WO2015090100A1 - 特高压直流输电工程换流器在线投入与退出控制方法 - Google Patents

特高压直流输电工程换流器在线投入与退出控制方法 Download PDF

Info

Publication number
WO2015090100A1
WO2015090100A1 PCT/CN2014/087808 CN2014087808W WO2015090100A1 WO 2015090100 A1 WO2015090100 A1 WO 2015090100A1 CN 2014087808 W CN2014087808 W CN 2014087808W WO 2015090100 A1 WO2015090100 A1 WO 2015090100A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
inverter
bypass
bps
firing angle
Prior art date
Application number
PCT/CN2014/087808
Other languages
English (en)
French (fr)
Inventor
李艳梅
李泰�
李少华
魏巍
Original Assignee
国家电网公司
许继集团有限公司
许继电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 许继集团有限公司, 许继电气股份有限公司 filed Critical 国家电网公司
Publication of WO2015090100A1 publication Critical patent/WO2015090100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a converter retracting strategy for a UHV DC transmission project.
  • Figure 1 shows the current series connection of two poles of ⁇ 800kv UHV DC transmission project.
  • Each pole can be operated in series with two converters, or it can be operated independently by a single inverter and put into or out under extreme operating conditions. One converter does not affect the normal operation of another inverter on the same pole.
  • the present invention provides a new control method for input and exit of an inverter, which is used to solve the problem that the existing control mode has a long return time, a large reactive power impact on the AC system, and control logic. More complex problems minimize transients (overvoltage, overcurrent) during startup, while allowing a smooth change in active and reactive power.
  • the inverter input control method for UHV DC transmission engineering is as follows:
  • the pole control layer sends the valve group input command, the trigger angle is taken over by the SCA, and the trigger angle is set to 164° by the phase shift command;
  • valve block is unlocked, the bypass circuit breaker and the isolating switch are closed, the bypass isolating switch is disconnected, and the valve block and the bypass circuit breaker are shunted in parallel.
  • phase shift command disappears and the SCA module uses the PI regulator to track the bridge arm. The difference between the current and the neutral line current, the output firing angle;
  • the UHV DC transmission engineering converter online exit control method the steps are as follows:
  • the firing angle of the inverter valve CV1 of the inverter station is commanded to decrease to 90 degrees with a certain slope, and the valve group voltage is close to 0;
  • the firing angle of the rectifier valve CV1 of the rectifier station is commanded to rise to 90 degrees with a certain slope, and the valve group voltage is close to 0;
  • the invention adopts the trigger angle control of the shielding layer of the valve control layer SCA (starting control amplifier), and outputs
  • the self-calculated firing angle is such that the voltage across the valve block is zero.
  • the PI regulator is used to track the valve block current. After the current in the bypass breaker BPS drops to the breaking capacity, it is pulled open to complete the online input process of the valve group. . In the exit process, the trigger angle of the current control amplifier output is limited, and then the bypass is turned on and latched to complete the DC current transfer, thereby realizing the online exit of the valve group.
  • the beneficial effects of the invention are: the retreat is relatively fast, the transient state (overvoltage and overcurrent) during the startup process is relatively small, the reactive power impact on the AC system is small, and the voltage, current, active power, reactive power in the process of retreating and retreating
  • the change process is smoother and the control logic is simpler.
  • Figure 1 is a wiring diagram of series bipolar operation
  • 2 is a SCA port diagram of a firing angle calculation module
  • Figure 3 is a port diagram of the startup module CV_START and the input module CV_IFO;
  • Figure 4 is a block diagram of the inverter trigger control system
  • Figure 5 is a control logic diagram of the SCA module.
  • the port IDIFF_SCA indicates that the difference between the bridge arm current and the neutral line current of the converter valve to be input is the differential input of SCA;
  • O_START_SCA is the SCA start command;
  • O_RETARD_SCA is the SCA phase shift command;
  • ALPHA_ORD_POLE is the pole power The firing angle sent by the control layer;
  • ALPHA_ORD_SCA outputs the firing angle calculated by SCA;
  • ALPHA_ORD is the firing angle input to the converter valve.
