WO2015089890A1 - 轮毂电机驱动车辆的方向盘回正系统 - Google Patents

轮毂电机驱动车辆的方向盘回正系统 Download PDF

Info

Publication number
WO2015089890A1
WO2015089890A1 PCT/CN2014/000454 CN2014000454W WO2015089890A1 WO 2015089890 A1 WO2015089890 A1 WO 2015089890A1 CN 2014000454 W CN2014000454 W CN 2014000454W WO 2015089890 A1 WO2015089890 A1 WO 2015089890A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering wheel
steering
high frequency
spring
induction coil
Prior art date
Application number
PCT/CN2014/000454
Other languages
English (en)
French (fr)
Inventor
王志福
周杨
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2015089890A1 publication Critical patent/WO2015089890A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core

Definitions

  • the invention relates to the field of steering control of an electric vehicle motor driven independently by an in-wheel motor, in particular to a wheel-motor independently driving an electric vehicle.
  • the hub motor independently drives the electric vehicle with flexible configuration, stable power output, etc., and combined with the steering wheel steering, the steering torque formed by the torque of the hub motor can be used for free steering.
  • the existing steer-by-wire steering generally draws on the design method of the steering system of modern automobiles, and adopts photoelectric or coded steering recognition.
  • the conventional steering system is based on the positive moment formed by the camber of the steering wheel and the positive pitch of the kingpin, the steering feel of the payout reel and the return of the steering wheel are realized, and the road surface cannot be used in the online steering. Give feedback.
  • the conventional steering wheel angle recognition system cannot accurately identify the absolute position of the steering wheel, thereby bringing a system problem to the wheel-motor independent driving of the electric vehicle. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a mechanism and a positioning measurement method using a line-controlled steering, which can realize an automatic return function of the wheel-motor independently driving the electric vehicle to control the steering, and can accurately test the steering wheel during the line-controlled steering process.
  • the corner position is to provide a mechanism and a positioning measurement method using a line-controlled steering, which can realize an automatic return function of the wheel-motor independently driving the electric vehicle to control the steering, and can accurately test the steering wheel during the line-controlled steering process.
  • the corner position is to provide a mechanism and a positioning measurement method using a line-controlled steering, which can realize an automatic return function of the wheel-motor independently driving the electric vehicle to control the steering, and can accurately test the steering wheel during the line-controlled steering process.
  • An aspect of the present invention provides a steering wheel alignment system for an in-wheel motor driven vehicle, the system comprising: a return spring fixed to a steering wheel shaft for providing a steering feel and a positive torque of the steering wheel;
  • the tension test spring is connected to the return spring at one end, and the fixed point of the vehicle body is connected at one end; the high frequency induction coil, the high frequency induction coil passes the high frequency switching power device, and the 12VDC or 24VDC of the whole vehicle is chopped to a high frequency of 15 kHz.
  • an inductive magnetic bar the inductive magnetic replacement page (Article 26) a rod is connected to the tension test spring and moves in the high frequency induction coil to change the magnetic induction strength of the test;
  • a signal acquisition loop the signal acquisition loop collects an output signal of the high frequency induction coil, and the The signal is sent to the vehicle control system; and a guiding mechanism for constraining the motion trajectory of the return spring and the tensile test spring.
  • the steering wheel motor of the present invention drives the steering wheel returning system of the vehicle.
  • the shape of the return spring is zero, and the return spring does not act on the steering wheel; when the steering wheel rotates
  • the return spring is to be compressed or stretched, thereby generating a positive return torque, so that the driver generates a road feel of steering; and when the vehicle is stopped, the positive return torque provided by the return spring can ensure the vehicle under the vehicle.
  • the steering wheel motor of the present invention drives a steering wheel returning system of the vehicle, and the connecting portion of the return spring and the tensile test spring and the tensile test spring are defined in the guiding structure to ensure correct identification of signals. .
  • the steering wheel steering system of the in-wheel motor driven vehicle of the present invention can adjust the stiffness of the tensile test spring according to requirements to obtain a suitable composite return torque.
  • the in-wheel motor of the present invention drives a steering wheel return system of a vehicle, the system further comprising a high frequency chopper circuit that converts the vehicle 12VDC or 24VDC chopping into a 15kHz high frequency voltage and the 15kHz high A frequency voltage is supplied to the high frequency induction coil.
