WO2015087911A1 - Light modulation device and display device - Google Patents

Light modulation device and display device Download PDF

Info

Publication number
WO2015087911A1
WO2015087911A1 PCT/JP2014/082674 JP2014082674W WO2015087911A1 WO 2015087911 A1 WO2015087911 A1 WO 2015087911A1 JP 2014082674 W JP2014082674 W JP 2014082674W WO 2015087911 A1 WO2015087911 A1 WO 2015087911A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light modulation
liquid crystal
anisotropic particles
light
Prior art date
Application number
PCT/JP2014/082674
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 貴啓
弘幸 森脇
花岡 一孝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015087911A1 publication Critical patent/WO2015087911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present invention relates to a light modulation device and a display device. More specifically, the present invention relates to a light modulation device and a display device that perform light modulation by controlling the direction of shape anisotropic particles dispersed in liquid crystal.
  • a liquid crystal panel using a polarizing plate As a light modulation device, a liquid crystal panel using a polarizing plate is well known. In this method, natural light before entering the liquid crystal layer is converted into polarized light by the polarizing plate, and the polarized light transmitted through the liquid crystal layer is converted into the same polarizing plate (in the reflection mode) or another polarizing plate (in the transmission mode). By making the light incident, the transmittance of light incident on the liquid crystal panel can be controlled.
  • the liquid crystal layer can be used for controlling the polarization state because the orientation of the liquid crystal molecules in the liquid crystal layer changes depending on the magnitude of the applied voltage. This type of liquid crystal panel has a limit in improving the light utilization efficiency because more than half of the light used for display is absorbed by the polarizing plate.
  • Patent Document 1 discloses an optical device in which a system including electro-optical sensitive flakes suspended in a liquid host is encapsulated in a polymer binder solution.
  • Patent Document 2 discloses a display medium in which scaly magnetic powder is dispersed in a liquid in a microcapsule surrounded by a binder.
  • Patent Document 3 discloses an electrochemical display element in which an ionic conductor composed of fine particles of a specific type of organic polymer and an electrolytic solution held in the fine particles of the polymer is sandwiched between two electrode plates. It is disclosed.
  • Patent Documents 4 and 5 disclose a light modulation panel including a light modulation layer including a shape anisotropic member.
  • Patent Documents 6 and 7 disclose an optical device including a suspension layer containing polymer flakes.
  • Patent Document 8 discloses a transflective display having a suspension layer containing reflective particles.
  • Patent Document 9 discloses a PSA technique in which a monomer (monomer) is dispersed in a liquid crystal, and the monomer dispersed in the liquid crystal is photopolymerized by irradiating light while applying a voltage to the liquid crystal. It is described that a polymer (polymer) is formed on the surface, and the initial tilt (pretilt) of the liquid crystal on the alignment film surface is fixed by this polymer.
  • the present inventors have focused on a display method in which shape anisotropic particles are operated by voltage application.
  • the conventional light modulation device using this display method has room for improvement because a desired light transmittance cannot be obtained when a voltage is applied. For example, when applied to a display device that displays white by reflecting light with shape anisotropic particles when a voltage is applied, it has been required to make the white display brighter.
  • the present invention has been made in view of the above situation, and a light modulation device capable of improving the control of light transmittance at the time of voltage application by effectively controlling the orientation of shape anisotropic particles, and the same
  • An object of the present invention is to provide a display device including
  • the present inventors have found that if liquid crystal is used as a medium for dispersing shape anisotropic particles, the orientation of the shape anisotropic particles can be controlled by utilizing the change in the alignment state of the liquid crystal due to voltage application. .
  • the present inventors paid attention to the PSA technique as a means for effectively controlling the orientation of shape anisotropic particles.
  • an aspect of the present invention is a light modulation device including a first substrate and a second substrate that are disposed to face each other, and a light modulation layer that is disposed between the first substrate and the second substrate.
  • the first substrate has a pair of electrodes
  • the light modulation layer is a liquid crystal in which shape anisotropic particles are dispersed, and the liquid crystal and the shape anisotropic particles are in the pair.
  • the substrate In a state where no voltage is applied between the electrodes, the substrate is oriented in a direction perpendicular to the first substrate, and a voltage is applied between the pair of electrodes.
  • a light modulation device in which a polymer layer having a surface shape that supports the inclination of the shape anisotropic particles in the transverse electric field state is provided on the surface of the first substrate on the light modulation layer side It may be.
  • Another embodiment of the present invention may be a display device including the light modulation device.
  • the shape anisotropic particles are provided by providing the polymer layer having a surface shape that supports the inclination of the shape anisotropic particles in the transverse electric field state.
  • the control of the light transmittance during voltage application can be improved (expansion of dynamic range). That is, if it is a usage mode that transmits light when a voltage is applied, the light transmittance at the time of voltage application can be further increased, and if it is a usage mode that blocks light when a voltage is applied, the light transmittance at the time of voltage application Can be made lower.
  • the response speed with respect to the applied voltage of the shape anisotropic particle at the time of driving of the light modulation device can be improved.
  • the display device of the present invention since the display device of the present invention includes the light modulation device as described above, it has excellent light utilization efficiency that does not require a polarizing plate, and the display performance when a voltage is applied is improved.
  • white display when a voltage is applied can be brightened.
  • black display when a voltage is applied can be made darker.
  • the response speed of the pixels when driving the display device can be improved.
  • FIG. It is a cross-sectional schematic diagram of the light modulation device of the first embodiment, (a) represents the voltage off state, (b) represents the voltage on state.
  • 3 is a schematic plan view illustrating an electrode structure of a lower substrate in the light modulation device of Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram of the light modulation device according to the first embodiment before and after the formation of the PSA film, where (a) represents a state before the PSA process, and (b) represents a state during the PSA process.
  • It is a cross-sectional schematic diagram of the light modulation device of Embodiment 2 (a) represents a voltage off state, (b) represents a voltage on state.
  • FIG. 6 is a schematic perspective view illustrating an electrode structure in a light modulation device according to Embodiment 3.
  • FIG. It is the photograph which compared and showed the white display state of the area
  • 5 is a graph showing reflectance-voltage characteristics (RV characteristics) of a PSA untreated area and a PSA treated area.
  • RV characteristics reflectance-voltage characteristics
  • the present invention is not limited to the following embodiments and examples.
  • the use of the light modulation device in the following embodiments is a display device (flake display)
  • the use of the light modulation device of the present invention is not limited to the display device, and for example, adjustment of show window, blind, and white turbidity is possible. Application to frosted glass is also possible.
  • the configurations of the embodiments and examples may be appropriately combined or changed without departing from the gist of the present invention.
  • symbol is attached
  • the light modulation device of Embodiment 1 constitutes a reflective display device that performs display using reflection of light (external light) incident from outside the device into the device, and performs black display when no voltage is applied. When a voltage is applied, white display or halftone display (gray display) is performed.
  • the light modulation device according to the first embodiment includes a plurality of pixels arranged in a matrix, and is configured to be able to switch between black display, halftone display, and white display in each of the plurality of pixels. .
  • FIGS. 1 and 2 are schematic cross-sectional views of the light modulation device according to the first embodiment.
  • FIG. 1A illustrates a voltage off state
  • FIG. 1B illustrates a voltage on state.
  • FIG. 2 is a schematic plan view showing the electrode structure of the lower substrate in the light modulation device of the first embodiment.
  • the light modulation device includes a liquid crystal layer 30 as a light modulation layer between a first substrate 10 and a second substrate 20 that are arranged to face each other.
  • the first substrate 10 is located on the back side, and the second substrate 20 is located on the front side (display surface side, observer side).
  • the first substrate 10 and the second substrate 20 are bonded to each other by a sealing material (not shown) arranged so as to surround the display area.
  • a liquid crystal layer 30 is sealed in a gap between the first substrate 10 and the second substrate 20 surrounded by the sealing material.
  • the thickness of the liquid crystal layer 30 is not particularly limited.
  • the first substrate 10 includes a pair of electrodes 12a and 12b, a vertical alignment film 14 and a PSA film 15 in this order on the liquid crystal layer side (display surface side) of the lower substrate 11, and a light absorber on the back side of the lower substrate 11. (Light absorption layer) 16 is provided.
  • the first substrate 10 is an active matrix substrate and includes switching elements arranged in each pixel and various wirings, but is not shown in the figure.
  • the switching element for example, a thin film transistor (TFT) is used.
  • TFT thin film transistor
  • Examples of the various wirings include a gate bus line that supplies a scanning signal to the TFT, a source bus line that supplies a display signal to the TFT, and a common wiring.
  • the pair of electrodes 12a and 12b is provided for each pixel, one of which is electrically connected to the source bus line via the switching element, and the other is electrically connected to the common wiring.
  • the pair of electrodes 12a and 12b has an in-plane switching (IPS) type electrode structure, and specifically, is a pair of comb-teeth electrodes in which mutual comb teeth are fitted. As shown in FIG. 2, each of the pair of electrodes 12a and 12b has a trunk part and a plurality of parallel branch parts (comb teeth) extending from the trunk part. They are arranged alternately with an interval (space). By applying a voltage between the pair of electrodes 12a and 12b by the AC power supply, an electric field (lateral electric field) horizontal to the first substrate 10 is generated in the liquid crystal layer 30 near the space.
  • IPS in-plane switching
  • the pair of electrodes 12a and 12b are formed of a conductive material, and can be formed of, for example, a metal material.
  • the electrodes in the first substrate 10 on the back side of the liquid crystal layer 30 do not have to be formed of a transparent conductive material.
  • the vertical alignment film 14 is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 31 is set in a direction perpendicular to the first substrate 10. The vertical alignment film 14 only needs to align the liquid crystal molecules 31 in the liquid crystal layer 30 substantially perpendicularly to the surface thereof.
  • the PSA film 15 is a layer made of a polymer, and is provided on the outermost surface of the first substrate 10 on the liquid crystal layer 30 side.
  • the shape anisotropic particles 32 dispersed in the liquid crystal layer 30 are horizontally aligned with respect to the first substrate 10 by a lateral electric field generated when a voltage is applied between the pair of electrodes 12 a and 12 b. Supports tilting.
  • the surface of the PSA film 15 has a shape that can support the inclination of the shape anisotropic particles 32. A method for forming such a PSA film 15 will be described in detail later.
  • the light absorber 16 is for absorbing external light transmitted through the liquid crystal layer 30 and realizing black display.
  • the material of the light absorber 16 is not particularly limited as long as it can absorb light.
  • a resin in which a black pigment is dispersed can be used.
  • the light modulation device according to the present embodiment constitutes a reflective display device.
  • the light absorber 16 absorbs the external light transmitted through the liquid crystal layer 30 so that the black light is absorbed.
  • Display is realized, and when a voltage is applied, the shape anisotropic particles 32 inclined in the horizontal direction due to a horizontal electric field reflect external light, thereby realizing white display or halftone display.
  • the light absorber 16 is provided on the back side of the lower substrate 11, but may be provided on the front side of the lower substrate 11.
  • the second substrate 20 includes a counter electrode 22, an insulating film 23, a vertical alignment film 24, and a PSA film 25 in this order on the liquid crystal layer side (back side) of the upper substrate 21.
  • a color filter is further provided.
  • the counter electrode 22 is disposed to face the pair of electrodes 12a and 12b, but may not be disposed for each pixel.
  • the counter electrode 22 is provided in a planar shape so as to cover the entire display region composed of a large number of pixels.
  • a vertical electric field can be applied to the liquid crystal layer 30.
  • the light modulation device of this embodiment basically performs display only with a lateral electric field. However, a drive incorporating a vertical electric field can be performed as necessary for resetting hysteresis, resetting flake orientation disturbance due to impact from the outside, and further assisting electric field for high-speed response.
  • the counter electrode 22 is preferably formed of a transparent conductive material.
  • the transparent conductive material include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the vertical alignment film 24 and the PSA film 25 on the second substrate 20 side are provided in the same manner as the vertical alignment film 14 and the PSA film 15 on the first substrate 10 side.
  • the liquid crystal layer 30 is obtained by dispersing shape anisotropic particles 32 in liquid crystal.
  • a liquid crystal as a dispersion medium for the shape anisotropic particles 32
  • the shape anisotropic particles 32 can be uniformly dispersed.
  • the liquid crystal molecules 31 and the shape anisotropic particles 32 constituting the liquid crystal change their directions in the liquid crystal layer 30 in accordance with a lateral electric field applied by the pair of electrodes 12 a and 12 b of the first substrate 10.
  • liquid crystal molecules having positive dielectric anisotropy ( ⁇ ) are used as the liquid crystal molecules 31 in order to incline the shape anisotropic particles 32 in the horizontal direction by a lateral electric field.
  • the shape anisotropic particles 32 only have to have anisotropy in shape, but the projected area on the first substrate 10 in the horizontal direction from the projected area on the first substrate 10 in the vertical direction. It is preferable that the projected area continuously changes according to the inclination. As a specific example of such a shape, a flake shape such as a disk shape is preferably used. Moreover, it is preferable that the projected area on the first substrate 10 when set in the horizontal direction is twice or more than the projected area on the first substrate 10 when set in the vertical direction.
  • the thickness of the shape anisotropic particle 32 is not particularly limited. However, the smaller the thickness, the smaller the projected area onto the first substrate 10 in the vertical direction, which is preferable. 500 nm or less). Furthermore, it is preferable that the shape anisotropic particle 32 has a light reflective surface.
  • the material of the shape anisotropic particle 32 a metal, a semiconductor, a dielectric, and a composite material thereof can be used.
  • a metal is used as the material of the shape anisotropic particle 32, it is preferable to form a dielectric layer (insulating layer) on the surface of the shape anisotropic particle 32.
  • a dielectric layer insulating layer
  • the orientation of the shape anisotropic particles 32 can be controlled using the dielectrophoretic force.
  • a metal flake coated with a resin is preferably used.
  • the film thickness of the resin is, for example, about several tens to 100 nm.
  • the specific gravity of the shape anisotropic particles 32 is preferably about the same as that of the liquid crystal from the viewpoint of preventing the liquid crystal layer 30 from floating and settling.
  • FIG. 1A shows a state in which no voltage is applied between the pair of electrodes 12a and 12b.
  • the liquid crystal molecules 31 and the shape anisotropic particles 32 are formed on the first substrate 10. It is oriented vertically. For this reason, incident external light from the second substrate 20 side passes through the liquid crystal layer 30 and reaches the light absorber 16, thereby realizing black display.
  • the path of external light is indicated by arrows.
  • FIG. 1B shows a state in which a voltage is applied between the pair of electrodes 12a and 12b.
  • the liquid crystal molecules 31 have a positive dielectric anisotropy.
  • Horizontal alignment is performed with respect to the first substrate 10 according to the strength of the lateral electric field.
  • the shape anisotropic particles 32 are tilted in the horizontal direction with respect to the first substrate 10 under the force that the liquid crystal molecules 31 located around the shape anisotropic particles 32 change from vertical alignment to horizontal alignment. It is preferable that the shape anisotropic particles 32 are horizontally aligned not only by the orientation change of the surrounding liquid crystal molecules 31 but also by the dielectrophoretic force generated in itself.
  • the dielectrophoretic force increases as the difference between the dielectric constants of the liquid crystal molecules 31 and the shape anisotropic particles 32 serving as a medium increases. Therefore, from the viewpoint of obtaining good switching characteristics, it is preferable that the difference in dielectric constant between the liquid crystal molecules 31 and the shape anisotropic particles 32 is large.
  • the above description is based on the switching from the voltage-off state in FIG. 1A to the voltage-on state in FIG. 1B, but the voltage-off state in FIG.
  • the case of switching to the state is the same except that the direction of the orientation change of the liquid crystal molecules 31 and the shape anisotropic particles 32 is reversed. That is, the orientation change of the liquid crystal molecules 31 and the shape anisotropic particles 32 is reversible by applying a voltage regardless of whether the orientation changes from vertical orientation to horizontal orientation or from horizontal orientation to vertical orientation. Therefore, the response speed when changing from black display to white display and the response speed when changing from white display to black display can be made equal.
  • the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20.
  • the PSA films 15 and 25 may indirectly support the shape anisotropic particles 32 by having a surface shape suitable for the liquid crystal molecules 31 in the tilted state, or the shape anisotropic particles 32 in the tilted state.
  • the shape anisotropic particles 32 may be directly supported by having a surface shape adapted to the above.
  • FIG. 3A and 3B are schematic cross-sectional views of the light modulation device according to the first embodiment before and after the formation of the PSA film.
  • FIG. 3A shows a state before the PSA process
  • FIG. 3B shows a state during the PSA process.
  • the liquid crystal layer 30 contains a liquid crystal composed of liquid crystal molecules 31, shape anisotropic particles 32, and a PSA monomer 33. Yes.
  • a voltage is applied between the pair of electrodes 12a and 12b on the first substrate 10 side, and the counter electrode 22 on the second substrate 20 side is 0 V (GND).
  • the alignment state of the liquid crystal molecules 31 changes from vertical alignment to horizontal alignment, and accordingly, the alignment state of the shape anisotropic particles 32 also changes to horizontal alignment.
  • the shape anisotropic particles 32 that are tilted according to the liquid crystal alignment are also easily tilted, so that the brightness of white display can be improved. Moreover, the response speed with respect to the applied voltage of the shape anisotropic particle 32 can be improved.
  • a monomer having a liquid crystal skeleton is preferable.
  • a monomer represented by the following general formula (1) can be used.
  • P 1 and P 2 are each independently an acrylate, methacrylate, vinyl, vinyloxy or epoxy group
  • a 1 and A 2 are each independently 1,4-phenylene or naphthalene.
  • a -2,6-diyl group, Z 1 is a —COO— or —OCO— group or a single bond
  • n is 0, 1 or 2.
  • Examples of the monomer represented by the general formula (1) include monomers represented by the following formulas (2) to (4).
  • P 1 and P 2 in the above formulas (2) to (4) are each independently an acrylate, methacrylate, vinyl, vinyloxy or epoxy group.
  • Examples of the monomer represented by the general formula (2) include a monomer represented by the following formula (5).
  • the light modulation device may be pressurized so that the light intensity temporarily decreases.
  • surface pressing that uniformly pressurizes a predetermined surface is preferable.
  • In-plane variation may occur in the tilting direction of the shape anisotropic particles 32 by one surface pressing, but if the voltage application and the surface pressing are used in combination, the shape anisotropic particles 32 that have fallen once become the next surface. Since the pressing hardly returns to the original vertical alignment, if the surface pressing is repeated several times while changing the position, the shape anisotropic particles 32 on the entire surface in the plane fall down, and the in-plane variation is eliminated.
  • the liquid crystal layer 30 is once heated to a temperature not lower than the NI point, the shape anisotropic particles 32 are tilted, and thereafter the temperature is not higher than the NI point, so that the shape anisotropic particles 32 Ultraviolet irradiation may be performed while the is tilted.
  • the NI point is a temperature at which the liquid crystal changes from a nematic phase to an isotropic liquid phase.
  • the shape anisotropic particles 32 are added to the liquid crystal solvent, when the temperature is higher than the NI point, a phenomenon is observed in which the shape anisotropic particles 32 change state from vertical alignment to horizontal alignment. .
  • any one method may be used, or two or more methods may be used in combination.
  • the PSA films 15 and 25 are provided so that the shape anisotropic particles 32 can be oriented in a desired direction according to the lateral electric field when the light modulation device is driven. It becomes easy and the light transmittance at the time of voltage application can be made higher. Since the reflective display device does not require a light source, it is suitable for low power consumption and thinning, while obtaining a bright white display is an important technical problem. According to the light modulation device (reflection display device) of the present embodiment, bright white display can be realized. In addition, the response speed of the pixels can be improved.
  • the display principle of the light modulation device according to the present embodiment is to control the reflectance of external light that is natural light by changing the direction of the shape anisotropic particles 32. Therefore, unlike the liquid crystal panel using the polarizing plate, it is not necessary to dispose the polarizing plate on the back side of the first substrate 10 and the front side of the second substrate 20. For this reason, the light modulation device of this embodiment is excellent in light utilization efficiency.
  • the light modulation device constitutes a transmissive display device that performs display using light from a light source, and performs white display when no voltage is applied and performs black display when a voltage is applied. .
  • FIG. 4A and 4B are schematic cross-sectional views of the light modulation device according to the second embodiment.
  • FIG. 4A illustrates a voltage off state
  • FIG. 4B illustrates a voltage on state.
  • the light modulation device of Embodiment 2 includes a light source (backlight) 40 on the back side of the first substrate 10, and is emitted from the light source 40 by the liquid crystal layer 30 as a light modulation layer. The transmission and reflection of light is controlled.
  • the light modulation device according to the second embodiment is different from the light modulation device according to the first embodiment in that the light source 40 is included and the light absorber 16 is not included.
  • a pair of electrode 12a, 12b is formed with a transparent conductive material.
  • the method of the light source 40 may be an edge light type or a direct type.
  • the type of the light source is not particularly limited, and a light emitting diode (LED), a cold cathode tube (CCFL), or the like can be used.
  • FIG. 4A shows a state in which no voltage is applied between the pair of electrodes 12a and 12b.
  • the liquid crystal molecules 31 and the shape anisotropic particles 32 are formed on the first substrate 10.
  • FIG. It is oriented vertically. For this reason, the light from the light source 40 incident from the first substrate 10 side is transmitted through the liquid crystal layer 30 and the second substrate 20, and white display is realized.
  • the path of light from the light source 40 is indicated by an arrow.
  • FIG. 4B shows a state in which a voltage is applied between the pair of electrodes 12a and 12b.
  • the liquid crystal molecules 31 and the shape anisotropic particles 32 have a transverse electric field strength. Accordingly, it tilts in the horizontal direction with respect to the first substrate 10.
  • the inclination of the shape anisotropic particles 32 increases, the area when the shape anisotropic particles 32 are projected onto the first substrate 10 increases. For this reason, the light from the light source 40 is reflected by the inclined shape anisotropic particles 32, and black display is realized.
  • the path of light from the light source 40 is indicated by an arrow.
  • the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20. Thereby, it becomes easy to orient the shape anisotropic particles 32 in a desired direction according to the transverse electric field when driving the light modulation device, and the light transmittance at the time of voltage application can be further reduced. That is, according to the light modulation device (transmission type display device) of the present embodiment, dark black display can be realized and the contrast ratio can be greatly improved. In addition, the response speed of the pixels can be improved.
  • the display principle of the light modulation device of this embodiment is to control the reflectance of light from a light source that is natural light by changing the direction of the shape anisotropic particles 32. Therefore, unlike the liquid crystal panel using the polarizing plate, it is not necessary to dispose the polarizing plate on the back side of the first substrate 10 and the front side of the second substrate 20. For this reason, the light modulation device of this embodiment is also excellent in light utilization efficiency.
  • the light modulation device of Embodiment 3 is the light modulation of Embodiment 1 except that the electrode structure of the first substrate is changed from an IPS electrode structure to a fringe field switching (FFS) electrode structure. It has the same configuration as the device.
  • FFS fringe field switching
  • the FFS type electrode structure it is possible to reduce the possibility of a short circuit between a pair of electrodes provided on the first substrate. Further, the provision of the planar electrode can prevent the influence of static electricity from the outside of the light modulation device.
  • FIG. 5 is a schematic perspective view illustrating an electrode structure in the light modulation device according to the third embodiment.
  • the first substrate 10 is formed with the planar first electrode 112a and a plurality of parallel electrode slits (electrode non-formed portions).
  • the second electrode 112 b is laminated via a dielectric layer (insulating film) 113.
  • the second electrode 112b is electrically connected to the drain electrode of the TFT disposed on the lower layer (lower substrate 11 side) through a contact hole (not shown).
  • the first electrode 112a is disposed on the entire surface of the first substrate 10 except for an opening for forming a contact hole.
  • the “lateral electric field” includes not only a horizontal electric field formed by the IPS type electrode structure but also a substantially horizontal electric field formed by the FFS type electrode structure.
  • the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20. Thereby, the light transmittance at the time of voltage application can be made higher, and the response speed of the pixel can also be improved. Also in the light modulation device of the present embodiment, it is not necessary to dispose a polarizing plate, so that the light use efficiency is excellent.
  • Embodiments 1 to 3 described above a combination of liquid crystal molecules having a positive dielectric anisotropy and shape anisotropic particles 32 made of a metal coated with a dielectric is used.
  • the alignment direction of the liquid crystal with respect to the liquid crystal and the alignment direction of the shape anisotropic particles 32 with respect to the electric field can be made to coincide with each other, and the alignment control can be performed efficiently.
  • liquid crystal molecules having negative dielectric anisotropy for example, the above condition 2
  • the orientation of the liquid crystal with respect to the electric field is adjusted.
  • the direction and the orientation direction of the shape anisotropic particle 32 with respect to the electric field can be matched, and the orientation control can be performed efficiently.
  • Example 1 Based on Embodiment 1, the reflective display apparatus of the following structure was actually produced and the display characteristic was evaluated.
  • (1-1) Preparation of first substrate 10 An ITO (indium tin oxide) film having a thickness of 800 mm was formed on a sheet glass (lower substrate 11) having a thickness of 0.7 mm. Subsequently, the ITO film was patterned to form stripe electrodes (a pair of electrodes 12a and 12b) having an electrode width of 4 ⁇ m and an electrode interval of 4 ⁇ m. A vertical alignment film 14 having a thickness of 500 mm was formed on the stripe electrode.
  • ITO indium tin oxide
  • a rectangular wave 20Vp-p (a voltage waveform of ⁇ 10V after being set to + 20V and 0V) is applied to the stripe electrodes (the pair of electrodes 12a and 12b) of the PSA-treated first substrate 10, and the second With the counter electrode 22 of the substrate 20 at 0 V (GND), ultraviolet irradiation was performed from the second substrate 20 side, the PSA monomer 33 was polymerized, and PSA films 15 and 25 were formed.
  • the optical adhesion means that a substance having an appropriate refractive index is interposed in order to prevent an air layer from being formed between the lower substrate 11 and the light absorber 16.
  • glycerin was used as the substance having the appropriate refractive index.
  • FIG. 6 is a photograph comparing the white display state of an area where the PSA process has been performed (right side of the figure) and an area where the PSA process has not been performed (left side of the figure).
  • the applied voltage for white display was 10 Vp-p in both regions.
  • the area where the PSA process has been performed is whiter than the area where the PSA process has not been performed (left side in the figure), and the brightness of white has been improved.
  • FIG. 7 is an enlarged microscopic photograph showing the area where the PSA process shown in FIG. 6 was not performed
  • FIG. 8 is an enlarged view showing the area where the PSA process shown in FIG. 6 was performed. It is the microscope observation photograph.
  • flake material that contributes to white display appears white
  • flake material that does not contribute to white display appears black
  • the area that appears white compared to FIG. 7 is clearly wider, and the flakes that contribute to white display increase in the area where the PSA process is performed than in the area where the PSA process is not performed. I understand.
  • FIG. 9 is a graph showing the reflectivity-voltage characteristics (RV characteristics) of the PSA untreated area and the PSA treated area.
  • the applied voltage was gradually increased from 0 Vp-p to 20 Vp-p and then gradually decreased to 0 Vp-p.
  • An integrating sphere was used as the light source, and the reflectance of the standard white plate was 100%.
  • the white reflectance is improved in the PSA processing area.
  • the reflectance of the PSA untreated area was 13% and the reflectance of the PSA treated area was 27%, and the reflectance increased approximately twice by the PSA treatment.
  • the improvement (area reduction) of the hysteresis loop of the RV curve is achieved by the PSA process.
  • the reflectance at 0 Vp-p is normalized to 0, and the reflectance at 20 Vp-p is normalized to 1, and the area of the hysteresis loop is obtained.
  • the area of the PSA unprocessed area is 1, the area of the PSA unprocessed area is 0.4. That is, an improvement of 60% was observed. Improvement of the hysteresis loop is important for easily realizing gradation display.
  • the polymer layer is preferably formed by polymerizing a monomer having a liquid crystal skeleton added to the liquid crystal.
  • a monomer having a liquid crystal skeleton is easily mixed in the liquid crystal, and thus is easily distributed uniformly in the liquid crystal. For this reason, a polymer layer can be uniformly formed with a small addition amount.
  • the liquid crystal skeleton taken into the polymer layer can exert an alignment regulating force on the liquid crystal molecules. Since this liquid crystal skeleton is rigid, it is not easily bent by the movement of liquid crystal molecules, and a pretilt angle can be stably imparted. Thus, by using a monomer having a liquid crystal skeleton, the orientation of liquid crystal molecules can be effectively controlled, and a uniform pretilt angle can be imparted.
  • the shape anisotropic particles are preferably those in which a metal flake is coated with a resin. By using such shape anisotropic particles, the difference in dielectric constant between the liquid crystal and shape anisotropic particles can be increased, and good switching characteristics can be obtained.
  • the pair of electrodes may constitute an IPS type electrode structure, or may constitute an FFS type electrode structure.
  • the pair of electrodes When configuring an IPS-type electrode structure, the pair of electrodes is a pair of comb-teeth electrodes with which the comb teeth are fitted.
  • the pair of electrodes When configuring an FFS-type electrode structure, the pair of electrodes is a combination of a planar electrode and an electrode in which an electrode slit is formed.
  • a transverse electric field can be formed in the light modulation layer, and the liquid crystal and shape anisotropic particles can be aligned in the horizontal direction.
  • the number of layers constituting the first substrate and / or the second substrate can be reduced, so that the number of steps required for film formation and patterning of the layers can be reduced.
  • the FFS-type electrode structure the possibility of a short circuit between the electrodes can be reduced, and the influence of static electricity from the outside of the light modulation device can be prevented by the planar electrode.
  • the second substrate preferably has a planar electrode facing the pair of electrodes.
  • a vertical electric field can be applied to the light modulation layer.
  • the light modulation device of the present invention can be operated only by a horizontal electric field, but a vertical electric field may be applied as necessary.
  • the application of a longitudinal electric field is effective for the purpose of resetting hysteresis, resetting the alignment disorder of shape anisotropic particles due to impact from the outside, electric field assist for high-speed response, and the like.
  • the display device preferably includes a plurality of pixels arranged in a matrix, and the first substrate preferably includes the pair of electrodes on each of the plurality of pixels. With such a configuration, high-definition display is possible.
  • the display device preferably performs display by reflecting external light with the shape anisotropic particles in the lateral electric field state.
  • display in a reflection mode or a semi-transmission mode (a combination of a transmission mode and a reflection mode) is possible.
  • substrate has a light absorption layer.
  • the contrast ratio can be increased in reflection mode display.
  • First substrate 11 Lower substrate 12a, 12b: electrodes 14, 24: vertical alignment film 15, 25: PSA film 16: light absorber 20: second substrate 21: upper substrate 22: counter electrode 23: insulating film 30: liquid crystal layer 31: liquid crystal molecule 32: Shape anisotropic particle 33: PSA monomer 40: light source 112a: first electrode 112b: second electrode 113: dielectric layer

