WO2015089836A1 - 一种带宽可调的光模块及系统 - Google Patents

一种带宽可调的光模块及系统 Download PDF

Info

Publication number
WO2015089836A1
WO2015089836A1 PCT/CN2013/090134 CN2013090134W WO2015089836A1 WO 2015089836 A1 WO2015089836 A1 WO 2015089836A1 CN 2013090134 W CN2013090134 W CN 2013090134W WO 2015089836 A1 WO2015089836 A1 WO 2015089836A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
port
wavelength
optical module
Prior art date
Application number
PCT/CN2013/090134
Other languages
English (en)
French (fr)
Inventor
文玥
徐之光
林华枫
周小平
胡菁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/090134 priority Critical patent/WO2015089836A1/zh
Priority to CN201380002467.3A priority patent/CN104969491B/zh
Priority to EP13899391.0A priority patent/EP3073652B1/en
Publication of WO2015089836A1 publication Critical patent/WO2015089836A1/zh
Priority to US15/187,437 priority patent/US10128970B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4263Details of housings characterised by the shape of the housing of the transisitor outline [TO] can type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4278Electrical aspects related to pluggable or demountable opto-electronic or electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0235Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for upstream transmission
    • H04J14/0236Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for upstream transmission using multiple wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to an optical module and system with adjustable bandwidth. Background technique
  • 40G TWDM PON Time Wavelength Division Multiplexing Passive Optical Network
  • NG-PON2 Next Generation Passive Optical Network 2
  • One of the key technologies of the 40G TWDM P0N is to implement a 4X10Gbps 0LT (Optical Line Terminal) optical module.
  • Currently, the more common solution is to use 4-channel TOSA (Transmitter Optical Sub-assembly) with 4 The ROSA (Receiver Optical Sub-assembly) is placed in a module to form a 40G TWDM P0N module, as shown in Figure 1.
  • the light emitting component and the receiving light component are both a one-time package and four channels to form a 40 Gbps-rate transmitting device. This solution is excessive for both users and suppliers, so Will lead to a lot of waste of resources. Summary of the invention
  • the embodiment of the invention provides an optical module with adjustable bandwidth, which solves the problem of waste of a large amount of resources in the prior art optical module one-time packaging multi-channel transceiver component.
  • the first aspect provides an optical module, which is applied to a passive optical network, where a circuit board is provided with a first electrical interface and a second electrical interface, a first optical port and a second optical port, and optical transceiver
  • the first electrical interface is used to connect to the electrical interface of the optical board or the second electrical interface of the other optical module
  • the second electrical interface is used for the electrical connection with the first electrical interface or the board of the other optical module.
  • the first optical port is used to connect the second optical port of the light emitting device or other optical module
  • the second optical port is used to connect the first optical port of the light receiving device or other optical module
  • the first optical port includes a first upstream optical port and a first downstream optical port
  • the second optical interface includes a second upstream optical port and a second optical interface a downstream optical port
  • the downlink incident light is input to the optical transceiver component through the first downstream optical port, and is combined with the light generated by the optical transceiver component, and the downstream light formed by the multiplexed wave passes through the second downstream optical port.
  • the upward incident light is input to the optical transceiver component through the second upstream optical port, and the light corresponding to the wavelength of the optical module is filtered by the optical transceiver component, and the filtered upstream light passes through the first Upstream optical port output.
  • the light-receiving component comprises a receiving light component and a light-emitting component; wherein the light-emitting component comprises a semiconductor laser LD, a straight lens, a filter TFF, a self-focusing lens Grin lens, a fiber ferrule, and two optical fibers disposed in the fiber ferrule, the two optical fibers being respectively connected to the first downstream optical port and the second downstream optical port, wherein:
  • the first wavelength of the downward incident light is introduced into the Grin lens through the first fiber in the fiber ferrule, and enters the TFF;
  • the LD emits light of a second wavelength, and the light of the second wavelength is collimated into the TFF through the collimating lens;
  • the TFF combines the light of the second wavelength and the light of the first wavelength to form a downward light, the descending light passes through the Grin lens, and the fiber ferrule is from a second one of the two optical fibers Fiber output.
  • the light emitting component further includes any one of a micro device package, a transistor package, or an integral package
  • the housing, the LD, the collimating lens, the TFF, the Grin lens, and the fiber ferrule are packaged in any of the tubes.
  • the optical module further includes a wavelength division multiplexer WDM, and the optical transceiver component comprises: a semiconductor laser LD, a receiver APD , a silicon light substrate microring structure and a collimating lens, wherein:
  • the LD emits a second wavelength of light through the upper half of the first microring in the silicon optical substrate microring structure into the first microring, and then transmits to the first straight line connected to the lower half of the first microring, and Downstream incident light multiplexed wave of the first wavelength, the multiplexed light is reflected by the collimating lens to the second downstream optical port, and then enters the WDM output, wherein the first wavelength of the downward incident light passes through the first
  • the downstream optical port is input to the first line of the optical module;
  • the upward incident light is reflected by the WDM to the second upstream optical port to enter the optical module, and the collimating lens in the optical module reflects the upward incident light to the second in the silicon optical substrate microring structure a second micro-ring and a third micro-ring connected to the second straight line in the silicon-light substrate micro-ring structure corresponding to the transverse electric mode TE and the transverse magnetic mode TM wave of the third wavelength corresponding to the wavelength of the optical module
  • the light of the third wavelength is sent to the APD for receiving, and the light of the remaining wavelength other than the light of the third wavelength is reflected by the second straight line in the micro ring to the
  • the first upstream optical port is output.
  • the optical transceiver component includes: a first wavelength division multiplexer WDM1, a second wavelength division multiplexer WDM2, a semiconductor laser LD, and a first filter TFF1. a second filter TFF2, a receiver APD, and a mirror mirror, wherein:
  • the upward incident light is reflected by the WDM1 to the TFF2, and the third wavelength light corresponding to the wavelength of the optical module is filtered by the TFF2, and sent to the APD for receiving.
  • the light of the remaining wavelength other than the third wavelength of the upward incident light is reflected by the TFF 2, and then reflected by the WDM 2 and the mirror to the first optical port.
  • the second aspect provides a bandwidth adjustable optical module
  • the bandwidth adjustable optical module includes: There are two first aspects, or any one of the first to fifth possible implementations of the first aspect, and at least two optical modules pass the first electrical interface, the second electrical interface, the first optical interface, and the first optical interface
  • the two optical ports are cascaded, and the tunable bandwidth of the bandwidth-adjustable optical module formed by the cascading is the sum of the bandwidths of the cascading optical modules; wherein, the first electrical module of the first optical module of the two optical modules that are cascaded
  • the interface is connected to the second electrical interface of the second optical module, the first optical port of the first optical module is connected to the second optical port of the second optical module, and the optical port of the cascaded optical module is not connected to other optical modules.
  • the optical transceiver is connected to the optical transceiver.
  • the electrical interface that is not connected to other optical modules is connected to the board.
  • a third aspect provides an optical module with adjustable bandwidth, the optical module comprising: at least two optical modules, a photo splitter/demultiplexer, and a single of the first aspect or the first to fifth possible implementation manners of the first aspect Board
  • the first electrical interface and the second electrical interface of the at least two optical modules are connected to the single board; and the first optical port and the second optical port of the at least two optical modules are connected to the optical combiner/demultiplexer, and the bandwidth is
  • the adjustable bandwidth of the modulated optical module is the sum of the bandwidths of the at least two optical modules;
  • the sum/divider is disposed on the board, and the optical signals input to the at least two optical modules are demultiplexed and sent to the corresponding optical module, and the optical signals output by the at least two optical modules are received.
  • the combined optical signals are combined and output through the optical fiber.
  • an optical line terminal comprising the optical module provided by any one of the first to fifth possible implementations of the first aspect or the first aspect, the second aspect, and the third aspect.
  • a passive optical network system where the optical line terminal includes an optical line terminal and an optical network terminal, where the optical line terminal includes the first aspect or the first to fifth possible implementation manners of the first aspect, The optical module of any of the second aspect and the third aspect.
  • the optical module provided by the solution of the present invention can be flexibly implemented in combination with other optical modules, and the bandwidth of the optical module can be upgraded step by step according to the requirements of the user.
  • FIG. 1 is a schematic structural view of a 40 Gbps-rate transmitting device in the prior art
  • 2 is a schematic structural diagram of an optical module according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a specific implementation of a first optical module according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic structural diagram of a first optical module according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a bandwidth-adjustable optical module according to Embodiment 5 of the present invention
  • FIG. 7 is a schematic diagram of a bandwidth adjustable according to Embodiment 6 of the present invention
  • FIG. 8 is a schematic structural diagram of an optical module with adjustable bandwidth according to Embodiment 7 of the present invention
  • FIG. 9 is a schematic structural diagram of an optical module with adjustable bandwidth according to Embodiment 8 of the present invention
  • FIG. 10 is a schematic structural diagram of an optical module with adjustable bandwidth according to Embodiment 8 of the present invention
  • FIG. 11 is a schematic structural diagram of a passive optical network system according to Embodiment 9 of the present invention.
  • the optical module provided by the embodiment of the present invention can be used to deploy an optical module of a 10 Gbps rate in a single board, if the bandwidth is insufficient, the optical module can be deployed by adding an optical module. And so on, to achieve a low cost, no need to upgrade to 40G in one step, avoid the waste of cost caused by excess demand, pay as needed; low power consumption.
  • optical module may be implemented in two manners, including:
  • Embodiment 1 As shown in FIG. 2, in an embodiment, in order to implement cascading of multiple optical modules, an embodiment of the present invention provides an optical module, which is applied to a passive optical network, where the optical module is provided with a circuit board.
  • the optical transceiver module 201 includes an optical interface, and the optical interface includes a first optical interface 202a and a second optical interface 202b.
  • the electrical interface includes a first electrical interface 203a and a second electrical interface 203b:
  • the first electrical interface 203a is configured to be connected to the electrical interface of the optical module or to the second electrical interface of the other optical module, and the second electrical interface 203b is configured to be connected to the first electrical interface of the other optical module;
  • the first optical port 202a is used to connect the second optical port of the light emitting device or other optical module
  • the second optical port 202b is used to connect the first optical port of the light receiving device or other optical module
  • the downward incident light is input to the optical transceiver unit 201 through the first optical port 202a, and the light generated by the optical transceiver unit 201 is combined by the optical transceiver unit 201, and the downstream light formed by the combining is passed through Outputting the second optical port 202b; after the upward incident light is input to the optical transceiver component 201 through the second optical port 202b, the optical transceiver component 201 filters out light corresponding to the wavelength of the optical module, and filters out The subsequent upward light is output through the first optical port 202a.
  • the first electrical interface may be a gold finger
  • the second electrical interface is an electrical interface that is electrically connected to the gold finger or other optical device.