  • the steering wheel motor of the present invention drives a steering wheel return system of the vehicle, wherein the high frequency induction coil induces a high frequency magnetic field of 15 kHz as a high frequency magnetic field to form an oscillating magnetic circuit; and the high frequency induction also has a DC voltage output circuit.
  • the DC voltage output loop outputs a 0 ⁇ 5 VDC signal according to the magnitude of the reluctance in the high frequency induction coil.
  • the in-wheel motor of the present invention drives a steering wheel return system of the vehicle, and the signal acquisition circuit can collect and transmit the DC voltage signal of the high frequency induction coil to the vehicle control system.
  • the configuration constrains the return spring, the tensile test spring, and the inductive magnetic bar such that they are movable in accordance with an agreed straight path.
  • Another aspect of the present invention provides a steering wheel positioning measurement method for an in-wheel motor-driven vehicle that drives a steering wheel return system of a vehicle using the above-described hub motor, and a displacement X of the inductive magnet bar and the high-frequency induction coil
  • V kx
  • the DC output voltage V is measured by the signal processing loop, and the value of the displacement X can be calculated to obtain the steering angle of the steering wheel to achieve controllable steering.
  • the wheel hub motor of the present invention drives a steering wheel return system of the vehicle, comprising: a spiral return spring mounted on the steering shaft of the steering wheel for providing a steering feel and a positive return torque of the steering wheel; and a tensile test spring for realizing the induced magnetism Linear motion and recovery of the rod; power switching circuit for chopping the on-board DC voltage into a high-frequency voltage; high-frequency induction coil for supplying an induced magnetic field to the induced magnetic field for displacement measurement; inductive magnetic bar for The magnetic field of the high-frequency induction coil generates a displacement signal; the signal processing circuit is used to convert the function of the high-frequency induction coil and the magnetic bar into a 0 ⁇ 5VDC voltage that can be recognized by the external signal receiving device; the signal acquisition circuit collects the high-frequency induction a voltage signal at the signal output of the coil to obtain a position signal of the magnetic bar; and a guiding mechanism for constraining the linear motion of the magnetic bar.
  • the system not only provides the driver's steering
  • the in-wheel motor of the present invention drives a steering wheel returning system and a positioning measuring method for a vehicle, which can provide a proper returning torque of the wire-controlled steering, ensuring that the driver has sufficient steering feeling when steering, thereby enabling more accurate implementation. Steering operation.
  • the test circuit of the system can accurately obtain the steering angle information of the steering wheel during the running process and the starting state of the vehicle, thereby achieving good steering performance.
  • Figure 1 is a schematic diagram of the steering wheel returning system of the in-wheel motor driven vehicle.
  • the steering wheel returning system of the in-wheel motor driven vehicle shown in FIG. 1 includes a spiral returning spring 1, a tensile testing spring 2, a power switching circuit 3, a high frequency induction coil 4, an inductive magnet bar 5, a signal processing circuit 6, and a guiding mechanism. 7.
  • the spiral returning spring 1 fixed on the steering wheel shaft has a shape variable of zero when the steering wheel is in the middle position. At this time, the spiral returning spring 1 does not act on the steering wheel. Once the steering wheel is rotated, the spiral returning spring 1 will be Compression or stretching, which will produce a positive return torque, so that the driver will produce a sense of steering, and the connection between the spiral return spring 1 and the tensile test spring 2 will also be displaced, thereby driving the tensile test spring to work.
  • the spiral return spring 1 is processed in a straight line form, and the straight portion and the tensile test spring 2 are defined together in the guide structure 7, so that the straight portion and the tensile force
  • the test spring 2 can only produce a linear translational motion.
  • the tension test spring 2 will partially supplement the return torque of the spiral return spring 1 to meet the returning demand of the steering wheel.
  • An inductive magnetic bar 5 is mounted at a junction of the spiral return spring 1 and the tensile test spring 2, and the magnetic bar 5 is sufficiently partially sheathed in the high frequency induction coil 4, and the high frequency induction coil 4 is passed through by the power switch circuit 3
  • the vehicle 12 VDC or 24 VDC chopper becomes a 15 kHz high-frequency voltage, and the 15 kHz high-frequency voltage is supplied to the high-frequency induction coil 4, thereby generating a strong magnetic field in the internal space of the high-frequency induction coil 4.
  • the power switching circuit 3 is a high frequency chopper circuit.
  • the value of X can be calculated, thereby obtaining the angle of rotation of the steering wheel and achieving controlled steering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种轮毂电机驱动车辆的方向盘回正系统包括:安装在方向盘转向轴上的回正弹簧(1),用于提供方向盘的转动手感和回正转矩;拉力测试弹簧(2),用于实现感应磁棒(5)的线性运动和回复;感应磁棒(5),用于与高频感应线圈(4)的磁场作用,产生位移信号;信号处理回路(6),采集高频感应线圈(4)的信号输出端的电压信号,从而获得感应磁棒(5)的位置信号;以及导向机构(7),用于约束感应磁棒(5)的直线运动。该系统不仅提供了在线控转向下的驾驶员转向路感和方向盘回正转矩,同时能够提供方向盘的准确绝对转向角位置,为车辆的准确转向提供了保障。

