In this state, the shield is welded to one of the races. Further, when the completed rolling bearing rotates and the shield and the other raceway are in sliding contact, a part of the coating layer of the shield is peeled off or worn away, and the shield (coating layer) and the other raceway are removed. A gap is formed between the ring and the entire circumference. As described above, a minute gap is formed between the other bearing ring and the shield, and a rolling bearing with high sealing performance is obtained.
  • the shield is attached to one of the inner ring and the outer ring by welding, and the gap between the other ring of the inner ring and the outer ring and the shield is reduced. It is possible to improve the sealing performance. According to the method for manufacturing a rolling bearing of the present invention, the rolling bearing can be manufactured.
  • FIG. 1 is a longitudinal sectional view showing an example of a rolling bearing 7 of the present invention.
  • the rolling bearing 7 includes an inner ring 10, an outer ring 20, a plurality of balls (rolling elements) 30 provided between the inner ring 10 and the outer ring 20, an annular cage 35, and an annular shield 40. .
  • the inner ring 10 is a cylindrical member that is fitted on a shaft (not shown), and a raceway groove 11 on which the ball 30 rolls is formed on the outer peripheral surface 15 of the inner ring 10.
  • the outer ring 20 is a member that is fitted into the inner surface of a housing (not shown), and a raceway groove 21 on which the ball 30 rolls is formed on the inner peripheral surface 25 of the outer ring 20.
  • the retainer 35 holds the plurality of balls 30 at predetermined intervals (equal intervals) along the circumferential direction so that the balls 30 can roll.
  • the rolling bearing of this embodiment is a deep groove ball bearing, and the inner ring 10 and the outer ring 20 are arranged concentrically.
  • the inner ring 10, the outer ring 20, and the ball 30 are made of bearing steel (SUJ2), and the cage 35 is made of metal (made of metal press).
  • the cage 35 may be made of resin.
  • the shield 40 is made of stainless steel (SUS304). By making the shield 40 from stainless steel, the shield 40 does not require anti-corrosion measures such as corrosion-resistant coating.
  • the inner ring 10 and the outer ring 20 and the shield 40 are all made of metal, but are made of different materials.
  • grease is sealed as a lubricant in the bearing interior 5 between the inner ring 10 and the outer ring 20 where the balls 30 are present.
  • the shield 40 can prevent foreign matters existing outside the bearing from entering the inside 5 of the bearing and also prevent the grease provided inside the bearing 5 from flowing out to the outside of the bearing.
  • the shields 40 are provided on both sides of the rolling bearing 7 in the axial direction.
  • Each shield 40 is attached to the outer ring (one raceway ring) 20 by welding, and has a radial clearance from a part of the outer circumference surface 15 (shoulder outer circumference surface 16) of the inner ring (other raceway ring) 10. Then face each other. Since the inner ring 10 and the outer ring 20 can rotate relative to each other, the shield 40 and the inner ring 10 can rotate relative to each other.
  • the shield 40 on one side in the axial direction and the shield 40 on the other side in the axial direction are opposite in mounting direction, but have the same configuration.
  • the shield 40 is obtained by molding a metal flat plate member by pressing, and has a flat annular portion 41 and a short cylindrical portion 42.
  • the annular portion 41 is an annular flat plate portion having no irregularities, and is provided along a plane orthogonal to the center line of the rolling bearing (the inner ring 10 and the outer ring 20).
  • a part on the outer side in the radial direction of the annular part 41 (an intermediate part of the annular part 41) is attached to the outer ring 20 by welding. For this reason, a welded part (bead) 50 is formed in a part on the outer side in the radial direction of the annular part 41 (an intermediate part of the annular part 41).
  • FIG. 2 is a cross-sectional view for explaining the shield 40 on one side in the axial direction (the right side in FIG. 1) and its surroundings.
  • a groove 22 having a small axial dimension m is formed on the axial side surface 26 of the outer ring 20.
  • the groove 22 is formed over the entire circumference and is an annular groove.
  • the annular portion 41 is fixed to the outer ring 20 by welding in the groove 22 with the side surface 41a of the annular portion 41 in contact with the side surface 23 in the groove 22.
  • the inner diameter of the peripheral surface (inner peripheral surface) 24 of the groove 22 is set larger than the outer diameter of the shield 40.
  • the axial dimension m of the groove 22 is set larger than the thickness dimension t of the annular part 41. This is to prevent the extra portion of the weld 50 from protruding in the axial direction from the axial side surface 26 of the outer ring 20.
  • the thickness t of the shield 40 is the same in the annular portion 41 and the short cylindrical portion 42, for example, 0.2 mm.
  • the short cylindrical portion 42 of the shield 40 is a portion that extends from the radially inner end (the other radial side) of the annular portion 41 toward the bearing inner 5 side, and is short.
  • the center line of the cylindrical portion 42 coincides with the center line of the rolling bearing (the inner ring 10 and the outer ring 20).
  • the short cylindrical portion 42 faces a part of the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring (the other race ring) 10 with a gap.
  • the coating layer 2 is provided on the inner peripheral surface 43 of the short cylindrical portion 42.
  • the inner peripheral surface (3) of the coating layer 2 faces a part of the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring (the other race ring) 10 with a gap ⁇ in the radial direction. With this gap ⁇ , the shield 40 ensures hermeticity while not in contact with the inner ring 10.
  • the coating layer 2 is made of a resin, and in this embodiment, in particular, a fluororesin.
  • a fluororesin polytetrafluoroethylene (PTFE) is preferable.
  • PTFE polytetrafluoroethylene
  • Specific examples include Fluorosurf FG-3020 manufactured by Fluorosurf Technology Co., Ltd., which is used as a binder for dry lubricants.
  • the value of the gap ⁇ is a dimension value in the radial direction from the inner peripheral surface (3) of the coating layer 2 to the shoulder outer peripheral surface 16 of the inner ring 10, and this value is about 0.03 mm.
  • the material of the coating layer 2 is such a hardness that it can be easily scraped off by the shoulder outer peripheral surface 16 of the inner ring 10 when the shield 40 is fitted on the inner ring 10 and enters the inside of the rolling bearing 7. Even if it is a substance that does not affect the abnormal wear, paraffin or the like may be used.
  • the gap ⁇ is preferably small (for example, less than 0.1 mm).
  • the gap ⁇ is set to 0.15 mm in addition to 0.03 mm.
  • the rolling bearing 7 is manufactured by attaching the shield 40 to the outer ring 20 as follows.
  • FIG. 3 is a flowchart for explaining this manufacturing method.
  • the coating for forming the coating layer 2 on the shield 40 before being attached to the inner and outer rings 10 and 20.
  • a layer forming step and an attaching step of attaching the shield 40 on which the coating layer 2 is formed to the raceway ring (in this embodiment, the outer ring 20) are included.
  • the assembly process is performed.
  • a plurality of balls 30 and a cage 35 are incorporated between the inner ring 10 and the outer ring 20.
  • This step can be performed by employing a conventionally performed method.
  • the shield 40 is not yet attached to the outer ring 20.
  • This coating layer forming step is a step of providing the coating layer 2 in a region of the shield 40 facing the inner ring 10 in the radial direction.
  • the coating layer 2 can be slidably contacted with the outer peripheral surface 16 of the shoulder portion of the inner ring 10 and can be peeled off or worn when slidable.
  • the resin (PTFE) coating layer 2 is formed on the entire inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40.
  • the coating layer forming step will be described.
  • the main body portion (the annular portion 41 and the short cylindrical portion 42) of the shield 40 is made of steel (SUS304). Therefore, a coating material containing a resin material (PTFE) is applied to the surface (inner peripheral surface 43) of the short cylindrical portion 42 by dipping and drying to form a film, which is used as the coating layer 2.
  • PTFE resin material
  • it is preferable that the thickness of the coating layer 2 is controlled (measured) so that the thickness of the coating layer 2 is substantially uniform over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42.
  • the coating layer 2 is formed over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42, and the film thickness is such that the inner diameter of the formed coating layer 2 is smaller than the outer diameter of the shoulder outer peripheral surface 16 of the inner ring 10. Is managed.
  • the inner diameter of the short cylindrical portion 42 is set larger than the outer diameter of the shoulder outer peripheral surface 16.
  • the film thickness of the coating layer 2 is 105% to 150% of the radial dimension of the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10, more preferably 105% to 110%.
  • FIG. 4 is an explanatory diagram of this process.
  • This attachment process is a process of attaching the shield 40 provided with the coating layer 2 to a predetermined position of the outer ring 20 by welding.
  • the shield 40 and the inner ring 10 are brought closer along the axial direction.
  • the coating layer 2 formed on the short cylindrical portion 42 is applied to the axial end 15 a (shoulder outer peripheral surface 16) of the outer peripheral surface 15 of the inner ring 10.
  • the shield 40 is fitted onto the shoulder outer peripheral surface 16 while being in sliding contact, and the shield 40 is positioned on the axial side surface 26 (one side in the axial direction) of the outer ring 20.
  • the short cylindrical portion 42 is short but has a length in the axial direction, the short cylindrical portion 42 makes it difficult for the center line of the shield 40 to be inclined with respect to the center line of the inner ring 10, so that the shield 40 is accurately positioned. Easy to install.
  • the shield 40 is slightly It will be fitted on the inner ring 10 with a tight margin. At this time, a part of the coating layer 2 is peeled off by sliding contact with the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 (see FIG. 5B).
  • a convex rounded portion (circular cross-section arc portion) 17 is formed on the outer peripheral edge of the axial end portion of the inner ring 10.
  • the coating layer 2 is on the inner side in the axial direction (on the raceway groove side) than the rounded portion 17. ).
  • the inner diameter of the peripheral surface (inner peripheral surface) 24 of the groove 22 for attaching the shield 40 formed on the outer ring 20 is set larger than the outer diameter of the shield 40 (FIG. 5A). (See (B)). Therefore, when the shield 40 is fitted on the shoulder outer peripheral surface 16 of the inner ring 10 and provided at a predetermined position on the axial side surface 26 of the outer ring 20, a degree of freedom is given to the radial movement of the shield 40. It is possible to prevent 40 from interfering with the peripheral surface 24 of the groove 22.
  • the shield 40 is brought to a position where the annular portion 41 of the shield 40 contacts the side surface 23 of the groove 22 of the outer ring 20. Then, the shield 40 is welded and fixed to the outer ring 20. At this time, a part (intermediate portion) on the radially outer side of the shield 40 is welded to the side surface 23 of the groove 22 of the outer ring 20.
  • This welding is performed by precision laser welding, and welding is performed on the entire circumference of the annular shield 40. Further, this welding method uses a fiber laser having a small spot diameter, and the thin shield 40 can be welded without greatly affecting the other part of the outer ring 20. Thereby, the space between the outer peripheral edge of the shield 40 and the outer ring 20 is completely sealed.
  • the laser spot diameter is suitably about 0.05 mm to 0.08 mm.
  • the shield 40 is welded and fixed to the outer ring 20 on the other side in the axial direction in the same manner as this. That is, the inner ring 10 and the outer ring 20 with the shield 40 fixed on one side in the axial direction are reversed (upside down), and the grease G is filled into the bearing interior 5 for a specified amount as shown in FIG. Then, on the other side in the axial direction, the shield 40 and the inner ring 10 are approached along the axial direction (see FIG. 4D), and the coating layer 2 of the shield 40 is applied to the inner ring 10 (shoulder outer peripheral surface).
