WO2015093289A1 - Lithium ion capacitor - Google Patents

Lithium ion capacitor Download PDF

Info

Publication number
WO2015093289A1
WO2015093289A1 PCT/JP2014/081932 JP2014081932W WO2015093289A1 WO 2015093289 A1 WO2015093289 A1 WO 2015093289A1 JP 2014081932 W JP2014081932 W JP 2014081932W WO 2015093289 A1 WO2015093289 A1 WO 2015093289A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
electrode active
lithium ion
Prior art date
Application number
PCT/JP2014/081932
Other languages
French (fr)
Japanese (ja)
Inventor
奥野 一樹
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015093289A1 publication Critical patent/WO2015093289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a lithium ion capacitor using a negative electrode active material containing a carbonaceous material having a graphite type crystal structure.
  • a lithium ion capacitor generally includes a positive electrode including activated carbon as a positive electrode active material, a negative electrode including a carbonaceous material that absorbs and releases lithium ions as a negative electrode active material, and an electrolyte.
  • a positive electrode including activated carbon as a positive electrode active material
  • a negative electrode including a carbonaceous material that absorbs and releases lithium ions as a negative electrode active material and an electrolyte.
  • graphite is used as the negative electrode active material
  • Patent Document 2 a polyacene-based material having an amorphous structure is used as the negative electrode active material.
  • lithium ions are previously supported (or pre-doped) on the negative electrode (see Patent Document 1).
  • a lithium ion capacitor In a lithium ion capacitor, if lithium ions are previously supported on the negative electrode, the potential of the negative electrode can be lowered, so that the capacitance of the negative electrode can be increased and the capacity of the capacitor can be increased.
  • a lithium ion capacitor uses a material that occludes and releases (or inserts and desorbs) lithium ions as a negative electrode active material.
  • the negative electrode active material is deteriorated by repeating the volume change of the negative electrode active material with insertion and extraction of lithium ions. Accordingly, a high capacity cannot be maintained, and the cycle characteristics are deteriorated. Then, it aims at providing the lithium ion capacitor which is excellent in cycling characteristics.
  • One aspect of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the positive electrode active material includes at least a material that reversibly supports anions
  • the negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
  • the ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode relates to a lithium ion capacitor in which C n / C p is 20 or more.
  • FIG. 1 is a longitudinal sectional view schematically showing a lithium ion capacitor according to an embodiment of the present invention.
  • One embodiment of the present invention includes (1) a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the positive electrode active material includes at least a material that reversibly supports anions
  • the negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
  • the ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode relates to a lithium ion capacitor in which C n / C p is 20 or more.
  • a material that occludes and releases (or inserts and desorbs) lithium ions is used as a negative electrode active material.
  • a carbonaceous material having a graphite type crystal structure first carbonaceous material
  • lithium ions are occluded and released (or inserted and desorbed) between layers of the layered graphite type crystal structure.
  • first carbonaceous material lithium ions are occluded and released between layers of the layered graphite type crystal structure.
  • lithium ions are occluded and released at the grain boundary.
  • the negative electrode active material repeats expansion and contraction associated with insertion and extraction of lithium ions, and deteriorates.
  • the potential of the negative electrode can be lowered, so that the capacitance of the negative electrode can be increased and the capacity of the lithium ion capacitor can be improved.
  • the ratio of the capacitance C n per unit projected area of the negative electrode to the capacitance C p per unit projected area of the positive electrode C n / C p
  • the deterioration of the negative electrode active material during charge / discharge becomes significant, and the cycle characteristics may deteriorate.
  • the potential of the negative electrode during charge / discharge can be stabilized. Therefore, when charging / discharging is repeated, deterioration of the negative electrode active material is suppressed, and a decrease in capacity is suppressed. Therefore, a lithium ion capacitor having excellent cycle characteristics can be provided.
  • the cycle characteristics greatly change depending on the value of the C n / C p ratio as compared with the case where an amorphous material is used. This is thought to be due to the difference in the occlusion and release mechanisms of lithium ions.
  • the first carbonaceous material lithium ions are occluded and desorbed between layers of the graphite-type crystal structure. Occlusion of lithium ions into the layered structure during charging proceeds in stages from stage 4 to stage 1. If lithium ions are occluded in the first carbonaceous material in a range across a plurality of stages, it is considered that the deterioration of the first carbonaceous material increases.
  • the amorphous material lithium ions are occluded in the grain boundary, and thus it is considered that the behavior of the cycle characteristics is different from that of the first carbonaceous material. Specifically, the influence of the depth of charge / discharge on the cycle characteristics as seen in the first carbonaceous material is small in the amorphous material.
  • the positive electrode and the negative electrode usually have a sheet form.
  • the projected area of the positive electrode or the negative electrode is an area of a shadow formed when the positive electrode or the negative electrode is projected in a direction perpendicular to the surface direction.
  • the area obtained by multiplying the projected area of the positive electrode (or negative electrode) by the vertical size (cm) and the horizontal size (cm) of the positive electrode (or negative electrode) Used in the same meaning as
  • the projected area of the region where the active material is supported can be the projected area of the positive electrode or the negative electrode.
  • the C n / C p is preferably 20 to 120.
  • the C n / C p ratio is in such a range, in addition to suppressing the deterioration of cycle characteristics, it is easier to suppress the deposition of metallic lithium.
  • the C p is 0.1 to 15 F / cm 2 , and the mass of the negative electrode active material per projected unit area of the negative electrode is greater than the mass of the positive electrode active material per projected unit area of the positive electrode It is also preferable that there are many. In this case, the effect of suppressing deterioration of cycle characteristics is further increased. Moreover, it is easy to control the C n / C p ratio within an appropriate range, and the effect of improving the cycle characteristics can be further enhanced.
  • Mean spacing d 002 of (XRD X-ray diffraction) is measured in the spectrum (002) plane is preferably less than 0.337 nm. Since such a carbonaceous material (first carbonaceous material) has a developed graphite-type crystal structure, the carbonaceous material is excellent in reversible supportability of lithium ions and is influenced by cycle deterioration depending on the size of C n. easy.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture supported on the negative electrode current collector and including the negative electrode active material, and the negative electrode current collector is made of a three-dimensional network metal. It is preferable to have a skeleton of When such a current collector is used, the capacitance C n of the negative electrode can be easily increased, so that the C n / C p ratio can be increased more easily.
  • the lithium ion capacitor includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the negative electrode includes a negative electrode active material, and the negative electrode active material includes a first carbonaceous material.
  • Such a first carbonaceous material can occlude and release (or insert and desorb) lithium ions serving as charge carriers for charge and discharge reactions.
  • the graphite-type crystal structure contained in the first carbonaceous material means a layered crystal structure.
  • Examples of the graphite-type crystal structure include a cubic crystal structure and a rhombohedral crystal structure.
  • Examples of the first carbonaceous material include natural graphite (eg, scaly graphite), artificial graphite, and graphitized mesocarbon microspheres.
  • the first carbonaceous material includes a carbonaceous material having a graphite-type crystal structure, such as pitch-coated graphite, which has been subjected to coating treatment.
  • a 1st carbonaceous material can be used individually by 1 type or in combination of 2 or more types.
  • an average interplanar spacing d002 of the (002) plane measured by the XRD spectrum of the first carbonaceous material is used.
  • the first carbonaceous material has an average spacing d 002 is preferably less than 0.337 nm.
  • the lower limit of the average spacing d 002 is not particularly limited, the average spacing d 002, for example, may be equal to or larger than 0.335 nm.
  • the negative electrode active material can contain an active material other than the first carbonaceous material.
  • the content of the first carbonaceous material in the negative electrode active material is preferably 80% by mass or more (specifically, 80 to 100% by mass), More preferably, it is 90% by mass or more (specifically, 90 to 100% by mass).
  • the negative electrode active material may be composed of only the first carbonaceous material.
  • the negative electrode is not particularly limited as long as it includes the negative electrode active material as described above, and may include a negative electrode mixture containing a negative electrode active material and, as an optional component, a binder and / or a conductive additive.
  • the negative electrode can further include a negative electrode current collector. In such a negative electrode, the negative electrode current collector carries a negative electrode active material or a negative electrode mixture.
  • the type of the conductive auxiliary agent is not particularly limited, and examples thereof include carbon black such as acetylene black and ketjen black; conductive compound such as ruthenium oxide; and conductive fiber such as carbon fiber and metal fiber. .
  • a conductive support agent can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of ensuring high conductivity and high capacity, the amount of the conductive auxiliary is, for example, 1 to 20 parts by mass, preferably 5 to 15 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the type of the binder is not particularly limited.
  • polyvinylidene fluoride (PVDF) and fluorine resin such as polytetrafluoroethylene; chlorine-containing vinyl resin such as polyvinyl chloride; polyolefin resin; rubber-like material such as styrene butadiene rubber Polymers; polyvinyl pyrrolidone; polyvinyl alcohol; and cellulose derivatives [for example, cellulose ether (carboxyalkyl cellulose such as carboxymethyl cellulose and its sodium salt and salts thereof (such as alkali metal salt and ammonium salt)]] and the like can be used.
  • PVDF polyvinylidene fluoride
  • fluorine resin such as polytetrafluoroethylene
  • chlorine-containing vinyl resin such as polyvinyl chloride
  • polyolefin resin such as styrene butadiene rubber Polymers
  • polyvinyl pyrrolidone polyvinyl alcohol
  • cellulose derivatives for example,
  • the amount of the binder is not particularly limited, but can be selected from the range of, for example, 0.1 to 15 parts by mass per 100 parts by mass of the negative electrode active material from the viewpoint of easily ensuring high binding properties and high capacity, and preferably 0. .5 to 10 parts by mass.
  • the material of the negative electrode current collector is preferably copper, copper alloy, nickel, nickel alloy, and / or stainless steel.
  • the negative electrode current collector may be a metal foil or a metal porous body (metal fiber nonwoven fabric, metal porous sheet, etc.).
  • the thickness of the metal foil is, for example, 10 to 50 ⁇ m.
  • the thickness of the metal porous body is, for example, 100 to 2000 ⁇ m, preferably 700 to 1500 ⁇ m.
  • a porous metal body having a three-dimensional network skeleton constitutes a current collector by, for example, plating a resin porous body (resin foam and / or resin nonwoven fabric) having continuous voids. It may be formed by covering with a metal (specifically, the above-exemplified material).
  • a porous metal body having a hollow skeleton can be formed by removing the resin in the skeleton by heat treatment or the like.
  • a metal porous body having a three-dimensional network skeleton When a metal porous body having a three-dimensional network skeleton is used, a large amount of negative electrode active material or negative electrode mixture can be filled in the voids of the metal porous body, so that the capacitance C n of the negative electrode is increased. Can do. Therefore, when such a metal porous body is used as the negative electrode current collector, C n / C p can be easily adjusted to a large value.
  • the porosity (or porosity) of the metal porous body having a three-dimensional network skeleton is, for example, 30 to 99% by volume, preferably 50 to 98% by volume, more preferably 80 to 98% by volume, and particularly preferably 90%. ⁇ 98% by volume.
  • the specific surface area of the porous metal body having a three-dimensional reticulated skeleton for example, 100 ⁇ 700cm 2 / g, is preferably 150 ⁇ 650cm 2 / g, more preferably 200 ⁇ 600cm 2 / g .
  • the negative electrode can be formed by supporting at least a negative electrode active material on a negative electrode current collector. More specifically, it is obtained by applying or filling a negative electrode mixture containing at least a negative electrode active material on a negative electrode current collector, drying, and compressing (or rolling) the dried product as necessary.
  • the negative electrode mixture is usually used in the form of a slurry containing the components of the negative electrode mixture (negative electrode active material, conductive additive, binder, etc.).
  • the negative electrode mixture slurry is obtained by dispersing the components of the negative electrode mixture in a dispersion medium.
  • a dispersion medium for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP) and / or water is used.
  • NMP N-methyl-2-pyrrolidone
  • the dispersion medium is removed by drying during the production process of the negative electrode (after filling the current collector with the slurry and / or after rolling).
  • lithium ion is supported (pre-doped) on the negative electrode active material.
  • pre-doping lithium ions into the negative electrode active material the potential of the negative electrode can be sufficiently lowered, and the capacitance C n of the negative electrode can be increased.
  • the pre-doping of lithium ions can be performed by a known method.
  • the lithium ion pre-doping may be performed before the lithium ion capacitor is assembled, or may be performed in the lithium ion capacitor.
  • the thickness of the negative electrode can be appropriately selected from the range of 50 to 2000 ⁇ m, for example.
  • the thickness of the negative electrode is, for example, 50 to 500 ⁇ m, preferably 50 to 300 ⁇ m.
  • the thickness of the negative electrode is, for example, 150 to 2000 ⁇ m, preferably 200 to 1500 ⁇ m.
  • the mass M n of the negative electrode active material per projected unit area of the negative electrode is, for example, 3 to 100 mg / cm 2 , preferably 4 to 80 mg / cm 2 , more preferably 5 to 70 mg / cm 2 .
  • the mass M n is, for example, 20 to 100 mg / cm 2 , preferably 25 to 80 mg / cm 2 , more preferably 25 to 70 mg / cm 2 .
  • the negative electrode capacitance C n can be easily increased, so that the C n / C p ratio can be adjusted more easily.
  • the capacitance C n per unit projected area of the negative electrode for example, 10 ⁇ 300F / cm 2, preferably 10 ⁇ 250F / cm 2, more preferably 10 ⁇ 150F / cm 2.
  • the capacitance C n is preferably 30 to 300 F / cm 2 , more preferably 50 to 250 F / cm 2 , and still more preferably 70 to 230 F / cm. 2 .
  • C n can be adjusted by adjusting the mass M n of the negative electrode active material, the thickness of the negative electrode, and / or the amount of lithium supported (pre-doping amount).
  • Capacitance C n is obtained by determining the discharge capacity when the potential of the negative electrode changes by a predetermined value when the cell is assembled with metal lithium as a counter electrode and the cell is discharged at a constant current, and the discharge capacity at this time is determined as the potential of the negative electrode. It is calculated by dividing by the amount of change and the projected area of the negative electrode.
  • a positive electrode contains a positive electrode active material, and a positive electrode active material contains the material which carry
  • the positive electrode can include a positive electrode active material and a positive electrode current collector carrying the positive electrode active material.
  • the positive electrode may include a positive electrode mixture containing a positive electrode active material and a positive electrode current collector carrying the positive electrode mixture.
  • the material of the positive electrode current collector is preferably aluminum and / or an aluminum alloy (such as an aluminum-iron alloy and / or an aluminum-copper alloy).
  • the positive electrode current collector may be either a metal foil or a metal porous body. Examples of the metal porous body include a porous metal foil and a metal porous body having a three-dimensional network skeleton similar to those described for the negative electrode current collector.
  • the positive electrode active material includes a material that reversibly carries at least an anion.
  • the positive electrode active material is preferably a material that reversibly supports anions and cations.
  • the material that reversibly carries at least an anion includes a material that adsorbs and desorbs at least an anion, and a material that absorbs and desorbs (or inserts and desorbs) an anion.
  • the former is a material that causes a non-Faraday reaction during charging and discharging, and the latter is a material that causes a Faraday reaction during charging and discharging.
  • materials that adsorb and desorb at least anions can be preferably used.
  • an anion and a cation are an anion and a cation contained in the electrolyte of a lithium ion capacitor.
  • porous carbon materials such as activated carbon, nanoporous carbon, mesoporous carbon, microporous carbon, and carbon nanotube are preferably used.
  • the porous carbon material may be activated or may not be activated.
  • These porous carbon materials can be used individually by 1 type or in combination of 2 or more types.
  • activated carbon and / or nanoporous carbon are preferable. Note that porous carbon having fine pores on the order of sub nm to sub ⁇ m is referred to as nanoporous carbon.
  • the positive electrode active material may include an active material other than the second carbonaceous material.
  • the content of the second carbonaceous material in the positive electrode active material is preferably more than 50% by mass, and may be 80% by mass or more or 90% by mass or more.
  • Content of the 2nd carbonaceous material in a positive electrode active material is 100 mass% or less.
  • the content of activated carbon and nanoporous carbon in the positive electrode active material is preferably within such a range. It is also preferable that the positive electrode active material contains only the second carbonaceous material (particularly activated carbon and / or nanoporous carbon).
  • the nanoporous carbon known ones used for lithium ion capacitors can be used, for example, those obtained by heating metal carbide such as silicon carbide and / or titanium carbide in an atmosphere containing chlorine gas. Can be mentioned. By controlling the heating temperature and the heating time, the pore diameter, the pore depth, and / or the proportion of the pores can be adjusted.
  • the heating temperature can be selected from the range of 1000 to 2000 ° C., for example, and is preferably 1000 to 1500 ° C.
  • activated carbon known ones used for lithium ion capacitors can be used.
  • activated carbon materials include wood; coconut shells; pulp waste liquid; coal or coal-based pitch obtained by thermal decomposition thereof; heavy oil or petroleum-based pitch obtained by thermal decomposition thereof; and / or phenol resin. It is done. The carbonized material is generally then activated.
  • the average particle diameter of the activated carbon is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 3 to 15 ⁇ m.
  • the specific surface area (BET specific surface area) of the activated carbon is not particularly limited, but is preferably 800 to 3000 m 2 / g, more preferably 1500 to 3000 m 2 / g. When the specific surface area is in such a range, it is advantageous for increasing the capacitance of the lithium ion capacitor, and the internal resistance can be reduced.
  • the average particle diameter means a volume-based median diameter in a particle size distribution obtained by laser diffraction particle size distribution measurement.
  • the positive electrode mixture includes a positive electrode active material as an essential component, and may include a conductive additive and / or a binder as an optional component.
  • the positive electrode is coated or filled with a positive electrode mixture (specifically, positive electrode mixture slurry) containing at least a positive electrode active material on the positive electrode current collector, dried, and if necessary. It is obtained by compressing (or rolling) the dried product.
  • the dispersion medium and binder contained in the positive electrode mixture can be appropriately selected from those exemplified for the negative electrode.
  • the amount of the binder with respect to 100 parts by mass of the positive electrode active material can be appropriately selected from the range of the amount of the binder with respect to 100 parts by mass of the negative electrode active material.
  • Examples of the conductive auxiliary agent include graphite (natural graphite such as scale-like graphite and earth-like graphite; and / or artificial graphite) in addition to those exemplified for the negative electrode.
  • the amount of the conductive additive relative to 100 parts by mass of the positive electrode active material can be appropriately selected from the range of the amount of the conductive auxiliary relative to 100 parts by mass of the negative electrode active material described above.
  • the thickness of the positive electrode can be appropriately selected from the range of 50 to 2000 ⁇ m, for example.
  • the thickness of the positive electrode is, for example, 50 to 500 ⁇ m, more preferably 50 to 300 ⁇ m.
  • the thickness of the positive electrode is, for example, 300 to 2000 ⁇ m, preferably 500 to 1700 ⁇ m.
  • the mass M p of the positive electrode active material per projected unit area of the positive electrode is, for example, 1 to 100 mg / cm 2 , preferably 2 to 90 mg / cm 2 , and more preferably 3 to 80 mg / cm 2 .
  • the C n / C p ratio can be adjusted more easily.
  • the mass M n of the negative electrode active material is not particularly limited and may be the same as or smaller than the mass M p of the positive electrode active material, but larger than the mass M p. Is preferred.
  • the C n / C p ratio can be easily controlled within an appropriate range, and as a result, the effect of improving the cycle characteristics can be further enhanced.
  • the M n / M p ratio is preferably greater than 1, more preferably 1 ⁇ M n / M p ⁇ 2, and even more preferably 1 ⁇ M n / M p ⁇ 1.8.
  • the capacitance C p per projected unit area of the positive electrode is, for example, 0.1 to 15 F / cm 2 , preferably 0.1 to 10 F / cm 2 , more preferably 0.2 to 9 F / cm 2 .
  • C p can be adjusted by adjusting the type of the positive electrode active material, the mass M p of the positive electrode active material, and / or the thickness of the positive electrode.
  • C p can be calculated according to the case of C n .
  • the C n / C p ratio is 20 or more, but when the C n / C p ratio is less than 20, it is difficult to stabilize the potential of the negative electrode during charge / discharge. Therefore, as charging and discharging are repeated, the deterioration of the negative electrode active material becomes significant, and the cycle characteristics deteriorate.
  • the C n / C p ratio is more preferably 30 or more, and further preferably 50 or more. From the viewpoint of suppressing the deposition of metallic lithium in the negative electrode and suppressing the decrease in capacity due to the deposition, the C n / C p ratio is preferably 120 or less, and more preferably 100 or less, for example. These lower limit values and upper limit values can be arbitrarily combined. For example, a preferable range of C n / C p ratio can be 20 to 120, or 30 to 120.
  • the separator has ion permeability, is interposed between the positive electrode and the negative electrode, and physically separates them to prevent a short circuit.
  • the separator has a porous structure and allows ions to pass through by holding an electrolyte in the pores.
  • the material of the separator include polyolefin such as polyethylene and polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; and / or glass fiber.
  • the average pore diameter of the separator is not particularly limited and is, for example, about 0.01 to 5 ⁇ m.
  • the thickness of the separator is not particularly limited, and is about 10 to 100 ⁇ m, for example.
  • the porosity of the separator is not particularly limited and is, for example, 40 to 80% by volume, preferably 50 to 70% by volume.
  • the electrolyte includes cations and anions.
  • the electrolyte is preferably a non-aqueous electrolyte having lithium ion conductivity.
  • a non-aqueous electrolyte contains at least a cation containing lithium ions and an anion.
  • Examples of the non-aqueous electrolyte include an electrolyte (organic electrolyte) obtained by dissolving a salt (lithium salt) of lithium ions and anions in a non-aqueous solvent (or organic solvent), and at least a cation and an anion containing lithium ions.
  • An ionic liquid or the like is used.
  • the organic electrolyte can contain an ionic liquid and / or an additive in addition to the non-aqueous solvent (organic solvent) and the lithium salt.
  • the total content of the non-aqueous solvent and the lithium salt in the electrolyte is, for example, It is 60% by mass or more, preferably 75% by mass or more, and more preferably 85% by mass or more.
  • the total content of the nonaqueous solvent and the lithium salt in the electrolyte is, for example, 100% by mass or less, and preferably 95% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the total content of the nonaqueous solvent and the lithium salt in the electrolyte may be, for example, 60 to 100% by mass, or 75 to 95% by mass.
  • the term “ionic liquid” is synonymous with a molten salt (molten salt), and means a liquid ionic substance (liquid having ion conductivity) composed of an anion and a cation. use.
  • the electrolyte can contain a nonaqueous solvent and / or an additive in addition to the ionic liquid containing a cation and an anion containing lithium ions, but the content of the ionic liquid in the electrolyte Is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the content of the ionic liquid in the electrolyte may be 80% by mass or more, or 90% by mass or more.
  • the content of the ionic liquid in the electrolyte is 100% by mass or less.
  • an electrolyte containing a non-aqueous solvent organic solvent
  • an electrolyte containing an ionic liquid is preferably used, and an electrolyte containing an ionic liquid and a nonaqueous solvent may be used.
  • concentration of the lithium salt or lithium ion in the electrolyte can be appropriately selected from the range of 0.3 to 5 mol / L, for example.
  • the kind of the anion (first anion) constituting the lithium salt is not particularly limited.
  • an anion of a fluorine-containing acid anion of fluorine-containing phosphate such as hexafluorophosphate ion; fluorine containing such as tetrafluoroborate ion
  • Anions of boric acid anions of chlorine-containing acids (such as perchlorate ions), oxalates such as oxylate anions [bis (oxalato) borate ions (B (C 2 O 4 ) 2 ⁇ )] Borate ions; and oxalate phosphate ions such as tris (oxalato) phosphate ions (P (C 2 O 4 ) 3 ⁇ ), anions of fluoroalkanesulfonic acids [trifluoromethanesulfonate ions (CF 3 SO 3 ⁇ ), etc.
  • bissulfonylamide anions may be used individually by 1 type, and
  • bissulfonylamide anion examples include bis (fluorosulfonyl) amide anion (FSA ⁇ : bis (fluorosulfonyl) amide anion), bis (trifluoromethylsulfonyl) amide anion (TFSA ⁇ : bis (trifluoromethylsulfamide) amide anion.
  • the non-aqueous solvent is not particularly limited, and a known non-aqueous solvent used for a lithium ion capacitor can be used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; and ⁇ -butyrolactone.
  • the cyclic carbonate of the above can be preferably used.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ionic liquid contains a molten salt of a cation and an anion (second anion).
  • the ionic liquid may contain a kind of molten salt, or may contain two or more kinds of molten salts having different types of cations and / or second anions.
  • a bissulfonylamide anion is preferably used as the second anion.
  • the bissulfonylamide anion can be selected from those similar to those exemplified for the first anion.
  • the cation constituting the ionic liquid includes at least lithium ions, and may include lithium ions (first cations) and second cations.
  • first cations lithium ions
  • second cations the inorganic cation different from a lithium ion, an organic cation, etc.
  • examples of the inorganic cation include alkali metal ions (sodium ions, potassium ions, etc.) other than lithium ions, alkaline earth metal ions (magnesium ions, calcium ions, etc.), ammonium ions, and the like.
  • the second cation may be an inorganic cation, but is preferably an organic cation.
  • the ionic liquid may contain one type of second cation, or may contain two or more types in combination.
  • Organic cations include cations derived from aliphatic amines, alicyclic amines or aromatic amines (for example, quaternary ammonium cations), and cations having nitrogen-containing heterocycles (that is, cations derived from cyclic amines). And nitrogen-containing onium cations; sulfur-containing onium cations; and phosphorus-containing onium cations.
  • nitrogen-containing organic onium cations those having pyrrolidine, pyridine, or imidazole as the nitrogen-containing heterocyclic skeleton in addition to the quaternary ammonium cation are particularly preferable.
  • nitrogen-containing organic onium cations include tetraalkylammonium cations (TEA + : tetraethylammonium cation), tetraalkylammonium cations such as methyltriethylammonium cation (TEMA + : methyltriethylammonium cation); 1-methyl-1-propylpyrrolidinium Cations (MPPY + : 1-methyl-1-propylpyrrolidinium cation), 1-butyl-1-methylpyrrolidinium cation (MBPY + : 1-butyl-1-methylpyrrolidinium cation); 1-ethyl-3-methylimidazolium cation (EMI +: 1-ethyl- 3-methylimidazo ium cation), and 1-butyl-3-methylimidazolium cation (BMI +: 1-buthyl- 3-methylimidazolium cation) and the like.
  • TEA + t
  • the lithium ion capacitor according to the embodiment of the present invention includes, for example, (a) a step of forming an electrode group with a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and (b) an electrode group and an electrolyte. It can manufacture by passing through the process of accommodating in a cell case.
  • FIG. 1 is a longitudinal sectional view schematically showing a lithium ion capacitor according to an embodiment of the present invention.
  • the lithium ion capacitor includes a stacked electrode group, an electrolyte (not shown), and a rectangular aluminum cell case 10 for housing them.
  • the cell case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
  • an electrode group is configured by laminating the positive electrode 2 and the negative electrode 3 with the separator 1 interposed therebetween, and the configured electrode group is formed in the cell case 10. Inserted into the container body 12. Thereafter, a step of injecting an electrolyte into the container body 12 and impregnating the electrolyte in the gaps of the separator 1, the positive electrode 2, and the negative electrode 3 constituting the electrode group is performed.
  • the electrolyte includes an ionic liquid
  • the electrode group may be impregnated in the electrolyte, and then the electrode group including the electrolyte may be accommodated in the container body 12.
  • a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the cell case 10 rises.
  • An external positive terminal 14 that penetrates the lid 13 is provided near the one side of the lid 13 with the safety valve 16 in the center, and an external that penetrates the lid 13 is located near the other side of the lid 13.
  • a negative terminal is provided.
  • the stacked electrode group is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed therebetween, all in the form of a rectangular sheet.
  • the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator is not particularly limited.
  • the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction within the electrode group.
  • a positive electrode lead piece 2 a may be formed at one end of each positive electrode 2.
  • the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 a of the plurality of positive electrodes 2 and connecting them to the external positive terminal 14 provided on the lid 13 of the cell case 10.
  • a negative electrode lead piece 3 a may be formed at one end of each negative electrode 3.
  • the plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 a of the plurality of negative electrodes 3 and connecting them to the external negative terminal provided on the lid 13 of the cell case 10.
  • the bundle of the positive electrode lead pieces 2a and the bundle of the negative electrode lead pieces 3a are desirably arranged on the left and right sides of one end face of the electrode group with an interval so as to avoid mutual contact.
  • Both the external positive terminal 14 and the external negative terminal are columnar, and at least a portion exposed to the outside has a screw groove.
  • a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid 13 by rotating the nut 7.
  • a flange 8 is provided in a portion of each terminal accommodated in the cell case 10, and the flange 8 is fixed to the inner surface of the lid 13 via a washer 9 by the rotation of the nut 7. .
  • the electrode group is not limited to the laminated type, and may be formed by winding a positive electrode and a negative electrode through a separator.
  • the positive electrode active material includes at least a material that reversibly supports anions,
  • the negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
  • the ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode a lithium ion capacitor in which C n / C p is 20 or more.
  • the cycle characteristics can be significantly improved.
  • the negative electrode includes a negative electrode current collector, and a negative electrode mixture supported on the negative electrode current collector and including the negative electrode active material,
  • the negative electrode current collector has a three-dimensional network metal skeleton,
  • the carbonaceous material has an average plane spacing d 002 of the measurement by X-ray diffraction spectrum (002) plane is less than 0.337 nm,
  • the C n / C p is preferably 30 to 120.
  • Such a lithium ion capacitor can further enhance the effect of improving the cycle characteristics.
  • Test example 1 In the following procedure, a negative electrode and a positive electrode for a lithium ion capacitor were prepared, and a capacitance C n per unit area of the negative electrode and a capacitance C p per unit area of the positive electrode were measured.
  • Negative electrode 1 An artificial graphite powder (d 002 : 0.3356 nm) as a negative electrode active material, acetylene black as a conductive additive, and an NMP solution of PVDF (binder) (PVDF concentration: 2.3% by mass) using a mixer The negative electrode mixture slurry was prepared by mixing under stirring. The mass ratio of the graphite powder, acetylene black, and PVDF was 100: 10.7: 5.7.
  • the obtained negative electrode mixture slurry has, on one surface of a copper foil (thickness: 20 ⁇ m) as a current collector, the mass M n of the negative electrode active material per projected unit area of the negative electrode is about 5 mg / cm 2.
  • the mass M n of the negative electrode active material per projected unit area of the negative electrode is about 5 mg / cm 2.
  • negative electrode 1 negative electrode thickness: 66.4 ⁇ m
  • a nickel lead was welded to the other surface of the current collector.
  • Negative electrode 2 In the negative electrode 2, a copper porous body (porosity 85%, thickness 300 ⁇ m) having a three-dimensional network skeleton was used as a current collector. The negative electrode mixture slurry similar to the above (a) was filled in the copper porous body so that M n was about 35 mg / cm 2 and dried. The dried material was compressed in the thickness direction to produce a negative electrode 2 having a thickness of 263 ⁇ m. A nickel lead was welded to one surface of the negative electrode 2.
  • Positive electrode 1 Activated carbon powder as a positive electrode active material (specific surface area: 2300 m 2 / g), acetylene black as a conductive additive, and NDF solution of PVDF (binder) (PVDF concentration: 2.3 mass%) using a mixer
  • the positive electrode mixture slurry was prepared by mixing under stirring.
  • the mass ratio of the activated carbon powder, acetylene black, and PVDF was 100: 10.7: 5.7.
  • the mass M p of the positive electrode active material per unit area of the positive electrode projected on one surface (roughened surface) of an aluminum foil (thickness: 25 ⁇ m) as a current collector was obtained from the obtained positive electrode mixture slurry.
  • a coating film was formed by coating so as to be about 3 mg / cm 2 and dried. By compressing the dried product in the thickness direction, positive electrode 1 (positive electrode thickness: 89.1 ⁇ m) having a positive electrode mixture layer having a thickness of 64.1 ⁇ m was produced.
  • An aluminum lead was welded to the other surface of the current collector.
  • an aluminum porous body (porosity 95%, thickness 1000 ⁇ m) having a three-dimensional network skeleton was used as a current collector.
  • the positive electrode material mixture slurry similar to the above (a) was filled in the porous aluminum body so that M p was about 30 mg / cm 2 and dried. By compressing the dried product in the thickness direction, a positive electrode 2 having a thickness of 620 ⁇ m was produced.
  • An aluminum lead was welded to one surface of the positive electrode 2.
  • a cell was produced by immersing the obtained electrode group and metallic lithium as a reference electrode in an electrolyte.
  • an electrolyte a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used.
  • the battery was charged at a current of 0.2 mA until the positive electrode potential reached 4.2V, and then discharged until the positive electrode potential reached 2.2V.
  • the amount of change in the potential of the positive electrode and the discharge capacity from the time when 1 minute elapsed from the start of discharge until the potential of the positive electrode reached 2.2V were determined. From these values and the projected area (9 cm 2 ) of the positive electrode, the capacitance C p per projected unit area of the positive electrode was determined in the same manner as in the case (a). The results are shown in Table 1.
  • C p in Table 1 is an average value of C p determined for a total of five cells prepared in the same manner as described above.
  • Examples 1 to 8 and Comparative Examples 1 to 4 (1) Production of positive electrode and negative electrode Except that M p and M n and the thickness of the positive electrode and the negative electrode were changed as shown in Table 2, the negative electrode was prepared in the same manner as in (1) and (2) of Test Example 1. And the positive electrode was produced.
  • Examples 1 to 4 (A1 to A4) and Comparative Examples 1 and 2 (B1 and B2) like the negative electrode 1, a copper foil was used for the current collector of the negative electrode, and Examples 5 to 10 (A5 to In A10) and Comparative Examples 3 and 4 (B3 and B4), a copper porous body was used for the current collector of the negative electrode like the negative electrode 2.
  • Examples 1 to 4 (A1 to A4) and Comparative Examples 1 and 2 (B1 and B2) an aluminum foil was used for the current collector of the positive electrode as in the positive electrode 1, and Examples 5 to 10 (A5 to In A10) and Comparative Examples 3 and 4 (B3 and B4), a porous aluminum body was used for the current collector of the positive electrode like the positive electrode 2.
  • the thicknesses of the positive electrode and the negative electrode were adjusted by adjusting the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer, respectively.
  • the positive electrode and the negative electrode were each cut to a size of 3 cm in length and 3 cm in width and welded with leads.
  • metallic lithium (length 3 cm ⁇ width 3 cm, thickness 50 ⁇ m) is disposed on the negative electrode side of the electrode group with a resin microporous film (thickness 30 ⁇ m) as a separator, and the obtained laminate is made of an aluminum laminate. It accommodated in the cell case produced with the sheet
  • an electrolyte was injected into the cell case to impregnate the laminate.
  • a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used.
  • a lithium ion capacitor was produced by sealing the cell case while reducing the pressure with a vacuum sealer.
  • the capacity retention rate of the comparative example is 20% or more lower than the capacity retention rate of the example.
  • the lithium ion capacitor according to an embodiment of the present invention is excellent in cycle characteristics. Even if charging / discharging is repeated, the high capacity is maintained, and therefore, it can be applied to various uses requiring a long life.