Abstract

The present invention provides a light modulation device whereby it is possible to enhance control of light transmissibility when imparting a voltage by efficaciously controlling the alignment of shape anisotropic particles, and a display device which is provided with the same. The present invention is a light modulation device provided with: a first substrate and a second substrate which are positioned in mutual opposition; and a light modulation layer which is positioned between the first substrate and the second substrate. The first substrate is provided with a pair of electrodes. The light modulation layer has shape anisotropic particles dispersed in liquid crystals. The liquid crystals and the shape anisotropic particles are aligned perpendicularly with respect to the first substrate when a voltage is not imparted between the pair of electrodes, and are inclined horizontally with respect to the first substrate in a lateral electrical field wherein the voltage is imparted between the pair of electrodes. A polymer layer which has a surface shape which assists the inclination of the shape anisotropic particles in the lateral electrical field is disposed upon the surface of the first substrate toward the light modulation layer side.

Description

光変調装置及び表示装置Light modulation device and display device
本発明は、光変調装置及び表示装置に関する。より詳しくは、液晶中に分散させた形状異方性粒子の向きを制御することによって光変調を行う光変調装置及び表示装置に関するものである。 The present invention relates to a light modulation device and a display device. More specifically, the present invention relates to a light modulation device and a display device that perform light modulation by controlling the direction of shape anisotropic particles dispersed in liquid crystal.
光変調装置としては、偏光板を用いる方式の液晶パネルがよく知られている。この方式では、液晶層への入射前の自然光を偏光板によって偏光に変換し、液晶層を透過した偏光を同一の偏光板(反射モードの場合)又は別の偏光板(透過モードの場合)に入射させることで、液晶パネルに入射させた光の透過率を制御できる。液晶層は、印加される電圧の大きさに応じて液晶層中の液晶分子の配向が変化するので、偏光状態の制御に用いることができる。この方式の液晶パネルは、表示に用いられる光の半分以上が偏光板で吸収されてしまうため、光の利用効率を向上させるうえで限界があった。 As a light modulation device, a liquid crystal panel using a polarizing plate is well known. In this method, natural light before entering the liquid crystal layer is converted into polarized light by the polarizing plate, and the polarized light transmitted through the liquid crystal layer is converted into the same polarizing plate (in the reflection mode) or another polarizing plate (in the transmission mode). By making the light incident, the transmittance of light incident on the liquid crystal panel can be controlled. The liquid crystal layer can be used for controlling the polarization state because the orientation of the liquid crystal molecules in the liquid crystal layer changes depending on the magnitude of the applied voltage. This type of liquid crystal panel has a limit in improving the light utilization efficiency because more than half of the light used for display is absorbed by the polarizing plate.
そこで、偏光板を必要としない光変調装置の開発が進められており、例えば、特許文献1~8に開示されたものが知られている。 Therefore, development of a light modulation device that does not require a polarizing plate is underway. For example, those disclosed in Patent Documents 1 to 8 are known.
特許文献1には、液体ホスト中に懸濁された電気-光学感受性フレークを含む系を、ポリマーバインダ溶液中でカプセル化した光学装置が開示されている。特許文献2には、バインダに囲まれたマイクロカプセル内において、鱗片状磁性粉を液体中に分散させた表示媒体が開示されている。特許文献3には、2枚の電極板間に、特定種の有機ポリマーの微粒子と、該ポリマーの微粒子中に保持された電解液とからなるイオン伝導体を挟持させた電気化学型表示素子が開示されている。 Patent Document 1 discloses an optical device in which a system including electro-optical sensitive flakes suspended in a liquid host is encapsulated in a polymer binder solution. Patent Document 2 discloses a display medium in which scaly magnetic powder is dispersed in a liquid in a microcapsule surrounded by a binder. Patent Document 3 discloses an electrochemical display element in which an ionic conductor composed of fine particles of a specific type of organic polymer and an electrolytic solution held in the fine particles of the polymer is sandwiched between two electrode plates. It is disclosed.
また、特許文献4、5には、形状異方性部材を含む光変調層を備えた光変調パネルが開示されている。特許文献6、7には、ポリマーフレークを含む懸濁液層を備えた光学装置が開示されている。特許文献8には、反射性粒子を含む懸濁液層を備えた半透過反射ディスプレイが開示されている。 Patent Documents 4 and 5 disclose a light modulation panel including a light modulation layer including a shape anisotropic member. Patent Documents 6 and 7 disclose an optical device including a suspension layer containing polymer flakes. Patent Document 8 discloses a transflective display having a suspension layer containing reflective particles.
更に、上述した偏光板を用いる方式の液晶パネルの分野においては、応答速度や開口率の向上を図ることができる技術として、ポリマー支持配向(PSA:Polymer Sustained Alignment)技術が知られていた(例えば、特許文献9~11参照。)。特許文献9には、PSA技術について、液晶中に単量体(モノマー)を分散させ、液晶に電圧を印加しながら光を照射することにより液晶中に分散させたモノマーを光重合させ、配向膜表面に重合体(ポリマー)を形成し、この重合体により配向膜表面の液晶の初期傾斜(プレチルト)を固定化するものである、と説明されている。 Furthermore, in the field of the liquid crystal panel using the polarizing plate described above, a polymer supported alignment (PSA) technique has been known as a technique capable of improving response speed and aperture ratio (for example, And Patent Documents 9 to 11). Patent Document 9 discloses a PSA technique in which a monomer (monomer) is dispersed in a liquid crystal, and the monomer dispersed in the liquid crystal is photopolymerized by irradiating light while applying a voltage to the liquid crystal. It is described that a polymer (polymer) is formed on the surface, and the initial tilt (pretilt) of the liquid crystal on the alignment film surface is fixed by this polymer.
特表2003-533736号公報Special table 2003-533736 gazette 特開平6-313880号公報JP-A-6-313880 特開2006-235484号公報JP 2006-235484 A 国際公開第2013/108899号International Publication No. 2013/108899 国際公開第2013/141248号International Publication No. 2013/141248 米国特許第6665042号明細書US Pat. No. 6,665,042 米国特許第6829075号明細書US Pat. No. 6,829,075 特表2007-506152号公報Special table 2007-506152 国際公開第2008/18213号International Publication No. 2008/18213 特開2002-357830号公報JP 2002-357830 A 特開2003-307720号公報JP 2003-307720 A
本発明者らは、光の利用効率を向上するのに適した、偏光板を必要としない光変調装置について種々検討した結果、電圧印加によって形状異方性粒子を動作させる表示方式に着目した。しかしながら、この表示方式を用いた従来の光変調装置は、電圧印加時に所望の光透過率を得ることができないため、改善の余地があった。例えば、電圧印加時に形状異方性粒子によって光を反射して白表示を行う表示装置に適用した場合には、白表示をより明るくすることが求められていた。 As a result of various studies on a light modulation device that does not require a polarizing plate and is suitable for improving the light utilization efficiency, the present inventors have focused on a display method in which shape anisotropic particles are operated by voltage application. However, the conventional light modulation device using this display method has room for improvement because a desired light transmittance cannot be obtained when a voltage is applied. For example, when applied to a display device that displays white by reflecting light with shape anisotropic particles when a voltage is applied, it has been required to make the white display brighter.
本発明は、上記現状に鑑みてなされたものであり、形状異方性粒子の配向を効果的に制御することによって、電圧印加時における光透過率の制御を改善できる光変調装置、及び、それを備えた表示装置を提供することを目的とするものである。 The present invention has been made in view of the above situation, and a light modulation device capable of improving the control of light transmittance at the time of voltage application by effectively controlling the orientation of shape anisotropic particles, and the same An object of the present invention is to provide a display device including
本発明者らは、形状異方性粒子を分散させる媒体として液晶を用いれば、電圧印加による液晶の配向状態の変化を利用して形状異方性粒子の配向を制御することができることを見出した。しかしながら、更に検討した結果、形状異方性粒子の誘電泳動に加えて、電圧印加による液晶の配向状態の変化を利用したとしても、形状異方性粒子の配向制御について未だ改善の余地があることが分かった。そこで、本発明者らは、形状異方性粒子の配向を効果的に制御する手段としてPSA技術に着目した。そして、PSA技術を適用することによって、光変調層に電圧を印加した状態において、所望の方向に配向していない形状異方性粒子が減少し、電圧印加時における光透過率の制御を改善できることを実際に見出した。以上のようにして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達した。 The present inventors have found that if liquid crystal is used as a medium for dispersing shape anisotropic particles, the orientation of the shape anisotropic particles can be controlled by utilizing the change in the alignment state of the liquid crystal due to voltage application. . However, as a result of further investigation, there is still room for improvement in the orientation control of the shape anisotropic particles even if the change in the alignment state of the liquid crystal due to voltage application is used in addition to the dielectrophoresis of the shape anisotropic particles. I understood. Therefore, the present inventors paid attention to the PSA technique as a means for effectively controlling the orientation of shape anisotropic particles. By applying the PSA technology, shape anisotropic particles that are not oriented in the desired direction are reduced in a state where a voltage is applied to the light modulation layer, and the control of light transmittance during voltage application can be improved. Actually found. As described above, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
すなわち、本発明の一態様は、互いに対向配置された第一基板及び第二基板と、上記第一基板及び上記第二基板の間に配置された光変調層と、を備える光変調装置であって、上記第一基板は、一対の電極を有し、上記光変調層は、液晶中に形状異方性粒子が分散されたものであり、上記液晶及び上記形状異方性粒子は、上記一対の電極の間に電圧を印加しない状態で、上記第一基板に対して垂直方向に配向し、上記一対の電極の間に電圧を印加した横電界状態で、上記第一基板に対して水平方向に傾くものであり、上記第一基板の上記光変調層側の表面に、上記横電界状態における上記形状異方性粒子の傾きを支持する表面形状を有するポリマー層が設けられている光変調装置であってもよい。 That is, an aspect of the present invention is a light modulation device including a first substrate and a second substrate that are disposed to face each other, and a light modulation layer that is disposed between the first substrate and the second substrate. The first substrate has a pair of electrodes, the light modulation layer is a liquid crystal in which shape anisotropic particles are dispersed, and the liquid crystal and the shape anisotropic particles are in the pair. In a state where no voltage is applied between the electrodes, the substrate is oriented in a direction perpendicular to the first substrate, and a voltage is applied between the pair of electrodes. A light modulation device in which a polymer layer having a surface shape that supports the inclination of the shape anisotropic particles in the transverse electric field state is provided on the surface of the first substrate on the light modulation layer side It may be.
また、本発明の別の一態様は、上記光変調装置を備えた表示装置であってもよい。 Another embodiment of the present invention may be a display device including the light modulation device.
本発明の光変調装置によれば、横電界状態における形状異方性粒子の傾きを支持する表面形状を有するポリマー層が設けられていることによって、光変調装置の駆動時に、形状異方性粒子を横電界に応じて所望の方向に配向させることが容易となり、電圧印加時における光透過率の制御を改善できる(ダイナミックレンジの拡大)。すなわち、電圧印加時に光を透過させる使用態様であれば、電圧印加時の光透過率をより高くすることができ、電圧印加時に光を遮断する使用態様であれば、電圧印加時の光透過率をより低くすることができる。更に、光変調装置の駆動時における形状異方性粒子の印加電圧に対する応答速度を向上することもできる。 According to the light modulation device of the present invention, when the light modulation device is driven, the shape anisotropic particles are provided by providing the polymer layer having a surface shape that supports the inclination of the shape anisotropic particles in the transverse electric field state. Can be easily oriented in a desired direction according to the transverse electric field, and the control of the light transmittance during voltage application can be improved (expansion of dynamic range). That is, if it is a usage mode that transmits light when a voltage is applied, the light transmittance at the time of voltage application can be further increased, and if it is a usage mode that blocks light when a voltage is applied, the light transmittance at the time of voltage application Can be made lower. Furthermore, the response speed with respect to the applied voltage of the shape anisotropic particle at the time of driving of the light modulation device can be improved.
また、本発明の表示装置は、上記のような光変調装置を備えることから、偏光板を必要としない光利用効率に優れたものであり、かつ電圧印加時の表示性能が向上されている。外光の反射を利用して表示を行う反射型表示装置に適用された場合には、電圧印加時の白表示を明るくすることができる。一方、光源からの光を透過させて表示を行う透過型表示装置に適用された場合には、電圧印加時の黒表示をより暗くすることができる。更に、表示装置の駆動時における画素の応答速度を向上することもできる。 In addition, since the display device of the present invention includes the light modulation device as described above, it has excellent light utilization efficiency that does not require a polarizing plate, and the display performance when a voltage is applied is improved. When applied to a reflective display device that performs display using reflection of external light, white display when a voltage is applied can be brightened. On the other hand, when applied to a transmissive display device that transmits light from a light source and performs display, black display when a voltage is applied can be made darker. Furthermore, the response speed of the pixels when driving the display device can be improved.
実施形態1の光変調装置の断面模式図であり、(a)は、電圧オフ状態を表し、(b)は、電圧オン状態を表す。It is a cross-sectional schematic diagram of the light modulation device of the first embodiment, (a) represents the voltage off state, (b) represents the voltage on state. 実施形態1の光変調装置における下基板の電極構造を示す平面模式図である。3 is a schematic plan view illustrating an electrode structure of a lower substrate in the light modulation device of Embodiment 1. FIG. PSA膜形成前後の実施形態1の光変調装置の断面模式図であり、(a)は、PSA処理前の状態を表し、(b)は、PSA処理中の状態を表す。It is a cross-sectional schematic diagram of the light modulation device according to the first embodiment before and after the formation of the PSA film, where (a) represents a state before the PSA process, and (b) represents a state during the PSA process. 実施形態2の光変調装置の断面模式図であり、(a)は、電圧オフ状態を表し、(b)は、電圧オン状態を表す。It is a cross-sectional schematic diagram of the light modulation device of Embodiment 2, (a) represents a voltage off state, (b) represents a voltage on state. 実施形態3の光変調装置における電極構造を示す斜視模式図である。6 is a schematic perspective view illustrating an electrode structure in a light modulation device according to Embodiment 3. FIG. PSA処理が行われた領域(図の右側)とPSA処理が行われなかった領域(図の左側)の白表示状態を比較して示した写真である。It is the photograph which compared and showed the white display state of the area | region (right side of a figure) to which the PSA process was performed, and the area | region (left side of the figure) where the PSA process was not performed. 図6に示したPSA処理が行われなかった領域を拡大して示した顕微鏡観察写真である。It is the microscope observation photograph which expanded and showed the area | region where the PSA process shown in FIG. 6 was not performed. 図6に示したPSA処理が行われた領域を拡大して示した顕微鏡観察写真である。It is the microscope observation photograph which expanded and showed the area | region where the PSA process shown in FIG. 6 was performed. PSA未処理領域とPSA処理領域の反射率-電圧特性(R-V特性)を示したグラフである。5 is a graph showing reflectance-voltage characteristics (RV characteristics) of a PSA untreated area and a PSA treated area.
