WO2015093115A1 - Scattered-light-information processing method, scattered-light-information processing device, and scattered-light-information processing system - Google Patents

Scattered-light-information processing method, scattered-light-information processing device, and scattered-light-information processing system Download PDF

Info

Publication number
WO2015093115A1
WO2015093115A1 PCT/JP2014/074676 JP2014074676W WO2015093115A1 WO 2015093115 A1 WO2015093115 A1 WO 2015093115A1 JP 2014074676 W JP2014074676 W JP 2014074676W WO 2015093115 A1 WO2015093115 A1 WO 2015093115A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattered light
intensity distribution
light intensity
information
measured
Prior art date
Application number
PCT/JP2014/074676
Other languages
French (fr)
Japanese (ja)
Inventor
小林宏史
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015553403A priority Critical patent/JP6173486B2/en
Publication of WO2015093115A1 publication Critical patent/WO2015093115A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges

Definitions

  • the present invention relates to a scattered light information processing method and scattered light information processing apparatus for acquiring scattered light information necessary for performing optical design simulation with optical design software used in a camera, an endoscope, a microscope, etc. And a scattered light information processing system.
  • the optical design software sets, as parameters, r (curvature radius), d (surface distance), n (refractive index) of each optical element contained in the lens frame, and the reflectance and transmittance of the coat. It then calculates the refraction and reflection of various rays propagating in the optical system.
  • each parameter is modified to meet the desired optical performance at the image plane.
  • the optical performance can be estimated by acquiring and setting the respective parameters by measurement.
  • the optical design software can evaluate not only spot diagrams and MTF (Modulation Transfer Function) on the image plane, wavefront aberrations, but also unnecessary light such as ghosts and flares as evaluation of optical performance.
  • MTF Modulation Transfer Function
  • Ghost and flare are phenomena that occur when unnecessary light other than normal light reaches the image plane.
  • the cause of ghosts and flares is not only multiple reflections on each optical surface and incident of unexpected light, but also lens surfaces and surfaces after anti-reflection coating, lens ridges after chamfering, chamfers and edges Also, it is conceivable that scattered light is generated due to the surface inside the lens frame being rough, and the scattered light becomes unnecessary light.
  • Scattered light information is generally represented using a bi-directional scattering distribution function (hereinafter referred to as “BSDF” as appropriate) or a parameter called ARS obtained by dividing the Cos ⁇ component from the BSDF.
  • BSDF bi-directional scattering distribution function
  • ARS ARS obtained by dividing the Cos ⁇ component from the BSDF.
  • BRDF Bidirectional Reflectance Distribution Function
  • BTDF Bidirectional Transmittance Distribution Function
  • BSDF is defined as scattered light including both BRDF and BTDF.
  • Patent Document 1 As an apparatus and method for obtaining scattered light information reflected from an object to be measured, for example, the one disclosed in Patent Document 1 below is known.
  • Patent Document 1 the apparatus and method described in Patent Document 1 are for acquiring scattered light information reflected from an object to be measured of an impermeable material with higher accuracy. That is, in the prior art, scattered light information can not be obtained for an object to be measured having a transmissive portion such as an optical element.
  • the present invention has been made in view of the above, and it is possible to obtain scattered light information of an optical element having a transmission part as an object to be measured with high accuracy, a scattered light information processing method, a scattered light information processing apparatus and scattered light
  • the purpose is to provide an information processing system.
  • the scattered light information processing method of the present invention is A scattered light information processing method for processing scattered light information of an object to be measured, comprising:
  • the object to be measured is an optical element composed of a substance at least a part of which transmits light,
  • a function parameter setting step of setting a parameter of a function representing at least scattered light information on the output side transmitted through the object to be measured with respect to the object model;
  • the scattered light information processing apparatus of the present invention is A scattered light information processing apparatus for processing scattered light information of an object to be measured, comprising:
  • the object to be measured is an optical element composed of a substance at least a part of which transmits light,
  • a scattered light measurement information acquisition unit that acquires information of a scattered light intensity distribution of light irradiated to a measured object at a predetermined angle;
  • a model generation unit for creating an object model from the measurement conditions of the shape and optical properties of the object to be measured and the scattered light intensity distribution;
  • a function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to be measured with respect to the object model;
  • a scattered light intensity distribution calculation unit that calculates a scattered light intensity distribution calculation result by calculation based on an object model;
  • Function parameter calculation that calculates function parameters so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquisition unit and the scattered light intensity distribution calculation result calculated by calculation based on the object model match
  • a processing unit
  • a scattered light information processing system that measures scattered light of an object to be measured and processes scattered light information
  • the object to be measured is an optical element composed of a substance at least a part of which transmits light, A light irradiation unit that irradiates light at a predetermined angle with respect to the object to be measured;
  • a scattered light measurement unit that receives at least light scattered by the object to be measured;
  • a scattered light measurement information acquisition unit that acquires information on the scattered light intensity distribution of the object based on the information received by the scattered light measurement unit;
  • An information storage unit that stores the shape and optical properties of the object to be measured and the measurement conditions of the scattered light intensity distribution;
  • a model generation unit that generates an object model from the stored shape, optical properties, and measurement conditions;
  • a function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to be measured with respect to the object model;
  • a scattered light intensity distribution calculation unit that calculates a scattered light intensity distribution calculation result by calculation from an object
  • the present invention it is possible to obtain scattered light information with high accuracy even when the object to be measured is a transparent substance.
  • FIG. 1A is a functional block diagram showing an overview of a scattered light information processing system according to a first embodiment of the present invention. Further, FIG. 1B is a functional block diagram for explaining the scattered light information processing system in more detail. It is a flowchart explaining the measuring method of the scattered light in 1st Embodiment. It is a figure which shows schematic structure of the scattered light information processing system of BSDF. It is a flowchart explaining a data processing method. It is a figure which shows intensity distribution of the scattered light in case the scattering of the surface of to-be-measured object is small. (A), (b) is a figure which shows the measurement range of scattered light.
  • the BSDF of the scattered light information represents the radiance of the scattered light as a function of the angle of the scattered light from the surface normal, and in some cases as a function of the angle of the incident light illuminating the scattering surface.
  • BRDF of BSDF is defined by the following equation 1.
  • FIG. 13 shows the symbol of equation 1 and parameters shown using an XYZ orthogonal coordinate system, for example, when light is irradiated to the surface of the opaque material.
  • the incident light ray angle ( ⁇ i ), the incident azimuth angle ( ⁇ i ), the light reception angle ( ⁇ r ), the light reception azimuth angle ( ⁇ r ), and the wavelength ( ⁇ ) of the incident light It is given by a variable.
  • P i indicates the light intensity of the incident light
  • P r indicates the light intensity of the reflected light of the measurement area dA of the measurement surface.
  • d ⁇ i and d ⁇ r represent solid angles.
  • the BSDF is a scattered light intensity distribution of a plane by definition, regardless of the relationship between a substance to be measured and a transmitting material and a non-transmitting material, and the outer shape and the optical properties of the material to be measured are not considered. That is, when the object to be measured is a permeable substance, the influence of the front and back surface shape (spherical surface, aspheric surface, free curved surface etc.), outer diameter, surface distance (thickness), ridges, chamfers, edges, refractive index etc. Is not considered.
  • BSDF represents the behavior of scattered light generated by one plane.
  • FIG. 3 shows a schematic configuration of a scattered light information processing system of BSDF when using a parallel flat plate 300 of a transmissive material as an object to be measured.
  • the vertical direction is taken as the Y-axis direction
  • the direction parallel to the incident light in the horizontal direction as the Z-axis direction
  • the direction orthogonal thereto in the horizontal direction as the X-axis direction.
  • the reason why a parallel plane is used for the object to be measured 300 is to eliminate in advance the influence of the front and back surface shapes of the object to be measured as much as possible.
  • the parallel flat plate 300 of the object to be measured often has a surface roughness to be measured on one side 300a, for example, a desired roughness approximate to the surface of a lens, a convex portion, a chamfer or the like.
  • the light irradiation unit 101 uses a laser or a white light source that emits light having a predetermined wavelength. And the light from the light irradiation part 101 injects into the parallel flat plate 300 which is a to-be-measured object at a predetermined angle. The incident light scatters on the roughened surface of the parallel flat plate 300, which is the object to be measured, passes through the object to be measured, and is emitted to the air.
  • the light receiving unit 102 obtains the intensity distribution of the scattered light two-dimensionally or three-dimensionally with respect to the light emitted from the parallel flat plate 300 centering on the measurement surface 300 a of the object to be measured.
  • the light receiving unit 102 can be moved to, for example, the position A, the position B, and the like by the driving unit 305.
  • BSDF which is the transmission and reflection scattered light intensity distribution.
  • BRDF which is a scattered light intensity distribution of reflection
  • an error occurs when the object to be measured deviates from the definition of the BSDF.
  • the object to be measured is a non-transparent material and BRDF is acquired
  • the measurement result of the scattered light intensity distribution by the scattered light information processing system is BRDF.
  • the influence of the surface shape of the surface is included, resulting in an error.
  • BRDF excluding the influence of the surface shape is calculated using the information of the measurement result of the scattered light intensity distribution and the surface shape information of the object to be measured.
  • FIG. 14A is a view for explaining the reflected light due to the geometrical optical component when the incident light Lin is incident on the measurement surface 10.
  • the incident light Lin is reflected as reflected light Lref at the same angle as the incident angle with respect to the normal N to the tangent of the incident position.
  • FIG. 14B is a view for explaining the reflected light due to the wave-optical component when the incident light Lin is incident on the measurement surface 10 a.
  • the scattered light intensity distribution is calculated from the combination of the surface shape information and the BRDF in the irradiation area of the measurement surface 10a. Then, the BRDF is changed so that the calculated scattered light intensity distribution approximates the actual scattered light intensity distribution measurement result. Thus, the BRDF is calculated separately from the influence of the surface shape in the irradiation area of the reflective surface.
  • the object to be measured when the object to be measured is a permeable substance, it can not be applied. It goes without saying that when the object to be measured is a transmissive substance, an error occurs when the measurement surface of the object to be measured is not flat in the irradiation area of the light from the light irradiation part. In addition, it receives the influence of the shape other than the irradiation area
  • the BSDF definition is a function of the angle of the scattered light from the surface normal. Also, sometimes the radiance of the scattered light is represented as a function of the angle of the incident light irradiating the scattering surface, and the scattered light intensity distribution on the plane is taken.
  • the outer shape and optical properties of the object to be measured are not considered. That is, when the object to be measured is a permeable substance, the front and back surface shape (spherical surface, aspheric surface, free curved surface etc.), outer diameter, surface distance (thickness), ridges, chamfers, edges and refractive index of the object to be measured Since the influence of etc. is included, the result of simply measuring the scattered light deviates from the definition of BSDF. As a result, according to the conventional procedure, BSDF can not be obtained for the object to be measured of the permeable substance. This will be described in more detail.
  • FIG. 15 is a view for explaining the behavior of the scattered lights Sf and Scr of the parallel flat plate 20 having the transmission part on the object to be measured.
  • the incident light Lin enters the first surface 20b before reaching the second surface 20a, which is a scattering surface, and transmits the inside of the parallel plate 20, which is an object to be measured.
  • reflection occurs due to the difference in refractive index.
  • light absorption and fluorescence occur inside the material of the parallel flat plate 20, and the light amount of the incident light Lin reaching the second surface 20a changes.
  • the scattered light flux Scr generated by the second surface 20a is such that light originally emitted backward (incident side) strikes the first surface 20b and causes refraction and total reflection at the interface between the air and the first surface 20b. A portion of the totally reflected light beam S1 travels in the forward direction. Also, a part of the refracted luminous flux S2 is emitted at a wide angle according to Snell's law. In this way, the behavior of the scattered light generated by one surface changes under the influence of the other surface.
  • the light flux S1 and the light flux S2 are transmitted through the inside of the parallel flat plate 20 which is the object to be measured, and the influence of light absorption and fluorescence of the substance is added according to the traveling distance. It will change.
  • the object to be measured has been described for the parallel flat plate 20, when the first surface and / or the second surface is a curved surface like a lens, the behavior of light becomes more complicated, and the incident light Lin is initially The second surface reaches the second surface at an angle different from the incident angle to the first surface of the second surface, and the behavior of the backscattered light of the second surface changes under the influence of the surface shape of the first surface.
  • the object to be measured is a transmitting material
  • the object to be measured is not only the surface shape of the object to be measured but also the back surface Surface shape, outer diameter, surface spacing (thickness), outer shape of ridges, chamfers, edges, etc., and the influence of the inside of the measured object such as refractive index, transmittance, reflectance, light absorptance, fluorescence, etc.
  • the scattered light intensity distribution Becomes the scattered light intensity distribution.
  • the above-described conventional techniques can not consider the behavior of the scattered light inside the substance, and as a result, can not calculate BSDF.
  • BSDF is a parameter of the optical design simulation. Also, even if it is used, an error occurs and accurate optical design simulation can not be performed.
  • the embodiment described below can solve the problem of the error contained in the scattered light intensity distribution measurement result of such a conventional transmitting material, and based on the scattered light intensity distribution measurement result BSDF which is a parameter to be input to the optical design simulation It can be calculated with high accuracy.
  • FIG. 1 (a) is a functional block diagram which shows the outline
  • FIG. 1B is a functional block diagram for explaining the scattered light information processing system 100 in more detail.
  • the scattered light information processing apparatus 200 exchanges signals with the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 via the control unit 110.
  • the scattered light information processing apparatus 200 includes a scattered light measurement information acquisition unit 104, a function parameter setting unit 105, a model generation unit 106, a scattered light intensity distribution calculation unit 107, and a function. And a parameter calculation processing unit 108.
  • the scattered light information processing apparatus 200 surrounded by a dotted line is connected to the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 via the control unit 110 as described above. There is.
  • the object to be measured is an optical element composed of a material at least a part of which transmits light.
  • the optical element is, for example, a parallel plate 300 shown in FIG.
  • the scattered light information processing apparatus 200 includes a scattered light measurement information acquisition unit 104 for acquiring information on the scattered light intensity distribution of light irradiated at a predetermined angle with respect to the object to be measured; Scattering reflected on the incident side of the measurement surface of the optical element with respect to the model generation unit 106 for creating an object model from the measurement conditions of the shape and optical properties of the object and the scattered light intensity distribution and the object model
  • a function parameter setting unit 105 for setting parameters of a function representing light information and scattered light information on the outgoing side transmitted through the object to be measured, and scattered light to calculate the scattered light intensity distribution calculation result by calculation based on the object model
  • the information of the scattered light intensity distribution acquired by the intensity distribution calculation unit 107 and the scattered light measurement information acquisition unit 104 agrees with the scattered light intensity distribution calculation result calculated by calculation based on the object model.
  • Yo and a function parameter calculation unit 108 for calculating the function parameters.
  • the scattered light information processing apparatus 200 is disposed integrally with the scattered light information processing system 100 or in one or another separate computer.
  • the control unit 110 controls the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 in addition to the control of the scattered light information processing apparatus 200.
  • the light emitting unit 101 does not particularly define a laser diode (LD), a super luminescent diode (SLD), a light emitting diode (LED), a halogen as a white light source, and the like.
  • LD laser diode
  • SLD super luminescent diode
  • LED light emitting diode
  • halogen a white light source
  • the light receiving unit 102 moves continuously or intermittently in two or three dimensions centering on the measurement surface of the object based on the control information of the control unit 110 sent from the computer (not shown). It is a mechanism that can receive scattered light.
  • the light receiving unit 102 is rotated around the measurement surface of the object to be measured.
  • the present invention is not limited to this, and the light receiving unit 102 may be moved around another place different from the center of the object to be measured or a portion other than the object to be measured.
  • the relative positional relationship between the rotation center position of the light receiving unit 102 and the position of the object to be measured may be known.
  • the light receiving unit 102 has a mechanism capable of acquiring information of the scattered light transmitted through the object to be measured and / or the scattered light reflected. Furthermore, the light receiving unit 102 is not particularly limited as long as it is a device such as a power sensor or a high sensitivity camera that can observe the intensity of light. Furthermore, it is desirable that the type of the light receiving unit 102 can be used properly depending on the light intensity and the angular resolution to be measured. When it is desired to change the angle of incident light to the object to be measured, the light irradiation unit 110 or the object to be measured can be relatively changed in position.
  • the information storage unit 103 manages storage of “information of measurement condition”, “information of object to be measured” and “measurement information of scattered light”. A detailed description of the information of the measurement conditions and the information of the object will be described later.
  • the scattered light information processing apparatus 200 performs processing on scattered light information for calculating BSDF from "information of measurement conditions", “information of object to be measured”, and “measurement information of scattered light”. A detailed description of the processing of the scattered light information will be described later.
  • the scattered light information processing system 100 that measures the scattered light of the object to be measured and processes the scattered light information further generates light at a predetermined angle with respect to the object to be measured.
  • an information storage unit 103 to be stored.
  • BSDF which is scattered light information of one surface, front and back surface shape, outer diameter, surface distance (thickness), ridge portion, chamfered portion, which is an outer shape of the object to be measured It can be calculated accurately by taking into consideration the influence of the inside of the object under test such as the edge part and the optical properties such as refractive index, transmittance, reflectance, light absorptivity, and fluorescence. . For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
  • step S101 the measurement condition and information of the measurement condition are stored in the information storage unit 103a of the object under measurement via the control unit 110.
  • Information on measurement conditions includes the positional relationship between the light irradiation unit 101, the object to be measured, and the light receiving unit 102, the wavelength of incident light, the incident angle to the object to be measured, polarization state, NA (directivity), irradiation diameter, irradiation area It is information about detailed measurement such as internal intensity distribution, environment variable (external refractive index), temperature, atmospheric pressure, carbon dioxide concentration, etc.
  • the information storage unit 103a of the measurement condition and the object to be measured also stores information on the object to be measured.
  • the information of the object to be measured includes front and back surface shape and shape which are outer shape, surface spacing (thickness), ridges, chamfers, edges and optical properties such as refractive index, transmittance, reflectance and light absorptivity
  • an anti-reflection coating or the like is applied to an object to be measured such as a lens, fluorescence, and the like
  • it is a design requirement such as coating conditions.
  • the setting of the optical properties described above is an essential requirement.
  • the shape and optical properties of the object to be measured include at least the radius of curvature, the optical thickness, and the refractive index of the optical element as the object to be measured.
  • the processing by the scattered light information processing apparatus 200 is performed with high accuracy.
  • the information on the object to be measured may be either information on a design formula or the like obtained from the drawing, or information on the result of actual measurement.
  • information based on actual measurement surface shape error of surface and back surface, surface distance error, eccentricity error, outer diameter error which is external shape error, refractive index distribution, reflectance, transmittance, light absorptivity, fluorescence, etc.
  • the item etc. regarding the optical property of a measuring object etc. are mentioned.
  • the information on the measurement conditions and the information on the object to be measured are sent to the computer. Then, it is stored in the information storage unit 103a of the measurement condition and the object to be measured through the control unit 110 which is integrated with or separate from the computer.
  • step S102 measurement by the scattered light information processing system 100 is performed to obtain measurement information of scattered light.
  • a state of receiving scattered light will be described by showing a specific system configuration.
  • the drive unit 305 shown in FIG. 3 moves the light receiving unit 102 based on the control information sent from the control unit 110 of the computer.
  • the light receiving unit 102 selectively describes two states of position A and position B.
  • the invention is not limited to this, and it goes without saying that the drive unit 305 can move the light receiving unit 102 to an arbitrary position, and when the object to be measured is the parallel flat plate 300, it can be continuously or two-dimensionally or three-dimensionally centered on the measurement surface 300a. It can move intermittently and receive scattered light from the surface to be measured. At this time, it is desirable that the fluorescence emitted from the object to be measured is removed by a filter or the like.
  • the measurement information of the scattered light received by the light receiving unit 102 is sent to the computer, and stored in the scattered light intensity distribution measurement data storage unit 103 b via the control unit 110.
  • the measurement information of the scattered light may be sent collectively to the computer together with the information of the measurement conditions and the information of the object to be measured.
  • An information storage unit 103 (see FIG. 1A) is configured by the measurement condition and the information storage unit 103a of the object to be measured, and the scattered light intensity distribution measurement data storage unit 103b.
  • the contents of the measurement condition and the information storage unit 103a of the object to be measured and the scattered light intensity distribution measurement data storage unit 103b may be collectively stored in a text file or the like.
  • a to-be-measured object it is not restricted to a parallel plate, The lens element etc. which have a curved surface can also be measured.
  • the procedure was shown about the measuring method of scattered light information using FIG. 2, this order may be back and forth.
  • information on the measurement conditions may be input in accordance with the measurement conditions.
  • information of the object to be measured may be obtained.
  • the surface of the object to be measured may be scratched with the measurement probe.
  • the direction in which the shape measurement is performed after measuring the scattered light has an effect that the scattered light can be measured with high accuracy.
  • FIG. 4 is a diagram for explaining a data processing method in the scattered light information processing apparatus 200.
  • the scattered light information processing apparatus 200 performs predetermined processing using information on measurement conditions, information on an object to be measured, and measurement information on scattered light, and performs processing aiming to calculate BSDF with high accuracy.
  • step S201 a virtual measured object measurement simulation model is generated by the computer based on "information of measurement conditions" and "information of measured object”.
  • the object measurement simulation model in this state assumes that the light beam transmits and reflects the object under geometrical optics when passing the light beam through the object.