Abstract

A lithium ion capacitor which comprises a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator arranged between the positive electrode and the negative electrode, and an electrolyte. The positive electrode active material contains at least a material that reversibly supports anions. The negative electrode active material contains a carbonaceous material having a graphite-type crystal structure. The ratio of the capacitance (Cn) per unit projected area of the negative electrode to the capacitance (Cp) per unit projected area of the positive electrode, namely Cn/Cp is 20 or more.

Description

リチウムイオンキャパシタLithium ion capacitor
 本発明は、黒鉛型結晶構造を有する炭素質材料を含む負極活物質を用いるリチウムイオンキャパシタに関する。 The present invention relates to a lithium ion capacitor using a negative electrode active material containing a carbonaceous material having a graphite type crystal structure.
 環境問題がクローズアップされる中、太陽光または風力などのクリーンエネルギーを電力に変換し、電気エネルギーとして蓄電するシステムの開発が盛んに行われている。このような蓄電デバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、およびリチウムイオンキャパシタなどが知られている。最近では、瞬時の充放電特性に優れるとともに、高い出力特性が得られ、かつ取り扱い性に優れるといった観点から、電気二重層キャパシタ、およびリチウムイオンキャパシタなどのキャパシタが注目されている。 中 Amid the close-up of environmental issues, systems that convert clean energy such as solar or wind power into electric power and store it as electric energy are being actively developed. As such an electricity storage device, a lithium ion secondary battery, an electric double layer capacitor, a lithium ion capacitor, and the like are known. Recently, capacitors such as an electric double layer capacitor and a lithium ion capacitor have been attracting attention from the viewpoints of being excellent in instantaneous charge / discharge characteristics, high output characteristics, and excellent handleability.
 キャパシタは、リチウムイオン二次電池などに比べて容量が小さい点が課題であるが、中でも、リチウムイオンキャパシタは、リチウムイオン二次電池および電気二重層キャパシタの利点を併せ持ち、比較的大きな容量が得られ易いため、種々の用途への展開が期待されている。リチウムイオンキャパシタは、一般に、正極活物質として活性炭などを含む正極と、負極活物質としてリチウムイオンを吸蔵および放出する炭素質材料などを含む負極と、電解質とを含む。例えば、特許文献1では、負極活物質として黒鉛が使用され、特許文献2では、負極活物質として、アモルファス構造を有するポリアセン系材料が使用されている。リチウムイオンキャパシタでは、キャパシタの容量を高めるため、負極にリチウムイオンを予め担持(またはプレドープ)させている(特許文献1参照)。 The problem with capacitors is that they have smaller capacities than lithium ion secondary batteries, among others, but lithium ion capacitors have the advantages of both lithium ion secondary batteries and electric double layer capacitors, and provide relatively large capacities. Therefore, it is expected to be used for various purposes. A lithium ion capacitor generally includes a positive electrode including activated carbon as a positive electrode active material, a negative electrode including a carbonaceous material that absorbs and releases lithium ions as a negative electrode active material, and an electrolyte. For example, in Patent Document 1, graphite is used as the negative electrode active material, and in Patent Document 2, a polyacene-based material having an amorphous structure is used as the negative electrode active material. In a lithium ion capacitor, in order to increase the capacity of the capacitor, lithium ions are previously supported (or pre-doped) on the negative electrode (see Patent Document 1).
特開2007-294539号公報JP 2007-294539 A 国際公開WO2003/003395号International Publication WO2003 / 003395
 リチウムイオンキャパシタにおいて、負極にリチウムイオンを予め担持させると、負極の電位を低下させることができるため、負極の静電容量を高めることができるとともに、キャパシタを高容量化できる。 In a lithium ion capacitor, if lithium ions are previously supported on the negative electrode, the potential of the negative electrode can be lowered, so that the capacitance of the negative electrode can be increased and the capacity of the capacitor can be increased.
 リチウムイオンキャパシタでは、電気二重層キャパシタとは異なり、負極活物質として、リチウムイオンを吸蔵および放出(または、挿入および脱離)する材料が使用される。
キャパシタの充放電を繰り返すと、リチウムイオンの吸蔵および放出に伴い、負極活物質の体積変化が繰り返されることで、負極活物質が劣化する。従って、高い容量を維持できなくなり、サイクル特性が低下する。
 そこで、サイクル特性に優れるリチウムイオンキャパシタを提供することを目的とする。
Unlike an electric double layer capacitor, a lithium ion capacitor uses a material that occludes and releases (or inserts and desorbs) lithium ions as a negative electrode active material.
When the capacitor is repeatedly charged and discharged, the negative electrode active material is deteriorated by repeating the volume change of the negative electrode active material with insertion and extraction of lithium ions. Accordingly, a high capacity cannot be maintained, and the cycle characteristics are deteriorated.
Then, it aims at providing the lithium ion capacitor which is excellent in cycling characteristics.
 本発明の一局面は、正極活物質を含む正極、負極活物質を含む負極、前記正極と前記負極との間に介在するセパレータ、および電解質を含み、
 前記正極活物質は、少なくともアニオンを可逆的に担持する材料を含み、
 前記負極活物質は、黒鉛型結晶構造を有する炭素質材料を含み、
 前記正極の投影単位面積当たりの静電容量Cpに対する前記負極の投影単位面積当たりの静電容量Cnの比:Cn/Cpは、20以上であるリチウムイオンキャパシタに関する。
One aspect of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
The positive electrode active material includes at least a material that reversibly supports anions,
The negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
The ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode relates to a lithium ion capacitor in which C n / C p is 20 or more.
 上記構成によれば、充放電を繰り返しても、リチウムイオンの吸蔵および放出に伴う負極活物質の劣化を抑制でき、これにより、サイクル特性を顕著に向上できる。 According to the above configuration, even when charging / discharging is repeated, deterioration of the negative electrode active material due to insertion and extraction of lithium ions can be suppressed, and thereby cycle characteristics can be significantly improved.
本発明の一実施形態に係るリチウムイオンキャパシタを概略的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a lithium ion capacitor according to an embodiment of the present invention.
[発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 本発明の一実施形態は、(1)正極活物質を含む正極、負極活物質を含む負極、前記正極と前記負極との間に介在するセパレータ、および電解質を含み、
 前記正極活物質は、少なくともアニオンを可逆的に担持する材料を含み、
 前記負極活物質は、黒鉛型結晶構造を有する炭素質材料を含み、
 前記正極の投影単位面積当たりの静電容量Cpに対する前記負極の投影単位面積当たりの静電容量Cnの比:Cn/Cpは、20以上であるリチウムイオンキャパシタに関する。
[Description of Embodiment of the Invention]
First, the contents of the embodiment of the present invention will be listed and described.
One embodiment of the present invention includes (1) a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
The positive electrode active material includes at least a material that reversibly supports anions,
The negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
The ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode relates to a lithium ion capacitor in which C n / C p is 20 or more.
 リチウムイオンキャパシタでは、負極活物質としてリチウムイオンを吸蔵および放出(または、挿入および脱離)する材料が使用される。負極活物質として黒鉛型結晶構造を有する炭素質材料(第1炭素質材料)を用いた場合、リチウムイオンは、層状の黒鉛型結晶構造の層間に吸蔵および放出(または、挿入および脱離)される。例えば、負極活物質として、アモルファス材料を用いた場合、リチウムイオンは粒界において吸蔵および放出される。リチウムイオンキャパシタの充放電を繰り返すと、負極活物質は、リチウムイオンの吸蔵および放出に伴う膨張収縮を繰り返すことになり、劣化する。 In a lithium ion capacitor, a material that occludes and releases (or inserts and desorbs) lithium ions is used as a negative electrode active material. When a carbonaceous material having a graphite type crystal structure (first carbonaceous material) is used as the negative electrode active material, lithium ions are occluded and released (or inserted and desorbed) between layers of the layered graphite type crystal structure. The For example, when an amorphous material is used as the negative electrode active material, lithium ions are occluded and released at the grain boundary. When charging / discharging of the lithium ion capacitor is repeated, the negative electrode active material repeats expansion and contraction associated with insertion and extraction of lithium ions, and deteriorates.
 負極活物質にリチウムイオンを予め担持すると、負極の電位を低下させることができるため、負極の静電容量を高めることができるとともに、リチウムイオンキャパシタの容量を向上できる。しかし、第1炭素質材料を含む負極活物質を用いる場合、正極の投影単位面積当たりの静電容量Cpに対する負極の投影単位面積当たりの静電容量Cnの比:Cn/Cpの値によっては、充放電時の負極活物質の劣化が顕著になり、サイクル特性が低下する場合がある。 When lithium ion is previously supported on the negative electrode active material, the potential of the negative electrode can be lowered, so that the capacitance of the negative electrode can be increased and the capacity of the lithium ion capacitor can be improved. However, when the negative electrode active material containing the first carbonaceous material is used, the ratio of the capacitance C n per unit projected area of the negative electrode to the capacitance C p per unit projected area of the positive electrode: C n / C p Depending on the value, the deterioration of the negative electrode active material during charge / discharge becomes significant, and the cycle characteristics may deteriorate.
 本発明の実施形態では、第1炭素質材料を含む負極活物質を用い、Cn/Cp比を20以上にすることで、充放電時の負極の電位を安定化することができる。そのため、充放電を繰り返した場合に、負極活物質の劣化が抑制され、容量の低下が抑制される。よって、サイクル特性に優れるリチウムイオンキャパシタを提供できる。 In the embodiment of the present invention, by using a negative electrode active material containing a first carbonaceous material and setting the C n / C p ratio to 20 or more, the potential of the negative electrode during charge / discharge can be stabilized. Therefore, when charging / discharging is repeated, deterioration of the negative electrode active material is suppressed, and a decrease in capacity is suppressed. Therefore, a lithium ion capacitor having excellent cycle characteristics can be provided.
 詳細は定かではないが、負極活物質として第1炭素質材料を用いる場合、例えば、アモルファス材料を用いる場合と比較して、Cn/Cp比の値によって、サイクル特性が大きく変化するのは、リチウムイオンの吸蔵および放出のメカニズムの違いによるものと考えられる。第1炭素質材料では、リチウムイオンは、黒鉛型結晶構造の層間において吸蔵および脱離される。充電時の層状構造へのリチウムイオンの吸蔵は、ステージ4からステージ1にかけて、段階的に進んでいく。複数のステージをまたぐ範囲でリチウムイオンを第1炭素質材料に吸蔵させると、第1炭素質材料の劣化が大きくなると考えられる。しかし、アモルファス材料では、リチウムイオンは粒界に吸蔵されるため、第1炭素質材料とは、サイクル特性の挙動が異なると考えられる。具体的には、第1炭素質材料で見られるような、充放電の深度がサイクル特性に与える影響は、アモルファス材料では小さい。 Although details are not certain, when the first carbonaceous material is used as the negative electrode active material, for example, the cycle characteristics greatly change depending on the value of the C n / C p ratio as compared with the case where an amorphous material is used. This is thought to be due to the difference in the occlusion and release mechanisms of lithium ions. In the first carbonaceous material, lithium ions are occluded and desorbed between layers of the graphite-type crystal structure. Occlusion of lithium ions into the layered structure during charging proceeds in stages from stage 4 to stage 1. If lithium ions are occluded in the first carbonaceous material in a range across a plurality of stages, it is considered that the deterioration of the first carbonaceous material increases. However, in the amorphous material, lithium ions are occluded in the grain boundary, and thus it is considered that the behavior of the cycle characteristics is different from that of the first carbonaceous material. Specifically, the influence of the depth of charge / discharge on the cycle characteristics as seen in the first carbonaceous material is small in the amorphous material.
 なお、正極および負極は、通常、シート状の形態を有する。正極または負極の投影面積とは、正極または負極を面方向に垂直な方向に投影した場合に形成される影の面積である。例えば、矩形のシート状の正極(または負極)では、正極(または負極)の投影面積を、正極(または負極)の縦のサイズ(cm)と横のサイズ(cm)とを乗じて得られる面積とほぼ同じ意味で使用する。ただし、活物質が正極または負極の一部の領域にのみ担持されている場合には、活物質が担持されている領域の投影面積を、正極または負極の投影面積とすることができる。 The positive electrode and the negative electrode usually have a sheet form. The projected area of the positive electrode or the negative electrode is an area of a shadow formed when the positive electrode or the negative electrode is projected in a direction perpendicular to the surface direction. For example, in a rectangular sheet-like positive electrode (or negative electrode), the area obtained by multiplying the projected area of the positive electrode (or negative electrode) by the vertical size (cm) and the horizontal size (cm) of the positive electrode (or negative electrode) Used in the same meaning as However, when the active material is supported only on a part of the positive electrode or the negative electrode, the projected area of the region where the active material is supported can be the projected area of the positive electrode or the negative electrode.
 (2)前記Cn/Cpは、20~120であることが好ましい。Cn/Cp比がこのような範囲である場合、サイクル特性の低下が抑制されることに加え、さらに金属リチウムの析出を抑制し易い。 (2) The C n / C p is preferably 20 to 120. When the C n / C p ratio is in such a range, in addition to suppressing the deterioration of cycle characteristics, it is easier to suppress the deposition of metallic lithium.
 (3)前記Cpは、0.1~15F/cm2であり、前記負極の投影単位面積当たりの前記負極活物質の質量は、前記正極の投影単位面積当たりの前記正極活物質の質量よりも多いことが好ましい。この場合、サイクル特性の低下を抑制する効果がさらに大きくなる。また、Cn/Cp比を適切な範囲に制御し易く、サイクル特性を向上する効果をさらに高めることができる。 (3) The C p is 0.1 to 15 F / cm 2 , and the mass of the negative electrode active material per projected unit area of the negative electrode is greater than the mass of the positive electrode active material per projected unit area of the positive electrode It is also preferable that there are many. In this case, the effect of suppressing deterioration of cycle characteristics is further increased. Moreover, it is easy to control the C n / C p ratio within an appropriate range, and the effect of improving the cycle characteristics can be further enhanced.
 (4)前記炭素質材料は、X線回折(XRD:X-ray diffraction)スペクトルで測定される(002)面の平均面間隔d002が0.337nm未満であることが好ましい。このような炭素質材料(第1炭素質材料)は、発達した黒鉛型結晶構造を有するため、リチウムイオンの可逆的な担持性に優れるとともに、Cnの大きさによって、サイクル劣化の影響を受け易い。 (4) the carbonaceous material, X-rays diffraction: Mean spacing d 002 of (XRD X-ray diffraction) is measured in the spectrum (002) plane is preferably less than 0.337 nm. Since such a carbonaceous material (first carbonaceous material) has a developed graphite-type crystal structure, the carbonaceous material is excellent in reversible supportability of lithium ions and is influenced by cycle deterioration depending on the size of C n. easy.
 (5)前記負極は、負極集電体と、前記負極集電体に担持され、かつ前記負極活物質を含む負極合剤とを含み、前記負極集電体は、三次元網目状の金属製の骨格を有することが好ましい。このような集電体を用いると、負極の静電容量Cnを大きくし易いため、Cn/Cp比をより容易に大きくすることができる。 (5) The negative electrode includes a negative electrode current collector and a negative electrode mixture supported on the negative electrode current collector and including the negative electrode active material, and the negative electrode current collector is made of a three-dimensional network metal. It is preferable to have a skeleton of When such a current collector is used, the capacitance C n of the negative electrode can be easily increased, so that the C n / C p ratio can be increased more easily.
[発明の実施形態の詳細]
 本発明の実施形態に係るリチウムイオンキャパシタの具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the invention]
Specific examples of the lithium ion capacitor according to the embodiment of the present invention will be described below with reference to the drawings as appropriate. In addition, this invention is not limited to these illustrations, is shown by the attached claim, and is intended that all the changes within the meaning and range equivalent to the claim are included. .
(リチウムイオンキャパシタ)
 リチウムイオンキャパシタは、正極活物質を含む正極、負極活物質を含む負極、正極と負極との間に介在するセパレータ、および電解質を含む。
 以下、リチウムイオンキャパシタの構成要素についてより詳細に説明する。
 (負極)
 負極は、負極活物質を含み、負極活物質は、第1炭素質材料を含む。
 第1炭素質材料は、充放電の際にファラデー反応を起こすものである。このような第1炭素質材料は、充放電反応の電荷のキャリアとなるリチウムイオンを吸蔵および放出(または、挿入および脱離)することができる。
(Lithium ion capacitor)
The lithium ion capacitor includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
Hereinafter, the components of the lithium ion capacitor will be described in more detail.
(Negative electrode)
The negative electrode includes a negative electrode active material, and the negative electrode active material includes a first carbonaceous material.
A 1st carbonaceous material raise | generates a Faraday reaction in the case of charging / discharging. Such a first carbonaceous material can occlude and release (or insert and desorb) lithium ions serving as charge carriers for charge and discharge reactions.