  • the shield 40 is positioned on the other side surface in the axial direction of the outer ring 20 while being in sliding contact with the outer ring 20, and the shield 40 is welded to the outer ring 20 and fixed (see FIG. 4E). With the above manufacturing method, the rolling bearing 7 shown in FIG. 1 can be manufactured (see FIG. 4F).
  • the shield 40 and the inner ring 10 are brought close to each other along the axial direction (see FIG. 4A), and the shield 40 is provided on the shield 40. While the coating layer 2 is in sliding contact with a part of the outer peripheral surface 15 of the inner ring 10, the shield 40 is fitted on the inner ring 10, and the shield 40 is positioned on one side (side part) of the outer ring 20 in the axial direction. (See FIG. 5).
  • the film thickness of the coating layer 2 of the shield 40 is formed to be substantially uniform over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42.
  • the shield 40 is guided to the shoulder outer peripheral surface 16 of the inner ring 10 by the coating layer 2, and the shield 40 is positioned with respect to the outer ring 20 so that the center of the shield 40 coincides with the center of the inner ring 10. it can.
  • the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 is subjected to high-precision finishing (polishing), the outer peripheral surface 15 (shoulder outer peripheral surface 16) is used as a reference surface.
  • the shield 40 is attached to the inner ring 10 in a concentric manner with high accuracy.
  • the shield 40 is welded to the outer ring 20 in a state where the center of the shield 40 and the center of the inner ring 10 are aligned (a state where they are arranged concentrically) (see FIG. 4B).
  • the reference for positioning the shield 40 is the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10. 40 centering is performed.
  • the coating layer 2 that can be slidably contacted with the inner ring 10 and peels or wears when slid on the region of the shield 40 facing the inner ring 10 is provided. It is made of resin (PTFE). For this reason, when the bearing 7 rotates and the coating layer 2 comes into sliding contact with the outer peripheral surface 16 of the shoulder portion, the coating layer 2 is gradually peeled off or worn and partially removed, and the thickness in the radial direction is thin. become. Then, the gap ⁇ is formed.
  • the dimension value in the radial direction of the gap ⁇ is the same as the dimension value in the radial direction in which the relatively rotating inner ring 10 and outer ring 20 can move relative to each other in the radial direction.
  • the coating layer 2 is formed by the coating layer 2 being partially peeled off or worn by being in sliding contact with the inner ring 10 (shoulder outer peripheral surface 16).
  • a smooth surface 3 can be provided. By forming the smooth surface 3, a minute gap ⁇ is obtained between the coating layer 2 and the inner ring 10 (shoulder outer peripheral surface 16).
  • this gap ⁇ is extremely small, and it has a structure with high sealing performance while being non-contact.
  • the coating layer 2 is made of fluororesin (PTFE)
  • PTFE fluororesin
  • the coating layer 2 has water repellency and oil repellency, it is possible to more effectively suppress the entry of foreign matter including moisture and oil from the gap formed between the coating layer 2 and the inner ring 10. It becomes possible.
  • the grease inside the bearing 5 can be effectively prevented from flowing out.
  • the gap between the shield 40 and the inner ring 10 is formed very narrow, and a fluororesin (coating layer 2) having high water and oil repellency adheres to the surface of the shield 40. In such a case, it is difficult for a liquid such as water or oil to cause a capillary phenomenon that attempts to reduce the surface area, and it is possible to effectively suppress the intrusion of foreign matter including the liquid from the outside and the outflow of lubricating oil from the inside. Become.
  • the shield 40 has an annular portion 41 whose end on the radially outer peripheral side is attached to the outer ring 20 by welding, and an end on the radially inner peripheral side of the annular portion 41 toward the bearing interior 5 ( A short cylindrical portion 42 that extends in the axial direction and faces the inner ring 10. For this reason, even if the shield 40 (annular part 41) is thin, the short cylindrical part 42 functions as a reinforcing material and can increase rigidity. And the area
  • the grease inside the bearing 5 can be effectively prevented from flowing out.
  • the shield 40 and the inner ring 10 are brought close to each other in the axial direction, and the shield 40 is slidably contacted with the inner ring 10 while the shield 40 is attached to the outer ring 20.
  • the short cylindrical portion 42 serves as a guide, and the center line of the shield 40 is less likely to be inclined with respect to the center line of the inner ring 10, so that the shield 40 can be easily attached.
  • the axial dimension m of the groove 22 should be equal to or slightly larger than the thickness t of the shield 40.
  • the groove 97 (see FIG. 6) that expands in the axial direction as in the prior art becomes unnecessary.
  • the axial dimension is reduced without changing the size of the ball 30 and the inner diameter and outer diameter of the bearing 7 from the standard product, that is, without reducing the load capacity.
  • the bearing can be made slimmer than the standard product.
  • the rolling bearings have the same load capacity, it is possible to configure the rolling bearing 7 which is narrow and light in the axial dimension of 85% or less of a standard product (ISO product). Since the rolling bearing 7 can be narrowed, the volume of the space between the shields 40 installed on both sides in the axial direction (the space inside the bearing 5) is reduced, and the amount of grease filled is reduced. Can do.
  • ISO product a standard product
  • the coating layer 2 is formed so that the inner diameter of the coating layer 2 is larger than the outer diameter of the shoulder outer peripheral surface 16 of the inner ring 10.
  • the film thickness of the coating layer 2 in the present embodiment is 80% to 95% of the radial dimension of the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10.
  • a gap is formed between the coating layer 2 and the outer peripheral surface 15 of the inner ring 10, and the shield 40 is slightly eccentric with respect to the outer ring 20 by this gap.
  • the coating layer 2 makes it possible to avoid contact between metals.
  • the gap formed between the shield 40 and the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 is preferably small.
  • the dimension of the gap is set as a set value (design value) over the entire circumference. Is difficult to set.
  • the shield 96 attached to the outer ring 92 is eccentric with respect to the inner ring 91 due to the error as described above, and the inner ring 91 and the outer ring 92 are further shaken.
  • the shield 96 and the inner ring 91 are both made of metal, so that the contact becomes a metal contact, and the rotational resistance of the bearing increases. There is a problem.
  • heat is generated and the bearing becomes high temperature.
  • the lubricant (grease) inside the bearing 95 is deteriorated, which causes a decrease in bearing life.
  • the rolling bearing 7 of each of the embodiments of the present invention even in such a case, it is possible to suppress an increase in the rotational resistance of the bearing and heat generation resulting therefrom. That is, in each embodiment, when the shield 40 is externally fitted to the inner ring 10, the shield 40 is guided to the shoulder outer peripheral surface 16 of the inner ring 10 by the coating layer 2 formed on the inner peripheral surface 43 of the short cylindrical portion 42. Then, the shield 40 can be positioned so that the center of the shield 40 and the center of the shoulder outer peripheral surface 16 of the inner ring 10 coincide.
  • the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10 can be set to a predetermined size, and the shield 40 has some manufacturing errors.
  • the coating layer 2 is removed by peeling or wearing a part of the coating layer 2 in due course.
  • a minute gap ⁇ is formed between the coating layer 2 and the inner ring 10 over the entire circumference, so that an increase in bearing rotation resistance and heat generation due to this are suppressed while maintaining sealing performance. It becomes possible.
  • the shield 40 has been described as being attached to the outer ring 20, but may be attached to the inner ring 10.
  • the radially inner side of the shield 40 is attached to the axial side surface of the inner ring 10 by welding, and the radially outer side of the shield 40 faces the outer ring 20 with a gap.
  • the said embodiment demonstrated the case where the shield 40 was attached to the axial direction both sides of the outer ring
  • the shield 40 only needs to be attached to at least one of the inner ring 10 and the outer ring 20 in the axial direction of one of the race rings by welding, and a part of the shield 40 is formed between the inner ring 10 and the outer ring 20. It becomes the structure facing the other track ring of them.
  • the rolling bearing of the present invention is not limited to the illustrated form, and may be of other forms within the scope of the present invention. Further, the manufacturing method may be another method within the scope of the present invention. In addition to the ball bearing, the rolling bearing of the present invention may be a roller bearing in which the rolling element is a roller.
  • the shield 40 has the short cylindrical portion 42.
  • the short cylindrical portion 42 may be omitted, and in this case, the inner peripheral surface of the annular portion 41 is coated. Layer 2 is provided.
  • Coating layer 3 Smooth surface 5: Inside of bearing 7: Rolling bearing 10: Inner ring 20: Outer ring 30: Ball (rolling element) 35: Cage 40: Shield 41: Ring part 42: Short cylindrical part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A roller bearing is equipped with an inner ring (10), an outer ring (20), multiple balls (30) provided between the inner ring (10) and the outer ring (20), retainers (35) retaining these balls (30), and an annular metal shield (40) that is attached by means of welding to both sides of the outer ring (20) in the axial direction, and prevents the infiltration of foreign objects into the bearing interior (5) where the balls (30) reside. A coating layer (2) that peels away or wears away when in sliding contact with the inner ring (10) is provided on the region of the shield (40) facing the inner ring (10) in the radial direction.

Description

転がり軸受及びその製造方法Rolling bearing and manufacturing method thereof
 本発明は、転がり軸受及びその製造方法に関する。 The present invention relates to a rolling bearing and a manufacturing method thereof.
 転がり軸受は、様々な技術分野で多く使用されている。一般的な転がり軸受は、図6に示すように、内輪91、外輪92、複数の転動体(玉)93、及びこれら転動体93を保持する保持器94を備えている。更に、この転がり軸受は、転動体93が存在している軸受内部95に異物が侵入するのを防止するためのシールド96を備えている。 Rolling bearings are widely used in various technical fields. As shown in FIG. 6, the general rolling bearing includes an inner ring 91, an outer ring 92, a plurality of rolling elements (balls) 93, and a cage 94 that holds these rolling elements 93. The rolling bearing further includes a shield 96 for preventing foreign matter from entering the bearing interior 95 where the rolling elements 93 are present.
 外輪92にはシールド96を装着するための周溝97が形成されている。そして、プレスによって、シールド96に弾性変形を伴わせて、このシールド96を周溝97に押し入れ嵌合(無理嵌め)により装着している。また、このシールド96の装着を確実とするために、周溝97は軸方向に広がった溝となっている。 A circumferential groove 97 for mounting the shield 96 is formed on the outer ring 92. Then, the shield 96 is elastically deformed by pressing, and the shield 96 is fitted into the circumferential groove 97 by fitting (forced fitting). Further, in order to ensure the mounting of the shield 96, the circumferential groove 97 is a groove that expands in the axial direction.
 このようにシールド96を外輪92の軸方向両側に装着するためには、外輪92の軸方向両側に前記のような軸方向に広がった周溝97を設ける必要があることから、外輪92の軸方向寸法Bも大きくなる。このため、軸方向寸法Bを小さくしてスリム化させた転がり軸受の場合、前記周溝97を形成するためのスペースが乏しく、シールド96を外輪92に装着することが困難である。 In order to mount the shield 96 on both sides in the axial direction of the outer ring 92 as described above, it is necessary to provide the circumferential grooves 97 that extend in the axial direction on both sides in the axial direction of the outer ring 92. The direction dimension B is also increased. For this reason, in the case of a rolling bearing that is reduced in size by reducing the axial dimension B, the space for forming the circumferential groove 97 is scarce and it is difficult to attach the shield 96 to the outer ring 92.