  • simulation is abbreviated as “Sim.” As appropriate.
  • step S202 BSDF, which is scattered light information, is temporarily set on the surface to be measured of the object to be measured.
  • BSDF is the angle ( ⁇ i ) of incident light, the incident azimuth angle ( ⁇ i ), the light reception angle ( ⁇ r ), the light reception azimuth angle ( ⁇ r ), and the wavelength ( ⁇ of incident light) It is given by five variables with). That is, the position of the BSDF on the three-dimensional space is expressed in two directions on the incident light side and in two directions on the light receiving side.
  • the distribution shape of the scattered light intensity can be fitted to model functions of several mathematical expressions.
  • a model function a Gaussian function, a Cos N power function, and a Lambertian function can be mentioned.
  • Either function can express the scattered light intensity distribution as a function of angle.
  • the Gaussian model function will be described.
  • the Gaussian function can be expressed by Equation 2 below.
  • the parameters ⁇ and ⁇ in the above equation 2 represent the angle of the scattered light intensity distribution.
  • the parameters ⁇ ⁇ and ⁇ ⁇ indicate the half width of the Gaussian function.
  • P 0 corresponds to the light intensity at the center. That is, for a certain incident angle ( ⁇ i , ⁇ i ) of incident light, the scattered light intensity distribution can be represented by three parameters (variables) P 0 , ⁇ ⁇ , and ⁇ ⁇ .
  • Various other functions can be set as model functions. For example, a Pearson 7 function known as a peak fit function, a Voight function, etc. can also be set.
  • FIG. 5 is a diagram showing an intensity distribution of scattered light when scattering on the surface of the object to be measured is small. It is also possible to optionally create a model function such as the following Equation 3 suitable for such a scattered light intensity distribution.
  • Equation 3 is a coefficient.
  • step S203 initial values of parameters are set for temporary installation of the BSF of the specific measurement surface (specific surface) set in step 202.
  • initial values are set to three parameters P 0 , ⁇ ⁇ , and ⁇ ⁇ .
  • the initial value is appropriately set in accordance with the user's instruction and system requirements. In addition, it is more preferable if the range in which the parameter is changed, the change width, and the like can be simultaneously set.
  • the purpose is to calculate the scattered light intensity distribution for the transmissive substance as the object to be measured, so steps S202 and S203 are bi-directional transmittance distribution function (BTDF) and bi-directional reflectance which are BSDF. It must be set to both of the distribution functions (BRDF). The settings for BTDF and BRDF may be different or the same.
  • step S204 ray tracing is performed by calculation processing of a computer on the virtual measured-object measurement simulation model set in steps S201 to S203.
  • ray tracing since BSDF is set in step S202, ray tracing using random numbers such as Monte Carlo method is also performed in addition to normal geometrical ray tracing. Then, the scattered light intensity distribution of the object to be measured is calculated.
  • step S204 the movement of the scattered light will be described again using FIG.
  • the incident light is incident on the surface to be measured of the object to be measured
  • backscattered light is generated.
  • a part of the light beam S1 of this backscattered light is repeatedly reflected and totally reflected in the parallel flat plate 20 which is a transmitting material, and is incident on the surface to be measured again.
  • Scattering by light incident by backscattered light applies the concept of shift-invariant scattering angle, except for the Lambertian function.
  • the distribution shape of BSDF of light incident perpendicularly to the measurement surface of the object to be measured means the distribution shape of BSDF of light incident obliquely to the measurement surface the same.
  • the scattered light intensity distribution can be calculated in step S204.
  • step S205 the degree of coincidence at each angle of the scattered light intensity distribution is calculated using the scattered light intensity distribution calculated in step S204 and the "scattered light measurement information" stored in the information storage unit 103 of the computer. Do.
  • the difference between the calculated scattered light intensity distribution and the measurement information of the scattered light is used to evaluate the value of P-V (Peak-Valley) value or RMS (Root-Mean-Square) value. I assume.
  • step S206 the evaluation value calculated in step S205 is compared with a preset threshold value to determine whether the values match. If the evaluation value is larger than the threshold value, it is determined to perform processing to change the initial value of BSDF temporarily set in advance. When the evaluation value is smaller than the threshold value, it indicates that the set BSDF well represents the BSDF of the surface to be measured of the object to be measured.
  • step S206 If it is determined in step S206 that the evaluation value is larger than the threshold, that is, if the determination result is false (No), the process proceeds to step S207.
  • step S207 the parameter of the initial value of BSDF is changed. Then, the process returns to step S204, and ray tracing is performed by arithmetic processing of the computer.
  • step S204 to step S207 are repeated until the evaluation value becomes smaller than the threshold. That is, convergence calculation is performed. Through these repeated steps, it is possible to calculate the parameters of BSDF which well represent BSDF of the surface to be measured of the object to be measured.
  • the evaluation value may not converge.
  • the process returns to step S202, and the process of changing the BSDF model function is performed.
  • step S207 when the evaluation value does not converge to the threshold value in the repetitive calculation from step S204 to step S207, the model function of the BSDF is changed in a step (not shown). Then, a new convergence calculation is added in which the step of changing the BSDF model function is repeatedly calculated from step S202.
  • step S206 If the determination result in step S206 is true (Yes), the data processing ends.
  • the model function of the BSF that best represents the scattered light information of the surface to be measured of the object to be measured and the parameters for determining the model function are determined.
  • incident light is irradiated to the surface to be measured of the object to be measured.
  • the light may be incident on another part of the surface to be measured, or the entire object to be measured may be irradiated. It is needless to say that there is no particular restriction if it is clear how light is incident on the object to be measured.
  • the optical design of the transmissive material is performed. It becomes possible to obtain BSDF which is one of the parameters input to the software.
  • optical design software it is possible to perform an optical design simulation for ghosts and flares that occur when unnecessary light other than the regular light reaches the image plane.
  • BTDF bidirectional transmittance distribution function
  • BRDF bidirectional reflectance distribution function
  • BSDF scattered light information of one surface, front and back surface shape and outer diameter which are the outer shape of the object to be measured (Thickness), ridges, chamfers, edges, and the effects of the optical properties such as refractive index, light absorptivity, fluorescence, etc., inside the object to be measured, and removing those effects, Accurately calculate BSDF. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
  • a scattered light information processing apparatus for scattered light information a scattered light information processing method for scattered light information, and a simplified scattered light information processing system including the apparatus and performing the method according to the shape of the object to be measured and the characteristics of BSDF. Or high precision is possible.
  • the prediction condition is a scattered light intensity distribution having the same parameters as the model function of the scattered light intensity distribution shape of BTDF and BRDF, and being axially symmetrical with respect to incident light.
  • the scattered light intensity distribution designated in step S202 of the flowchart of FIG. 4 has the same BTDF and BRDF model functions, and the measurement and calculation parameters can be reduced.
  • the prediction condition is that, of course, the object to be measured is a transmitting material, and the object to be measured is rotationally symmetric with respect to the incident light, and the incident light is perpendicularly incident on the surface to be measured.
  • the surface roughness is a model that holds accurately in the case of small irregularities having a wavelength equal to or less than the wavelength of the irradiation light.
  • Equation 4 shows a case where BTDF and BRDF are expressed using a Gaussian function as a model function.
  • the real parameters are only P t , P r and ⁇ . Further, the relationship between P t and P r is expressed by Equation 8 below.
  • x represents an item which does not contribute to scattering, such as a light absorption coefficient.
  • L is the light intensity of the incident light, which is an essential input value in step S201 of the flowchart.
  • BTDF and BRDF are values generally normalized by the light intensity of incident light. Therefore, the parameter L can be set to one.
  • the scattered light measurement information acquisition unit 104 at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured is normalized by the light intensity of incident light to the object to be measured It is desirable to obtain an intensity distribution.
  • Information acquisition of the scattered light intensity distribution may be either transmission or reflection normalized by incident light, and the other can be calculated from one. Therefore, only two parameters, P t and ⁇ , are finally calculated. That is, the processing time of the scattered light intensity distribution can be shortened. In addition, since the drive range of the light receiving unit only needs to be either transmission or reflection, the measurement apparatus can be simplified.
  • the scattered light intensity distribution in the forward direction is a scattered light intensity distribution that is axially symmetric with respect to the incident light. Therefore, as shown in FIG. 6A, the light receiving range of the light receiving unit may be measured in the range of 0 degrees to 90 degrees in the ⁇ direction or the ⁇ direction.
  • the scattered light information processing apparatus in the case of an object to be measured in which the conditions and the assumptions hold, the scattered light information processing apparatus, the measuring method, and the scattered light information processing method can be simplified.
  • the scattered light information processing apparatus when measurement data in all directions have been acquired, it is possible to perform measurement processing with high accuracy by averaging measurement errors and noises by performing averaging processing.
  • the light receiving range of the light receiving part is ⁇ direction or ⁇ direction as shown in FIG.
  • the range of 0 degrees to 180 degrees may be measured.
  • FIG. 7 is a functional block diagram showing a scattered light information processing system according to the second embodiment.
  • the configuration of the scattered light information processing apparatus 250 surrounded by a dotted line is different from that of the first embodiment.
  • the same components as those of the scattered light information processing apparatus of the first embodiment are denoted by the same reference numerals, and the redundant description will be omitted.
  • the scattered light measurement information acquisition unit 104 acquires information on the scattered light intensity distribution of light irradiated to the object at a plurality of different incident angles. Furthermore, the function parameter of each incident angle is used as a provisional function parameter so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit 104 matches the scattered light intensity distribution calculation result calculated from the object model Using the information of the scattered light intensity distribution acquired by the provisional function parameter calculator 251 and the scattered light measurement information acquiring unit 104 to be calculated, and at least a part of the provisional function parameters of each incident angle with respect to the object model The apparatus further includes a function parameter determination unit 252 that adjusts the provisional function parameters so as to match the calculated scattered light intensity distribution calculation result and determines a final function parameter.
  • BSDF which is scattered light information of one surface is not only the surface shape of the object to be measured but also the surface shape and outer diameter of the back surface , Spacing (thickness), external shape of ridges, chamfers, edges, etc., optical properties such as refractive index, transmittance, reflectance, light absorptivity, fluorescence, etc. Since the calculation can be performed in consideration, it is possible to calculate the scattering information with high accuracy from BSDF calculated using one incident angle. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
  • the method of measuring scattered light and the method of processing scattered light information are different.
  • the scattered light measurement method differs from the first embodiment in that measurement information of scattered light at each incident angle is obtained by changing a plurality of incident angles of incident light.
  • the method of processing scattered light information is different in that BSDF is calculated using measurement information of scattered light acquired by changing a plurality of incident angles of incident light.
  • the scattered light information processing device 250 is disposed integrally with the scattered light information processing system 150 or in one or another separate computer.
  • the control unit 110 controls the light irradiation unit 101, the light receiving unit 102, and the information storage unit 103 in addition to the control of the scattered light information processing apparatus 250.
  • the information storage unit 103 manages storage of “information of measurement condition”, “information of object to be measured” and “measurement information of scattered light”.
  • the scattered light information processing apparatus 250 performs control on scattered light information for calculating BSDF from “information of measurement condition”, “information of object to be measured”, and “measurement information of scattered light”.
  • the present embodiment has an effect that BSDF can be calculated with higher accuracy as compared with the above-described first embodiment.
  • FIG. 9 is a flowchart illustrating the procedure of measuring scattered light in the scattered light information processing method according to the second embodiment.
  • step S301 in FIG. 9 information of measurement conditions is set in the control unit 110 of the computer at the start of measurement by the scattered light information processing apparatus 250 as in the first embodiment.
  • the setting of the incident angle range of incident light and the number of divisions within the range are added as measurement condition information. It is set.
  • the light emitting unit 101 and the light receiving unit 102 are driven by the driving unit 305 so as to change the relative position with respect to the object to be measured.
  • a condition where the incident angle theta i is determined by dividing by 5 degrees range 89 ° 0 ° (normal incidence) is set.
  • the information of the object to be measured is also set at the same time. The information on the measurement condition and the information on the object to be measured are sent to the computer and stored in the information storage unit 103a.
  • step 302 based on the control information sent from the computer, the light receiving unit 102 moves in two dimensions and / or three dimensions centering on the measurement surface of the object to be measured, and receives scattered light from the measurement surface. Do.
  • measurement information of the plurality of scattered lights received by the light receiving unit 102 is sent to the computer and stored in the scattered light intensity distribution measurement data storage unit 103 b.
  • measurement information of scattered light in the measurement range (0 to 89 degrees) of the incident angle of incident light is represented as follows.
  • FS indicates the scattered light intensity distribution in the forward direction with respect to the surface to be measured
  • BS indicates the scattered light intensity distribution in the backward direction with respect to the object to be measured.
  • step S303 the incident angle of the incident light and information of measurement conditions set in advance are compared and determined. If the determination result in step S303 is true, the scattering measurement is ended.
  • step S303 If the determination result of step S303 is false, the process proceeds to step S304. In step S304, the incident angle of incident light is changed. Then, steps S301, S302, and S303 are repeated.
  • the measurement of S301 to S304 is repeated until the incident angle of the incident light to the object to be measured is acquired for the number of divisions within the predetermined range.
  • the measurement information of the scattered light indicates a state when it is measured in one cross section in order to simplify the description. In other words, it is assumed that the incident angle of the incident light and the angle of the light receiving portion move only in the ⁇ direction.
  • a predetermined process is performed in the scattered light information processing apparatus 250 using the above “information of measurement condition”, “information of object to be measured”, and “measurement information of scattered light”, BSDF is calculated.
  • FIG. 10 is a flowchart for explaining the data processing method in the scattered light information processing apparatus 250.
  • the scattered light information processing apparatus 250 performs processing intended to calculate BSDF.
  • the present embodiment is different from the above-described first embodiment in that “scattered light measurement information” measured at a plurality of incident angles is used.
  • step S401 the incident angle of the measurement light is ⁇ ni .
  • the incident angle ⁇ ni is input from a small value (acute angle) with the measurement light.
  • BSDF at a plurality of calculated incident angles is set as "provisional BSDF". Specifically, provisional BSDFs are calculated from ⁇ measurement data and ⁇ measurement data, respectively.
  • step S409 it is determined whether the incident angle ⁇ ni is the largest angle. That is, it is determined that (temporarily) BSDF is calculated for all incident angles set in the measurement conditions. If the determination result of step S409 is false (No), the process proceeds to step S410.
  • step S410 the incident angle is changed to the next angle, and the processing from step S402 to step S408 is performed.
  • step S411 BSDF at each incident angle is calculated again.
  • “temporary BSDF” calculated at each incident angle is set in the measurement object measurement simulation model, and calculation to calculate BSDF at each incident angle is performed again.
  • steps S401, S402, S403, S404, S405, S406, and S407 is the same processing as that of the first embodiment as described above.
  • the concept of shift invariant is applied to the calculation within the object to be measured.
  • the scattered light intensity distribution differs depending on the incident angle to the object to be measured.
  • the deviation from the idea of shift invariant increases as the incident angle increases.
  • BSDF is determined using the provisional BSDF calculated at each incident angle without using the concept of shift invariant.
  • the calculation accuracy is improved by recalculating in consideration of the scattered light intensity distribution at each incident angle as described above.
  • step S411 temporary BSDFs at all calculated incident angles are set.
  • step S412 the scattered light intensity distribution is calculated.
  • step S413 the scattered light intensity distribution calculated in step S412 is compared with the "scattered light measurement information" stored in the scattered light intensity distribution measurement data storage unit 103b of the computer.
  • step S414 the degree of coincidence of the scattered light intensity distribution at each angle is calculated and judged.
  • the calculation of the degree of coincidence uses the difference between the calculated scattered light intensity distribution at each angle and the measurement information of the scattered light. Then, a PV (Peak-Valley) value and an RMS (Root-Mean-Square) are used as evaluation values.
  • step S414 the evaluation value calculated in step S412 is compared with a preset threshold value. In step S414, if the evaluation value is larger than the threshold value, that is, if the determination result is false, the process proceeds to step S415.
  • step S ⁇ b> 415 processing for changing a provisional BSDF temporarily set in advance is performed in order from an angle with a small incident angle (acute angle).
  • the evaluation value is smaller than the threshold value, it indicates that the set temporary BSDF represents BSDF of the surface to be measured of the object to be measured with good accuracy.
  • step S414 If it is determined in step S414 that the evaluation value is larger than the threshold, the process proceeds to step S415.
  • step S415 a process of changing the parameters of temporary BSDF is performed. Then, the process returns to step S412, and ray tracing is performed.
  • steps S412, S413, S414, and S415 are repeatedly performed until the evaluation value becomes smaller than the threshold. That is, convergence calculation is performed. Through the repeated steps, it is possible to calculate the parameters of the provisional BSF that well represent BSD of the surface to be measured of the object to be measured.
  • step S416 it is determined whether the incident angle ⁇ ni is the largest angle using the new temporary BSDF determined in step S414. If the determination result in step S416 is false, in step S417, the temporary function parameter calculation unit 251 (FIG. 7) changes the incident angle ⁇ ni to the next angle to change the temporary BSDF at the next incident angle ⁇ ni. Set Then, after changing to the next angle, the processes of steps S411, S412, S413, S414, S415, S416, and S417 are performed.
  • step S416 If the determination result in step S416 is true, in step S418, the processing from step S411 to step S417 is repeated, and calculation is performed until the value of temporary BSDF at each incident angle converges. Then, in step S418, it is determined whether the tentative BSDF value has converged. The convergence judgment is made based on whether or not the change of each temporary BSDF is minimized.
  • step S418 If the determination result in step S418 is false, the process proceeds to step S419.
  • step S419 the function parameter determination unit 252 (FIG. 7) changes and determines the parameters of the BSDF function.
  • step S418 If the determination result in step S418 is true, the data processing ends.
  • the model function of the BSF that best represents the scattered light information of the surface to be measured of the object to be measured and the parameters for determining the model function are determined.
  • the scattered light information processing system 150, the scattered light information processing device 250 provided in the system 150, and the scattered light information processing method executed by the device 250 are input to the optical design software in the transmissive material. It becomes possible to obtain BSDF which is one of the parameters.
  • the optical design software it is possible to perform an optical design simulation for ghosts and flares that occur when unnecessary light other than the regular light reaches the image plane.
  • the transmitting material BSF it is possible to obtain both the bidirectional transmittance distribution function (BTDF) and the bidirectional reflectance distribution function (BRDF).
  • BSDF which is scattered light information of one surface is not only the surface shape of the object to be measured, but also the surface shape and outer diameter of the back surface, and the spacing (thickness Bsf) correctly taking into consideration the influence of the inside of the test object such as refractive index, transmittance, reflectance, light absorptance and fluorescence which are the outer shape and optical properties such as ridges, chamfers, and edges, etc. It can be calculated. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
  • FIG. 11 is a flowchart showing the procedure of the scattered light information processing method of the present modification.
  • the present modification differs from the second embodiment in that the measurement information of the scattered light at each incident angle is sequentially used to calculate the tentative BSDF.
  • a data processing method in the scattered light information processing apparatus 250 will be described.
  • steps S501 to S506 substantially the same processing as in steps S201 to S207 in the first embodiment is performed.
  • the incident angle ⁇ ni is input from a small angle (acute angle).
  • step S507 the BSDF calculated at the incident angle ⁇ ni is taken as a “provisional BSDF”.
  • step S508 based on the information of the incident angle ⁇ ni of the incident light, it is determined whether the incident angle ⁇ ni is the largest angle. If the determination result of step S508 is false, the process proceeds to step S509.
  • step S 509 the incident angle ⁇ ni of the measurement light is changed to the next angle using all of the temporary BSDF ( ⁇ ni ) calculated up to this point. Then, the processing from step S501 to step S507 is performed.
  • step S504 temporary BSDF of the next incident angle is calculated using temporary BSDF calculated by then. That is, in the processing method of the measurement light information of the second embodiment, the tentative BSDF ( ⁇ ni ) at each incident angle is calculated individually in step S402 to step S410.
  • step S501 to step S509 can be streamlined, and the processing speed can be increased.
  • the above first and second embodiments have been described on the assumption that there is no place to generate the scattered light other than the measured surface of the object to be measured.
  • the present invention is not limited to this, and there may be a plurality of places for generating scattered light other than the surface of the object to be measured.
  • BSDF may be calculated in advance by another method, and may be input as information of the measurement object. Also, it may be set as one of the calculation parameters in the repeated calculation.
  • parallel flat plates are used as the object to be measured. It is needless to say that the present invention is not limited to this, and it is possible to measure even a sample of which both surfaces have a radius of curvature with a permeable material such as an imaging device such as a camera or an optical element used for an endoscope.
  • the radius of curvature may be set in the information of the object to be measured in the information processing unit for the scattered light.
  • an antireflective coating or the like is applied to an object to be measured such as a lens, the coating conditions may be added to the information on the object to be measured.
  • the present invention can be similarly applied to a flange portion, a chamfered portion, an edge portion and the like.
  • the present invention provides a scattered light information processing method, a scattered light information processing apparatus, and a scattered light information processing system capable of measuring the intensity distribution of scattered light of an optical element having a transmitting portion as an object to be measured with high accuracy. Is suitable.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

This scattered-light-information processing method includes the following steps: a scattered-light-measurement-information acquisition step in which information regarding the intensity distribution of scattered light resulting from the scattering of light shone at a prescribed angle is acquired; a model generation step (step S202) in which a target-object model is generated from the geometry and optical properties of a target object, namely a transmissive optical element (300), and conditions under which the intensity distribution of the aforementioned scattered light was measured; a function-parameter setting step (step S203) in which, in the target-object model, a parameter for a function that represents information regarding output-side scattered light that has passed through the target object, at least, is set; a scattered-light-intensity-distribution computation step in which a scattered-light-intensity-distribution calculation result is computed on the basis of the target-object model; and function-parameter-computation processing steps (steps S204 through S207) in which the aforementioned function parameter is computed such that the scattered-light-intensity-distribution calculation result computed on the basis of the target-object model matches the scattered-light-intensity-distribution information acquired in the scattered-light-measurement-information acquisition step.