 第1炭素質材料に含まれる黒鉛型結晶構造とは、層状の結晶構造を意味する。黒鉛型結晶構造としては、立方晶型結晶構造、および菱面体晶型結晶構造などが例示できる。第1炭素質材料としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、および黒鉛化メソカーボン小球体などが例示できる。第1炭素質材料には、ピッチ被覆黒鉛などの、黒鉛型結晶構造を有する炭素質材料に被覆処理を施したものを含まれる。第1炭素質材料は、一種を単独でまたは二種以上組み合わせて使用できる。リチウムイオンキャパシタにおいて、充電時には、第1炭素質材料の黒鉛型結晶構造の層間にリチウムイオンが挿入され、放電時には、黒鉛型結晶構造の層間からリチウムイオンが放出される。 The graphite-type crystal structure contained in the first carbonaceous material means a layered crystal structure. Examples of the graphite-type crystal structure include a cubic crystal structure and a rhombohedral crystal structure. Examples of the first carbonaceous material include natural graphite (eg, scaly graphite), artificial graphite, and graphitized mesocarbon microspheres. The first carbonaceous material includes a carbonaceous material having a graphite-type crystal structure, such as pitch-coated graphite, which has been subjected to coating treatment. A 1st carbonaceous material can be used individually by 1 type or in combination of 2 or more types. In a lithium ion capacitor, during charging, lithium ions are inserted between the layers of the graphite-type crystal structure of the first carbonaceous material, and during discharge, lithium ions are released from the layers of the graphite-type crystal structure.
 第1炭素質材料における黒鉛型結晶構造の発達の程度の指標の1つとして、第1炭素質材料のXRDスペクトルで測定される(002)面の平均面間隔d002が使用されている。第1炭素質材料は、平均面間隔d002が、0.337nm未満であることが好ましい。平均面間隔d002の下限は特に制限されないが、平均面間隔d002を、例えば、0.335nm以上とすることができる。平均面間隔d002がこのような範囲の第1炭素質材料を用いることで、充電時には、黒鉛型結晶構造内にリチウムイオンをより効率よく挿入することができるとともに、放電時には、黒鉛型結晶構造からリチウムイオンをスムーズに放出することができる。また、このようなd002を有する第1炭素質材料は、Cnの大きさによって、サイクル劣化の影響を受け易い。 As one index of the degree of development of the graphite-type crystal structure in the first carbonaceous material, an average interplanar spacing d002 of the (002) plane measured by the XRD spectrum of the first carbonaceous material is used. The first carbonaceous material has an average spacing d 002 is preferably less than 0.337 nm. The lower limit of the average spacing d 002 is not particularly limited, the average spacing d 002, for example, may be equal to or larger than 0.335 nm. By using the first carbonaceous material having an average interplanar spacing d002 in such a range, lithium ions can be more efficiently inserted into the graphite-type crystal structure during charging, and the graphite-type crystal structure during discharge. Lithium ions can be released smoothly from Further, the first carbonaceous material having such d 002 is easily affected by cycle deterioration depending on the size of C n .
 負極活物質は、第1炭素質材料以外の活物質を含むことができる。リチウムイオンの吸蔵および放出を効率よく行う観点からは、負極活物質中の第1炭素質材料の含有量は、80質量%以上(具体的には80~100質量%)であることが好ましく、90質量%以上(具体的には90~100質量%)であることがさらに好ましい。負極活物質を第1炭素質材料のみで構成してもよい。 The negative electrode active material can contain an active material other than the first carbonaceous material. From the viewpoint of efficiently inserting and extracting lithium ions, the content of the first carbonaceous material in the negative electrode active material is preferably 80% by mass or more (specifically, 80 to 100% by mass), More preferably, it is 90% by mass or more (specifically, 90 to 100% by mass). The negative electrode active material may be composed of only the first carbonaceous material.
 負極は、上記のような負極活物質を含む限り特に制限されず、負極活物質と、任意成分として、バインダおよび/または導電助剤などとを含む負極合剤を含んでもよい。負極は、さらに負極集電体を含むことができ、このような負極において、負極集電体には、負極活物質、または負極合剤が担持されている。 The negative electrode is not particularly limited as long as it includes the negative electrode active material as described above, and may include a negative electrode mixture containing a negative electrode active material and, as an optional component, a binder and / or a conductive additive. The negative electrode can further include a negative electrode current collector. In such a negative electrode, the negative electrode current collector carries a negative electrode active material or a negative electrode mixture.
 導電助剤の種類は、特に制限されず、例えば、アセチレンブラック、およびケッチェンブラックなどのカーボンブラック;酸化ルテニウムなどの導電性化合物;ならびに、炭素繊維および金属繊維などの導電性繊維などが挙げられる。導電助剤は、一種を単独でまたは二種以上を組み合わせて使用できる。高導電性および高容量を確保し易い観点から、導電助剤の量は、負極活物質100質量部に対して、例えば1~20質量部、好ましくは5~15質量部である。 The type of the conductive auxiliary agent is not particularly limited, and examples thereof include carbon black such as acetylene black and ketjen black; conductive compound such as ruthenium oxide; and conductive fiber such as carbon fiber and metal fiber. . A conductive support agent can be used individually by 1 type or in combination of 2 or more types. From the viewpoint of ensuring high conductivity and high capacity, the amount of the conductive auxiliary is, for example, 1 to 20 parts by mass, preferably 5 to 15 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 バインダの種類は特に制限されず、例えば、ポリフッ化ビニリデン(PVDF:polyvinylidene fluoride)、およびポリテトラフルオロエチレンなどのフッ素樹脂;ポリビニルクロリドなどの塩素含有ビニル樹脂;ポリオレフィン樹脂;スチレンブタジエンゴムなどのゴム状重合体;ポリビニルピロリドン;ポリビニルアルコール;およびセルロース誘導体[例えば、セルロースエーテル(カルボキシメチルセルロースおよびそのナトリウム塩などのカルボキシアルキルセルロースおよびその塩(アルカリ金属塩およびアンモニウム塩など)など)]などを用いることができる。バインダは、一種を単独でまたは二種以上を組み合わせて使用できる。バインダの量は、特に制限されないが、高い結着性および高容量を確保し易い観点から、負極活物質100質量部当たり、例えば、0.1~15質量部の範囲から選択でき、好ましくは0.5~10質量部である。 The type of the binder is not particularly limited. For example, polyvinylidene fluoride (PVDF) and fluorine resin such as polytetrafluoroethylene; chlorine-containing vinyl resin such as polyvinyl chloride; polyolefin resin; rubber-like material such as styrene butadiene rubber Polymers; polyvinyl pyrrolidone; polyvinyl alcohol; and cellulose derivatives [for example, cellulose ether (carboxyalkyl cellulose such as carboxymethyl cellulose and its sodium salt and salts thereof (such as alkali metal salt and ammonium salt)]] and the like can be used. . A binder can be used individually by 1 type or in combination of 2 or more types. The amount of the binder is not particularly limited, but can be selected from the range of, for example, 0.1 to 15 parts by mass per 100 parts by mass of the negative electrode active material from the viewpoint of easily ensuring high binding properties and high capacity, and preferably 0. .5 to 10 parts by mass.
 負極集電体の材質としては、銅、銅合金、ニッケル、ニッケル合金、および/またはステンレス鋼などが好ましい。負極集電体は、金属箔でもよく、金属多孔体(金属繊維の不織布、金属多孔体シートなど)であってもよい。金属箔の厚さは、例えば、10~50μmである。金属多孔体の厚さは、例えば、100~2000μmであり、好ましくは700~1500μmである。 The material of the negative electrode current collector is preferably copper, copper alloy, nickel, nickel alloy, and / or stainless steel. The negative electrode current collector may be a metal foil or a metal porous body (metal fiber nonwoven fabric, metal porous sheet, etc.). The thickness of the metal foil is, for example, 10 to 50 μm. The thickness of the metal porous body is, for example, 100 to 2000 μm, preferably 700 to 1500 μm.
 金属多孔体としては、三次元網目状の金属製の骨格(特に、中空の骨格)を有するものも使用できる。三次元網目状の骨格を有する金属多孔体は、連続空隙を有する樹脂製の多孔体(樹脂発泡体、および/または樹脂製の不織布など)を、例えば、メッキ処理などにより、集電体を構成する金属(具体的には、上記例示の材質)で被覆することにより形成されたものであってもよい。中空の骨格を有する金属多孔体は、骨格内の樹脂を、加熱処理などにより除去することにより形成できる。 As the metal porous body, one having a three-dimensional network metal skeleton (in particular, a hollow skeleton) can be used. A porous metal body having a three-dimensional network skeleton constitutes a current collector by, for example, plating a resin porous body (resin foam and / or resin nonwoven fabric) having continuous voids. It may be formed by covering with a metal (specifically, the above-exemplified material). A porous metal body having a hollow skeleton can be formed by removing the resin in the skeleton by heat treatment or the like.
 三次元網目状の骨格を有する金属多孔体を用いる場合、金属多孔体の空隙内に多くの負極活物質または負極合剤を充填することができるため、負極の静電容量Cnを大きくすることができる。そのため、このような金属多孔体を負極集電体として用いると、Cn/Cpを大きい値に調節し易い。 When a metal porous body having a three-dimensional network skeleton is used, a large amount of negative electrode active material or negative electrode mixture can be filled in the voids of the metal porous body, so that the capacitance C n of the negative electrode is increased. Can do. Therefore, when such a metal porous body is used as the negative electrode current collector, C n / C p can be easily adjusted to a large value.
 三次元網目状の骨格を有する金属多孔体の空隙率(または気孔率)は、例えば、30~99体積%、好ましくは50~98体積%、さらに好ましくは80~98体積%、特に好ましくは90~98体積%である。三次元網目状の骨格を有する金属多孔体の比表面積(BET比表面積)は、例えば、100~700cm2/g、好ましくは150~650cm2/g、さらに好ましくは200~600cm2/gである。金属多孔体の気孔率および/または比表面積がこのような範囲であれば、十分な量の負極活物質を担持し易く、高い容量を確保し易い。 The porosity (or porosity) of the metal porous body having a three-dimensional network skeleton is, for example, 30 to 99% by volume, preferably 50 to 98% by volume, more preferably 80 to 98% by volume, and particularly preferably 90%. ~ 98% by volume. The specific surface area of the porous metal body having a three-dimensional reticulated skeleton (BET specific surface area), for example, 100 ~ 700cm 2 / g, is preferably 150 ~ 650cm 2 / g, more preferably 200 ~ 600cm 2 / g . When the porosity and / or specific surface area of the metal porous body is in such a range, it is easy to carry a sufficient amount of the negative electrode active material and to ensure a high capacity.
 負極は、負極集電体に、少なくとも負極活物質を担持することにより形成できる。より具体的には、少なくとも負極活物質を含む負極合剤を、負極集電体に塗布または充填し、乾燥し、必要に応じて、乾燥物を圧縮(または圧延)することにより得られる。 The negative electrode can be formed by supporting at least a negative electrode active material on a negative electrode current collector. More specifically, it is obtained by applying or filling a negative electrode mixture containing at least a negative electrode active material on a negative electrode current collector, drying, and compressing (or rolling) the dried product as necessary.
 負極合剤は、通常、負極合剤の構成成分(負極活物質、導電助剤、バインダなど)を含むスラリーの形態で使用される。負極合剤スラリーは、負極合剤の構成成分を、分散媒に分散することにより得られる。分散媒としては、例えば、N-メチル-2-ピロリドン(NMP:N-methyl-2-pyrrolidone)などの有機溶媒、および/または水などが用いられる。分散媒は、負極の製造過程で(スラリーを集電体に充填した後、および/または圧延した後などに)、乾燥により除去される。 The negative electrode mixture is usually used in the form of a slurry containing the components of the negative electrode mixture (negative electrode active material, conductive additive, binder, etc.). The negative electrode mixture slurry is obtained by dispersing the components of the negative electrode mixture in a dispersion medium. As the dispersion medium, for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP) and / or water is used. The dispersion medium is removed by drying during the production process of the negative electrode (after filling the current collector with the slurry and / or after rolling).
 リチウムイオンキャパシタに使用する負極において、負極活物質には、リチウムイオンが担持(プレドープ)されていることが望ましい。リチウムイオンを負極活物質にプレドープすることで、負極の電位を十分に低くすることができ、負極の静電容量Cnを高めることができる。リチウムイオンのプレドープは公知の方法で行うことができる。リチウムイオンのプレドープは、リチウムイオンキャパシタの組み立て前に行ってもよく、リチウムイオンキャパシタ内で行ってもよい。 In the negative electrode used for the lithium ion capacitor, it is desirable that lithium ion is supported (pre-doped) on the negative electrode active material. By pre-doping lithium ions into the negative electrode active material, the potential of the negative electrode can be sufficiently lowered, and the capacitance C n of the negative electrode can be increased. The pre-doping of lithium ions can be performed by a known method. The lithium ion pre-doping may be performed before the lithium ion capacitor is assembled, or may be performed in the lithium ion capacitor.
 負極の厚みは、例えば、50~2000μmの範囲から適宜選択できる。負極集電体として金属箔を用いる場合、負極の厚みは、例えば、50~500μm、好ましくは50~300μmである。負極集電体として三次元網目状の骨格を有する金属多孔体を用いる場合、負極の厚みは、例えば、150~2000μm、好ましくは200~1500μmである。 The thickness of the negative electrode can be appropriately selected from the range of 50 to 2000 μm, for example. When a metal foil is used as the negative electrode current collector, the thickness of the negative electrode is, for example, 50 to 500 μm, preferably 50 to 300 μm. When a porous metal body having a three-dimensional network skeleton is used as the negative electrode current collector, the thickness of the negative electrode is, for example, 150 to 2000 μm, preferably 200 to 1500 μm.
 負極の投影単位面積当たりの負極活物質の質量Mnは、例えば、3~100mg/cm2であり、好ましくは4~80mg/cm2、より好ましくは5~70mg/cm2である。三次元網目状の金属多孔体を集電体に用いる場合、質量Mnは、例えば、20~100mg/cm2、好ましくは25~80mg/cm2、さらに好ましくは25~70mg/cm2である。
 質量Mnがこのような範囲である場合、負極の静電容量Cnを大きくし易いため、Cn/Cp比をより容易に調節することができる。
The mass M n of the negative electrode active material per projected unit area of the negative electrode is, for example, 3 to 100 mg / cm 2 , preferably 4 to 80 mg / cm 2 , more preferably 5 to 70 mg / cm 2 . When a three-dimensional mesh-like metal porous body is used as a current collector, the mass M n is, for example, 20 to 100 mg / cm 2 , preferably 25 to 80 mg / cm 2 , more preferably 25 to 70 mg / cm 2 . .
When the mass M n is in such a range, the negative electrode capacitance C n can be easily increased, so that the C n / C p ratio can be adjusted more easily.
 負極の投影単位面積当たりの静電容量Cnは、例えば、10~300F/cm2、好ましくは10~250F/cm2、さらに好ましくは10~150F/cm2である。三次元網目状の金属多孔体を集電体に用いる場合、静電容量Cnは、好ましくは30~300F/cm2、より好ましくは50~250F/cm2、さらに好ましくは70~230F/cm2である。 The capacitance C n per unit projected area of the negative electrode, for example, 10 ~ 300F / cm 2, preferably 10 ~ 250F / cm 2, more preferably 10 ~ 150F / cm 2. When a three-dimensional network-like porous metal is used as a current collector, the capacitance C n is preferably 30 to 300 F / cm 2 , more preferably 50 to 250 F / cm 2 , and still more preferably 70 to 230 F / cm. 2 .
 Cnが上記のような範囲である場合、Cn/Cp比を大きい値に調節し易く、サイクル特性の低下を抑制する効果をさらに高めることができる。Cnは、負極活物質の質量Mn、負極の厚み、および/またはリチウムの担持量(プレドープ量)などを調節することにより、調節することができる。
 静電容量Cnは、金属リチウムを対極としてセルを組み、セルを定電流放電したときの、負極の電位が所定値変化する際の放電容量を求め、このときの放電容量を、負極の電位の変化量および負極の投影面積で除することにより算出できる。
When C n is in the above range, the C n / C p ratio can be easily adjusted to a large value, and the effect of suppressing deterioration of cycle characteristics can be further enhanced. C n can be adjusted by adjusting the mass M n of the negative electrode active material, the thickness of the negative electrode, and / or the amount of lithium supported (pre-doping amount).
Capacitance C n is obtained by determining the discharge capacity when the potential of the negative electrode changes by a predetermined value when the cell is assembled with metal lithium as a counter electrode and the cell is discharged at a constant current, and the discharge capacity at this time is determined as the potential of the negative electrode. It is calculated by dividing by the amount of change and the projected area of the negative electrode.
 (正極)
 正極は、正極活物質を含み、正極活物質は、少なくともアニオンを可逆的に担持する材料を含む。正極は、正極活物質と、正極活物質が担持された正極集電体とを含むことができる。正極は、正極活物質を含む正極合剤と、正極合剤が担持された正極集電体とを含んでもよい。
(Positive electrode)
A positive electrode contains a positive electrode active material, and a positive electrode active material contains the material which carry | supports an anion reversibly at least. The positive electrode can include a positive electrode active material and a positive electrode current collector carrying the positive electrode active material. The positive electrode may include a positive electrode mixture containing a positive electrode active material and a positive electrode current collector carrying the positive electrode mixture.
 正極集電体の材質としては、アルミニウム、および/またはアルミニウム合金(アルミニウム-鉄合金、および/またはアルミニウム-銅合金など)などが好ましい。
 正極集電体は、金属箔および金属多孔体のいずれであってもよい。金属多孔体としては、多孔性の金属箔、および負極集電体について記載したものと同様の三次元網目状の骨格を有する金属多孔体などが例示できる。
The material of the positive electrode current collector is preferably aluminum and / or an aluminum alloy (such as an aluminum-iron alloy and / or an aluminum-copper alloy).
The positive electrode current collector may be either a metal foil or a metal porous body. Examples of the metal porous body include a porous metal foil and a metal porous body having a three-dimensional network skeleton similar to those described for the negative electrode current collector.