Description

说 明 书
轮毂电机驱动车辆的方向盘回正系统 技术领域
本发明涉及轮毂电机独立驱动的电动汽车电机转向控制领域,特别 涉及一种轮毂电机独立驱动电动车辆线控转向。
背景技术
轮毂电机独立驱动电动车辆具有配置灵活, 动力输出平稳等特点, 并且结合线控转向能够利用轮毂电机的转矩形成的转向转矩实现自由 转向。现有的线控转向一般借鉴现代汽车的转向系统的设计方法, 采用 光电式或者编码式的转向识别方式。但是由于传统的转向系统都是基于 转向轮的主销外倾角和主销前倾角等形成的回正力矩实现放线盘的转 向路感以及转向盘的回正, 在线控转向中已经无法使用路面回馈。另外 由于转向盘在转向过程中存在多圈转向的问题,现在传统的转向盘转角 识别系统无法准确识别转向盘的绝对位置,从而为轮毂电机独立驱动电 动车辆线控转向带来一系统问题。 发明内容
本发明的所要解决的技术问题是提供一种采用线控转向的机构和 定位测量方法,能够实现轮毂电机独立驱动电动汽车线控转向的自动回 正功能, 同时能够准确测试线控转向过程中方向盘的转角位置。
本发明的一方面提供轮毂电机驱动车辆的方向盘回正系统, 该系 统包括: 回正弹簧, 该回正弹簧固定在方向盘转轴上, 用于提供方向盘 的转动手感和回正转矩; 拉力测试弹簧, 该拉力测试弹簧一端连接所述 回正弹簧, 一端连接车体固定点; 高频感应线圈, 该高频感应线圈通过 高频开关功率器件, 将整车的 12VDC或者 24VDC斩波为 15kHz高频 电流, 以在所述高频感应线圈中形成强耦合磁场; 感应磁棒, 该感应磁 替换页 (细则第 26条) 棒与所述拉力测试弹簧相连接, 并在所述高频感应线圈中运动, 从而改 变测试的磁感应强度; 信号采集回路, 该信号采集回路采集所述高频感 应线圈的输出信号, 并将该信号发送到整车控制系统; 以及导向机构, 该导向机构用来约束所述回正弹簧和所述拉力测试弹簧的运动轨迹。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 在方向盘处 于中间位置时, 所述回正弹簧的形变量为零, 此时所述回正弹簧不会对 方向盘起作用; 当方向盘转动时, 所述回正弹簧将被压缩或者拉伸, 从 而产生回正力矩, 使得驾驶员产生转向的路感; 并且在车辆停驶时, 所 述回正弹簧提供的回正力矩能够保证车辆下次启动时不存在转向信号, 确保行车安全。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 所述回正弹 簧与所述拉力测试弹簧的连接部分和所述拉力测试弹簧一起被限定在 所述导向结构中, 确保信号的正确辨识。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 能够根据需 求, 调节所述拉力测试弹簧的刚度, 以得到适合的复合回正转矩。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 所述系统还 包括高频斩波电路, 该高频斩波电路将车载 12VDC或者 24VDC斩波 成为 15kHz高频电压, 并将该 15kHz高频电压提供给所述高频感应线 圈。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 所述高频感 应线圈将 15kHz 高频电压感应为高频磁场, 形成振荡磁路; 所述高频 感应还具有直流电压输出回路,所述直流电压输出回路根据所述高频感 应线圈内的磁阻大小输出 0〜5VDC信号。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 所述信号采 集回路能够将所述高频感应线圈的直流电压信号进行数据采集并发送 到整车控制系统中。