Description

散乱光情報処理方法、散乱光情報処理装置及び散乱光情報処理システムScattered light information processing method, scattered light information processing apparatus and scattered light information processing system
 本発明は、カメラ、内視鏡、顕微鏡等で用いられる光学設計ソフトウエアでの光学設計シミュレーションをする際に必要な散乱光情報を取得するための、散乱光情報処理方法、散乱光情報処理装置及び散乱光情報処理システムに関する。 The present invention relates to a scattered light information processing method and scattered light information processing apparatus for acquiring scattered light information necessary for performing optical design simulation with optical design software used in a camera, an endoscope, a microscope, etc. And a scattered light information processing system.
 光学設計ソフトウエアは、鏡枠に含まれる各光学素子のr(曲率半径)、d(面間隔)、n(屈折率)、及びコートによる反射率及び透過率の条件をパラメータとして設定する。そして、光学系の中を伝播するさまざまな光線の屈折と反射の計算を行う。 The optical design software sets, as parameters, r (curvature radius), d (surface distance), n (refractive index) of each optical element contained in the lens frame, and the reflectance and transmittance of the coat. It then calculates the refraction and reflection of various rays propagating in the optical system.
 光学設計において、像面で所望の光学性能を満たすように、それぞれのパラメータが変更される。また、製造された鏡枠に対しては、測定によって、それぞれのパラメータを取得し、設定することで光学性能を推測することもできる。 In optical design, each parameter is modified to meet the desired optical performance at the image plane. In addition, for the lens frame manufactured, the optical performance can be estimated by acquiring and setting the respective parameters by measurement.
 光学設計ソフトウエアは、光学性能の評価として像面でのスポットダイヤグラムやMTF(Modulation Transfer Function)、波面収差の他、不要光であるゴーストやフレアについても評価することができる。 The optical design software can evaluate not only spot diagrams and MTF (Modulation Transfer Function) on the image plane, wavefront aberrations, but also unnecessary light such as ghosts and flares as evaluation of optical performance.
 ゴーストやフレアは、正規光以外の不要光が像面に届いたときに発生する現象である。ゴーストやフレアの原因は、各光学面での多重反射や想定外の光の入射の他に、レンズ表面や反射防止コート後の表面、芯取り後のレンズのこば部、面取り部、エッジ部、また鏡枠内部などの面が粗いことにより散乱光が発生し、その散乱光が不要光となることが考えられる。 Ghost and flare are phenomena that occur when unnecessary light other than normal light reaches the image plane. The cause of ghosts and flares is not only multiple reflections on each optical surface and incident of unexpected light, but also lens surfaces and surfaces after anti-reflection coating, lens ridges after chamfering, chamfers and edges Also, it is conceivable that scattered light is generated due to the surface inside the lens frame being rough, and the scattered light becomes unnecessary light.
 したがって、ゴーストやフレアを光学設計シミュレーションで評価する際には、通常のパラメータに加えて、各面の散乱光情報である散乱光強度分布を正確に入力する必要がある。そして、散乱光情報が入力された場合、各光学面では、幾何光学的な光線追跡に加えて、モンテカルロ法による光線追跡が行われて、像面へ到達する光線が計算される。 Therefore, when evaluating ghosts and flares in the optical design simulation, it is necessary to accurately input the scattered light intensity distribution which is the scattered light information of each surface in addition to the normal parameters. Then, when scattered light information is input, in each optical surface, ray tracing by Monte Carlo method is performed in addition to geometrical optical ray tracing, and a ray reaching the image plane is calculated.
 散乱光情報は、一般的に、双方向散乱分布関数(Bidirectional Scattering Distribution Function、以下適宜「BSDF」という。)またはBSDFからCosθ成分を除したARSというパラメータを用いて表される。 Scattered light information is generally represented using a bi-directional scattering distribution function (hereinafter referred to as “BSDF” as appropriate) or a parameter called ARS obtained by dividing the Cos θ component from the BSDF.
 図12に示すように、測定面10に入射する光Lに対して、被測定物の測定面10から反射した散乱光Scと、測定面10を透過した散乱光Scとが生ずる。被測定物の測定面10を反射した散乱光を双方向反射率分布関数(BidirectionalReflectance Distribution Function、以下適宜「BRDF」という。)という。また、被測定物の測定面10を透過した散乱光を双方向透過率分布関数(BidirectionalTransmittance Distribution   Function、以下適宜「BTDF」という。)という。 As shown in FIG. 12, for the light L incident on the measurement surface 10, scattered light Sc reflected from the measurement surface 10 of the object to be measured and scattered light Sc transmitted through the measurement surface 10 are generated. The scattered light reflected by the measurement surface 10 of the object to be measured is referred to as Bidirectional Reflectance Distribution Function (hereinafter referred to as “BRDF” as appropriate). Further, the scattered light transmitted through the measurement surface 10 of the object to be measured is referred to as a Bidirectional Transmittance Distribution Function (hereinafter referred to as “BTDF” as appropriate).
 そして、BSDFは、BRDFとBTDFとの両方を含めた散乱光として定義される。 And, BSDF is defined as scattered light including both BRDF and BTDF.
 被測定物から反射する散乱光情報を得る装置及び方法として、例えば、以下の特許文献1に開示されたものが知られている。 As an apparatus and method for obtaining scattered light information reflected from an object to be measured, for example, the one disclosed in Patent Document 1 below is known.
特許第5058838号公報Patent No. 5058838
 しかしながら、特許文献1に記載されている装置及び方法は、不透過物質の被測定物から反射する散乱光情報をより高い精度で取得するものである。即ち、従来技術では、光学素子などの透過部分を有する被測定物に関しては、散乱光情報を取得することはできない。 However, the apparatus and method described in Patent Document 1 are for acquiring scattered light information reflected from an object to be measured of an impermeable material with higher accuracy. That is, in the prior art, scattered light information can not be obtained for an object to be measured having a transmissive portion such as an optical element.
 本発明は、上記に鑑みてなされたものであって、被測定物として、透過部分を有する光学素子の散乱光情報を高い精度で取得できる散乱光情報処理方法、散乱光情報処理装置及び散乱光情報処理システムを提供することを目的としている。 The present invention has been made in view of the above, and it is possible to obtain scattered light information of an optical element having a transmission part as an object to be measured with high accuracy, a scattered light information processing method, a scattered light information processing apparatus and scattered light The purpose is to provide an information processing system.
 上述した課題を解決し、目的を達成するために、本発明の散乱光情報処理方法は、
 被測定物の散乱光情報を処理する散乱光情報処理方法であって、
 被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
 被測定物に対して所定の角度で照射された光の散乱光強度分布の情報を取得する散乱光測定情報取得工程と、
 被測定物の形状と光学的性質と散乱光強度分布の測定条件から、被測定物モデルを作成するモデル生成工程と、
 被測定物モデルに対して、少なくとも被測定物を透過した出射側の散乱光情報を表す関数のパラメータを設定する関数パラメータ設定工程と、
 被測定物モデルに基づいて計算により散乱光強度分布計算結果を算出する散乱光強度分布算出工程と、
 散乱光測定情報取得工程において取得された散乱光強度分布の情報と、被測定物モデルに基づいて計算により算出された散乱光強度分布計算結果と、が一致するよう関数パラメータを算出する関数パラメータ算出処理工程と、
を有することを特徴とする。
In order to solve the problems described above and achieve the purpose, the scattered light information processing method of the present invention is
A scattered light information processing method for processing scattered light information of an object to be measured, comprising:
The object to be measured is an optical element composed of a substance at least a part of which transmits light,
A scattered light measurement information acquiring step of acquiring information of a scattered light intensity distribution of light irradiated at a predetermined angle with respect to an object to be measured;
A model generation step of creating an object model from the measurement conditions of the shape and optical properties of the object to be measured and the scattered light intensity distribution;
A function parameter setting step of setting a parameter of a function representing at least scattered light information on the output side transmitted through the object to be measured with respect to the object model;
A scattered light intensity distribution calculating step of calculating a scattered light intensity distribution calculation result by calculation based on an object model;
Function parameter calculation that calculates function parameters so that the information of the scattered light intensity distribution acquired in the scattered light measurement information acquisition process and the scattered light intensity distribution calculation result calculated by calculation based on the object model match Processing steps,
It is characterized by having.
 また、本発明の散乱光情報処理装置は、
 被測定物の散乱光情報を処理する散乱光情報処理装置であって、
 被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
 被測定物に対して所定の角度で照射された光の散乱光強度分布の情報を取得する散乱光測定情報取得部と、
 被測定物の形状と光学的性質と散乱光強度分布の測定条件から、被測定物モデルを作成するモデル生成部と、
 被測定物モデルに対して、少なくとも被測定物を透過した出射側の散乱光情報を表す関数のパラメータを設定する関数パラメータ設定部と、
 被測定物モデルに基づいて計算により散乱光強度分布計算結果を算出する散乱光強度分布算出部と、
 散乱光測定情報取得部において取得された散乱光強度分布の情報と、被測定物モデルに基づいて計算により算出された散乱光強度分布計算結果と、が一致するよう関数パラメータを算出する関数パラメータ算出処理部と、
を有することを特徴とする。
Further, the scattered light information processing apparatus of the present invention is
A scattered light information processing apparatus for processing scattered light information of an object to be measured, comprising:
The object to be measured is an optical element composed of a substance at least a part of which transmits light,
A scattered light measurement information acquisition unit that acquires information of a scattered light intensity distribution of light irradiated to a measured object at a predetermined angle;
A model generation unit for creating an object model from the measurement conditions of the shape and optical properties of the object to be measured and the scattered light intensity distribution;
A function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to be measured with respect to the object model;
A scattered light intensity distribution calculation unit that calculates a scattered light intensity distribution calculation result by calculation based on an object model;
Function parameter calculation that calculates function parameters so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquisition unit and the scattered light intensity distribution calculation result calculated by calculation based on the object model match A processing unit,
It is characterized by having.
 また、本発明の散乱光情報処理システムは、
 被測定物の散乱光を測定し散乱光情報を処理する散乱光情報処理システムであって、
 被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
 被測定物に対して所定の角度で光を照射する光照射部と、
 少なくとも被測定物で散乱した光を受光する散乱光測定部と、
 散乱光測定部で受光した情報に基づき、被測定物の散乱光強度分布の情報を取得する散乱光測定情報取得部と、
 被測定物の形状と光学的性質と散乱光強度分布の測定条件を記憶する情報記憶部と、
 記憶された形状と光学的性質と測定条件から、被測定物モデルを作成するモデル生成部と、
 被測定物モデルに対して、少なくとも被測定物を透過した出射側の散乱光情報をあらわす関数のパラメータを設定する関数パラメータ設定部と、
 被測定物モデルから計算により散乱光強度分布計算結果を算出する散乱光強度分布算出部と、
 散乱光測定情報取得部で取得された散乱光強度分布の情報と、被測定物モデルから計算により算出された散乱光強度分布計算結果と、が一致するよう関数パラメータを算出する関数パラメータ算出処理部と、
を有することを特徴とする。
In the scattered light information processing system of the present invention,
A scattered light information processing system that measures scattered light of an object to be measured and processes scattered light information,
The object to be measured is an optical element composed of a substance at least a part of which transmits light,
A light irradiation unit that irradiates light at a predetermined angle with respect to the object to be measured;
A scattered light measurement unit that receives at least light scattered by the object to be measured;
A scattered light measurement information acquisition unit that acquires information on the scattered light intensity distribution of the object based on the information received by the scattered light measurement unit;
An information storage unit that stores the shape and optical properties of the object to be measured and the measurement conditions of the scattered light intensity distribution;
A model generation unit that generates an object model from the stored shape, optical properties, and measurement conditions;
A function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to be measured with respect to the object model;
A scattered light intensity distribution calculation unit that calculates a scattered light intensity distribution calculation result by calculation from an object model;
Function parameter calculation processing unit that calculates function parameters so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquisition unit and the scattered light intensity distribution calculation result calculated by calculation from the object model match When,
It is characterized by having.
 本発明によれば、被測定物が透過物質においても、高精度に散乱光情報を取得できるという効果を奏する。 According to the present invention, it is possible to obtain scattered light information with high accuracy even when the object to be measured is a transparent substance.
図1(a)は、本発明の第1実施形態の散乱光情報処理システムの概要を示す機能ブロック図である。また、図1(b)は、散乱光情報処理システムをより詳しく説明する機能ブロック図である。FIG. 1A is a functional block diagram showing an overview of a scattered light information processing system according to a first embodiment of the present invention. Further, FIG. 1B is a functional block diagram for explaining the scattered light information processing system in more detail. 第1実施形態における散乱光の測定方法について説明するフローチャートである。It is a flowchart explaining the measuring method of the scattered light in 1st Embodiment. BSDFの散乱光情報処理システムの概略構成を示す図である。It is a figure which shows schematic structure of the scattered light information processing system of BSDF. データ処理方法について説明するフローチャートである。It is a flowchart explaining a data processing method. 被測定物の表面の散乱が小さい場合の散乱光の強度分布を示す図である。It is a figure which shows intensity distribution of the scattered light in case the scattering of the surface of to-be-measured object is small. (a)、(b)は散乱光の測定範囲を示す図である。(A), (b) is a figure which shows the measurement range of scattered light. 本発明の第2実施形態の散乱光情報処理システムの概要を示す機能ブロック図である。It is a functional block diagram which shows the outline | summary of the scattered light information processing system of 2nd Embodiment of this invention. 光照射部と受光部との駆動状態を示す図である。It is a figure which shows the drive state of a light irradiation part and a light-receiving part. 第2実施形態における散乱光の測定方法について説明するフローチャートである。It is a flowchart explaining the measuring method of the scattered light in 2nd Embodiment. 第2実施形態におけるデータ処理方法について説明するフローチャートである。It is a flowchart explaining the data processing method in 2nd Embodiment. 第2実施形態の変形例のデータ処理方法について説明するフローチャートである。It is a flowchart explaining the data processing method of the modification of a 2nd embodiment. 散乱光情報を説明する図である。It is a figure explaining scattered light information. パラメータを説明する図である。It is a figure explaining a parameter. (a)、(b)は、光の反射を説明する図である。(A), (b) is a figure explaining reflection of light. 散乱光を説明する他の図である。It is another figure explaining a scattered light.
 以下に、本発明にかかる散乱光情報処理方法、散乱光情報処理装置及び散乱光情報処理システムの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a scattered light information processing method, a scattered light information processing device, and a scattered light information processing system according to the present invention will be described in detail based on the drawings. The present invention is not limited by this embodiment.
 まず、本発明の実施形態の説明をする前提として、従来技術を踏まえて、散乱光情報及び測定に関して、さらに詳述する。 First, based on the prior art, scattered light information and measurement will be described in more detail on the premise of describing the embodiment of the present invention.
 散乱光情報のBSDFは、面の法線からの散乱光線の角度の関数として、また、場合によっては散乱面に照射する入射光線の角度の関数として、散乱光線の放射輝度を表している。具体的には、例えばBSDFのBRDFは以下の式1で定義される。 The BSDF of the scattered light information represents the radiance of the scattered light as a function of the angle of the scattered light from the surface normal, and in some cases as a function of the angle of the incident light illuminating the scattering surface. Specifically, for example, BRDF of BSDF is defined by the following equation 1.
 図13は、不透過物質の表面に光を照射させたときを例に、式1の記号、パラメータについて、XYZ直交座標系を用いて示したものである。図13に示すように、入射光線の角度(θi)と、入射方位角(φi)、受光角(θr)、受光方位角(φr)、入射光の波長(λ)の5つ変数で与えられる。また、Piは入射光の光強度、Prは測定面の測定領域dAの反射光の光強度をそれぞれ示している。また、dωiとdωrは、立体角を表している。 FIG. 13 shows the symbol of equation 1 and parameters shown using an XYZ orthogonal coordinate system, for example, when light is irradiated to the surface of the opaque material. As shown in FIG. 13, the incident light ray angle (θ i ), the incident azimuth angle (φ i ), the light reception angle (θ r ), the light reception azimuth angle (φ r ), and the wavelength (λ) of the incident light It is given by a variable. P i indicates the light intensity of the incident light, and P r indicates the light intensity of the reflected light of the measurement area dA of the measurement surface. Also, dω i and dω r represent solid angles.
 BSDFは、被測定物が透過物質・不透過物質関係なしに、その定義上、平面の散乱光強度分布であり、被測定物の外形や光学的性質は考慮されていない。即ち、被測定物が透過物質の場合、表裏面形状(球面、非球面、自由曲面等)や外径、面間隔(厚さ)、こば部、面取り部、エッジ部や屈折率等の影響は考慮されていない。BSDFは、1つの平面によって生成される散乱光の挙動を表したものである。 The BSDF is a scattered light intensity distribution of a plane by definition, regardless of the relationship between a substance to be measured and a transmitting material and a non-transmitting material, and the outer shape and the optical properties of the material to be measured are not considered. That is, when the object to be measured is a permeable substance, the influence of the front and back surface shape (spherical surface, aspheric surface, free curved surface etc.), outer diameter, surface distance (thickness), ridges, chamfers, edges, refractive index etc. Is not considered. BSDF represents the behavior of scattered light generated by one plane.
 BSDFを、このように定義することで、光学設計ソフトウエアに面のパラメータとして入力できるようになり、他の入力パラメータである曲率半径や面間隔を変更しても、正確な光学設計シミュレーションを行うことができる。 By defining BSDF in this way, it becomes possible to input it as a surface parameter to optical design software, and perform accurate optical design simulation even if other input parameters such as curvature radius and surface spacing are changed. be able to.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図3は、被測定物として透過物質の平行平板300を用いたときのBSDFの散乱光情報処理システムの概略構成を示している。座標系は、直交座標であるXYZ直交座標系のうち、鉛直方向をY軸方向、水平方向で入射光と平行する方向をZ軸方向、それと水平面内で直行する方向をX軸方向とする。
 ここで被測定物300に平行平面を用いているのは、被測定物の表裏面形状の影響を予め極力除くためである。
FIG. 3 shows a schematic configuration of a scattered light information processing system of BSDF when using a parallel flat plate 300 of a transmissive material as an object to be measured. In the coordinate system, in the XYZ orthogonal coordinate system which is orthogonal coordinates, the vertical direction is taken as the Y-axis direction, the direction parallel to the incident light in the horizontal direction as the Z-axis direction, and the direction orthogonal thereto in the horizontal direction as the X-axis direction.
Here, the reason why a parallel plane is used for the object to be measured 300 is to eliminate in advance the influence of the front and back surface shapes of the object to be measured as much as possible.
 また、被測定物の平行平板300は、片面300aに測定したい面の粗さ、例えばレンズの表面やこば部、面取り部等に近似した所望の粗さを付している場合が多い。
 このような被測定物を用いることで、面の粗さと散乱光強度分布の関係が測定できるものとしている。
In addition, the parallel flat plate 300 of the object to be measured often has a surface roughness to be measured on one side 300a, for example, a desired roughness approximate to the surface of a lens, a convex portion, a chamfer or the like.
By using such an object to be measured, the relationship between the surface roughness and the scattered light intensity distribution can be measured.
 光照射部101は、所定の波長を有する光を照射するレーザまたは白色光源等が用いられる。そして、光照射部101からの光は、被測定物である平行平板300に所定の角度で入射する。入射した光は、被測定物である平行平板300の粗さを付した面で散乱を生じ、被測定物を透過して空中に出射される。 The light irradiation unit 101 uses a laser or a white light source that emits light having a predetermined wavelength. And the light from the light irradiation part 101 injects into the parallel flat plate 300 which is a to-be-measured object at a predetermined angle. The incident light scatters on the roughened surface of the parallel flat plate 300, which is the object to be measured, passes through the object to be measured, and is emitted to the air.
 受光部102は、平行平板300から出射された光について、被測定物の測定面300aを中心として2次元または3次元的に散乱光の強度分布を取得する。受光部102は、駆動部305により、例えば、位置A、位置B等へ移動できる。以上により、透過及び反射の散乱光強度分布であるBSDFを取得することができる。 The light receiving unit 102 obtains the intensity distribution of the scattered light two-dimensionally or three-dimensionally with respect to the light emitted from the parallel flat plate 300 centering on the measurement surface 300 a of the object to be measured. The light receiving unit 102 can be moved to, for example, the position A, the position B, and the like by the driving unit 305. By the above, it is possible to obtain BSDF which is the transmission and reflection scattered light intensity distribution.
 被測定物が不透過物質の場合は、反射の散乱光強度分布であるBRDFのみ取得することができる。 When the object to be measured is an opaque material, only BRDF which is a scattered light intensity distribution of reflection can be acquired.
 上述のように取得したBSDFについて、光学設計ソフトウエアにパラメータとして入力するとき、被測定物がBSDFの定義から外れる場合に、誤差を生じる。
 例えば、被測定物が不透過物質のときにBRDFを取得する場合、従来技術では被測定物の表面が平面以外では、散乱光情報処理システムによる散乱光強度分布の測定結果をBRDFとすると、反射面の表面形状の影響が含まれてしまい誤差となってしまう。
When the BSDF acquired as described above is input as a parameter to the optical design software, an error occurs when the object to be measured deviates from the definition of the BSDF.
For example, when the object to be measured is a non-transparent material and BRDF is acquired, in the prior art, when the surface of the object to be measured is other than a flat surface, the measurement result of the scattered light intensity distribution by the scattered light information processing system is BRDF. The influence of the surface shape of the surface is included, resulting in an error.
 そこで、従来技術では、散乱光強度分布の測定結果の情報と、被測定物の表面形状情報を利用して、表面形状の影響を除いたBRDFを算出している。 Therefore, in the prior art, BRDF excluding the influence of the surface shape is calculated using the information of the measurement result of the scattered light intensity distribution and the surface shape information of the object to be measured.
 図14(a)は、測定面10に入射光Linが入射した場合の幾何光学的成分による反射光を説明する図である。入射光Linは、入射位置の接線に対する法線Nに関して入射角度と同じ角度で反射光Lrefとして反射する。 FIG. 14A is a view for explaining the reflected light due to the geometrical optical component when the incident light Lin is incident on the measurement surface 10. The incident light Lin is reflected as reflected light Lref at the same angle as the incident angle with respect to the normal N to the tangent of the incident position.
 図14(b)は、測定面10aに入射光Linが入射した場合の波動光学的成分による反射光を説明する図である。
 従来技術として説明したように、被測定物に光を入射させた場合、測定面10aの照射領域における表面形状情報とBRDFとの合成から散乱光強度分布を算出する。そして、算出した散乱光強度分布が実測の散乱光強度分布測定結果に近似するように、BRDFを変化させる。これにより、反射面の照射領域における表面形状の影響と分離して、BRDFを算出している。
FIG. 14B is a view for explaining the reflected light due to the wave-optical component when the incident light Lin is incident on the measurement surface 10 a.
As described in the prior art, when light is incident on the object to be measured, the scattered light intensity distribution is calculated from the combination of the surface shape information and the BRDF in the irradiation area of the measurement surface 10a. Then, the BRDF is changed so that the calculated scattered light intensity distribution approximates the actual scattered light intensity distribution measurement result. Thus, the BRDF is calculated separately from the influence of the surface shape in the irradiation area of the reflective surface.
 しかしながら、上述したように従来技術では、被測定物が透過物質の場合は、適応することができない。被測定物が透過物質の場合は、光照射部からの光の照射領域において、被測定物の測定面が平面でない場合に誤差を生じてしまうことは言うまでもない。加えて、光照射部からの光の照射領域以外の形状や被測定物内部の影響を受けてしまう。つまり、被測定物が透過物質のときは、例え測定面が平面であっても、散乱光情報処理システムによる散乱光強度分布の測定結果をBSDFとすると、誤差を生じてしまう。このことは、被測定物が透過物質の場合に特有の問題である。さらに、以下に詳細を説明する。 However, as described above, in the prior art, when the object to be measured is a permeable substance, it can not be applied. It goes without saying that when the object to be measured is a transmissive substance, an error occurs when the measurement surface of the object to be measured is not flat in the irradiation area of the light from the light irradiation part. In addition, it receives the influence of the shape other than the irradiation area | region of the light from a light irradiation part, and the inside of a to-be-measured object. That is, when the object to be measured is a transparent substance, even if the measurement surface is a flat surface, an error occurs if the measurement result of the scattered light intensity distribution by the scattered light information processing system is BSDF. This is a problem specific to the case where the object to be measured is a permeable substance. Further details will be described below.
 ここで、再度BSDFの定義について述べる。
 光学設計ソフトウエアでは、上述のようにBSDFの定義を、面の法線からの散乱光線の角度の関数としている。また、ときには散乱面に照射する入射光線の角度の関数として、散乱光線の放射輝度を表し、平面の散乱光強度分布としている。
Here, I will describe the definition of BSDF again.
In the optical design software, as described above, the BSDF definition is a function of the angle of the scattered light from the surface normal. Also, sometimes the radiance of the scattered light is represented as a function of the angle of the incident light irradiating the scattering surface, and the scattered light intensity distribution on the plane is taken.