 正極活物質は、少なくともアニオンを可逆的に担持する材料を含む。正極活物質は、アニオンおよびカチオンを可逆的に担持する材料であることが好ましい。少なくともアニオンを可逆的に担持する材料には、少なくともアニオンを吸着および脱離する材料、ならびにアニオンを吸蔵および放出(もしくは挿入および脱離)する材料などが含まれる。前者は、充放電の際に非ファラデー反応を起こす材料であり、後者は、充放電の際にファラデー反応を起こす材料である。これらのうち、少なくともアニオン(好ましくは、アニオンおよびカチオン)を吸着および脱離する材料が好ましく使用できる。
 なお、アニオンおよびカチオンとは、リチウムイオンキャパシタの電解質に含まれるアニオンおよびカチオンである。
The positive electrode active material includes a material that reversibly carries at least an anion. The positive electrode active material is preferably a material that reversibly supports anions and cations. The material that reversibly carries at least an anion includes a material that adsorbs and desorbs at least an anion, and a material that absorbs and desorbs (or inserts and desorbs) an anion. The former is a material that causes a non-Faraday reaction during charging and discharging, and the latter is a material that causes a Faraday reaction during charging and discharging. Of these, materials that adsorb and desorb at least anions (preferably anions and cations) can be preferably used.
In addition, an anion and a cation are an anion and a cation contained in the electrolyte of a lithium ion capacitor.
 少なくともアニオンを可逆的に担持する材料としては、例えば、活性炭、ナノポーラスカーボン、メソポーラスカーボン、マイクロポーラスカーボン、およびカーボンナノチューブなどの多孔質炭素材料(第2炭素質材料とも言う)が好ましく使用される。多孔質炭素材料は、賦活処理されたものであってもよく、賦活処理されていなくてもよい。これらの多孔質炭素材料は、一種を単独でまたは二種以上を組み合わせて使用できる。上記多孔質炭素材料のうち、活性炭、および/またはナノポーラスカーボンなどが好ましい。なお、サブnm~サブμmオーダーの微細孔を有するポーラスカーボンをナノポーラスカーボンと称する。 As the material for reversibly supporting at least anions, for example, porous carbon materials (also referred to as second carbonaceous materials) such as activated carbon, nanoporous carbon, mesoporous carbon, microporous carbon, and carbon nanotube are preferably used. The porous carbon material may be activated or may not be activated. These porous carbon materials can be used individually by 1 type or in combination of 2 or more types. Of the porous carbon materials, activated carbon and / or nanoporous carbon are preferable. Note that porous carbon having fine pores on the order of sub nm to sub μm is referred to as nanoporous carbon.
 正極活物質は、第2炭素質材料以外の活物質を含んでもよい。正極活物質中の第2炭素質材料の含有量は、50質量%を超えることが好ましく、80質量%以上または90質量%以上であってもよい。正極活物質中の第2炭素質材料の含有量は100質量%以下である。特に、正極活物質中の活性炭およびナノポーラスカーボンの含有量がこのような範囲であることが好ましい。正極活物質が、第2炭素質材料(特に、活性炭および/またはナノポーラスカーボン)のみを含む場合も好ましい。 The positive electrode active material may include an active material other than the second carbonaceous material. The content of the second carbonaceous material in the positive electrode active material is preferably more than 50% by mass, and may be 80% by mass or more or 90% by mass or more. Content of the 2nd carbonaceous material in a positive electrode active material is 100 mass% or less. In particular, the content of activated carbon and nanoporous carbon in the positive electrode active material is preferably within such a range. It is also preferable that the positive electrode active material contains only the second carbonaceous material (particularly activated carbon and / or nanoporous carbon).
 ナノポーラスカーボンとしては、リチウムイオンキャパシタに使用される公知のものが使用でき、例えば、塩素ガスを含む雰囲気中で、炭化珪素、および/または炭化チタンなどの金属炭化物を加熱することにより得られるものが挙げられる。加熱温度および加熱時間を制御することで、細孔径、細孔の深さ、および/または細孔の割合を調節することができる。加熱温度は、例えば、1000~2000℃の範囲から選択でき、好ましくは1000~1500℃である。 As the nanoporous carbon, known ones used for lithium ion capacitors can be used, for example, those obtained by heating metal carbide such as silicon carbide and / or titanium carbide in an atmosphere containing chlorine gas. Can be mentioned. By controlling the heating temperature and the heating time, the pore diameter, the pore depth, and / or the proportion of the pores can be adjusted. The heating temperature can be selected from the range of 1000 to 2000 ° C., for example, and is preferably 1000 to 1500 ° C.
 活性炭としては、リチウムイオンキャパシタに使用される公知のものを使用できる。活性炭の原料としては、例えば、木材;ヤシ殻;パルプ廃液;石炭またはその熱分解により得られる石炭系ピッチ;重質油またはその熱分解により得られる石油系ピッチ;および/またはフェノール樹脂などが挙げられる。炭化された材料は、その後、賦活するのが一般的である。 As the activated carbon, known ones used for lithium ion capacitors can be used. Examples of activated carbon materials include wood; coconut shells; pulp waste liquid; coal or coal-based pitch obtained by thermal decomposition thereof; heavy oil or petroleum-based pitch obtained by thermal decomposition thereof; and / or phenol resin. It is done. The carbonized material is generally then activated.
 活性炭の平均粒径は、特に限定されないが、20μm以下であることが好ましく、3~15μmであることがより好ましい。活性炭の比表面積(BET比表面積)は、特に限定されないが、800~3000m2/gが好ましく、1500~3000m2/gがさらに好ましい。比表面積がこのような範囲である場合、リチウムイオンキャパシタの静電容量を大きくする上で有利であるとともに、内部抵抗を小さくすることができる。
 本明細書中、平均粒径とは、レーザー回折式の粒度分布測定で得られる粒度分布における体積基準のメディアン径を意味する。
The average particle diameter of the activated carbon is not particularly limited, but is preferably 20 μm or less, more preferably 3 to 15 μm. The specific surface area (BET specific surface area) of the activated carbon is not particularly limited, but is preferably 800 to 3000 m 2 / g, more preferably 1500 to 3000 m 2 / g. When the specific surface area is in such a range, it is advantageous for increasing the capacitance of the lithium ion capacitor, and the internal resistance can be reduced.
In this specification, the average particle diameter means a volume-based median diameter in a particle size distribution obtained by laser diffraction particle size distribution measurement.
 正極合剤は、必須成分としての正極活物質を含み、任意成分としての導電助剤および/またはバインダを含んでもよい。
 正極は、負極の場合に準じて、例えば、正極集電体に、少なくとも正極活物質を含む正極合剤(具体的には正極合剤スラリー)を塗布または充填し、乾燥し、必要に応じて、乾燥物を圧縮(または圧延)することにより得られる。
The positive electrode mixture includes a positive electrode active material as an essential component, and may include a conductive additive and / or a binder as an optional component.
In accordance with the case of the negative electrode, for example, the positive electrode is coated or filled with a positive electrode mixture (specifically, positive electrode mixture slurry) containing at least a positive electrode active material on the positive electrode current collector, dried, and if necessary. It is obtained by compressing (or rolling) the dried product.
 正極合剤(または正極合剤スラリー)に含まれる分散媒およびバインダとしては、それぞれ、負極について例示したものから適宜選択できる。正極活物質100質量部に対するバインダの量は、前述の負極活物質100質量部に対するバインダの量の範囲から適宜選択できる。 The dispersion medium and binder contained in the positive electrode mixture (or positive electrode mixture slurry) can be appropriately selected from those exemplified for the negative electrode. The amount of the binder with respect to 100 parts by mass of the positive electrode active material can be appropriately selected from the range of the amount of the binder with respect to 100 parts by mass of the negative electrode active material.
 導電助剤としては、負極について例示したものに加え、黒鉛(鱗片状黒鉛、土状黒鉛などの天然黒鉛;および/または人造黒鉛など)などが例示できる。正極活物質100質量部に対する導電助剤の量は、前述の負極活物質100質量部に対する導電助剤の量の範囲から適宜選択できる。 Examples of the conductive auxiliary agent include graphite (natural graphite such as scale-like graphite and earth-like graphite; and / or artificial graphite) in addition to those exemplified for the negative electrode. The amount of the conductive additive relative to 100 parts by mass of the positive electrode active material can be appropriately selected from the range of the amount of the conductive auxiliary relative to 100 parts by mass of the negative electrode active material described above.
 正極の厚みは、例えば、50~2000μmの範囲から適宜選択できる。正極集電体として金属箔を用いる場合、正極の厚みは、例えば、50~500μm、より好ましくは50~300μmである。正極集電体として三次元網目状の骨格を有する金属多孔体を用いる場合、正極の厚みは、例えば、300~2000μm、好ましくは500~1700μmである。 The thickness of the positive electrode can be appropriately selected from the range of 50 to 2000 μm, for example. When a metal foil is used as the positive electrode current collector, the thickness of the positive electrode is, for example, 50 to 500 μm, more preferably 50 to 300 μm. When a porous metal body having a three-dimensional network skeleton is used as the positive electrode current collector, the thickness of the positive electrode is, for example, 300 to 2000 μm, preferably 500 to 1700 μm.
 正極の投影単位面積当たりの正極活物質の質量Mpは、例えば、1~100mg/cm2であり、好ましくは2~90mg/cm2であり、より好ましくは3~80mg/cm2である。質量Mpがこのような範囲である場合、Cn/Cp比をより容易に調節することができる。 The mass M p of the positive electrode active material per projected unit area of the positive electrode is, for example, 1 to 100 mg / cm 2 , preferably 2 to 90 mg / cm 2 , and more preferably 3 to 80 mg / cm 2 . When the mass M p is in such a range, the C n / C p ratio can be adjusted more easily.
 Cn/Cp比が20以上であれば、負極活物質の質量Mnは、特に制限されず、正極活物質の質量Mpと同じか小さくてもよいが、質量Mpよりも大きいことが好ましい。質量Mnが質量Mpよりも大きい場合、Cn/Cp比を適切な範囲に制御し易く、その結果、サイクル特性を向上する効果をさらに高めることができる。Mn/Mp比は1より大きいことが好ましく、1<Mn/Mp≦2であることがより好ましく、1<Mn/Mp≦1.8であることがさらに好ましい。 If the C n / C p ratio is 20 or more, the mass M n of the negative electrode active material is not particularly limited and may be the same as or smaller than the mass M p of the positive electrode active material, but larger than the mass M p. Is preferred. When the mass M n is larger than the mass M p , the C n / C p ratio can be easily controlled within an appropriate range, and as a result, the effect of improving the cycle characteristics can be further enhanced. The M n / M p ratio is preferably greater than 1, more preferably 1 <M n / M p ≦ 2, and even more preferably 1 <M n / M p ≦ 1.8.
 正極の投影単位面積当たりの静電容量Cpは、例えば、0.1~15F/cm2、好ましくは0.1~10F/cm2、さらに好ましくは0.2~9F/cm2である。Cpがこのような範囲である場合、Cn/Cp比を大きい値に調節し易く、サイクル特性の低下を抑制する効果をさらに高めることができる。正極活物質の種類、正極活物質の質量Mp、および/または正極の厚みなどを調節することにより、Cpを調節することができる。Cpは、Cnの場合に準じて算出できる。 The capacitance C p per projected unit area of the positive electrode is, for example, 0.1 to 15 F / cm 2 , preferably 0.1 to 10 F / cm 2 , more preferably 0.2 to 9 F / cm 2 . When C p is in such a range, the C n / C p ratio can be easily adjusted to a large value, and the effect of suppressing deterioration of cycle characteristics can be further enhanced. C p can be adjusted by adjusting the type of the positive electrode active material, the mass M p of the positive electrode active material, and / or the thickness of the positive electrode. C p can be calculated according to the case of C n .
 Cn/Cp比は、20以上としているが、Cn/Cp比が20未満である場合、充放電時の負極の電位を安定化することが難しい。そのため、充放電を繰り返すにつれて、負極活物質の劣化が顕著になり、サイクル特性が低下する。サイクル特性をさらに向上させるためには、Cn/Cp比は30以上であることがより好ましく、50以上であることがさらに好ましい。
 負極における金属リチウムの析出を抑制して、析出による容量低下を抑制できる観点から、Cn/Cp比は、例えば、120以下であることが好ましく、100以下であることがさらに好ましい。
 これらの下限値と上限値とは任意に組合せることができる。例えば、好ましいCn/Cp比の範囲は、20~120、または30~120とすることができる。
The C n / C p ratio is 20 or more, but when the C n / C p ratio is less than 20, it is difficult to stabilize the potential of the negative electrode during charge / discharge. Therefore, as charging and discharging are repeated, the deterioration of the negative electrode active material becomes significant, and the cycle characteristics deteriorate. In order to further improve the cycle characteristics, the C n / C p ratio is more preferably 30 or more, and further preferably 50 or more.
From the viewpoint of suppressing the deposition of metallic lithium in the negative electrode and suppressing the decrease in capacity due to the deposition, the C n / C p ratio is preferably 120 or less, and more preferably 100 or less, for example.
These lower limit values and upper limit values can be arbitrarily combined. For example, a preferable range of C n / C p ratio can be 20 to 120, or 30 to 120.
 (セパレータ)
 セパレータは、イオン透過性を有し、正極と負極との間に介在して、これらを物理的に離間させて短絡を防止する。セパレータは、多孔質構造を有し、細孔内に電解質を保持することで、イオンを透過させる。セパレータの材質としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリエチレンテレフタレートなどのポリエステル;ポリアミド;ポリイミド;セルロース;および/またはガラス繊維などが挙げられる。
(Separator)
The separator has ion permeability, is interposed between the positive electrode and the negative electrode, and physically separates them to prevent a short circuit. The separator has a porous structure and allows ions to pass through by holding an electrolyte in the pores. Examples of the material of the separator include polyolefin such as polyethylene and polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; and / or glass fiber.
 セパレータの平均孔径は特に制限されず、例えば、0.01~5μm程度である。
 セパレータの厚みは特に制限されず、例えば、10~100μm程度である。
 セパレータの気孔率は特に制限されず、例えば、40~80体積%、好ましくは50~70体積%である。
The average pore diameter of the separator is not particularly limited and is, for example, about 0.01 to 5 μm.
The thickness of the separator is not particularly limited, and is about 10 to 100 μm, for example.
The porosity of the separator is not particularly limited and is, for example, 40 to 80% by volume, preferably 50 to 70% by volume.
 (電解質)
 電解質はカチオンおよびアニオンを含む。電解質は、リチウムイオン伝導性を有する非水電解質であることが好ましい。このような非水電解質は、少なくともリチウムイオンを含むカチオンと、アニオンとを含む。非水電解質としては、例えば、非水溶媒(または有機溶媒)にリチウムイオンとアニオンとの塩(リチウム塩)を溶解させた電解質(有機電解質)の他、少なくともリチウムイオンを含むカチオンとアニオンとを含むイオン液体などが用いられる。
(Electrolytes)
The electrolyte includes cations and anions. The electrolyte is preferably a non-aqueous electrolyte having lithium ion conductivity. Such a non-aqueous electrolyte contains at least a cation containing lithium ions and an anion. Examples of the non-aqueous electrolyte include an electrolyte (organic electrolyte) obtained by dissolving a salt (lithium salt) of lithium ions and anions in a non-aqueous solvent (or organic solvent), and at least a cation and an anion containing lithium ions. An ionic liquid or the like is used.
 有機電解質は、非水溶媒(有機溶媒)およびリチウム塩に加え、イオン液体および/または添加剤などを含むことができるが、電解質中の非水溶媒およびリチウム塩の含有量の合計は、例えば、60質量%以上、好ましくは75質量%以上、さらに好ましくは85質量%以上である。電解質中の非水溶媒およびリチウム塩の含有量の合計は、例えば、100質量%以下であり、好ましくは95質量%以下である。これらの下限値と上限値とは任意に組み合わせることができる。電解質中の非水溶媒およびリチウム塩の含有量の合計は、例えば、60~100質量%、または75~95質量%であってもよい。 The organic electrolyte can contain an ionic liquid and / or an additive in addition to the non-aqueous solvent (organic solvent) and the lithium salt. The total content of the non-aqueous solvent and the lithium salt in the electrolyte is, for example, It is 60% by mass or more, preferably 75% by mass or more, and more preferably 85% by mass or more. The total content of the nonaqueous solvent and the lithium salt in the electrolyte is, for example, 100% by mass or less, and preferably 95% by mass or less. These lower limit values and upper limit values can be arbitrarily combined. The total content of the nonaqueous solvent and the lithium salt in the electrolyte may be, for example, 60 to 100% by mass, or 75 to 95% by mass.
 本明細書中、「イオン液体」とは、溶融状態の塩(溶融塩)と同義であり、アニオンとカチオンとで構成される液状イオン性物質(イオン伝導性を有する液体)を意味するものとして使用する。
 電解質にイオン液体を用いる場合、電解質は、リチウムイオンを含むカチオンとアニオンとを含むイオン液体に加え、非水溶媒および/または添加剤などを含むことができるが、電解質中のイオン液体の含有量は、60質量%以上であることが好ましく、70質量%以上であることがさらに好ましい。電解質中のイオン液体の含有量は、80質量%以上、または90質量%以上であってもよい。電解質中のイオン液体の含有量は、100質量%以下である。
In the present specification, the term “ionic liquid” is synonymous with a molten salt (molten salt), and means a liquid ionic substance (liquid having ion conductivity) composed of an anion and a cation. use.
When an ionic liquid is used for the electrolyte, the electrolyte can contain a nonaqueous solvent and / or an additive in addition to the ionic liquid containing a cation and an anion containing lithium ions, but the content of the ionic liquid in the electrolyte Is preferably 60% by mass or more, and more preferably 70% by mass or more. The content of the ionic liquid in the electrolyte may be 80% by mass or more, or 90% by mass or more. The content of the ionic liquid in the electrolyte is 100% by mass or less.
 低温特性などの観点からは、非水溶媒(有機溶媒)を含む電解質を用いることが好ましい。電解質の分解をできるだけ抑制する観点からは、イオン液体を含む電解質を用いることが好ましく、イオン液体および非水溶媒を含む電解質を用いてもよい。
 電解質におけるリチウム塩またはリチウムイオンの濃度は、例えば、0.3~5mol/Lの範囲から適宜選択できる。