  • the setting of the optical port may be the following two situations, specifically:
  • Two optical ports are disposed on one optical module, respectively, for receiving light and outputting light processed by the optical module (the two optical ports may be the optical port male port and the optical port female port respectively);
  • an optical module is provided with four optical ports, that is, the first optical port includes a first upstream optical port and a first downstream optical port, and the second optical port includes a second upstream optical port and a second optical port.
  • the downlink incident light is input to the optical transceiver component through the first downstream optical port, and is combined with the light generated by the optical transceiver component, and the downstream light formed by the multiplexed wave is output through the second downstream optical port; After the light is transmitted to the optical transceiver module through the second uplink optical port, the optical transceiver module filters out the light corresponding to the wavelength of the optical module, and the filtered uplink light passes through the first uplink optical port. .
  • the optical module provided by the embodiment of the present invention may be implemented in various manners, and the optional manner includes the following:
  • the optical module has four optical ports, and the optical transceiver component 201 is composed of a light emitting component and a receiving optical component.
  • the structure of the optical module is as follows:
  • the first optical port is A1 and A2 in FIG. 3, and the second optical port is B1 and B2 in FIG.
  • the light emitting component and the light receiving component are respectively connected to an optical port through optical fibers (a, b, c, and d in FIG. 3).
  • the light emitting component includes a semiconductor laser (LD), a collimating lens, a filter (TFF12), a self-focusing lens (Grin lensl2), a fiber ferrule, and a fiber ferrule disposed therein.
  • the two optical fibers (the first optical fiber c and the second optical fiber d respectively) are connected to the first downlink optical port and the second downstream optical port, where:
  • the first wavelength of the downward incident light is introduced into the Grin lens 12 through the first optical fiber c in the fiber ferrule and enters the TFF 12;
  • the LD emits light of a second wavelength, and the light of the second wavelength is collimated into the TFF 12 through the collimating lens;
  • the TFF 12 combines the light of the second wavelength of the first wavelength to form a downward light, and the descending light passes through the Grin lens 12 and the fiber ferrule from a second one of the two fibers. d output.
  • the receiving optical component comprises: a receiver APD, a filter TFF11, a self-focusing lens Grin lens11, a fiber ferrule 11 and two optical fibers (the third optical fiber a and the fourth optical fiber b respectively) disposed in the optical fiber ferrule :
  • the upward incident light enters the receiving optical component through the third optical fiber a connected to the second upstream optical port, and is introduced into the TFF 11 after being introduced into the Grin lens, because the TFF 11 can only filter the light of a predetermined wavelength of the optical module. Therefore, the light corresponding to the predetermined wavelength of the optical module is reflected by the filtered light, and the reflected light passes through the Grin lens and then hits the fourth optical fiber of the other optical fiber sleeve.
  • the fourth optical fiber transmits the light of the other wavelength to the output of the first upstream optical port.
  • the light emitting component further includes any one of a 10 Gbit/s Miniature Device (XMD) micro-tube, a Transistor Outline (TO) package, or an integral package, the LD.
  • XMD 10 Gbit/s Miniature Device
  • TO Transistor Outline
  • a collimating lens, a TFF, a Grin lens, a fiber ferrule, and two optical fibers disposed in the fiber ferrule are packaged in any of the tubes.
  • the optical module includes four optical ports, and the first optical port includes a first optical port.
  • An upstream optical port and a first downstream optical port wherein the second optical port includes a second upstream optical port and a second downstream optical port; and the downlink incident light is input to the optical transceiver component through the first downstream optical port.
  • the downlink light formed by the multiplexed wave is output through the second downstream optical port; and the upward incident light is input to the optical transceiver component through the second upstream optical port
  • the optical transceiver module filters out light corresponding to the wavelength of the optical module, and the filtered upstream light is output through the first upstream optical port.
  • the optical module further includes a wavelength division multiplexing (WDM), and the specific components of the optical transceiver component 201 in the optical module include a semiconductor laser LD, a receiver APD, and a silicon optical substrate micro Ring structure, where:
  • WDM wavelength division multiplexing
  • the LD emits a second wavelength of light through the upper half of the first microring in the silicon optical substrate microring structure into the first microring, and then transmits to the first straight line connected to the lower half of the first microring, and Downstream incident light multiplexed wave of the first wavelength, the multiplexed light is reflected by the collimating lens to the second downstream optical port, and then enters the WDM output, wherein the first wavelength of the downward incident light passes through the first
  • the downstream optical port is input to the first line of the optical module;
  • the upward incident light is reflected by the WDM to the second upstream optical port to enter the optical module, and the collimating lens in the optical module reflects the upward incident light to the second in the silicon optical substrate microring structure a second micro-ring and a third micro-ring connected to the second straight line in the silicon-light substrate micro-ring structure corresponding to the transverse electric mode TE and the transverse magnetic mode TM wave of the third wavelength corresponding to the wavelength of the optical module
  • the light of the third wavelength is sent to the APD for receiving, and the light of the remaining wavelength other than the light of the third wavelength is reflected by the second straight line in the micro ring to the
  • the first upstream optical port is output.
  • the optical port in the optical module includes two, a first optical port A1 and a second optical port B1, and the specific components of the optical transceiver component 201 in the optical module include: Multiplexer (first wavelength division multiplexer (WDM1) and second wavelength division multiplexer (WDM2)), LD, two filters (filter TFF1) and filter TFF2), receiver (APD) And mirrors ( mirror 1 and mirror2 ), where:
  • the upward incident light is reflected by the WDM1 to the TFF2, and the third wavelength light corresponding to the wavelength of the optical module is filtered by the TFF2, and sent to the APD for receiving.
  • the light of the remaining wavelength other than the third wavelength of the upward incident light is reflected by the TFF 2, and then reflected by the WDM 2 and the mirror to the first optical port.
  • Embodiment 5 As shown in FIG. 6 , in order to achieve cascading of multiple optical modules to form an optical module with adjustable bandwidth, the optical module with adjustable bandwidth is to cascade the optical modules of various structures provided above.
  • the optical module included in the bandwidth-adjustable optical module is any one of the various structural optical modules in the foregoing embodiment.
  • the bandwidth-adjustable optical module includes: The first electrical interface may be a gold finger, and the second electrical interface is an electrical interface that is electrically connected to the gold finger or other optical device.
  • the at least two optical modules are connected to each other through the first electrical interface, the second electrical interface, the first optical interface, and the second optical interface; wherein, the optical interfaces of the two connected optical modules are The optical interface is docked, and the electrical interface is connected to the electrical interface.
  • optical module mentioned in the optical module with adjustable bandwidth can be configured by cascading each of the optical modules of the three different structures, and the bandwidth-adjustable optical module is configured.
  • the specific implementation can be:
  • Embodiment 6 is to form a bandwidth-adjustable optical module by using the specific structure cascading shown in FIG. 3, the optical module further includes a wavelength division multiplexer WDM, where the wavelength division multiplexer is disposed on the board, and Connected to the light-receiving component; in this embodiment, two optical modules are cascaded (as shown in FIG. 7).
  • the second optical port of the first optical module (B11 in FIG. 7 and B12) is connected to the first optical port of the second optical module (A21 and A22 in FIG. 7) to implement optical signal transmission;
  • the first electrical interface of the second optical module is connected to the second electrical interface of the first optical module, Realize the transmission of electrical signals.
  • the first electrical interface may be an electrical socket 11
  • the second electrical interface may be a gold finger 21 .
  • the golden finger 21 is inserted into the electrical socket 11 .
  • the electrical signal transmission of the first optical module and the second optical module is achieved by the interface of the finger 21 with the electrical socket 11.
  • the bandwidth-adjustable optical module provided by the embodiment is combined
  • the partial description of the partial wave the specific implementation is:
  • the laser LD1 in the first optical module emits light of a first wavelength, and the light of the first wavelength is collimated into the filter TFF12 of the first optical module through the first collimating lens, and then passes through the first optical module.
  • the self-focusing lens Grin lensl2 hits the light d in the fiber ferrule 12 and enters the second optical module through the optical port B12 of the first optical module and the optical port A22 of the second optical module.
  • the filter of the module is TFF21;
  • the laser LD2 in the second optical module emits light of a second wavelength, and the light of the second wavelength is collimated and filtered by the second collimating lens through the filter TFF21 of the second optical module, because each of the emitting optical component and the receiving optical component
  • the filter in the filter can only filter the light of a specific wavelength (that is, the TFF 21 in this embodiment can only filter the light of the second wavelength emitted by the LD 2, and the light of other wavelengths will be reflected). Therefore, the light of the first wavelength input by the first optical module is reflected after reaching the TFF 21, so that the light is multiplexed with the filtered second wavelength. Then, the downward light formed by the multiplexed wave is output to the optical port B21 of the second optical module through the Grin lens 21 and the a fiber in the fiber ferrule 21.
  • the upward incident light may be light including the first wavelength and the second wavelength; the light of the first wavelength is received by the receiver of the second optical module Receiving, the second wavelength of light is received by the receiver of the first optical module.
  • the self-focusing lens Grin lens 22 of the receiving optical component After hitting the filter TFF22, since the TFF 22 can only filter the light of the first wavelength, the light of the first wavelength is received by the receiver APD2 through the TFF 22; the light of the second wavelength of the upstream light is reflected by the TFF 22
  • the fiber optic c of the second optical module is connected to the optical port A21 of the second optical module, and the optical port A21 of the second optical module and the first optical module are connected to the optical fiber c of the second optical module.
  • the optical port B11 is docked, so the light of the second wavelength is connected to the optical fiber a of the first optical module;
  • the filter TFF11 is reached by the self-focusing lens Grin lens11, because the TFF11 can only filter the second wavelength of light. Therefore, the light of the second wavelength is transmitted after being transmitted to TFF11, and then received by the receiver APD1.
  • Embodiment 7 is to use the specific structure cascading shown in FIG. 4 to form an optical module with adjustable bandwidth.
  • two optical modules are cascaded as an example (as shown in FIG. 8 ), when cascading,
  • the second optical port of the optical module (the optical port B11 and the optical port B12 in FIG. 8) is connected to the first optical port of the second optical module (the optical port A21 and the optical port A22 in FIG. 8) to realize the transmission of the optical signal;
  • the first electrical interface of the second optical module is connected to the second electrical interface of the first optical module to implement transmission of electrical signals.
  • the first electrical interface may be an electrical socket 12
  • the second electrical interface may be a gold finger 21.
  • the cascading structure shown in FIG. 8 is used to implement multiplexing and splitting of the optical module with adjustable bandwidth provided by the embodiment, and the specific implementation is as follows:
  • the first wavelength of light emitted by the LD1 passes through the upper half of the microring all in the silicon optical micro-ring structure and enters the microring all, and is transmitted to the first half of the microring.
  • a line 11 the first line 11 directs the light to the collimating lens, and the collimating lens reflects the light of the first wavelength to the optical port B11, and the optical port B11 is connected to the optical port A21 of the second optical module.