以下、図面を参照しながら本発明の実施形態及び実施例を説明するが、本発明は、以下の実施形態及び実施例に限定されるものではない。以下の実施形態における光変調装置の用途は表示装置(フレーク・ディスプレイ)であるが、本発明の光変調装置の用途は表示装置に限定されず、例えば、ショーウインドー、ブラインド、白濁度の調整可能な曇りガラス等への適用も可能である。また、各実施形態及び実施例の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。なお、各実施形態において、同様の機能を発揮する部材には同じ符号を付している。 Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments and examples. Although the use of the light modulation device in the following embodiments is a display device (flake display), the use of the light modulation device of the present invention is not limited to the display device, and for example, adjustment of show window, blind, and white turbidity is possible. Application to frosted glass is also possible. In addition, the configurations of the embodiments and examples may be appropriately combined or changed without departing from the gist of the present invention. In addition, in each embodiment, the same code | symbol is attached | subjected to the member which exhibits the same function.
[実施形態1]
実施形態1の光変調装置は、装置外から装置内へ入射した光(外光)の反射を利用して表示を行う反射型表示装置を構成するものであり、電圧無印加時に黒表示を行い、電圧印加時に白表示又は中間調表示(グレー表示)を行うものである。また、実施形態1の光変調装置は、マトリクス状に配列された複数の画素を有するものであり、複数の画素のそれぞれにおいて、黒表示、中間調表示及び白表示を切り換え可能に構成されている。
[Embodiment 1]
The light modulation device of Embodiment 1 constitutes a reflective display device that performs display using reflection of light (external light) incident from outside the device into the device, and performs black display when no voltage is applied. When a voltage is applied, white display or halftone display (gray display) is performed. The light modulation device according to the first embodiment includes a plurality of pixels arranged in a matrix, and is configured to be able to switch between black display, halftone display, and white display in each of the plurality of pixels. .
実施形態1の光変調装置の構成の概要について、図1及び図2を参照して説明する。図1は、実施形態1の光変調装置の断面模式図であり、(a)は、電圧オフ状態を表し、(b)は、電圧オン状態を表す。図2は、実施形態1の光変調装置における下基板の電極構造を示す平面模式図である。 An outline of the configuration of the light modulation device according to the first embodiment will be described with reference to FIGS. 1 and 2. 1A and 1B are schematic cross-sectional views of the light modulation device according to the first embodiment. FIG. 1A illustrates a voltage off state, and FIG. 1B illustrates a voltage on state. FIG. 2 is a schematic plan view showing the electrode structure of the lower substrate in the light modulation device of the first embodiment.
実施形態1の光変調装置は、互いに対向配置された第一基板10と第二基板20との間に、光変調層としての液晶層30を備えるものである。第一基板10が背面側に位置し、第二基板20が前面側(表示面側、観察者側)に位置している。第一基板10と第二基板20とは、表示領域を囲むように配置されたシール材(図示せず)によって互いに貼り合わされている。シール材によって囲まれた第一基板10と第二基板20との間隙に、液晶層30が封入されている。液晶層30の厚みは特に限定されない。 The light modulation device according to the first embodiment includes a liquid crystal layer 30 as a light modulation layer between a first substrate 10 and a second substrate 20 that are arranged to face each other. The first substrate 10 is located on the back side, and the second substrate 20 is located on the front side (display surface side, observer side). The first substrate 10 and the second substrate 20 are bonded to each other by a sealing material (not shown) arranged so as to surround the display area. A liquid crystal layer 30 is sealed in a gap between the first substrate 10 and the second substrate 20 surrounded by the sealing material. The thickness of the liquid crystal layer 30 is not particularly limited.
第一基板10は、下基板11の液晶層側(表示面側)に、一対の電極12a、12b、垂直配向膜14及びPSA膜15を順に備え、下基板11の背面側に、光吸収体(光吸収層)16を備えるものである。なお、第一基板10は、アクティブマトリックス基板であり、各画素に配置されたスイッチング素子と、各種配線とを有するものであるが、図示は省略している。スイッチング素子としては、例えば、薄膜トランジスタ(TFT)が用いられる。各種配線としては、例えば、TFTに走査信号を供給するゲートバスライン、TFTに表示信号を供給するソースバスライン、共通配線が挙げられる。一対の電極12a、12bは、画素ごとに設けられており、そのうちの一方は、スイッチング素子を介してソースバスラインに電気的に接続され、他方は共通配線に電気的に接続されている。 The first substrate 10 includes a pair of electrodes 12a and 12b, a vertical alignment film 14 and a PSA film 15 in this order on the liquid crystal layer side (display surface side) of the lower substrate 11, and a light absorber on the back side of the lower substrate 11. (Light absorption layer) 16 is provided. Note that the first substrate 10 is an active matrix substrate and includes switching elements arranged in each pixel and various wirings, but is not shown in the figure. As the switching element, for example, a thin film transistor (TFT) is used. Examples of the various wirings include a gate bus line that supplies a scanning signal to the TFT, a source bus line that supplies a display signal to the TFT, and a common wiring. The pair of electrodes 12a and 12b is provided for each pixel, one of which is electrically connected to the source bus line via the switching element, and the other is electrically connected to the common wiring.
一対の電極12a、12bは、面内スイッチング(IPS:In-Plane Switching)型電極構造を有し、具体的には、互いの櫛歯が嵌合し合う一対の櫛歯電極である。図2に示したように、一対の電極12a、12bは、幹部、及び、該幹部から延出した複数本の平行な枝部(櫛歯)を有するものであり、互いの枝部が一定の間隔(スペース)を介して交互に配置されている。交流電源によって、一対の電極12a、12bの間に電圧を印加することにより、スペース近傍の液晶層30には第一基板10に対して水平な電界(横電界)が生じる。 The pair of electrodes 12a and 12b has an in-plane switching (IPS) type electrode structure, and specifically, is a pair of comb-teeth electrodes in which mutual comb teeth are fitted. As shown in FIG. 2, each of the pair of electrodes 12a and 12b has a trunk part and a plurality of parallel branch parts (comb teeth) extending from the trunk part. They are arranged alternately with an interval (space). By applying a voltage between the pair of electrodes 12a and 12b by the AC power supply, an electric field (lateral electric field) horizontal to the first substrate 10 is generated in the liquid crystal layer 30 near the space.
一対の電極12a、12bは、導電材料により形成されており、例えば、金属材料により形成できる。本実施形態では、外光の反射を利用して表示を行うことから、液晶層30よりも背面側にある第一基板10内の電極は、透明導電材料により形成しなくてよい。 The pair of electrodes 12a and 12b are formed of a conductive material, and can be formed of, for example, a metal material. In this embodiment, since the display is performed using reflection of external light, the electrodes in the first substrate 10 on the back side of the liquid crystal layer 30 do not have to be formed of a transparent conductive material.
垂直配向膜14は、少なくとも表示領域の全体を覆うように配置されている。すなわち、液晶分子31の初期配向は、第一基板10に対して垂直な方向に設定されている。垂直配向膜14は、その表面に対して、液晶層30中の液晶分子31を実質的に垂直に配向させるものであればよい。 The vertical alignment film 14 is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 31 is set in a direction perpendicular to the first substrate 10. The vertical alignment film 14 only needs to align the liquid crystal molecules 31 in the liquid crystal layer 30 substantially perpendicularly to the surface thereof.
PSA膜15は、ポリマーからなる層であり、第一基板10の液晶層30側の最表面に設けられている。PSA膜15は、一対の電極12a、12bの間に電圧を印加したときに生じる横電界によって、液晶層30中に分散された形状異方性粒子32が第一基板10に対して水平方向に傾くのを支持するものである。PSA膜15の表面は、形状異方性粒子32の傾きを支持できるような形状となっている。このようなPSA膜15を形成する方法については、後で詳しく説明する。 The PSA film 15 is a layer made of a polymer, and is provided on the outermost surface of the first substrate 10 on the liquid crystal layer 30 side. In the PSA film 15, the shape anisotropic particles 32 dispersed in the liquid crystal layer 30 are horizontally aligned with respect to the first substrate 10 by a lateral electric field generated when a voltage is applied between the pair of electrodes 12 a and 12 b. Supports tilting. The surface of the PSA film 15 has a shape that can support the inclination of the shape anisotropic particles 32. A method for forming such a PSA film 15 will be described in detail later.
光吸収体16は、液晶層30を透過した外光を吸収し、黒表示を実現するためのものである。光吸収体16の材料としては、光を吸収できる材料であれば特に限定されず、例えば、黒色顔料を分散した樹脂等を用いることができる。上述したように、本実施形態の光変調装置は、反射型表示装置を構成するものであって、電圧無印加時には、液晶層30を透過した外光を光吸収体16が吸収することによって黒表示が実現され、電圧印加時には、横電界によって水平方向に傾いた形状異方性粒子32が外光を反射することによって白表示又は中間調表示が実現される。なお、図1に示したように、光吸収体16は、下基板11の背面側に設けられているが、下基板11の前面側に設けてもよい。 The light absorber 16 is for absorbing external light transmitted through the liquid crystal layer 30 and realizing black display. The material of the light absorber 16 is not particularly limited as long as it can absorb light. For example, a resin in which a black pigment is dispersed can be used. As described above, the light modulation device according to the present embodiment constitutes a reflective display device. When no voltage is applied, the light absorber 16 absorbs the external light transmitted through the liquid crystal layer 30 so that the black light is absorbed. Display is realized, and when a voltage is applied, the shape anisotropic particles 32 inclined in the horizontal direction due to a horizontal electric field reflect external light, thereby realizing white display or halftone display. As shown in FIG. 1, the light absorber 16 is provided on the back side of the lower substrate 11, but may be provided on the front side of the lower substrate 11.
第二基板20は、上基板21の液晶層側(背面側)に、対向電極22、絶縁膜23、垂直配向膜24及びPSA膜25を順に備えるものである。カラー表示を行う場合には、更にカラーフィルタを備える。 The second substrate 20 includes a counter electrode 22, an insulating film 23, a vertical alignment film 24, and a PSA film 25 in this order on the liquid crystal layer side (back side) of the upper substrate 21. In the case of performing color display, a color filter is further provided.
対向電極22は、一対の電極12a、12bに対向して配置されているが、画素ごとに配置しなくてもよい。本実施形態では、対向電極22は、多数の画素で構成される表示領域の全体を覆うように平面状に設けられている。対向電極22を設けることによって、液晶層30に対して縦電界を印加できる。本実施形態の光変調装置は、基本的には、横電界のみで表示を行うものである。但し、ヒステリシスのリセット、外からの衝撃等によるフレーク配向乱れのリセット、更には高速応答のための電界アシスト等のために、必要に応じて縦電界を組み込んだ駆動を行うことができる。 The counter electrode 22 is disposed to face the pair of electrodes 12a and 12b, but may not be disposed for each pixel. In the present embodiment, the counter electrode 22 is provided in a planar shape so as to cover the entire display region composed of a large number of pixels. By providing the counter electrode 22, a vertical electric field can be applied to the liquid crystal layer 30. The light modulation device of this embodiment basically performs display only with a lateral electric field. However, a drive incorporating a vertical electric field can be performed as necessary for resetting hysteresis, resetting flake orientation disturbance due to impact from the outside, and further assisting electric field for high-speed response.
対向電極22は、透明導電材料により形成されることが好ましい。透明導電材料としては、例えば、インジウム酸化錫(ITO)、インジウム酸化亜鉛(IZO)等が挙げられる。 The counter electrode 22 is preferably formed of a transparent conductive material. Examples of the transparent conductive material include indium tin oxide (ITO) and indium zinc oxide (IZO).
絶縁膜23は、対向電極22とともに設けられることによって、白表示時に液晶層30中に横電界を効果的に形成できる。これにより、明るい白表示を実現できる。 By providing the insulating film 23 together with the counter electrode 22, a lateral electric field can be effectively formed in the liquid crystal layer 30 during white display. Thereby, bright white display can be realized.
第二基板20側の垂直配向膜24及びPSA膜25は、第一基板10側の垂直配向膜14及びPSA膜15と同様にして設けられる。 The vertical alignment film 24 and the PSA film 25 on the second substrate 20 side are provided in the same manner as the vertical alignment film 14 and the PSA film 15 on the first substrate 10 side.
液晶層30は、液晶中に形状異方性粒子32が分散されたものである。形状異方性粒子32の分散媒として液晶を用いることによって、形状異方性粒子32を均一に分散させることができる。液晶を構成する液晶分子31及び形状異方性粒子32は、第一基板10の一対の電極12a、12bによって印加される横電界に応じて、液晶層30中で向きを変える。本実施形態では、横電界によって形状異方性粒子32を水平方向に傾けるため、液晶分子31として、正の誘電率異方性(Δε)を有する液晶分子を用いている。 The liquid crystal layer 30 is obtained by dispersing shape anisotropic particles 32 in liquid crystal. By using a liquid crystal as a dispersion medium for the shape anisotropic particles 32, the shape anisotropic particles 32 can be uniformly dispersed. The liquid crystal molecules 31 and the shape anisotropic particles 32 constituting the liquid crystal change their directions in the liquid crystal layer 30 in accordance with a lateral electric field applied by the pair of electrodes 12 a and 12 b of the first substrate 10. In the present embodiment, liquid crystal molecules having positive dielectric anisotropy (Δε) are used as the liquid crystal molecules 31 in order to incline the shape anisotropic particles 32 in the horizontal direction by a lateral electric field.
形状異方性粒子32は、その形状に異方性があればよいが、垂直方向にしたときの第一基板10への投影面積から、水平方向にしたときの第一基板10への投影面積まで、その傾きに応じて連続的に投影面積が変化する形状であることが好ましい。そのような形状の具体例としては、円盤状等の薄片状(フレーク状)のものが好適に用いられる。また、水平方向にしたときの第一基板10への投影面積は、垂直方向にしたときの第一基板10への投影面積に対して、2倍以上であることが好ましい。形状異方性粒子32の厚さは特に限定されないが、厚さが小さいほど、垂直方向にしたときの第一基板10への投影面積を小さくできるので好ましく、例えば、光の波長以下(例えば、500nm以下)とすることが好ましい。更に、形状異方性粒子32は、光反射性の面を有するものであることが好ましい。 The shape anisotropic particles 32 only have to have anisotropy in shape, but the projected area on the first substrate 10 in the horizontal direction from the projected area on the first substrate 10 in the vertical direction. It is preferable that the projected area continuously changes according to the inclination. As a specific example of such a shape, a flake shape such as a disk shape is preferably used. Moreover, it is preferable that the projected area on the first substrate 10 when set in the horizontal direction is twice or more than the projected area on the first substrate 10 when set in the vertical direction. The thickness of the shape anisotropic particle 32 is not particularly limited. However, the smaller the thickness, the smaller the projected area onto the first substrate 10 in the vertical direction, which is preferable. 500 nm or less). Furthermore, it is preferable that the shape anisotropic particle 32 has a light reflective surface.