From the viewpoint of low temperature characteristics and the like, it is preferable to use an electrolyte containing a non-aqueous solvent (organic solvent). From the viewpoint of suppressing the decomposition of the electrolyte as much as possible, an electrolyte containing an ionic liquid is preferably used, and an electrolyte containing an ionic liquid and a nonaqueous solvent may be used.
The concentration of the lithium salt or lithium ion in the electrolyte can be appropriately selected from the range of 0.3 to 5 mol / L, for example.
 リチウム塩を構成するアニオン(第1アニオン)の種類は特に限定されず、例えば、フッ素含有酸のアニオン(ヘキサフルオロリン酸イオンなどのフッ素含有リン酸のアニオン;テトラフルオロホウ酸イオンなどのフッ素含有ホウ酸のアニオンなど)、塩素含有酸のアニオン(過塩素酸イオンなど)、オキサレート基を有する酸素酸のアニオン[ビス(オキサラト)ボレートイオン(B(C242 -)などのオキサラトボレートイオン;およびトリス(オキサラト)ホスフェートイオン(P(C243 -)などのオキサラトホスフェートイオンなど]、フルオロアルカンスルホン酸のアニオン[トリフルオロメタンスルホン酸イオン(CF3SO3 -)など]、およびビススルホニルアミドアニオンなどが挙げられる。
 リチウム塩は、一種を単独で用いてもよく、第1アニオンの種類が異なるリチウム塩を二種以上組み合わせて用いてもよい。
The kind of the anion (first anion) constituting the lithium salt is not particularly limited. For example, an anion of a fluorine-containing acid (anion of fluorine-containing phosphate such as hexafluorophosphate ion; fluorine containing such as tetrafluoroborate ion) Anions of boric acid), anions of chlorine-containing acids (such as perchlorate ions), oxalates such as oxylate anions [bis (oxalato) borate ions (B (C 2 O 4 ) 2 )] Borate ions; and oxalate phosphate ions such as tris (oxalato) phosphate ions (P (C 2 O 4 ) 3 ), anions of fluoroalkanesulfonic acids [trifluoromethanesulfonate ions (CF 3 SO 3 ), etc. And bissulfonylamide anions.
A lithium salt may be used individually by 1 type, and may use it combining 2 or more types of lithium salts from which the kind of 1st anion differs.
 上記のビススルホニルアミドアニオンとしては、例えば、ビス(フルオロスルホニル)アミドアニオン(FSA-:bis(fluorosulfonyl)amide anion))、ビス(トリフルオロメチルスルホニル)アミドアニオン(TFSA-:bis(trifluoromethylsulfonyl)amide anion)、(フルオロスルホニル)(パーフルオロアルキルスルホニル)アミドアニオン[(FSO2)(CF3SO2)N-など]、および/またはビス(パーフルオロアルキルスルホニル)アミドアニオン[N(SO2CF32 -、N(SO2252 -など]などが挙げられる。
これらの中では、FSA-が好ましい。
Examples of the bissulfonylamide anion include bis (fluorosulfonyl) amide anion (FSA : bis (fluorosulfonyl) amide anion), bis (trifluoromethylsulfonyl) amide anion (TFSA : bis (trifluoromethylsulfamide) amide anion. ), (Fluorosulfonyl) (perfluoroalkylsulfonyl) amide anion [(FSO 2 ) (CF 3 SO 2 ) N etc.], and / or bis (perfluoroalkylsulfonyl) amide anion [N (SO 2 CF 3 ) 2 -, N (SO 2 C 2 F 5) 2 - ], and others.
Of these, FSA - is preferred.
 非水溶媒は、特に限定されず、リチウムイオンキャパシタに使用される公知の非水溶媒が使用できる。非水溶媒は、イオン伝導度の観点から、例えば、エチレンカーボネート、プロピレンカーボネート、およびブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネートなどの鎖状カーボネート;および、γ-ブチロラクトンなどの環状炭酸エステルなどを好ましく用いることができる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The non-aqueous solvent is not particularly limited, and a known non-aqueous solvent used for a lithium ion capacitor can be used. Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; and γ-butyrolactone. The cyclic carbonate of the above can be preferably used. A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 イオン液体は、カチオンとアニオン(第2アニオン)との溶融塩を含む。イオン液体は、一種の溶融塩を含んでもよく、カチオンおよび/または第2アニオンの種類が異なる二種以上の溶融塩を含んでもよい。
 第2アニオンとしては、ビススルホニルアミドアニオンを用いることが好ましい。ビススルホニルアミドアニオンとしては、第1アニオンについて例示したものと同様のものから選択できる。
The ionic liquid contains a molten salt of a cation and an anion (second anion). The ionic liquid may contain a kind of molten salt, or may contain two or more kinds of molten salts having different types of cations and / or second anions.
As the second anion, a bissulfonylamide anion is preferably used. The bissulfonylamide anion can be selected from those similar to those exemplified for the first anion.
 イオン液体を構成するカチオンは、少なくともリチウムイオンを含み、リチウムイオン(第1カチオン)と第2カチオンとを含んでもよい。
 第2カチオンとしては、リチウムイオンとは異なる無機カチオン、および有機カチオンなどが例示できる。無機カチオンとしては、例えば、リチウムイオン以外のアルカリ金属イオン(ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(マグネシウムイオン、カルシウムイオンなど)、およびアンモニウムイオンなどが挙げられる。第2カチオンは、無機カチオンであってもよいが、有機カチオンであることが好ましい。イオン液体は、第2カチオンを、一種含んでもよく、二種以上組合せて含んでもよい。
The cation constituting the ionic liquid includes at least lithium ions, and may include lithium ions (first cations) and second cations.
As a 2nd cation, the inorganic cation different from a lithium ion, an organic cation, etc. can be illustrated. Examples of the inorganic cation include alkali metal ions (sodium ions, potassium ions, etc.) other than lithium ions, alkaline earth metal ions (magnesium ions, calcium ions, etc.), ammonium ions, and the like. The second cation may be an inorganic cation, but is preferably an organic cation. The ionic liquid may contain one type of second cation, or may contain two or more types in combination.
 有機カチオンとしては、脂肪族アミン、脂環族アミンまたは芳香族アミンに由来するカチオン(例えば、第4級アンモニウムカチオンなど)、および窒素含有へテロ環を有するカチオン(つまり、環状アミンに由来するカチオン)などの窒素含有オニウムカチオン;イオウ含有オニウムカチオン;およびリン含有オニウムカチオンなどが例示できる。
 窒素含有有機オニウムカチオンのうち、特に、第4級アンモニウムカチオンの他、窒素含有ヘテロ環骨格として、ピロリジン、ピリジン、またはイミダゾールを有するものが好ましい。
Organic cations include cations derived from aliphatic amines, alicyclic amines or aromatic amines (for example, quaternary ammonium cations), and cations having nitrogen-containing heterocycles (that is, cations derived from cyclic amines). And nitrogen-containing onium cations; sulfur-containing onium cations; and phosphorus-containing onium cations.
Of the nitrogen-containing organic onium cations, those having pyrrolidine, pyridine, or imidazole as the nitrogen-containing heterocyclic skeleton in addition to the quaternary ammonium cation are particularly preferable.
 窒素含有有機オニウムカチオンの具体例としては、テトラエチルアンモニウムカチオン(TEA+:tetraethylammonium cation)、メチルトリエチルアンモニウムカチオン(TEMA+:methyltriethylammonium cation)などのテトラアルキルアンモニウムカチオン;1-メチル-1-プロピルピロリジニウムカチオン(MPPY+:1-methyl-1-propylpyrrolidinium cation)、1-ブチル-1-メチルピロリジニウムカチオン(MBPY+:1-butyl-1-methylpyrrolidinium cation);1-エチル-3-メチルイミダゾリウムカチオン(EMI+: 1-ethyl-3-methylimidazolium cation)、および1-ブチル-3-メチルイミダゾリウムカチオン(BMI+:1-buthyl-3-methylimidazolium cation)などが挙げられる。 Specific examples of nitrogen-containing organic onium cations include tetraalkylammonium cations (TEA + : tetraethylammonium cation), tetraalkylammonium cations such as methyltriethylammonium cation (TEMA + : methyltriethylammonium cation); 1-methyl-1-propylpyrrolidinium Cations (MPPY + : 1-methyl-1-propylpyrrolidinium cation), 1-butyl-1-methylpyrrolidinium cation (MBPY + : 1-butyl-1-methylpyrrolidinium cation); 1-ethyl-3-methylimidazolium cation (EMI +: 1-ethyl- 3-methylimidazo ium cation), and 1-butyl-3-methylimidazolium cation (BMI +: 1-buthyl- 3-methylimidazolium cation) and the like.
 本発明の実施形態に係るリチウムイオンキャパシタは、例えば、(a)正極と、負極と、正極および負極の間に介在するセパレータとで電極群を形成する工程、ならびに(b)電極群および電解質をセルケース内に収容する工程を経ることにより製造できる。 The lithium ion capacitor according to the embodiment of the present invention includes, for example, (a) a step of forming an electrode group with a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and (b) an electrode group and an electrolyte. It can manufacture by passing through the process of accommodating in a cell case.
 図1は、本発明の一実施形態に係るリチウムイオンキャパシタを概略的に示す縦断面図である。リチウムイオンキャパシタは、積層型の電極群、電解質(図示せず)およびこれらを収容する角型のアルミニウム製のセルケース10を具備する。セルケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋体13とで構成されている。 FIG. 1 is a longitudinal sectional view schematically showing a lithium ion capacitor according to an embodiment of the present invention. The lithium ion capacitor includes a stacked electrode group, an electrolyte (not shown), and a rectangular aluminum cell case 10 for housing them. The cell case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
 リチウムイオンキャパシタを組み立てる際には、まず、正極2と負極3とをこれらの間にセパレータ1を介在させた状態で積層することにより電極群が構成され、構成された電極群がセルケース10の容器本体12に挿入される。その後、容器本体12に電解質を注液し、電極群を構成するセパレータ1、正極2、および負極3の空隙に、電解質を含浸させる工程が行われる。あるいは、電解質が、イオン液体を含む場合、電解質に電極群を含浸し、その後、電解質を含んだ状態の電極群を容器本体12に収容してもよい。 When assembling a lithium ion capacitor, first, an electrode group is configured by laminating the positive electrode 2 and the negative electrode 3 with the separator 1 interposed therebetween, and the configured electrode group is formed in the cell case 10. Inserted into the container body 12. Thereafter, a step of injecting an electrolyte into the container body 12 and impregnating the electrolyte in the gaps of the separator 1, the positive electrode 2, and the negative electrode 3 constituting the electrode group is performed. Alternatively, when the electrolyte includes an ionic liquid, the electrode group may be impregnated in the electrolyte, and then the electrode group including the electrolyte may be accommodated in the container body 12.
 蓋体13の中央には、セルケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。安全弁16を中央にして、蓋体13の一方側寄りには、蓋体13を貫通する外部正極端子14が設けられ、蓋体13の他方側寄りの位置には、蓋体13を貫通する外部負極端子が設けられる。 In the center of the lid 13, a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the cell case 10 rises. An external positive terminal 14 that penetrates the lid 13 is provided near the one side of the lid 13 with the safety valve 16 in the center, and an external that penetrates the lid 13 is located near the other side of the lid 13. A negative terminal is provided.
 積層型の電極群は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図1では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータの形態は特に限定されない。複数の正極2と複数の負極3は、電極群内で積層方向に交互に配置される。 The stacked electrode group is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed therebetween, all in the form of a rectangular sheet. In FIG. 1, the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator is not particularly limited. The plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction within the electrode group.
 各正極2の一端部には、正極リード片2aを形成してもよい。複数の正極2の正極リード片2aを束ねるとともに、セルケース10の蓋体13に設けられた外部正極端子14に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3aを形成してもよい。複数の負極3の負極リード片3aを束ねるとともに、セルケース10の蓋体13に設けられた外部負極端子に接続することにより、複数の負極3が並列に接続される。正極リード片2aの束と負極リード片3aの束は、互いの接触を避けるように、電極群の一端面の左右に、間隔を空けて配置することが望ましい。 A positive electrode lead piece 2 a may be formed at one end of each positive electrode 2. The plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 a of the plurality of positive electrodes 2 and connecting them to the external positive terminal 14 provided on the lid 13 of the cell case 10. Similarly, a negative electrode lead piece 3 a may be formed at one end of each negative electrode 3. The plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 a of the plurality of negative electrodes 3 and connecting them to the external negative terminal provided on the lid 13 of the cell case 10. The bundle of the positive electrode lead pieces 2a and the bundle of the negative electrode lead pieces 3a are desirably arranged on the left and right sides of one end face of the electrode group with an interval so as to avoid mutual contact.
 外部正極端子14および外部負極端子は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋体13に対してナット7が固定される。各端子のセルケース10内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋体13の内面に、ワッシャ9を介して固定される。
 電極群は、積層タイプに限らず、正極と負極とをセパレータを介して捲回することにより形成したものであってもよい。
Both the external positive terminal 14 and the external negative terminal are columnar, and at least a portion exposed to the outside has a screw groove. A nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid 13 by rotating the nut 7. A flange 8 is provided in a portion of each terminal accommodated in the cell case 10, and the flange 8 is fixed to the inner surface of the lid 13 via a washer 9 by the rotation of the nut 7. .
The electrode group is not limited to the laminated type, and may be formed by winding a positive electrode and a negative electrode through a separator.
[付記]
 以上の実施形態に関し、さらに以下の付記を開示する。
 (付記1)
 正極活物質を含む正極、負極活物質を含む負極、前記正極と前記負極との間に介在するセパレータ、および電解質を含み、
 前記正極活物質は、少なくともアニオンを可逆的に担持する材料を含み、
 前記負極活物質は、黒鉛型結晶構造を有する炭素質材料を含み、
 前記正極の投影単位面積当たりの静電容量Cpに対する前記負極の投影単位面積当たりの静電容量Cnの比:Cn/Cpは、20以上であるリチウムイオンキャパシタ。
 このようなリチウムイオンキャパシタでは、充放電時の負極活物質の劣化を抑制できるため、サイクル特性を顕著に向上できる。
[Appendix]
Regarding the above embodiment, the following additional notes are disclosed.
(Appendix 1)
A positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte;
The positive electrode active material includes at least a material that reversibly supports anions,
The negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
The ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode: a lithium ion capacitor in which C n / C p is 20 or more.
In such a lithium ion capacitor, since the deterioration of the negative electrode active material during charging / discharging can be suppressed, the cycle characteristics can be significantly improved.
 (付記2)
 前記付記1において、
 前記負極は、負極集電体と、前記負極集電体に担持され、かつ前記負極活物質を含む負極合剤とを含み、
 前記負極集電体は、三次元網目状の金属製の骨格を有し、
 前記炭素質材料は、X線回折スペクトルで測定される(002)面の平均面間隔d002が0.337nm未満であり、
 前記Cn/Cpは、30~120であることが好ましい。
 このようなリチウムイオンキャパシタは、サイクル特性の向上効果をさらに高めることができる。
(Appendix 2)
In Appendix 1,
The negative electrode includes a negative electrode current collector, and a negative electrode mixture supported on the negative electrode current collector and including the negative electrode active material,
The negative electrode current collector has a three-dimensional network metal skeleton,
The carbonaceous material has an average plane spacing d 002 of the measurement by X-ray diffraction spectrum (002) plane is less than 0.337 nm,
The C n / C p is preferably 30 to 120.
Such a lithium ion capacitor can further enhance the effect of improving the cycle characteristics.
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 試験例1
 下記の手順で、リチウムイオンキャパシタ用の負極および正極を作製し、負極の単位面積当たりの静電容量Cnおよび正極の単位面積当たりの静電容量Cpを測定した。
(1)負極の作製
 (a)負極1
 負極活物質としての人造黒鉛粉末(d002:0.3356nm)、導電助剤としてのアセチレンブラック、およびPVDF(バインダ)のNMP溶液(PVDF濃度:2.3質量%)を、混合機を用いて、撹拌下で混合することにより、負極合剤スラリーを調製した。黒鉛粉末と、アセチレンブラックと、PVDFとの質量比は、100:10.7:5.7とした。
Test example 1
In the following procedure, a negative electrode and a positive electrode for a lithium ion capacitor were prepared, and a capacitance C n per unit area of the negative electrode and a capacitance C p per unit area of the positive electrode were measured.
(1) Production of negative electrode (a) Negative electrode 1
An artificial graphite powder (d 002 : 0.3356 nm) as a negative electrode active material, acetylene black as a conductive additive, and an NMP solution of PVDF (binder) (PVDF concentration: 2.3% by mass) using a mixer The negative electrode mixture slurry was prepared by mixing under stirring. The mass ratio of the graphite powder, acetylene black, and PVDF was 100: 10.7: 5.7.
 得られた負極合剤スラリーを、集電体としての銅箔(厚み:20μm)の一方の表面に、負極の投影単位面積当たりの負極活物質の質量Mnが約5mg/cm2となるように塗布して塗膜を形成し、乾燥させた。乾燥物を、厚み方向に圧縮することにより、厚み46.4μmの負極合剤層を有する負極1(負極の厚み:66.4μm)を作製した。集電体の他方の表面には、ニッケル製のリードを溶接した。 The obtained negative electrode mixture slurry has, on one surface of a copper foil (thickness: 20 μm) as a current collector, the mass M n of the negative electrode active material per projected unit area of the negative electrode is about 5 mg / cm 2. Was applied to form a coating film and dried. By compressing the dried product in the thickness direction, negative electrode 1 (negative electrode thickness: 66.4 μm) having a negative electrode mixture layer having a thickness of 46.4 μm was produced. A nickel lead was welded to the other surface of the current collector.
 (b)負極2
 負極2では、集電体として三次元網目状の骨格を有する銅多孔体(気孔率85%、厚み300μm)を用いた。銅多孔体に、上記(a)と同様の負極合剤スラリーを、Mnが約35mg/cm2となるように充填し、乾燥させた。乾燥物を、厚み方向に圧縮することにより、厚み263μmの負極2を作製した。負極2の一方の表面には、ニッケル製のリードを溶接した。
(B) Negative electrode 2
In the negative electrode 2, a copper porous body (porosity 85%, thickness 300 μm) having a three-dimensional network skeleton was used as a current collector. The negative electrode mixture slurry similar to the above (a) was filled in the copper porous body so that M n was about 35 mg / cm 2 and dried. The dried material was compressed in the thickness direction to produce a negative electrode 2 having a thickness of 263 μm. A nickel lead was welded to one surface of the negative electrode 2.