 このため、被測定物の外形や光学的性質は考慮されていない。すなわち被測定物が透過物質の場合、被測定物の表裏面形状(球面、非球面、自由曲面等)や外径、面間隔(厚さ)、こば部、面取り部、エッジ部や屈折率等の影響が含まれてしまうため、単純に散乱光を測定した結果はBSDFの定義から外れてしまう。
 この結果、従来の手順では、透過物質の被測定物に対して、BSDFを取得できない。このことについて、さらに詳しく説明する。
For this reason, the outer shape and optical properties of the object to be measured are not considered. That is, when the object to be measured is a permeable substance, the front and back surface shape (spherical surface, aspheric surface, free curved surface etc.), outer diameter, surface distance (thickness), ridges, chamfers, edges and refractive index of the object to be measured Since the influence of etc. is included, the result of simply measuring the scattered light deviates from the definition of BSDF.
As a result, according to the conventional procedure, BSDF can not be obtained for the object to be measured of the permeable substance. This will be described in more detail.
 被測定物が透過物質である場合、散乱光を測定するときの特有の現象を説明する。図15は、被測定物に透過部を有する平行平板20の散乱光Sf、Scrの挙動を説明する図である。平行平板20では、まず、入射光Linは、散乱面である第2面20aに到達する前に、第1面20bに入射し、被測定物である平行平板20の内部を透過する。また、第1面20bと空気との境界面においては、屈折率が異なることによる反射が生ずる。さらに、平行平板20の物質内部では光吸収や蛍光が生じ、第2面20aに到達する入射光Linの光量は変化する。 In the case where the object to be measured is a transmissive substance, a unique phenomenon when measuring scattered light will be described. FIG. 15 is a view for explaining the behavior of the scattered lights Sf and Scr of the parallel flat plate 20 having the transmission part on the object to be measured. In the parallel plate 20, first, the incident light Lin enters the first surface 20b before reaching the second surface 20a, which is a scattering surface, and transmits the inside of the parallel plate 20, which is an object to be measured. In addition, at the interface between the first surface 20b and the air, reflection occurs due to the difference in refractive index. Furthermore, light absorption and fluorescence occur inside the material of the parallel flat plate 20, and the light amount of the incident light Lin reaching the second surface 20a changes.
 第2面20aによって生成される散乱光束Scrは、本来後方(入射側)に射出される光が、第1面20bに当たり、空気と第1面20bとの境界面において屈折及び全反射を生ずる。一部の全反射した光束S1は前方方向に進行する。また、一部の屈折した光束S2は、スネルの法則に従い、広い角度で射出される。このように、1つの面によって生成された散乱光の挙動が他の面の影響を受けて変化する。 The scattered light flux Scr generated by the second surface 20a is such that light originally emitted backward (incident side) strikes the first surface 20b and causes refraction and total reflection at the interface between the air and the first surface 20b. A portion of the totally reflected light beam S1 travels in the forward direction. Also, a part of the refracted luminous flux S2 is emitted at a wide angle according to Snell's law. In this way, the behavior of the scattered light generated by one surface changes under the influence of the other surface.
 さらに、光束S1、光束S2は、被測定物である平行平板20の内部を透過したことで、進行距離に応じて物質の光吸収や蛍光の影響が加わり、結果として、散乱光強度分布を大きく変えることになる。 Further, the light flux S1 and the light flux S2 are transmitted through the inside of the parallel flat plate 20 which is the object to be measured, and the influence of light absorption and fluorescence of the substance is added according to the traveling distance. It will change.
 特に、1つの面によって生成される散乱光の強度と広がり角度が大きいほど、測定結果への影響の度合いは高いことが分かる。ここまで、被測定物が平行平板20について説明してきたが、レンズのように第1面及び/または第2面が曲面の場合、光の挙動は、さらに複雑になり、入射光Linは、当初の第1面への入射角度とは異なる角度で第2面に到達し、第2面の後方散乱光の挙動は第1面の面形状の影響を受けて変化する。これらは、いずれも透過物質に特有の問題である。 In particular, it can be seen that the larger the intensity and the spread angle of the scattered light generated by one surface, the higher the degree of influence on the measurement result. So far, although the object to be measured has been described for the parallel flat plate 20, when the first surface and / or the second surface is a curved surface like a lens, the behavior of light becomes more complicated, and the incident light Lin is initially The second surface reaches the second surface at an angle different from the incident angle to the first surface of the second surface, and the behavior of the backscattered light of the second surface changes under the influence of the surface shape of the first surface. These are all problems specific to the permeate.
 このように、本来、被測定物の1つの面によって生成される散乱光の挙動を測定したいのに対して、被測定物が透過物質の場合は、被測定物の表面形状のみならず、裏面の表面形状や外径、面間隔(厚さ)、こば部、面取り部、エッジ部等の外形と、屈折率、透過率、反射率、光吸収率や蛍光等の被測定物内部の影響を受けた散乱光強度分布になってしまう。 Thus, while it is originally intended to measure the behavior of the scattered light generated by one side of the object to be measured, when the object to be measured is a transmitting material, not only the surface shape of the object to be measured but also the back surface Surface shape, outer diameter, surface spacing (thickness), outer shape of ridges, chamfers, edges, etc., and the influence of the inside of the measured object such as refractive index, transmittance, reflectance, light absorptance, fluorescence, etc. Becomes the scattered light intensity distribution.
 これにより、被測定物が透過物質の場合、上述した従来の技術では、物質内部の散乱光の挙動について考慮することができず、結果としてBSDFを算出できない。このように、従来は、透過物質においては、散乱光の強度分布を測定しても、その結果を単純に光学設計シミュレーションのパラメータであるBSDFとして利用できない。また、利用しても誤差が生じてしまい正確な光学設計シミュレーションができない。 As a result, when the object to be measured is a transmissive substance, the above-described conventional techniques can not consider the behavior of the scattered light inside the substance, and as a result, can not calculate BSDF. As described above, conventionally, in the transmissive material, even if the intensity distribution of the scattered light is measured, the result can not simply be used as BSDF which is a parameter of the optical design simulation. Also, even if it is used, an error occurs and accurate optical design simulation can not be performed.
 以下に説明する実施形態は、このような従来の透過物質の散乱光強度分布測定結果に含まれる誤差の問題を解決でき、光学設計シミュレーションに入力するパラメータであるBSDFを散乱光強度分布測定結果より高精度に算出できる。 The embodiment described below can solve the problem of the error contained in the scattered light intensity distribution measurement result of such a conventional transmitting material, and based on the scattered light intensity distribution measurement result BSDF which is a parameter to be input to the optical design simulation It can be calculated with high accuracy.
(第1実施形態) 
 図1(a)は、本発明の第1実施形態の散乱光情報処理システム100の概要を示す機能ブロック図である。また、図1(b)は、散乱光情報処理システム100をより詳しく説明する機能ブロック図である。
First Embodiment
Fig.1 (a) is a functional block diagram which shows the outline | summary of the scattered light information processing system 100 of 1st Embodiment of this invention. FIG. 1B is a functional block diagram for explaining the scattered light information processing system 100 in more detail.
 図1(a)に示すように、散乱光情報処理装置200は、制御部110を介して、光照射部101と、受光部102と、情報記憶部103と信号のやり取りを行う。 As shown in FIG. 1A, the scattered light information processing apparatus 200 exchanges signals with the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 via the control unit 110.
 図1(b)に示すように、散乱光情報処理装置200は、散乱光測定情報取得部104と、関数パラメータ設定部105と、モデル生成部106と、散乱光強度分布算出部107と、関数パラメータ算出処理部108とを有している。 As shown in FIG. 1B, the scattered light information processing apparatus 200 includes a scattered light measurement information acquisition unit 104, a function parameter setting unit 105, a model generation unit 106, a scattered light intensity distribution calculation unit 107, and a function. And a parameter calculation processing unit 108.
 図1(b)において、点線で囲んでいる散乱光情報処理装置200は、上述したように制御部110を介して、光照射部101と、受光部102と、情報記憶部103と接続されている。 In FIG. 1B, the scattered light information processing apparatus 200 surrounded by a dotted line is connected to the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 via the control unit 110 as described above. There is.
 本実施形態の散乱光情報処理システム100が備える散乱光測定処理装置200についてさらに詳しく説明する。
 ここで、被測定物は、少なくとも一部が光を透過する物質で構成される光学素子である。光学素子は、例えば図3に示す平行平板300である。
The scattered light measurement processing device 200 provided in the scattered light information processing system 100 of the present embodiment will be described in more detail.
Here, the object to be measured is an optical element composed of a material at least a part of which transmits light. The optical element is, for example, a parallel plate 300 shown in FIG.
 図1(b)において、散乱光情報処理装置200は、被測定物に対して所定の角度で照射された光の散乱光強度分布の情報を取得する散乱光測定情報取得部104と、被測定物の形状と光学的性質と散乱光強度分布の測定条件から、被測定物モデルを作成するモデル生成部106と、被測定物モデルに対して、光学素子の測定面の入射側で反射した散乱光情報及び被測定物を透過した出射側の散乱光情報を表す関数のパラメータを設定する関数パラメータ設定部105と、被測定物モデルに基づいて計算により散乱光強度分布計算結果を算出する散乱光強度分布算出部107と、散乱光測定情報取得部104において取得された散乱光強度分布の情報と、被測定物モデルに基づいて計算により算出された散乱光強度分布計算結果とが一致するよう関数パラメータを算出する関数パラメータ算出処理部108とを有する。 In FIG. 1B, the scattered light information processing apparatus 200 includes a scattered light measurement information acquisition unit 104 for acquiring information on the scattered light intensity distribution of light irradiated at a predetermined angle with respect to the object to be measured; Scattering reflected on the incident side of the measurement surface of the optical element with respect to the model generation unit 106 for creating an object model from the measurement conditions of the shape and optical properties of the object and the scattered light intensity distribution and the object model A function parameter setting unit 105 for setting parameters of a function representing light information and scattered light information on the outgoing side transmitted through the object to be measured, and scattered light to calculate the scattered light intensity distribution calculation result by calculation based on the object model The information of the scattered light intensity distribution acquired by the intensity distribution calculation unit 107 and the scattered light measurement information acquisition unit 104 agrees with the scattered light intensity distribution calculation result calculated by calculation based on the object model. Yo and a function parameter calculation unit 108 for calculating the function parameters.
 次に、本実施形態の散乱光情報処理システム100の構成と構成要素について説明する。 Next, the configuration and components of the scattered light information processing system 100 according to the present embodiment will be described.
 散乱光情報処理装置200は、散乱光情報処理システム100と一体または、別体の一つまたは別のコンピュータの内部に配置されている。 The scattered light information processing apparatus 200 is disposed integrally with the scattered light information processing system 100 or in one or another separate computer.
 制御部110は、散乱光情報処理装置200の制御の他、光照射部101、受光部102、情報記憶部103の制御を行う。 The control unit 110 controls the light emitting unit 101, the light receiving unit 102, and the information storage unit 103 in addition to the control of the scattered light information processing apparatus 200.
 なお、本実施形態では、光照射部101は、LD(Laser Diode)、SLD(Super Luminescent Diode)、LED(Light Emitting Diode)や白色光源であるハロゲンなど特に規定しない。ここで、入射光の波長、偏光状態、光強度分布等の特性が既知のものであることが望ましい。 In the present embodiment, the light emitting unit 101 does not particularly define a laser diode (LD), a super luminescent diode (SLD), a light emitting diode (LED), a halogen as a white light source, and the like. Here, it is desirable that characteristics such as the wavelength of incident light, the polarization state, and the light intensity distribution be known.
 受光部102は、不図示のコンピュータから送られてきた制御部110の制御情報を元に、被測定物の測定面を中心に2次元または3次元に連続または間欠移動し、被測定面からの散乱光を受光することができる機構になっている。 The light receiving unit 102 moves continuously or intermittently in two or three dimensions centering on the measurement surface of the object based on the control information of the control unit 110 sent from the computer (not shown). It is a mechanism that can receive scattered light.
 ここで、受光部102は、被測定物の測定面を中心として回転させている。これに限られず、被測定物の中心とは異なる他の場所や、被測定物以外の部分を中心として、受光部102を移動しても良い。受光部102の回転中心位置と、被測定物の位置との相対的な位置関係が既知であれば良い。 Here, the light receiving unit 102 is rotated around the measurement surface of the object to be measured. The present invention is not limited to this, and the light receiving unit 102 may be moved around another place different from the center of the object to be measured or a portion other than the object to be measured. The relative positional relationship between the rotation center position of the light receiving unit 102 and the position of the object to be measured may be known.
 また、受光部102は、被測定物を透過した散乱光及び/または反射した散乱光の情報を取得することができる機構を有する。
 さらに、受光部102は、パワーセンサーや高感度カメラなど、光の強度を観察できる機器であれば、特に限定されることはない。さらに、測定したい光強度や角度分解能によって、受光部102の種類を使い分けできることが望ましい。
 被測定物への入射光の角度を変更したい場合は、光照射部110または被測定物が相対的に位置を変化できるように構成されている。
Further, the light receiving unit 102 has a mechanism capable of acquiring information of the scattered light transmitted through the object to be measured and / or the scattered light reflected.
Furthermore, the light receiving unit 102 is not particularly limited as long as it is a device such as a power sensor or a high sensitivity camera that can observe the intensity of light. Furthermore, it is desirable that the type of the light receiving unit 102 can be used properly depending on the light intensity and the angular resolution to be measured.
When it is desired to change the angle of incident light to the object to be measured, the light irradiation unit 110 or the object to be measured can be relatively changed in position.
 情報記憶部103は、「測定条件の情報」と、「被測定物の情報」と「散乱光の測定情報」の記憶をつかさどる。測定条件の情報と被測定物の情報に関する詳細説明は後述する。
 前述のように、散乱光情報処理装置200は、「測定条件の情報」及び「被測定物の情報」、「散乱光の測定情報」からBSDFを算出する散乱光情報に関する処理を行う。散乱光情報の処理に関する詳細説明は後述する。
The information storage unit 103 manages storage of “information of measurement condition”, “information of object to be measured” and “measurement information of scattered light”. A detailed description of the information of the measurement conditions and the information of the object will be described later.
As described above, the scattered light information processing apparatus 200 performs processing on scattered light information for calculating BSDF from "information of measurement conditions", "information of object to be measured", and "measurement information of scattered light". A detailed description of the processing of the scattered light information will be described later.
 このように、被測定物の散乱光を測定し散乱光情報を処理する散乱光情報処理システム100は、散乱光情報処理装置200に加えて、さらに、被測定物に対して所定の角度で光を照射する光照射部101と、被測定物を透過した散乱光及び/又は反射した散乱光を受光する受光部102と、被測定物の形状と光学的性質と散乱光強度分布の測定条件を記憶する情報記憶部103と、を有する。 Thus, in addition to the scattered light information processing apparatus 200, the scattered light information processing system 100 that measures the scattered light of the object to be measured and processes the scattered light information further generates light at a predetermined angle with respect to the object to be measured. The light irradiation unit 101 for irradiating the light, the light reception unit 102 for receiving the scattered light transmitted through the object to be measured and / or the scattered light reflected from the object to be measured, and the measurement conditions of the shape and optical properties of the object to be measured and the scattered light intensity distribution And an information storage unit 103 to be stored.
 これにより、以下に説明するように、1つの面の散乱光情報であるBSDFを、被測定物の外形である表裏面形状や外径、面間隔(厚さ)、こば部、面取り部、エッジ部及び、光学的性質である屈折率、透過率、反射率、光吸収率、蛍光等の被測定物内部の影響を考慮して、それらの影響を除くことで正確に算出することができる。このため、光学設計ソフトウエアにパラメータとして設定した際に、従来に対して高精度にシミュレーションをすることが可能になる。 Thereby, as described below, BSDF which is scattered light information of one surface, front and back surface shape, outer diameter, surface distance (thickness), ridge portion, chamfered portion, which is an outer shape of the object to be measured It can be calculated accurately by taking into consideration the influence of the inside of the object under test such as the edge part and the optical properties such as refractive index, transmittance, reflectance, light absorptivity, and fluorescence. . For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
 次に、図2を参照して、本実施形態における散乱光の測定方法について説明する。
 散乱光情報処理システム100による測定を開始する。事前に、ステップS101において、制御部110を介して、測定条件及び被測定物の情報記憶部103aに測定条件の情報が格納される。
Next, with reference to FIG. 2, a method of measuring scattered light in the present embodiment will be described.
The measurement by the scattered light information processing system 100 is started. In advance, in step S101, the measurement condition and information of the measurement condition are stored in the information storage unit 103a of the object under measurement via the control unit 110.
 測定条件の情報は、光照射部101と被測定物と受光部102との位置関係、入射光の波長、被測定物への入射角度、偏光状態、NA(指向性)、照射径、照射領域内の強度分布、環境変数(外部の屈折率)、温度、気圧、二酸化炭素濃度等、詳細な測定に関する情報である。 Information on measurement conditions includes the positional relationship between the light irradiation unit 101, the object to be measured, and the light receiving unit 102, the wavelength of incident light, the incident angle to the object to be measured, polarization state, NA (directivity), irradiation diameter, irradiation area It is information about detailed measurement such as internal intensity distribution, environment variable (external refractive index), temperature, atmospheric pressure, carbon dioxide concentration, etc.
 また、同時に、ステップS101において、測定条件及び被測定物の情報記憶部103aには、被測定物の情報も格納される。被測定物の情報は、外形である表裏面形状や外形、面間隔(厚さ)、こば部、面取り部、エッジ部及び光学的性質である屈折率、透過率、反射率、光吸収率、蛍光、さらに、レンズなどの被測定物に反射防止コートなどが施してある場合はコート条件などの設計要件である。特に、被測定物が透過物質の場合は、上述した光学的性質の設定が必須の要件である。 At the same time, in step S101, the information storage unit 103a of the measurement condition and the object to be measured also stores information on the object to be measured. The information of the object to be measured includes front and back surface shape and shape which are outer shape, surface spacing (thickness), ridges, chamfers, edges and optical properties such as refractive index, transmittance, reflectance and light absorptivity In the case where an anti-reflection coating or the like is applied to an object to be measured such as a lens, fluorescence, and the like, it is a design requirement such as coating conditions. In particular, when the object to be measured is a transmissive substance, the setting of the optical properties described above is an essential requirement.
 即ち、被測定物の形状と光学的性質は、被測定物である光学素子の曲率半径、光学的厚さ、屈折率を少なくとも含むことが望ましい。 That is, it is desirable that the shape and optical properties of the object to be measured include at least the radius of curvature, the optical thickness, and the refractive index of the optical element as the object to be measured.
 また、被測定物の情報は、より詳しく入力されることが望ましい。これにより、散乱光情報処理装置200による処理が高精度に行われる。 In addition, it is desirable that the information of the object to be measured be input in more detail. Thereby, the processing by the scattered light information processing apparatus 200 is performed with high accuracy.
 被測定物の情報は、図面から得られる設計式等の情報と、実測を行った結果の情報との何れでも良い。実測による情報では、外形形状誤差である表裏面の面形状誤差、面間隔誤差、偏芯誤差、外径誤差、また、屈折率分布や反射率、透過率、さらに光吸収率や蛍光等、被測定物の光学的性質に関する項目等が挙げられる。 The information on the object to be measured may be either information on a design formula or the like obtained from the drawing, or information on the result of actual measurement. In the information based on actual measurement, surface shape error of surface and back surface, surface distance error, eccentricity error, outer diameter error which is external shape error, refractive index distribution, reflectance, transmittance, light absorptivity, fluorescence, etc. The item etc. regarding the optical property of a measuring object etc. are mentioned.
 以上の、測定条件の情報と、被測定物の情報とは、コンピュータに送られる。そして、コンピュータと一体または別体の制御部110を介して、測定条件及び被測定物の情報記憶部103aに格納される。 The information on the measurement conditions and the information on the object to be measured are sent to the computer. Then, it is stored in the information storage unit 103a of the measurement condition and the object to be measured through the control unit 110 which is integrated with or separate from the computer.
 次に、ステップS102において、散乱光情報処理システム100による測定を実施し、散乱光の測定情報を得る。散乱光を受光する様子を具体的なシステム構成を示して説明する。 Next, in step S102, measurement by the scattered light information processing system 100 is performed to obtain measurement information of scattered light. A state of receiving scattered light will be described by showing a specific system configuration.
 図3に示す駆動部305は、コンピュータの制御部110から送られてきた制御情報に基づいて、受光部102を移動させる。なお、図3では、受光部102は、位置Aと位置Bとの2状態を選択的に記載している。これに限られず、駆動部305は、任意の位置に受光部102を移動できることはいうまでもなく、被測定物が平行平板300の場合、測定面300aを中心に2次元または3次元に連続または間欠移動し、被測定面からの散乱光を受光することができる。この時、被測定物から出る蛍光については、フィルターなどで除去されていることが望ましい。 The drive unit 305 shown in FIG. 3 moves the light receiving unit 102 based on the control information sent from the control unit 110 of the computer. In FIG. 3, the light receiving unit 102 selectively describes two states of position A and position B. The invention is not limited to this, and it goes without saying that the drive unit 305 can move the light receiving unit 102 to an arbitrary position, and when the object to be measured is the parallel flat plate 300, it can be continuously or two-dimensionally or three-dimensionally centered on the measurement surface 300a. It can move intermittently and receive scattered light from the surface to be measured. At this time, it is desirable that the fluorescence emitted from the object to be measured is removed by a filter or the like.
 そして、受光部102が受光した散乱光の測定情報は、コンピュータに送られ、制御部110を介して、散乱光強度分布測定データ記憶部103bに格納される。
 この際、散乱光の測定情報は、上記測定条件の情報及び被測定物の情報と共に一括してコンピュータに送られてもよい。
Then, the measurement information of the scattered light received by the light receiving unit 102 is sent to the computer, and stored in the scattered light intensity distribution measurement data storage unit 103 b via the control unit 110.
At this time, the measurement information of the scattered light may be sent collectively to the computer together with the information of the measurement conditions and the information of the object to be measured.
 測定条件及び被測定物の情報記憶部103aと、散乱光強度分布測定データ記憶部103bとにより情報記憶部103(図1(a)参照)は構成される。
 ここで、測定条件及び被測定物の情報記憶部103aと、散乱光強度分布測定データ記憶部103bの内容は、テキストファイルなどに一括して保存されても良いことはいうまでもない。
An information storage unit 103 (see FIG. 1A) is configured by the measurement condition and the information storage unit 103a of the object to be measured, and the scattered light intensity distribution measurement data storage unit 103b.
Here, it goes without saying that the contents of the measurement condition and the information storage unit 103a of the object to be measured and the scattered light intensity distribution measurement data storage unit 103b may be collectively stored in a text file or the like.
 なお、被測定物としては、平行平板に限られず、曲面を有するレンズ素子等も測定できる。 In addition, as a to-be-measured object, it is not restricted to a parallel plate, The lens element etc. which have a curved surface can also be measured.
 また、散乱光情報の測定方法について、図2を用いて手順を示したが、この順番は前後してもよい。例えば、散乱光を測定した後に、その測定条件の情報を実測の条件に合わせて入力してもよい。また、散乱光を測定した後に、被測定物の情報を得ても良い。 Moreover, although the procedure was shown about the measuring method of scattered light information using FIG. 2, this order may be back and forth. For example, after measuring scattered light, information on the measurement conditions may be input in accordance with the measurement conditions. Further, after measuring the scattered light, information of the object to be measured may be obtained.
 例えば、被測定物の形状の情報を得るために接触式の形状測定機を用いると、測定用プローブで被測定物の表面に傷を付けてしまう場合がある。このため、散乱光を測定した後に形状測定をする順番にした方が、散乱光を精度良く測定できる、という効果を奏する。 For example, when a contact-type shape measuring machine is used to obtain information on the shape of the object to be measured, the surface of the object to be measured may be scratched with the measurement probe. For this reason, the direction in which the shape measurement is performed after measuring the scattered light has an effect that the scattered light can be measured with high accuracy.
 次に、散乱光情報処理装置200でのデータ処理方法について、説明する。
 図4は、散乱光情報処理装置200でのデータ処理方法について説明する図である。散乱光情報処理装置200は、測定条件の情報及び被測定物の情報、散乱光の測定情報を用いて、所定の処理を行い、BSDFを高精度に算出することを目的とする処理を行う。
Next, a data processing method in the scattered light information processing apparatus 200 will be described.
FIG. 4 is a diagram for explaining a data processing method in the scattered light information processing apparatus 200. The scattered light information processing apparatus 200 performs predetermined processing using information on measurement conditions, information on an object to be measured, and measurement information on scattered light, and performs processing aiming to calculate BSDF with high accuracy.