  • the light of the first wavelength transmitted to the first straight line 11 is transmitted to the second optical module through the docked optical ports (B11 and A21).
  • the light receiving the first wavelength through the optical port A21 is transmitted to the micro-ring in the silicon optical micro-ring structure in the second module through the first straight line 21 in the second module connected to the A21 A21, and LD2 emits light of the second wavelength into the upper half of the microring a21, and goes to the first half of the optical multiplexed wave of the first wavelength on the first straight line, and the merged downward light passes through the collimation
  • the lens is reflected to the optical port B21, and then enters the WDM output through the OA1 connected to the optical port B21.
  • the upward incident light (the light of the first wavelength corresponding to the first optical module and the second wavelength corresponding to the second optical module in the upward incident light) passes through the WDM and is reflected by the OA2 to the corresponding optical port B22.
  • the collimating lens enters the silicon optical substrate microring structure disposed in the second optical module, and the second straight line 22 disposed in the silicon optical substrate microring structure is used for transmitting the uplink. Light.
  • the upward light is reflected by the collimating lens to the second straight line 22 in the silicon optical substrate microring structure, and the second microring b21 and the second line connected to the second straight line in the silicon optical substrate microring structure
  • the three microrings b22 filter out the light formed by the transverse electric mode TE and the transverse magnetic mode TM wave of the second wavelength corresponding to the wavelength of the optical module (wherein the transverse electric mode TE of the second wavelength and the transverse magnetic mode TM wave combine to form the second
  • the light of the second wavelength is transmitted to the APD 2, and the light of the remaining wavelength other than the light of the second wavelength is output through the second straight line in the micro ring to the first An optical module;
  • the filtered light of the second wavelength into the first module After filtering the filtered light of the second wavelength into the first module, filtering out the first optical module through the silicon optical micro-ring structure and the collimating lens in the first optical module in the same manner as in the second module.
  • the first wavelength of light corresponding to the wavelength is specified, and the filtered first wavelength of light is received by the receiver APD1.
  • Embodiment 8 is to use the specific structure cascading shown in FIG. 5 to form an optical module with adjustable bandwidth.
  • two optical modules are cascaded as an example (as shown in FIG. 9 ), when cascading,
  • the second optical port (the optical port B1) of the optical module is connected to the first optical port (the optical port A1) of the second optical module to realize the transmission of the optical signal;
  • the golden finger of the second optical module is inserted into the electrical component of the first optical module.
  • Interface the transmission of electrical signals.
  • the bandwidth-adjustable optical module provided by the embodiment is described in detail, and the specific implementation is as follows:
  • the functions of the various components in the optical module are first described.
  • the modules in the first optical module are taken as an example: WDM11: Transmission Downstream Wavelength Reflects Upstream Wavelength WDM12: Reflected downstream wavelength transmission upstream wavelength; TFF11: Downward transmission of light of a specified wavelength generated by LD1 in its own module, reflecting light emitted by LD of other modules; TFF12: Upward transmission of light of a predetermined wavelength received by its own module, reflecting other The light received by the module.
  • the second optical module is cascaded (or referred to as a plug-in) to the first optical module (as shown in FIG. 8), and the bandwidth-adjustable optical module provided by the embodiment is combined and split.
  • the detailed explanation is as follows:
  • the first optical module In the first optical module, the first wavelength of light emitted by the LD1 passes through the TFF11 and enters the WDM11 of the upper and lower beams, and then enters the optical interface connecting the two optical modules (the light formed by the connection of the optical port B12 and the optical port A21)
  • the second optical module enters the second optical module; in the second optical module, the light of the first wavelength passes through the mirror 22 and the WDM 22 to the TFF 21 in the second optical module, and the second optical module
  • the TFF 21 filters only the second wavelength of light emitted by the LD 2 and reflects the first wavelength of light emitted by the LD 1 , so that the second wavelength of light at the TFF 21 and the first wavelength of the optical multiplex wave enter the WDM 21 and finally pass through the second collimating lens. Reflected to the output of the optical port B22.
  • Upstream splitting Upward incident light (in this embodiment, for convenience of explanation, the upward incident light may be light including a first wavelength and a second wavelength; the second wavelength of light is received by a receiver of the second optical module The first wavelength of light is received by the receiver of the first optical module.
  • the second optical module After entering the second optical module through the optical port B22, the second optical module is transmitted to the WDM 21 through the second collimating lens, and then the WDM 21 reflects the upstream wavelength to the TFF22, and is filtered by the TFF22.
  • the light of the corresponding wavelength is received by the APD2, and the remaining wavelengths are reflected by the TFF22, pass through the WDM22, and then reflected into the first optical module through the mirror22 and the mirror21 of the second optical module, and are reflected by the WDM 11 in the first optical module, and pass through the TFF12.
  • Light filtered out of the first wavelength is received by APD1.
  • Embodiment 9 As shown in FIG. 10, a plurality of optical modules are combined by a side-by-side method to form an optical module with adjustable bandwidth, including: at least two bidirectional light receiving modules 1001, a photo combiner/demultiplexer 1002, and a single Board 1003;
  • the combining/demultiplexing device 1002 is disposed on the single board 1003, and is respectively connected to the at least two bidirectional receiving and receiving modules 1001; and the optical signals input to the at least two bidirectional receiving and receiving modules 1001 are demultiplexed and transmitted. And corresponding to the bidirectional light receiving module, and receiving the optical signals output by the at least two bidirectional light receiving modules, and combining the received optical signals and outputting through the optical fiber.
  • Embodiment 3 The embodiment of the present invention further provides another optical module with adjustable bandwidth, which is applied to a passive optical network, and the bandwidth-adjustable optical module is internally provided with at least one sub-level optical module providing a unit bandwidth, and includes two An external optical port and an external electrical interface;
  • the external optical port and the external electrical interface can be connected to the new sub-level optical module in a pluggable manner.
  • the new sub-level optical module and the bandwidth are adjustable.
  • the original sub-level optical module combination in the optical module constitutes the bandwidth of the bandwidth-adjustable optical module, and the bandwidth provides the bandwidth between the bandwidth provided by the new sub-level optical module and the bandwidth provided by the original sub-level optical module.
  • Embodiment 9 of the present invention provides a passive optical network system, as shown in FIG.
  • the passive optical network system includes an optical line terminal (OLT) and light An optical network unit (ONU) and an optical distribution network (ODN), wherein the OLT is connected to the at least one ONU by using the ODN, wherein the OLT includes Embodiment 1 to Embodiment 8 (ie, FIG.
  • OLT optical line terminal
  • ONU optical network unit
  • ODN optical distribution network
  • Embodiment 1 to Embodiment 8 Embodiment 1 to Embodiment 8
  • the specific structure of the passive optical network system is described by taking TWDM-PON as an example.
  • the TWDM-PON consists of the OLT on the office side, the ONU on the user side, or the Optical Network Terminal (ONT) and the ODN.
  • the passive optical network generally uses a tree topology.
  • the typical TWDM-PON network architecture is shown in Figure 11. The following is an example of the architecture.
  • the OLT provides a network side interface to the PON system, connecting one or more ODNs.
  • the ODN is a passive optical splitting device for connecting an OLT device and an ONU or Optical Network Terminal (ONT) device for distributing or multiplexing data signals between the OLT and the ONU or ONT.
  • the ONU provides a user-side interface to the PON system and is connected to the ODN. If the ONU directly provides user port functions, such as Ethernet user ports for PC Internet access, it is called ONT. Unless otherwise stated, the ONUs mentioned below refer to ONUs and ONTs.
  • Figure 11 shows an example in which the OLT includes four optical transmitters Txl ⁇ Tx4 and four receivers Rxl ⁇ Rx4.
  • the OLT to the ONU is called downlink; on the contrary, from the ONU to the OLT is uplink.
  • the four optical transmitters Txl ⁇ Tx4 of the OLT broadcast downlink data with optical signals of different wavelengths respectively, and output them to the backbone fiber of the ODN through the wavelength multiplexer/demultiplexer and the WDM coupler, through the ODN.
  • the ONU uses a tunable receiver to receive downlink broadcast data signals on one of the downstream wavelengths.
  • the ONU's tunable transmitter uses one of the upstream wavelengths to transmit burst optical signals in TDMA (Time Division Multiple Access), and passes through the ODN backbone fiber to the OLT, via the OLT's WDM coupler.
  • TDMA Time Division Multiple Access
  • the wavelength demultiplexer the optical signals of different wavelengths are respectively received by four different receivers Rxl ⁇ Rx4.
  • Each ONU on the same upstream wavelength transmits data in TDMA mode, that is, allocates time slots to each ONU through the OLT, and each ONU The data must be sent in strict accordance with the time slot allocated by the OLT to ensure that the uplink data does not conflict.
  • the possible network topology may be: There is an OLT chassis, and multiple PON ports are on a linecard, and are connected to the ODN through a wavelength multiplexing device. Or, there is an OLT rack and multiple boards, each board has at least one P0N port, and multiple P0N ports are connected to 0DN through wavelength multiplexing devices; or, there are at least two 0LT racks, each Each 0LT rack has multiple boards, each board has at least one P0N port, and multiple P0N ports are connected to 0DN through a wavelength multiplexing device.
  • the 0LT board has two ports, one is a network side port, and is connected to an ETH (Ethernet, Ethernet) or IP network or Asynchronous Transfer Mode (ATM)/Synchronous Digital Hierarchy (SDH) network. The other is the PON port, which is connected to each ONU through the ODN.
  • ETH Electronic Network, Ethernet
  • ATM Asynchronous Transfer Mode
  • SDH Synchronous Digital Hierarchy
  • Different P0N ports on the same 0LT board can communicate through the 0LT board internal bus; between different 0LT boards on the same 0LT rack, communication can be communicated through the rack side bus through its network side port
  • the 0LT boards of different 0LT racks can communicate through the ETH network connected to the rack or the IP network ATM network.
  • the OLT includes at least four optical modules, each optical module includes at least one optical transceiver component, and the optical transceiver component includes at least one optical transmitter (ie, the light emitting component mentioned in the embodiment of the present invention) and An optical receiver (that is, the light receiving component mentioned in the embodiment of the present invention), for example, the optical module 1 includes at least: an optical transmitter Tx1 and an optical receiver Rx1.
  • the optical module 1 includes at least: an optical transmitter Tx1 and an optical receiver Rx1.
  • the above-mentioned one or more technical solutions in the embodiments of the present application have at least the following technical effects:
  • the optical module provided by the solution of the present invention can be flexibly implemented in combination with other optical modules, and can be flexibly customized according to users by various combinations.
  • the requirements are to upgrade the bandwidth of the optical module step by step.
  • this solution spreads all the costs to each module, and allocates several modules for the supplier to reduce costs.
  • the optical modules provided by the embodiments of the present invention can be used in a single or several combinations, and each optical module can provide a certain bandwidth.
  • the bandwidth formed by combining multiple optical modules is the sum of bandwidths provided by multiple optical modules.
  • the optical module provided in the embodiment of the present invention may first deploy an optical module of a 10 Gbps rate in a single board. When the bandwidth is insufficient to be upgraded, the optical module of the next 10 G Gbps rate is deployed, and the gradual upgrade is implemented by using such a method.
  • a low cost, no need to upgrade to 40G in one step avoid cost waste caused by excess demand, pay for on demand; low power consumption; implementation of 40G TWDM PON with high yield.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection between the various components shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present application, in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