(2)正極の作製
 (a)正極1
 正極活物質としての活性炭粉末(比表面積:2300m2/g)、導電助剤としてのアセチレンブラック、およびPVDF(バインダ)のNMP溶液(PVDF濃度:2.3質量%)を、混合機を用いて、撹拌下で混合することにより、正極合剤スラリーを調製した。活性炭粉末と、アセチレンブラックと、PVDFとの質量比は、100:10.7:5.7とした。
(2) Production of positive electrode (a) Positive electrode 1
Activated carbon powder as a positive electrode active material (specific surface area: 2300 m 2 / g), acetylene black as a conductive additive, and NDF solution of PVDF (binder) (PVDF concentration: 2.3 mass%) using a mixer The positive electrode mixture slurry was prepared by mixing under stirring. The mass ratio of the activated carbon powder, acetylene black, and PVDF was 100: 10.7: 5.7.
 得られた正極合剤スラリーを、集電体としてのアルミニウム箔(厚み:25μm)の一方の表面(粗面化処理した表面)に、正極の投影単位面積当たりの正極活物質の質量Mpが約3mg/cm2となるように塗布して塗膜を形成し、乾燥させた。乾燥物を、厚み方向に圧縮することにより、厚み64.1μmの正極合剤層を有する正極1(正極の厚み:89.1μm)を作製した。集電体の他方の表面には、アルミニウム製のリードを溶接した。 The mass M p of the positive electrode active material per unit area of the positive electrode projected on one surface (roughened surface) of an aluminum foil (thickness: 25 μm) as a current collector was obtained from the obtained positive electrode mixture slurry. A coating film was formed by coating so as to be about 3 mg / cm 2 and dried. By compressing the dried product in the thickness direction, positive electrode 1 (positive electrode thickness: 89.1 μm) having a positive electrode mixture layer having a thickness of 64.1 μm was produced. An aluminum lead was welded to the other surface of the current collector.
 (b)正極2
 正極2では、集電体として三次元網目状の骨格を有するアルミニウム多孔体(気孔率95%、厚み1000μm)を用いた。アルミニウム多孔体に、上記(a)と同様の正極合剤スラリーを、Mpが約30mg/cm2となるように充填し、乾燥させた。乾燥物を、厚み方向に圧縮することにより、厚み620μmの正極2を作製した。正極2の一方の表面には、アルミニウム製のリードを溶接した。
(B) Positive electrode 2
In the positive electrode 2, an aluminum porous body (porosity 95%, thickness 1000 μm) having a three-dimensional network skeleton was used as a current collector. The positive electrode material mixture slurry similar to the above (a) was filled in the porous aluminum body so that M p was about 30 mg / cm 2 and dried. By compressing the dried product in the thickness direction, a positive electrode 2 having a thickness of 620 μm was produced. An aluminum lead was welded to one surface of the positive electrode 2.
(3)静電容量の測定
 (a)Cnの測定
 上記(1)で得られた負極を用いて下記の手順で、Cnを測定した。
 負極を縦3cm×横3cmのサイズにカットし、測定用のサンプル負極を作製した。
 サンプル負極と、対極とを、これらの間にセパレータ(樹脂微多孔膜、厚み30μm)を介在させて対向させることにより電極群を形成した。対極としては、シート状の金属リチウム(縦3cm×横3cm、厚み50μm)の一方の表面に、ニッケル製のリードを溶接したものを用いた。サンプル負極と対極とは、リードが溶接されていない側の表面同士を対向させた。
(3) Measurement of capacitance (a) using a negative electrode obtained by C n of measurement (1) the following procedure to measure the C n.
The negative electrode was cut into a size of 3 cm long × 3 cm wide to prepare a sample negative electrode for measurement.
A sample negative electrode and a counter electrode were opposed to each other with a separator (resin microporous film, thickness 30 μm) interposed therebetween to form an electrode group. As the counter electrode, a sheet-like metallic lithium (length 3 cm × width 3 cm, thickness 50 μm) having a nickel lead welded to one surface thereof was used. The sample negative electrode and the counter electrode were opposed to each other on the surface where the lead was not welded.
 得られた電極群と、参照極としての金属リチウムとを、電解質に浸漬することでセルを作製した。電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で含む混合溶媒に、1mol/Lの濃度でLiPF6を溶解させた溶液を用いた。 A cell was produced by immersing the obtained electrode group and metallic lithium as a reference electrode in an electrolyte. As the electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used.
 電流0.2mAで、セルを充電することにより、負極サンプルに対して対極からリチウムを担持させた。このときのリチウムの担持量は、表1に示す負極の投影単位面積当たりの容量(mAh/cm2)分になるように調節した。次いで、電流0.2mAで、負極の電位が1.5Vになるまでセルを放電させた。放電開始から1分経過した時点から、負極の電位が0.2V変化するまでの間の放電容量を求め、放電容量を負極の電位変化量(0.2V)および負極の投影面積(9cm2)で除することにより、負極の投影単位面積当たりの静電容量Cnを求めた。結果を表1に示す。表1のCnは、上記と同様に作製した合計5個のセルについて求めたCnの平均値である。 By charging the cell at a current of 0.2 mA, lithium was supported from the counter electrode on the negative electrode sample. The amount of lithium supported at this time was adjusted so as to be equivalent to the capacity (mAh / cm 2 ) per projected unit area of the negative electrode shown in Table 1. The cell was then discharged at a current of 0.2 mA until the negative electrode potential was 1.5V. The discharge capacity from the time when 1 minute has elapsed from the start of discharge until the negative electrode potential changes by 0.2 V is obtained, and the discharge capacity is calculated as the negative electrode potential change amount (0.2 V) and the negative electrode projected area (9 cm 2 ). The electrostatic capacity C n per projected unit area of the negative electrode was determined. The results are shown in Table 1. C n in Table 1 is an average value of C n obtained for a total of five cells prepared in the same manner as described above.
 (b)Cpの測定
 上記(2)で得られた正極を用いて下記の手順で、Cpを測定した。
 まず、セパレータとして、セルロース製不織布(厚み30μm)を用いる以外は、上記(a)の場合と同様にして、セルを作製した。
(B) by using the cathode obtained in C p measurement above (2) by the following procedure to measure the C p.
First, a cell was produced in the same manner as in the case (a) except that a cellulose nonwoven fabric (thickness 30 μm) was used as the separator.
 電流0.2mAで、正極の電位が4.2Vになるまで充電し、次いで、正極の電位が2.2Vになるまで放電した。放電開始から1分経過した時点から、正極の電位が2.2Vになるまでの間の正極の電位変化量および放電容量を求めた。これらの値と、正極の投影面積(9cm2)とから、上記(a)の場合と同様にして、正極の投影単位面積当たりの静電容量Cpを求めた。結果を表1に示す。表1のCpは、上記と同様に作製した合計5個のセルについて求めたCpの平均値である。 The battery was charged at a current of 0.2 mA until the positive electrode potential reached 4.2V, and then discharged until the positive electrode potential reached 2.2V. The amount of change in the potential of the positive electrode and the discharge capacity from the time when 1 minute elapsed from the start of discharge until the potential of the positive electrode reached 2.2V were determined. From these values and the projected area (9 cm 2 ) of the positive electrode, the capacitance C p per projected unit area of the positive electrode was determined in the same manner as in the case (a). The results are shown in Table 1. C p in Table 1 is an average value of C p determined for a total of five cells prepared in the same manner as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8および比較例1~4
(1)正極および負極の作製
 MpおよびMn、ならびに正極および負極の厚みを、表2に示すように変更する以外は、試験例1の(1)および(2)と同様にして、負極および正極を作製した。
 なお、実施例1~4(A1~A4)および比較例1,2(B1,B2)では、負極1のように負極の集電体に銅箔を使用し、実施例5~10(A5~A10)および比較例3,4(B3、B4)では、負極2のように負極の集電体に銅多孔体を用いた。
 また、実施例1~4(A1~A4)および比較例1,2(B1,B2)では、正極1のように正極の集電体にアルミニウム箔を使用し、実施例5~10(A5~A10)および比較例3,4(B3、B4)では、正極2のように正極の集電体にアルミニウム多孔体を用いた。
 銅箔またはアルミニウム箔を集電体に使用する場合、正極合剤層および負極合剤層の厚みを調節することにより、正極および負極の厚みをそれぞれ調節した。試験例1と同様に、正極および負極は、それぞれ、縦3cm×横3cmのサイズにカットし、リードを溶接して使用した。
Examples 1 to 8 and Comparative Examples 1 to 4
(1) Production of positive electrode and negative electrode Except that M p and M n and the thickness of the positive electrode and the negative electrode were changed as shown in Table 2, the negative electrode was prepared in the same manner as in (1) and (2) of Test Example 1. And the positive electrode was produced.
In Examples 1 to 4 (A1 to A4) and Comparative Examples 1 and 2 (B1 and B2), like the negative electrode 1, a copper foil was used for the current collector of the negative electrode, and Examples 5 to 10 (A5 to In A10) and Comparative Examples 3 and 4 (B3 and B4), a copper porous body was used for the current collector of the negative electrode like the negative electrode 2.
In Examples 1 to 4 (A1 to A4) and Comparative Examples 1 and 2 (B1 and B2), an aluminum foil was used for the current collector of the positive electrode as in the positive electrode 1, and Examples 5 to 10 (A5 to In A10) and Comparative Examples 3 and 4 (B3 and B4), a porous aluminum body was used for the current collector of the positive electrode like the positive electrode 2.
When using copper foil or aluminum foil for the current collector, the thicknesses of the positive electrode and the negative electrode were adjusted by adjusting the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer, respectively. In the same manner as in Test Example 1, the positive electrode and the negative electrode were each cut to a size of 3 cm in length and 3 cm in width and welded with leads.
(2)リチウムのプレドープ
 上記(1)で得られた負極を用い、リチウムの担持量を表2に示すように変更する以外は、試験例1の(3)(a)と同様にして、負極にリチウムを担持(プレドープ)させた。
(3)リチウムイオンキャパシタの作製
 上記(1)で得られた正極と上記(2)でリチウムをプレドープした負極とを、これらの間に、セパレータとしてのセルロース製不織布(厚み30μm)を介在させた状態で積層することにより電極群を形成した。さらに、電極群の負極側に、セパレータとしての樹脂微多孔膜(厚み30μm)を介在させて、金属リチウム(縦3cm×横3cm、厚み50μm)を配置し、得られた積層物を、アルミニウムラミネートシートで作製されたセルケース内に収容した。
(2) Pre-doping of lithium A negative electrode was obtained in the same manner as in (3) (a) of Test Example 1 except that the negative electrode obtained in (1) above was used and the amount of lithium supported was changed as shown in Table 2. Was supported (pre-doped) with lithium.
(3) Production of Lithium Ion Capacitor A non-woven fabric made of cellulose (thickness 30 μm) as a separator was interposed between the positive electrode obtained in (1) above and the negative electrode pre-doped with lithium in (2) above. The electrode group was formed by laminating in the state. Furthermore, metallic lithium (length 3 cm × width 3 cm, thickness 50 μm) is disposed on the negative electrode side of the electrode group with a resin microporous film (thickness 30 μm) as a separator, and the obtained laminate is made of an aluminum laminate. It accommodated in the cell case produced with the sheet | seat.
 次いで、電解質をセルケース内に注入して、積層物に含浸させた。電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で含む混合溶媒に、1mol/Lの濃度でLiPF6を溶解させた溶液を用いた。最後に真空シーラーにて減圧しながらセルケースを封止することによりリチウムイオンキャパシタを作製した。 Next, an electrolyte was injected into the cell case to impregnate the laminate. As the electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used. Finally, a lithium ion capacitor was produced by sealing the cell case while reducing the pressure with a vacuum sealer.
(4)評価
 上記(1)で得られた正極および負極、ならびに上記(3)で得られたリチウムイオンキャパシタを用いて、下記の評価を行った。
 (a)Cp、CnおよびCn/Cp
 上記(1)で得られた正極および負極を用いて、試験例1の(3)(a)(b)と同様にして、静電容量CpおよびCnを求め、静電容量比Cn/Cpを算出した。負極については、リチウムの担持量を、表2に示す単位面積当たりの容量(mAh/cm2)分に調節した。
(4) Evaluation The following evaluation was performed using the positive and negative electrodes obtained in (1) above and the lithium ion capacitor obtained in (3) above.
(A) C p , C n and C n / C p
Using the positive electrode and the negative electrode obtained in (1) above, the capacitances C p and C n were determined in the same manner as in (3) (a) and (b) of Test Example 1, and the capacitance ratio C n / C p was calculated. For the negative electrode, the amount of lithium supported was adjusted to the capacity per unit area (mAh / cm 2 ) shown in Table 2.
 (b)放電容量
 リチウムイオンキャパシタを、0.2mA/cm2の電流で、2.2V~4.2V間で、10回充放電した。6~10回目の放電容量(mAh/cm2)を求め、これらの平均値を算出した。
(B) Discharge capacity The lithium ion capacitor was charged and discharged 10 times at a current of 0.2 mA / cm 2 between 2.2 V and 4.2 V. The discharge capacity (mAh / cm 2 ) for the sixth to tenth times was determined, and the average value of these was calculated.
 (c)サイクル特性(容量維持率)
 上記(b)と同様の条件で、リチウムイオンキャパシタを10000回充放電した。10回目の放電時の放電容量を100%としたときの、100回目、1000回目および10000回目の放電時の放電容量の容量維持率(%)を求め、サイクル特性の評価の指標とした。
 実施例および比較例の結果を表2および表3に示す。
(C) Cycle characteristics (capacity maintenance rate)
Under the same conditions as in (b) above, the lithium ion capacitor was charged and discharged 10,000 times. The capacity retention rate (%) of the discharge capacity at the 100th, 1000th and 10000th discharges when the discharge capacity at the 10th discharge was taken as 100% was determined and used as an index for evaluating the cycle characteristics.
The results of Examples and Comparative Examples are shown in Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、Cn/Cp比が20以上である実施例のリチウムイオンキャパシタでは、充放電を10000回繰り返した後も、容量維持率が97%超える極めて高い値を示した。これに対して、Cn/Cp比が20未満である比較例のリチウムイオンキャパシタでは、充放電を1000回繰り返した場合には、90%以上の容量維持率を維持しているが、10000回繰り返した場合には、容量維持率は76%以下にまで低下した。充放電を10000回繰り返した場合の比較例の容量維持率は、実施例の容量維持率に比べると、20%以上も低い値である。 As shown in Table 3, in the lithium ion capacitor of the example having a C n / C p ratio of 20 or more, the capacity retention rate was extremely high exceeding 97% even after the charge / discharge was repeated 10,000 times. . On the other hand, in the lithium ion capacitor of the comparative example in which the C n / C p ratio is less than 20, when the charge / discharge is repeated 1000 times, the capacity retention rate of 90% or more is maintained, but 10,000 When repeated, the capacity retention rate decreased to 76% or less. When the charge / discharge is repeated 10,000 times, the capacity retention rate of the comparative example is 20% or more lower than the capacity retention rate of the example.
 このように、Cn/Cp比が20以上である実施例のリチウムイオンキャパシタでは、サイクル特性の低下が著しく抑制されている。しかし、Cn/Cp比が20未満である比較例のリチウムイオンキャパシタでは、充放電を10000回繰り返した場合には、明らかにサイクル特性の低下がみられている。したがって、Cn/Cp比が20付近において、サイクル特性が顕著に変化する臨界点が存在することが分かる。
 また、A1、A9およびA10の結果から、Cn/Cp比が30以上または50以上になると、サイクル特性がさらに向上する傾向が分かる。10000回の充放電後でも、A1とA9では98%以上、A10では99%以上の極めて高い容量維持率を得られている。
Thus, in the lithium ion capacitor of Example C n / C p ratio is 20 or more, a decrease in the cycle characteristics are significantly suppressed. However, in the lithium ion capacitor of the comparative example in which the C n / C p ratio is less than 20, when the charge / discharge is repeated 10,000 times, the cycle characteristics are clearly deteriorated. Therefore, it can be seen that when the C n / C p ratio is around 20, there is a critical point where the cycle characteristics change remarkably.
From the results of A1, A9, and A10, it can be seen that when the C n / C p ratio is 30 or 50 or 50 or more, the cycle characteristics tend to be further improved. Even after 10,000 charge / discharge cycles, a very high capacity retention rate of 98% or more for A1 and A9 and 99% or more for A10 is obtained.
 また、表2において、比較例と、正極活物質量と負極活物質量のそれぞれが比較例に近い実施例とを比べると(B1とA4、B2とA2、B3とA7、B4とA9、をそれぞれ比べると)、実施例の方が、リチウムイオンキャパシタの放電容量が高くなっている。したがって、正極活物質量および負極活物質量が一定であっても、Cn/Cp比を20以上とすることにより、リチウムイオンキャパシタの放電容量を大きくすることができるといえる。 Further, in Table 2, when comparing the comparative example with the examples in which the positive electrode active material amount and the negative electrode active material amount are close to the comparative example (B1 and A4, B2 and A2, B3 and A7, B4 and A9, Compared to each other), the discharge capacity of the lithium ion capacitor is higher in the example. Therefore, even if the positive electrode active material amount and the negative electrode active material amount are constant, it can be said that the discharge capacity of the lithium ion capacitor can be increased by setting the C n / C p ratio to 20 or more.
 本発明の一実施形態に係るリチウムイオンキャパシタは、サイクル特性に優れる。充放電を繰り返しても、高い容量が維持されるため、長寿命が求められる様々な用途に適用することができる。 The lithium ion capacitor according to an embodiment of the present invention is excellent in cycle characteristics. Even if charging / discharging is repeated, the high capacity is maintained, and therefore, it can be applied to various uses requiring a long life.
 1:セパレータ
 2:正極  2a:正極リード片
 3:負極  3a:負極リード片
 7:ナット
 8:鍔部
 9:ワッシャ
 10:セルケース
 12:容器本体
 13:蓋体
 14:外部正極端子
 16:安全弁
DESCRIPTION OF SYMBOLS 1: Separator 2: Positive electrode 2a: Positive electrode lead piece 3: Negative electrode 3a: Negative electrode lead piece 7: Nut 8: Eaves part 9: Washer 10: Cell case 12: Container body 13: Lid body 14: External positive electrode terminal 16: Safety valve