 まず、情報処理部109は、データ処理を開始する。ステップS201において、コンピュータにより、「測定条件の情報」及び「被測定物の情報」をもとに、仮想の被測定物測定シミュレーションモデルが生成される。この状態での被測定物測定シミュレーションモデルは、被測定物に光線を通すとき、幾何光学的に光線が被測定物を透過及び反射することを想定している。なお、以下、すべてのフローチャートにおいて、シミュレーションを適宜「Sim.」と省略して記載する。 First, the information processing unit 109 starts data processing. In step S201, a virtual measured object measurement simulation model is generated by the computer based on "information of measurement conditions" and "information of measured object". The object measurement simulation model in this state assumes that the light beam transmits and reflects the object under geometrical optics when passing the light beam through the object. In the following, in all the flowcharts, simulation is abbreviated as “Sim.” As appropriate.
 ステップS202において、被測定物の被測定面に散乱光情報であるBSDFを仮設定する。BSDFは、前述したように、入射光線の角度(θi)と、入射方位角(φi)と、受光角(θr)と、受光方位角(φr)と、入射光の波長(λ)との5つ変数で与えられる。即ち、BSDFの3次元空間上における位置は、入射光側で2つの方向、受光側で2つの方向で表現される。 In step S202, BSDF, which is scattered light information, is temporarily set on the surface to be measured of the object to be measured. As described above, BSDF is the angle (θ i ) of incident light, the incident azimuth angle (φ i ), the light reception angle (θ r ), the light reception azimuth angle (φ r ), and the wavelength (λ of incident light) It is given by five variables with). That is, the position of the BSDF on the three-dimensional space is expressed in two directions on the incident light side and in two directions on the light receiving side.
 散乱光強度の分布形状は、いくつかの数式のモデル関数に当てはめることができる。例えば、モデル関数としては、ガウス関数、CosN乗関数、Lambertian関数を挙げることができる。いずれの関数も、散乱光強度分布を角度の関数で表現することができる。ここで、ガウスのモデル関数について説明する。ガウス関数は、以下の式2で表すことができる。 The distribution shape of the scattered light intensity can be fitted to model functions of several mathematical expressions. For example, as a model function, a Gaussian function, a Cos N power function, and a Lambertian function can be mentioned. Either function can express the scattered light intensity distribution as a function of angle. Here, the Gaussian model function will be described. The Gaussian function can be expressed by Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式2のパラメータθとφは、散乱光強度分布の角度を表している。パラメータσθ、σφはガウス関数の半値幅を示している。パラメータを変化させることで、それぞれの角度方向の分布形状も変化する。
 また、Pは、中心部の光強度に対応する。即ち、ある入射光の入射角度(θi、φi)に対して、P、σθ、σφの3つのパラメータ(変数)で散乱光強度分布を表すことができる。
The parameters θ and φ in the above equation 2 represent the angle of the scattered light intensity distribution. The parameters σ θ and σ φ indicate the half width of the Gaussian function. By changing the parameters, the distribution shape of each angular direction also changes.
P 0 corresponds to the light intensity at the center. That is, for a certain incident angle (θ i , φ i ) of incident light, the scattered light intensity distribution can be represented by three parameters (variables) P 0 , σ θ , and σ φ .
 モデル関数としては、他の関数でも、いろいろと設定できる。例えば、ピークフィット関数として知られるPearson7関数や、Voight関数等も設定可能である。 Various other functions can be set as model functions. For example, a Pearson 7 function known as a peak fit function, a Voight function, etc. can also be set.
 さらに、例えば、光学素子のように表面の散乱が小さい場合は、中心部の光強度分布に対して、周辺の光強度分布が小さい。図5は、被測定物の表面の散乱が小さい場合の散乱光の強度分布を示す図である。このような散乱光強度分布に適した以下の式3のようなモデル関数を任意に作成することも可能である。ここで、αは係数である。 Furthermore, for example, when the scattering of the surface is small as in an optical element, the light intensity distribution in the periphery is smaller than the light intensity distribution in the central portion. FIG. 5 is a diagram showing an intensity distribution of scattered light when scattering on the surface of the object to be measured is small. It is also possible to optionally create a model function such as the following Equation 3 suitable for such a scattered light intensity distribution. Here, α is a coefficient.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記いずれかのモデル関数を選択することによって、BSDFの仮設定が行われる。図4に戻って説明を続ける。ステップS203では、ステップ202において設定した特定の測定面(特定面)のBSDFの仮設置に対してパラメータの初期値を設定する。例えば、BSDFがガウス関数の場合、P、σθ、σφの3つのパラメータに初期値を設定する。初期値は、ユーザーの指示やシステム要件などに応じて適宜設定する。また、パラメータを変化させる範囲、変化幅なども同時に設定できればなお良い。 By selecting any of the above model functions, temporary setting of BSDF is performed. Returning to FIG. 4, the description will be continued. In step S203, initial values of parameters are set for temporary installation of the BSF of the specific measurement surface (specific surface) set in step 202. For example, when BSDF is a Gaussian function, initial values are set to three parameters P 0 , σ θ , and σ φ . The initial value is appropriately set in accordance with the user's instruction and system requirements. In addition, it is more preferable if the range in which the parameter is changed, the change width, and the like can be simultaneously set.
 本実施形態では、被測定物として透過物質についての散乱光強度分布を算出することを目的としているため、ステップS202、S203は、BSDFである双方向透過率分布関数(BTDF)及び双方向反射率分布関数(BRDF)の両方に設定されなければならない。BTDFとBRDFの設定は、それぞれ異なっても、同じでも良い。 In the present embodiment, the purpose is to calculate the scattered light intensity distribution for the transmissive substance as the object to be measured, so steps S202 and S203 are bi-directional transmittance distribution function (BTDF) and bi-directional reflectance which are BSDF. It must be set to both of the distribution functions (BRDF). The settings for BTDF and BRDF may be different or the same.
 ステップS204では、ステップS201からステップS203までに設定された仮想の被測定物測定シミュレーションモデルに対して、コンピュータの演算処理により光線追跡が行われる。光線追跡は、ステップS202でBSDFが設定されていることから、通常の幾何光線追跡に加え、モンテカルロ法などの乱数を利用した光線追跡も行われる。そして、被測定物の散乱光強度分布が計算される。 In step S204, ray tracing is performed by calculation processing of a computer on the virtual measured-object measurement simulation model set in steps S201 to S203. In ray tracing, since BSDF is set in step S202, ray tracing using random numbers such as Monte Carlo method is also performed in addition to normal geometrical ray tracing. Then, the scattered light intensity distribution of the object to be measured is calculated.
 ここで、ステップS204について、散乱光線の動きを、再度図15を用いて説明する。
 ステップS204における光線追跡において、入射光が被測定物の被測定面に対して入射した場合、後方散乱光が発生する。この後方散乱光の一部の光線S1は、透過物質である平行平板20内で反射、全反射を繰り返して被測定面に再度入射する。この内部反射では、光照射部による光の入射角度と同じ角度で入射することは少ない。後方散乱光により入射した光による散乱は、Lambertian関数以外では、シフト・インバリアント(shift-invariant)散乱角の考え方が適用される。
Here, in step S204, the movement of the scattered light will be described again using FIG.
In the ray tracing in step S204, when the incident light is incident on the surface to be measured of the object to be measured, backscattered light is generated. A part of the light beam S1 of this backscattered light is repeatedly reflected and totally reflected in the parallel flat plate 20 which is a transmitting material, and is incident on the surface to be measured again. In this internal reflection, it is seldom to be incident at the same angle as the incident angle of light by the light emitting unit. Scattering by light incident by backscattered light applies the concept of shift-invariant scattering angle, except for the Lambertian function.
 シフト・インバリアント散乱角の考え方とは、入射角が変化しても散乱光強度分布の形状は変化しないと仮定した計算方法である。この処理の背景となる理論の詳細については、James E.Harvey 著「Light-ScatteringCharacteristics of Optical Surfaces」(博士論文、University of Arizona、1976年)に記載されている。 The concept of shift invariant scattering angle is a calculation method that assumes that the shape of the scattered light intensity distribution does not change even when the incident angle changes. Details of the theory behind this process are described in James E. Harvey, "Light-Scattering Characteristics of Optical Surfaces" (doctoral dissertation, University of Arizona, 1976).
 シフト・インバリアント散乱角の考え方では、被測定物の測定面に垂直に入射した光のBSDFの分布形状と、測定面に斜めに入射した光のBSDFの分布形状は同じことを意味している。このような仮定のもと、ステップS204では散乱光強度分布を計算することができる。 According to the shift-invariant scattering angle concept, the distribution shape of BSDF of light incident perpendicularly to the measurement surface of the object to be measured means the distribution shape of BSDF of light incident obliquely to the measurement surface the same. . Under such assumption, the scattered light intensity distribution can be calculated in step S204.
 ステップS205において、ステップS204で計算された散乱光強度分布とコンピュータの情報記憶部103に記憶されている「散乱光の測定情報」とを用いて、散乱光強度分布の各角度における一致度を算出する。 In step S205, the degree of coincidence at each angle of the scattered light intensity distribution is calculated using the scattered light intensity distribution calculated in step S204 and the "scattered light measurement information" stored in the information storage unit 103 of the computer. Do.
 値の一致度の計算には、計算された散乱光強度分布と散乱光の測定情報との差分を用い、P-V(Peak-Valley)値やRMS(Root-Mean-Square)値を評価値とする。 In calculating the degree of agreement of the values, the difference between the calculated scattered light intensity distribution and the measurement information of the scattered light is used to evaluate the value of P-V (Peak-Valley) value or RMS (Root-Mean-Square) value. I assume.
 ステップS206において、ステップS205で計算された評価値と、予め設定しておいた閾値との比較を行い、値が一致しているか否かの判断を行う。評価値が閾値より大きい場合、予め仮設定したBSDFの初期値を変更する処理を行う判断を行う。評価値が閾値より小さい場合、設定したBSDFが被測定物の被測定面のBSDFを良く表していることを示している。 In step S206, the evaluation value calculated in step S205 is compared with a preset threshold value to determine whether the values match. If the evaluation value is larger than the threshold value, it is determined to perform processing to change the initial value of BSDF temporarily set in advance. When the evaluation value is smaller than the threshold value, it indicates that the set BSDF well represents the BSDF of the surface to be measured of the object to be measured.
 ステップS206において、評価値が閾値より大きいと判断された場合、即ち判断結果が偽(No)の場合、ステップS207へ進む。
 ステップS207において、BSDFの初期値のパラメータを変更する。そして、ステップS204に戻り、コンピュータの演算処理により光線追跡が行われる。
If it is determined in step S206 that the evaluation value is larger than the threshold, that is, if the determination result is false (No), the process proceeds to step S207.
In step S207, the parameter of the initial value of BSDF is changed. Then, the process returns to step S204, and ray tracing is performed by arithmetic processing of the computer.
 ステップS204からステップS207までの処理は、評価値が閾値より小さくなるまで繰り返し行われる。つまり収束計算が行われる。この繰り返されるステップにより、被測定物の被測定面のBSDFを良く表すBSDFのパラメータを算出することができる。 The processes from step S204 to step S207 are repeated until the evaluation value becomes smaller than the threshold. That is, convergence calculation is performed. Through these repeated steps, it is possible to calculate the parameters of BSDF which well represent BSDF of the surface to be measured of the object to be measured.
 ここで、繰り返し計算を行っても、評価値が収束しない場合がある。この場合、ステップS202において設定したBSDFのモデル関数が異なる場合が考えられる。
 そこで、評価値が収束しない場合、ステップS202に戻り、BSDFのモデル関数を変更する工程が行われる。
Here, even if the calculation is repeated, the evaluation value may not converge. In this case, there may be a case where the BSDF model function set in step S202 is different.
Therefore, if the evaluation value does not converge, the process returns to step S202, and the process of changing the BSDF model function is performed.
 即ち、ステップS204からステップS207での繰り返し計算で評価値が閾値まで収束しない場合、不図示のステップによりBSDFのモデル関数を変更する。そして、ステップS202からBSDFのモデル関数を変更するステップを繰り返し計算するという新しい収束計算が追加される。 That is, when the evaluation value does not converge to the threshold value in the repetitive calculation from step S204 to step S207, the model function of the BSDF is changed in a step (not shown). Then, a new convergence calculation is added in which the step of changing the BSDF model function is repeatedly calculated from step S202.
 また、ステップS206の判断結果が真(Yes)の場合、データ処理は終了する。
 以上の処理により、被測定物の被測定面の散乱光情報を最も良く表すBSDFのモデル関数と、モデル関数を決めるパラメータが決定される。
If the determination result in step S206 is true (Yes), the data processing ends.
By the above processing, the model function of the BSF that best represents the scattered light information of the surface to be measured of the object to be measured and the parameters for determining the model function are determined.
 本実施形態の例では、入射光を被測定物の被測定面へ照射している。しかしながら、特に制限しているものではなく、例えば、被測定面の別の箇所に入射させること、被測定物全体を照射することでも良い。被測定物に光がどのように入射するかが明確になっていれば、特に規制する必要はないことは言うまでもない。 In the example of the present embodiment, incident light is irradiated to the surface to be measured of the object to be measured. However, there is no particular limitation, and for example, the light may be incident on another part of the surface to be measured, or the entire object to be measured may be irradiated. It is needless to say that there is no particular restriction if it is clear how light is incident on the object to be measured.
 以上述べたように、本実施形態の散乱光情報についての散乱光情報処理装置、散乱光情報処理方法、当該装置を備えこの方法を行う散乱光情報処理システムによれば、透過物質において、光学設計ソフトウエアに入力するパラメータの1つであるBSDFを取得することが可能になる。 As described above, according to the scattered light information processing system including the scattered light information processing apparatus and the scattered light information processing method for the scattered light information of the present embodiment and the apparatus and performing the method, the optical design of the transmissive material is performed. It becomes possible to obtain BSDF which is one of the parameters input to the software.
 そして、光学設計ソフトウエアでは、正規光以外の不要光が像面に到達した際に生じるゴーストやフレアについて光学設計シミュレーションをすることが可能になる。 Then, in the optical design software, it is possible to perform an optical design simulation for ghosts and flares that occur when unnecessary light other than the regular light reaches the image plane.
 また、本実施形態によれば、透過物質のBSDFにおいて、双方向透過率分布関数(BTDF)及び双方向反射率分布関数(BRDF)の両方を取得することができる。
 さらに、本実施形態の散乱光情報処理方法によれば、1つの面の散乱光情報であるBSDFを、散乱光の測定結果から、被測定物の外形である表裏面形状や外径、面間隔(厚さ)、こば部、面取り部、エッジ部及び、光学的性質である屈折率、光吸収率、蛍光等の被測定物内部の影響を考慮して、それらの影響を除くことで、正確にBSDFを算出することができる。このため、光学設計ソフトウエアにパラメータとして設定した際に、従来に対して高精度にシミュレーションをすることが可能になる。
Further, according to the present embodiment, in the transmitting material BSF, it is possible to obtain both the bidirectional transmittance distribution function (BTDF) and the bidirectional reflectance distribution function (BRDF).
Furthermore, according to the scattered light information processing method of the present embodiment, from the measurement result of scattered light, BSDF which is scattered light information of one surface, front and back surface shape and outer diameter which are the outer shape of the object to be measured (Thickness), ridges, chamfers, edges, and the effects of the optical properties such as refractive index, light absorptivity, fluorescence, etc., inside the object to be measured, and removing those effects, Accurately calculate BSDF. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
 本実施形態に関して、被測定物の形状やBSDFの特性によっては、散乱光情報についての散乱光情報処理装置、散乱光情報処理方法、当該装置を備えこの方法を行う散乱光情報処理システムの簡略化または高精度化が可能である。 In the present embodiment, a scattered light information processing apparatus for scattered light information, a scattered light information processing method for scattered light information, and a simplified scattered light information processing system including the apparatus and performing the method according to the shape of the object to be measured and the characteristics of BSDF. Or high precision is possible.
 簡略化、高精度化を実現する方法について具体的に説明をする。まず、以下の予測条件を満足する場合を仮定する。
 予測条件とは、BTDFとBRDFの散乱光強度分布形状のモデル関数とパラメータが同じ、かつ、入射光に対して、軸対称な散乱光強度分布である。
A method of realizing simplification and high precision will be specifically described. First, it is assumed that the following prediction conditions are satisfied.
The prediction condition is a scattered light intensity distribution having the same parameters as the model function of the scattered light intensity distribution shape of BTDF and BRDF, and being axially symmetrical with respect to incident light.
 上記の予測条件が成り立つ場合、図4のフローチャートのステップS202で指定する散乱光強度分布はBTDFとBRDFのモデル関数が同じになり、測定及び計算パラメータを減らすことができる。
 この予測条件は、被測定物が透過物質であることはもちろんのこと、被測定物は入射光に対して回転軸対称の場合で、かつ、入射光が被測定面に垂直に入射した場合に良く立つ仮定ある。
 また、表面粗さが照射光の波長以下の小さい凹凸の場合に精度良く成り立つモデルである。
If the above prediction conditions are satisfied, the scattered light intensity distribution designated in step S202 of the flowchart of FIG. 4 has the same BTDF and BRDF model functions, and the measurement and calculation parameters can be reduced.
The prediction condition is that, of course, the object to be measured is a transmitting material, and the object to be measured is rotationally symmetric with respect to the incident light, and the incident light is perpendicularly incident on the surface to be measured. There is a premise to stand well.
In addition, the surface roughness is a model that holds accurately in the case of small irregularities having a wavelength equal to or less than the wavelength of the irradiation light.
 具体的な例として、式4にモデル関数としてガウス関数を用い、BTDFとBRDFを表した場合を示す。 As a specific example, Equation 4 shows a case where BTDF and BRDF are expressed using a Gaussian function as a model function.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、軸対称な散乱光強度分布とすると、以下の式5が成立する。 Here, if it is set as axisymmetric scattered light intensity distribution, the following formula 5 is established.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、BTDFとBRDFのパラメータが同じという予測条件から、以下の式6、7が成立する。 Further, from the prediction condition that the parameters of BTDF and BRDF are the same, the following equations 6 and 7 hold.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 つまり、実質のパラメータは、P、P、σだけになる。また、PとPの関係は以下の式8で表される。ここで、xは、光吸収係数など散乱に寄与しない項目を表す。 That is, the real parameters are only P t , P r and σ. Further, the relationship between P t and P r is expressed by Equation 8 below. Here, x represents an item which does not contribute to scattering, such as a light absorption coefficient.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、Lは、入射光の光強度で、フローチャートのステップS201で必須の入力値になる。また、BTDFとBRDFは、前述のように、一般的には入射光の光強度で規格化した値である。このため、パラメータLを1とすることもできる。 Here, L is the light intensity of the incident light, which is an essential input value in step S201 of the flowchart. Further, as described above, BTDF and BRDF are values generally normalized by the light intensity of incident light. Therefore, the parameter L can be set to one.
 即ち、散乱光測定情報取得部104において、少なくとも被測定物を透過した散乱光強度分布または被測定物を反射した散乱光強度分布を被測定物への入射光の光強度で規格化した散乱光強度分布を取得することが望ましい。 That is, in the scattered light measurement information acquisition unit 104, at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured is normalized by the light intensity of incident light to the object to be measured It is desirable to obtain an intensity distribution.
 散乱光強度分布の情報取得は、入射光で規格化された透過または反射のどちらか一方で良く、他方は、一方から算出することができる。このため、最終的に算出するパラメータはP、σの2つのみである。つまり、散乱光強度分布の処理時間を短縮することが可能となる。また、受光部の駆動範囲も透過または反射の一方だけでよいので、測定装置の簡略化することも可能になる。 Information acquisition of the scattered light intensity distribution may be either transmission or reflection normalized by incident light, and the other can be calculated from one. Therefore, only two parameters, P t and σ, are finally calculated. That is, the processing time of the scattered light intensity distribution can be shortened. In addition, since the drive range of the light receiving unit only needs to be either transmission or reflection, the measurement apparatus can be simplified.
 さらに、上記予測条件による仮定のもとでは、前方方向の散乱光強度分布は、入射光に対して軸対称な散乱光強度分布である。このため、図6(a)に示すように受光部の受光範囲は、θ方向またはφ方向に0度から90度の範囲を測定すれば良い。 Furthermore, under the assumption based on the above prediction conditions, the scattered light intensity distribution in the forward direction is a scattered light intensity distribution that is axially symmetric with respect to the incident light. Therefore, as shown in FIG. 6A, the light receiving range of the light receiving unit may be measured in the range of 0 degrees to 90 degrees in the θ direction or the φ direction.
 以上の通り、本実施形態において、条件や仮定が成り立つ被測定物の場合、散乱光情報処理装置、測定方法及び散乱光情報処理方法の簡略化が可能である。または、全方向の測定データを取得していた場合は、平均化処理を実施することで測定誤差やノイズが平均されて高精度化をすることが可能である。 As described above, in the present embodiment, in the case of an object to be measured in which the conditions and the assumptions hold, the scattered light information processing apparatus, the measuring method, and the scattered light information processing method can be simplified. Alternatively, when measurement data in all directions have been acquired, it is possible to perform measurement processing with high accuracy by averaging measurement errors and noises by performing averaging processing.
 また、上記予測条件による仮定のうち、BTDFとBRDFの散乱光強度分布形状のモデル関数とパラメータが異なる場合は、図6(b)に示すように受光部の受光範囲は、θ方向またはφ方向に0度から180度の範囲を測定すれば良い。 Further, among the assumptions based on the above prediction conditions, when the model functions and the parameters of the scattered light intensity distribution shapes of BTDF and BRDF are different, the light receiving range of the light receiving part is θ direction or φ direction as shown in FIG. The range of 0 degrees to 180 degrees may be measured.
(第2実施形態)
 次に、第2実施形態の散乱光情報処理装置、測定方法、散乱光情報処理方法及び散乱光情報処理システムを説明する。
 図7は、第2実施形態の散乱光情報処理システムを示す機能ブロック図である。ここで、点線で囲んだ散乱光情報処理装置250の構成が第1実施形態と異なっている。
 第2実施形態の散乱光情報処理装置250について、第1実施形態の散乱光情報処理装置と同じ構成には同一の符号を付し、重複する説明は省略する。
Second Embodiment
Next, a scattered light information processing device, a measurement method, a scattered light information processing method, and a scattered light information processing system according to the second embodiment will be described.
FIG. 7 is a functional block diagram showing a scattered light information processing system according to the second embodiment. Here, the configuration of the scattered light information processing apparatus 250 surrounded by a dotted line is different from that of the first embodiment.
In the scattered light information processing apparatus 250 of the second embodiment, the same components as those of the scattered light information processing apparatus of the first embodiment are denoted by the same reference numerals, and the redundant description will be omitted.
 本実施形態では、図7に示すように、散乱光測定情報取得部104において、被測定物に対して複数の異なる入射角度で照射された光の散乱光強度分布の情報を取得する。
 さらに、散乱光測定情報取得部104で取得された散乱光強度分布の情報と被測定物モデルから計算した散乱光強度分布計算結果が一致するように、各入射角度の関数パラメータを仮関数パラメータとして算出する仮関数パラメータ算出部251と、散乱光測定情報取得部104において取得された散乱光強度分布の情報と、被測定物モデルに対して各入射角度の仮関数パラメータの少なくとも一部を用いて算出した散乱光強度分布計算結果とが一致するように仮関数パラメータを調整して最終的な関数パラメータを決定する関数パラメータ決定部252とをさらに有している。
In the present embodiment, as shown in FIG. 7, the scattered light measurement information acquisition unit 104 acquires information on the scattered light intensity distribution of light irradiated to the object at a plurality of different incident angles.
Furthermore, the function parameter of each incident angle is used as a provisional function parameter so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit 104 matches the scattered light intensity distribution calculation result calculated from the object model Using the information of the scattered light intensity distribution acquired by the provisional function parameter calculator 251 and the scattered light measurement information acquiring unit 104 to be calculated, and at least a part of the provisional function parameters of each incident angle with respect to the object model The apparatus further includes a function parameter determination unit 252 that adjusts the provisional function parameters so as to match the calculated scattered light intensity distribution calculation result and determines a final function parameter.
 これにより、以下に述べるように、複数の入射角度での散乱測定情報を用い、1つの面の散乱光情報であるBSDFを、被測定物の表面形状のみならず、裏面の表面形状や外径、面間隔(厚さ)、こば部、面取り部、エッジ部等の外形、光学的性質である屈性率、透過率、反射率、光吸収率や蛍光等の被測定物内部の影響を考慮して、算出することができるため、1つの入射角度を用いて算出したBSDFより、高精度に散乱情報を算出することが可能になる。このため、光学設計ソフトウエアにパラメータとして設定した際に、従来に対して高精度にシミュレーションをすることが可能になる。 Thereby, as described below, using scattered measurement information at a plurality of incident angles, BSDF which is scattered light information of one surface is not only the surface shape of the object to be measured but also the surface shape and outer diameter of the back surface , Spacing (thickness), external shape of ridges, chamfers, edges, etc., optical properties such as refractive index, transmittance, reflectance, light absorptivity, fluorescence, etc. Since the calculation can be performed in consideration, it is possible to calculate the scattering information with high accuracy from BSDF calculated using one incident angle. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
 第1実施形態に比較して、散乱光測定方法及び散乱光情報の処理方法が異なる。具体的には、第2実施形態では、散乱光測定方法において、入射光の入射角度を複数変化させて、それぞれの入射角度における散乱光の測定情報を取得する点が、第1実施形態と異なる。さらに、散乱光情報の処理方法では、入射光の入射角度を複数変化させて取得した散乱光の測定情報を利用して、BSDFを算出する点が異なる。 Compared to the first embodiment, the method of measuring scattered light and the method of processing scattered light information are different. Specifically, in the second embodiment, the scattered light measurement method differs from the first embodiment in that measurement information of scattered light at each incident angle is obtained by changing a plurality of incident angles of incident light. . Furthermore, the method of processing scattered light information is different in that BSDF is calculated using measurement information of scattered light acquired by changing a plurality of incident angles of incident light.