本发明所述的轮毂电机驱动车辆的方向盘回正系统, 所述导向机 N2014/000454
3 构约束所述回正弹簧、所述拉力测试弹簧和所述感应磁棒, 使得它们能 够按照约定的平直路径运动。
本发明的另一方面提供轮毂电机驱动车辆的方向盘定位测量方法, 其采用以上所述的轮毂电机驱动车辆的方向盘回正系统,并且所述感应 磁棒的位移 X与所述高频感应线圈的直流输出电压 V之间的关系为: V=kx
通过所述信号处理回路测量所述直流输出电压 V, 可以计算所述 位移 X的数值, 从而获知方向盘的转角角度, 实现可控的转向。
本发明的轮毂电机驱动车辆的方向盘回正系统, 其包括: 安装在 方向盘转向轴上的螺旋回正弹簧,用于提供方向盘的转动手感和回正转 矩; 拉力测试弹簧, 用于实现感应磁棒的线性运动和回复; 功率开关电 路, 用于将车载直流电压斩波成为高频电压; 高频感应线圈, 用于提供 给感应磁棒感应磁场, 实现位移测量; 感应磁棒, 用于与高频感应线圈 的磁场作用, 产生位移信号; 信号处理回路, 用于将高频感应线圈和磁 棒的作用转换为外部信号接收装置能够辨识的 0〜5VDC 电压; 信号采 集回路, 采集高频感应线圈的信号输出端的电压信号, 从而获得磁棒的 位置信号; 以及导向机构, 用于约束磁棒的直线运动。 该系统不仅提供 了在线控转向下的驾驶员转向路感和方向盘回正转矩,同时能够提供方 向盘的准确绝对转向角位置, 为车辆的准确转向提供保障。
本发明的轮毂电机驱动车辆的方向盘回正系统和定位测量方法, 该系统能够提供合适的线控转向的回正转矩,确保驾驶员在转向时有足 够的转向路感, 从而能够更加准确实现转向操作。 同时, 该系统的测试 回路能够在车辆行驶过程和启动状态时准确获得转向盘的转角信息,从 而实现良好的转向性能。
附图说明
图 1是轮毂电机驱动车辆的方向盘回正系统示意图。
具体实施方式 下面结合附图对本发明进行详细的说明。
图 1所示的轮毂电机驱动车辆的方向盘回正系统,包括螺旋回正弹 簧 1、拉力测试弹簧 2、 功率开关电路 3、 高频感应线圈 4、 感应磁棒 5、 信号处理回路 6、 导向机构 7。
固定在方向盘转轴上的螺旋回正弹簧 1在方向盘处于中间位置时, 其形变量为零, 此时螺旋回正弹簧 1不会对方向盘起作用, 一旦方向盘 转动, 则螺旋回正弹簧 1将被压缩或者拉伸, 从而就会产生回正力矩, 使得驾驶员产生转向的路感, 同时螺旋回正弹簧 1 与拉力测试弹簧 2 的连接部分也将产生位移, 从而带动拉力测试弹簧工作。
在螺旋回正弹簧 1与拉力测试弹簧 2的连接部分, 螺旋回正弹簧 1 被处理成直线形式,该直线部分和拉力测试弹簧 2—起被限定在导向结 构 7中,使得该直线部分和拉力测试弹簧 2这两者只能产生直线平移运 动。拉力测试弹簧 2将部分补充螺旋回正弹簧 1的回正力矩, 以满足方 向盘的回正需求。
在螺旋回正弹簧 1与拉力测试弹簧 2的结合处安装感应磁棒 5, 该 磁棒 5有充分部分被套在高频感应线圈 4中,高频感应线圈 4中在通过 由功率开关电路 3从车载 12VDC或者 24VDC斩波成为 15kHz高频电 压, 并将该 15kHz高频电压提供给高频感应线圈 4, 进而在高频感应线 圈 4的内部空间中产生强磁场。该功率开关电路 3为高频斩波电路。根 据磁场耦合定律, 当感应磁棒 5在高频感应线圈 4的内部空间运动时, 就会引起磁场变化, 从而可以在高频感应线圈 4 的信号测量端输出 0〜5VDC的电压, 根据机构的调整结果, 可以认为感应磁棒 5的位移 X 与输出电压 V之间的关系为:
V=kx
通过信号处理回路 6测量 V信号就可以计算 X的数值, 从而获知 方向盘的转角角度, 实现可控的转向。