 そこで、図6に示す前記周溝97よりも軸方向に狭い溝を外輪に設け、この狭い溝において環状の金属製シールドを溶接によって取り付ける転がり軸受が提案されている(特許文献1(図1)参照)。 Therefore, a rolling bearing has been proposed in which a groove narrower in the axial direction than the circumferential groove 97 shown in FIG. 6 is provided in the outer ring, and an annular metal shield is attached by welding in this narrow groove (Patent Document 1 (FIG. 1)). reference).
特開平11-351263号公報JP-A-11-351263
 特許文献1に開示されているように、外輪に狭い溝を設け、この外輪の溝に金属製シールドを溶接によって取り付けることで、軸方向寸法を小さくしてスリム化させた転がり軸受においてもシールドを設けることが可能となる。 As disclosed in Patent Document 1, a narrow groove is provided in the outer ring, and a metal shield is attached to the groove of the outer ring by welding, so that the shield can be provided even in a rolling bearing that has a reduced axial dimension and is slimmed. It can be provided.
 このシールドによって軸受内部への異物の侵入を防ぐためには、そのシールドと、内輪の外周面との間に形成される隙間は小さいことが好ましい。しかし、シールドを外輪に溶接して固定する際の取り付け寸法誤差や、シールドの製造誤差が原因となって、前記隙間の寸法を周方向全周にわたって設定値(設計値)のとおりに設定することは困難である。
 すなわち、転がり軸受の軸方向寸法を小さくしてスリム化するために、シールドを外輪に溶接する構成でありながら、そのシールドと内輪との隙間を小さくしてシール性能を高めることは困難である。
In order to prevent foreign matter from entering the inside of the bearing by this shield, it is preferable that a gap formed between the shield and the outer peripheral surface of the inner ring is small. However, due to mounting dimension errors when welding and fixing the shield to the outer ring and shield manufacturing errors, the gap dimensions should be set as set values (design values) over the entire circumference. It is difficult.
That is, in order to reduce the axial dimension of the rolling bearing and make it slim, it is difficult to improve the sealing performance by reducing the gap between the shield and the inner ring, while the shield is welded to the outer ring.
 そこで、本発明は、内輪と外輪との内の一方の軌道輪にシールドを溶接によって取り付ける構成であって、内輪と外輪との内の他方の軌道輪とシールドとの隙間を小さくしてシール性能を高めることが可能となる転がり軸受、及びその製造方法を提供することを目的とする。 Therefore, the present invention is a structure in which a shield is attached to one of the inner ring and the outer ring by welding, and the gap between the inner ring and the outer ring of the inner ring and the outer ring is reduced to achieve a sealing performance. It is an object of the present invention to provide a rolling bearing capable of increasing the height and a manufacturing method thereof.
 本発明の転がり軸受は、内輪、外輪、前記内輪と前記外輪との間に設けられている複数の転動体、前記複数の転動体を保持する保持器、及び、前記内輪と前記外輪とのうちの一方の軌道輪の軸方向の少なくとも一方側に溶接によって取り付けられ前記転動体が存在する軸受内部へ異物が侵入するのを防ぐ環状の金属製シールドを備え、前記シールドのうち、前記内輪と前記外輪とのうちの他方の軌道輪と径方向に対向する領域に、当該他方の軌道輪に摺接すると剥離又は摩耗するコーティング層が設けられている。 The rolling bearing according to the present invention includes an inner ring, an outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage that holds the plurality of rolling elements, and the inner ring and the outer ring. An annular metal shield that is attached by welding to at least one side in the axial direction of one of the bearing rings to prevent foreign matter from entering the bearing in which the rolling elements exist, and the inner ring and the A coating layer that peels or wears when it comes into sliding contact with the other raceway is provided in a region facing the other raceway in the radial direction of the outer race.
 本発明によれば、環状のシールドのうち、内輪と外輪とのうちの他方の軌道輪と径方向に対向する領域に、この他方の軌道輪に摺接すると剥離又は摩耗するコーティング層が設けられている。このため、このシールドを内輪と外輪との内の一方の軌道輪に取り付けるために、このシールドと他方の軌道輪とを軸方向に沿って接近させて、このシールドを一方の軌道輪の軸方向の一方側に位置させる際に、コーティング層を他方の軌道輪に対して摺接させながら行うことができる。このため、シールドはコーティング層によって他方の軌道輪にガイドされ、シールドの中心が他方の軌道輪の中心に一致するようにして、シールドを一方の軌道輪に対して位置させることができる。そして、この状態で、シールドを一方の軌道輪に溶接して固定することが可能となる。
 このようにして組み立てられた転がり軸受が回転して、シールドのコーティング層と他方の軌道輪とが摺接すると、このコーティング層の一部が剥離又は摩耗して除去され、シールド(コーティング層)と他方の軌道輪との間に全周にわたって微小な隙間が形成される。以上より、シールドと他方の軌道輪との間には微小な隙間が形成され、シール性能の高い転がり軸受となる。
According to the present invention, in the annular shield, a coating layer that peels or wears when it comes into sliding contact with the other raceway is provided in a region facing the other raceway of the inner race and the outer race in the radial direction. ing. For this reason, in order to attach this shield to one of the inner ring and the outer ring, the shield and the other ring are brought close to each other along the axial direction, and the shield is moved in the axial direction of the one ring. When it is positioned on one side, the coating layer can be slid in contact with the other race. For this reason, the shield is guided to the other race by the coating layer, and the shield can be positioned with respect to the one race so that the center of the shield coincides with the center of the other race. In this state, the shield can be welded and fixed to one of the race rings.
When the rolling bearing assembled in this manner rotates and the coating layer of the shield and the other bearing ring are in sliding contact with each other, a part of this coating layer is peeled off or worn away, and the shield (coating layer) is removed. A minute gap is formed around the entire circumference between the other race ring. As described above, a minute gap is formed between the shield and the other raceway ring, and a rolling bearing with high sealing performance is obtained.
 また、前記コーティング層は樹脂からなるのが好ましい。これにより、コーティング層は、前記他方の軌道輪と摺接すると剥離又は摩耗することができる。
 特に、前記コーティング層はフッ素樹脂からなるのが好ましく、これにより、転がり軸受が回転して、コーティング層と他方の軌道輪とが摺接する場合に、これらの間に生じる抵抗は小さく、さらに、コーティング層は撥水性及び撥油性を備えることから、コーティング層と他の軌道輪との間に形成される隙間から、水分や油分を含む異物の侵入を効果的に抑制することが可能となる。特に、シールドと他方の軌道輪との間の隙間は非常に狭く形成されており、シールドの表面には撥水性及び撥油性の高いフッ素樹脂が付着しているため、この隙間において水や油等の液体が表面積を小さくしようとする毛細管現象が発生しにくく、外部からの前記液体を含む異物の侵入、及び、内部からの潤滑油の流出を効果的に抑えることが可能となる。
The coating layer is preferably made of a resin. Thereby, the coating layer can be peeled off or worn when it comes into sliding contact with the other race ring.
In particular, the coating layer is preferably made of a fluororesin, whereby when the rolling bearing rotates and the coating layer and the other race ring are in sliding contact with each other, the resistance generated between them is small. Since the layer is provided with water repellency and oil repellency, it is possible to effectively suppress the intrusion of foreign matter including moisture and oil from a gap formed between the coating layer and another race. In particular, the gap between the shield and the other race ring is formed very narrow, and the surface of the shield is attached with fluororesin having high water and oil repellency. It is difficult for the liquid to cause a capillary phenomenon that attempts to reduce the surface area, and it is possible to effectively suppress entry of foreign matter including the liquid from the outside and outflow of lubricating oil from the inside.
 また、前記シールドは、径方向一方側が前記一方の軌道輪に溶接によって取り付けられている円環部と、この円環部の径方向他方側の端部から前記軸受内部側へ延びて設けられ前記他方の軌道輪と径方向に対向する短円筒部とを有し、前記短円筒部に前記コーティング層が設けられているのが好ましい。
 この場合、シールド(円環部)が薄くても短円筒部が補強材として機能して剛性を高めることができる。さらに、転がり軸受の軸方向外側から軸受内部側へ向かってコーティング層が設けられている領域を拡大させることができ、異物の侵入をより一層効果的に防ぐことが可能となる。
 また、前記のとおり、シールドを内輪と外輪との内の一方の軌道輪に取り付けるために、シールドと他方の軌道輪とを軸方向に沿って接近させ、コーティング層を他方の軌道輪に対して摺接させながらシールドを一方の軌道輪の軸方向の一方側に位置させる際に、前記短円筒部がガイドとなって、シールドの中心線が他方の軌道輪の中心線に対して傾き難くなり、シールドを取り付けやすくする。
Further, the shield is provided with an annular part whose one side in the radial direction is attached to the one race ring by welding, and extending from an end on the other side in the radial direction of the annular part to the bearing inner side. It is preferable that the other raceway ring has a short cylindrical portion opposed in the radial direction, and the coating layer is provided on the short cylindrical portion.
In this case, even if the shield (ring portion) is thin, the short cylindrical portion can function as a reinforcing material to increase rigidity. Furthermore, the region where the coating layer is provided from the outside in the axial direction of the rolling bearing toward the inside of the bearing can be enlarged, and it is possible to more effectively prevent the entry of foreign matter.
Further, as described above, in order to attach the shield to one of the inner ring and the outer ring, the shield and the other ring are brought close to each other along the axial direction, and the coating layer is made to the other ring. When the shield is positioned on one side in the axial direction of one track ring while being in sliding contact, the short cylindrical portion serves as a guide, and the center line of the shield is difficult to tilt with respect to the center line of the other track ring. , Make it easier to install the shield.
 また、前記コーティング層は、前記他方の軌道輪と摺接することによって当該コーティング層が部分的に剥離又は摩耗することで形成された平滑面を有しているのが好ましい。
 このような平滑面が形成されることで、コーティング層と前記他方の軌道輪との間に微小な隙間が得られる。
Moreover, it is preferable that the said coating layer has the smooth surface formed when the said coating layer peeled or worn partly by sliding-contacting with said other track ring.
By forming such a smooth surface, a minute gap is obtained between the coating layer and the other raceway ring.
 また、本発明は、内輪、外輪、前記内輪と前記外輪との間に設けられている複数の転動体、前記複数の転動体を保持する保持器、及び、前記内輪と前記外輪とのうちの一方の軌道輪の軸方向の少なくとも一方側に取り付けられ前記転動体が存在する軸受内部へ異物が侵入するのを防ぐ環状の金属製シールドを備える転がり軸受の製造方法であって、前記内輪と前記外輪との間に複数の前記転動体及び前記保持器を組み入れる工程と、前記シールドのうち、前記内輪と前記外輪とのうちの他方の軌道輪と径方向に対向する領域に、当該他方の軌道輪に摺接可能であって摺接すると剥離又は摩耗するコーティング層を設ける工程と、前記シールドを、前記一方の軌道輪の軸方向の少なくとも一方側に溶接によって取り付ける工程と、を含み、前記取り付ける工程では、前記シールドと前記他方の軌道輪とを軸方向に沿って接近させ、前記コーティング層を当該他方の軌道輪に対して摺接させながら当該シールドを前記一方の軌道輪の軸方向の少なくとも一方側に位置させ、当該シールドを当該一方の軌道輪に溶接して固定する。 The present invention also includes an inner ring, an outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage for holding the plurality of rolling elements, and the inner ring and the outer ring. A rolling bearing manufacturing method comprising an annular metal shield that is attached to at least one side in the axial direction of one of the bearing rings and prevents foreign matter from entering the inside of the bearing in which the rolling element is present, the inner ring and the The step of incorporating a plurality of the rolling elements and the cage between the outer ring and the other raceway in a region of the shield that is radially opposed to the other raceway of the inner ring and the outer ring. Including a step of providing a coating layer that can be slidably contacted with a ring and peeled or worn when slidably contacted, and a step of attaching the shield to at least one side in the axial direction of the one raceway by welding, In the attaching step, the shield and the other raceway are brought close to each other along the axial direction, and the shield is brought into sliding contact with the other raceway while the shield is placed in the axial direction of the one raceway. At least one side is positioned, and the shield is welded and fixed to the one raceway.