Claims (5)

  1.  正極活物質を含む正極、負極活物質を含む負極、前記正極と前記負極との間に介在するセパレータ、および電解質を含み、
     前記正極活物質は、少なくともアニオンを可逆的に担持する材料を含み、
     前記負極活物質は、黒鉛型結晶構造を有する炭素質材料を含み、
     前記正極の投影単位面積当たりの静電容量Cpに対する前記負極の投影単位面積当たりの静電容量Cnの比:Cn/Cpは、20以上であるリチウムイオンキャパシタ。
    A positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte;
    The positive electrode active material includes at least a material that reversibly supports anions,
    The negative electrode active material includes a carbonaceous material having a graphite-type crystal structure,
    The ratio of the capacitance C n per projected unit area of the negative electrode to the capacitance C p per projected unit area of the positive electrode: a lithium ion capacitor in which C n / C p is 20 or more.
  2.  前記Cn/Cpは、20~120である請求項1に記載のリチウムイオンキャパシタ。 The lithium ion capacitor according to claim 1, wherein the C n / C p is 20 to 120.
  3.  前記Cpは、0.1~15F/cm2であり、
     前記負極の投影単位面積当たりの前記負極活物質の質量は、前記正極の投影単位面積当たりの前記正極活物質の質量よりも多い請求項1または請求項2に記載のリチウムイオンキャパシタ。
    C p is 0.1 to 15 F / cm 2 ,
    The lithium ion capacitor according to claim 1, wherein a mass of the negative electrode active material per projected unit area of the negative electrode is larger than a mass of the positive electrode active material per projected unit area of the positive electrode.
  4.  前記炭素質材料は、X線回折スペクトルで測定される(002)面の平均面間隔d002が0.337nm未満である請求項1~請求項3のいずれか1項に記載のリチウムイオンキャパシタ。 The carbonaceous material, a lithium ion capacitor according to any one of claims 1 to 3 average plane spacing d 002 of the measurement by X-ray diffraction spectrum (002) plane is less than 0.337 nm.
  5.  前記負極は、負極集電体と、前記負極集電体に担持され、かつ前記負極活物質を含む負極合剤とを含み、
    前記負極集電体は、三次元網目状の金属製の骨格を有する請求項1~請求項4のいずれか1項に記載のリチウムイオンキャパシタ。
    The negative electrode includes a negative electrode current collector, and a negative electrode mixture supported on the negative electrode current collector and including the negative electrode active material,
    5. The lithium ion capacitor according to claim 1, wherein the negative electrode current collector has a three-dimensional network metal skeleton.
PCT/JP2014/081932 2013-12-17 2014-12-03 Lithium ion capacitor WO2015093289A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013259930 2013-12-17
JP2013-259930 2013-12-17
JP2014-226231 2014-11-06
JP2014226231A JP2015135947A (en) 2013-12-17 2014-11-06 lithium ion capacitor