また、形状異方性粒子32の材料としては、金属、半導体、誘電体、及び、それらの複合材料を用いることができる。形状異方性粒子32の材料として金属を用いる場合には、形状異方性粒子32の表面に誘電体層(絶縁層)を形成することが好ましい。これにより、形状異方性粒子32と液晶との誘電率の差を大きくすることができるので、誘電泳動力を利用して形状異方性粒子32の配向を制御できる。例えば、金属薄片を樹脂で被覆したものが好適に用いられる。樹脂の膜厚は、例えば、数十~100nm程度とする。 Further, as the material of the shape anisotropic particle 32, a metal, a semiconductor, a dielectric, and a composite material thereof can be used. When a metal is used as the material of the shape anisotropic particle 32, it is preferable to form a dielectric layer (insulating layer) on the surface of the shape anisotropic particle 32. Thereby, since the difference in dielectric constant between the shape anisotropic particles 32 and the liquid crystal can be increased, the orientation of the shape anisotropic particles 32 can be controlled using the dielectrophoretic force. For example, a metal flake coated with a resin is preferably used. The film thickness of the resin is, for example, about several tens to 100 nm.
形状異方性粒子32の比重は、液晶層30中で浮遊、沈降することを防止する観点から、液晶と同程度であることが好ましい。 The specific gravity of the shape anisotropic particles 32 is preferably about the same as that of the liquid crystal from the viewpoint of preventing the liquid crystal layer 30 from floating and settling.
図1の(a)は、一対の電極12a、12bの間に電圧を印加しない状態を示したものであり、この状態において、液晶分子31及び形状異方性粒子32は、第一基板10に対して垂直方向に配向する。このため、第二基板20側からの入射する外光は、液晶層30を透過し、光吸収体16に到達し、黒表示が実現される。図1の(a)中に、矢印によって外光の経路を示した。 FIG. 1A shows a state in which no voltage is applied between the pair of electrodes 12a and 12b. In this state, the liquid crystal molecules 31 and the shape anisotropic particles 32 are formed on the first substrate 10. It is oriented vertically. For this reason, incident external light from the second substrate 20 side passes through the liquid crystal layer 30 and reaches the light absorber 16, thereby realizing black display. In FIG. 1A, the path of external light is indicated by arrows.
図1の(b)は、一対の電極12a、12bの間に電圧を印加した状態を示したものであり、この状態において、液晶分子31は、正の誘電率異方性を有することから、横電界の強度に応じて、第一基板10に対して水平配向する。また、形状異方性粒子32は、その周囲に位置する液晶分子31が垂直配向から水平配向に変化する力を受けて、第一基板10に対して水平方向に向けて傾く。形状異方性粒子32は、周囲の液晶分子31の配向変化だけでなく、それ自身に生じる誘電泳動力によっても水平配向するものであることが好ましい。誘電泳動力は、媒体である液晶分子31と形状異方性粒子32との誘電率の差が大きいほど大きくなる。したがって、良好なスイッチング特性を得る観点からは、液晶分子31と形状異方性粒子32との誘電率の差は大きいことが好ましい。 FIG. 1B shows a state in which a voltage is applied between the pair of electrodes 12a and 12b. In this state, the liquid crystal molecules 31 have a positive dielectric anisotropy. Horizontal alignment is performed with respect to the first substrate 10 according to the strength of the lateral electric field. Further, the shape anisotropic particles 32 are tilted in the horizontal direction with respect to the first substrate 10 under the force that the liquid crystal molecules 31 located around the shape anisotropic particles 32 change from vertical alignment to horizontal alignment. It is preferable that the shape anisotropic particles 32 are horizontally aligned not only by the orientation change of the surrounding liquid crystal molecules 31 but also by the dielectrophoretic force generated in itself. The dielectrophoretic force increases as the difference between the dielectric constants of the liquid crystal molecules 31 and the shape anisotropic particles 32 serving as a medium increases. Therefore, from the viewpoint of obtaining good switching characteristics, it is preferable that the difference in dielectric constant between the liquid crystal molecules 31 and the shape anisotropic particles 32 is large.
電圧印加により形状異方性粒子32の傾きが大きくなるほど、形状異方性粒子32を第一基板10上に投影したときの面積が大きくなる。投影面積の増大に応じて、傾いた形状異方性粒子32によって反射される外光の量は増加する。したがって、一対の電極12a、12b間への印加電圧が比較的低いときに、中間調表示が行われ、所定の印加電圧に到達したときに、白表示が実現される。図1の(b)中に、矢印によって外光の経路を示した。 As the inclination of the shape anisotropic particles 32 increases with voltage application, the area when the shape anisotropic particles 32 are projected onto the first substrate 10 increases. As the projected area increases, the amount of external light reflected by the inclined shape anisotropic particles 32 increases. Therefore, halftone display is performed when the applied voltage between the pair of electrodes 12a and 12b is relatively low, and white display is realized when the predetermined applied voltage is reached. In FIG. 1B, the path of external light is indicated by arrows.
以上では、図1(a)の電圧オフ状態から図1(b)の電圧オン状態への切り換えに基づいて説明したが、図1(b)の電圧オン状態から図1(a)の電圧オフ状態へ切り換える場合についても、液晶分子31及び形状異方性粒子32の配向変化の方向が逆であること以外は同様である。すなわち、液晶分子31及び形状異方性粒子32の配向変化は、垂直配向から水平配向へ変化する場合であっても、水平配向から垂直配向に変化する場合であっても、電圧印加によって可逆的に行われることから、黒表示から白表示にするときの応答速度と白表示から黒表示にするときの応答速度は同等にすることができる。 The above description is based on the switching from the voltage-off state in FIG. 1A to the voltage-on state in FIG. 1B, but the voltage-off state in FIG. The case of switching to the state is the same except that the direction of the orientation change of the liquid crystal molecules 31 and the shape anisotropic particles 32 is reversed. That is, the orientation change of the liquid crystal molecules 31 and the shape anisotropic particles 32 is reversible by applying a voltage regardless of whether the orientation changes from vertical orientation to horizontal orientation or from horizontal orientation to vertical orientation. Therefore, the response speed when changing from black display to white display and the response speed when changing from white display to black display can be made equal.
本実施形態では、PSA膜15、25が設けられているため、第一基板10及び第二基板20の表面で、傾いた形状異方性粒子32を支持することができる。PSA膜15、25は、傾いた状態の液晶分子31に適合した表面形状を有することによって間接的に形状異方性粒子32を支持してもよいし、傾いた状態の形状異方性粒子32に適合した表面形状を有することによって直接的に形状異方性粒子32を支持するものであってもよい。 In the present embodiment, since the PSA films 15 and 25 are provided, the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20. The PSA films 15 and 25 may indirectly support the shape anisotropic particles 32 by having a surface shape suitable for the liquid crystal molecules 31 in the tilted state, or the shape anisotropic particles 32 in the tilted state. The shape anisotropic particles 32 may be directly supported by having a surface shape adapted to the above.
ここで、PSA膜15、25の形成方法の一例について、図3を参照して説明する。図3は、PSA膜形成前後の実施形態1の光変調装置の断面模式図であり、(a)は、PSA処理前の状態を表し、(b)は、PSA処理中の状態を表す。 Here, an example of a method of forming the PSA films 15 and 25 will be described with reference to FIG. 3A and 3B are schematic cross-sectional views of the light modulation device according to the first embodiment before and after the formation of the PSA film. FIG. 3A shows a state before the PSA process, and FIG. 3B shows a state during the PSA process.
図3の(a)に示したように、PSA処理前の光変調装置では、液晶層30は、液晶分子31で構成される液晶、形状異方性粒子32及びPSA用モノマー33を含有している。図3の(b)に示したように、PSA処理時には、第一基板10側の一対の電極12a、12bの間に電圧を印加し、第二基板20側の対向電極22は0V(GND)とする。これによって、液晶分子31の配向状態は垂直配向から水平配向へと変化し、それに伴い形状異方性粒子32の配向状態も同様に水平配向に変化する。 As shown in FIG. 3A, in the light modulation device before the PSA process, the liquid crystal layer 30 contains a liquid crystal composed of liquid crystal molecules 31, shape anisotropic particles 32, and a PSA monomer 33. Yes. As shown in FIG. 3B, during the PSA process, a voltage is applied between the pair of electrodes 12a and 12b on the first substrate 10 side, and the counter electrode 22 on the second substrate 20 side is 0 V (GND). And As a result, the alignment state of the liquid crystal molecules 31 changes from vertical alignment to horizontal alignment, and accordingly, the alignment state of the shape anisotropic particles 32 also changes to horizontal alignment.
以上のように液晶分子31及び形状異方性粒子32を水平配向させた状態で、第二基板20側から紫外線(UV)を照射し、PSA用モノマー33をポリマー化させる。その結果、垂直配向膜14、24の表面上にPSA膜15、25が形成される。こうして得られたPSA膜15、25は、配向方位を定めるためのプレチルトを液晶分子31に付与するので、PSA膜15、25がない場合に比べ、電圧印加時に液晶分子31が傾きやすくなる。液晶分子31が傾きやすくなることによって、液晶配向に従って傾く形状異方性粒子32も傾きやすくなるため、白表示の明るさを改善することができる。また、形状異方性粒子32の印加電圧に対する応答速度を向上することができる。 In the state where the liquid crystal molecules 31 and the shape anisotropic particles 32 are horizontally aligned as described above, ultraviolet rays (UV) are irradiated from the second substrate 20 side to polymerize the PSA monomer 33. As a result, PSA films 15 and 25 are formed on the surfaces of the vertical alignment films 14 and 24. The PSA films 15 and 25 obtained in this manner impart a pretilt for determining the orientation direction to the liquid crystal molecules 31, so that the liquid crystal molecules 31 are more easily tilted when a voltage is applied than when the PSA films 15 and 25 are not provided. When the liquid crystal molecules 31 are easily tilted, the shape anisotropic particles 32 that are tilted according to the liquid crystal alignment are also easily tilted, so that the brightness of white display can be improved. Moreover, the response speed with respect to the applied voltage of the shape anisotropic particle 32 can be improved.
PSA用モノマー33としては、液晶骨格を有するモノマーが好ましく、例えば、下記一般式(1)で表されるモノマーを用いることができる。
-A-(Z-A-P2 (1)
上記一般式(1)中、P及びPは、それぞれ独立に、アクリレート、メタクリレート、ビニル、ビニロキシ又はエポキシ基であり、A及びAは、それぞれ独立に、1,4-フェニレン又はナフタレン-2,6-ジイル基であり、Zは-COO-もしくは-OCO-基又は単結合であり、nは0、1又は2である。
As the PSA monomer 33, a monomer having a liquid crystal skeleton is preferable. For example, a monomer represented by the following general formula (1) can be used.
P 1 -A 1- (Z 1 -A 2 ) n -P 2 (1)
In the general formula (1), P 1 and P 2 are each independently an acrylate, methacrylate, vinyl, vinyloxy or epoxy group, and A 1 and A 2 are each independently 1,4-phenylene or naphthalene. A -2,6-diyl group, Z 1 is a —COO— or —OCO— group or a single bond, and n is 0, 1 or 2.
上記一般式(1)で表されるモノマーとしては、例えば、下記式(2)~(4)で表されるモノマーが挙げられる。 Examples of the monomer represented by the general formula (1) include monomers represented by the following formulas (2) to (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記式(2)~(4)中のP及びPは、それぞれ独立に、アクリレート、メタクリレート、ビニル、ビニロキシ又はエポキシ基である。 P 1 and P 2 in the above formulas (2) to (4) are each independently an acrylate, methacrylate, vinyl, vinyloxy or epoxy group.
上記一般式(2)で表されるモノマーとしては、例えば、下記式(5)で表されるモノマーが挙げられる。 Examples of the monomer represented by the general formula (2) include a monomer represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
なお、PSA処理時には、液晶分子31及び形状異方性粒子32を水平配向させるために、(1)加圧、(2)NI点以上の温度への加熱を行ってもよい。 In the PSA process, in order to horizontally align the liquid crystal molecules 31 and the shape anisotropic particles 32, (1) pressurization and (2) heating to a temperature higher than the NI point may be performed.
(1)加圧
形状異方性粒子32をより充分に傾けた状態でPSA処理を進行させるために、紫外線照射時に、第一基板10側及び/又は第二基板20側から液晶層30の厚さが一時的に減少するように光変調装置を加圧してもよい。加圧の方法としては、所定の面内を均一に加圧する面押しが好ましい。一度の面押しでは、形状異方性粒子32の傾き方に面内ばらつきが生じる場合があるが、電圧印加と面押しを併用すれば、一旦倒れた形状異方性粒子32が、次の面押しによって元の垂直配向に戻ることはほとんどないため、位置を変えながら何度か面押しを繰り返せば、面内全面の形状異方性粒子32が倒れていき、面内ばらつきは解消される。
(1) The thickness of the liquid crystal layer 30 from the first substrate 10 side and / or the second substrate 20 side at the time of ultraviolet irradiation in order to allow the PSA treatment to proceed with the pressure-shaped anisotropic particles 32 tilted sufficiently. The light modulation device may be pressurized so that the light intensity temporarily decreases. As a method of pressurization, surface pressing that uniformly pressurizes a predetermined surface is preferable. In-plane variation may occur in the tilting direction of the shape anisotropic particles 32 by one surface pressing, but if the voltage application and the surface pressing are used in combination, the shape anisotropic particles 32 that have fallen once become the next surface. Since the pressing hardly returns to the original vertical alignment, if the surface pressing is repeated several times while changing the position, the shape anisotropic particles 32 on the entire surface in the plane fall down, and the in-plane variation is eliminated.
(2)NI点以上の温度への加熱
液晶層30を一旦NI点以上の温度に加熱し、形状異方性粒子32を傾け、その後にNI点以下の温度にして、形状異方性粒子32が傾いている間に紫外線照射を行ってもよい。NI点とは、液晶がネマチック相から等方性液体相へと変化する温度のことである。液晶溶媒に形状異方性粒子32を添加した液晶層30においては、NI点以上の温度にすると、形状異方性粒子32が垂直配向から水平配向へと状態を変化させる現象が観測されている。すなわち、NI点以上の温度にすることによって液晶分子31の配向が垂直からランダムへと変化させると、垂直配向の規制が外れた形状異方性粒子32が水平配向する現象が生じる。この現象をPSA処理に応用すれば、PSA膜15、25の表面形状を効果的に制御できる。
(2) Heating to a temperature not lower than the NI point The liquid crystal layer 30 is once heated to a temperature not lower than the NI point, the shape anisotropic particles 32 are tilted, and thereafter the temperature is not higher than the NI point, so that the shape anisotropic particles 32 Ultraviolet irradiation may be performed while the is tilted. The NI point is a temperature at which the liquid crystal changes from a nematic phase to an isotropic liquid phase. In the liquid crystal layer 30 in which the shape anisotropic particles 32 are added to the liquid crystal solvent, when the temperature is higher than the NI point, a phenomenon is observed in which the shape anisotropic particles 32 change state from vertical alignment to horizontal alignment. . That is, when the orientation of the liquid crystal molecules 31 is changed from vertical to random by setting the temperature to be higher than or equal to the NI point, a phenomenon occurs in which the shape anisotropic particles 32 whose vertical orientation is not regulated are horizontally oriented. If this phenomenon is applied to the PSA process, the surface shapes of the PSA films 15 and 25 can be effectively controlled.
PSA処理における紫外線照射時の電圧印加、加圧、NI点以上の温度への加熱については、いずれか1つの手法を用いてもよいし、2以上の手法を組合せて用いてもよい。 As for voltage application, pressurization, and heating to a temperature higher than the NI point in the PSA process, any one method may be used, or two or more methods may be used in combination.