  • MC is the main controller
  • VDCOL is the low voltage current limiter
  • CCA is the current control amplifier
  • CFC is the trigger controller
  • CPG is the control pulse generator
  • CMU is the current measurement unit
  • IO_FR_PPC is the current command of the pole power control output
  • ⁇ Io is the current margin compensation value
  • IORD is the final current command
  • FIR_TIME is two consecutive The time interval of the trigger pulse
  • CP is the trigger pulse.
  • the retreat CV1 is taken as an example.
  • the premise of online investment is that CV2 has been put into steady-state operation. The principle is to first input the rectifier station and then the inverter station.
  • the CV_START module After receiving the start command from the pole control layer, the CV_START module issues the O_START_SCA command, and the trigger angle is taken over by SCA.
  • O_START_SCA When the O_START_SCA command is set to 1, the SCA takes over the firing angle control, and the ALPHA_ORD_SCA is set to 164° by the phase shift command; when the O_START_SCA command is set to 0, the pole control layer CCA takes over the firing angle control.
  • O_START_SCA is set to 1 condition: the pole control layer releases the valve group input command; the condition that O_START_SCA is set to 0: BPS is disconnected, and
  • the current forms a passage through the bypass disconnector; after the valve block is unlocked, the bypass breaker and the isolating switch are closed, the bypass isolating switch is disconnected, and CV1 and BPS are shunted in parallel.
  • the CV_START module issues the BPS open command and the trigger angle hold command, and the SCA keeps the trigger angle unchanged, and waits for a period of time to wait for the BPS to open smoothly;
  • CV_START issues the open bypass switch BPS command. After the BPS is turned on for a period of time, the CV_IFO releases the valve group to enter the running command, indicating that the inverter is in full operation.
  • U dio is the no-load DC voltage
  • U dioN is the rated no-load DC voltage
  • I d is the DC current
  • I dN is the rated DC current
  • d x is the relative inductive voltage drop
  • d r is the relative resistive voltage drop
  • is the firing angle.
  • U dio and I d are real-time measured values; U dioN , I dN , d x , and d r are set values.
  • U dio 230kV
  • U dioN 230kV
  • the firing angle of the inverter valve CV1 is commanded to decrease to 90 degrees with a certain slope, and the voltage of the CV1 valve block is close to 0;
  • the firing angle of the rectifier valve CV1 of the rectifier station is commanded to rise to 90 degrees with a certain slope, and the voltage of the CV1 valve block is close to 0;
  • the bypass breaker BPS has an arc extinguishing capability. When the voltage across the circuit breaker is 0, and the current flowing through the zero point is generated, the BPS is pulled apart. At the moment when the switch contacts are separated, the resistance of the circuit breaker is much larger than the resistance of the isolation blade, and the current on it will turn immediately. Go to the isolation knife gate, so that the bypass breaker is smoothly broken.
  • the firing valve firing angle is lowered/raised to 90° with a certain slope.
  • the valve group voltage is close to 0, and then bypassed by the bypass, locked, and finally isolated.
  • the valve completes the DC current transfer process, and the DC current is transferred to the bypass isolation switch to form a current path.