Claims

权 利 要 求 书
1. 轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 该系统包 括
回正弹簧, 该回正弹簧固定在方向盘转轴上, 用于提供方向盘的 转动手感和回正转矩;
拉力测试弹簧, 该拉力测试弹簧一端连接所述回正弹簧, 一端连 接车体固定点;
高频感应线圈, 该高频感应线圈通过高频开关功率器件, 将整车 的 12VDC或者 24VDC斩波为 15kHz高频电流, 以在所述高频感应线 圈中形成强耦合磁场;
感应磁棒, 该感应磁棒与所述拉力测试弹簧相连接, 并在所述高 频感应线圈中运动, 从而改变测试的磁感应强度;
信号采集回路, 该信号采集回路采集所述高频感应线圈的输出信 号, 并将该信号发送到整车控制系统; 以及
导向机构, 该导向机构用来约束所述回正弹簧和所述拉力测试弹 簧的运动轨迹。
2. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 在方向盘处于中间位置时, 所述回正弹簧的形变量为零, 此时所述回正弹簧不会对方向盘起作用; 当方向盘转动时, 所述回正弹 簧将被压缩或者拉伸,从而产生回正力矩,使得驾驶员产生转向的路感; 并且在车辆停驶时,所述回正弹簧提供的回正力矩能够保证车辆下次启 动时不存在转向信号, 确保行车安全。
3. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于,所述回正弹簧与所述拉力测试弹簧的连接部分和所述拉力 测试弹簧一起被限定在所述导向结构中, 确保信号的正确辨识。
4. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 能够根据需求, 调节所述拉力测试弹簧的刚度, 以得到适 合的复合回正转矩。
5. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 所述系统还包括高频斩波电路, 该高频斩波电路将车载 12VDC或者 24VDC斩波成为 15kHz高频电压, 并将该 15kHz高频电 压提供给所述高频感应线圈。
6. 根据权利要求 5所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 所述高频感应线圈将 15kHz 高频电压感应为高频磁场, 形成振荡磁路; 所述高频感应还具有直流电压输出回路, 所述直流电压 输出回路根据所述高频感应线圈内的磁阻大小输出 0〜5VDC信号。
7. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于,所述信号采集回路能够将所述高频感应线圈的直流电压信 号进行数据采集并发送到整车控制系统中。
8. 根据权利要求 1所述的轮毂电机驱动车辆的方向盘回正系统, 其特征在于, 所述导向机构约束所述回正弹簧、所述拉力测试弹簧和所 述感应磁棒, 使得它们能够按照约定的平直路径运动。
9. 轮毂电机驱动车辆的方向盘定位测量方法, 其特征在于, 采用 权利要求 1 至 8 中的任一项所述的轮毂电机驱动车辆的方向盘回正系 统,并且所述感应磁棒的位移 X与所述高频感应线圈的直流输出电压 V 之间的关系为:
V=kx
通过所述信号处理回路测量所述直流输出电压 V, 可以计算所述 位移 X的数值, 从而获知方向盘的转角角度, 实现可控的转向。
PCT/CN2014/000454 2013-12-20 2014-04-30 轮毂电机驱动车辆的方向盘回正系统 WO2015089890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310711297.8 2013-12-20
CN201310711297.8A CN103786786B (zh) 2013-12-20 2013-12-20 轮毂电机驱动车辆的方向盘回正系统

Publications (1)

Publication Number Publication Date
WO2015089890A1 true WO2015089890A1 (zh) 2015-06-25

Family

ID=50662968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000454 WO2015089890A1 (zh) 2013-12-20 2014-04-30 轮毂电机驱动车辆的方向盘回正系统

Country Status (2)

Country Link
CN (1) CN103786786B (zh)
WO (1) WO2015089890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498467A (zh) * 2020-12-09 2021-03-16 甘肃省机械科学研究院有限责任公司 一种可自回位的履带车辆方向盘转向控制装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107310626A (zh) * 2016-04-27 2017-11-03 於林峰 汽车方向盘是否回正指示装置及其指示方法
DE102018132465B4 (de) * 2018-12-17 2020-10-08 Joyson Safety Systems Germany Gmbh Rückstellmomenterzeugungsvorrichtung für ein Kraftfahrzeug
CN110254503B (zh) * 2019-06-27 2022-02-01 许小健 一种新农业耕种一体机用导向辅助结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670804B1 (en) * 1999-07-28 2003-12-30 Daimlerchrysler Ag Method for determining the angular position of a rotative part which performs a rotational movement
EP1424264B1 (en) * 2002-11-27 2007-01-03 Jtekt Corporation Angle detection device and torque sensor incorporating angle detection device
US20070216403A1 (en) * 2006-03-15 2007-09-20 Jtekt Corporation Rotational position sensor, compound rotational position sensor and motor operated power steering device
CN201305025Y (zh) * 2008-12-12 2009-09-09 沙市久隆汽车动力转向器有限公司 一种提高汽车动力转向器操作稳定性的转阀回正装置
CN102530071A (zh) * 2011-12-21 2012-07-04 株洲易力达机电有限公司 无角度传感器的电动助力转向回正控制器
CN202368630U (zh) * 2011-11-24 2012-08-08 东风汽车有限公司 方向盘的转向回正装置
CN202449061U (zh) * 2011-12-21 2012-09-26 浙江吉利汽车研究院有限公司 方向盘位置检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670804B1 (en) * 1999-07-28 2003-12-30 Daimlerchrysler Ag Method for determining the angular position of a rotative part which performs a rotational movement
EP1424264B1 (en) * 2002-11-27 2007-01-03 Jtekt Corporation Angle detection device and torque sensor incorporating angle detection device
US20070216403A1 (en) * 2006-03-15 2007-09-20 Jtekt Corporation Rotational position sensor, compound rotational position sensor and motor operated power steering device
CN201305025Y (zh) * 2008-12-12 2009-09-09 沙市久隆汽车动力转向器有限公司 一种提高汽车动力转向器操作稳定性的转阀回正装置
CN202368630U (zh) * 2011-11-24 2012-08-08 东风汽车有限公司 方向盘的转向回正装置
CN102530071A (zh) * 2011-12-21 2012-07-04 株洲易力达机电有限公司 无角度传感器的电动助力转向回正控制器
CN202449061U (zh) * 2011-12-21 2012-09-26 浙江吉利汽车研究院有限公司 方向盘位置检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498467A (zh) * 2020-12-09 2021-03-16 甘肃省机械科学研究院有限责任公司 一种可自回位的履带车辆方向盘转向控制装置

Also Published As

Publication number Publication date
CN103786786B (zh) 2015-03-25
CN103786786A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2015089890A1 (zh) 轮毂电机驱动车辆的方向盘回正系统
JP3789791B2 (ja) 絶対位置検出装置及び絶対位置検出方法
CN101480967B (zh) 用于车辆的转向系统
CN103001554B (zh) 旋转电机控制装置和转向控制系统
CN111038578B (zh) 一种双源双绕组电机线控转向系统及其容错控制方法
CN202294949U (zh) 越野车用电动助力转向系统
CN106768293B (zh) 一种用于特高压变压器振动测试的传感器释放及回收装置
CN109733468A (zh) 一种转向系统及方法和车辆
CN108450056B (zh) 对转子位置传感器进行杂散磁场补偿
US20130106340A1 (en) Electric motor, steering device and method
US20090319125A1 (en) Self Powered Steering Wheel Angle Sensor
US9124147B2 (en) Variable attractive force motor and generator
CN109941249A (zh) 一种可控式踏板感觉模拟器
JP2004108934A (ja) トルクセンサ
JP2015159649A (ja) 車載非接触受電装置
JP2015049042A (ja) 回転角検出装置、電動パワーステアリング装置
CN103010301B (zh) 车辆转向装置的控制装置
CN207449604U (zh) 一种电动助力系统及使用该系统的汽车
JP2002034223A (ja) モータのブラシ構造、およびそのモータを用いた電動式パワーステアリング装置
CN107592046B (zh) 一种同步磁阻电机的无传感dtc控制方法及控制系统
JP5339095B2 (ja) 電動パワーステアリング装置
DE50202320D1 (de) Elektronischer Endanschlag für eine Servolenkung
CN202054046U (zh) 电动助力转向扭矩传感器集磁圈安装结构
JP2018098974A (ja) 電動パワーステアリング装置
CN209776411U (zh) 永磁螺线管助力器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871063

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14871063

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/08/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14871063

Country of ref document: EP

Kind code of ref document: A1