本実施形態の光変調装置においては、PSA膜15、25が設けられていることによって、光変調装置の駆動時に、形状異方性粒子32を横電界に応じて所望の方向に配向させることが容易となり、電圧印加時における光透過率をより高くすることができる。反射型表示装置は、光源を必要としないことから、低消費電力化、薄型化に適したものである一方で、明るい白表示を得ることが重要な技術的課題であった。本実施形態の光変調装置(反射型表示装置)によれば、明るい白表示を実現することができる。また、画素の応答速度を向上することができる。 In the light modulation device of the present embodiment, the PSA films 15 and 25 are provided so that the shape anisotropic particles 32 can be oriented in a desired direction according to the lateral electric field when the light modulation device is driven. It becomes easy and the light transmittance at the time of voltage application can be made higher. Since the reflective display device does not require a light source, it is suitable for low power consumption and thinning, while obtaining a bright white display is an important technical problem. According to the light modulation device (reflection display device) of the present embodiment, bright white display can be realized. In addition, the response speed of the pixels can be improved.
なお、本実施形態の光変調装置の表示原理は、形状異方性粒子32の向きを変えることによって、自然光である外光の反射率を制御するものである。したがって、偏光板を用いる方式の液晶パネルのように、第一基板10の背面側及び第二基板20の前面側に偏光板を配置する必要はない。このため、本実施形態の光変調装置は、光利用効率に優れている。 The display principle of the light modulation device according to the present embodiment is to control the reflectance of external light that is natural light by changing the direction of the shape anisotropic particles 32. Therefore, unlike the liquid crystal panel using the polarizing plate, it is not necessary to dispose the polarizing plate on the back side of the first substrate 10 and the front side of the second substrate 20. For this reason, the light modulation device of this embodiment is excellent in light utilization efficiency.
[実施形態2]
実施形態2の光変調装置は、光源からの光を利用して表示を行う透過型表示装置を構成するものであり、電圧無印加時に白表示を行い、電圧印加時に黒表示を行うものである。
[Embodiment 2]
The light modulation device according to the second embodiment constitutes a transmissive display device that performs display using light from a light source, and performs white display when no voltage is applied and performs black display when a voltage is applied. .
図4は、実施形態2の光変調装置の断面模式図であり、(a)は、電圧オフ状態を表し、(b)は、電圧オン状態を表す。図4に示したように、実施形態2の光変調装置は、第一基板10の背面側に光源(バックライト)40を備え、光変調層としての液晶層30によって、光源40から発せられた光の透過及び反射が制御される。このため、実施形態2の光変調装置は、実施形態1の光変調装置と比べて、光源40を有する点、光吸収体16を有しない点において、構成上の違いがある。また、本実施形態では、液晶層30を透過した光を表示に用いることから、一対の電極12a、12bは、透明導電材料により形成されることが好ましい。 4A and 4B are schematic cross-sectional views of the light modulation device according to the second embodiment. FIG. 4A illustrates a voltage off state, and FIG. 4B illustrates a voltage on state. As shown in FIG. 4, the light modulation device of Embodiment 2 includes a light source (backlight) 40 on the back side of the first substrate 10, and is emitted from the light source 40 by the liquid crystal layer 30 as a light modulation layer. The transmission and reflection of light is controlled. For this reason, the light modulation device according to the second embodiment is different from the light modulation device according to the first embodiment in that the light source 40 is included and the light absorber 16 is not included. Moreover, in this embodiment, since the light which permeate | transmitted the liquid crystal layer 30 is used for a display, it is preferable that a pair of electrode 12a, 12b is formed with a transparent conductive material.
光源40の方式は、エッジライト型であってもよいし、直下型であってもよい。光源の種類としては特に限定されず、発光ダイオード(LED)、冷陰極管(CCFL)等を用いることができる。 The method of the light source 40 may be an edge light type or a direct type. The type of the light source is not particularly limited, and a light emitting diode (LED), a cold cathode tube (CCFL), or the like can be used.
図4の(a)は、一対の電極12a、12bの間に電圧を印加しない状態を示したものであり、この状態において、液晶分子31及び形状異方性粒子32は、第一基板10に対して垂直方向に配向する。このため、第一基板10側からの入射する光源40からの光は、液晶層30及び第二基板20を透過し、白表示が実現される。図4の(a)中に、矢印によって光源40からの光の経路を示した。 4A shows a state in which no voltage is applied between the pair of electrodes 12a and 12b. In this state, the liquid crystal molecules 31 and the shape anisotropic particles 32 are formed on the first substrate 10. FIG. It is oriented vertically. For this reason, the light from the light source 40 incident from the first substrate 10 side is transmitted through the liquid crystal layer 30 and the second substrate 20, and white display is realized. In FIG. 4A, the path of light from the light source 40 is indicated by an arrow.
図4の(b)は、一対の電極12a、12bの間に電圧を印加した状態を示したものであり、この状態において、液晶分子31及び形状異方性粒子32は、横電界の強度に応じて、第一基板10に対して水平方向に向けて傾く。形状異方性粒子32の傾きが大きくなるほど、形状異方性粒子32を第一基板10上に投影したときの面積が大きくなる。このため、傾いた形状異方性粒子32によって光源40からの光は反射され、黒表示が実現される。図4の(b)中に、矢印によって光源40からの光の経路を示した。 FIG. 4B shows a state in which a voltage is applied between the pair of electrodes 12a and 12b. In this state, the liquid crystal molecules 31 and the shape anisotropic particles 32 have a transverse electric field strength. Accordingly, it tilts in the horizontal direction with respect to the first substrate 10. As the inclination of the shape anisotropic particles 32 increases, the area when the shape anisotropic particles 32 are projected onto the first substrate 10 increases. For this reason, the light from the light source 40 is reflected by the inclined shape anisotropic particles 32, and black display is realized. In FIG. 4B, the path of light from the light source 40 is indicated by an arrow.
本実施形態の光変調装置においても、PSA膜15、25が設けられているため、第一基板10及び第二基板20の表面で、傾いた形状異方性粒子32を支持することができる。これにより、光変調装置の駆動時に、形状異方性粒子32を横電界に応じて所望の方向に配向させることが容易となり、電圧印加時における光透過率をより低くすることができる。すなわち、本実施形態の光変調装置(透過型表示装置)によれば、暗い黒表示を実現することができ、コントラスト比を大幅に向上することができる。また、画素の応答速度を向上することができる。 Also in the light modulation device of this embodiment, since the PSA films 15 and 25 are provided, the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20. Thereby, it becomes easy to orient the shape anisotropic particles 32 in a desired direction according to the transverse electric field when driving the light modulation device, and the light transmittance at the time of voltage application can be further reduced. That is, according to the light modulation device (transmission type display device) of the present embodiment, dark black display can be realized and the contrast ratio can be greatly improved. In addition, the response speed of the pixels can be improved.
本実施形態の光変調装置の表示原理は、形状異方性粒子32の向きを変えることによって、自然光である光源からの光の反射率を制御するものである。したがって、偏光板を用いる方式の液晶パネルのように、第一基板10の背面側及び第二基板20の前面側に偏光板を配置する必要はない。このため、本実施形態の光変調装置もまた、光利用効率に優れている。 The display principle of the light modulation device of this embodiment is to control the reflectance of light from a light source that is natural light by changing the direction of the shape anisotropic particles 32. Therefore, unlike the liquid crystal panel using the polarizing plate, it is not necessary to dispose the polarizing plate on the back side of the first substrate 10 and the front side of the second substrate 20. For this reason, the light modulation device of this embodiment is also excellent in light utilization efficiency.
[実施形態3]
実施形態3の光変調装置は、第一基板の電極構造をIPS型電極構造からフリンジ・フィールド・スイッチング(FFS:Fringe Field Switching)型電極構造に変更したことを除いて、実施形態1の光変調装置と同様の構成を有するものである。FFS型電極構造とすることによって、第一基板に設けられた一対の電極間で短絡が生じる可能性を低減できる。また、平面状電極が設けられることによって、光変調装置外部からの静電気の影響を防止できる。
[Embodiment 3]
The light modulation device of Embodiment 3 is the light modulation of Embodiment 1 except that the electrode structure of the first substrate is changed from an IPS electrode structure to a fringe field switching (FFS) electrode structure. It has the same configuration as the device. By adopting the FFS type electrode structure, it is possible to reduce the possibility of a short circuit between a pair of electrodes provided on the first substrate. Further, the provision of the planar electrode can prevent the influence of static electricity from the outside of the light modulation device.
図5は、実施形態3の光変調装置における電極構造を示す斜視模式図である。図5に示したように、実施形態3の光変調装置では、第一基板10に、平面状の第一電極112aと、複数本の平行な電極スリット(電極の非形成部分)が形成された第二電極112bとが、誘電体層(絶縁膜)113を介して積層されている。第二電極112bは、コンタクトホール(図示せず)を介して、下層(下基板11側)に配置されたTFTのドレイン電極と電気的に接続されている。第一電極112aは、コンタクトホール形成用の開口部分を除いて、第一基板10の全面に配置されている。第一電極112aと第二電極112bの間に電圧を印加することにより、電極スリット近傍の液晶層30には第一基板10に対して実質的に水平な電界が生じる。本明細書において、「横電界」とは、IPS型電極構造により形成される水平な電界だけでなく、FFS型電極構造により形成される実質的に水平な電界をも包含するものである。 FIG. 5 is a schematic perspective view illustrating an electrode structure in the light modulation device according to the third embodiment. As shown in FIG. 5, in the light modulation device of the third embodiment, the first substrate 10 is formed with the planar first electrode 112a and a plurality of parallel electrode slits (electrode non-formed portions). The second electrode 112 b is laminated via a dielectric layer (insulating film) 113. The second electrode 112b is electrically connected to the drain electrode of the TFT disposed on the lower layer (lower substrate 11 side) through a contact hole (not shown). The first electrode 112a is disposed on the entire surface of the first substrate 10 except for an opening for forming a contact hole. By applying a voltage between the first electrode 112a and the second electrode 112b, an electric field substantially horizontal to the first substrate 10 is generated in the liquid crystal layer 30 near the electrode slit. In the present specification, the “lateral electric field” includes not only a horizontal electric field formed by the IPS type electrode structure but also a substantially horizontal electric field formed by the FFS type electrode structure.
本実施形態の光変調装置においても、PSA膜15、25が設けられているため、第一基板10及び第二基板20の表面で、傾いた形状異方性粒子32を支持することができる。これにより、電圧印加時における光透過率をより高くすることができ、画素の応答速度を向上することもできる。また、本実施形態の光変調装置においても、偏光板を配置する必要はないので、光利用効率に優れている。 Also in the light modulation device of this embodiment, since the PSA films 15 and 25 are provided, the inclined shape anisotropic particles 32 can be supported on the surfaces of the first substrate 10 and the second substrate 20. Thereby, the light transmittance at the time of voltage application can be made higher, and the response speed of the pixel can also be improved. Also in the light modulation device of the present embodiment, it is not necessary to dispose a polarizing plate, so that the light use efficiency is excellent.
[実施形態の変形例1]
上述した実施形態1~3では、下記条件1を採用しているが、下記条件2又は3を採用してもよい。形状異方性粒子32の追従性の観点からは、下記条件1及び2が好適に用いられる。
(条件1)
液晶分子:正の誘電率異方性
初期配向:垂直配向
電界方向:横電界
[Modification 1 of Embodiment]
In the first to third embodiments described above, the following condition 1 is adopted, but the following condition 2 or 3 may be adopted. From the viewpoint of the followability of the shape anisotropic particle 32, the following conditions 1 and 2 are preferably used.
(Condition 1)
Liquid crystal molecules: Positive dielectric anisotropy Initial alignment: Vertical alignment Electric field direction: Transverse electric field
(条件2)
液晶分子:負の誘電率異方性
初期配向:垂直配向
電界方向:縦電界
(Condition 2)
Liquid crystal molecules: Negative dielectric anisotropy Initial alignment: Vertical alignment Electric field direction: Vertical electric field
(条件3)
液晶分子:正の誘電率異方性
初期配向:水平配向
電界方向:縦電界
(Condition 3)
Liquid crystal molecules: Positive dielectric anisotropy Initial alignment: Horizontal alignment Electric field direction: Vertical electric field
[実施形態の変形例2]
上述した実施形態1~3では、正の誘電率異方性を有する液晶分子と誘電体で被覆された金属からなる形状異方性粒子32との組合せを用いているが、この組合せでは、電界に対する液晶の配向方向と電界に対する形状異方性粒子32の配向方向とを一致させることができ、効率良く配向制御を行うことができる。これに対して、負の誘電率異方性を有する液晶分子を用いる場合(例えば、上記条件2)には、誘電体で被覆されていない金属からなるフレーク材を用いれば、電界に対する液晶の配向方向と電界に対する形状異方性粒子32の配向方向とを一致させることができ、効率良く配向制御を行うことができる。
[Modification 2 of the embodiment]
In Embodiments 1 to 3 described above, a combination of liquid crystal molecules having a positive dielectric anisotropy and shape anisotropic particles 32 made of a metal coated with a dielectric is used. The alignment direction of the liquid crystal with respect to the liquid crystal and the alignment direction of the shape anisotropic particles 32 with respect to the electric field can be made to coincide with each other, and the alignment control can be performed efficiently. On the other hand, when liquid crystal molecules having negative dielectric anisotropy are used (for example, the above condition 2), if a flake material made of a metal not covered with a dielectric is used, the orientation of the liquid crystal with respect to the electric field is adjusted. The direction and the orientation direction of the shape anisotropic particle 32 with respect to the electric field can be matched, and the orientation control can be performed efficiently.
[実施例1]
実施形態1に基づき、下記構成の反射型表示装置を実際に作製し、その表示特性を評価した。
(1-1)第一基板10の準備
厚さ0.7mmの板ガラス(下基板11)上に、厚さ800ÅのITO(酸化インジウム錫)膜を成膜した。続いて、ITO膜をパターニングして、電極幅4μm、電極間隔4μmのストライプ電極(一対の電極12a、12b)を形成した。ストライプ電極上に厚さ500Åの垂直配向膜14を成膜した。
[Example 1]
Based on Embodiment 1, the reflective display apparatus of the following structure was actually produced and the display characteristic was evaluated.
(1-1) Preparation of first substrate 10 An ITO (indium tin oxide) film having a thickness of 800 mm was formed on a sheet glass (lower substrate 11) having a thickness of 0.7 mm. Subsequently, the ITO film was patterned to form stripe electrodes (a pair of electrodes 12a and 12b) having an electrode width of 4 μm and an electrode interval of 4 μm. A vertical alignment film 14 having a thickness of 500 mm was formed on the stripe electrode.
(1-2)第二基板20の準備
厚さ0.7mmの板ガラス(上基板21)上の全面に、厚さ800ÅのITO(酸化インジウム錫)を成膜し、対向電極22とした。続いて、厚さ3μmのアクリル樹脂を成膜し、絶縁膜23とした。絶縁膜23上に厚さ500Åの垂直配向膜24を成膜した。
(1-2) Preparation of Second Substrate 20 An 800 mm thick ITO (indium tin oxide) film was formed on the entire surface of a plate glass (upper substrate 21) having a thickness of 0.7 mm to form the counter electrode 22. Subsequently, an acrylic resin having a thickness of 3 μm was formed as an insulating film 23. A vertical alignment film 24 having a thickness of 500 mm was formed on the insulating film 23.