Publications (1)

Publication Number Publication Date
WO2015093289A1 true WO2015093289A1 (en) 2015-06-25

Family

ID=53402638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081932 WO2015093289A1 (en) 2013-12-17 2014-12-03 Lithium ion capacitor

Country Status (2)

Country Link
JP (1) JP2015135947A (en)
WO (1) WO2015093289A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170737A (en) * 2014-03-07 2015-09-28 住友重機械工業株式会社 Lithium ion capacitor, power storage device, and shovel
CN110372068B (en) * 2019-07-10 2021-07-27 常州大学 Preparation method and application of COF-loaded metal hydroxide electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154383A (en) * 1997-08-06 1999-02-26 Asahi Glass Co Ltd Electric double layer capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2012253072A (en) * 2011-05-31 2012-12-20 National Institute Of Advanced Industrial & Technology Lithium ion capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154383A (en) * 1997-08-06 1999-02-26 Asahi Glass Co Ltd Electric double layer capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2012253072A (en) * 2011-05-31 2012-12-20 National Institute Of Advanced Industrial & Technology Lithium ion capacitor

Also Published As

Publication number Publication date
JP2015135947A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
EP3109876A1 (en) Storage device and charging/discharging device
WO2015098903A1 (en) Alkali metal ion capacitor
US20120212879A1 (en) High energy hybrid supercapacitors using lithium metal powders
WO2014148250A1 (en) Lithium ion capacitor and method for charging and discharging same
EP3073500A1 (en) Capacitor and method for manufacturing same
JP6260209B2 (en) Alkali metal ion capacitor, method for producing the same and charge / discharge method
WO2015105136A1 (en) Positive electrode for lithium ion capacitors and lithium ion capacitor using same
WO2015093289A1 (en) Lithium ion capacitor
KR101138522B1 (en) Electrode structure and lithium ion capacitor with the same
JP2015153700A (en) Power storage device
WO2015125594A1 (en) Capacitor and method for charging and discharging same
JP2015095634A (en) Power storage device and manufacturing method thereof
WO2015107800A1 (en) Copper porous body, electrode for electricity storage devices, and electricity storage device
JP2016164948A (en) Capacitor positive electrode, capacitor manufacturing method, and capacitor
WO2015107965A1 (en) Aluminum porous body, electrode for electricity storage devices, and electricity storage device
WO2016002564A1 (en) Cathode for capacitor and method for producing capacitor
JP2015204437A (en) lithium ion capacitor
WO2015087591A1 (en) Capacitor and method for charging/discharging same
JP2015133183A (en) sodium molten salt battery
JP2015153699A (en) Power storage device
JP2004273942A (en) Electric double layer capacitor
JP2017098365A (en) Lithium ion capacitor, and electronic device with lithium ion capacitor attached thereto
JP2017098363A (en) Lithium ion capacitor, and electronic device with lithium ion capacitor attached thereto
JP2016181603A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872715

Country of ref document: EP

Kind code of ref document: A1