  • the valve group exit process has nothing to do with the SCA module. It limits the firing angle of the current control amplifier output, then bypasses and locks, completes the DC current transfer, and realizes the online exit of the valve group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种特高压直流输电工程换流器在线投入与退出控制方法,通过SCA屏蔽极层的触发角控制,输出自己计算的触发角,使阀组两端电压为零;同时利用PI调节器跟踪阀组电流,待旁通断路器BPS中电流下降到开断容量后,拉开,完成阀组的在线投入过程。在退出过程中,通过对电流控制放大器输出的触发角进行限制,然后投旁通对、闭锁,完成直流电流的转移,实现阀组的在线退出。上述方法投退比较快速,启动过程中的暂态(过电压、过电流)比较小,对交流系统的无功冲击小,且投退过程中电压、电流、有功、无功的变化过程更加平滑,控制逻辑比较简单。

Description

特高压直流输电工程换流器在线投入与退出控制方法 技术领域
本发明涉及一种特高压直流输电工程换流器投退策略。
背景技术
图1是现有±800kv特高压直流输电工程换流器串联双极接线方式,每极可以2个换流器串联运行,也可单个换流器独立运行,并在极运行状态下投入或退出某个换流器而不影响同极另一个换流器的正常运行。
目前,国内特高压直流输电工程均采用双12脉动阀组串联的接线方式,存在多种运行方式,因此需研究单换流器在线投/退策略,而现有换流器投退策略的时间很长,启动顺序控制逻辑比较复杂,对系统的无功支撑要求很高,投入时在整流侧和逆变侧直流系统的无功消耗为正常完整运行方式的2倍甚至更高,对于正蓬勃发展的特高压直流输电系统,没有比较快速、对交流系统的无功冲击小,控制逻辑比较简单的换流器投退策略,不能满足技术发展的要求。
发明内容
为克服上述现有技术的不足,本发明提供了一种新的换流器投入与退出的控制方法,用于解决现有控制方式投退时间长、对交流系统的无功冲击大、控制逻辑比较复杂的问题,使启动过程中的暂态(过电压、过电流)最小化,同时使有功功率和无功功率有一个平滑的变化过程。
特高压直流输电工程换流器在线投入控制方法,步骤如下:
1),极控层下发阀组投入命令,触发角转由SCA接管,通过移相命令,使触发角被设定为164°;
2),阀组解锁,合上旁通断路器和隔离开关,断开旁通隔离开关,阀组和旁通断路器并联分流。同时,移相命令消失,SCA模块利用PI调节器跟踪桥臂 电流与中性线路电流的差值,输出触发角;
3),当|桥臂电流-中性线路电流|≤0.015(此时换流器触发角等于SCA计算的角度)时,允许打开BPS命令产生,SCA保持触发角不变,等待旁通断路器打开;
4),旁通断路器打开后,若|桥臂电流-中性线路电流|≤0.1,触发角重新由极控制层的电流控制放大器接管,CV_IFO模块发出投入运行命令,投入的换流器进入完全运行状态。
当桥臂电流与线路电流差值的绝对值达到设定值时,经过延时后,允许打开旁通断路器。
特高压直流输电工程换流器在线退出控制方法,步骤如下:
1)通过对电流控制放大器输出的触发角进行限制,命令逆变站站换流阀CV1触发角以一定斜率下降到90度,此时阀组电压接近为0;
2)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
3)闭合逆变站旁通断路器BPS,电流转移到BPS中;
4)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
5)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流阀CV1,直流电流转移到旁通隔离开关中;
6)通过对电流控制放大器输出的触发角进行限制,命令整流站换流阀CV1触发角以一定斜率上升到90度,此时阀组电压接近为0;
7)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
8)闭合逆变站旁通断路器BPS,电流转移到BPS中;
9)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
10)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流器,直流电流转移到旁通隔离开关中。
本发明通过阀控层SCA(启动控制放大器)屏蔽极层的触发角控制,输出 自己计算的触发角,使阀组两端电压为零;同时利用PI调节器跟踪阀组电流,待旁通断路器BPS中电流下降到开断容量后,拉开,完成阀组的在线投入过程。在退出过程中,是通过对电流控制放大器输出的触发角进行限制,然后投旁通对、闭锁,完成直流电流的转移,实现阀组的在线退出。
本发明的有益效果是:投退比较快速,启动过程中的暂态(过电压、过电流)比较小,对交流系统的无功冲击小,且投退过程中电压、电流、有功、无功的变化过程更加平滑,控制逻辑比较简单。
附图说明
图1是串联双极运行接线图;
图2是触发角计算模块SCA端口图;
图3是启动模块CV_START和投入模块CV_IFO的端口图;
图4是换流器触发控制系统框图;