 本発明によれば、前記取り付ける工程では、シールドと他方の軌道輪とを軸方向に沿って接近させ、このシールドに設けたコーティング層を他方の軌道輪に対して摺接させながらこのシールドを一方の軌道輪の軸方向の一方側に位置させる。このため、環状のシールドはコーティング層によって他方の軌道輪にガイドされ、シールドの中心が他方の軌道輪の中心に一致するようにして、シールドを一方の軌道輪に対して位置させることができる。そして、この状態で、このシールドが一方の軌道輪に溶接される。
 また、完成した転がり軸受が回転して、シールドと他方の軌道輪とが摺接すると、シールドのうちのコーティング層の一部が剥離又は摩耗して除去され、シールド(コーティング層)と他方の軌道輪との間に全周にわたって隙間が形成される。以上より、他方の軌道輪とシールドとの間には微小な隙間が形成され、シール性能の高い転がり軸受となる。
According to the present invention, in the attaching step, the shield and the other race are brought close to each other along the axial direction, and the shield is placed on one side while the coating layer provided on the shield is in sliding contact with the other race. It is located on one side in the axial direction of the raceway. For this reason, the annular shield is guided to the other race by the coating layer, and the shield can be positioned with respect to the one race so that the center of the shield coincides with the center of the other race. In this state, the shield is welded to one of the races.
Further, when the completed rolling bearing rotates and the shield and the other raceway are in sliding contact, a part of the coating layer of the shield is peeled off or worn away, and the shield (coating layer) and the other raceway are removed. A gap is formed between the ring and the entire circumference. As described above, a minute gap is formed between the other bearing ring and the shield, and a rolling bearing with high sealing performance is obtained.
 本発明の転がり軸受によれば、内輪と外輪との内の一方の軌道輪にシールドを溶接によって取り付ける構成であって、内輪と外輪との内の他方の軌道輪とシールドとの隙間を小さくしてシール性能を高めることが可能となる。
 本発明の転がり軸受の製造方法によれば、前記転がり軸受を製造することが可能となる。
According to the rolling bearing of the present invention, the shield is attached to one of the inner ring and the outer ring by welding, and the gap between the other ring of the inner ring and the outer ring and the shield is reduced. It is possible to improve the sealing performance.
According to the method for manufacturing a rolling bearing of the present invention, the rolling bearing can be manufactured.
本発明の転がり軸受の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the rolling bearing of this invention. 軸方向一方側(図1の右側)のシールド、及びその周囲を説明する断面図である。It is sectional drawing explaining the shield of the axial direction one side (right side of FIG. 1), and its circumference | surroundings. 転がり軸受の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of a rolling bearing. シールドを取り付ける工程を説明する断面図である。It is sectional drawing explaining the process of attaching a shield. シールドを取り付ける工程を更に説明する断面図である。It is sectional drawing which further demonstrates the process of attaching a shield. 従来の転がり軸受の縦断面図である。It is a longitudinal cross-sectional view of the conventional rolling bearing. 別の形態のシールドを取り付ける工程を説明する断面図である。It is sectional drawing explaining the process of attaching the shield of another form.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の転がり軸受7の一例を示す縦断面図である。この転がり軸受7は、内輪10、外輪20、これら内輪10と外輪20との間に設けられている複数の玉(転動体)30、環状の保持器35、及び環状のシールド40を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an example of a rolling bearing 7 of the present invention. The rolling bearing 7 includes an inner ring 10, an outer ring 20, a plurality of balls (rolling elements) 30 provided between the inner ring 10 and the outer ring 20, an annular cage 35, and an annular shield 40. .
 内輪10は、図示していない軸に外嵌する筒状の部材であり、内輪10の外周面15に玉30が転動する軌道溝11が形成されている。外輪20は、図示していないハウジングの内面に嵌め入れられる部材であり、外輪20の内周面25に玉30が転動する軌道溝21が形成されている。保持器35は、複数の玉30を周方向に沿って所定の間隔(等間隔)でかつ各玉30が転動自在となるようにして保持する。本実施形態の転がり軸受は、深溝玉軸受であり、内輪10と外輪20とは同心状に配置される。 The inner ring 10 is a cylindrical member that is fitted on a shaft (not shown), and a raceway groove 11 on which the ball 30 rolls is formed on the outer peripheral surface 15 of the inner ring 10. The outer ring 20 is a member that is fitted into the inner surface of a housing (not shown), and a raceway groove 21 on which the ball 30 rolls is formed on the inner peripheral surface 25 of the outer ring 20. The retainer 35 holds the plurality of balls 30 at predetermined intervals (equal intervals) along the circumferential direction so that the balls 30 can roll. The rolling bearing of this embodiment is a deep groove ball bearing, and the inner ring 10 and the outer ring 20 are arranged concentrically.
 本実施形態では、内輪10、外輪20、及び玉30は軸受鋼(SUJ2)からなり、保持器35は金属製(金属プレス製)からなる。なお、保持器35は樹脂製であってもよい。シールド40はステンレス鋼(SUS304)からなる。シールド40をステンレス鋼とすることにより、シールド40に耐食コーティング等の防錆対策が不要となる。以上のように、内輪10及び外輪20と、シールド40とは共に金属製であるが、異種材からなる。 In the present embodiment, the inner ring 10, the outer ring 20, and the ball 30 are made of bearing steel (SUJ2), and the cage 35 is made of metal (made of metal press). The cage 35 may be made of resin. The shield 40 is made of stainless steel (SUS304). By making the shield 40 from stainless steel, the shield 40 does not require anti-corrosion measures such as corrosion-resistant coating. As described above, the inner ring 10 and the outer ring 20 and the shield 40 are all made of metal, but are made of different materials.
 また、内輪10と外輪20との間であって玉30が存在する軸受内部5には、潤滑剤としてグリース(エステル油グリースやウレア系グリース等)が封入されている。シールド40は、軸受外部に存在する異物が軸受内部5へ侵入するのを防ぐと共に、軸受内部5に設けた前記グリースが軸受外部へ流出するのを防ぐこともできる。 Also, grease (ester oil grease, urea grease, etc.) is sealed as a lubricant in the bearing interior 5 between the inner ring 10 and the outer ring 20 where the balls 30 are present. The shield 40 can prevent foreign matters existing outside the bearing from entering the inside 5 of the bearing and also prevent the grease provided inside the bearing 5 from flowing out to the outside of the bearing.
 本実施形態では、シールド40は、転がり軸受7の軸方向両側に設けられている。各シールド40は、外輪(一方の軌道輪)20に溶接によって取り付けられており、内輪(他方の軌道輪)10の外周面15の一部(肩部外周面16)と径方向の隙間を有して対向する。内輪10と外輪20とは相対回転可能であることから、シールド40と内輪10とは相対回転可能となる。軸方向一方側のシールド40と軸方向他方側のシールド40とは、取り付け向きが反対となっているが、同じ構成である。 In the present embodiment, the shields 40 are provided on both sides of the rolling bearing 7 in the axial direction. Each shield 40 is attached to the outer ring (one raceway ring) 20 by welding, and has a radial clearance from a part of the outer circumference surface 15 (shoulder outer circumference surface 16) of the inner ring (other raceway ring) 10. Then face each other. Since the inner ring 10 and the outer ring 20 can rotate relative to each other, the shield 40 and the inner ring 10 can rotate relative to each other. The shield 40 on one side in the axial direction and the shield 40 on the other side in the axial direction are opposite in mounting direction, but have the same configuration.
 シールド40は、金属製の平板部材をプレスにより成型されて得たものであり、平坦な円環部41と短円筒部42とを有している。円環部41は、凹凸が無く円環状の平板部分であり、転がり軸受(内輪10及び外輪20)の中心線に直交する平面に沿って設けられている。この円環部41の径方向外側の一部(円環部41の途中部)が外輪20に溶接によって取り付けられている。このため、円環部41の径方向外側の一部(円環部41の途中部)に溶接部(ビード)50が形成される。 The shield 40 is obtained by molding a metal flat plate member by pressing, and has a flat annular portion 41 and a short cylindrical portion 42. The annular portion 41 is an annular flat plate portion having no irregularities, and is provided along a plane orthogonal to the center line of the rolling bearing (the inner ring 10 and the outer ring 20). A part on the outer side in the radial direction of the annular part 41 (an intermediate part of the annular part 41) is attached to the outer ring 20 by welding. For this reason, a welded part (bead) 50 is formed in a part on the outer side in the radial direction of the annular part 41 (an intermediate part of the annular part 41).
 図2は、軸方向一方側(図1の右側)のシールド40、及びその周囲を説明する断面図である。外輪20の軸方向側面26には、軸方向寸法mが小さい溝22が形成されている。この溝22は全周にわたって形成されており環状の溝となっている。この溝22内の側面23に円環部41の側面41aを当接させた状態として、溝22内において円環部41が外輪20に溶接によって固定されている。溝22の周面(内周面)24の内径はシールド40の外径よりも大きく設定されている。 FIG. 2 is a cross-sectional view for explaining the shield 40 on one side in the axial direction (the right side in FIG. 1) and its surroundings. A groove 22 having a small axial dimension m is formed on the axial side surface 26 of the outer ring 20. The groove 22 is formed over the entire circumference and is an annular groove. The annular portion 41 is fixed to the outer ring 20 by welding in the groove 22 with the side surface 41a of the annular portion 41 in contact with the side surface 23 in the groove 22. The inner diameter of the peripheral surface (inner peripheral surface) 24 of the groove 22 is set larger than the outer diameter of the shield 40.
 なお、溝22の軸方向寸法mは、円環部41の厚さ寸法tよりも大きく設定されている。これは溶接部50の余盛が外輪20の軸方向側面26から軸方向にはみ出すのを防ぐためである。シールド40の厚さtは円環部41と短円筒部42とで同じであり、例えば0.2ミリである。 The axial dimension m of the groove 22 is set larger than the thickness dimension t of the annular part 41. This is to prevent the extra portion of the weld 50 from protruding in the axial direction from the axial side surface 26 of the outer ring 20. The thickness t of the shield 40 is the same in the annular portion 41 and the short cylindrical portion 42, for example, 0.2 mm.