 次に、散乱光情報処理システム150の構成について説明する。
 散乱光情報処理装置250は、散乱光情報処理システム150と一体または、別体の一つまたは別のコンピュータの内部に配置されている。
Next, the configuration of the scattered light information processing system 150 will be described.
The scattered light information processing device 250 is disposed integrally with the scattered light information processing system 150 or in one or another separate computer.
 制御部110は、散乱光情報処理装置250の制御の他、光照射部101、受光部102、情報記憶部103の制御を行う。
 情報記憶部103は、「測定条件の情報」と、「被測定物の情報」と「散乱光の測定情報」の記憶をつかさどる。散乱光情報処理装置250は、「測定条件の情報」及び「被測定物の情報」、「散乱光の測定情報」からBSDFを算出する散乱光情報に関する制御を行う。
The control unit 110 controls the light irradiation unit 101, the light receiving unit 102, and the information storage unit 103 in addition to the control of the scattered light information processing apparatus 250.
The information storage unit 103 manages storage of “information of measurement condition”, “information of object to be measured” and “measurement information of scattered light”. The scattered light information processing apparatus 250 performs control on scattered light information for calculating BSDF from “information of measurement condition”, “information of object to be measured”, and “measurement information of scattered light”.
 本実施形態では、上述の第1実施形態に比較して、さらに高精度にBSDFを算出することができるという効果を奏する。 The present embodiment has an effect that BSDF can be calculated with higher accuracy as compared with the above-described first embodiment.
 次に、本実施形態の散乱光情報処理方法の手順について説明する。
 図9は、第2実施形態の散乱光情報処理方法のうちの散乱光の測定の手順について説明するフローチャートである。
Next, the procedure of the scattered light information processing method of the present embodiment will be described.
FIG. 9 is a flowchart illustrating the procedure of measuring scattered light in the scattered light information processing method according to the second embodiment.
 本実施形態では、図9のステップS301において、第1実施形態と同様に、散乱光情報処理装置250による測定開始に際して、コンピュータの制御部110に測定条件の情報が設定される。ここで、第2実施形態では、第1実施形態において格納される情報に対して、新たに入射光の入射角度の範囲と、その範囲内での分割数の設定が測定条件情報として追加して設定される。 In the present embodiment, in step S301 in FIG. 9, information of measurement conditions is set in the control unit 110 of the computer at the start of measurement by the scattered light information processing apparatus 250 as in the first embodiment. Here, in the second embodiment, with respect to the information stored in the first embodiment, the setting of the incident angle range of incident light and the number of divisions within the range are added as measurement condition information. It is set.
 本実施形態では、図8に示すように、光照射部101と受光部102とは、駆動部305により、被測定物に対する相対的な位置が変化するように駆動される。 In the present embodiment, as shown in FIG. 8, the light emitting unit 101 and the light receiving unit 102 are driven by the driving unit 305 so as to change the relative position with respect to the object to be measured.
 例えば、入射角度θiが0度(垂直入射)から89度の範囲を5度ずつ分割して測定する条件が設定される。また、第1実施形態と同様に、被測定物の情報も同時に設定される。
 以上の、測定条件の情報と、被測定物の情報は、コンピュータに送られて情報記憶部103aに格納される。
For example, a condition where the incident angle theta i is determined by dividing by 5 degrees range 89 ° 0 ° (normal incidence) is set. Further, similarly to the first embodiment, the information of the object to be measured is also set at the same time.
The information on the measurement condition and the information on the object to be measured are sent to the computer and stored in the information storage unit 103a.
 ステップ302において、受光部102は、コンピュータから送られてきた制御情報に基づいて、被測定物の測定面を中心に2次元及び/または3次元に移動し、被測定面からの散乱光を受光する。 In step 302, based on the control information sent from the computer, the light receiving unit 102 moves in two dimensions and / or three dimensions centering on the measurement surface of the object to be measured, and receives scattered light from the measurement surface. Do.
 次に、受光部102が受光した複数の散乱光の測定情報は、コンピュータに送られ散乱光強度分布測定データ記憶部103bに格納される。
 ここで、入射光の入射角度の測定範囲(0から89度)における散乱光の測定情報を、以下のように表す。
Next, measurement information of the plurality of scattered lights received by the light receiving unit 102 is sent to the computer and stored in the scattered light intensity distribution measurement data storage unit 103 b.
Here, measurement information of scattered light in the measurement range (0 to 89 degrees) of the incident angle of incident light is represented as follows.
 FS(θni) ・・・○測定データ
 BS(θni) ・・・△測定データ
FS (θ ni ) · · · ○ measurement data BS (θ ni ) · · · △ measurement data
 ここで、FSは被測定面に対して、前方向の散乱光強度分布を示し、BSは被測定物に対して、後方向の散乱光強度分布を示す。FS、BS共にθの関数で、θniは被測定面への入射光の入射角度を表し、niは、ni=1、2、3、・・・とし、θni= 0、5、10、15、20、・・・85とする。 Here, FS indicates the scattered light intensity distribution in the forward direction with respect to the surface to be measured, and BS indicates the scattered light intensity distribution in the backward direction with respect to the object to be measured. Both FS and BS are functions of θ, θ ni represents an incident angle of incident light to the surface to be measured, ni is ni = 1, 2, 3,..., Θ ni = 0, 5, 10, It is assumed that 15, 20, ... 85.
 ステップS303において、入射光の入射角度と予め設定した測定条件の情報とを比較判断する。ステップS303の判断結果が真の場合、散乱測定を終了する。 In step S303, the incident angle of the incident light and information of measurement conditions set in advance are compared and determined. If the determination result in step S303 is true, the scattering measurement is ended.
 ステップS303の判断結果が偽の場合、ステップS304へ進む。ステップS304において、入射光の入射角度が変更される。そして、ステップS301、S302、S303を繰り返す。 If the determination result of step S303 is false, the process proceeds to step S304. In step S304, the incident angle of incident light is changed. Then, steps S301, S302, and S303 are repeated.
 このように、本実施形態では、被測定物への入射光の入射角度が所定の範囲内で分割数分取得されるまで、S301からS304の測定が繰り返される。
 ここで散乱光の測定情報は、説明を簡略するために、1断面で測定した時の状態を示している。つまり、入射光の入射角度と受光部の角度は、θ方向にだけ限定して動いたことと仮定する。
 次に、コンピュータでは、以上の「測定条件の情報」及び「被測定物の情報」、「散乱光の測定情報」を用いて、散乱光情報処理装置250にて所定の処理が行われて、BSDFが算出される。
As described above, in the present embodiment, the measurement of S301 to S304 is repeated until the incident angle of the incident light to the object to be measured is acquired for the number of divisions within the predetermined range.
Here, the measurement information of the scattered light indicates a state when it is measured in one cross section in order to simplify the description. In other words, it is assumed that the incident angle of the incident light and the angle of the light receiving portion move only in the θ direction.
Next, in the computer, a predetermined process is performed in the scattered light information processing apparatus 250 using the above “information of measurement condition”, “information of object to be measured”, and “measurement information of scattered light”, BSDF is calculated.
 この散乱光情報処理装置250でのデータ処理方法について、説明する。図10は、散乱光情報処理装置250でのデータ処理方法を説明するフローチャートである。散乱光情報処理装置250は、BSDFの算出することを目的とする処理を行う。
 本実施形態が上述の第1実施形態と異なる点は、複数の入射角度で測定した「散乱光の測定情報」を用いる点である。
A data processing method in the scattered light information processing apparatus 250 will be described. FIG. 10 is a flowchart for explaining the data processing method in the scattered light information processing apparatus 250. The scattered light information processing apparatus 250 performs processing intended to calculate BSDF.
The present embodiment is different from the above-described first embodiment in that “scattered light measurement information” measured at a plurality of incident angles is used.
 ステップS401、S402、S403、S404、S405、S406、S407の手順は、図4のフローチャートにおけるステップS201、S202、S203、S204、S205、S206、S207と同じ処理を行う。このため、重複する説明は省略する。なお、ステップS401において、測定光の入射角度はθniとする。そして、入射角度θniは測定光で小さい値(鋭角)から入力する。 The procedures of steps S401, S402, S403, S404, S405, S406, and S407 perform the same processes as steps S201, S202, S203, S204, S205, S206, and S207 in the flowchart of FIG. For this reason, duplicate explanations are omitted. In step S401, the incident angle of the measurement light is θ ni . Then, the incident angle θ ni is input from a small value (acute angle) with the measurement light.
 ステップS408では、算出された複数の入射角度でのBSDFを「仮BSDF」とする。具体的には、○測定データ、△測定データより、それぞれ仮BSDFを算出する。
  仮BSDF(θni ) (ni=1、2、3、・・・、θni = 0、5、10、15、20、・・・85)
In step S408, BSDF at a plurality of calculated incident angles is set as "provisional BSDF". Specifically, provisional BSDFs are calculated from ○ measurement data and △ measurement data, respectively.
Temporary BSDF (θ ni ) (ni = 1, 2, 3,..., Θ ni = 0, 5, 10, 15, 20, ... 85)
 ステップS409では、入射角度θniが一番大きい角度であるか否かが判断される。すなわち、ここでは測定条件に設定したすべての入射角度に対して、それぞれ(仮)BSDFが算出されていることを判断する。
 ステップS409の判断結果が偽(No)の場合、ステップS410へ進む。
In step S409, it is determined whether the incident angle θ ni is the largest angle. That is, it is determined that (temporarily) BSDF is calculated for all incident angles set in the measurement conditions.
If the determination result of step S409 is false (No), the process proceeds to step S410.
 ステップS410において、入射角度を次の角度に変更して、ステップS402からステップS408の処理が行われる。 In step S410, the incident angle is changed to the next angle, and the processing from step S402 to step S408 is performed.
 次に、ステップS411以降において、再度、各入射角度でのBSDFを算出する。この際、各入射角度で算出した「仮BSDF」を被測定物測定シミュレーションモデルに設定して、再度各入射角度でのBSDFを算出する計算を実施する。 Next, after step S411, BSDF at each incident angle is calculated again. At this time, “temporary BSDF” calculated at each incident angle is set in the measurement object measurement simulation model, and calculation to calculate BSDF at each incident angle is performed again.
 ここで、本実施形態では、上述の第1実施形態に比較して、さらに計算精度が向上する。その理由について説明する。 Here, in the present embodiment, the calculation accuracy is further improved as compared with the above-described first embodiment. The reason is explained.
 ステップS401、S402、S403、S404、S405、S406、S407の手順は、上述したように、第1実施形態と同じ処理である。ここでは、被測定物内の計算においてシフト・インバリアントの考え方を適用している。 The procedure of steps S401, S402, S403, S404, S405, S406, and S407 is the same processing as that of the first embodiment as described above. Here, the concept of shift invariant is applied to the calculation within the object to be measured.
 ここで、実際には、被測定物への入射角度によって散乱光強度分布が異なる。特に、入射角度が大きくなると、シフト・インバリアントの考え方との乖離が大きくなることが知られている。 Here, in practice, the scattered light intensity distribution differs depending on the incident angle to the object to be measured. In particular, it is known that the deviation from the idea of shift invariant increases as the incident angle increases.
 そこで、ステップS411からS419においては、シフト・インバリアントの考え方を用いず、各入射角度での算出した仮BSDFを利用して、BSDFを求める。このように各入射角度での散乱光強度分布を考慮して再計算することで、計算精度が向上する。 Therefore, in steps S411 to S419, BSDF is determined using the provisional BSDF calculated at each incident angle without using the concept of shift invariant. The calculation accuracy is improved by recalculating in consideration of the scattered light intensity distribution at each incident angle as described above.
 ステップS411において、算出したすべての入射角度における仮BSDFを設定する。ステップS412において、散乱光強度分布を計算する。
 ステップS413において、ステップS412で計算された散乱光強度分布と、コンピュータの散乱光強度分布測定データ記憶部103bに格納されている「散乱光の測定情報」とを用いて比較する。ステップS414において、各角度における散乱光強度分布の一致度を算出し、判断する。
In step S411, temporary BSDFs at all calculated incident angles are set. In step S412, the scattered light intensity distribution is calculated.
In step S413, the scattered light intensity distribution calculated in step S412 is compared with the "scattered light measurement information" stored in the scattered light intensity distribution measurement data storage unit 103b of the computer. In step S414, the degree of coincidence of the scattered light intensity distribution at each angle is calculated and judged.
 一致度の計算には、各角度における計算された散乱光強度分布と散乱光の測定情報との差分を用いる。そして、P-V(Peak-Valley)値やRMS(Root-Mean-Square)を評価値とする。 The calculation of the degree of coincidence uses the difference between the calculated scattered light intensity distribution at each angle and the measurement information of the scattered light. Then, a PV (Peak-Valley) value and an RMS (Root-Mean-Square) are used as evaluation values.
 ステップS414において、ステップS412で計算された評価値と、予め設定しておいた閾値との比較を行う。ステップS414において、評価値が閾値より大きい場合、即ち判断結果が偽の場合、ステップS415へ進む。 In step S414, the evaluation value calculated in step S412 is compared with a preset threshold value. In step S414, if the evaluation value is larger than the threshold value, that is, if the determination result is false, the process proceeds to step S415.
 ステップS415において、予め仮設定した仮BSDFを変更する処理を、入射角度が小さい角度(鋭角)から順に行う。評価値が閾値より小さい場合、設定した仮BSDFが被測定物の被測定面のBSDFを良い精度で表していることを示している。 In step S <b> 415, processing for changing a provisional BSDF temporarily set in advance is performed in order from an angle with a small incident angle (acute angle). When the evaluation value is smaller than the threshold value, it indicates that the set temporary BSDF represents BSDF of the surface to be measured of the object to be measured with good accuracy.
 ステップS414において、評価値が閾値より大きいと判断された場合、ステップS415へ進む。ステップS415において、仮BSDFのパラメータを変更する処理が行われる。そして、ステップS412に戻り、光線追跡が行われる。 If it is determined in step S414 that the evaluation value is larger than the threshold, the process proceeds to step S415. In step S415, a process of changing the parameters of temporary BSDF is performed. Then, the process returns to step S412, and ray tracing is performed.
 ステップS412、S413、S414、S415までの処理は、評価値が閾値より小さくなるまで繰り返し行われる。即ち、収束計算が行われる。
 この繰り返されるステップにより、被測定物の被測定面のBSDFを良く表す仮BSDFのパラメータを算出することができる。
The processes of steps S412, S413, S414, and S415 are repeatedly performed until the evaluation value becomes smaller than the threshold. That is, convergence calculation is performed.
Through the repeated steps, it is possible to calculate the parameters of the provisional BSF that well represent BSD of the surface to be measured of the object to be measured.
 ステップS416では、ステップS414で決定した新しい仮BSDFを利用して、入射角度θniが一番大きい角度か否かが判断される。ステップS416の判断結果が偽の場合、ステップS417において、仮関数パラメータ算出部251(図7)は、入射角度θniを次の角度に変更して、次の入射角度θniでの仮BSDFを設定する。そして、次の角度に変更した後、ステップS411、S412、S413、S414、S415、S416、S417の処理が行われる。 In step S416, it is determined whether the incident angle θ ni is the largest angle using the new temporary BSDF determined in step S414. If the determination result in step S416 is false, in step S417, the temporary function parameter calculation unit 251 (FIG. 7) changes the incident angle θ ni to the next angle to change the temporary BSDF at the next incident angle θ ni. Set Then, after changing to the next angle, the processes of steps S411, S412, S413, S414, S415, S416, and S417 are performed.
 ステップS416の判断結果が真の場合、ステップS418では、ステップS411からステップS417までの処理が繰り返し行われ、各入射角度における仮BSDFの値が収束するまで計算される。そして、ステップS418において、仮BSDF値が収束したか否かが判断される。収束判断は、各仮BSDFの変化が最小になったか否かで判断する。 If the determination result in step S416 is true, in step S418, the processing from step S411 to step S417 is repeated, and calculation is performed until the value of temporary BSDF at each incident angle converges. Then, in step S418, it is determined whether the tentative BSDF value has converged. The convergence judgment is made based on whether or not the change of each temporary BSDF is minimized.
 ステップS418の判断結果が偽の場合、ステップS419へ進む。ステップS419において、関数パラメータ決定部252(図7)は、BSDF関数のパラメータを変更して、決定する。 If the determination result in step S418 is false, the process proceeds to step S419. In step S419, the function parameter determination unit 252 (FIG. 7) changes and determines the parameters of the BSDF function.
 ステップS418の判断結果が真の場合、データ処理は終了する。以上の手順処理により、被測定物の被測定面の散乱光情報を最も良く表すBSDFのモデル関数と、モデル関数を決めるパラメータが決定される。 If the determination result in step S418 is true, the data processing ends. Through the above-described procedure, the model function of the BSF that best represents the scattered light information of the surface to be measured of the object to be measured and the parameters for determining the model function are determined.
 本実施形態により散乱光情報処理システム150、このシステム150が備える散乱光情報処理装置250、及びこの装置250が実行する散乱光情報処理方法によれば、透過物質において、光学設計ソフトウエアに入力するパラメータの1つであるBSDFを取得することが可能になる。 According to the present embodiment, the scattered light information processing system 150, the scattered light information processing device 250 provided in the system 150, and the scattered light information processing method executed by the device 250 are input to the optical design software in the transmissive material. It becomes possible to obtain BSDF which is one of the parameters.
 そして、光学設計ソフトウエアでは、正規光以外の不要光が像面に到達した際に生じるゴーストやフレアについて光学設計シミュレーションをすることが可能になる。
 また、本実施形態によれば、透過物質のBSDFにおいて、双方向透過率分布関数(BTDF)及び双方向反射率分布関数(BRDF)の両方を取得することができる。
Then, in the optical design software, it is possible to perform an optical design simulation for ghosts and flares that occur when unnecessary light other than the regular light reaches the image plane.
Further, according to the present embodiment, in the transmitting material BSF, it is possible to obtain both the bidirectional transmittance distribution function (BTDF) and the bidirectional reflectance distribution function (BRDF).
 さらに、本実施形態の散乱光情報の処理方法によると、1つの面の散乱光情報であるBSDFを、被測定物の表面形状のみならず、裏面の表面形状や外径、面間隔(厚さ)、こば部、面取り部、エッジ部等の外形や光学的性質である屈折率、透過率、反射率、光吸収率や蛍光など被検物内部の影響を考慮して、正確にBSDFを算出することができる。このため、光学設計ソフトウエアにパラメータとして設定した際に、従来に対して高精度にシミュレーションをすることが可能になる。 Furthermore, according to the method of processing scattered light information of the present embodiment, BSDF which is scattered light information of one surface is not only the surface shape of the object to be measured, but also the surface shape and outer diameter of the back surface, and the spacing (thickness Bsf) correctly taking into consideration the influence of the inside of the test object such as refractive index, transmittance, reflectance, light absorptance and fluorescence which are the outer shape and optical properties such as ridges, chamfers, and edges, etc. It can be calculated. For this reason, when it sets as a parameter to optical design software, it becomes possible to simulate with high accuracy to the former.
(第2実施形態の変形例)
 次に、第2実施形態の変形例について説明する。図11は、本変形例の散乱光情報処理方法の手順を示すフローチャートである。
(Modification of the second embodiment)
Next, a modification of the second embodiment will be described. FIG. 11 is a flowchart showing the procedure of the scattered light information processing method of the present modification.
 本変形例は、上述の第2実施形態に比較して、それぞれの入射角度における散乱光の測定情報を、順次利用して仮BSDFを算出している点で異なる。散乱光情報処理装置250でのデータ処理方法について、説明する。 The present modification differs from the second embodiment in that the measurement information of the scattered light at each incident angle is sequentially used to calculate the tentative BSDF. A data processing method in the scattered light information processing apparatus 250 will be described.
 まず、ステップS501からS506までは、第1実施形態におけるステップS201からS207と実質的に同様の処理を実施する。なお、入射角度θniは、小さい角度(鋭角)から入力する。 First, in steps S501 to S506, substantially the same processing as in steps S201 to S207 in the first embodiment is performed. The incident angle θ ni is input from a small angle (acute angle).
 ステップS507において、入射角度θniのときに算出されたBSDFを「仮BSDF」とする。
 ステップS508において、入射光の入射角度θniの情報に基づき、入射角度θniが一番大きい角度か否かが判断される。ステップS508の判断結果が偽の場合、ステップS509へ進む。
In step S507, the BSDF calculated at the incident angle θ ni is taken as a “provisional BSDF”.
In step S508, based on the information of the incident angle θ ni of the incident light, it is determined whether the incident angle θ ni is the largest angle. If the determination result of step S508 is false, the process proceeds to step S509.
 ステップS509において、ここまでに算出された仮BSDF(θni)をすべて利用して、測定光の入射角度θniを次の角度に変更する。そして、ステップS501からステップS507の処理が行われる。 In step S 509, the incident angle θ ni of the measurement light is changed to the next angle using all of the temporary BSDF (θ ni ) calculated up to this point. Then, the processing from step S501 to step S507 is performed.
 この際、ステップS504において、それ以前までに算出した仮BSDFも利用して、次の入射角度の仮BSDFを算出する。つまり、第2実施形態の測定光情報の処理方法では、ステップS402からステップS410において、それぞれの入射角度における仮BSDF(θni)を個別に算出していた。 Under the present circumstances, in step S504, temporary BSDF of the next incident angle is calculated using temporary BSDF calculated by then. That is, in the processing method of the measurement light information of the second embodiment, the tentative BSDF (θ ni ) at each incident angle is calculated individually in step S402 to step S410.
 これに対して、本変形例では、仮BSDF(θni)を算出する際に、以前までに算出した入射角度の仮BSDF(仮BSDF(θ(ni-1))から仮BSDF(θ(ni=0)))を考慮しながら、それぞれの入射角度の仮BSDFを算出している点が異なる。 On the other hand, in this modification, when calculating the tentative BSDF (θ ni ), the estimated BSDF (provisional BSDF (θ (ni-1) ) of the incident angle calculated up to the moment is calculated as the tentative BSDF (θ (ni The point which is calculating the temporary BSDF of each incident angle in consideration of = 0) )) differs.
 これにより、それぞれの入射角度での散乱光強度分布を考慮して計算することで、高精度にBSDFを算出することができるという効果が得られる。さらに、第2実施形態の測定光情報の処理方法に対して、ステップS507までにそれぞれの入射角度での散乱光強度分布を考慮して計算された仮BSDFを取得できる。このため、ステップS501からステップS509の処理が効率化され、処理速度が速くなる効果を奏する。 As a result, by calculating in consideration of the scattered light intensity distribution at each incident angle, it is possible to obtain an effect that BSDF can be calculated with high accuracy. Furthermore, in the processing method of the measurement light information according to the second embodiment, it is possible to obtain the temporary BSDF calculated in consideration of the scattered light intensity distribution at each incident angle up to step S507. As a result, the processing from step S501 to step S509 can be streamlined, and the processing speed can be increased.
 上述の第1実施形態、第2実施形態について、被測定物の被測定面以外に散乱光を発生させる場所がないとして説明を進めてきた。これに限定されず、被測定物面以外に散乱光を発生させる場所が複数個所存在してもよい。 The above first and second embodiments have been described on the assumption that there is no place to generate the scattered light other than the measured surface of the object to be measured. The present invention is not limited to this, and there may be a plurality of places for generating scattered light other than the surface of the object to be measured.
 被測定面以外の散乱光を発生させる場所については、予め別の方法でBSDFを算出しておき、被測定物の情報として入力してもよい。また、繰り返し計算の中で、計算パラメータの1つとして設定してもよい。 With respect to the place to generate scattered light other than the measurement surface, BSDF may be calculated in advance by another method, and may be input as information of the measurement object. Also, it may be set as one of the calculation parameters in the repeated calculation.
 また、第1実施形態、第2実施形態について、被測定物として平行平板を用いている。これに限られず、カメラなどの撮像装置や内視鏡などに用いられる光学素子のように、透過物資で両表面が曲率半径を有するサンプルでも測定可能であることはいうまでもない。この場合、散乱光の情報処理部において、被測定物の情報に曲率半径を設定すれば良い。また、レンズなどの被測定物に反射防止コートなどが施してある場合はコート条件を被測定物の情報に追加すれば良い。さらに、こば部、面取り部、エッジ部等においても同様に適用できる。 Further, in the first and second embodiments, parallel flat plates are used as the object to be measured. It is needless to say that the present invention is not limited to this, and it is possible to measure even a sample of which both surfaces have a radius of curvature with a permeable material such as an imaging device such as a camera or an optical element used for an endoscope. In this case, the radius of curvature may be set in the information of the object to be measured in the information processing unit for the scattered light. When an antireflective coating or the like is applied to an object to be measured such as a lens, the coating conditions may be added to the information on the object to be measured. Furthermore, the present invention can be similarly applied to a flange portion, a chamfered portion, an edge portion and the like.
 以上のように、本発明は、被測定物として、透過部分を有する光学素子の散乱光の強度分布を高い精度で測定できる散乱光情報処理方法、散乱光情報処理装置及び散乱光情報処理システムに適している。 As described above, the present invention provides a scattered light information processing method, a scattered light information processing apparatus, and a scattered light information processing system capable of measuring the intensity distribution of scattered light of an optical element having a transmitting portion as an object to be measured with high accuracy. Is suitable.
 100 散乱光情報処理システム
 101 光照射部
 102 受光部
 103 情報記憶部
 104 散乱光測定情報取得部
 105 関数パラメータ設定部
 106 モデル生成部
 107 散乱光強度分布算出部
 108 関数パラメータ算出処理部
 110 制御部
 200 散乱光情報処理装置
100 scattered light information processing system 101 light irradiation unit 102 light receiving unit 103 information storage unit 104 scattered light measurement information acquisition unit 105 function parameter setting unit 106 model generation unit 107 scattered light intensity distribution calculation unit 108 function parameter calculation processing unit 110 control unit 200 Scattered light information processing device