 本发明涉及通信技术领域,尤其涉及一种带宽可调的光模块,所述光模块的电路板上设置有第一电接口和第二电接口,第一光口和第二光口,以及光收发组件;所述第一电接口用于与单板的电接口或与其他光模块的第二电接口连接,所述第二电接口用于与其他光模块的第一电接口连接;所述第一光口用于连接光发射设备或其他光模块的第二光口,所述第二光口用于连接光接收设备或其他光模块的第一光口;所述光收发组件对下行光进行合波以及对上行光进行分波。本发明方案所提供的光模块可以灵活实现与其他光模块的组合,通过各种组合方式可以灵活的根据用户的任逐级升级光模块的带宽。

Description

一种带宽可调的光模块及系统 技术领域
本发明涉及移动通信技术领域, 尤其涉及一种带宽可调的光模块及系统。 背景技术
40G TWDM PON ( Time Wavelength Division Multiplexing Passive Optical Network 时分波分混合复用无源光网络) 目前已经被标准组织初步确定为 NG-PON2 ( Next Generation Passive Optical Network2 , 下一代无源光网络 2 ) 的标准构架。 40G TWDM P0N的关键技术之一就是实现一个 4X10Gbps 0LT (Optical Line Terminal, 光线路终端)发射光模块, 目前, 比较普遍的解决方案 是将 4路 TOSA ( Transmitter Optical Sub-assembly发射光组件)与 4路 ROSA ( Receiver Optical Sub-assembly接收光组件)共同放在一个模块中,构成 40G TWDM P0N模块, 如图 1所示。 根据图 1所述的结构可知: 所述发射光组件 和接收光组件都是一次性封装 4路形成 40Gbps速率的发射器件,这种方案无 论对于用户还是供应商来讲都是需求过剩的, 所以会导致大量的资源浪费。 发明内容
本发明实施例提供一种带宽可调的光模块, 用以解决现有技术中的光模 块一次性封装多路收发组件从而造成大量资源浪费的问题。
第一方面, 提供一种光模块, 应用于无源光网络, 所述光模块的电路板 上设置有第一电接口和第二电接口, 第一光口和第二光口, 以及光收发组件; 所述第一电接口用于与单板的电接口或与其他光模块的第二电接口连 接, 所述第二电接口用于与其他光模块的第一电接口或单板的电接口连接; 所述第一光口用于连接光发射设备或其他光模块的第二光口, 所述第二 光口用于连接光接收设备或其他光模块的第一光口; 下行入射光通过所述第一光口输入到所述光收发组件后, 通过所述光收 发组件与所述光收发组件生成的光进行合波, 合波形成的下行光通过所述第 二光口输出; 上行入射光通过所述第二光口输入到所述光收发组件后, 通过 所述光收发组件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述 第一光口输出。
结合第一方面, 在第一种可能的实现方式中, 所述第一光口包含第一上 行光口和第一下行光口, 所述第二光口包含第二上行光口和第二下行光口; 下行入射光通过所述第一下行光口输入所述光收发组件后, 与该光收发 组件生成的光进行合波, 合波形成的下行光通过所述第二下行光口输出; 上行入射光通过所述第二上行光口输入所述光收发组件后, 通过所述光 收发组件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述第一上 行光口输出。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述收发光组件包括接收光组件和发射光组件; 其中, 所述发射光组件包括 半导体激光器 LD、 准直透镜、 滤波片 TFF、 自聚焦透镜 Grin lens、 光纤套管 和设置在该光纤套管中的两条光纤, 两条光纤分别连接第一下行光口和第二 下行光口, 其中:
第一波长的下行入射光通过所述光纤套管中第一条光纤引入所述 Grin lens后, 进入所述 TFF;
所述 LD发出第二波长的光,该第二波长的光通过所述准直透镜准直进入 所述 TFF;
所述 TFF 将所述第二波长的光和所述第一波长的光进行合波形成下行 光, 所述下行光通过所述 Grin lens, 光纤套管从所述两条光纤中的第二条光 纤输出。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述发射光组件还包括微型装置管壳、 晶体管管壳或整体管壳中的任一种管 壳, 所述 LD、 准直透镜、 TFF、 Grin lens, 光纤套管封装在所述任一种管壳 中。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现方式中, 该光模块还包括波分复用器 WDM, 则所述光收发组件包括: 半导体激光器 LD 、 接收器 APD、 硅光基片微环结构和准直透镜, 其中:
LD 发出第二波长的光通过硅光基片微环结构中第一微环的上半环进入 第一微环之后, 传输到与第一微环下半环连接的第一直线, 并与第一波长的 下行入射光合波, 合波后的光通过所述准直透镜反射到所述第二下行光口后 进入 WDM输出, 其中, 所述第一波长的下行入射光通过所述第一下行光口 输入到光模块的第一直线;
上行入射光经过 WDM反射到所述第二上行光口进入所述光模块, 所述 光模块中的所述准直透镜将所述上行入射光反射到硅光基片微环结构中的第 二直线, 该硅光基片微环结构中与第二直线连接的第二微环和第三微环对应 滤出与该光模块波长对应的第三波长的横电模 TE和横磁模 TM波构成的光, 将第三波长的光发送到所述 APD接收, 所述上行光中除所述第三波长的光外 的其余波长的光通过所述微环中的第二直线反射到所述第一上行光口输出。
结合第一方面, 在第五种可能的实现方式中, 所述光收发组件包括: 第 一波分复用器 WDM1、 第二波分复用器 WDM2、 半导体激光器 LD 、 第一滤 波片 TFF1、 第二滤波片 TFF2、 接收器 APD和反射镜 mirror, 其中:
当第一波长的下行入射光通过所述第一光口进入光模块, 通过 mirror打 到 TFF1时被反射, 并与 LD生成的第二波长的光合波, 合波形成的下行光进 入 WDM1后投射到所述第二光口输出;
上行入射光进入通过所述第二光口进入光模块后, 通过 WDM1将所述上 行入射光反射到 TFF2上, 通过 TFF2滤出与该光模块波长对应的第三波长的 光, 发送到 APD接收, 所述上行入射光中除所述第三波长的光外的其余波长 的光被 TFF2反射后, 通过 WDM2和所述 mirror反射到第一光口输出。
第二方面、 提供一种带宽可调的光模块, 该带宽可调的光模块包括: 至 少两个第一方面, 或者第一方面的第一至五种可能的实现方式中任一光模块, 并且至少两个光模块通过所述第一电接口、 第二电接口、 第一光口和第二光 口实现级联, 级联形成的带宽可调的光模块的可调带宽是级联的光模块的带 宽之和; 其中, 级联的两个光模块中第一光模块的第一电接口与第二光模块 的第二电接口相连, 第一光模块的第一光口与第二光模块的第二光口相连; 级联的光模块中不与其他光模块相连的光口, 则对应连接光收发设备; 级联的光模块中不与其他光模块相连的电接口, 则对应连接单板。
第三方面, 提供一种带宽可调的光模块, 该光模块包括: 至少两个第一 方面或者第一方面的第一至五种可能的实现方式中任一光模块、 光合 /分波器 和单板;
至少两个光模块的第一电接口和第二电接口连接所述单板; 并且所述至 少两个光模块的第一光口和第二光口与光合 /分波器相连, 该带宽可调的光模 块的可调带宽是至少两个光模块的带宽之和;
该和 /分波器设置在所述单板上, 将输入所述至少两个光模块的光信号分 波后发送到对应的光模块, 并接收所述至少两个光模块输出的光信号, 并将 接收到的光信号合波之后通过光纤输出。
第四方面, 提供一种光线路终端, 该光线路终端中包括第一方面或者第 一方面的第一至五种可能的实现方式、 第二方面以及第三方面 任一所提供的 光模块。
第五方面, 提供一种无源光网络系统, 该系统中包括光线路终端和光网 络终端, 其中所述光线路终端中包括第一方面或者第一方面的第一至五种可 能的实现方式、 第二方面以及第三方面 任一所提供的光模块。
本发明方案所提供的光模块可以灵活实现与其他光模块的组合, 通过各 种组合方式可以灵活的根据用户的需求逐级升级光模块的带宽。 附图说明
图 1为现有技术中 40Gbps速率的发射器件的结构示意图; 图 2为本发明实施例一提供的一种光模块的结构示意图;
图 3为本发明实施例二提供的第一种光模块的具体实现结构示意图; 图 4为本发明实施例三提供的第一种光模块的具体实现结构示意图; 图 5为本发明实施例四提供的第一种光模块的具体实现结构示意图; 图 6为本发明实施例五提供的一种带宽可调的光模块的结构示意图; 图 7为本发明实施例六提供的一种带宽可调的光模块的结构示意图; 图 8为本发明实施例七提供的一种带宽可调的光模块的结构示意图; 图 9为本发明实施例八提供的一种带宽可调的光模块的结构示意图; 图 10为本发明实施例八提供的一种带宽可调的光模块的结构示意图; 图 11为本发明实施例九提供的一种无源光网络系统结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的光模块可以在单板中布放一个 lOGbps速率的光模块 的情况下, 如果带宽不够用需要升级时, 可以通过增加光模块的方式再布放 下一个 lOG Gbps速率的光模块, 以此类推逐步升级, 实现一种成本低, 无需 一步升级到 40G, 避免过剩需求产生的成本浪费, 按需付费; 低功耗。
针对上述本发明实施例整体方案的描述, 在具体的应用中, 可以通过两 种方式实现光模块的增加, 具体包括:
实施例一、 如图 2 所示, 在实施例中为了实现多个光模块的级联, 本发 明实施例提供一种光模块, 应用于无源光网络, 该光模块的电路板上设置有: 光收发组件 201、 光口, 该光口具体包括第一光口 202a和第二光口 202b、 电 接口, 其中, 该电接口包括第一电接口 203a和第二电接口 203b: 所述第一电接口 203a用于与单板的电接口或与其他光模块的第二电接口 连接, 所述第二电接口 203b用于与其他光模块的第一电接口连接;