 図1に示すように、シールド40が有する短円筒部42は、円環部41の径方向内側(径方向他方側)の端部から軸受内部5側へ延びて設けられた部分であり、短円筒部42の中心線は、転がり軸受(内輪10及び外輪20)の中心線と一致する。図2に示すように、短円筒部42は、内輪(他方の軌道輪)10の外周面15の一部(肩部外周面16)と、隙間を有して対向する。そして、本実施形態では、この短円筒部42の内周面43にコーティング層2が設けられている。このコーティング層2の内周面(3)が、内輪(他方の軌道輪)10の外周面15の一部(肩部外周面16)と、径方向についての隙間δを有して対向する。この隙間δによって、シールド40は、内輪10と非接触でありながら密封性を確保する。 As shown in FIG. 1, the short cylindrical portion 42 of the shield 40 is a portion that extends from the radially inner end (the other radial side) of the annular portion 41 toward the bearing inner 5 side, and is short. The center line of the cylindrical portion 42 coincides with the center line of the rolling bearing (the inner ring 10 and the outer ring 20). As shown in FIG. 2, the short cylindrical portion 42 faces a part of the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring (the other race ring) 10 with a gap. In the present embodiment, the coating layer 2 is provided on the inner peripheral surface 43 of the short cylindrical portion 42. The inner peripheral surface (3) of the coating layer 2 faces a part of the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring (the other race ring) 10 with a gap δ in the radial direction. With this gap δ, the shield 40 ensures hermeticity while not in contact with the inner ring 10.
 コーティング層2は樹脂からなり、特に、本実施形態ではフッ素樹脂からなる。フッ素樹脂の中でも、ポリテトラフルオロエチレン(PTFE)とするのが好ましい。具体的には、ドライ潤滑剤のバインダー等に用いられる株式会社フロロサーフテクノロジー製、フロロサーフFG-3020等がある。なお、隙間δの値は、コーティング層2の内周面(3)から内輪10の肩部外周面16までの径方向の寸法値であり、この値が0.03ミリ程度となる。なお、コーティング層2の材質としては、シールド40を内輪10に外嵌する際に内輪10の肩部外周面16により容易に削り取られる程度の硬さであり、かつ、転がり軸受7の内部に入ったとしても異常摩耗等の影響を与えない物質であればよく、パラフィン等であってもよい。 The coating layer 2 is made of a resin, and in this embodiment, in particular, a fluororesin. Among the fluororesins, polytetrafluoroethylene (PTFE) is preferable. Specific examples include Fluorosurf FG-3020 manufactured by Fluorosurf Technology Co., Ltd., which is used as a binder for dry lubricants. The value of the gap δ is a dimension value in the radial direction from the inner peripheral surface (3) of the coating layer 2 to the shoulder outer peripheral surface 16 of the inner ring 10, and this value is about 0.03 mm. The material of the coating layer 2 is such a hardness that it can be easily scraped off by the shoulder outer peripheral surface 16 of the inner ring 10 when the shield 40 is fitted on the inner ring 10 and enters the inside of the rolling bearing 7. Even if it is a substance that does not affect the abnormal wear, paraffin or the like may be used.
 前記密封性を高めるためには、つまり、シールド40によって軸受内部5への異物の侵入を防ぐためには、隙間δが小さい(例えば、0.1ミリ未満とする)ことが好ましい。隙間δの寸法(径方向寸法)は、シールド40の厚さ寸法(t=0.2ミリ)よりも小さく設定されている。例えば隙間δは、0.03ミリの他に、0.15ミリに設定される。 In order to improve the sealing performance, that is, in order to prevent foreign matter from entering the inside 5 of the bearing by the shield 40, the gap δ is preferably small (for example, less than 0.1 mm). The dimension (diameter direction dimension) of the gap δ is set smaller than the thickness dimension (t = 0.2 mm) of the shield 40. For example, the gap δ is set to 0.15 mm in addition to 0.03 mm.
 しかし、このように隙間δを小さくして、しかもこの隙間δが周方向に均一となるようにして、シールド40を外輪20に溶接して固定することは困難である。
 そこで、本実施形態では、次のようにしてシールド40を外輪20に取り付けて転がり軸受7を製造する。
However, it is difficult to weld and fix the shield 40 to the outer ring 20 in such a manner that the gap δ is reduced and the gap δ is uniform in the circumferential direction.
Therefore, in the present embodiment, the rolling bearing 7 is manufactured by attaching the shield 40 to the outer ring 20 as follows.
 転がり軸受7の製造方法について説明する。図3は、この製造方法を説明するフロー図である。この製造方法には、内輪10と外輪20との間に複数の玉30及び保持器35を組み入れる組み立て工程の他に、内外輪10,20に取り付ける前のシールド40にコーティング層2を形成するコーティング層形成工程、及び、コーティング層2を形成したシールド40を軌道輪(本実施形態では、外輪20)に取り付ける取り付け工程が含まれる。 A method for manufacturing the rolling bearing 7 will be described. FIG. 3 is a flowchart for explaining this manufacturing method. In this manufacturing method, in addition to the assembly process of incorporating a plurality of balls 30 and a cage 35 between the inner ring 10 and the outer ring 20, the coating for forming the coating layer 2 on the shield 40 before being attached to the inner and outer rings 10 and 20. A layer forming step and an attaching step of attaching the shield 40 on which the coating layer 2 is formed to the raceway ring (in this embodiment, the outer ring 20) are included.
 まず、組み立て工程が行われる。内輪10と外輪20との間に複数の玉30及び保持器35を組み入れる。この工程は、従来行われる方法を採用して行うことができる。この際、外輪20にはまだシールド40は取り付けられていない。 First, the assembly process is performed. A plurality of balls 30 and a cage 35 are incorporated between the inner ring 10 and the outer ring 20. This step can be performed by employing a conventionally performed method. At this time, the shield 40 is not yet attached to the outer ring 20.
 そして、コーティング層形成工程が行われる。このコーティング層形成工程は、シールド40のうち、内輪10と径方向について対向する領域にコーティング層2を設ける工程である。このコーティング層2は、内輪10の肩部外周面16に摺接可能であって摺接すると剥離又は摩耗することができる。本実施形態では(図5(A)参照)、シールド40の短円筒部42の内周面43の全体に対して樹脂製(PTFE)のコーティング層2が形成される。 Then, a coating layer forming process is performed. This coating layer forming step is a step of providing the coating layer 2 in a region of the shield 40 facing the inner ring 10 in the radial direction. The coating layer 2 can be slidably contacted with the outer peripheral surface 16 of the shoulder portion of the inner ring 10 and can be peeled off or worn when slidable. In the present embodiment (see FIG. 5A), the resin (PTFE) coating layer 2 is formed on the entire inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40.
 コーティング層形成工程に関して具体例を説明する。シールド40の本体部(円環部41及び短円筒部42)は、鋼製(SUS304)である。そこで、短円筒部42の表面(内周面43)に、樹脂材料(PTFE)を含む塗料をディッピングにより付し、乾燥させ、皮膜を形成し、この皮膜をコーティング層2とする。この工程では、コーティング層2の膜厚が短円筒部42の内周面43の全周にわたってほぼ均一となるよう、コーティング層2の膜厚を管理(測定)して行うのが好ましい。短円筒部42の内周面43の全周にわたってコーティング層2を形成するが、この形成するコーティング層2の内径が、内輪10の肩部外周面16の外径よりも小さくなるように膜厚が管理される。なお、短円筒部42の内径は、肩部外周面16の外径よりも大きく設定されている。なお、コーティング層2の膜厚は、シールド40の短円筒部42の内周面43と内輪10の肩部外周面16との間の隙間の径方向寸法の105%~150%、より望ましくは105%~110%とする。 Specific examples regarding the coating layer forming step will be described. The main body portion (the annular portion 41 and the short cylindrical portion 42) of the shield 40 is made of steel (SUS304). Therefore, a coating material containing a resin material (PTFE) is applied to the surface (inner peripheral surface 43) of the short cylindrical portion 42 by dipping and drying to form a film, which is used as the coating layer 2. In this step, it is preferable that the thickness of the coating layer 2 is controlled (measured) so that the thickness of the coating layer 2 is substantially uniform over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42. The coating layer 2 is formed over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42, and the film thickness is such that the inner diameter of the formed coating layer 2 is smaller than the outer diameter of the shoulder outer peripheral surface 16 of the inner ring 10. Is managed. The inner diameter of the short cylindrical portion 42 is set larger than the outer diameter of the shoulder outer peripheral surface 16. The film thickness of the coating layer 2 is 105% to 150% of the radial dimension of the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10, more preferably 105% to 110%.
 そして、取り付け工程が行われる。図4はこの工程の説明図である。この取り付け工程は、コーティング層2が設けられたシールド40を、外輪20の所定位置に溶接によって取り付ける工程である。
 取り付け工程では、図4(A)に示すように、シールド40と内輪10とを軸方向に沿って接近させる。この際、図5(A)から(B)に示すように、短円筒部42に形成したコーティング層2を内輪10の外周面15の軸方向端部15a(肩部外周面16)に対して摺接させながら、シールド40を肩部外周面16に外嵌させ、シールド40を外輪20の軸方向側面26(軸方向の一方側)に位置させる。
And an attachment process is performed. FIG. 4 is an explanatory diagram of this process. This attachment process is a process of attaching the shield 40 provided with the coating layer 2 to a predetermined position of the outer ring 20 by welding.
In the attaching process, as shown in FIG. 4A, the shield 40 and the inner ring 10 are brought closer along the axial direction. At this time, as shown in FIGS. 5A to 5B, the coating layer 2 formed on the short cylindrical portion 42 is applied to the axial end 15 a (shoulder outer peripheral surface 16) of the outer peripheral surface 15 of the inner ring 10. The shield 40 is fitted onto the shoulder outer peripheral surface 16 while being in sliding contact, and the shield 40 is positioned on the axial side surface 26 (one side in the axial direction) of the outer ring 20.
 短円筒部42は短いながらも軸方向に長さを有しているため、この短円筒部42によって、シールド40の中心線が内輪10の中心線に対して傾き難くなり、正確にシールド40を取り付けやすくなる。なお、前記のとおり、短円筒部42の内周面全周にわたって形成したコーティング層2の内径は、内輪10の肩部外周面16の外径よりも小さくされていることから、シールド40は僅かな締め代を有して内輪10に外嵌することとなる。また、この際、コーティング層2の一部は、内輪10の外周面15(肩部外周面16)に摺接することで剥離される(図5(B)参照)。そして、内輪10の軸方向端部の外周縁には凸状のアール部(断面円弧部)17が形成されているが、コーティング層2は、このアール部17よりも軸方向内側(軌道溝側)に位置するように設定されている。これにより、コーティング層2と内輪10との間に、対向する平行な部分を、所定の長さについて確保することができ、シール性を高めることができる。 Although the short cylindrical portion 42 is short but has a length in the axial direction, the short cylindrical portion 42 makes it difficult for the center line of the shield 40 to be inclined with respect to the center line of the inner ring 10, so that the shield 40 is accurately positioned. Easy to install. As described above, since the inner diameter of the coating layer 2 formed over the entire inner circumferential surface of the short cylindrical portion 42 is smaller than the outer diameter of the shoulder outer circumferential surface 16 of the inner ring 10, the shield 40 is slightly It will be fitted on the inner ring 10 with a tight margin. At this time, a part of the coating layer 2 is peeled off by sliding contact with the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 (see FIG. 5B). A convex rounded portion (circular cross-section arc portion) 17 is formed on the outer peripheral edge of the axial end portion of the inner ring 10. The coating layer 2 is on the inner side in the axial direction (on the raceway groove side) than the rounded portion 17. ). Thereby, the parallel part which opposes between the coating layer 2 and the inner ring | wheel 10 can be ensured about predetermined length, and a sealing performance can be improved.