Claims (24)

  1.  被測定物の散乱光情報を処理する散乱光情報処理方法であって、
     前記被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
     前記被測定物に対して所定の角度で照射された光の散乱光強度分布の情報を取得する散乱光測定情報取得工程と、
     前記被測定物の形状と光学的性質と前記散乱光強度分布の測定条件から、被測定物モデルを作成するモデル生成工程と、
     前記被測定物モデルに対して、少なくとも前記被測定物を透過した出射側の散乱光情報を表す関数のパラメータを設定する関数パラメータ設定工程と、
     前記被測定物モデルに基づいて計算により散乱光強度分布計算結果を算出する散乱光強度分布算出工程と、
     前記散乱光測定情報取得工程において取得された散乱光強度分布の情報と、前記被測定物モデルに基づいて計算により算出された散乱光強度分布計算結果と、が一致するよう前記関数パラメータを算出する関数パラメータ算出処理工程と、
    を有することを特徴とする散乱光情報処理方法。
    A scattered light information processing method for processing scattered light information of an object to be measured, comprising:
    The object to be measured is an optical element composed of a substance at least a part of which transmits light,
    A scattered light measurement information acquiring step of acquiring information of a scattered light intensity distribution of light irradiated to the object to be measured at a predetermined angle;
    A model generation step of creating an object model from the shape and optical properties of the object and the measurement conditions of the scattered light intensity distribution;
    A function parameter setting step of setting a parameter of a function representing at least scattered light information on an output side transmitted through the object to the object model;
    A scattered light intensity distribution calculating step of calculating a scattered light intensity distribution calculation result by calculation based on the object model;
    The function parameter is calculated such that the information of the scattered light intensity distribution acquired in the scattered light measurement information acquiring step and the scattered light intensity distribution calculation result calculated by calculation based on the object model match. Function parameter calculation processing step;
    A scattered light information processing method comprising:
  2.  前記関数パラメータ設定工程にてパラメータを設定する前記関数は、前記被測定物モデルに対して、前記光学素子の測定面の入射側で反射した散乱光情報及び前記被測定物を透過した出射側の散乱光情報を表す関数であることを特徴とする請求項1に記載の散乱光情報処理方法。 The function to set the parameter in the function parameter setting step is the scattered light information reflected on the incident side of the measurement surface of the optical element and the outgoing side transmitted to the measured object with respect to the measured object model. The scattered light information processing method according to claim 1, which is a function representing scattered light information.
  3.  前記散乱光測定情報取得工程において取得する散乱光強度分布の情報は、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布であり、
     モデル生成工程において入力する散乱光強度分布の測定条件には、少なくとも散乱光の強度分布測定の際に前記被測定物へ入射した光の光強度が含まれていることを特徴とする請求項1または2に記載の散乱光情報処理方法。
    The information of the scattered light intensity distribution acquired in the scattered light measurement information acquiring step is at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected on the object to be measured,
    The measurement conditions of the scattered light intensity distribution input in the model generation step include at least the light intensity of the light incident on the object at the time of measuring the intensity distribution of the scattered light. Or the scattered light information processing method as described in 2.
  4.  前記散乱光情報取得工程において、少なくとも前記被測定物を透過した散乱光強度分布の一部の情報または前記被測定物を反射した散乱光強度分布の一部の情報を取得することを特徴とする請求項3に記載の散乱光測定情報処理方法。 The scattered light information acquiring step is characterized by acquiring at least a part of information of a scattered light intensity distribution transmitted through the object or a part of a scattered light intensity distribution reflected by the object. The scattered light measurement information processing method according to claim 3.
  5.  前記散乱光測定情報取得工程において、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布を前記被測定物への入射光の光強度で規格化した散乱光強度分布を取得することを特徴とする請求項1~4の何れか一項に記載の散乱光情報処理方法。 In the scattered light measurement information acquiring step, at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured is normalized by the light intensity of incident light to the object to be measured The scattered light information processing method according to any one of claims 1 to 4, wherein a light intensity distribution is acquired.
  6.  前記散乱光測定情報取得工程において取得する散乱光強度分布の情報は、被測定物を透過した光の散乱光強度分布及び被測定物を反射した光の散乱光強度分布であることを特徴とする請求項1~5の何れか一項に記載の散乱光情報処理方法。 The information of the scattered light intensity distribution acquired in the scattered light measurement information acquiring step is a scattered light intensity distribution of light transmitted through the object to be measured and a scattered light intensity distribution of light reflected on the object to be measured. The scattered light information processing method according to any one of claims 1 to 5.
  7.  前記被測定物の形状と光学的性質は、前記被測定物である前記光学素子の曲率半径、光学的厚さ、屈折率を少なくとも含むことを特徴とする請求項1~6の何れか一項に記載の散乱光情報処理方法。 The shape and optical properties of the object to be measured include at least a radius of curvature, an optical thickness, and a refractive index of the optical element as the object to be measured. The scattered light information processing method according to claim 1.
  8.  散乱光測定情報取得工程において、前記被測定物に対して複数の異なる入射角度で照射された光の散乱光強度分布の情報を取得し、
     関数パラメータ算出処理工程は、前記散乱光測定情報取得工程で取得された散乱光強度分布の情報と被測定物モデルから計算した散乱光強度分布計算結果が一致するように、各入射角度の関数パラメータを仮関数パラメータとして算出する仮関数パラメータ算出工程と、
     前記散乱光測定情報取得工程において取得された散乱光強度分布の情報と、被測定物モデルに対して各入射角度の仮関数パラメータの少なくとも一部を用いて算出した散乱光強度分布計算結果とが一致するように仮関数パラメータを調整して最終的な関数パラメータを決定する関数パラメータ決定工程を有することを特徴とする請求項1または2に記載の散乱光情報処理方法。
    In the scattered light measurement information acquiring step, information of scattered light intensity distribution of light irradiated to the object to be measured at a plurality of different incident angles is acquired,
    The function parameter calculation processing step is a function parameter of each incident angle so that the information of the scattered light intensity distribution acquired in the scattered light measurement information acquiring step matches the scattered light intensity distribution calculation result calculated from the object model A provisional function parameter calculation step of calculating as a provisional function parameter;
    The information of the scattered light intensity distribution acquired in the scattered light measurement information acquiring step and the scattered light intensity distribution calculation result calculated using at least a part of the provisional function parameters of each incident angle with respect to the object model The scattered light information processing method according to claim 1 or 2, further comprising a function parameter determination step of adjusting a provisional function parameter so as to coincide with each other to determine a final function parameter.
  9.  被測定物の散乱光情報を処理する散乱光情報処理装置であって、
     前記被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
     前記被測定物に対して所定の角度で照射された光の散乱光強度分布の情報を取得する散乱光測定情報取得部と、
     前記被測定物の形状と光学的性質と前記散乱光強度分布の測定条件から、被測定物モデルを作成するモデル生成部と、
     前記被測定物モデルに対して、少なくとも前記被測定物を透過した出射側の散乱光情報を表す関数のパラメータを設定する関数パラメータ設定部と、
     前記被測定物モデルに基づいて計算により散乱光強度分布計算結果を算出する散乱光強度分布算出部と、
     前記散乱光測定情報取得部において取得された散乱光強度分布の情報と、前記被測定物モデルに基づいて計算により算出された散乱光強度分布計算結果と、が一致するよう前記関数パラメータを算出する関数パラメータ算出処理部と、
    を有することを特徴とする散乱光情報処理装置。
    A scattered light information processing apparatus for processing scattered light information of an object to be measured, comprising:
    The object to be measured is an optical element composed of a substance at least a part of which transmits light,
    A scattered light measurement information acquisition unit that acquires information of a scattered light intensity distribution of light irradiated to the object at a predetermined angle;
    A model generation unit that generates an object model from the shape and optical properties of the object to be measured and the measurement conditions of the scattered light intensity distribution;
    A function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to the object model;
    A scattered light intensity distribution calculating unit that calculates a scattered light intensity distribution calculation result by calculation based on the object model;
    The function parameter is calculated such that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit and the scattered light intensity distribution calculation result calculated by calculation based on the object model match. A function parameter calculation processing unit,
    A scattered light information processing apparatus characterized by having:
  10.  前記関数パラメータ設定部にてパラメータを設定する前記関数は、前記被測定物モデルに対して、前記光学素子の測定面の入射側で反射した散乱光情報及び前記被測定物を透過した出射側の散乱光情報を表す関数であることを特徴とする請求項9に記載の散乱光情報処理装置。 The function for setting the parameter in the function parameter setting unit is the scattered light information reflected on the incident side of the measurement surface of the optical element and the outgoing side transmitted through the object with respect to the object model. 10. The scattered light information processing apparatus according to claim 9, which is a function representing scattered light information.
  11.  前記散乱光測定情報取得部において取得する散乱光強度分布の情報は、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布であり、
     モデル生成部において入力する散乱光強度分布の測定条件には、少なくとも散乱光の強度分布測定の際に前記被測定物へ入射した光の光強度が含まれていることを特徴とする請求項9または10に記載の散乱光情報処理装置。
    The information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit is at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured,
    The measurement condition of the scattered light intensity distribution input in the model generation unit includes at least the light intensity of the light incident on the object at the time of the measurement of the scattered light intensity distribution. Or the scattered light information processing apparatus as described in 10.
  12.  前記散乱光情報取得部において、少なくとも前記被測定物を透過した散乱光強度分布の一部の情報または前記被測定物を反射した散乱光強度分布の一部の情報を取得することを特徴とする請求項11に記載の散乱光測定情報処理装置。 The scattered light information acquisition unit is characterized by acquiring at least a part of information of a scattered light intensity distribution transmitted through the object or a part of a scattered light intensity distribution reflected by the object. The scattered light measurement information processing apparatus according to claim 11.
  13.  前記散乱光測定情報取得部において、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布を前記被測定物への入射光の光強度で規格化した散乱光強度分布を取得することを特徴とする請求項9~12の何れか一項に記載の散乱光情報処理装置。 In the scattered light measurement information acquiring unit, at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured is normalized by the light intensity of incident light to the object to be measured The scattered light information processing apparatus according to any one of claims 9 to 12, wherein a light intensity distribution is acquired.
  14.  前記散乱光測定情報取得部において取得する散乱光強度分布の情報は、被測定物を透過した光の散乱光強度分布及び被測定物を反射した光の散乱光強度分布であることを特徴とする請求項9~13の何れか一項に記載の散乱光情報処理装置。 The information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit is a scattered light intensity distribution of light transmitted through the object to be measured and a scattered light intensity distribution of light reflected on the object to be measured. The scattered light information processing apparatus according to any one of claims 9 to 13.
  15.  前記被測定物の形状と光学的性質は、前記被測定物である前記光学素子の曲率半径、光学的厚さ、屈折率を少なくとも含むことを特徴とする請求項9~14の何れか一項に記載の散乱光情報処理装置。 The shape and optical properties of the object to be measured include at least a radius of curvature, an optical thickness, and a refractive index of the optical element as the object to be measured. The scattered light information processing apparatus according to claim 1.
  16.  散乱光測定情報取得部において、前記被測定物に対して複数の異なる入射角度で照射された光の散乱光強度分布の情報を取得し、
     さらに、前記散乱光測定情報取得部で取得された散乱光強度分布の情報と被測定物モデルから計算した散乱光強度分布計算結果が一致するように、各入射角度の関数パラメータを仮関数パラメータとして算出する仮関数パラメータ算出部と、
     前記散乱光測定情報取得部において取得された散乱光強度分布の情報と、被測定物モデルに対して各入射角度の仮関数パラメータの少なくとも一部を用いて算出した散乱光強度分布計算結果とが一致するように仮関数パラメータを調整して最終的な関数パラメータを決定する関数パラメータ決定部を有することを特徴とする請求項9または10に記載の散乱光情報処理装置。
    The scattered light measurement information acquiring unit acquires information on the scattered light intensity distribution of the light irradiated to the object at a plurality of different incident angles,
    Furthermore, the function parameter of each incident angle is used as a provisional function parameter so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit matches the scattered light intensity distribution calculation result calculated from the object model A provisional function parameter calculation unit to calculate
    The information of the scattered light intensity distribution acquired by the scattered light measurement information acquisition unit and the scattered light intensity distribution calculation result calculated using at least a part of the provisional function parameters of each incident angle with respect to the object model 11. The scattered light information processing apparatus according to claim 9, further comprising a function parameter determination unit that adjusts a provisional function parameter so as to coincide with each other to determine a final function parameter.
  17.  被測定物の散乱光を測定し散乱光情報を処理する散乱光情報処理システムであって、
     前記被測定物は、少なくとも一部が光を透過する物質で構成される光学素子であり、
     前記被測定物に対して所定の角度で光を照射する光照射部と、
     少なくとも前記被測定物で散乱した光を受光する散乱光測定部と、
     前記散乱光測定部で受光した情報に基づき、前記被測定物の散乱光強度分布の情報を取得する散乱光測定情報取得部と、
     前記被測定物の形状と光学的性質と前記散乱光強度分布の測定条件を記憶する情報記憶部と、
     前記記憶された形状と光学的性質と測定条件から、被測定物モデルを作成するモデル生成部と、
     前記被測定物モデルに対して、少なくとも前記被測定物を透過した出射側の散乱光情報をあらわす関数のパラメータを設定する関数パラメータ設定部と、
     前記被測定物モデルから計算により散乱光強度分布計算結果を算出する散乱光強度分布算出部と、
     前記散乱光測定情報取得部で取得された散乱光強度分布の情報と、前記被測定物モデルから計算により算出された散乱光強度分布計算結果と、が一致するよう前記関数パラメータを算出する関数パラメータ算出処理部と、
    を有することを特徴とする散乱光情報処理システム。
    A scattered light information processing system that measures scattered light of an object to be measured and processes scattered light information,
    The object to be measured is an optical element composed of a substance at least a part of which transmits light,
    A light irradiation unit that irradiates light at a predetermined angle with respect to the object to be measured;
    A scattered light measurement unit that receives at least light scattered by the object to be measured;
    A scattered light measurement information acquisition unit that acquires information of the scattered light intensity distribution of the object based on the information received by the scattered light measurement unit;
    An information storage unit for storing the shape and optical properties of the object to be measured and measurement conditions of the scattered light intensity distribution;
    A model generation unit that generates an object model from the stored shape, optical properties, and measurement conditions;
    A function parameter setting unit configured to set a parameter of a function representing at least scattered light information on an output side transmitted through the object to the object model;
    A scattered light intensity distribution calculation unit that calculates a scattered light intensity distribution calculation result by calculation from the object model;
    Function parameter for calculating the function parameter so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit and the scattered light intensity distribution calculation result calculated by the calculation from the object model match A calculation processing unit,
    A scattered light information processing system characterized by having.
  18.  前記散乱光測定部は、前記被測定物で散乱及び反射した光を受光する受光部を有し、
     前記関数パラメータ設定部にてパラメータを設定する前記関数は、前記被測定物モデルに対して、前記光学素子の測定面の入射側で反射した散乱光情報及び前記被測定物を透過した出射側の散乱光情報を表す関数であることを特徴とする請求項17に記載の散乱光情報処理システム。
    The scattered light measurement unit includes a light receiving unit that receives light scattered and reflected by the object to be measured.
    The function for setting the parameter in the function parameter setting unit is the scattered light information reflected on the incident side of the measurement surface of the optical element and the outgoing side transmitted through the object with respect to the object model. 18. The scattered light information processing system according to claim 17, which is a function representing scattered light information.
  19.  前記散乱光測定情報取得部において取得する散乱光強度分布の情報は、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布であり、
     モデル生成部において入力する散乱光強度分布の測定条件には、少なくとも散乱光の強度分布測定の際に前記被測定物へ入射した光の光強度が含まれていることを特徴とする請求項17または18に記載の散乱光情報処理システム。
    The information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit is at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured,
    The measurement conditions of the scattered light intensity distribution input in the model generation unit include at least the light intensity of the light incident on the object at the time of the measurement of the scattered light intensity distribution. Or the scattered light information processing system as described in 18.
  20.  前記散乱光情報取得部において、少なくとも前記被測定物を透過した散乱光強度分布の一部の情報または前記被測定物を反射した散乱光強度分布の一部の情報を取得することを特徴とする請求項19に記載の散乱光測定情報処理システム。 The scattered light information acquisition unit is characterized by acquiring at least a part of information of a scattered light intensity distribution transmitted through the object or a part of a scattered light intensity distribution reflected by the object. The scattered light measurement information processing system according to claim 19.
  21.  前記散乱光測定情報取得部において、少なくとも前記被測定物を透過した散乱光強度分布または前記被測定物を反射した散乱光強度分布を前記被測定物への入射光の光強度で規格化した散乱光強度分布を取得することを特徴とする請求項17~20の何れか一項に記載の散乱光情報処理システム。 In the scattered light measurement information acquiring unit, at least a scattered light intensity distribution transmitted through the object to be measured or a scattered light intensity distribution reflected from the object to be measured is normalized by the light intensity of incident light to the object to be measured The scattered light information processing system according to any one of claims 17 to 20, which acquires a light intensity distribution.
  22.  前記散乱光測定情報取得部において取得する散乱光強度分布の情報は、被測定物を透過した光の散乱光強度分布及び被測定物を反射した光の散乱光強度分布であることを特徴とする請求項17~21の何れか一項に記載の散乱光情報処理システム。 The information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit is a scattered light intensity distribution of light transmitted through the object to be measured and a scattered light intensity distribution of light reflected on the object to be measured. The scattered light information processing system according to any one of claims 17 to 21.
  23.  前記被測定物の形状と光学的性質は、前記被測定物である前記光学素子の曲率半径、光学的厚さ、屈折率を少なくとも含むことを特徴とする請求項17~22の何れか一項に記載の散乱光情報処理システム。 The shape and optical properties of the object to be measured include at least a radius of curvature, an optical thickness, and a refractive index of the optical element as the object to be measured. Scattered light information processing system described in.
  24.  散乱光測定情報取得部において、前記被測定物に対して複数の異なる入射角度で照射された光の散乱光強度分布の情報を取得し、
     さらに、前記散乱光測定情報取得部で取得された散乱光強度分布の情報と被測定物モデルから計算した散乱光強度分布計算結果が一致するように、各入射角度の関数パラメータを仮関数パラメータとして算出する仮関数パラメータ算出部と、
     前記散乱光測定情報取得部において取得された散乱光強度分布の情報と、被測定物モデルに対して各入射角度の仮関数パラメータの少なくとも一部を用いて算出した散乱光強度分布計算結果とが一致するように仮関数パラメータを調整して最終的な関数パラメータを決定する関数パラメータ決定部を有することを特徴とする請求項17または18に記載の散乱光情報処理システム。
    The scattered light measurement information acquiring unit acquires information on the scattered light intensity distribution of the light irradiated to the object at a plurality of different incident angles,
    Furthermore, the function parameter of each incident angle is used as a provisional function parameter so that the information of the scattered light intensity distribution acquired by the scattered light measurement information acquiring unit matches the scattered light intensity distribution calculation result calculated from the object model A provisional function parameter calculation unit to calculate
    The information of the scattered light intensity distribution acquired by the scattered light measurement information acquisition unit and the scattered light intensity distribution calculation result calculated using at least a part of the provisional function parameters of each incident angle with respect to the object model The scattered light information processing system according to claim 17 or 18, further comprising a function parameter determination unit that adjusts a provisional function parameter so as to coincide with each other to determine a final function parameter.
PCT/JP2014/074676 2013-12-19 2014-09-18 Scattered-light-information processing method, scattered-light-information processing device, and scattered-light-information processing system WO2015093115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553403A JP6173486B2 (en) 2013-12-19 2014-09-18 Scattered light information processing method, scattered light information processing apparatus, and scattered light information processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-262091 2013-12-19
JP2013262091 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093115A1 true WO2015093115A1 (en) 2015-06-25

Family

ID=53402472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074676 WO2015093115A1 (en) 2013-12-19 2014-09-18 Scattered-light-information processing method, scattered-light-information processing device, and scattered-light-information processing system

Country Status (2)

Country Link
JP (1) JP6173486B2 (en)
WO (1) WO2015093115A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180703A (en) * 2008-02-01 2009-08-13 Canon Inc Information processing apparatus and method
JP2009300165A (en) * 2008-06-11 2009-12-24 Shimadzu Corp Scattering characteristic evaluating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180703A (en) * 2008-02-01 2009-08-13 Canon Inc Information processing apparatus and method
JP2009300165A (en) * 2008-06-11 2009-12-24 Shimadzu Corp Scattering characteristic evaluating apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUHIRO MUKAIGAWA: "Measurement and Modeling of Reflection and Scattering", IPSJ SIG NOTES, vol. 2010 -CV, no. 34, 15 June 2010 (2010-06-15), pages 1 - 11 *

Also Published As

Publication number Publication date
JPWO2015093115A1 (en) 2017-03-16
JP6173486B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP4964135B2 (en) A method for measuring a three-dimensional object using the optical law of light propagation by the shadow graph method using a single viewpoint optical system.
TWI420081B (en) Distance measuring system and distance measuring method
CN108662993A (en) A kind of Surface roughness measurement system based on optical scattering principle
CN108920869B (en) MPO focusing imaging performance analysis method based on grazing incidence X-ray optical simulation
CN104792798A (en) Total internal reflection illumination technology-based subsurface damage measuring apparatus and method thereof
CN105277133A (en) Method for calculating a height map of a body of transparent material having an inclined or curved surface
JP2012141311A (en) Apparatus for measuring transmissivity of patterned glass substrate
CN104197865B (en) Implementation method of laser auto-collimator with laser beam guide function
US10151581B2 (en) Method and device for determining the position and orientation of a specular surface forming a diopter
JP2018515747A (en) Method and apparatus for determining surface data and / or measurement data relating to the surface of an at least partly transparent object
JP2018515747A5 (en)
CN106018432A (en) Large-size optical lens surface quality detection method and system
JP2009015180A (en) Interference objective lens
JP5197600B2 (en) Method for non-contact measurement of a two-layer three-dimensional object with a single viewpoint optical ombre scope
CN103063413A (en) Integrated long-focus measuring device based on Talbot-moire technology
García-Fernández et al. Light losses in hollow, prismatic light guides related to prism defects: a transmittance model
WO2015093115A1 (en) Scattered-light-information processing method, scattered-light-information processing device, and scattered-light-information processing system
TWI553291B (en) System for measuring transparent object by fringe projection
CN107421720B (en) Optical testing device and method for underwater back scattering transfer function
KR20240035795A (en) Method and system for verifying parallelism between internal facets
CN105091797A (en) Intensity correlated autocollimator for single-CCD
IT201800005143A1 (en) Method for checking an object made of transparent material and related control system
JP2023056759A (en) Surface measurement device and surface measurement method
CN108152302A (en) A kind of detection device and method of curved optical device beauty defects
CN110440715B (en) Error compensation method of photoelectric autocollimator under long-distance working condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872513

Country of ref document: EP

Kind code of ref document: A1