(1-3)液晶層30の準備
ε//(長軸方向の比誘電率)が24.7、ε⊥(長軸方向と垂直な方向の比誘電率)が4.3である正の誘電異方性を有する液晶に、液晶骨格を有する多官能モノマーを0.6質量%添加した液晶材料を用いた。更に、アルミニウム(Al)薄片に樹脂コーティングを行った形状異方性粒子32を6質量%添加した。形状異方性粒子32の比誘電率は約3.5であった。また、形状異方性粒子32の径(最大長さ)、厚さはそれぞれ約6μm、0.1μmであった。液晶層の厚さ(セル厚)は10μmであった。
(1-3) Preparation of the liquid crystal layer 30 ε // (relative permittivity in the major axis direction) is 24.7 and ε⊥ (relative permittivity in the direction perpendicular to the major axis direction) is 4.3. A liquid crystal material in which 0.6% by mass of a polyfunctional monomer having a liquid crystal skeleton was added to a liquid crystal having dielectric anisotropy was used. Furthermore, 6 mass% of shape anisotropic particles 32 obtained by resin coating on aluminum (Al) flakes were added. The relative dielectric constant of the shape anisotropic particles 32 was about 3.5. The diameter (maximum length) and thickness of the shape anisotropic particles 32 were about 6 μm and 0.1 μm, respectively. The thickness of the liquid crystal layer (cell thickness) was 10 μm.
(1-4)PSA処理
第一基板10のストライプ電極(一対の電極12a、12b)に、矩形波20Vp-p(+20V,0Vにした後、±10Vとする電圧波形)を印加し、第二基板20の対向電極22を0V(GND)にした状態で、第二基板20側から紫外線照射を行い、PSA用モノマー33をポリマー化し、PSA膜15、25を成膜した。
(1-4) A rectangular wave 20Vp-p (a voltage waveform of ± 10V after being set to + 20V and 0V) is applied to the stripe electrodes (the pair of electrodes 12a and 12b) of the PSA-treated first substrate 10, and the second With the counter electrode 22 of the substrate 20 at 0 V (GND), ultraviolet irradiation was performed from the second substrate 20 side, the PSA monomer 33 was polymerized, and PSA films 15 and 25 were formed.
(1-5)光吸収体の取り付け
最後に、下基板11の裏側に、光吸収体16として黒色のアクリル板を光学接着した。ここで、光学接着とは、下基板11と光吸収体16との間に空気層が形成されることを防止するために、適当な屈折率を有する物質を介在させることを意味し、本実施例では、上記適当な屈折率を有する物質として、グリセリンを使用した。光学接着せずに、下基板11の下に光吸収体16を配置した場合には、下基板11と光吸収体16との間に空気層が形成されてしまうため、強い界面反射が起こる。これによって、黒の透過率が上昇(すなわち、コントラストが低下)したり、表示の二重写り(ボケ)が発生したりすることがある。
(1-5) Attaching the light absorber Finally, a black acrylic plate as the light absorber 16 was optically bonded to the back side of the lower substrate 11. Here, the optical adhesion means that a substance having an appropriate refractive index is interposed in order to prevent an air layer from being formed between the lower substrate 11 and the light absorber 16. In the example, glycerin was used as the substance having the appropriate refractive index. When the light absorber 16 is disposed under the lower substrate 11 without optically bonding, an air layer is formed between the lower substrate 11 and the light absorber 16, and thus strong interface reflection occurs. As a result, the black transmittance may increase (that is, the contrast will decrease), or the double image (blurring) of the display may occur.
(特性評価)
以下では、実施例1の方法で作製した反射型表示装置の評価結果を説明する。但し、特性評価で用いた反射型表示装置は、対比のために、表示領域の右半分のみに実施例1どおりにPSA処理を行い、左半分にはPSA処理を行わなかったものである。
(Characteristic evaluation)
Below, the evaluation result of the reflection type display apparatus produced with the method of Example 1 is demonstrated. However, for comparison, the reflective display device used in the characteristic evaluation is the one in which only the right half of the display area is subjected to the PSA process as in the first embodiment and the left half is not subjected to the PSA process.
(2-1)白表示状態の明るさの評価
反射型表示装置の白表示状態を写真撮影した。図6は、PSA処理が行われた領域(図の右側)とPSA処理が行われなかった領域(図の左側)の白表示状態を比較して示した写真である。白表示状態にするための印加電圧は、両領域ともに10Vp-pとした。図6に示したように、PSA処理が行われた領域(図の右側)は、PSA処理が行われなかった領域(図の左側)に比べて白くなっており、白の明るさが改善されていることが分かる。
(2-1) Evaluation of Brightness in White Display State The white display state of the reflective display device was photographed. FIG. 6 is a photograph comparing the white display state of an area where the PSA process has been performed (right side of the figure) and an area where the PSA process has not been performed (left side of the figure). The applied voltage for white display was 10 Vp-p in both regions. As shown in FIG. 6, the area where the PSA process has been performed (right side in the figure) is whiter than the area where the PSA process has not been performed (left side in the figure), and the brightness of white has been improved. I understand that
図7は、図6に示したPSA処理が行われなかった領域を拡大して示した顕微鏡観察写真であり、図8は、図6に示したPSA処理が行われた領域を拡大して示した顕微鏡観察写真である。図7及び図8において、白く見えるのが白表示に寄与しているフレーク材であり、黒く見えるのは白表示に寄与していないフレーク材である。図8では、図7に比べ白く見える領域が明らかに広く、PSA処理が行われた領域ではPSA処理が行われなかった領域よりも、白表示に寄与しているフレークが増加していることが分かる。 FIG. 7 is an enlarged microscopic photograph showing the area where the PSA process shown in FIG. 6 was not performed, and FIG. 8 is an enlarged view showing the area where the PSA process shown in FIG. 6 was performed. It is the microscope observation photograph. In FIGS. 7 and 8, flake material that contributes to white display appears white, and flake material that does not contribute to white display appears black. In FIG. 8, the area that appears white compared to FIG. 7 is clearly wider, and the flakes that contribute to white display increase in the area where the PSA process is performed than in the area where the PSA process is not performed. I understand.
(2-2)反射率-電圧特性(R-V特性)の評価
反射型表示装置の反射率-電圧特性を測定し、得られた結果をグラフ化した。図9は、PSA未処理領域とPSA処理領域の反射率-電圧特性(R-V特性)を示したグラフである。この測定において、印加電圧は、0Vp-pから20Vp-pまで徐々に増加させ、その後徐々に0Vp-pまで減少させた。光源には積分球を用い、標準白色板の反射率を100%とした。
(2-2) Evaluation of reflectance-voltage characteristics (RV characteristics) The reflectance-voltage characteristics of the reflective display device were measured, and the obtained results were graphed. FIG. 9 is a graph showing the reflectivity-voltage characteristics (RV characteristics) of the PSA untreated area and the PSA treated area. In this measurement, the applied voltage was gradually increased from 0 Vp-p to 20 Vp-p and then gradually decreased to 0 Vp-p. An integrating sphere was used as the light source, and the reflectance of the standard white plate was 100%.
図9に示した結果から、PSA処理領域は、白の反射率が向上していることが分かる。例えば、印加電圧増加時における電圧10Vp-pにおいて、PSA未処理領域の反射率は13%、PSA処理領域の反射率は27%であり、PSA処理によって反射率が約2倍に上昇した。 From the result shown in FIG. 9, it can be seen that the white reflectance is improved in the PSA processing area. For example, at a voltage of 10 Vp-p when the applied voltage was increased, the reflectance of the PSA untreated area was 13% and the reflectance of the PSA treated area was 27%, and the reflectance increased approximately twice by the PSA treatment.
更に、図9から、PSA処理によって、R-V曲線のヒステリシスループ(印加電圧増加時と減少時とのR-Vのズレ)の改善(面積の縮小)が達成されていることが分かる。PSA処理領域及びPSA未処理領域それぞれの測定結果について、印加電圧増加時における0Vp-pでの反射率を0、20Vp-pでの反射率を1に規格化してヒステリシスループの面積を求めた場合に、PSA未処理領域の面積を1とするとPSA未処理領域の面積は0.4であった。すなわち、60%の改善が見られた。ヒステリシスループの改善は、階調表示を容易に実現する上で重要である。 Furthermore, it can be seen from FIG. 9 that the improvement (area reduction) of the hysteresis loop of the RV curve (deviation of the RV between when the applied voltage is increased and when it is decreased) is achieved by the PSA process. For the measurement results of the PSA treated area and the PSA untreated area, when the applied voltage is increased, the reflectance at 0 Vp-p is normalized to 0, and the reflectance at 20 Vp-p is normalized to 1, and the area of the hysteresis loop is obtained. Furthermore, when the area of the PSA unprocessed area is 1, the area of the PSA unprocessed area is 0.4. That is, an improvement of 60% was observed. Improvement of the hysteresis loop is important for easily realizing gradation display.
[付記]
以下に、本発明に係る光変調装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
[Appendix]
Examples of preferred embodiments of the light modulation device according to the present invention will be given below. Each example may be appropriately combined without departing from the scope of the present invention.
上記ポリマー層は、上記液晶中に添加された液晶骨格を有するモノマーを重合して形成されたものであることが好ましい。液晶骨格を有するモノマーは、液晶に混ざりやすいので、液晶中に均一に分布させやすい。このため、少ない添加量で、ポリマー層を均一に形成することができる。また、ポリマー層に取り込まれた液晶骨格は、液晶分子に対して配向規制力を及ぼすことができる。この液晶骨格は剛直であることから、液晶分子の動きによって容易には屈曲せず、プレチルト角を安定的に付与することができる。このように、液晶骨格を有するモノマーを用いることによって、液晶分子の配向を効果的に制御することができ、均一なプレチルト角を付与することができる。 The polymer layer is preferably formed by polymerizing a monomer having a liquid crystal skeleton added to the liquid crystal. A monomer having a liquid crystal skeleton is easily mixed in the liquid crystal, and thus is easily distributed uniformly in the liquid crystal. For this reason, a polymer layer can be uniformly formed with a small addition amount. In addition, the liquid crystal skeleton taken into the polymer layer can exert an alignment regulating force on the liquid crystal molecules. Since this liquid crystal skeleton is rigid, it is not easily bent by the movement of liquid crystal molecules, and a pretilt angle can be stably imparted. Thus, by using a monomer having a liquid crystal skeleton, the orientation of liquid crystal molecules can be effectively controlled, and a uniform pretilt angle can be imparted.
上記形状異方性粒子は、金属薄片を樹脂で被覆したものであることが好ましい。このような形状異方性粒子を用いることより、液晶と形状異方性粒子との誘電率の差を大きくすることができ、良好なスイッチング特性を得ることができる。 The shape anisotropic particles are preferably those in which a metal flake is coated with a resin. By using such shape anisotropic particles, the difference in dielectric constant between the liquid crystal and shape anisotropic particles can be increased, and good switching characteristics can be obtained.
上記一対の電極は、IPS型電極構造を構成するものであってもよいし、FFS型電極構造を構成するものであってもよい。IPS型電極構造を構成する場合、上記一対の電極は、互いの櫛歯が嵌合し合う一対の櫛歯電極である。FFS型電極構造を構成する場合、上記一対の電極は、平面状電極と、電極スリットが形成された電極との組合せである。IPS型電極構造及びFFS型電極構造のいずれであっても光変調層内に横電界を形成することができ、液晶及び形状異方性粒子を水平方向に配向させることができる。また、IPS型電極構造によれば、第一基板及び/又は第二基板を構成する層の数を減らすことができるので、層の成膜及びパターニングに要する工数を削減できる。一方、FFS型電極構造によれば、電極間で短絡が生じる可能性を低減でき、平面状電極によって光変調装置外部からの静電気による影響を防止できる。 The pair of electrodes may constitute an IPS type electrode structure, or may constitute an FFS type electrode structure. When configuring an IPS-type electrode structure, the pair of electrodes is a pair of comb-teeth electrodes with which the comb teeth are fitted. When configuring an FFS-type electrode structure, the pair of electrodes is a combination of a planar electrode and an electrode in which an electrode slit is formed. In either the IPS type electrode structure or the FFS type electrode structure, a transverse electric field can be formed in the light modulation layer, and the liquid crystal and shape anisotropic particles can be aligned in the horizontal direction. Further, according to the IPS-type electrode structure, the number of layers constituting the first substrate and / or the second substrate can be reduced, so that the number of steps required for film formation and patterning of the layers can be reduced. On the other hand, according to the FFS-type electrode structure, the possibility of a short circuit between the electrodes can be reduced, and the influence of static electricity from the outside of the light modulation device can be prevented by the planar electrode.
上記第二基板は、上記一対の電極に対向する平面状電極を有することが好ましい。第二基板に平面状電極を設けることによって、光変調層に対して縦電界を印加できる。本発明の光変調装置は、横電界のみで動作させることができるが、必要に応じて縦電界を印加してもよい。例えば、ヒステリシスのリセット、外からの衝撃等による形状異方性粒子の配向乱れのリセット、高速応答のための電界アシスト等の目的において、縦電界の印加が有効である。 The second substrate preferably has a planar electrode facing the pair of electrodes. By providing a planar electrode on the second substrate, a vertical electric field can be applied to the light modulation layer. The light modulation device of the present invention can be operated only by a horizontal electric field, but a vertical electric field may be applied as necessary. For example, the application of a longitudinal electric field is effective for the purpose of resetting hysteresis, resetting the alignment disorder of shape anisotropic particles due to impact from the outside, electric field assist for high-speed response, and the like.
以下に、本発明に係る表示装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Below, the example of the preferable aspect of the display apparatus which concerns on this invention is given. Each example may be appropriately combined without departing from the scope of the present invention.
上記表示装置は、マトリクス状に配列された複数の画素を有し、上記第一基板は、上記複数の画素のそれぞれに、上記一対の電極を有することが好ましい。このような構成とすることによって、高精細な表示が可能である。 The display device preferably includes a plurality of pixels arranged in a matrix, and the first substrate preferably includes the pair of electrodes on each of the plurality of pixels. With such a configuration, high-definition display is possible.
上記表示装置は、上記横電界状態で、上記形状異方性粒子によって外光を反射して表示を行うことが好ましい。このような構成とすることによって、反射モード又は半透過モード(透過モードと反射モードの併用)の表示が可能である。 The display device preferably performs display by reflecting external light with the shape anisotropic particles in the lateral electric field state. With such a configuration, display in a reflection mode or a semi-transmission mode (a combination of a transmission mode and a reflection mode) is possible.
上記第一基板及び上記第二基板のうちの背面側に位置する基板は、光吸収層を有することが好ましい。背面側の基板に光吸収層を設けることにより、反射モードの表示においてコントラスト比を高めることができる。 It is preferable that the board | substrate located in the back side among said 1st board | substrate and said 2nd board | substrate has a light absorption layer. By providing the light absorption layer on the substrate on the back side, the contrast ratio can be increased in reflection mode display.
10:第一基板
11:下基板 
12a、12b:電極
14、24:垂直配向膜
15、25:PSA膜
16:光吸収体
20:第二基板
21:上基板
22:対向電極
23:絶縁膜
30:液晶層
31:液晶分子
32:形状異方性粒子
33:PSA用モノマー
40:光源
112a:第一電極
112b:第二電極
113:誘電体層
10: First substrate 11: Lower substrate
12a, 12b: electrodes 14, 24: vertical alignment film 15, 25: PSA film 16: light absorber 20: second substrate 21: upper substrate 22: counter electrode 23: insulating film 30: liquid crystal layer 31: liquid crystal molecule 32: Shape anisotropic particle 33: PSA monomer 40: light source 112a: first electrode 112b: second electrode 113: dielectric layer