 また、前記のとおり、外輪20に形成されているシールド40を取り付けるための溝22の周面(内周面)24の内径はシールド40の外径よりも大きく設定されている(図5(A)(B)参照)。このため、シールド40を内輪10の肩部外周面16に外嵌させながら外輪20の軸方向側面26の所定位置に設ける際に、このシールド40の径方向の移動に関して自由度を与え、このシールド40が溝22の周面24に干渉するのを防止することができる。 Further, as described above, the inner diameter of the peripheral surface (inner peripheral surface) 24 of the groove 22 for attaching the shield 40 formed on the outer ring 20 is set larger than the outer diameter of the shield 40 (FIG. 5A). (See (B)). Therefore, when the shield 40 is fitted on the shoulder outer peripheral surface 16 of the inner ring 10 and provided at a predetermined position on the axial side surface 26 of the outer ring 20, a degree of freedom is given to the radial movement of the shield 40. It is possible to prevent 40 from interfering with the peripheral surface 24 of the groove 22.
 そして、図4(B)及び図5(B)に示すように、シールド40の円環部41が外輪20の溝22の側面23に当接する位置までシールド40を内輪10の肩部外周面16に外嵌させた後、このシールド40を外輪20に溶接して固定する。この際、シールド40の径方向外側の一部(途中部)が、外輪20の溝22の側面23に溶接される。この溶接は、精密レーザー溶接によって行われ、環状であるシールド40の全周に対して溶接が行われる。また、この溶接方法は、スポット径の小さなファイバーレーザーを用いており、外輪20の他部分に大きな熱影響を与えることなく、薄いシールド40の溶接が可能となる。これにより、シールド40の外周縁と外輪20との間は完全密封される。なお、レーザーのスポット径は、0.05mm~0.08mm程度が適切である。 As shown in FIGS. 4B and 5B, the shield 40 is brought to a position where the annular portion 41 of the shield 40 contacts the side surface 23 of the groove 22 of the outer ring 20. Then, the shield 40 is welded and fixed to the outer ring 20. At this time, a part (intermediate portion) on the radially outer side of the shield 40 is welded to the side surface 23 of the groove 22 of the outer ring 20. This welding is performed by precision laser welding, and welding is performed on the entire circumference of the annular shield 40. Further, this welding method uses a fiber laser having a small spot diameter, and the thin shield 40 can be welded without greatly affecting the other part of the outer ring 20. Thereby, the space between the outer peripheral edge of the shield 40 and the outer ring 20 is completely sealed. The laser spot diameter is suitably about 0.05 mm to 0.08 mm.
 そして、軸方向の他方側においても、これと同様にして、シールド40を外輪20に溶接して固定する。すなわち、軸方向の一方側にシールド40を固定した内輪10及び外輪20を反転(上下反転)させ、図4(C)に示すように、グリースGを軸受内部5に規定量について充填する。そして、軸方向の他方側において、シールド40と内輪10とを軸方向に沿って接近させ(図4(D)参照)、このシールド40のコーティング層2を内輪10(肩部外周面)に対して摺接させながらシールド40を外輪20の軸方向の他方側の側面に位置させ、このシールド40を外輪20に溶接して固定する(図4(E)参照)。
 以上の製造方法によって、図1に示す転がり軸受7を製造することが可能となる(図4(F)参照)。
The shield 40 is welded and fixed to the outer ring 20 on the other side in the axial direction in the same manner as this. That is, the inner ring 10 and the outer ring 20 with the shield 40 fixed on one side in the axial direction are reversed (upside down), and the grease G is filled into the bearing interior 5 for a specified amount as shown in FIG. Then, on the other side in the axial direction, the shield 40 and the inner ring 10 are approached along the axial direction (see FIG. 4D), and the coating layer 2 of the shield 40 is applied to the inner ring 10 (shoulder outer peripheral surface). The shield 40 is positioned on the other side surface in the axial direction of the outer ring 20 while being in sliding contact with the outer ring 20, and the shield 40 is welded to the outer ring 20 and fixed (see FIG. 4E).
With the above manufacturing method, the rolling bearing 7 shown in FIG. 1 can be manufactured (see FIG. 4F).
 この製造方法によれば、シールド40を外輪20へ取り付ける工程では、前記のとおり、シールド40と内輪10とを軸方向に沿って接近させ(図4(A)参照)、このシールド40に設けたコーティング層2を内輪10の外周面15の一部に対して摺接させながら、シールド40を内輪10に外嵌させ、このシールド40を外輪20の軸方向の一方側(側部)に位置させる(図5参照)。シールド40のコーティング層2の膜厚は、短円筒部42の内周面43の全周にわたってほぼ均一となるように形成されている。このため、シールド40はコーティング層2によって内輪10の肩部外周面16にガイドされ、シールド40の中心が内輪10の中心に一致するようにして、シールド40を外輪20に対して位置させることができる。特に、内輪10の外周面15(肩部外周面16)は、高精度な仕上げ加工(研磨加工)がされていることから、このような外周面15(肩部外周面16)を基準面としてシールド40を取り付けることで、シールド40は内輪10に対して精度よく同心円となって取り付けられる。そして、シールド40の中心と内輪10の中心とが一致した状態(同心円に配置された状態)で、このシールド40が外輪20に溶接される(図4(B)参照)。このように、シールド40を外輪20へ取り付ける際、シールド40の位置決めをするための基準は、内輪10の外周面15(肩部外周面16)であり、この外周面15が基準となってシールド40の芯出しが行われる。 According to this manufacturing method, in the step of attaching the shield 40 to the outer ring 20, as described above, the shield 40 and the inner ring 10 are brought close to each other along the axial direction (see FIG. 4A), and the shield 40 is provided on the shield 40. While the coating layer 2 is in sliding contact with a part of the outer peripheral surface 15 of the inner ring 10, the shield 40 is fitted on the inner ring 10, and the shield 40 is positioned on one side (side part) of the outer ring 20 in the axial direction. (See FIG. 5). The film thickness of the coating layer 2 of the shield 40 is formed to be substantially uniform over the entire circumference of the inner peripheral surface 43 of the short cylindrical portion 42. For this reason, the shield 40 is guided to the shoulder outer peripheral surface 16 of the inner ring 10 by the coating layer 2, and the shield 40 is positioned with respect to the outer ring 20 so that the center of the shield 40 coincides with the center of the inner ring 10. it can. In particular, since the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 is subjected to high-precision finishing (polishing), the outer peripheral surface 15 (shoulder outer peripheral surface 16) is used as a reference surface. By attaching the shield 40, the shield 40 is attached to the inner ring 10 in a concentric manner with high accuracy. Then, the shield 40 is welded to the outer ring 20 in a state where the center of the shield 40 and the center of the inner ring 10 are aligned (a state where they are arranged concentrically) (see FIG. 4B). As described above, when the shield 40 is attached to the outer ring 20, the reference for positioning the shield 40 is the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10. 40 centering is performed.
 そして、完成した転がり軸受が回転して、シールド40のコーティング層2と内輪10の肩部外周面16とが摺接すると、コーティング層2の一部が剥離又は摩耗して除去され、図2に示すように、コーティング層2と肩部外周面16との間に全周にわたって隙間δが形成される。 When the completed rolling bearing rotates and the coating layer 2 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10 are in sliding contact with each other, a part of the coating layer 2 is peeled off or worn away, and FIG. As shown, a gap δ is formed between the coating layer 2 and the shoulder outer peripheral surface 16 over the entire circumference.
 すなわち、シールド40のうち、内輪10と対向する領域に、この内輪10に摺接可能であって摺接すると剥離又は摩耗するコーティング層2が設けられており、このコーティング層2は、前記のとおり樹脂製(PTFE)である。このため、軸受7が回転してコーティング層2がこの肩部外周面16に摺接すると、このコーティング層2が徐々に剥離又は摩耗して部分的に除去され、径方向についての厚さが薄くなる。そして、前記隙間δが形成される。この隙間δの半径方向の寸法値は、相対回転する内輪10と外輪20とが径方向について相対的に移動し得る半径方向の寸法値と同じとなり、最小の隙間となる。 That is, the coating layer 2 that can be slidably contacted with the inner ring 10 and peels or wears when slid on the region of the shield 40 facing the inner ring 10 is provided. It is made of resin (PTFE). For this reason, when the bearing 7 rotates and the coating layer 2 comes into sliding contact with the outer peripheral surface 16 of the shoulder portion, the coating layer 2 is gradually peeled off or worn and partially removed, and the thickness in the radial direction is thin. Become. Then, the gap δ is formed. The dimension value in the radial direction of the gap δ is the same as the dimension value in the radial direction in which the relatively rotating inner ring 10 and outer ring 20 can move relative to each other in the radial direction.
 このように転がり軸受7が使用されていると、コーティング層2は、内輪10(肩部外周面16)と摺接することによって、このコーティング層2が部分的に剥離又は摩耗することで形成された平滑面3を有することができる。この平滑面3が形成されることで、コーティング層2と内輪10(肩部外周面16)との間に微小な隙間δが得られる。 When the rolling bearing 7 is used in this way, the coating layer 2 is formed by the coating layer 2 being partially peeled off or worn by being in sliding contact with the inner ring 10 (shoulder outer peripheral surface 16). A smooth surface 3 can be provided. By forming the smooth surface 3, a minute gap δ is obtained between the coating layer 2 and the inner ring 10 (shoulder outer peripheral surface 16).
 そして、この隙間δは極小とされており、非接触でありながら密封性の高い構造となる。特に、本実施形態では、コーティング層2はフッ素樹脂(PTFE)からなるため、内外輪10,20の軸振れによって、コーティング層2と内輪10とが更に摺接する場合であっても、これらの間に生じる抵抗は小さい。このため、これに起因する発熱を抑制することが可能となり、軸受寿命の低下を抑えることが可能となる。 And this gap δ is extremely small, and it has a structure with high sealing performance while being non-contact. In particular, in the present embodiment, since the coating layer 2 is made of fluororesin (PTFE), even when the coating layer 2 and the inner ring 10 are further in sliding contact with each other due to the axial runout of the inner and outer rings 10 and 20, there is no gap between them. The resulting resistance is small. For this reason, it becomes possible to suppress the heat_generation | fever resulting from this, and it becomes possible to suppress the fall of a bearing life.
 さらに、コーティング層2は撥水性及び撥油性を備えることから、コーティング層2と内輪10との間に形成される隙間から、水分や油分を含む異物の侵入をより一層効果的に抑制することが可能となる。また、軸受内部5のグリースの外部への流出も効果的に防ぐことが可能となる。
 特に、シールド40と内輪10との間の隙間は非常に狭く形成されており、シールド40の表面には撥水性及び撥油性の高いフッ素樹脂(コーティング層2)が付着しているため、この隙間において水や油等の液体が表面積を小さくしようとする毛細管現象が発生しにくく、外部からの前記液体を含む異物の侵入、及び、内部からの潤滑油の流出を効果的に抑えることが可能となる。
Furthermore, since the coating layer 2 has water repellency and oil repellency, it is possible to more effectively suppress the entry of foreign matter including moisture and oil from the gap formed between the coating layer 2 and the inner ring 10. It becomes possible. In addition, the grease inside the bearing 5 can be effectively prevented from flowing out.
In particular, the gap between the shield 40 and the inner ring 10 is formed very narrow, and a fluororesin (coating layer 2) having high water and oil repellency adheres to the surface of the shield 40. In such a case, it is difficult for a liquid such as water or oil to cause a capillary phenomenon that attempts to reduce the surface area, and it is possible to effectively suppress the intrusion of foreign matter including the liquid from the outside and the outflow of lubricating oil from the inside. Become.