图5是SCA模块控制逻辑图。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
首先对以下说明中涉及的与换流阀控制相关的现有技术手段进行简单的说明。SCA、启动控制放大器,CV_START、阀组启动模块,CV_IFO、阀组投入模块,它们的端口和连接图如图2、3所示,这些模块都属于现有产品,ABB等电气厂商均有制造。
在图2中,端口IDIFF_SCA表示将待投入的换流阀的桥臂电流与中性线路电流的差值作为SCA的差分输入;O_START_SCA为SCA启动命令;O_RETARD_SCA为SCA移相命令;ALPHA_ORD_POLE为极功率控制层送来的触发角;ALPHA_ORD_SCA输出的是SCA计算出的触发角;ALPHA_ORD为输入到换流阀的触发角。
在图4中,MC是主控制器;VDCOL是低压限流器;CCA是电流控制放大器; CFC是触发控制器;CPG是控制脉冲发生器;CMU是电流测量单元;IO_FR_PPC是极功率控制输出的电流指令;△Io是电流裕度补偿值;IORD是最终的电流指令;FIR_TIME是两个连续触发脉冲的时间间隔;CP是触发脉冲。
如图1所示,对于每极的两换流器,在投入与退出过程的说明中,均以投退CV1为例。在线投入的前提是CV2已经投入稳态运行,其遵循的原则是:先投入整流站,后投入逆变站。
整流或逆变站在线投入CV1的过程如下:
1)CV_START模块收到来自极控制层的启动命令后,下达O_START_SCA命令,触发角由SCA接管。
2)O_RETARD_SCA命令产生,通过最大限幅使SCA输出的触发角指令ALPHA_ORD_SCA=164°。
当O_START_SCA命令置1时,SCA接管触发角控制,通过移相命令,使ALPHA_ORD_SCA被设定为164°;当O_START_SCA命令置0时,极控层CCA接管触发角控制。O_START_SCA置1的条件:极控层下达阀组投入命令;O_START_SCA置0的条件:BPS断开,且|IDFF_SCA|≤0.1。
3)阀组解锁,合上旁通断路器和隔离开关,断开旁通隔离开关,CV1和BPS并联分流,O_RETARD_SCA置0。之后SCA模块在一个PI调节器(输入误差信号为IDIFF_SCA=流过CV1的桥臂电流-中性线路电流,相当于流过BPS的电流)的作用下,CV1的触发角从164度下降到80°~105°的某个值;关于PI调节器和SCA控制逻辑,见图5。
阀组解锁前,电流通过旁通隔离开关形成通路;阀组解锁后,要合上旁通断路器和隔离开关,断开旁通隔离开关,CV1和BPS并联分流。
4)当|IDIFF_SCA|≤0.015,且达到20ms之后,流过BPS的电流会产生过零点,允许打开BPS命令产生。此时CV1触发角等于SCA计算的触发角(整流站大概在85度左右,逆变站大概在90度左右)。
5)CV_START模块下达BPS打开命令和触发角保持命令,SCA保持触发角不变,延时一段时间等待BPS顺利打开;
6)当BPS打开后,若|IDIFF_SCA|≤0.1,O_START_SCA置0,触发角重新由极控制层的电流控制放大器接管,CV_IFO模块发出投入运行命令,换流器进入完全运行状态。
CV_START发出打开旁通开关BPS命令,BPS打开一段时间后,CV_IFO下达阀组投入运行命令,表示换流器进入完全运行状态。
在触发角由SCA接管后,SCA计算触发角依据的公式为:
Figure PCTCN2014087808-appb-000001
式中,Udio为空载直流电压;UdioN为额定空载直流电压;Id为直流电流;IdN为额定直流电流;dx为相对感性压降;dr为相对阻性压降;α为触发角。Udio、Id为实时测量值;UdioN、IdN、dx、dr为设定值。
其中,Udio=230kV,UdioN=230kV,
dx=9.2%,dr=0.3%,
Figure PCTCN2014087808-appb-000002
当Ud=0时,可求得α≈85°
即换流器触发角等于85°时,阀组两端电压为0。
在线退出CV1的过程如下:
在线退出的前提CV1、CV2已经投入稳态运行,其遵循的原则是:先退出逆变站,后退出整流站。
(一)在线退出逆变站换流器(逆变站与整流站中器件对应相同,故未区分标号)
1)通过对电流控制放大器输出的触发角进行限制,命令逆变站换流阀CV1触发角以一定斜率下降到90度,此时CV1阀组电压接近为0;
2)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
3)闭合逆变站旁通断路器BPS,电流转移到BPS中;
4)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
5)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流阀,直流电流转移到旁通隔离开关中。
(二)在线退出整流站换流器
1)通过对电流控制放大器输出的触发角进行限制,命令整流站换流阀CV1触发角以一定斜率上升到90度,此时CV1阀组电压接近为0;
2)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
3)闭合逆变站旁通断路器BPS,电流转移到BPS中;
4)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
5)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流阀,直流电流转移到旁通隔离开关中。