Claims (10)

  1. 互いに対向配置された第一基板及び第二基板と、
    前記第一基板及び前記第二基板の間に配置された光変調層と、を備える光変調装置であって、
    前記第一基板は、一対の電極を有し、
    前記光変調層は、液晶中に形状異方性粒子が分散されたものであり、
    前記液晶及び前記形状異方性粒子は、前記一対の電極の間に電圧を印加しない状態で、前記第一基板に対して垂直方向に配向し、前記一対の電極の間に電圧を印加した横電界状態で、前記第一基板に対して水平方向に傾くものであり、
    前記第一基板の前記光変調層側の表面に、前記横電界状態における前記形状異方性粒子の傾きを支持する表面形状を有するポリマー層が設けられている
    ことを特徴とする光変調装置。
    A first substrate and a second substrate disposed opposite to each other;
    A light modulation device comprising a light modulation layer disposed between the first substrate and the second substrate,
    The first substrate has a pair of electrodes,
    The light modulation layer is obtained by dispersing shape anisotropic particles in liquid crystal,
    The liquid crystal and the shape anisotropic particles are aligned in a direction perpendicular to the first substrate in a state where no voltage is applied between the pair of electrodes, and a voltage is applied between the pair of electrodes. In an electric field state, it is inclined in a horizontal direction with respect to the first substrate,
    A light modulation device, wherein a polymer layer having a surface shape that supports the inclination of the shape anisotropic particles in the transverse electric field state is provided on a surface of the first substrate on the light modulation layer side.
  2. 前記ポリマー層は、前記液晶中に添加された液晶骨格を有するモノマーを重合して形成されたものであることを特徴とする請求項1記載の光変調装置。 The light modulation device according to claim 1, wherein the polymer layer is formed by polymerizing a monomer having a liquid crystal skeleton added to the liquid crystal.
  3. 前記形状異方性粒子は、金属薄片を樹脂で被覆したものであることを特徴とする請求項1又は2記載の光変調装置。 3. The light modulation device according to claim 1, wherein the shape anisotropic particles are obtained by coating a thin metal piece with a resin.
  4. 前記一対の電極は、互いの櫛歯が嵌合し合う一対の櫛歯電極であることを特徴とする請求項1~3のいずれかに記載の光変調装置。 The light modulation device according to any one of claims 1 to 3, wherein the pair of electrodes is a pair of comb-teeth electrodes in which mutual comb teeth are fitted.
  5. 前記一対の電極は、平面状電極と、電極スリットが形成された電極との組合せであることを特徴とする請求項1~3のいずれかに記載の光変調装置。 4. The light modulation device according to claim 1, wherein the pair of electrodes is a combination of a planar electrode and an electrode in which an electrode slit is formed.
  6. 前記第二基板は、前記一対の電極に対向する平面状電極を有することを特徴とする請求項1~5のいずれかに記載の光変調装置。 6. The light modulation device according to claim 1, wherein the second substrate has a planar electrode facing the pair of electrodes.
  7. 請求項1~6のいずれかに記載の光変調装置を備えた表示装置。 A display device comprising the light modulation device according to any one of claims 1 to 6.
  8. マトリクス状に配列された複数の画素を有し、
    前記第一基板は、前記複数の画素のそれぞれに、前記一対の電極を有することを特徴とする請求項7記載の表示装置。
    Having a plurality of pixels arranged in a matrix,
    The display device according to claim 7, wherein the first substrate has the pair of electrodes in each of the plurality of pixels.
  9. 前記表示装置は、前記横電界状態で、前記形状異方性粒子によって外光を反射して表示を行うことを特徴とする請求項7又は8記載の表示装置。 The display device according to claim 7, wherein the display device performs display by reflecting external light by the shape anisotropic particles in the lateral electric field state.
  10. 前記第一基板及び前記第二基板のうちの背面側に位置する基板は、光吸収層を有することを特徴とする請求項9記載の表示装置。 The display device according to claim 9, wherein a substrate located on a back side of the first substrate and the second substrate has a light absorption layer.
PCT/JP2014/082674 2013-12-13 2014-12-10 Light modulation device and display device WO2015087911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-258416 2013-12-13
JP2013258416 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087911A1 true WO2015087911A1 (en) 2015-06-18