 また、シールド40は、径方向外周側の端部が外輪20に溶接によって取り付けられている円環部41と、この円環部41の径方向内周側の端部から軸受内部5側へ(軸方向へ向かって)延びて設けられ内輪10に対向する短円筒部42とを有している。このため、シールド40(円環部41)が薄くても短円筒部42が補強材として機能して剛性を高めることができる。そして、短円筒部42の内周面43の全域にコーティング層2が設けられていることで、転がり軸受7の軸方向外側から軸受内部5側へ向かってコーティング層2の領域が拡大されており、異物の侵入をより一層効果的に防ぐことが可能となる。また、軸受内部5のグリースの外部への流出も効果的に防ぐことが可能となる。
 また、前記のとおり、シールド40を外輪20に取り付けるために、シールド40と内輪10とを軸方向に沿って接近させ、コーティング層2を内輪10に対して摺接させながらシールド40を外輪20の溝22に位置させる際に、短円筒部42がガイドとなって、シールド40の中心線が内輪10の中心線に対して傾き難くなり、シールド40を取り付けやすくすることができる。
The shield 40 has an annular portion 41 whose end on the radially outer peripheral side is attached to the outer ring 20 by welding, and an end on the radially inner peripheral side of the annular portion 41 toward the bearing interior 5 ( A short cylindrical portion 42 that extends in the axial direction and faces the inner ring 10. For this reason, even if the shield 40 (annular part 41) is thin, the short cylindrical part 42 functions as a reinforcing material and can increase rigidity. And the area | region of the coating layer 2 is expanded toward the bearing inside 5 side from the axial direction outer side of the rolling bearing 7 by providing the coating layer 2 in the whole region of the internal peripheral surface 43 of the short cylindrical part 42. Intrusion of foreign matter can be further effectively prevented. In addition, the grease inside the bearing 5 can be effectively prevented from flowing out.
Further, as described above, in order to attach the shield 40 to the outer ring 20, the shield 40 and the inner ring 10 are brought close to each other in the axial direction, and the shield 40 is slidably contacted with the inner ring 10 while the shield 40 is attached to the outer ring 20. When positioned in the groove 22, the short cylindrical portion 42 serves as a guide, and the center line of the shield 40 is less likely to be inclined with respect to the center line of the inner ring 10, so that the shield 40 can be easily attached.
 また、薄板状であるシールド40を外輪20の軸方向側面26に溶接して取り付けることから、溝22の軸方向寸法mは、シールド40の厚さtと同等乃至僅かに大きい程度とすることができるので、従来のように軸方向に広がった溝97(図6参照)が不要となる。
 このため、本実施形態の転がり軸受7では、玉30のサイズ及び軸受7の内径及び外径を規格品から変化させることなく、つまり、負荷容量を低下させることなく、軸方向寸法を小さくして規格品よりも軸受のスリム化が可能となる。例えば、同じ負荷容量を有する転がり軸受でありながら、軸方向の寸法が規格品(ISO品)の85%以下となる幅狭であり、軽量化された転がり軸受7を構成することができる。
 そして、転がり軸受7を幅狭とすることが可能であることから、軸方向両側に設置されるシールド40間の空間(軸受内部5の空間)の容積が小さくなり、グリースの封入量を減らすことができる。
Further, since the shield 40 having a thin plate shape is attached by welding to the axial side surface 26 of the outer ring 20, the axial dimension m of the groove 22 should be equal to or slightly larger than the thickness t of the shield 40. As a result, the groove 97 (see FIG. 6) that expands in the axial direction as in the prior art becomes unnecessary.
For this reason, in the rolling bearing 7 of the present embodiment, the axial dimension is reduced without changing the size of the ball 30 and the inner diameter and outer diameter of the bearing 7 from the standard product, that is, without reducing the load capacity. The bearing can be made slimmer than the standard product. For example, although the rolling bearings have the same load capacity, it is possible to configure the rolling bearing 7 which is narrow and light in the axial dimension of 85% or less of a standard product (ISO product).
Since the rolling bearing 7 can be narrowed, the volume of the space between the shields 40 installed on both sides in the axial direction (the space inside the bearing 5) is reduced, and the amount of grease filled is reduced. Can do.
 図7(A)に示す実施形態では、コーティング層2の内径が内輪10の肩部外周面16の外径よりも大きくなるように、コーティング層2が形成されている。本実施形態におけるコーティング層2の膜厚は、シールド40の短円筒部42の内周面43と内輪10の肩部外周面16との間の隙間の径方向寸法の80%~95%とする。
 なお、この場合、図7(B)に示すように、コーティング層2と内輪10の外周面15との間には隙間が形成され、この隙間により、シールド40が外輪20に対して僅かに偏心した状態で取り付けられる可能性があるが、コーティング層2により、金属同士の接触を避けることが可能となる。
In the embodiment shown in FIG. 7A, the coating layer 2 is formed so that the inner diameter of the coating layer 2 is larger than the outer diameter of the shoulder outer peripheral surface 16 of the inner ring 10. The film thickness of the coating layer 2 in the present embodiment is 80% to 95% of the radial dimension of the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10. .
In this case, as shown in FIG. 7B, a gap is formed between the coating layer 2 and the outer peripheral surface 15 of the inner ring 10, and the shield 40 is slightly eccentric with respect to the outer ring 20 by this gap. However, the coating layer 2 makes it possible to avoid contact between metals.
 更に、本発明の前記各実施形態の利点について説明する。
 シールド40によって軸受内部5への異物の侵入を防ぐためには、そのシールド40と、内輪10の外周面15(肩部外周面16)との間に形成される隙間は小さいことが好ましい。しかし、シールド40を外輪20に溶接して固定する際の取り付け寸法誤差や、シールド40の製造誤差等が原因となって、前記隙間の寸法を周方向全周にわたって設定値(設計値)のとおりに設定することは困難である。
Further, advantages of the above embodiments of the present invention will be described.
In order to prevent foreign matter from entering the bearing interior 5 by the shield 40, the gap formed between the shield 40 and the outer peripheral surface 15 (shoulder outer peripheral surface 16) of the inner ring 10 is preferably small. However, due to an attachment dimension error when welding and fixing the shield 40 to the outer ring 20, a manufacturing error of the shield 40, and the like, the dimension of the gap is set as a set value (design value) over the entire circumference. Is difficult to set.
 ここで、図6に示す従来の転がり軸受において、前記のような誤差によって、外輪92に取り付けられたシールド96が内輪91に対して偏心しており、さらに、内輪91と外輪92とが軸振れして回転するような場合、シールド96の一部と内輪91の外周面とが接触すると、シールド96及び内輪91は共に金属製であることからその接触は金属接触となり、軸受の回転抵抗が大きくなるという問題点がある。
 さらに、これに起因して発熱し軸受が高温となり、例えば、軸受内部95の潤滑剤(グリース)が劣化し、軸受寿命の低下の原因になるという問題点がある。
 そして、このような問題点は、前記特許文献1に開示されている転がり軸受のように、シールドを外輪に溶接によって取り付ける構成であっても発生し、しかも、そのシールドと内輪との隙間をできるだけ小さくする場合において、特に発生しやすい。
Here, in the conventional rolling bearing shown in FIG. 6, the shield 96 attached to the outer ring 92 is eccentric with respect to the inner ring 91 due to the error as described above, and the inner ring 91 and the outer ring 92 are further shaken. When the part of the shield 96 and the outer peripheral surface of the inner ring 91 come into contact with each other, the shield 96 and the inner ring 91 are both made of metal, so that the contact becomes a metal contact, and the rotational resistance of the bearing increases. There is a problem.
Furthermore, due to this, heat is generated and the bearing becomes high temperature. For example, the lubricant (grease) inside the bearing 95 is deteriorated, which causes a decrease in bearing life.
Such a problem occurs even in a configuration in which the shield is attached to the outer ring by welding, as in the rolling bearing disclosed in Patent Document 1, and the gap between the shield and the inner ring is as small as possible. In the case of making it small, it is particularly likely to occur.
 しかし、本発明の前記各実施形態の転がり軸受7によれば、このような場合であっても、軸受の回転抵抗の増加、及びこれに起因する発熱を抑制することが可能となる。
 すなわち、各実施形態において、シールド40を内輪10に外嵌する際、シールド40は、短円筒部42の内周面43に形成されたコーティング層2によって、内輪10の肩部外周面16にガイドされ、シールド40の中心と内輪10の肩部外周面16の中心とが一致するように、シールド40を位置させることができる。このため、シールド40の短円筒部42の内周面43と内輪10の肩部外周面16との間の隙間を所定の寸法にすることができ、シールド40に多少の製造誤差等があっても、シールド40と内輪10との中心を合わせるための特別な治具を使用する必要がない。また、コーティング層2は、転がり軸受7が回転すると、やがて、コーティング層2の一部が剥離又は摩耗して除去される。この結果、コーティング層2と内輪10との間に全周にわたって微小な隙間δが形成されることから、密封性を維持しつつ、軸受の回転抵抗の増加、及びこれに起因する発熱を抑制することが可能となる。
However, according to the rolling bearing 7 of each of the embodiments of the present invention, even in such a case, it is possible to suppress an increase in the rotational resistance of the bearing and heat generation resulting therefrom.
That is, in each embodiment, when the shield 40 is externally fitted to the inner ring 10, the shield 40 is guided to the shoulder outer peripheral surface 16 of the inner ring 10 by the coating layer 2 formed on the inner peripheral surface 43 of the short cylindrical portion 42. Then, the shield 40 can be positioned so that the center of the shield 40 and the center of the shoulder outer peripheral surface 16 of the inner ring 10 coincide. For this reason, the gap between the inner peripheral surface 43 of the short cylindrical portion 42 of the shield 40 and the shoulder outer peripheral surface 16 of the inner ring 10 can be set to a predetermined size, and the shield 40 has some manufacturing errors. However, it is not necessary to use a special jig for aligning the centers of the shield 40 and the inner ring 10. Further, when the rolling bearing 7 rotates, the coating layer 2 is removed by peeling or wearing a part of the coating layer 2 in due course. As a result, a minute gap δ is formed between the coating layer 2 and the inner ring 10 over the entire circumference, so that an increase in bearing rotation resistance and heat generation due to this are suppressed while maintaining sealing performance. It becomes possible.
 前記実施形態(図1参照)では、シールド40は外輪20に取り付けられる場合について説明したが、内輪10に取り付けられていてもよい。この場合、シールド40の径方向内側が内輪10の軸方向側面に溶接により取り付けられ、シールド40の径方向外側が外輪20と隙間を有して対向する。
 また、前記実施形態(図1参照)では、シールド40が外輪20の軸方向両側に取り付けられる場合について説明したが、軸方向の一方側にのみ取り付けられてもよい。
 すなわち、シールド40は、内輪10と外輪20とのうちの一方の軌道輪の軸方向の少なくとも一方側に溶接によって取り付けられていればよく、シールド40の一部が、内輪10と外輪20とのうちの他方の軌道輪と対向する構成となる。
In the above-described embodiment (see FIG. 1), the shield 40 has been described as being attached to the outer ring 20, but may be attached to the inner ring 10. In this case, the radially inner side of the shield 40 is attached to the axial side surface of the inner ring 10 by welding, and the radially outer side of the shield 40 faces the outer ring 20 with a gap.
Moreover, although the said embodiment (refer FIG. 1) demonstrated the case where the shield 40 was attached to the axial direction both sides of the outer ring | wheel 20, you may attach only to the one side of an axial direction.