所述第一光口 202a用于连接光发射设备或其他光模块的第二光口, 所述 第二光口 202b用于连接光接收设备或其他光模块的第一光口;
下行入射光通过所述第一光口 202a输入到所述光收发组件 201后, 通过 所述光收发组件 201与所述光收发组件 201生成的光进行合波, 合波形成的 下行光通过所述第二光口 202b输出; 上行入射光通过所述第二光口 202b输 入到所述光收发组件 201后, 通过所述光收发组件 201滤除与所述光模块波 长对应的光, 滤除后的上行光通过所述第一光口 202a输出。
可选的, 在具体的使用中所述第一电接口可以是金手指, 所述第二电接 口为与所述金手指或者是其他光设备实现电连接的电接口。
在该实施例中, 为了达到下行合波和上行分波的效果, 所述光口的设置 可以是以下两种情况, 具体为:
A, 一个光模块上设置两个光口, 分别用于接收光和输出光模块处理后的 光(两个光口可以分别是光口公口和光口母口);
B , —个光模块上设置有四个光口, 即所述第一光口包含第一上行光口和 第一下行光口, 所述第二光口包含第二上行光口和第二下行光口;
下行入射光通过所述第一下行光口输入所述光收发组件后, 与该光收发 组件生成的光进行合波, 合波形成的下行光通过所述第二下行光口输出; 上行入射光通过所述第二上行光口输入所述光收发组件后, 通过所述光 收发组件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述第一上 行光口输出。
针对光收发组件 201 的上述功能, 本发明实施例所提供的所述光模块可 以通过多种方式实现, 可选的方式包括以下几种:
实施例二, 如图 3所示, 该光模块中的光口有四个, 并且光收发组件 201 由发射光组件和接收光组件构成, 则该光模块的结构为:
所述第一光口为图 3中的 A1和 A2, 第二光口为图 3中的 B1和 B2, 其 中, 所述发射光组件和接收光组件分别通过光纤 (如图 3中的 a、 b、 c和 d ) 连接一个光口。
在该实施例中,则所述发射光组件包括半导体激光器( Laser Diode , LD)、 准直透镜、 滤波片 (TFF12 )、 自聚焦透镜(Grin lensl2 )、 光纤套管和设置在 该光纤套管中的两条光纤 (分别为第一条光纤 c和第二条光纤 d ), 两条光纤 分别连接第一下行光口和第二下行光口, 其中:
第一波长的下行入射光通过所述光纤套管中第一条光纤 c引入所述 Grin lens 12后进入所述 TFF12;
所述 LD发出第二波长的光,该第二波长的光通过所述准直透镜准直进入 所述 TFF12;
所述 TFF12 将所述第二波长的光所述第一波长的光进行合波形成下行 光, 所述下行光通过所述 Grin lensl2和光纤套管从所述两条光纤中的第二条 光纤 d输出。
所述接收光组件包括: 接收器 APD、 滤波片 TFF11、 自聚焦透镜 Grin lensll、 光纤套管 11 和设置在该光纤套管中的两条光纤 (分别为第三光纤 a 和第四光纤 b ):
上行入射光通过与第二上行光口连接的第三光纤 a进入该接收光组件, 并被引入所述 Grin lens后进入所述 TFF11 , 因为该 TFF11只能滤过该光模块 规定波长的光, 所以所述上行入射光中与该光模块规定波长对应的光滤过所 反射, 反射的光通过 Grin lens后, 打到光纤套管的中另一条光纤第四光纤上。 第四光纤将所述其他波长的光传输到第一上行光口输出。
在该实例中, 所述发射光组件还包括 ( 10 Gbit/s Miniature Device, XMD ) 微型管壳、 晶体管(Transistor Outline, TO )管壳或整体管壳中的任一种管壳, 所述 LD、 准直透镜、 TFF、 Grin lens, 光纤套管和设置在该光纤套管中的两 条光纤封装在所述任一种管壳中。
实施例三、 如图 4 所示, 该光模块包括四个光口, 所述第一光口包含第 一上行光口和第一下行光口, 所述第二光口包含第二上行光口和第二下行光 口; 下行入射光通过所述第一下行光口输入所述光收发组件后, 与该光收发 组件生成的光进行合波, 合波形成的下行光通过所述第二下行光口输出; 上 行入射光通过所述第二上行光口输入所述光收发组件后, 通过所述光收发组 件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述第一上行光口 输出。
进一步, 该光模块还包括一波分复用器 ( Wavelength Division Multiplexing , WDM ),并且所述光模块中的光收发组件 201的具体组成包括, 半导体激光器 LD 、 接收器 APD、 硅光基片微环结构, 其中:
LD 发出第二波长的光通过硅光基片微环结构中第一微环的上半环进入 第一微环之后, 传输到与第一微环下半环连接的第一直线, 并与第一波长的 下行入射光合波, 合波后的光通过所述准直透镜反射到所述第二下行光口后 进入 WDM输出, 其中, 所述第一波长的下行入射光通过所述第一下行光口 输入到光模块的第一直线;
上行入射光经过 WDM反射到所述第二上行光口进入所述光模块, 所述 光模块中的所述准直透镜将所述上行入射光反射到硅光基片微环结构中的第 二直线, 该硅光基片微环结构中与第二直线连接的第二微环和第三微环对应 滤出与该光模块波长对应的第三波长的横电模 TE和横磁模 TM波构成的光, 将第三波长的光发送到所述 APD接收, 所述上行光中除所述第三波长的光外 的其余波长的光通过所述微环中的第二直线反射到所述第一上行光口输出。
实施例四、 如图 5所示, 该光模块中的光口包括两个, 第一光口 A1和第 二光口 B1 , 该光模块中光收发组件 201的具体组成包括: 包括两个波分复用 器 (第一波分复用器 (WDM1 ) 和第二波分复用器 (WDM2 ) )、 LD 、 两个 滤波片 (滤波片 TFF1 )和滤波片 TFF2 )、 接收机 ( APD )和反射镜 ( mirror 1 和 mirror2 ), 其中:
当第一波长的下行入射光通过所述第一光口进入光模块, 通过 mirror打 到 TFF1时被反射, 并与 LD生成的第二波长的光合波, 合波形成的下行光进 入 WDM1后投射到所述第二光口输出;
上行入射光进入通过所述第二光口进入光模块后, 通过 WDM1将所述上 行入射光反射到 TFF2上, 通过 TFF2滤出与该光模块波长对应的第三波长的 光, 发送到 APD接收, 所述上行入射光中除所述第三波长的光外的其余波长 的光被 TFF2反射后, 通过 WDM2和所述 mirror反射到第一光口输出。
实施例五、 如图 6 所示, 为了达到多个光模块级联形成一种带宽可调的 光模块, 该带宽可调的光模块是将上述提供的各种结构的光模块进行级联之 后形成的, 所以该带宽可调的光模块中包括的光模块是上述实施例中各种结 构光模块中的任意一种, 则该实施例中带宽可调的光模块包括: 在该实例中, 所述第一电接口可以是金手指, 所述第二电接口为与所述金手指或者是其他 光设备实现电连接的电接口。
至少两个光模块, 至少两个光模块通过所述第一电接口、 第二电接口、 第一光口和第二光口实现两两相连; 其中, 相连的两个光模块的光口与光口 对接, 电接口与电接口对接。
该实施例所提供的带宽可调的光模块中所提到的光模块, 可以通过上述 三种不同结构的光模块中每种光模块多个级联之后构成, 则该带宽可调的光 模块的具体实现可以是:
实施例六、 利用图 3 所给出的具体结构级联形成带宽可调的光模块, 该 光模块还包括波分复用器 WDM,该波分复用器设置在所述单板上, 并与所述 收发光组件相连; 该实施例中以两个光模块级联为例 (如图 7所示), 在级联 时, 第一光模块的第二光口 (图 7中的 B11和 B12 )与第二光模块的第一光 口 (图 7中的 A21和 A22 )对接, 实现光信号的传输; 第二光模块的第一电 接口与第一光模块的第二电接口对接, 实现电信号的传输。 在该实施例中, 所述第一电接口可以是电插口 11 , 第二电接口可以是金手指 21 , 第一光模块 与第二光模块对接时, 所述金手指 21插入电插口 11 , 通过经手指 21与电插 口 11的对接实现第一光模块和第二光模块的电信号传输。
根据图 7 所示的级联结构对该实施例提供的带宽可调的光模块实现合波 和分波进行详细的说明, 具体实现为:
下行合波: 第一光模块中的激光器 LD1发出第一波长的光, 该第一波长 的光通过第一准直透镜准直进入第一光模块的滤波片 TFF12, 然后再通过第 一光模块中的自聚焦透镜 Grin lensl2打到光纤套管 12中的光线 d上,并通过 第一光模块的光口 B12和第二光模块的光口 A22进入第二光模块。
当第一波长的光通过所述光口 A22进入第二光模块后, 通过第二光模块 中的光纤 b进入第二光模块发射光组件的自聚焦透镜 Grin lens 21 , 然后打到 第二光模块的滤波片 TFF21上;
第二光模块中的激光器 LD2发出第二波长的光, 该第二波长的光通过第 二准直透镜准直滤过第二光模块的滤波片 TFF21 , 因为每个发射光组件和接 收光组件中的滤波片只能滤过特定波长的光(即该实施例中所述 TFF21只能 滤过 LD2发出的第二波长的光,其他波长的光都会反射)。 所以之前第一光模 块输入的第一波长的光到达 TFF21后被反射, 从而使得与滤过的第二波长光 合波。然后合波形成的下行光再通过 Grin lens21和光纤套管 21中的 a光纤输 出到第二光模块的光口 B21。
上行分波: 当上行入射光(在该实施例中为了方便说明, 该上行入射光 可以是包括第一波长的光和第二波长的光; 第一波长的光被第二光模块的接 收机接收, 第二波长的光被第一光模块的接收机接收)从第二光模块的光口 B22进入第二光模块后, 通过光纤 d进入第二光模块接收光组件的自聚焦透 镜 Grin lens22后打到滤波片 TFF22上, 因为 TFF22只能滤过第一波长的光, 所以第一波长的光透过所述 TFF22被接收机 APD2接收; 上行光中第二波长 的光则被 TFF22反射后, 再通过 Grin lens22打到第二光模块的光纤 c上; 因为第二光模块的光纤 c连接在第二光模块的光口 A21上, 第二光模块 的光口 A21与第一光模块的光口 B11对接, 所以通过这个对接第二波长的光 进入第一光模块的光纤 a;