旁通断路器、旁通隔离开关操作过程分析:
旁通断路器BPS,具有熄弧能力。当断路器两端电压为0,且流过其电流产生过零点时,拉开BPS,在开关触头分离的瞬间,断路器电阻会远大于隔离刀闸的电阻,其上的电流会马上转到隔离刀闸上,从而使旁通断路器顺利断弧。
通过对电流控制放大器输出的触发角进行限制,使换流阀触发角以一定斜率下降/上升到90°,此时阀组电压接近为0,然后通过投旁通对、闭锁,最终隔离换流阀,完成直流电流的转移过程,使直流电流转移到旁通隔离开关中,形成电流通路。
阀组退出过程与SCA模块无关,是通过对电流控制放大器输出的触发角进行限制,然后投旁通对、闭锁,完成直流电流的转移,实现阀组的在线退出。
以上给出一种具体的实施方式,但本发明不局限于所描述的实施方式。本发明的基本思路在于上述方案,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (3)

  1. 特高压直流输电工程换流器在线投入控制方法,其特征在于,步骤如下:
    1),极控层下发阀组投入命令,触发角转由SCA接管,通过移相命令,使触发角被设定为164°;
    2),阀组解锁,合上旁通断路器和隔离开关,断开旁通隔离开关,阀组和旁通断路器并联分流;同时,移相命令消失,SCA模块利用PI调节器跟踪桥臂电流与中性线路电流的差值,输出触发角;
    3),当|桥臂电流-中性线路电流|≤0.015(此时换流器触发角等于SCA计算的角度)时,允许打开BPS命令产生,SCA保持触发角不变,等待旁通断路器打开;
    4),旁通断路器打开后,若|桥臂电流-中性线路电流|≤0.1,触发角重新由极控制层的电流控制放大器接管,CV_IFO模块发出投入运行命令,投入的换流器进入完全运行状态。
  2. 根据权利要求1所述的特高压直流输电工程换流器在线投入控制方法,其特征在于,当桥臂电流与线路电流差值的绝对值达到设定值时,经过延时后,允许打开旁通断路器。
  3. 特高压直流输电工程换流器在线退出控制方法,其特征在于,步骤如下:
    1)通过对电流控制放大器输出的触发角进行限制,命令逆变站站换流阀CV1触发角以一定斜率下降到90度,此时阀组电压接近为0;
    2)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
    3)闭合逆变站旁通断路器BPS,电流转移到BPS中;
    4)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
    5)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流阀CV1,直流电流转移到旁通隔离开关中;
    6)通过对电流控制放大器输出的触发角进行限制,命令整流站换流阀CV1触发角以一定斜率上升到90度,此时阀组电压接近为0;
    7)投入逆变站旁通对(BPPO),为直流电流提供一个电流通道;
    8)闭合逆变站旁通断路器BPS,电流转移到BPS中;
    9)闭锁逆变站换流阀,在电流过零时换流阀停止导通;
    10)闭合旁通隔离开关BPI,拉开BPS,打开隔离开关AI、CI,从而隔离换流器,直流电流转移到旁通隔离开关中。
PCT/CN2014/087808 2013-12-16 2014-09-29 特高压直流输电工程换流器在线投入与退出控制方法 WO2015090100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310690419.XA CN103647300B (zh) 2013-12-16 2013-12-16 特高压直流输电工程换流器在线投入与退出控制方法
CN201310690419.X 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015090100A1 true WO2015090100A1 (zh) 2015-06-25

Family

ID=50252483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087808 WO2015090100A1 (zh) 2013-12-16 2014-09-29 特高压直流输电工程换流器在线投入与退出控制方法

Country Status (2)

Country Link
CN (1) CN103647300B (zh)
WO (1) WO2015090100A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993950A (zh) * 2021-03-01 2021-06-18 国网经济技术研究院有限公司 一种柔直换流阀交流连接线单相接地故障保护系统和方法
CN113054680A (zh) * 2021-03-17 2021-06-29 南方电网科学研究院有限责任公司 一种直流输电功率反转方法、装置、设备及存储介质
CN113147518A (zh) * 2021-04-21 2021-07-23 重庆中车长客轨道车辆有限公司 用于轨道交通接触网的供电制式转换方法
CN113629749A (zh) * 2020-05-09 2021-11-09 南京南瑞继保电气有限公司 一种多端直流输电系统的单站退出方法及装置
CN113644678A (zh) * 2021-06-25 2021-11-12 湖南大学 高压直流输电系统触发角指令计算方法及系统
CN114188956A (zh) * 2021-12-03 2022-03-15 南瑞集团有限公司 考虑直流相继闭锁时差的暂态稳定紧急控制方法、装置及存储介质
CN113629750B (zh) * 2021-08-09 2023-06-06 南方电网科学研究院有限责任公司 一种背靠背高压直流输电系统及其解锁启动方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647300B (zh) * 2013-12-16 2016-06-15 国家电网公司 特高压直流输电工程换流器在线投入与退出控制方法
CN104092208B (zh) * 2014-06-25 2016-07-06 国家电网公司 一种直流输电工程双阀组并联运行的控制方法和装置
CN106159986B (zh) * 2015-04-15 2018-10-16 南京南瑞继保电气有限公司 一种并联高压直流输电系统阀组在线投入退出的方法
CN106385047B (zh) * 2016-11-18 2019-01-01 南方电网科学研究院有限责任公司 全桥拓扑双极接线柔性直流换流站及其中性线接线装置
CN107437795B (zh) * 2017-09-20 2020-06-26 南方电网科学研究院有限责任公司 混合直流输电系统的极esof控制方法及混合直流输电系统
CN108649598B (zh) * 2018-06-19 2021-09-10 西安端怡科技有限公司 一种串联双阀组混合直流输电系统阀组在线投退控制方法
CN108879753B (zh) * 2018-07-23 2020-09-01 南方电网科学研究院有限责任公司 特高压直流输电系统单阀组故障退出方法、系统和设备
CN109327039B (zh) * 2018-10-26 2020-04-14 贵州电网有限责任公司 一种特高压多端混合直流输电系统阀组在线投退控制方法
CN110401230B (zh) * 2019-07-04 2021-11-19 南方电网科学研究院有限责任公司 特高压混合直流系统受端vsc故障退出方法、设备及介质
CN112436539B (zh) * 2020-12-11 2023-06-16 南方电网科学研究院有限责任公司 一种特高压柔性直流系统及在线投阀组优化控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202068184U (zh) * 2010-12-09 2011-12-07 国家电网公司 级联换流站和级联多端高压直流输电系统
CN103441487A (zh) * 2013-08-05 2013-12-11 国家电网公司 一种高压侧阀组投入和退出运行的方法
CN103647300A (zh) * 2013-12-16 2014-03-19 国家电网公司 特高压直流输电工程换流器在线投入与退出控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE385173B (sv) * 1974-09-11 1976-06-08 Asea Ab Kraftoverforing for hogspend likstrom
CN101719666A (zh) * 2008-10-09 2010-06-02 许继电气股份有限公司 特高压直流串联阀组起停控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202068184U (zh) * 2010-12-09 2011-12-07 国家电网公司 级联换流站和级联多端高压直流输电系统
CN103441487A (zh) * 2013-08-05 2013-12-11 国家电网公司 一种高压侧阀组投入和退出运行的方法
CN103647300A (zh) * 2013-12-16 2014-03-19 国家电网公司 特高压直流输电工程换流器在线投入与退出控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAI, CHENRONG: "Analysis on the control of Converter Entry/Exist for ± 800kV UHVDC Project", TECHNOLOGY INNOVATION AND APPLICATION, no. 34, 31 December 2012 (2012-12-31), pages 154 *
DAI, CHENRONG: "Analysis on the control of Converter Entry/Exist for ±800kV UHVDC Project", TECHNOLOGY INNOVATION AND APPLICATION, no. 34, 31 December 2012 (2012-12-31), pages 154 *
LI, XINNIAN ET AL.: "Analysis on the Strategy of Converter Entry/Exist for Xiangjiaba to Shanghai UHVDC Project", HIGH VOLTAGE ENGINEERING, vol. 37, no. 5, 31 May 2011 (2011-05-31), pages 1235 - 1236 *
WANG, QING ET AL.: "Simulation Study on Control Strategy for Balanced Steady Operation and Entry/Exist of Dual 12-Pulse Converter Groups in ±800 kV DC Transmission Project", POWER SYSTEM TECHNOLOGY, vol. 31, no. 17, 5 September 2007 (2007-09-05) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629749A (zh) * 2020-05-09 2021-11-09 南京南瑞继保电气有限公司 一种多端直流输电系统的单站退出方法及装置
CN113629749B (zh) * 2020-05-09 2023-09-08 南京南瑞继保电气有限公司 一种多端直流输电系统的单站退出方法及装置
CN112993950A (zh) * 2021-03-01 2021-06-18 国网经济技术研究院有限公司 一种柔直换流阀交流连接线单相接地故障保护系统和方法
CN112993950B (zh) * 2021-03-01 2022-11-15 国网经济技术研究院有限公司 一种柔直换流阀交流连接线单相接地故障保护系统和方法
CN113054680A (zh) * 2021-03-17 2021-06-29 南方电网科学研究院有限责任公司 一种直流输电功率反转方法、装置、设备及存储介质
CN113147518A (zh) * 2021-04-21 2021-07-23 重庆中车长客轨道车辆有限公司 用于轨道交通接触网的供电制式转换方法
CN113147518B (zh) * 2021-04-21 2024-01-23 重庆中车长客轨道车辆有限公司 用于轨道交通接触网的供电制式转换方法
CN113644678A (zh) * 2021-06-25 2021-11-12 湖南大学 高压直流输电系统触发角指令计算方法及系统
CN113644678B (zh) * 2021-06-25 2023-08-04 湖南大学 高压直流输电系统触发角指令计算方法及系统
CN113629750B (zh) * 2021-08-09 2023-06-06 南方电网科学研究院有限责任公司 一种背靠背高压直流输电系统及其解锁启动方法
CN114188956A (zh) * 2021-12-03 2022-03-15 南瑞集团有限公司 考虑直流相继闭锁时差的暂态稳定紧急控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN103647300A (zh) 2014-03-19
CN103647300B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015090100A1 (zh) 特高压直流输电工程换流器在线投入与退出控制方法
CN105762829B (zh) 基于相角估算的微电网逆变器离并网无缝切换控制方法
CN103904677B (zh) 一种vsc-hvdc在联网与孤岛运行方式间的切换控制方法
CN105634026B (zh) 一种基于反并联晶闸管全桥子模块换流器的电网换相换流器结构
CN114204594B (zh) 一种并网系统及绝缘阻抗的检测方法
CN104882890B (zh) 一种限流型动态电压恢复器及其不间断供电方法
CN106471704A (zh) 不间断电源装置
CN110441658B (zh) 一种考虑直流电流变化的高压直流换相失败判别方法
CN106410951A (zh) 一种双电源自动转换装置的转换控制方法
CN102570590A (zh) 固态切换开关
CN104135009B (zh) 一种并联型统一电能质量控制器及其运行控制方法
CN110429635B (zh) 基于直流电流有限时域预测的换相失败预测方法
CN111781532A (zh) 一种实现三相逆变器功率模块老化实验的电路及方法
CN107681678B (zh) 一种基于整流侧触发角紧急控制的换相失败预防方法
CN107154632B (zh) 一种功率单元旁路状态的识别方法
CN107346003B (zh) 一种电压源换流器故障检测定位方法和系统
CN110601140A (zh) 一种变频电动机的差动保护装置及算法
CN104868757B (zh) 一种pwm整流器虚拟磁链矢量初值估算方法
CN103390881A (zh) 统一电能质量控制器的智能化保护电路及方法
CN105356434B (zh) 一种新型桥式固态故障电流限制器及其使用方法
CN115955002B (zh) 一种应用于电压暂态治理的dvr实时控制系统及方法
CN105305508B (zh) 一种换相失败期间触发角控制方法
CN106712307B (zh) 动态延时顺序合闸系统及避免偏置电流损坏断路器的方法
Cheng et al. A combined AC-DC control strategy for commutation failure mitigation
CN111628565B (zh) 一种节能型应急电源切换系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872768

Country of ref document: EP

Kind code of ref document: A1