That is, the shield 40 only needs to be attached to at least one of the inner ring 10 and the outer ring 20 in the axial direction of one of the race rings by welding, and a part of the shield 40 is formed between the inner ring 10 and the outer ring 20. It becomes the structure facing the other track ring of them.
 本発明の転がり軸受は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよい。また、その製造方法についても本発明の範囲内において他の形態の方法であってもよい。なお、本発明の転がり軸受は、玉軸受以外に、転動体がころであるころ軸受であってもよい。 The rolling bearing of the present invention is not limited to the illustrated form, and may be of other forms within the scope of the present invention. Further, the manufacturing method may be another method within the scope of the present invention. In addition to the ball bearing, the rolling bearing of the present invention may be a roller bearing in which the rolling element is a roller.
 前記実施形態では、シールド40は、短円筒部42を有している場合について説明したが、この短円筒部42が省略されていてもよく、この場合、円環部41の内周面にコーティング層2が設けられる。 In the embodiment described above, the shield 40 has the short cylindrical portion 42. However, the short cylindrical portion 42 may be omitted, and in this case, the inner peripheral surface of the annular portion 41 is coated. Layer 2 is provided.
 2:コーティング層  3:平滑面  5:軸受内部
 7:転がり軸受  10:内輪  20:外輪
 30:玉(転動体)  35:保持器  40:シールド
 41:円環部  42:短円筒部
2: Coating layer 3: Smooth surface 5: Inside of bearing 7: Rolling bearing 10: Inner ring 20: Outer ring 30: Ball (rolling element) 35: Cage 40: Shield 41: Ring part 42: Short cylindrical part

Claims (6)

  1.  内輪、外輪、前記内輪と前記外輪との間に設けられている複数の転動体、前記複数の転動体を保持する保持器、及び、前記内輪と前記外輪とのうちの一方の軌道輪の軸方向の少なくとも一方側に溶接によって取り付けられ前記転動体が存在する軸受内部へ異物が侵入するのを防ぐ環状の金属製シールドを備え、
     前記シールドのうち、前記内輪と前記外輪とのうちの他方の軌道輪と径方向に対向する領域に、当該他方の軌道輪に摺接すると剥離又は摩耗するコーティング層が設けられていることを特徴とする転がり軸受。
    Inner ring, outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage for holding the plurality of rolling elements, and a shaft of one of the inner ring and the outer ring An annular metal shield that is attached by welding to at least one side of the direction and prevents foreign matter from entering the bearing in which the rolling element exists,
    Of the shield, a coating layer is provided in a region facing the other raceway in the radial direction of the inner race and the outer race, which peels or wears when slidably contacting the other raceway. Rolling bearing.
  2.  前記コーティング層は樹脂からなる請求項1に記載の転がり軸受。 The rolling bearing according to claim 1, wherein the coating layer is made of resin.
  3.  前記コーティング層はフッ素樹脂からなる請求項2に記載の転がり軸受。 The rolling bearing according to claim 2, wherein the coating layer is made of a fluororesin.
  4.  前記シールドは、径方向一方側が前記一方の軌道輪に溶接によって取り付けられている円環部と、この円環部の径方向他方側の端部から前記軸受内部側へ延びて設けられ前記他方の軌道輪と径方向に対向する短円筒部と、を有し、
     前記短円筒部に前記コーティング層が設けられている請求項1~3のいずれか一項に記載の転がり軸受。
    The shield includes an annular portion whose one radial direction is attached to the one raceway by welding, and extends from the other radial end of the annular portion to the bearing inner side. A short cylindrical portion facing the raceway and the radial direction,
    The rolling bearing according to any one of claims 1 to 3, wherein the coating layer is provided on the short cylindrical portion.
  5.  前記コーティング層は、前記他方の軌道輪と摺接することによって当該コーティング層が部分的に剥離又は摩耗することで形成された平滑面を有している請求項1~4のいずれか一項に記載の転がり軸受。 The coating layer according to any one of claims 1 to 4, wherein the coating layer has a smooth surface formed by being partly peeled or worn by sliding contact with the other raceway ring. Rolling bearings.
  6.  内輪、外輪、前記内輪と前記外輪との間に設けられている複数の転動体、前記複数の転動体を保持する保持器、及び、前記内輪と前記外輪とのうちの一方の軌道輪の軸方向の少なくとも一方側に取り付けられ前記転動体が存在する軸受内部へ異物が侵入するのを防ぐ環状の金属製シールドを備える転がり軸受の製造方法であって、
     前記内輪と前記外輪との間に複数の前記転動体及び前記保持器を組み入れる工程と、
     前記シールドのうち、前記内輪と前記外輪とのうちの他方の軌道輪と径方向に対向する領域に、当該他方の軌道輪に摺接可能であって摺接すると剥離又は摩耗するコーティング層を設ける工程と、
     前記シールドを、前記一方の軌道輪の軸方向の少なくとも一方側に溶接によって取り付ける工程と、を含み、
     前記取り付ける工程では、前記シールドと前記他方の軌道輪とを軸方向に沿って接近させ、前記コーティング層を当該他方の軌道輪に対して摺接させながら当該シールドを前記一方の軌道輪の軸方向の少なくとも一方側に位置させ、当該シールドを当該一方の軌道輪に溶接して固定することを特徴とする転がり軸受の製造方法。
    Inner ring, outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, a cage for holding the plurality of rolling elements, and a shaft of one of the inner ring and the outer ring A method of manufacturing a rolling bearing comprising an annular metal shield that is attached to at least one side of a direction and prevents foreign matter from entering the inside of the bearing in which the rolling element exists,
    Incorporating a plurality of the rolling elements and the cage between the inner ring and the outer ring;
    In the shield, a coating layer that can be slidably contacted with the other raceway in the radial direction with the other raceway of the inner race and the outer race and is peeled or worn when slidable is provided. Process,
    Attaching the shield to at least one side in the axial direction of the one raceway by welding, and
    In the attaching step, the shield and the other raceway are moved close to each other in the axial direction, and the shield is brought into sliding contact with the other raceway, and the shield is placed in the axial direction of the one raceway. A method of manufacturing a rolling bearing, comprising: positioning the shield on at least one side of the bearing and welding and fixing the shield to the one raceway ring.
PCT/JP2014/083675 2013-12-20 2014-12-19 Roller bearing and method for manufacturing same WO2015093591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553618A JPWO2015093591A1 (en) 2013-12-20 2014-12-19 Rolling bearing and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013264131 2013-12-20
JP2013-264131 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093591A1 true WO2015093591A1 (en) 2015-06-25

Family

ID=53402930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083675 WO2015093591A1 (en) 2013-12-20 2014-12-19 Roller bearing and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2015093591A1 (en)
WO (1) WO2015093591A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114247A (en) * 2014-12-15 2016-06-23 アクティエボラゲット・エスコーエッフ Rolling bearing with sealing flange
JP2018123923A (en) * 2017-02-02 2018-08-09 ダイベア株式会社 Rolling bearing and its manufacturing method
CN109403771A (en) * 2017-08-17 2019-03-01 大同金属工业株式会社 The guide roller of vehicle sliding door
WO2019181020A1 (en) * 2018-03-19 2019-09-26 ダイベア株式会社 Rolling bearing and rolling bearing manufacturing method
JPWO2019102712A1 (en) * 2017-11-22 2019-11-21 ダイベア株式会社 Rolling bearing and method of manufacturing rolling bearing
IT202000028349A1 (en) * 2020-11-25 2022-05-25 Skf Ab BEARING UNIT FOR MARBLE CUTTING MACHINES WITH OPTIMIZED SEAL ANCHORING

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120706A (en) * 1998-10-20 2000-04-25 Nsk Ltd Rolling bearing
JP2008051304A (en) * 2006-08-28 2008-03-06 Ntn Corp Rolling bearing
JP2008256197A (en) * 2007-03-14 2008-10-23 Nsk Ltd Rolling bearing and its manufacturing method
JP2010261545A (en) * 2009-05-11 2010-11-18 Ntn Corp Bearing with seal
JP2010281379A (en) * 2009-06-04 2010-12-16 Jtekt Corp Sealing device
JP2012233548A (en) * 2011-05-09 2012-11-29 Ntn Corp Rolling bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120706A (en) * 1998-10-20 2000-04-25 Nsk Ltd Rolling bearing
JP2008051304A (en) * 2006-08-28 2008-03-06 Ntn Corp Rolling bearing
JP2008256197A (en) * 2007-03-14 2008-10-23 Nsk Ltd Rolling bearing and its manufacturing method
JP2010261545A (en) * 2009-05-11 2010-11-18 Ntn Corp Bearing with seal
JP2010281379A (en) * 2009-06-04 2010-12-16 Jtekt Corp Sealing device
JP2012233548A (en) * 2011-05-09 2012-11-29 Ntn Corp Rolling bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114247A (en) * 2014-12-15 2016-06-23 アクティエボラゲット・エスコーエッフ Rolling bearing with sealing flange
JP2018123923A (en) * 2017-02-02 2018-08-09 ダイベア株式会社 Rolling bearing and its manufacturing method
CN109403771A (en) * 2017-08-17 2019-03-01 大同金属工业株式会社 The guide roller of vehicle sliding door
CN109403771B (en) * 2017-08-17 2020-09-25 大同金属工业株式会社 Guide roller of sliding door for vehicle
JPWO2019102712A1 (en) * 2017-11-22 2019-11-21 ダイベア株式会社 Rolling bearing and method of manufacturing rolling bearing
WO2019181020A1 (en) * 2018-03-19 2019-09-26 ダイベア株式会社 Rolling bearing and rolling bearing manufacturing method
JPWO2019181020A1 (en) * 2018-03-19 2021-02-04 ダイベア株式会社 Rolling bearings and manufacturing methods for rolling bearings
JP7219706B2 (en) 2018-03-19 2023-02-08 ダイベア株式会社 Rolling bearing and rolling bearing manufacturing method
IT202000028349A1 (en) * 2020-11-25 2022-05-25 Skf Ab BEARING UNIT FOR MARBLE CUTTING MACHINES WITH OPTIMIZED SEAL ANCHORING

Also Published As

Publication number Publication date
JPWO2015093591A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2015093591A1 (en) Roller bearing and method for manufacturing same
JP6740576B2 (en) Ball bearing
JP2018128026A (en) Ball bearing
JP2016023647A (en) Ball bearing
JP2008175311A (en) Retainer for rolling bearing
JP2010190241A (en) Self-aligning roller bearing
JP2017009016A (en) Angular ball bearing
US9611891B2 (en) Rolling bearing
KR20200097282A (en) Wheel bearing device
WO2017204058A1 (en) Bearing sealing device
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP2018059546A (en) Angular ball bearing holder and hub unit bearing
JP2007285353A (en) Bearing
JP2015124885A (en) Resin-made cage for rolling bearing and rolling bearing
JP5800641B2 (en) Rolling bearing
JP2009074589A (en) Sealing device
JP2010071374A (en) Rolling device
JP2014190453A (en) Angular ball bearing
JP6186833B2 (en) Rolling bearing with seal ring
JP2017141876A (en) Rolling bearing
JP2010156376A (en) Rolling bearing device
JP2009024809A (en) Sealing device and rolling bearing device
JP2020070857A (en) Slewing bearing
JP2018123923A (en) Rolling bearing and its manufacturing method
JP2013036493A (en) Rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873038

Country of ref document: EP

Kind code of ref document: A1