在第一光模块中, 通过光纤 a接收到第二波长的光之后, 通过自聚焦透 镜 Grin lensll达到滤波片 TFF11上, 因为 TFF11只可以滤过第二波长的光, 所以第二波长的光打到 TFF11之后透过, 然后被接收机 APD1接收。
实施例七、 利用图 4所给出的具体结构级联形成带宽可调的光模块, 该 实施例中以两个光模块级联为例 (如图 8所示), 在级联时, 第一光模块的第 二光口 (图 8中的光口 B11和光口 B12 )与第二光模块的第一光口 (图 8中 的光口 A21和光口 A22 )对接, 实现光信号的传输; 第二光模块的第一电接 口与第一光模块的第二电接口对接, 实现电信号的传输。 在该实施例中, 所 述第一电接口可以是电插口 12, 第二电接口可以是金手指 21 , 第一光模块与 第二光模块对接时, 所述金手指 21插入电插口 12中, 通过经手指 21与电插 口 11的对接实现第一光模块和第二光模块的电信号传输。
根据图 8所示的级联结构对该实施例提供的带宽可调的光模块实现合波 和分波进行详细的说明, 具体实现为:
下行: 第一光模块中, LD1 发出的第一波长的光通过硅光基片微环结构 中微环 all的上半环进入微环 all之后,传输到与微环 all下半环连接的第一 直线 11 ; 第一直线 11将光引导到准直透镜, 准直透镜再将第一波长的光反射 到光口 B11 , 该光口 B11与第二光模块的光口 A21对接, 则传输到第一直线 11的第一波长的光通过对接的光口 (B11和 A21 )传输到第二光模块。
在第二光模块中, 通过光口 A21接收到第一波长的光通过与 A21连接的 第二模块中的第一直线 21传输到第二模块中的硅光基片微环结构中微环 a21, 并且 LD2发出第二波长的光进入微环 a21的上半环, 并走到下半环与所述第 一直线上的第一波长的光合波, 合波后的下行光通过准直透镜反射到光口 B21 , 然后通过与光口 B21连接的 OA1进入 WDM输出;
上行: 上行入射光(上行入射光中包括与第一光模块对应的第一波长的 光、 与第二光模块对应的第二波长的光)经过 WDM后通过 OA2反射到对应 的光口 B22, 上行光通过 B22进入第二光模块后, 通过准直透镜进入第二光 模块中设置的硅光基片微环结构, 在硅光基片微环结构中设置的第二直线 22 用于传输上行光。 所以上行光通过通过准直透镜反射到硅光基片微环结构中 的第二直线 22, 该硅光基片微环结构中与第二直线连接的第二微环 b21和第 三微环 b22滤出与该光模块波长对应的第二波长的横电模 TE与横磁模 TM波 构成的光(其中第二波长的横电模 TE与横磁模 TM波组合构成第二波长的 光), 将第二波长的光发送到所述 APD2接收, 所述上行光中除所述第二波长 的光外的其余波长的光通过所述微环中的第二直线输出到第一光模块;
所述滤出第二波长的上行光进入到第一模块后, 利用第二模块中相同的 方式通过第一光模块中硅光基片微环结构和准直透镜等滤出与第一光模块规 定波长对应的第一波长的光, 并利用接收器 APD1 接收滤出的该第一波长的 光。
实施例八、 利用图 5 所给出的具体结构级联形成带宽可调的光模块, 该 实施例中以两个光模块级联为例 (如图 9所示), 在级联时, 第一光模块的第 二光口 (光口 B1 )与第二光模块的第一光口 (光口 A1 )对接, 实现光信号的 传输; 第二光模块的金手指插入第一光模块的电接口, 实现电信号的传输。
根据图 9所示的级联结构对该实施例提供的带宽可调的光模块实现合波 和分波进行详细的说明, 具体实现为:
在该实施例中, 为了方便描述光模块的光信号处理流程, 在此首先说明 一下光模块中各个部件的功能, 以第一光模块中的各模块为例: WDM11 : 透 射下行波长反射上行波长; WDM12: 反射下行波长透射上行波长; TFF11 : 下行透射自身模块中的 LD1生成的规定波长的光, 反射其他模块的 LD发出 的光; TFF12: 上行透射自身模块接收的规定波长的光, 反射其他模块接收的 光。
该实例中以第二光模块级联(或者称为追插)到第一光模块为例(如图 8 所示 ), 对实施例提供的带宽可调的光模块实现合波和分波进行详细的说明, 具体实现为:
下行合波: 第一光模块中, LD1发出的第一波长的光透过 TFF11进入上 下行分光的 WDM11 , 然后再进入连接两个光模块的光接口 (光口 B12和光 口 A21连接形成的光接口 ) , 从而进入第二光模块; 在第二光模块中, 第一波 长的光通过 mirror22和 WDM22打到第二光模块中的 TFF21 , 第二光模块中 的 TFF21只滤过 LD2发出的第二波长的光,并且反射 LD1发出的第一波长的 光, 因此在 TFF21 第二波长的光和第一波长的光合波进入 WDM21 , 最后通 过第二准直透镜反射到光口 B22输出。
上行分波: 上行入射光(在该实施例中为了方便说明, 该上行入射光可 以是包括第一波长的光和第二波长的光; 第二波长的光被第二光模块的接收 机接收, 第一波长的光被第一光模块的接收机接收)通过光口 B22进入第二 光模块后, 通过第二准直透镜发射到 WDM 21 , 然后 WDM 21反射上行波长 到 TFF22, 通过 TFF22滤波出相应波长的光, 并被 APD2接收, 其余波长被 TFF22反射,通过 WDM22,再通过第二光模块的 mirror22和 mirror21反射进 入第一光模块, 在第一光模块中被 WDM 11反射, 通过 TFF12滤出第一波长 的光被 APD1接收。
实施例九、 如图 10所示, 多个光模块通过并排的方法组合在一起形成一 种带宽可调的光模块,包括:至少两个双向收发光模块 1001、光合 /分波器 1002 和单板 1003;
该合 /分波器 1002设置在所述单板 1003上, 并分别与所述至少两个双向 收发光模块 1001相连; 将输入所述至少两个双向收发光模块 1001 的光信号 分波后发送到对应的双向收发光模块, 并接收所述至少两个双向收发光模块 输出的光信号, 并将接收到的光信号合波之后通过光纤输出。
实施例三, 本发明实施还提供另外一种带宽可调的光模块, 应用于无源 光网络, 该带宽可调的光模块内部设置有至少一个提供单位带宽的子级光模 块, 并且包括两个外接光口和外接电接口;
所述外接光口和外接电接口可与新的子级光模块以可插拔的方式连接, 当连接新的子级光模块后, 所述新的子级光模块与所述带宽可调的光模块中 原有的子级光模块组合构成所述带宽可调的光模块的带宽, 该带宽为所述新 的子级光模块提供带宽和原有的子级光模块提供带宽之和。
本发明实施例九提供一种无源光网络系统, 如图 11所示。
所述无源光网络系统包括光线路终端( Optical Line Terminal , OLT )和光 网络终端 ( Optical Network Unit, ONU ) 以及光分配网 ( Optical Distribution Network, ODN ), 所述 OLT通过所述 ODN与至少一个 ONU连接, 其中, 所 述 OLT包括实施例一至实施例八 (即附图 2至附图 10 )所述的光模块, 具体 对光模块的介绍请参见上述实施例对应的光模块, 这里就不再赘述。
具体所述无源光网络系统结构以 TWDM-PON 为例进行介绍。 TWDM-PON 由局侧的 OLT、 用户侧的 ONU 或者 ONT ( Optical Network Terminal, 光网络终端) 以及 ODN组成。 无源光网络一般釆用树型的拓朴结 构,典型的 TWDM-PON网络架构如图 11所示,下面以该架构为例进行说明。
OLT为 PON系统提供网络侧接口, 连接一个或多个 ODN。 ODN是无源 分光器件, 用于连接 OLT设备和 ONU或者光网络终端 (Optical Network Terminal, ONT )设备, 用于分发或复用 OLT和 ONU或者 ONT之间的数据 信号。 ONU为 PON系统提供用户侧接口, 与 ODN相连。 如果 ONU直接提 供用户端口功能, 如 PC上网用的以太网用户端口, 则称为 ONT。 无特殊说 明, 下文提到的 ONU统指 ONU和 ONT。 图 11以 OLT包含有 4个光发射机 Txl~Tx4及 4个接收机 Rxl~Rx4为例。
在 TWDM-PON系统中, 从 OLT到 ONU称为下行; 反之, 从 ONU到 OLT为上行。 上行方向和下行方向各有多个( > 1 ) 波长, 图 11 中 4叚设上行 和下行各有 4个波长, 以 WDM方式共存, 互相不干扰。
在下行方向上, OLT的 4个光发射机 Txl~Tx4, 分别以不同波长的光信 号广播下行数据, 通过波长复用器 /解复用器、 WDM耦合器后输出到 ODN的 主干光纤, 经 ODN传输到各个 ONU, ONU使用可调接收机, 在其中一个下 行波长上接收下行广播数据信号。
在上行方向上, ONU 的可调发射机使用其中一个上行波长, 以 TDMA ( Time Division Multiple Access , 时分多址)方式发射突发光信号, 经过 ODN 的主干光纤到达 OLT, 经 OLT的 WDM耦合器和波长解复用器, 不同波长的 光信号分别由 4个不同的接收机 Rxl~Rx4接收。同一上行波长上的各个 ONU, 釆用 TDMA方式传输数据, 即通过 OLT为每个 ONU分配时隙, 各个 ONU 必须严格按照 OLT分配的时隙发送数据, 从而保证上行数据不发生冲突。 实际 TWDM-PON网络中, 可能的网络拓朴结构可以为: 有一个 OLT机 架( chassis ), 多个 PON口 ( port )都在一块板卡( linecard )上, 通过波长复 用器件与 ODN连接; 或者, 有一个 OLT机架及多块板卡, 每块板卡有至少 一个 P0N口, 多个 P0N口通过波长复用器件与 0DN连接;, 又或者, 有至 少两个 0LT机架, 每个 0LT机架有多块板卡, 每块板卡有至少一个 P0N口, 多个 P0N口通过波长复用器件与 0DN连接。
0LT板卡有两种端口, 一种是网络侧端口, 与 ETH (Ethernet, 以太网) 或者 IP网络或者异步传输模式( Asynchronous Transfer Mode, ATM ) /同步数 字体系 ( synchronous digital hierarchy, SDH ) 网络连接; 另一种是 PON口, 通过 ODN与各 ONU连接。同一个 0LT板卡上的不同 P0N口 ,可以通过 0LT 板卡内部总线进行通信; 同一个 0LT机架上的不同 0LT板卡之间, 可以通过 其网络侧端口, 通过机架的背板总线通信; 不同 0LT机架的 0LT板卡, 可以 通过与机架连接的 ETH网络或者 IP网络 ATM网络等络通信。
其中, 所述 OLT包括至少四个光模块, 每个光模块至少包括一个光收发 组件, 所述光收发组件至少包括一个光发射机(即为本发明实施例中提到的 光发射组件)和一个光接收机(即为本发明实施例中提到的光接收组件), 例 如光模块 1至少包括: 光发射机 Txl和光接收机 Rxl。 具体光模块的结构请 参见实施例一至实施例八 (即附图 2至附图 10 )所述的光模块, 具体对光模 块的介绍请参见上述实施例对应的光模块, 这里就不再赘述。
本申请实施例中的上述一个或多个技术方案, 至少具有如下的技术效果: 本发明方案所提供的光模块可以灵活实现与其他光模块的组合, 通过各 种组合方式可以灵活的根据用户的需求逐级升级光模块的带宽。
与集成 40G TWDN PON模块相比, 本方案把所有成本平摊到每个模块 中去, 对于供应商需要几个模块就布放几个, 降低成本。
与集成 40G TWDN PON模块相比,釆用 DWDM TOSA和 DWDM ROSA 做为光组件制作容易、 产率更高、 成本更低。 本发明实施例所提供的光模块能够单独或者几个组合使用, 并且每个光 模块都能提供一定带宽, 多个光模块组合使用所形成的带宽则是多个光模块 所提供带宽的和。 本发明实施例所提供的光模块可以首先在单板中布放一个 lOGbps速率的光模块, 在带宽不够用需要升级时, 再布放下一个 10G Gbps 速率的光模块, 以此类推逐步升级, 实现一种成本低, 无需一步升级到 40G, 避免过剩需求产生的成本浪费,按需付费;低功耗;产率高的 40G TWDM PON 的实现方式。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存 储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以对本申请的技术方案进行了详细介绍, 但 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不应理解 为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种光模块, 应用于无源光网络, 其特征在于, 所述光模块的电路板 上设置有第一电接口和第二电接口, 第一光口和第二光口, 以及光收发组件; 所述第一电接口用于与单板的电接口或与其他光模块的第二电接口连 接, 所述第二电接口用于与其他光模块的第一电接口或单板的电接口连接; 所述第一光口用于连接光发射设备或其他光模块的第二光口, 所述第二 光口用于连接光接收设备或其他光模块的第一光口;
下行入射光通过所述第一光口输入到所述光收发组件后, 通过所述光收 发组件与所述光收发组件生成的光进行合波, 合波形成的下行光通过所述第 二光口输出; 上行入射光通过所述第二光口输入到所述光收发组件后, 通过 所述光收发组件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述 第一光口输出。
2、 如权利要求 1所述的光模块, 其特征在于, 所述第一光口包含第一上 行光口和第一下行光口, 所述第二光口包含第二上行光口和第二下行光口; 下行入射光通过所述第一下行光口输入所述光收发组件后, 与该光收发 组件生成的光进行合波, 合波形成的下行光通过所述第二下行光口输出; 上行入射光通过所述第二上行光口输入所述光收发组件后, 通过所述光 收发组件滤除与所述光模块波长对应的光, 滤除后的上行光通过所述第一上 行光口输出。
3、 如权利要求 2所述的光模块, 其特征在于, 所述收发光组件包括接收 光组件和发射光组件; 其中, 所述发射光组件包括半导体激光器 LD、 准直透 镜、 滤波片 TFF、 自聚焦透镜 Grin lens、 光纤套管和设置在该光纤套管中的 两条光纤, 两条光纤分别连接第一下行光口和第二下行光口, 其中:
第一波长的下行入射光通过所述光纤套管中第一条光纤引入所述 Grin lens后, 进入所述 TFF;
所述 LD发出第二波长的光,该第二波长的光通过所述准直透镜准直进入 所述 TFF;
所述 TFF 将所述第二波长的光和所述第一波长的光进行合波形成下行 光, 所述下行光通过所述 Grin lens, 光纤套管从所述两条光纤中的第二条光 纤输出。
4、 如权利要求 3所述的光模块, 其特征在于, 所述发射光组件还包括微 型装置管壳、 晶体管管壳或整体管壳中的任一种管壳, 所述 LD、 准直透镜、
TFF、 Grin lens, 光纤套管封装在所述任一种管壳中。
5、 如权利要求 2所述的光模块, 其特征在于, 该光模块还包括波分复用 器 WDM, 则所述光收发组件包括: 半导体激光器 LD 、 接收器 APD、 硅光 基片微环结构和准直透镜, 其中:
LD 发出第二波长的光通过硅光基片微环结构中第一微环的上半环进入 第一微环之后, 传输到与第一微环下半环连接的第一直线, 并与第一波长的 下行入射光合波, 合波后的光通过所述准直透镜反射到所述第二下行光口后 进入 WDM输出, 其中, 所述第一波长的下行入射光通过所述第一下行光口 输入到光模块的第一直线;
上行入射光经过 WDM反射到所述第二上行光口进入所述光模块, 所述 光模块中的所述准直透镜将所述上行入射光反射到硅光基片微环结构中的第 二直线, 该硅光基片微环结构中与第二直线连接的第二微环和第三微环对应 滤出与该光模块波长对应的第三波长的横电模 TE和横磁模 TM波构成的光, 将第三波长的光发送到所述 APD接收, 所述上行光中除所述第三波长的光外 的其余波长的光通过所述微环中的第二直线反射到所述第一上行光口输出。
6、 如权利要求 1所述的光模块, 其特征在于, 所述光收发组件包括: 第 一波分复用器 WDM1、 第二波分复用器 WDM2、 半导体激光器 LD 、 第一滤 波片 TFF1、 第二滤波片 TFF2、 接收器 APD和反射镜 mirror, 其中:
当第一波长的下行入射光通过所述第一光口进入光模块, 通过 mirror打 到 TFF1时被反射, 并与 LD生成的第二波长的光合波, 合波形成的下行光进 入 WDM1后投射到所述第二光口输出;
上行入射光进入通过所述第二光口进入光模块后, 通过 WDM1将所述上 行入射光反射到 TFF2上, 通过 TFF2滤出与该光模块波长对应的第三波长的 光, 发送到 APD接收, 所述上行入射光中除所述第三波长的光外的其余波长 的光被 TFF2反射后, 通过 WDM2和所述 mirror反射到第一光口输出。
7、 一种带宽可调的光模块, 其特征在于, 该带宽可调的光模块包括: 至 少两个如权利要求 1~6任一所述的光模块, 并且至少两个光模块通过所述第 一电接口、 第二电接口、 第一光口和第二光口实现级联, 级联形成的带宽可 调的光模块的可调带宽是级联的光模块的带宽之和; 其中, 级联的两个光模 块中第一光模块的第一电接口与第二光模块的第二电接口相连, 第一光模块 的第一光口与第二光模块的第二光口相连;
级联的光模块中不与其他光模块相连的光口, 则对应连接光收发设备; 级联的光模块中不与其他光模块相连的电接口, 则对应连接单板。
8、一种带宽可调的光模块,其特征在于, 包括: 至少两个如权利要求 1~6 任一所述的光模块、 光合 /分波器和单板;
至少两个光模块的第一电接口和第二电接口连接所述单板; 并且所述至 少两个光模块的第一光口和第二光口与光合 /分波器相连, 该带宽可调的光模 块的可调带宽是至少两个光模块的带宽之和;
该和 /分波器设置在所述单板上, 将输入所述至少两个光模块的光信号分 波后发送到对应的光模块, 并接收所述至少两个光模块输出的光信号, 并将 接收到的光信号合波之后通过光纤输出。
9、 一种光线路终端, 其特征在于, 该光线路终端中包括如权利要求 1~8 任一所述的光模块。
10、 一种无源光网络系统, 其特征在于, 该系统中包括光线路终端和光 网络终端, 其中所述光线路终端中包括如权利要求 1~8任一所述的光模块。
PCT/CN2013/090134 2013-12-20 2013-12-20 一种带宽可调的光模块及系统 WO2015089836A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/090134 WO2015089836A1 (zh) 2013-12-20 2013-12-20 一种带宽可调的光模块及系统
CN201380002467.3A CN104969491B (zh) 2013-12-20 2013-12-20 一种带宽可调的光模块及系统
EP13899391.0A EP3073652B1 (en) 2013-12-20 2013-12-20 Bandwidth-adjustable optical module and system
US15/187,437 US10128970B2 (en) 2013-12-20 2016-06-20 Bandwidth adjustable optical module and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090134 WO2015089836A1 (zh) 2013-12-20 2013-12-20 一种带宽可调的光模块及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/187,437 Continuation US10128970B2 (en) 2013-12-20 2016-06-20 Bandwidth adjustable optical module and system

Publications (1)

Publication Number Publication Date
WO2015089836A1 true WO2015089836A1 (zh) 2015-06-25

Family

ID=53402003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090134 WO2015089836A1 (zh) 2013-12-20 2013-12-20 一种带宽可调的光模块及系统

Country Status (4)

Country Link
US (1) US10128970B2 (zh)
EP (1) EP3073652B1 (zh)
CN (1) CN104969491B (zh)
WO (1) WO2015089836A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017091353A1 (en) * 2015-11-25 2017-06-01 Google Inc. Upgrading pon systems using a multi-cycle field awg

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113596634B (zh) * 2021-07-30 2023-09-26 武汉光迅科技股份有限公司 一种Combo PON OLT单片集成芯片及其光组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855778A (zh) * 2005-04-29 2006-11-01 上海贝尔阿尔卡特股份有限公司 一种无源光网络级联系统及其光线路终端
CN201336661Y (zh) * 2009-01-14 2009-10-28 华为技术有限公司 一种光模块接口转换装置
US20130183039A1 (en) * 2012-01-18 2013-07-18 Telefonaktiebolaget L M Ericsson (Publ) Selectable multiple-wavelength access for optical network units in arrayed waveguide based wavelength division multiplexing passive optical network
CN103401612A (zh) * 2013-08-20 2013-11-20 烽火通信科技股份有限公司 基于ftth网络的光纤和无线混合接入系统及混合接入方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451916A (en) * 1980-05-12 1984-05-29 Harris Corporation Repeatered, multi-channel fiber optic communication network having fault isolation system
JPH0685825A (ja) * 1992-02-06 1994-03-25 Internatl Business Mach Corp <Ibm> モジュラー電気光学バスカプラーシステム
US5774245A (en) * 1996-07-08 1998-06-30 Worldcom Network Services, Inc. Optical cross-connect module
DE60016688T2 (de) * 1999-10-06 2005-05-19 Nortel Networks Ltd., St. Laurent Koppelfeld für optische Signale
CA2285128C (en) * 1999-10-06 2008-02-26 Nortel Networks Corporation Switch for optical signals
US6490727B1 (en) * 1999-10-07 2002-12-03 Harmonic, Inc. Distributed termination system for two-way hybrid networks
US6650808B1 (en) * 1999-10-14 2003-11-18 Raytheon Company Optical high speed bus for a modular computer network
US6661940B2 (en) * 2000-07-21 2003-12-09 Finisar Corporation Apparatus and method for rebroadcasting signals in an optical backplane bus system
US6597824B2 (en) * 2001-01-28 2003-07-22 Raytheon Company Opto-electronic distributed crossbar switch
US6891841B2 (en) * 2001-03-12 2005-05-10 Advent Networks, Inc. Time division multiple access over broadband modulation method and apparatus
DE10118295A1 (de) * 2001-04-12 2002-10-17 Alcatel Sa Optischer Crossconnect
US7599620B2 (en) * 2001-06-01 2009-10-06 Nortel Networks Limited Communications network for a metropolitan area
US6690848B2 (en) * 2001-06-29 2004-02-10 Nortel Networks Limited Metropolitan photonic switch
US20060020975A1 (en) * 2001-07-05 2006-01-26 Wave7 Optics, Inc. System and method for propagating satellite TV-band, cable TV-band, and data signals over an optical network
US20040028323A1 (en) * 2002-03-27 2004-02-12 Bennett Kevin W Telemetry add/drop module
US20050089027A1 (en) * 2002-06-18 2005-04-28 Colton John R. Intelligent optical data switching system
US7277637B2 (en) * 2003-01-03 2007-10-02 Tellabs Bedford, Inc. Fiber to the home broadband home unit
US8958697B2 (en) * 2003-06-10 2015-02-17 Alexander I. Soto System and method for optical layer management in optical modules and remote control of optical modules
DE10343615A1 (de) * 2003-09-20 2005-04-14 Marconi Communications Gmbh Netzknoten für ein optisches Nachrichtenübertragungsnetz
US7570672B2 (en) * 2004-02-02 2009-08-04 Simplexgrinnell Lp Fiber optic multiplex modem
JP4524120B2 (ja) * 2004-02-03 2010-08-11 富士通株式会社 ブレード型光伝送装置
JP4195405B2 (ja) * 2004-03-10 2008-12-10 日本電信電話株式会社 Wdmフィルタモジュール
WO2006058142A2 (en) * 2004-11-24 2006-06-01 Sioptical, Inc. Soi-based optical interconnect arrangement
US20080050117A1 (en) * 2006-06-12 2008-02-28 Bikash Koley Method and apparatus for photonic resiliency of a packet switched network
US8965220B2 (en) * 2007-05-30 2015-02-24 Tellabs Operations, Inc. Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
EP2071861B1 (en) * 2007-12-12 2014-10-22 ADVA Optical Networking SE A method and a network for bidirectional transport of data
US8126329B2 (en) * 2008-09-03 2012-02-28 Applied Optoelectronics, Inc. Quad-port optical module with pass-through and add/drop configuration
US8121478B2 (en) * 2009-03-20 2012-02-21 International Business Machines Corporation Method and apparatus for implementing non-blocking computer interconnection network using bidirectional optical switch
US8326156B2 (en) * 2009-07-07 2012-12-04 Fiber-Span, Inc. Cell phone/internet communication system for RF isolated areas
US8412044B2 (en) * 2009-07-31 2013-04-02 Go! Foton Holdings, Inc. Optical fiber network with improved fiber utilization
CN101656743B (zh) * 2009-08-25 2012-09-26 南京普天网络有限公司 Stm-1中63路网桥业务与千兆以太网口间转换设备
US8678673B2 (en) * 2010-09-07 2014-03-25 Industrial Technology Research Institute Optical USB thin card
IL210169A0 (en) * 2010-12-22 2011-03-31 Yehuda Binder System and method for routing-based internet security
US8805191B2 (en) * 2011-09-29 2014-08-12 Applied Optoelectronics, Inc. Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths
US9225454B1 (en) * 2011-10-26 2015-12-29 Google Inc. Aggregation and de-agreggation of bandwidth within data centers using passive optical elements
WO2013096688A1 (en) * 2011-12-21 2013-06-27 Skorpios Technologies, Inc. Tunable bi-directional transceiver
CN102821331A (zh) * 2012-08-27 2012-12-12 苏州金纳信息技术有限公司 智能电网opgw实现装置
US9281970B2 (en) * 2013-10-11 2016-03-08 Intel Corporation Error burst detection for assessing reliability of a communication link

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855778A (zh) * 2005-04-29 2006-11-01 上海贝尔阿尔卡特股份有限公司 一种无源光网络级联系统及其光线路终端
CN201336661Y (zh) * 2009-01-14 2009-10-28 华为技术有限公司 一种光模块接口转换装置
US20130183039A1 (en) * 2012-01-18 2013-07-18 Telefonaktiebolaget L M Ericsson (Publ) Selectable multiple-wavelength access for optical network units in arrayed waveguide based wavelength division multiplexing passive optical network
CN103401612A (zh) * 2013-08-20 2013-11-20 烽火通信科技股份有限公司 基于ftth网络的光纤和无线混合接入系统及混合接入方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017091353A1 (en) * 2015-11-25 2017-06-01 Google Inc. Upgrading pon systems using a multi-cycle field awg
US9729950B2 (en) 2015-11-25 2017-08-08 Google Inc. Upgrading PON systems using a multi-cycle field AWG
US10158930B2 (en) 2015-11-25 2018-12-18 Google Llc Upgrading PON systems using a multi-cycle field AWG

Also Published As

Publication number Publication date
EP3073652A1 (en) 2016-09-28
EP3073652A4 (en) 2016-11-16
EP3073652B1 (en) 2018-10-10
CN104969491A (zh) 2015-10-07
US20160301494A1 (en) 2016-10-13
US10128970B2 (en) 2018-11-13
CN104969491B (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN102106103B (zh) 光网络
EP2122878B1 (en) Backward compatible pon coexistence
EP2997405B1 (en) Compact multi-channel optical transceiver module
US9448367B2 (en) Multi-channel optical transceiver module including dual fiber type direct link adapter for optically coupling optical subassemblies in the transceiver module
EP2192712A1 (en) Wavelength division and time division multiplex mixing passive optical network system, terminal and signal transmission method
US20180123693A1 (en) Optical device and optical module
WO2012062119A1 (zh) 无源光网络及其信号的传输方法
WO2012149810A1 (zh) 无源光网络系统及其下行传输方法
US20190173604A1 (en) High-speed optical transceiver based on cwdm and sdm
WO2020125768A1 (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
WO2012065460A1 (zh) 无源光网络系统、方法及光线路终端和波长路由单元
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
WO2012103847A2 (zh) 波分复用器及无源光网络系统
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
KR101762973B1 (ko) 다중포트 수동 광 네트워크 확장장치 및 이를 이용한 광신호 전송방법
Yan et al. First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
US10128970B2 (en) Bandwidth adjustable optical module and system
JP5662568B2 (ja) 光学ネットワークのための反射型半導体光増幅器
CN102104814B (zh) 一种无源光网络
CN103780310A (zh) 一种用于olt的 sfp光收发一体模块
EP3514591B1 (en) Light transceiving assembly
JP3808464B2 (ja) 光ネットワークユニット,波長分岐器および光波長多重アクセスシステム
JP2010161568A (ja) マルチレートpon親局装置
CN217521404U (zh) 一种Combo PON OLT端光收发器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899391

Country of ref document: EP