Family

ID=53371212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082674 WO2015087911A1 (en) 2013-12-13 2014-12-10 Light modulation device and display device

Country Status (1)

Country Link
WO (1) WO2015087911A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357830A (en) * 2001-03-30 2002-12-13 Fujitsu Ltd Liquid crystal display device
JP2003307720A (en) * 2002-04-16 2003-10-31 Fujitsu Ltd Liquid crystal display device
WO2008018213A1 (en) * 2006-08-10 2008-02-14 Sharp Kabushiki Kaisha Liquid crystal display device
WO2013141248A1 (en) * 2012-03-19 2013-09-26 シャープ株式会社 Light-modulating panel and light modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357830A (en) * 2001-03-30 2002-12-13 Fujitsu Ltd Liquid crystal display device
JP2003307720A (en) * 2002-04-16 2003-10-31 Fujitsu Ltd Liquid crystal display device
WO2008018213A1 (en) * 2006-08-10 2008-02-14 Sharp Kabushiki Kaisha Liquid crystal display device
WO2013141248A1 (en) * 2012-03-19 2013-09-26 シャープ株式会社 Light-modulating panel and light modulator

Similar Documents

Publication Publication Date Title
US9507197B2 (en) Lighting device and display device
JP5679308B2 (en) Illumination device and display device
JP6317582B2 (en) Liquid crystal display and manufacturing method thereof
CN102155674B (en) Illumination device and display device
CN106569365B (en) Reflected displaying device and preparation method thereof
JP2005521102A (en) Liquid crystal device, method for manufacturing liquid crystal device, and method for controlling liquid crystal device
JP2011119210A5 (en)
JP6927876B2 (en) Manufacturing method of polymer-containing scattering type liquid crystal element and polymer-containing scattering type liquid crystal element
WO2016158814A1 (en) Optical modulation device and display device
JP5423603B2 (en) Suspended particle device and driving method thereof
JP3072513B2 (en) Polymer dispersed liquid crystal display panel
TW201224594A (en) Liquid crystal element
JP2006195112A (en) Liquid crystal element, and dimmer element and liquid crystal display device using the same
WO2012011443A1 (en) Liquid crystal panel and liquid crystal display device
WO2015087911A1 (en) Light modulation device and display device
WO2016104229A1 (en) Light modulating device and display device
JP2000298266A (en) Polymer-dispersed liquid crystal display panel and its manufacture
KR20130105329A (en) Liquid crystal display
JP7389865B2 (en) Liquid crystal panels and liquid crystal display devices
WO2014034930A1 (en) Display panel, display device, and method for manufacturing display panel
Lin et al. Polarizer-free liquid crystal displays
WO2015198907A1 (en) Light modulating device and display device
WO2016063880A1 (en) Display device
WO2016084665A1 (en) Optical modulation device, method for manufacturing optical modulation device, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP