WO2016084665A1 - Optical modulation device, method for manufacturing optical modulation device, and display device - Google Patents

Optical modulation device, method for manufacturing optical modulation device, and display device Download PDF

Info

Publication number
WO2016084665A1
WO2016084665A1 PCT/JP2015/082338 JP2015082338W WO2016084665A1 WO 2016084665 A1 WO2016084665 A1 WO 2016084665A1 JP 2015082338 W JP2015082338 W JP 2015082338W WO 2016084665 A1 WO2016084665 A1 WO 2016084665A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic member
shape anisotropic
light modulation
light
modulation device
Prior art date
Application number
PCT/JP2015/082338
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 森脇
忠 大竹
知子 寺西
佐藤 英次
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016084665A1 publication Critical patent/WO2016084665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes

Definitions

  • the present invention relates to a light modulation device, a method for manufacturing the light modulation device, and a display device. More particularly, the present invention relates to a light modulation device that performs light modulation by controlling the orientation of a shape anisotropic member dispersed in liquid crystal, a method for manufacturing the light modulation device, and a display device including the light modulation device. It is.
  • a liquid crystal panel using a pair of polarizing plates is well known.
  • incident light to the liquid crystal panel is converted into polarized light by one polarizing plate, and polarized light that has passed through the liquid crystal layer is incident on the other polarizing plate, thereby controlling the transmittance of incident light to the liquid crystal panel.
  • the liquid crystal layer can be used for controlling the polarization state because the orientation of the liquid crystal molecules in the liquid crystal layer changes according to the magnitude of the applied voltage.
  • more than half of the incident light is absorbed by the polarizing plate before the incident light passes through the liquid crystal panel, so there is a limit in improving the light utilization efficiency.
  • Patent Document 1 discloses an optical device that includes an electro-optically sensitive flake system suspended in a liquid host, and selectively changes its optical characteristics by changing the applied voltage.
  • Patent Document 2 discloses a light modulation panel or display panel including a light modulation layer including a shape anisotropic member.
  • a configuration has been proposed in which the shape anisotropic member in the light modulation layer is rotated according to the electric field to selectively change the optical characteristics of the light modulation layer.
  • plastic spacers are generally used to control the thickness of the liquid crystal layer of the liquid crystal panel.
  • liquid crystal molecules are abnormally aligned in the vicinity of the plastic spacer, thereby causing light leakage and reducing the contrast of the liquid crystal panel.
  • the plastic spacers sometimes aggregated. For this reason, a method of controlling the alignment state of the liquid crystal molecules in the vicinity of the plastic spacer by modifying the surface of the plastic spacer has been proposed (see, for example, Patent Documents 3 to 5).
  • the dispersibility of the shape anisotropy member in the liquid crystal may be poor and may aggregate.
  • a shape anisotropic member aggregates notably, even if a voltage is applied, a shape anisotropic member does not perform a desired operation
  • the aggregation of the shape anisotropic member is caused by light transmittance (in the case of a display device in transmission display mode), light reflectance (in the case of a display device in reflection display mode), and contrast.
  • the display performance such as the response speed is lowered. No means for solving such a problem has been found.
  • the present invention has been made in view of the above situation, and provides a light modulation device with improved dispersibility of a shape anisotropic member, a method for manufacturing the light modulation device, and a display device including the light modulation device. It is intended to do.
  • the inventors of the present invention have made various studies on improving the dispersibility of the shape anisotropic member in the light modulation device.
  • the light modulation device controls the orientation of the shape anisotropic member by utilizing the change in the alignment state of the liquid crystal molecules. Then, it was noted that it is important to control the alignment state of the liquid crystal molecules in the vicinity of the surface of the shape anisotropic member.
  • the present inventors further examined that, as a combination of a liquid crystal and a shape anisotropic member, a polarizing plate was attached to the back side and the observation surface side of the light modulation device, and the transmission axis of the polarizing plate on the observation surface side was Is rotated with respect to the transmission axis of the polarizing plate on the back side, the light transmittance near the surface of the shape anisotropic member changes, and the light transmittance near the surface and the light in the region other than near the surface It has been found that a combination of materials having different transmittances is used.
  • the liquid crystal molecules are ordered with respect to the vicinity of the surface of the shape anisotropic member, and the alignment state of the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member Since the alignment state of the liquid crystal molecules in the region other than the vicinity of the surface of the conductive member is different, the shape anisotropic member is kept at an appropriate distance, and the light modulation device with improved dispersibility of the shape anisotropic member is realized. I found that I can do it. Thus, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • one embodiment of the present invention is a light modulation device including a first substrate, a light modulation layer, and a second substrate in order from the back side to the observation surface side, and the light modulation layer includes: The shape anisotropic member is dispersed in the liquid crystal, the first polarizing plate is attached to the back side of the light modulation device, the second polarizing plate is attached to the observation surface side of the light modulation device, and When the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the first polarizing plate, the light transmittance in the vicinity of the surface of the shape anisotropic member changes, and the light in the vicinity of the surface
  • the light modulation device may have different transmittance and light transmittance in a region other than the vicinity of the surface.
  • Another aspect of the present invention is a method of manufacturing the light modulation device, the step (1) of producing a mixture in which the shape anisotropic member is dispersed in the liquid crystal, and the first substrate.
  • a method of manufacturing a light modulation device including the step (2) of forming the light modulation layer by disposing the mixture between the first substrate and the second substrate.
  • Still another embodiment of the present invention may be a display device including the light modulation device.
  • the light modulation apparatus with which the dispersibility of the shape anisotropic member improved, the manufacturing method of the said light modulation apparatus, and a display apparatus provided with the said light modulation apparatus can be provided.
  • the display device of the present invention includes the light modulation device, the light transmittance (in the case of a display device in a transmissive display mode) and the light reflectance (in the reflective display mode) caused by aggregation of the shape anisotropic members. In the case of a display device), it is possible to prevent a decrease in display performance such as contrast and response speed.
  • FIG. 2 is a schematic cross-sectional view showing the light modulation device of Embodiment 1, wherein (a) shows a state when no voltage is applied, (b) shows a state when a voltage is applied (longitudinal electric field on), and (c) shows a voltage. The state at the time of application (lateral electric field ON) is shown.
  • 3 is a schematic plan view illustrating an electrode structure disposed in the light modulation device of Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram which shows the suitable structure of a shape anisotropic member.
  • FIG. 3 is a schematic cross-sectional view illustrating a state where light transmittance is observed with respect to the light modulation device according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of an alignment state of liquid crystal molecules and a shape anisotropic member in the light modulation device of Embodiment 1.
  • FIG. FIG. 5 is a schematic cross-sectional view showing the light modulation device of Embodiment 2, wherein (a) shows a state when no voltage is applied, (b) shows a state when a voltage is applied (longitudinal electric field on), and (c) shows a voltage. The state at the time of application (lateral electric field ON) is shown.
  • 6 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of Embodiment 2.
  • FIG. It is a schematic diagram explaining the orientation state of a liquid crystal molecule and a shape anisotropic member in the light modulation device of comparative form 1.
  • Embodiment 1 is a case where the liquid crystal molecules in the light modulation layer are aligned perpendicular to the vicinity of the surface of the shape anisotropic member.
  • FIG. 1A and 1B are schematic cross-sectional views illustrating the light modulation device of the first embodiment, where FIG. 1A illustrates a state when no voltage is applied, FIG. 1B illustrates a state when a voltage is applied (longitudinal electric field ON), c) shows a state when a voltage is applied (lateral electric field is on).
  • FIG. 2 is a schematic plan view illustrating an electrode structure disposed in the light modulation device according to the first embodiment.
  • the light modulation device 1a includes a first substrate 2a, a light modulation layer 3, and a second substrate 2b in order from the back side to the observation surface side.
  • observation surface side indicates the upper side of the light modulation device 1a in FIG.
  • Back side indicates the lower side of the light modulation device 1a. The same applies to other sectional views.
  • the first substrate 2a includes a support substrate 4a, a pair of electrodes 5a and 5b, and a vertical alignment film 7a in order from the back surface side to the observation surface side.
  • a transparent substrate such as a glass substrate or a plastic substrate can be used.
  • a foldable plastic substrate is used as the transparent substrate, a flexible light modulation device can be realized.
  • the pair of electrodes 5a and 5b has an in-plane switching (IPS) type electrode structure.
  • the pair of electrodes 5a and 5b are a pair of comb-teeth electrodes in which mutual comb teeth are fitted.
  • the electrodes 5a and 5b have a trunk portion and a plurality of parallel branch portions (comb teeth) extending from the trunk portion. ) Are alternately arranged.
  • FIG. 1C by applying a voltage between the electrode 5a and the electrode 5b with an AC power supply (AC), a lateral electric field (with respect to the first substrate 2a) is applied to the light modulation layer 3. Parallel electric fields).
  • AC AC power supply
  • the electrodes 5a and 5b are made of a conductive material, and can be made of a metal material such as indium tin oxide (ITO) or aluminum.
  • ITO indium tin oxide
  • the electrodes 5a and 5b are preferably formed of a transparent conductive material such as ITO.
  • the electrodes 5a and 5b may not be formed of a transparent conductive material.
  • the vertical alignment film 7a is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 9 in the light modulation layer 3 is set in a direction perpendicular to the first substrate 2a.
  • the vertical alignment film 7a is not particularly limited as long as the liquid crystal molecules 9 are aligned substantially vertically with respect to the surface thereof.
  • a film made of polyimide or polyamic acid showing a known vertical alignment property is used. Can be used.
  • the vertical alignment film 7a may be subjected to a rubbing process, and may be subjected to a photo-alignment process for irradiating polarized light (for example, polarized ultraviolet rays) as long as it is a photo-alignable vertical alignment film.
  • the second substrate 2b includes a support substrate 4b, a counter electrode 6, an insulating film 8, and a vertical alignment film 7b in order from the observation surface side to the back surface side.
  • the same substrate as the support substrate 4a of the first substrate 2a can be used.
  • the counter electrode 6 is disposed in a plane so as to face the pair of electrodes 5a and 5b and cover the entire display area. As shown in FIG. 1B, a vertical electric field (first substrate) is applied to the light modulation layer 3 by applying a voltage between the electrodes 5a, 5b and the counter electrode 6 with an alternating current power supply (AC). 2a and the electric field perpendicular to the second substrate 2b).
  • the counter electrode 6 is made of a conductive material, and can be made of a metal material such as ITO or aluminum.
  • the counter electrode 6 is preferably formed of a transparent conductive material such as ITO.
  • the counter electrode 6 is preferably formed of a transparent conductive material such as ITO.
  • the counter electrode 6 is preferably formed of a transparent conductive material such as ITO.
  • the vertical alignment film 7b is disposed in the same manner as the vertical alignment film 7a of the first substrate 2a.
  • At least one of the first substrate 2a and the second substrate 2b may be an active matrix substrate.
  • the active matrix substrate has switching elements arranged in a plurality of pixels arranged in a matrix and various wirings.
  • the switching element for example, a thin film transistor (TFT) element is used.
  • the various wirings include a gate bus line that supplies a scanning signal to the TFT, a source bus line that supplies a display signal to the TFT, and a common wiring.
  • the first substrate 2a is an active matrix substrate
  • the pair of electrodes 5a and 5b are arranged for each pixel, one of which is electrically connected to the source bus line via the switching element, and the other is a common wiring. Is electrically connected.
  • the other substrate may be a color filter substrate. Thereby, color display can be performed.
  • the light modulation layer 3 is obtained by dispersing the shape anisotropic member 10 in liquid crystal.
  • liquid crystal as the dispersion medium of the shape anisotropic member 10
  • the orientation of the shape anisotropic member 10 can be controlled by utilizing the change in the alignment state of the liquid crystal molecules 9.
  • the liquid crystal molecules 9 and the shape anisotropic member 10 change directions in the light modulation layer 3 in accordance with the vertical electric field and the horizontal electric field as described above. For this reason, the light modulation layer 3 can control the transmittance of incident light.
  • the liquid crystal molecule 9 may be a positive type (p type) having a positive dielectric anisotropy ( ⁇ > 0), but a negative type (n type) having a negative dielectric anisotropy ( ⁇ ⁇ 0). ). From the viewpoint of improving the operation performance of the shape anisotropic member 10 with respect to the electric field strength, the liquid crystal molecules 9 are preferably p-type. In this case, the dielectric anisotropy of the liquid crystal molecules 9 is preferably ⁇ > 10, and more preferably ⁇ > 20.
  • the shape anisotropic member 10 only needs to have anisotropy in its shape, and when viewed from the normal direction of the surface of the first substrate 2a (second substrate 2b), the first substrate 2a (second The projected area on the substrate 2b) may be any shape that continuously changes in response to voltage application. Further, the projected area when the major axis of the shape anisotropic member 10 is oriented parallel to the first substrate 2a (second substrate 2b) is more than twice the projected area when oriented vertically. Preferably there is. As such a shape, for example, a flake shape (flakes) is preferable, and a disk shape is particularly preferable. Other examples include a cylindrical shape and an elliptical sphere.
  • the thickness of the shape anisotropic member 10 is not particularly limited.
  • the thickness is preferably 1 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the shape anisotropic member 10 preferably has a light reflective surface.
  • the shape anisotropic member 10 has the liquid crystal molecules 9 aligned perpendicular to the vicinity of the surface thereof.
  • the shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b when no voltage is applied. That is, when no voltage is applied, the alignment direction of the liquid crystal molecules 9 with respect to the vicinity of the surface of the shape anisotropic member 10 is orthogonal to the alignment direction of the liquid crystal molecules 9 in a region other than the vicinity of the surface of the shape anisotropic member 10. ing. Thereby, the dispersibility of the shape anisotropic member 10 can further be improved.
  • the vicinity of the surface of the shape anisotropic member 10 indicates a range within 1 ⁇ m from the surface of the shape anisotropic member 10.
  • the main surfaces of the first substrate 2a and the second substrate 2b indicate surfaces on the opposite sides.
  • FIG. 3 is a schematic cross-sectional view showing a preferred configuration of the shape anisotropic member.
  • the shape anisotropic member 10 has a polymer layer 12 on the outer surface, that is, a configuration in which the polymer layer 12 is disposed outside the core portion 11.
  • a method for forming such a polymer layer 12 for example, a technique for surface modification of a plastic spacer disclosed in Patent Documents 3 to 5 can be used.
  • a material of the core part 11 of the shape anisotropic member 10 for example, a metal, a semiconductor, a dielectric, and a composite material thereof can be used.
  • the core portion 11 may be formed of a dielectric multilayer film or cholesteric resin, or may be colored.
  • the core part 11 may be in a state where the material (for example, aluminum) is exposed or covered with an insulating film such as an acrylic resin.
  • the polymer layer 12 may be composed of a single layer of a coating layer 13 that covers the core portion 11, but is shown in FIG. 3B.
  • a two-layer structure composed of a coating layer 13 (first polymer layer) covering the core portion 11 and a surface modification layer 14 (second polymer layer) modifying the surface of the coating layer 13 is formed. It is more preferable to have it.
  • the polymers forming the coating layer 13 are polymerized by surrounding the core portion 11, so that the coating layer 13 does not leave the core portion 11, and the surface modification layer 14 It is also possible to have a structure in which the polymer that forms the polymer is polymerized with the polymer that forms the coating layer 13, so that the surface modification layer 14 does not leave the coating layer 13.
  • a polymer having a large amount of reactive groups that easily bind to the surface modification layer 14 on the surface, such as silanol groups is selected as the coating layer 13 to modify the surface.
  • the layer 14 a polymer having silanol groups is selected, and these silanol groups are reacted with each other to form a covalent bond by condensation polymerization, so that the surface modification layer 14 does not leave the coating layer 13 and is anisotropic in shape.
  • the dispersibility of the adhesive member 10 can be preferably improved.
  • the coating layer 13 can be arrange
  • the surface modification layer 14 can be disposed for the purpose of improving the dispersibility of the shape anisotropic member 10.
  • materials can be selected according to the purpose.
  • an alignment film for example, a vertical alignment film
  • it is not formed by a chemical bond, so that it is easily detached during a voltage application / non-application switching operation. Absent.
  • the specific gravity of the shape anisotropy member 10 it preferably at 11g / cm 3 or less, more preferably 3 g / cm 3 or less, which is equivalent to the liquid crystal specific gravity (e.g., 1 g / cm 3 or less) Is more preferable.
  • the specific gravity of the shape anisotropic member 10 is much larger than the specific gravity of the liquid crystal, there is a concern that the shape anisotropic member 10 will settle in the light modulation layer 3.
  • FIG. 1A shows a state in which no voltage is applied to the electrodes 5a and 5b and the counter electrode 6.
  • FIG. FIG. 1A shows the case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10, and the first liquid crystal molecules 9 are formed in regions other than the vicinity of the surface of the shape anisotropic member 10.
  • the substrate 2a and the second substrate 2b are oriented perpendicular to the main surface.
  • the liquid crystal molecules 9 are aligned perpendicularly to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10.
  • the liquid crystal molecules 9 may be aligned substantially perpendicularly to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity.
  • the first substrate 2a and the second substrate 2b It indicates that the tilt angle of the liquid crystal molecules 9 with respect to the main surface of the substrate 2b is not less than 75 ° and not more than 90 °.
  • the shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b. For this reason, incident light passes through the light modulation layer 3 directly or after being reflected by the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, when light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
  • FIG. 1B shows a state in which a voltage is applied between the electrodes 5a and 5b and the counter electrode 6 (longitudinal electric field on).
  • FIG. 1B shows the case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, and the first liquid crystal molecules 9 are formed in regions other than the vicinity of the surface of the shape anisotropic member 10.
  • the substrate 2a and the second substrate 2b are oriented perpendicular to the main surface.
  • the shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it.
  • the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented perpendicular to the major surface of 2b. For this reason, incident light is transmitted directly to the light modulation layer 3 or reflected by the reflecting surface of the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
  • a light transmission state can be realized.
  • a light transmissive state for example, if a light source such as a backlight is disposed on the back side of the light modulation device 1a, a display device in a transmissive display mode can be realized.
  • FIG. 1C shows a state in which a voltage is applied between the electrodes 5a and 5b (lateral electric field on).
  • FIG. 1C shows the case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10 and the first substrate in a region other than the vicinity of the surface of the shape anisotropic member 10. In the vicinity of 2a, it is oriented parallel to the main surface of the first substrate 2a.
  • the liquid crystal molecules 9 are aligned in the vicinity of the first substrate 2a in the region other than the vicinity of the surface of the shape anisotropic member 10 in parallel with the main surface of the first substrate 2a.
  • the liquid crystal molecules 9 may be aligned substantially parallel to the main surface of the first substrate 2a in the vicinity of the first substrate 2a in a region other than the region, and the liquid crystal molecules 9 of the first substrate 2a It indicates that the tilt angle is 0 ° or more and 25 ° or less. In this case, the liquid crystal molecules 9 move from the vicinity of the second substrate 2b toward the vicinity of the first substrate 2a where the lateral electric field strength is large, from the state perpendicular to the main surface of the first substrate 2a. It may fall down in a parallel state according to the size of the.
  • the shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it.
  • the shape anisotropic member 10 if a material having visible light reflectivity such as a thin metal piece is used as the shape anisotropic member 10, the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented parallel to the main surface of 2b. For this reason, incident light is reflected to the incident side by the reflecting surface of the shape anisotropic member 10.
  • the light path is indicated by an arrow in FIG.
  • a light reflection state can be realized.
  • the shape anisotropic member 10 is oriented on the same plane, the brightest (highest light utilization efficiency) light reflection state is obtained.
  • the shape is anisotropic.
  • the reflective surface of the conductive member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b
  • the color of the colored layer is displayed.
  • the reflective surface of the shape anisotropic member 10 is oriented parallel to the main surfaces of the first substrate 2a and the second substrate 2b
  • the reflection by the shape anisotropic member 10 is performed. The color is displayed.
  • the reflective surface of the shape anisotropic member 10 is the main surface of the first substrate 2a and the second substrate 2b.
  • a black display is obtained.
  • the reflective surface of the shape anisotropic member 10 is oriented in parallel to the main surfaces of the first substrate 2a and the second substrate 2b, display by reflected light from a thin metal piece Is obtained.
  • the average diameter of the metal flakes is, for example, 20 ⁇ m or less
  • the surface of the shape anisotropic member 10 is made light-scattering, or the contour of the shape anisotropic member 10 is formed into a shape with severe irregularities.
  • the reflected light from the anisotropic member 10 is scattered, and white display can be obtained.
  • the reflection surface of the shape anisotropic member 10 is the first.
  • the colored shape anisotropic member 10 is colored. Is displayed.
  • the light modulation device 1a By disposing the light modulation device 1a on a non-display surface of a mobile phone or the like, the color of the body of the mobile phone and the color of the colored shape anisotropic member 10 can be switched and displayed. Further, halftone display can be performed using the inclination of the shape anisotropic member 10 in a state between the light transmission state and the light reflection state depending on the magnitude of the applied voltage.
  • the liquid crystal and the shape anisotropic member 10 included in the light modulation layer 3 are attached to the back side and the observation surface side of the light modulation device 1a.
  • the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the back side polarizing plate (first polarizing plate)
  • the light transmittance near the surface of the shape anisotropic member 10 changes
  • the light transmittance in the vicinity of the surface of the shape anisotropic member 10 and the light transmittance in a region other than the vicinity of the surface of the shape anisotropic member 10 are combinations of materials.
  • the observation of the light transmittance as described above is performed in a state as shown in FIG. FIG.
  • FIG. 4 is a schematic cross-sectional view illustrating a state in which light transmittance is observed with respect to the light modulation device of the first embodiment.
  • the light transmittance is observed using a polarizing microscope
  • a first polarizing plate 15a is attached to the back side of the light modulation device 1a
  • a second light is observed on the observation surface side of the light modulation device 1a.
  • the polarizing plate 15b is attached, and the transmission axis of the second polarizing plate 15b is rotated with respect to the transmission axis of the first polarizing plate 15a.
  • the light modulation device 1a is placed on the stage of a polarizing microscope, the orientation of the transmission axis of the polarizer (corresponding to the first polarizing plate 15a), and the analyzer (on the second polarizing plate 15b).
  • the transmission axis of the analyzer is set to have a predetermined relationship (for example, crossed Nicols (orthogonal state)), and the transmission axis of the analyzer is rotated with respect to the transmission axis of the polarizer in transmission observation.
  • the method is performed by observing the vicinity of the surface of the shape anisotropic member 10 and the vicinity thereof.
  • the direction of the shape anisotropic member 10 may be set to have a predetermined relationship with the direction of the transmission axis of the polarizer and the analyzer.
  • a general instrument can be used as the polarizing microscope.
  • the polarizer and analyzer for example, a linear polarizer can be used, and it is preferable to use a polarizer that exhibits an absorbance of 99% or more when placed in crossed Nicols.
  • the light transmittance changes when the transmission axis of the second polarizing plate 15b is rotated by 15 ° with respect to the transmission axis of the first polarizing plate 15a. For example, the light transmittance changes by 20% or more.
  • the liquid crystal molecules 9 are perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10.
  • the transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols, and the transmission axis of the second polarizing plate 15b is set to the transmission axis of the first polarizing plate 15a.
  • the shape anisotropic member in which the light transmittance near the surface decreases, and the light transmittance in the vicinity of the surface decreases with respect to the positive rotation direction, and in the negative rotation direction.
  • the shape anisotropic members second shape anisotropic members whose light transmittance near the surface increases.
  • the light transmittance of the region other than the vicinity of the surface of the shape anisotropy member 10 does not change.
  • the above-described light transmittance state exists at least when the transmission axis of the second polarizing plate 15b is rotated.
  • the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10 a light modulation device in which the dispersibility of the shape anisotropic member 10 is further improved is realized. be able to. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
  • FIG. 5 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of the first embodiment.
  • FIG. 5 corresponds to a state (plan view) when the state shown in FIG. 4 is viewed from the observation surface side.
  • the dotted double-pointed arrow indicates the direction of the transmission axis of the first polarizing plate 15a
  • the solid-line double-pointed arrow indicates the direction of the transmission axis of the second polarizing plate 15b
  • the transmission axes are orthogonal to each other.
  • the clockwise direction is defined as positive (+) with reference to the azimuth (0 °) of the transmission axis of the second polarizing plate 15b, and the angle and the azimuth of the axis are described.
  • FIG. 1 From the state (crossed Nicol state) in which the transmission axis (azimuth: 90 °) of the first polarizing plate 15a and the transmission axis (azimuth: 0 °) of the second polarizing plate 15b are orthogonal to each other, FIG.
  • the transmission axis of the second polarizing plate 15b is rotated by ⁇ 15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 15a as shown in (a) and (b) of FIG.
  • the light transmittance near the surface of the conductive member 10 changes, and the light transmittance near the surface of the shape anisotropic member 10 is different from the light transmittance in other regions.
  • the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction of the second polarizing plate 15b, and decreases the light transmittance near the surface with respect to the negative rotation direction.
  • the light transmittance near the surface with respect to the positive rotation direction of the shape anisotropic member (FIG. 5B) and the second polarizing plate 15b decreases, and the light near the surface with respect to the negative rotation direction.
  • the light transmittance does not change. For this reason, the light transmitted through the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the shape anisotropic member 10 is considered to be elliptically polarized light as shown in FIGS.
  • the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 5A will be described with reference to FIG.
  • FIG. 5C when the liquid crystal molecules 9 are aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 5A and 5C.
  • the direction of the refractive index no with respect to ordinary light of the liquid crystal molecules 9 is tilted by + 45 ° and the direction of the refractive index ne with respect to extraordinary light is tilted by ⁇ 45 ° with respect to the transmission axis of the first polarizing plate 15a.
  • the no direction of the liquid crystal molecules 9 corresponds to the fast axis
  • the ne direction of the liquid crystal molecules 9 corresponds to the slow axis.
  • FIG. 5D when the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 5B and 5D.
  • the direction of the refractive index no with respect to the ordinary light of the liquid crystal molecules 9 is inclined by ⁇ 45 ° and the direction of the refractive index ne with respect to the extraordinary light is inclined by + 45 ° with respect to the transmission axis of the first polarizing plate 15a.
  • the linearly polarized light transmitted through the first polarizing plate 15a has a shape.
  • the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the anisotropic member 10 are transmitted, clockwise elliptical polarization as shown in FIG. 5B is obtained.
  • the shape anisotropic member 10 rotates clockwise with respect to the transmission axis of the first polarizing plate 15a when no voltage is applied.
  • a shape anisotropic member (FIG. 5B) oriented perpendicularly to the main surface of the first substrate 2a and the second substrate 2b, and the first polarized light
  • the liquid crystal molecules 9 are ordered (perpendicularly) with respect to the vicinity of the surface of the shape anisotropic member 10 and the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member 10 are used. 9 is different from the alignment state of the liquid crystal molecules 9 in a region other than the vicinity of the surface of the shape anisotropic member 10, so that the dispersibility of the shape anisotropic member 10 can be improved. Moreover, the orientation of the shape anisotropic member 10 when no voltage is applied can be improved by improving the dispersibility of the shape anisotropic member 10.
  • the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10.
  • the state only needs to be ordered, and in addition to the case where the state is vertical, the case where the state is parallel as described later is preferable.
  • the liquid crystal molecules 9 are preferably aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10.
  • the light modulation device of Embodiment 1 controls the transmitted light amount or the reflected light amount by changing the direction of the shape anisotropic member 10 by an electrical action. Therefore, unlike a liquid crystal panel using a polarizing plate, it is not necessary to dispose polarizing plates on the back side of the first substrate 2a and the observation surface side of the second substrate 2b in actual use. For this reason, the light modulation device of the first embodiment is excellent in light utilization efficiency.
  • step (1) A mixture in which the shape anisotropic member 10 is dispersed in the liquid crystal is prepared. At this time, the shape anisotropic member 10 may be cleaned in advance. Examples of the cleaning method include a method of performing ultrasonic irradiation in a state where isopropyl alcohol (IPA), acetone or the like is added. Further, as described with reference to FIG. 3, the outer surface of the shape anisotropic member 10 may be covered with the polymer layer 12 in advance. As a method for forming such a polymer layer 12, for example, a technique for surface modification of a plastic spacer disclosed in Patent Documents 3 to 5 can be used.
  • IPA isopropyl alcohol
  • step (2) Formation of light modulation layer
  • the light modulation layer 3 is formed by disposing the mixture in which the shape anisotropic member 10 is dispersed in the liquid crystal between the first substrate 2a and the second substrate 2b, thereby completing the light modulation device 1a.
  • a method for forming the light modulation layer 3 a method of dropping the mixture onto at least one of the first substrate 2a and the second substrate 2b and then bonding the both substrates in a vacuum or in the atmosphere may be used. Then, after bonding the first substrate 2a and the second substrate 2b, a method of injecting the mixture between both the substrates in a vacuum or a method of injecting using the capillary phenomenon may be used.
  • Example 1 is a case where the shape anisotropic member 10 having a polymer layer 12 on the outer surface was used, and the polymer layer 12 was composed of a coating layer 13 and a surface modification layer 14. This is a case of having a two-layer structure.
  • the manufacturing process of the light modulation device of Example 1 was as follows.
  • the shape anisotropic member 10 liquid crystal, and plastic beads for controlling the thickness of the light modulation layer 3 were mixed, and ultrasonic irradiation was performed for 60 minutes to prepare a mixture.
  • the shape anisotropic member 10 a material composed of aluminum flakes as the core portion 11, silica-based insulator A 1 as the coating layer 13, and a hydrophilic polymer B 1 as the surface modification layer 14 is used. The average particle size was 7 ⁇ m.
  • the shape anisotropic member 10 used was washed in advance.
  • the operation of performing centrifugation after repeating the ultrasonic irradiation with IPA added is repeated three times, and then performing the centrifugal separation after performing the ultrasonic irradiation with adding acetone.
  • the operation was repeated three times, and finally the method of natural drying was used.
  • the mixing amount of the shape anisotropic member 10 was 10 wt% with respect to the liquid crystal.
  • the plastic beads plastic beads (trade name: Micropearl) manufactured by Sekisui Chemical Co., Ltd. were used, and the average particle size was 10 ⁇ m.
  • the mixing amount of the plastic beads was 0.2 wt% with respect to the liquid crystal.
  • the light modulation layer 3 was formed by bonding the first substrate 2a and the second substrate 2b in the atmosphere.
  • the thickness of the light modulation layer 3 was 10 ⁇ m.
  • the material of the pair of electrodes 5a and 5b is ITO
  • the electrode width is 10 ⁇ m
  • the electrode interval (space) is 10 ⁇ m
  • the thickness is 100 nm.
  • the material for the counter electrode 6 was ITO, and the thickness was 100 nm.
  • an alignment film (trade name: SE-4811, surface free energy: 35.0) manufactured by Nissan Chemical Industries, Ltd. was used, and the thickness thereof was 100 nm.
  • the light modulation device 1a is completed. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • Example 2 The second embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device of the second embodiment and its manufacturing process are the same as the optical modulation device of the first embodiment and its manufacturing process, and therefore, overlapping description is omitted.
  • the shape anisotropic member 10 is composed of aluminum flakes as the core 11, acrylic insulator A 2 as the coating layer 13, and a hydrophobically treated polymer B 2 having an alkyl group as the surface modification layer 14.
  • the average particle size was 7 ⁇ m.
  • the third embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device of the third embodiment and its manufacturing process are the same as those of the optical modulation device of the first embodiment and its manufacturing process.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and in a state where they were stirred, 2.5 g of tetramethylol methane triacrylate, 4.5 g of divinylbenzene, and 0.8 g of benzoyl peroxide. Then, the polymerization reaction was carried out at 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a polyvinylidene fluoride (PVDF) filter (pore size: 1 ⁇ m) with water, methanol and acetone added.
  • PVDF polyvinylidene fluoride
  • the coating layer 13 was a polymer of monomers (tetramethylolmethane triacrylate and divinylbenzene) having an ethylenically unsaturated group.
  • the product after the heating reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated twice, followed by drying under reduced pressure.
  • the shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained.
  • the surface modification layer 14 was formed from an organosilane compound (dodecyltriethoxysilane). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • Example 4 The fourth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment.
  • the optical modulation device and the manufacturing process thereof according to the fourth embodiment are the same as those of the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point.
  • the shape anisotropic member 10 one formed by the following method was used. First, 12 g of aluminum flakes and 0.3 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 12 g of ⁇ -methacryloxypropyltrimethoxysilane, 13.5 g of styrene, and 2,2′-azo After adding 0.2 g of bisisobutyronitrile, the polymerization reaction was carried out for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with ethanol and acetone added.
  • a PVDF filter pore size: 1 ⁇ m
  • the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure.
  • 10 g of flakes after drying under reduced pressure and 1.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.).
  • the product after the reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with acetone added.
  • the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure.
  • a flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained.
  • the coating layer 13 was a polymer having a carboxyl group on the surface.
  • the surface modification layer 14 is a polymer having a long-chain alkyl group, and forms a covalent bond with the coating layer 13.
  • the fifth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment.
  • the optical modulation device and its manufacturing process of the fifth embodiment are the same as those of the optical modulation device and its manufacturing process of the first embodiment except for this point.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 4 g of ⁇ -methacryloxypropyltrimethoxysilane, 4.5 g of styrene, and 2,2′-azo After adding 0.1 g of bisisobutyronitrile, a polymerization reaction was performed for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with ethanol and acetone added.
  • PVDF filter pore size: 1 ⁇ m
  • the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure.
  • the flakes after drying under reduced pressure had —SiOH groups on the surface.
  • 3 g of flakes after drying under reduced pressure and 0.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.).
  • the product after the reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with acetone added.
  • the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure.
  • the sixth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device and the manufacturing process thereof according to the sixth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 4 g of ⁇ -methacryloxypropyltrimethoxysilane, 4.5 g of styrene, and 2,2′-azo After adding 0.1 g of bisisobutyronitrile, a polymerization reaction was performed for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with ethanol and acetone added.
  • PVDF filter pore size: 1 ⁇ m
  • the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure.
  • the flakes after drying under reduced pressure had —SiOH groups on the surface.
  • 3 g of flakes after drying under reduced pressure and 0.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.).
  • the product after the reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with acetone added.
  • the coating layer 13 was a polymer having a polymerizable vinyl group capable of radical chain transfer on the surface.
  • the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure.
  • the flakes after drying under reduced pressure had graft polymer chains containing peroxide groups on the surface.
  • 100 g of xylene, 3 g of octyl methacrylate and 2.5 g of lauryl polyoxyethylene methacrylate were charged all at once with respect to 2.5 g of the flakes after drying under reduced pressure, and the temperature was raised to the polymerization initiator cleavage temperature (25 ° C.).
  • the surface modification layer 14 was graft polymerized with the coating layer 13 and had a graft polymer chain having a long-chain alkyl group.
  • the seventh embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device and the manufacturing process thereof according to the seventh embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and after stirring them, 4.5 g of divinylbenzene and 0.8 g of benzoyl peroxide were added. The polymerization reaction was allowed to proceed for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 ⁇ m) with water, methanol and acetone added.
  • a PVDF filter pore diameter: 1 ⁇ m
  • the coating layer 13 was a polymer of a plastic material (divinylbenzene).
  • the hydrolyzed product was filtered using a PVDF filter (pore size: 1 ⁇ m) with methanol and acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and centrifugation, decantation, and ultrasonic irradiation with acetone added are sequentially repeated three times, followed by drying under reduced pressure.
  • the shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained.
  • the surface modification layer 14 was an aluminum alkoxide polycondensate having hydrophilicity.
  • the surface modification layer 14 forms an aluminosilicate bond with the coating layer 13.
  • the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • the surface modification layer 14 an aluminum alkoxide polycondensate that forms an alumino titanate bond or an alumino zirconate bond instead of the aluminosilicate bond with the coating layer 13 may be used.
  • Example 8 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 1.
  • the optical modulation device and the manufacturing process thereof according to the eighth embodiment are the same as those of the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point.
  • the shape anisotropic member 10 one formed by the following method was used. First, a flake in which the core 11 (aluminum flake) was coated with a coating layer 13 made of silica was prepared. Next, 3 g of flakes coated with the coating layer 13 and 3 g of octadecyltriethoxysilane were added to 100 ml of hexane, and a polymerization reaction was performed in a 50 ° C. environment in a nitrogen stream for 1 hour. The polymerized reaction product was filtered using a PVDF filter (pore size: 1 ⁇ m) with hexane and acetone added.
  • a PVDF filter pore size: 1 ⁇ m
  • the flakes collected by filtration were collected with acetone, divided into small portions, subjected to centrifugation and decantation in this order, and then reacted by heating in an environment of 140 ° C. for 1 hour.
  • the product after the heating reaction was filtered using a PVDF filter (pore size: 1 ⁇ m) with acetone added.
  • the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated twice, followed by drying under reduced pressure.
  • the shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained.
  • the surface modification layer 14 was an alkyl silane coupling agent (formed from an organic silane compound). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • a polymer having a large amount of silanol groups (silica) is selected as the coating layer 13
  • a polymer having a silanol group alkyl silane coupling agent
  • a strong covalent bond having a large amount of an alkyl chain can be formed by dehydrating and condensing each other through a hydrogen bond. As a result, the surface modification layer 14 does not leave the coating layer 13, and the dispersibility of the shape anisotropic member 10 can be preferably improved.
  • Example 9 is a case where the shape anisotropic member 10 having the polymer layer 12 on the outer surface is used, and the polymer layer 12 is composed of a single layer of the coating layer 13. Since the optical modulation device and the manufacturing process thereof according to the ninth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point, the description of overlapping points is omitted.
  • the shape anisotropic member 10 As the shape anisotropic member 10, an aluminum flake as the core part 11 and an acrylic insulator A2 as the coating layer 13 were used, and the average particle diameter was 7 ⁇ m. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • Example 10 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9.
  • the optical modulation device and the manufacturing process thereof according to the tenth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the ninth embodiment except for this point.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 4 g of polyethylene glycol (weight average molecular weight: 1,000,000) were added to 500 ml of water, and in a state where they were stirred, 2.5 g of glycidyl methacrylate, 4.5 g of divinylbenzene, and benzoyl peroxide 0 were added. After adding 1 g, the polymerization reaction was carried out in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 ⁇ m) with water, methanol and acetone added.
  • PVDF filter pore diameter: 1 ⁇ m
  • the shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained.
  • the coating layer 13 was an ethylene glycol polymer (polyethylene glycol).
  • Example 11 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9.
  • the optical modulation device and the manufacturing process thereof according to the eleventh embodiment are the same as the optical modulation device and the manufacturing process thereof according to the ninth embodiment except for this point.
  • the shape anisotropic member 10 one formed by the following method was used. First, after adding 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate to 1000 ml of water and stirring them, 4 g of nonylphenol ethylene oxide, 4.5 g of divinylbenzene, and 0.8 g of benzoyl peroxide were added. The polymerization reaction was performed in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 ⁇ m) with water, methanol and acetone added.
  • a PVDF filter pore diameter: 1 ⁇ m
  • the shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained.
  • the coating layer 13 contained nonylphenol ethylene oxide adduct.
  • Example 12 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. Except for this point, the optical modulation device of the twelfth embodiment and the manufacturing process thereof are the same as the optical modulation device of the ninth embodiment and the manufacturing process thereof.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and with stirring, 4.5 g of 2,2,2-trifluoroethyl methacrylate, 6 g of divinylbenzene, ethylene glycol dimethacrylate 2 .3 g and 0.8 g of benzoyl peroxide were added, and the polymerization reaction was carried out in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 ⁇ m) with water, methanol and acetone added.
  • a PVDF filter pore diameter: 1 ⁇ m
  • the shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained.
  • the coating layer 13 is a single monomer having a crosslinkable monomer (divinylbenzene) having two or more ethylenically unsaturated groups, a fluorine monomer (2,2,2-trifluoroethyl methacrylate), and ethylene glycol. It was formed from a copolymer with a monomer (ethylene glycol dimethacrylate).
  • the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • a monomer having a glycidyl group may be used instead of the fluorine-based monomer, and both the fluorine-based monomer and the monomer having a glycidyl group are used. May be.
  • Example 13 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. Except for this point, the light modulation device of the thirteenth embodiment and the manufacturing process thereof are the same as those of the light modulation device of the ninth embodiment and the manufacturing process thereof.
  • the shape anisotropic member 10 one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and 4 g of glycidyl methacrylate, 6 g of divinylbenzene, and 0.8 g of benzoyl peroxide were added in a state where these were stirred. The polymerization reaction was carried out for 2 hours under the following conditions. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 ⁇ m) with water, methanol and acetone added.
  • PVDF filter pore diameter: 1 ⁇ m
  • the shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained.
  • the coating layer 13 was a polymer of a monomer having a glycidyl group (glycidyl methacrylate). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
  • Embodiment 2 is a case where the liquid crystal molecules in the light modulation layer are aligned parallel to the vicinity of the surface of the shape anisotropic member. Except for this point, the optical modulation device and the manufacturing process thereof according to the second embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
  • FIG. 6A and 6B are schematic cross-sectional views showing the light modulation device of the second embodiment, where FIG. 6A shows a state when no voltage is applied, FIG. 6B shows a state when a voltage is applied (longitudinal electric field ON), c) shows a state when a voltage is applied (lateral electric field is on).
  • the light modulation device 1b includes a first substrate 2a, a light modulation layer 3, and a second substrate 2b in order from the back surface side to the observation surface side.
  • the shape anisotropic member 10 has the liquid crystal molecules 9 aligned in parallel to the vicinity of the surface, that is, in the plane perpendicular to the paper surface in FIG. It is preferable that they are oriented in the same direction within a plane perpendicular to the paper surface.
  • the shape anisotropic member 10 in which the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface for example, a member having a polymer layer on the outer surface as shown in FIG.
  • FIG. 6A shows a state in which no voltage is applied to the electrodes 5a and 5b and the counter electrode 6.
  • FIG. FIG. 6A shows the case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and in the region other than the vicinity of the surface of the shape anisotropic member 10, the first The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface.
  • the shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b.
  • incident light passes through the light modulation layer 3 directly or after being reflected by the shape anisotropic member 10 and then transmitted to the side opposite to the incident side.
  • the light path is indicated by an arrow in FIG.
  • FIG. 6B shows a state in which a voltage is applied between the electrodes 5a and 5b and the counter electrode 6 (longitudinal electric field on).
  • FIG. 6B shows a case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and in the region other than the vicinity of the surface of the shape anisotropic member 10, the first The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface.
  • the shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it.
  • the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented perpendicular to the major surface of 2b. For this reason, incident light is transmitted directly to the light modulation layer 3 or reflected by the reflecting surface of the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
  • a light transmission state can be realized.
  • a light transmissive state for example, if a light source such as a backlight is disposed on the back side of the light modulation device 1b, a display device in a transmissive display mode can be realized.
  • FIG. 6C shows a state in which a voltage is applied between the electrodes 5a and 5b (lateral electric field on).
  • FIG. 6C shows the case where p-type liquid crystal molecules 9 are used.
  • the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and the first substrate in a region other than the vicinity of the surface of the shape anisotropic member 10. In the vicinity of 2a, it is oriented parallel to the main surface of the first substrate 2a.
  • the shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal.
  • the shape anisotropic member 10 it rotates so that it becomes parallel to it.
  • the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented parallel to the main surface of 2b. For this reason, incident light is reflected to the incident side by the reflecting surface of the shape anisotropic member 10.
  • the light path is indicated by an arrow in FIG. As described above, a light reflection state can be realized. Further, when the shape anisotropic member 10 is oriented on the same plane, the brightest (highest light utilization efficiency) light reflection state is obtained.
  • the liquid crystal and the shape anisotropic member 10 included in the light modulation layer 3 are attached to the back side and the observation surface side of the light modulation device 1b, and the polarizing plate on the observation surface side (
  • the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the back side polarizing plate (first polarizing plate)
  • the light transmittance near the surface of the shape anisotropic member 10 changes
  • the light transmittance in the vicinity of the surface of the shape anisotropic member 10 and the light transmittance in a region other than the vicinity of the surface of the shape anisotropic member 10 are combinations of materials.
  • the observation of the light transmittance as described above is performed in the same manner as shown in FIG. 4 except that the light modulation device 1b is used instead of the light modulation device 1a.
  • the liquid crystal molecules 9 are perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10.
  • the transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols, and the transmission axis of the second polarizing plate 15b is set to the transmission axis of the first polarizing plate 15a.
  • the shape anisotropic member in which the light transmittance near the surface decreases, and the light transmittance in the vicinity of the surface decreases with respect to the positive rotation direction, and in the negative rotation direction.
  • the shape anisotropic members second shape anisotropic members whose light transmittance near the surface increases.
  • the light transmittance of the region other than the vicinity of the surface of the shape anisotropy member 10 does not change.
  • the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10 a light modulation device in which the dispersibility of the shape anisotropic member 10 is further improved is realized. be able to. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
  • FIG. 7 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of the second embodiment.
  • the transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols.
  • the dotted double arrows indicate the direction of the transmission axis of the first polarizing plate 15 a
  • the solid double arrows indicate the direction of the transmission axis of the second polarizing plate 15 b
  • the transmission axes are orthogonal to each other.
  • the clockwise direction is defined as positive (+) with reference to the azimuth (0 °) of the transmission axis of the second polarizing plate 15b, and the angle and the azimuth of the axis are described.
  • FIG. 1 From the state (cross Nicol state) in which the transmission axis (azimuth: 90 °) of the first polarizing plate 15a and the transmission axis (azimuth: 0 °) of the second polarizing plate 15b are orthogonal to each other, FIG.
  • the transmission axis of the second polarizing plate 15b is rotated by ⁇ 15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 15a as shown in (a) and (b) of FIG.
  • the light transmittance near the surface of the conductive member 10 changes, and the light transmittance near the surface of the shape anisotropic member 10 is different from the light transmittance in other regions.
  • the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction of the second polarizing plate 15b, and decreases the light transmittance near the surface with respect to the negative rotation direction.
  • the light transmittance near the surface decreases with respect to the positive rotation direction of the shape anisotropic member (FIG. 7A) and the second polarizing plate 15b, and the light near the surface with respect to the negative rotation direction.
  • the light transmittance does not change. For this reason, the light transmitted through the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the shape anisotropic member 10 is considered to be elliptically polarized light as shown in (a) and (b) of FIG.
  • the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 7A will be described with reference to FIG.
  • FIG. 7C when the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 7A and 7C.
  • the direction of the refractive index no with respect to the ordinary light of the liquid crystal molecules 9 is inclined by ⁇ 45 ° and the direction of the refractive index ne with respect to the extraordinary light is inclined by + 45 ° with respect to the transmission axis of the first polarizing plate 15a.
  • the no direction of the liquid crystal molecules 9 corresponds to the fast axis
  • the ne direction of the liquid crystal molecules 9 corresponds to the slow axis.
  • FIG. 7D when the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, it can be understood by comparing FIGS. 7B and 7D.
  • the direction of the refractive index no with respect to ordinary light of the liquid crystal molecules 9 is tilted by + 45 ° and the direction of the refractive index ne with respect to extraordinary light is tilted by ⁇ 45 ° with respect to the transmission axis of the first polarizing plate 15a.
  • the shape anisotropic member 10 rotates clockwise with respect to the transmission axis of the first polarizing plate 15a when no voltage is applied.
  • a shape anisotropic member (FIG. 7B) oriented perpendicularly to the main surface of the first substrate 2a and the second substrate 2b, and the first polarization
  • the liquid crystal molecules 9 are ordered (parallel) with respect to the vicinity of the surface of the shape anisotropic member 10 and the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member 10. 9 is different from the orientation state of the liquid crystal molecules 9 in the region other than the vicinity of the surface of the shape anisotropic member 10 because the orientation state 9 is oriented in a plane perpendicular to the paper surface in FIG.
  • the dispersibility of the adhesive member 10 can be improved.
  • the orientation of the shape anisotropic member 10 when no voltage is applied can be improved by improving the dispersibility of the shape anisotropic member 10.
  • the light modulation device according to the second embodiment When the light modulation device according to the second embodiment is applied to a display device, the light transmittance (in the case of a display device in a transmissive display mode) and the light reflectance (in a reflection display mode) caused by aggregation of shape anisotropic members. In the case of a display device), it is possible to prevent deterioration in display performance such as contrast and response speed.
  • the light modulation device of the second embodiment controls the transmitted light amount or the reflected light amount by changing the direction of the shape anisotropic member 10 by an electric action. Therefore, unlike a liquid crystal panel using a polarizing plate, it is not necessary to dispose polarizing plates on the back side of the first substrate 2a and the observation surface side of the second substrate 2b in actual use. For this reason, the light modulation device of the second embodiment is excellent in light utilization efficiency.
  • the manufacturing process of the light modulation device of the second embodiment is the same as the manufacturing process of the light modulation device of the first embodiment except for the combination of the material of the liquid crystal and the shape anisotropic member 10. .
  • Comparative form 1 is a case where the liquid crystal molecules in the light modulation layer are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member.
  • FIGS. 8A and 8B are schematic cross-sectional views showing the light modulation device of Comparative Example 1.
  • FIG. 8A shows a state when no voltage is applied
  • FIG. 8B shows a state when a voltage is applied (longitudinal electric field on)
  • c shows a state when a voltage is applied (lateral electric field is on).
  • FIG. 9 is a schematic plan view showing an electrode structure arranged in the light modulation device of Comparative Embodiment 1.
  • the light modulation device 101 includes a first substrate 102a, a light modulation layer 103, and a second substrate 102b in order from the back surface side to the observation surface side.
  • the first substrate 102a and the second substrate 102b are bonded to each other via a sealing material (not shown) arranged so as to surround the display area.
  • the first substrate 102a includes a support substrate 104a, a pair of electrodes 105a and 105b, and a vertical alignment film 107a in order from the back surface side to the observation surface side.
  • the pair of electrodes 105a and 105b has an IPS-type electrode structure, and specifically, is a pair of comb-teeth electrodes in which mutual comb teeth are fitted. As shown in FIG. 9, each of the electrodes 105a and 105b has a trunk portion and a plurality of parallel branch portions (comb teeth) extending from the trunk portion. ) Are alternately arranged. As shown in FIG. 8C, a voltage is applied between the electrode 105a and the electrode 105b with an AC power source (AC), whereby a lateral electric field (with respect to the first substrate 102a) is applied to the light modulation layer 103. Parallel electric fields).
  • AC AC power source
  • the vertical alignment film 107a is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 109 in the light modulation layer 103 is set in a direction perpendicular to the first substrate 102a.
  • the second substrate 102b includes a support substrate 104b, a counter electrode 106, an insulating film 108, and a vertical alignment film 107b in order from the observation surface side to the back surface side.
  • the counter electrode 106 is arranged in a plane so as to face the pair of electrodes 105a and 105b and cover the entire display region. As shown in FIG. 8B, a vertical electric field (first substrate) is applied to the light modulation layer 103 by applying a voltage between the electrodes 105a and 105b and the counter electrode 106 with an AC power supply (AC). 102a and an electric field perpendicular to the second substrate 102b) can be formed.
  • AC AC power supply
  • the vertical alignment film 107b is disposed in the same manner as the vertical alignment film 107a of the first substrate 102a.
  • the light modulation layer 103 is obtained by dispersing the shape anisotropic member 110 in the liquid crystal.
  • the shape anisotropic member 110 has liquid crystal molecules 109 aligned randomly with respect to the vicinity of the surface thereof. Further, the shape anisotropic member 110 is oriented perpendicular to the main surfaces of the first substrate 102a and the second substrate 102b when no voltage is applied. The vicinity of the surface of the shape anisotropic member 110 indicates a range within 1 ⁇ m from the surface of the shape anisotropic member 110. The main surfaces of the first substrate 102a and the second substrate 102b indicate surfaces on the opposite sides of each other.
  • FIG. 10 is a schematic cross-sectional view illustrating a state in which light transmittance is observed with respect to the light modulation device according to the first comparative embodiment. As shown in FIG.
  • the light transmittance is observed using a polarizing microscope.
  • a first polarizing plate 115 a is attached to the back side of the light modulation device 101, and a second light is observed on the observation surface side of the light modulation device 101.
  • the polarizing plate 115b is attached, and the transmission axis of the second polarizing plate 115b is rotated with respect to the transmission axis of the first polarizing plate 115a.
  • the light modulation device 101 is placed on the stage of a polarizing microscope, the orientation of the transmission axis of the polarizer (corresponding to the first polarizing plate 115a), and the analyzer (on the second polarizing plate 115b).
  • the transmission axis of the analyzer is set to have a predetermined relationship (for example, crossed Nicols (orthogonal state)), and the transmission axis of the analyzer is rotated with respect to the transmission axis of the polarizer in transmission observation.
  • the method is performed by observing the vicinity of the surface of the shape anisotropic member 110 and the vicinity thereof.
  • a general instrument can be used as the polarizing microscope.
  • FIG. 11 is a schematic diagram for explaining the alignment state of the liquid crystal molecules and the shape anisotropic member in the light modulation device of Comparative Embodiment 1.
  • FIG. 11 corresponds to a state (plan view) when the state shown in FIG. 10 is viewed from the observation surface side.
  • the transmission axis of the first polarizing plate 115a and the transmission axis of the second polarizing plate 115b are attached to crossed Nicols.
  • the dotted double arrows indicate the orientation of the transmission axis of the first polarizing plate 115 a
  • the solid double arrows indicate the orientation of the transmission axis of the second polarizing plate 115 b
  • the transmission axes are orthogonal to each other.
  • the angle and the axis direction are described by defining the clockwise direction as positive (+) with respect to the direction (0 °) of the transmission axis of the second polarizing plate 115b.
  • FIG. 4 As shown in FIG. 4, when the transmission axis of the second polarizing plate 115b is rotated by ⁇ 15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 115a, the light near the surface of the shape anisotropic member 110 The transmittance does not change.
  • the light transmitted through the liquid crystal molecules 109 oriented with respect to the vicinity of the surface of the shape anisotropic member 110 is considered to be non-polarized light (a collection of various polarization states) as shown in FIG.
  • a state where the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110 is considered.
  • the transmission axis of the plate 115b is rotated, it is considered that light is transmitted to the same extent.
  • the light modulation device of comparative form 1 since the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110, the dispersibility of the shape anisotropic member cannot be improved.
  • the anisotropic member 110 tends to aggregate. Further, since the shape anisotropic member 110 is likely to aggregate, the orientation of the shape anisotropic member 110 when no voltage is applied deteriorates.
  • light transmittance in the case of a display device in transmissive display mode
  • light reflectance reflection display mode
  • display performance display performance such as contrast and response speed deteriorates.
  • Comparative Example 1 is a case where the shape anisotropic member 110 has a polymer layer on the outer surface, and the polymer layer covers a core portion of the shape anisotropic member 110; and In this case, the coating layer has a two-layer structure composed of a surface modification layer for modifying the surface.
  • the manufacturing process of the light modulation device of Comparative Example 1 was as follows.
  • the shape anisotropic member 110, the liquid crystal, and plastic beads for controlling the thickness of the light modulation layer 103 were mixed and subjected to ultrasonic irradiation for 60 minutes to prepare a mixture.
  • As the shape anisotropic member 110 an aluminum flake as a core portion, a silica-based insulator A1 as a coating layer, and a hydrophobically treated polymer B3 as a surface modification layer are used, and the average thereof is used.
  • the particle size was 7 ⁇ m.
  • the shape anisotropic member 110 used was washed in advance.
  • the mixing amount of the shape anisotropic member 110 was 10 wt% with respect to the liquid crystal.
  • plastic beads plastic beads (trade name: Micropearl) manufactured by Sekisui Chemical Co., Ltd. were used, and the average particle size was 10 ⁇ m.
  • the mixing amount of the plastic beads was 0.2 wt% with respect to the liquid crystal.
  • the light modulation layer 103 was formed by bonding the first substrate 102a and the second substrate 102b in the air.
  • the thickness of the light modulation layer 103 was 10 ⁇ m.
  • the pair of electrodes 105a and 105b was made of ITO, the electrode width was 10 ⁇ m, the electrode interval (space) was 10 ⁇ m, and the thickness was 100 nm.
  • the counter electrode 106 is made of ITO and has a thickness of 100 nm.
  • an alignment film (trade name: SE-4811, surface free energy: 35.0) manufactured by Nissan Chemical Industries, Ltd. was used, and the thickness thereof was 100 nm.
  • the light modulation device 101 is completed.
  • the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110, and the dispersibility of the shape anisotropic member 110 cannot be improved.
  • FIG. 12 is a photograph showing the observation results of the light transmission state of the light modulation devices of Examples 1, 2, and 9.
  • FIG. 13 is a photograph showing an observation result of a light transmission state of the light modulation device of Comparative Example 1. 12 and 13 show the state when no voltage is applied.
  • the transmission axis (azimuth: 90 °) of the first polarizing plate 15a (115a) and the second polarizing plate 15b As an observation method of the light transmission state, as described with reference to FIGS. 4 and 10, the transmission axis (azimuth: 90 °) of the first polarizing plate 15a (115a) and the second polarizing plate 15b.
  • the transmission axis of the second polarizing plate 15b is the transmission axis of the first polarizing plate 15a (115a).
  • a method of rotating from ⁇ 15 ° to + 15 ° and observing from the side opposite to the light modulation device of the second polarizing plate 15b (115b) was adopted.
  • “ ⁇ 15 °”, “0 °”, and “+ 15 °” in FIGS. 12 and 13 indicate the rotation angle of the transmission axis of the second polarizing plate 15b (115b).
  • “Bright” in FIG. 12 indicates a state in which the light transmittance is increased with respect to the crossed Nicol state (0 °), and “Dark” indicates that the light transmittance is decreased with respect to the crossed Nicol state (0 °). Indicates the state.
  • the amount of light leakage near the surface of the shape anisotropic member 10 that is, the light transmittance was changed, and the light transmittance near the surface of the shape anisotropic member 10 was different from the light transmittance in other regions. Furthermore, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction (from 0 ° to + 15 °) of the second polarizing plate 15b, and the negative rotation direction (from 0 °).
  • the amount of light leakage near the surface of the shape anisotropic member 110 that is, The light transmittance did not change.
  • FIG. 14 is a photograph showing the results of switching operation evaluation for the light modulation devices of Examples 1, 2, and 9.
  • FIG. 15 is a photograph showing switching operation evaluation results for the optical modulation device of Comparative Example 1.
  • the applied voltage was an AC voltage having a Vpp of 10 V and a period of 33.4 msec, and was applied to the electrode 5b (105b).
  • the light modulating devices of Examples 1, 2, and 9 are comparative examples 1 in spite of the same amount of shape anisotropic member being dispersed in the liquid crystal. Compared with the light modulation device, the dispersibility of the shape anisotropic member 10 was good. Therefore, in the light modulation devices of Examples 1, 2, and 9, the shape anisotropic member 10 was uniformly switched by voltage application, and a good light transmission state and light reflection state could be realized. The dispersibility of the shape anisotropic member 10 was improved in the order of Example 9, Example 1, and Example 2, and was particularly excellent in the light modulation device of Example 2. On the other hand, as shown in FIG.
  • the liquid crystal molecules in the liquid crystal are aligned perpendicular to the main surfaces of the first substrate and the second substrate in a region other than the vicinity of the surface, and the transmission axis of the first polarizing plate, and
  • the transmission axis of the second polarizing plate is attached to crossed Nicols and the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the first polarizing plate, the clockwise direction is positive or counterclockwise.
  • the shape anisotropic member has a first shape in which the light transmittance near the surface increases in the positive rotation direction and the light transmittance near the surface decreases in the negative rotation direction.
  • the shape anisotropic member preferably includes at least one of the first shape anisotropic member and the second shape anisotropic member. From the viewpoint of further improving the properties, it is more preferable that both the first shape anisotropic member and the second shape anisotropic member are included.
  • the shape anisotropic member is aligned perpendicular to the main surfaces of the first substrate and the second substrate, and the liquid crystal molecules are aligned perpendicular to the surface vicinity of the shape anisotropic member. You may do. Thereby, the dispersibility of the shape anisotropic member can be further improved.
  • the shape anisotropic member may have a polymer layer on the outer surface.
  • the liquid crystal molecules can be suitably ordered in the vicinity of the surface of the shape anisotropic member.
  • the polymer layer may include a first polymer layer and a second polymer layer that surface-modifies the first polymer layer.
  • the first polymer layer does not leave the shape anisotropic member
  • the polymer forming the second polymer layer is a polymer that forms the first polymer layer. Since the second polymer layer is not detached from the first polymer layer by polymerization, the shape anisotropic member can be effectively used.
  • the shape anisotropic member may be a metal flake.
  • the light reflection state can be suitably realized by utilizing the effect of reflecting light by the shape anisotropic member.
  • the first polymer layer is formed by polymerizing a monomer having an ethylenically unsaturated group, and has a monomer having two or more ethylenically unsaturated groups as a constituent component.
  • the second polymer layer containing at least 5% by weight is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms. X represents a halogen atom or an alkoxy group having 1 to 4 carbon atoms. It may be formed from an organosilane compound represented by. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
  • the first polymer layer is formed by polymerizing a monomer having an ethylenically unsaturated group, and has a monomer having two or more ethylenically unsaturated groups as a constituent component. comprises at least 5 wt%
  • the second polymer layer has the general formula R1SiX 3 (R1 is .X which represents a linear alkyl group having 1 to 21 carbon atoms, a chlorine atom, odor atom, a methoxy group, or , Which represents an ethoxy group).
  • the monomer having two or more ethylenically unsaturated groups is Y-methylolalkyl Z (meth) acrylate (Y and Z are integers satisfying Y ⁇ Z ⁇ 2), polyoxyalkylene glycol diester. It may be at least one monomer selected from the group consisting of (meth) acrylate, triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, and diallylacrylamide. Thereby, said 1st polymer layer can be utilized more effectively.
  • the first polymer layer has a first functional group
  • the second polymer layer has a long-chain alkyl group and a second functional group capable of reacting with the first functional group. You may have.
  • the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
  • the first functional group and the second functional group may form a covalent bond. Thereby, said 1st polymer layer and said 2nd polymer layer can be utilized more effectively.
  • the long chain alkyl group may be bonded to a graft polymer chain graft-polymerized on the surface of the first polymer layer.
  • the long chain alkyl group may have 6 or more carbon atoms. Thereby, said 1st polymer layer and said 2nd polymer layer can be utilized more effectively.
  • the first polymer layer has at least one of a functional group capable of radical chain transfer and an active group having radical polymerization initiating ability
  • the second polymer layer has a long-chain alkyl group. It may have a graft polymer chain.
  • the second polymer layer may be an aluminum alkoxide polycondensate that forms an aluminosilicate bond, an aluminotitanate bond, or an aluminosirconate bond with the first polymer layer.
  • the first polymer layer may be formed from a plastic material.
  • the first polymer layer is formed from silica
  • the second polymer layer is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms.
  • X is a halogen atom.
  • It may be formed from an organic silane compound represented by the following: an atom or an alkoxy group having 1 to 4 carbon atoms.
  • the first polymer layer is formed from silica
  • the second polymer layer is represented by the general formula R2SiX 3 (R2 represents a group having a dipole moment of 1 to 5 Debye.
  • X represents And a halogen atom or an alkoxy group having 1 to 4 carbon atoms).
  • the first polymer layer is formed from silica
  • the second polymer layer is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms.
  • X is a halogen atom.
  • X is a halogen atom or It may be formed from a mixture with an organic silane compound represented by (C 1 -C 4 alkoxy group).
  • the polymer layer includes at least one of an ethylene glycol polymer having a weight average molecular weight of 10,000 or more and 1,000,000 or less and a propylene glycol polymer having a weight average molecular weight of 10,000 or more and 1,000,000 or less. There may be. Thereby, since the alignment regulating force for the liquid crystal molecules is weakened, the liquid crystal molecules can be aligned perpendicular to the vicinity of the surface of the shape anisotropic member, preventing aggregation of the shape anisotropic member, The dispersibility can be improved.
  • the polymer layer may contain a nonylphenol ethylene oxide adduct.
  • the abundance of the nonylphenol ethylene oxide adduct may be 2% by weight or more and 80% by weight or less, assuming that the amount present on the entire surface of the shape anisotropic member is 100% by weight.
  • the polymer layer includes a crosslinkable monomer having two or more ethylenically unsaturated groups, at least one of a fluorine-based monomer and a monomer having a glycidyl group, and a monomer having ethylene glycol. It may be formed from a copolymer.
  • the crosslinkable monomer having two or more ethylenically unsaturated groups is 20 to 96% by weight based on 100% by weight of the polymer layer, and at least one of the fluorine monomer and the monomer having a glycidyl group.
  • One may be 2 to 78% by weight
  • the monomer having ethylene glycol may be 2 to 78% by weight.
  • the polymer layer may have a glycidyl group.
  • the surface area occupied by the component containing the glycidyl group may be 10% or more and 80% or less with respect to the total surface area of the shape anisotropic member.
  • the manufacturing method of the light modulation device may include a step of coating the outer surface of the shape anisotropic member with a polymer layer before the step (1).
  • the display device has a light source on the back side of the light modulation device, a reflective display mode in which display is performed by reflecting external light by the shape anisotropic member, and light emitted from the light source is transmitted and displayed.
  • the transmissive display mode for performing the switching may be switchable. Thereby, a display device in a transflective display mode (a combination of the reflective display mode and the transmissive display mode) can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides an optical modulation device having improved dispersion of shape-anisotropic members. This optical modulation device is provided, in order from the back surface side to the viewing surface side, with a first substrate, an optical modulation layer, and a second substrate, the optical modulation layer including shape-anisotropic members dispersed within liquid crystals. A first polarization plate is attached to the back surface side of the optical modulation device, and a second polarization plate is attached to the viewing surface side of the optical modulation device. When the transmission axis of the second polarization plate is rotated with respect to the transmission axis of the first polarization plate, the optical transmittance near the surfaces of the shape-anisotropic members changes, and the optical transmittance near the surfaces differs from the optical transmittance in areas other than those near the surfaces.

Description

光変調装置、光変調装置の製造方法、及び、表示装置LIGHT MODULATION DEVICE, LIGHT MODULATION DEVICE MANUFACTURING METHOD, AND DISPLAY DEVICE
本発明は、光変調装置、光変調装置の製造方法、及び、表示装置に関する。より詳しくは、液晶中に分散させた形状異方性部材の向きを制御することによって光変調を行う光変調装置、上記光変調装置の製造方法、及び、上記光変調装置を備える表示装置に関するものである。 The present invention relates to a light modulation device, a method for manufacturing the light modulation device, and a display device. More particularly, the present invention relates to a light modulation device that performs light modulation by controlling the orientation of a shape anisotropic member dispersed in liquid crystal, a method for manufacturing the light modulation device, and a display device including the light modulation device. It is.
光変調装置としては、一対の偏光板を用いる方式の液晶パネルがよく知られている。この方式では、液晶パネルへの入射光を一方の偏光板によって偏光に変換し、液晶層を透過した偏光を他方の偏光板に入射させることによって、液晶パネルへの入射光の透過率を制御することができる。液晶層は、印加される電圧の大きさに応じて液晶層中の液晶分子の配向が変化するため、偏光状態の制御に用いることができる。この方式の液晶パネルでは、入射光が液晶パネルを透過するまでの間に、その半分以上が偏光板で吸収されてしまうため、光の利用効率を向上させる上で限界があった。 As a light modulator, a liquid crystal panel using a pair of polarizing plates is well known. In this method, incident light to the liquid crystal panel is converted into polarized light by one polarizing plate, and polarized light that has passed through the liquid crystal layer is incident on the other polarizing plate, thereby controlling the transmittance of incident light to the liquid crystal panel. be able to. The liquid crystal layer can be used for controlling the polarization state because the orientation of the liquid crystal molecules in the liquid crystal layer changes according to the magnitude of the applied voltage. In this type of liquid crystal panel, more than half of the incident light is absorbed by the polarizing plate before the incident light passes through the liquid crystal panel, so there is a limit in improving the light utilization efficiency.
そこで、偏光板を必要としない光変調装置が提案されている(例えば、特許文献1及び2参照)。特許文献1には、液体ホスト中に懸濁された電気-光学感受性フレークの系を含み、印加電圧の変化によってその光学特性を選択的に変化させるための光学装置が開示されている。特許文献2には、形状異方性部材を含む光変調層を備えた光変調パネル又は表示パネルが開示されている。このように、光変調層内の形状異方性部材を電界に応じて回転させて、光変調層の光学特性を選択的に変化させる構成が提案されている。 Therefore, an optical modulation device that does not require a polarizing plate has been proposed (see, for example, Patent Documents 1 and 2). Patent Document 1 discloses an optical device that includes an electro-optically sensitive flake system suspended in a liquid host, and selectively changes its optical characteristics by changing the applied voltage. Patent Document 2 discloses a light modulation panel or display panel including a light modulation layer including a shape anisotropic member. Thus, a configuration has been proposed in which the shape anisotropic member in the light modulation layer is rotated according to the electric field to selectively change the optical characteristics of the light modulation layer.
一方、液晶パネルの液晶層の厚みを制御するため、プラスチックスペーサーが一般的に用いられている。しかしながら、このような構成においては、プラスチックスペーサー近傍で液晶分子が異常配向することによって光抜けが生じ、液晶パネルのコントラストが低下してしまうことがあった。また、プラスチックスペーサー同士が凝集してしまうことがあった。このため、プラスチックスペーサーに表面修飾を行うことで、プラスチックスペーサー近傍の液晶分子の配向状態を制御する方法が提案されている(例えば、特許文献3~5参照)。 On the other hand, plastic spacers are generally used to control the thickness of the liquid crystal layer of the liquid crystal panel. However, in such a configuration, liquid crystal molecules are abnormally aligned in the vicinity of the plastic spacer, thereby causing light leakage and reducing the contrast of the liquid crystal panel. Moreover, the plastic spacers sometimes aggregated. For this reason, a method of controlling the alignment state of the liquid crystal molecules in the vicinity of the plastic spacer by modifying the surface of the plastic spacer has been proposed (see, for example, Patent Documents 3 to 5).
特表2003-533736号公報Special table 2003-533736 gazette 国際公開第2013/141051号International Publication No. 2013/141051 特開平6-11719号公報JP-A-6-11719 特開平9-244034号公報Japanese Patent Laid-Open No. 9-244034 特開平8-262453号公報JP-A-8-262453
しかしながら、光変調層として液晶中に形状異方性部材を分散させたものを用いた場合、形状異方性部材の液晶中への分散性が悪く、凝集してしまうことがあった。このため、形状異方性部材が顕著に凝集する場合は、電圧を印加しても形状異方性部材が所望の動作をせず、その動作性能が低下してしまうことがあった。光変調装置が表示装置に適用される場合、形状異方性部材の凝集は、光透過率(透過表示モードの表示装置の場合)、光反射率(反射表示モードの表示装置の場合)、コントラスト、応答速度等の表示性能を低下させるものであった。このような課題に対しては、解消する手段が見出されていなかった。 However, when a light modulation layer in which a shape anisotropy member is dispersed in liquid crystal is used, the dispersibility of the shape anisotropy member in the liquid crystal may be poor and may aggregate. For this reason, when a shape anisotropic member aggregates notably, even if a voltage is applied, a shape anisotropic member does not perform a desired operation | movement, The operation performance may fall. When the light modulation device is applied to a display device, the aggregation of the shape anisotropic member is caused by light transmittance (in the case of a display device in transmission display mode), light reflectance (in the case of a display device in reflection display mode), and contrast. The display performance such as the response speed is lowered. No means for solving such a problem has been found.
本発明は、上記現状に鑑みてなされたものであり、形状異方性部材の分散性が向上した光変調装置、上記光変調装置の製造方法、及び、上記光変調装置を備える表示装置を提供することを目的とするものである。 The present invention has been made in view of the above situation, and provides a light modulation device with improved dispersibility of a shape anisotropic member, a method for manufacturing the light modulation device, and a display device including the light modulation device. It is intended to do.
本発明者らは、光変調装置における形状異方性部材の分散性の向上について種々検討したところ、液晶分子の配向状態の変化を利用して形状異方性部材の配向を制御する光変調装置では、形状異方性部材の表面近傍の液晶分子の配向状態を制御することが重要であることに着目した。そこで、本発明者らは、更に検討したところ、液晶と形状異方性部材との組み合わせとして、光変調装置の背面側及び観察面側に偏光板を取り付け、観察面側の偏光板の透過軸を背面側の偏光板の透過軸に対して回転させたとき、形状異方性部材の表面近傍の光透過率が変化し、かつ、その表面近傍の光透過率と表面近傍以外の領域の光透過率とが異なる材料の組み合わせを用いることを見出した。そして、このような構成とすれば、液晶分子が形状異方性部材の表面近傍に対して秩序だって配向し、かつ、形状異方性部材の表面近傍に対する液晶分子の配向状態と、形状異方性部材の表面近傍以外の領域での液晶分子の配向状態とが異なるため、形状異方性部材同士が適度な距離を保ち、形状異方性部材の分散性が向上した光変調装置を実現することができることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventors of the present invention have made various studies on improving the dispersibility of the shape anisotropic member in the light modulation device. As a result, the light modulation device controls the orientation of the shape anisotropic member by utilizing the change in the alignment state of the liquid crystal molecules. Then, it was noted that it is important to control the alignment state of the liquid crystal molecules in the vicinity of the surface of the shape anisotropic member. Therefore, the present inventors further examined that, as a combination of a liquid crystal and a shape anisotropic member, a polarizing plate was attached to the back side and the observation surface side of the light modulation device, and the transmission axis of the polarizing plate on the observation surface side was Is rotated with respect to the transmission axis of the polarizing plate on the back side, the light transmittance near the surface of the shape anisotropic member changes, and the light transmittance near the surface and the light in the region other than near the surface It has been found that a combination of materials having different transmittances is used. With such a configuration, the liquid crystal molecules are ordered with respect to the vicinity of the surface of the shape anisotropic member, and the alignment state of the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member Since the alignment state of the liquid crystal molecules in the region other than the vicinity of the surface of the conductive member is different, the shape anisotropic member is kept at an appropriate distance, and the light modulation device with improved dispersibility of the shape anisotropic member is realized. I found that I can do it. Thus, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
すなわち、本発明の一態様は、背面側から観察面側に向かって順に、第一の基板、光変調層、及び、第二の基板を備える光変調装置であって、上記光変調層は、液晶中に形状異方性部材が分散されたものであり、上記光変調装置の背面側に第一の偏光板を取り付け、上記光変調装置の観察面側に第二の偏光板を取り付け、上記第二の偏光板の透過軸を上記第一の偏光板の透過軸に対して回転させたとき、上記形状異方性部材の表面近傍の光透過率が変化し、かつ、上記表面近傍の光透過率と上記表面近傍以外の領域の光透過率とが異なる光変調装置であってもよい。 That is, one embodiment of the present invention is a light modulation device including a first substrate, a light modulation layer, and a second substrate in order from the back side to the observation surface side, and the light modulation layer includes: The shape anisotropic member is dispersed in the liquid crystal, the first polarizing plate is attached to the back side of the light modulation device, the second polarizing plate is attached to the observation surface side of the light modulation device, and When the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the first polarizing plate, the light transmittance in the vicinity of the surface of the shape anisotropic member changes, and the light in the vicinity of the surface The light modulation device may have different transmittance and light transmittance in a region other than the vicinity of the surface.
本発明の別の一態様は、上記光変調装置の製造方法であって、上記形状異方性部材を上記液晶中に分散させた混合物を作製する工程(1)、及び、上記第一の基板と上記第二の基板との間に上記混合物を配置して、上記光変調層を形成する工程(2)を含む光変調装置の製造方法であってもよい。 Another aspect of the present invention is a method of manufacturing the light modulation device, the step (1) of producing a mixture in which the shape anisotropic member is dispersed in the liquid crystal, and the first substrate. A method of manufacturing a light modulation device including the step (2) of forming the light modulation layer by disposing the mixture between the first substrate and the second substrate.
本発明の更に別の一態様は、上記光変調装置を備える表示装置であってもよい。 Still another embodiment of the present invention may be a display device including the light modulation device.
本発明によれば、形状異方性部材の分散性が向上した光変調装置、上記光変調装置の製造方法、及び、上記光変調装置を備える表示装置を提供することができる。また、本発明の表示装置は、上記光変調装置を備えるため、形状異方性部材の凝集に起因する、光透過率(透過表示モードの表示装置の場合)、光反射率(反射表示モードの表示装置の場合)、コントラスト、応答速度等の表示性能の低下を防止することができる。 ADVANTAGE OF THE INVENTION According to this invention, the light modulation apparatus with which the dispersibility of the shape anisotropic member improved, the manufacturing method of the said light modulation apparatus, and a display apparatus provided with the said light modulation apparatus can be provided. In addition, since the display device of the present invention includes the light modulation device, the light transmittance (in the case of a display device in a transmissive display mode) and the light reflectance (in the reflective display mode) caused by aggregation of the shape anisotropic members. In the case of a display device), it is possible to prevent a decrease in display performance such as contrast and response speed.
実施形態1の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。FIG. 2 is a schematic cross-sectional view showing the light modulation device of Embodiment 1, wherein (a) shows a state when no voltage is applied, (b) shows a state when a voltage is applied (longitudinal electric field on), and (c) shows a voltage. The state at the time of application (lateral electric field ON) is shown. 実施形態1の光変調装置に配置された電極構造を示す平面模式図である。3 is a schematic plan view illustrating an electrode structure disposed in the light modulation device of Embodiment 1. FIG. 形状異方性部材の好適な構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the suitable structure of a shape anisotropic member. 実施形態1の光変調装置に対して、光透過率の観測を行う状態を示す断面模式図である。FIG. 3 is a schematic cross-sectional view illustrating a state where light transmittance is observed with respect to the light modulation device according to the first embodiment. 実施形態1の光変調装置における、液晶分子及び形状異方性部材の配向状態の一例を説明する模式図である。3 is a schematic diagram illustrating an example of an alignment state of liquid crystal molecules and a shape anisotropic member in the light modulation device of Embodiment 1. FIG. 実施形態2の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。FIG. 5 is a schematic cross-sectional view showing the light modulation device of Embodiment 2, wherein (a) shows a state when no voltage is applied, (b) shows a state when a voltage is applied (longitudinal electric field on), and (c) shows a voltage. The state at the time of application (lateral electric field ON) is shown. 実施形態2の光変調装置における、液晶分子及び形状異方性部材の配向状態の一例を説明する模式図である。6 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of Embodiment 2. FIG. 比較形態1の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。It is a cross-sectional schematic diagram which shows the optical modulation apparatus of the comparative form 1, (a) shows the state at the time of no voltage application, (b) shows the state at the time of voltage application (longitudinal electric field ON), (c) is voltage The state at the time of application (lateral electric field ON) is shown. 比較形態1の光変調装置に配置された電極構造を示す平面模式図である。It is a plane schematic diagram which shows the electrode structure arrange | positioned at the light modulation apparatus of the comparative form 1. 比較形態1の光変調装置に対して、光透過率の観測を行う状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state which observes the light transmittance with respect to the light modulation apparatus of the comparative form 1. FIG. 比較形態1の光変調装置における、液晶分子及び形状異方性部材の配向状態を説明する模式図である。It is a schematic diagram explaining the orientation state of a liquid crystal molecule and a shape anisotropic member in the light modulation device of comparative form 1. 実施例1、2、9の光変調装置の光透過状態の観察結果を示す写真である。It is a photograph which shows the observation result of the light transmission state of the light modulation apparatus of Examples 1, 2, and 9. 比較例1の光変調装置の光透過状態の観察結果を示す写真である。6 is a photograph showing an observation result of a light transmission state of the light modulation device of Comparative Example 1; 実施例1、2、9の光変調装置に対するスイッチング動作評価結果を示す写真である。It is a photograph which shows the switching operation | movement evaluation result with respect to the light modulation apparatus of Example 1, 2, 9. 比較例1の光変調装置に対するスイッチング動作評価結果を示す写真である。6 is a photograph showing a switching operation evaluation result for the light modulation device of Comparative Example 1;
以下に実施形態(実施例)を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態(実施例)のみに限定されるものではない。また、各実施形態(各実施例)の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。 Embodiments (Examples) are listed below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments (Examples). The configurations of the respective embodiments (each example) may be appropriately combined or changed within a range not departing from the gist of the present invention.
[実施形態1]
実施形態1は、光変調層中の液晶分子が形状異方性部材の表面近傍に対して垂直に配向する場合である。
[Embodiment 1]
Embodiment 1 is a case where the liquid crystal molecules in the light modulation layer are aligned perpendicular to the vicinity of the surface of the shape anisotropic member.
(1)光変調装置の構造
実施形態1の光変調装置の構造について、以下に説明する。図1は、実施形態1の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。図2は、実施形態1の光変調装置に配置された電極構造を示す平面模式図である。図1に示すように、光変調装置1aは、背面側から観察面側に向かって順に、第一の基板2a、光変調層3、及び、第二の基板2bを備えている。第一の基板2a、及び、第二の基板2bは、表示領域を囲むように配置されたシール材(図示せず)を介して貼り合わされている。本明細書中、「観察面側」は、図1中では、光変調装置1aの上側を示す。「背面側」は、図1中では、光変調装置1aの下側を示す。これらは、他の断面図においても同様である。
(1) Structure of Light Modulation Device The structure of the light modulation device of Embodiment 1 will be described below. 1A and 1B are schematic cross-sectional views illustrating the light modulation device of the first embodiment, where FIG. 1A illustrates a state when no voltage is applied, FIG. 1B illustrates a state when a voltage is applied (longitudinal electric field ON), c) shows a state when a voltage is applied (lateral electric field is on). FIG. 2 is a schematic plan view illustrating an electrode structure disposed in the light modulation device according to the first embodiment. As shown in FIG. 1, the light modulation device 1a includes a first substrate 2a, a light modulation layer 3, and a second substrate 2b in order from the back side to the observation surface side. The 1st board | substrate 2a and the 2nd board | substrate 2b are bonded together through the sealing material (not shown) arrange | positioned so that a display area may be enclosed. In this specification, “observation surface side” indicates the upper side of the light modulation device 1a in FIG. “Back side” in FIG. 1 indicates the lower side of the light modulation device 1a. The same applies to other sectional views.
第一の基板2aは、背面側から観察面側に向かって順に、支持基板4a、一対の電極5a、5b、及び、垂直配向膜7aを有している。 The first substrate 2a includes a support substrate 4a, a pair of electrodes 5a and 5b, and a vertical alignment film 7a in order from the back surface side to the observation surface side.
支持基板4aとしては、例えば、ガラス基板、プラスチック基板等の透明基板を用いることができる。透明基板として、折り曲げ可能なプラスチック基板を用いる場合、フレキシブルな光変調装置を実現することができる。 As the support substrate 4a, for example, a transparent substrate such as a glass substrate or a plastic substrate can be used. When a foldable plastic substrate is used as the transparent substrate, a flexible light modulation device can be realized.
一対の電極5a、5bは、面内スイッチング(IPS:In-Plane Switching)型の電極構造を有し、具体的には、互いの櫛歯が嵌合し合う一対の櫛歯電極である。図2に示すように、電極5a、5bは、幹部、及び、その幹部から延出した複数本の平行な枝部(櫛歯)を有するものであり、互いの枝部が一定の間隔(スペース)で交互に配置されている。図1の(c)に示すように、交流電源(AC)で電極5aと電極5bとの間に電圧を印加することによって、光変調層3に対して横電界(第一の基板2aに対して平行な電界)を形成することができる。電極5a、5bは、導電材料で形成されており、例えば、インジウムスズ酸化物(ITO:Indium Tin Oxide)、アルミニウム等の金属材料で形成することができる。実施形態1の光変調装置が透過表示モードの表示装置に適用される場合、電極5a、5bは、ITO等の透明導電材料で形成されることが好ましい。一方、実施形態1の光変調装置が反射表示モードの表示装置に適用される場合、電極5a、5bは、透明導電材料で形成されなくてもよい。 The pair of electrodes 5a and 5b has an in-plane switching (IPS) type electrode structure. Specifically, the pair of electrodes 5a and 5b are a pair of comb-teeth electrodes in which mutual comb teeth are fitted. As shown in FIG. 2, the electrodes 5a and 5b have a trunk portion and a plurality of parallel branch portions (comb teeth) extending from the trunk portion. ) Are alternately arranged. As shown in FIG. 1C, by applying a voltage between the electrode 5a and the electrode 5b with an AC power supply (AC), a lateral electric field (with respect to the first substrate 2a) is applied to the light modulation layer 3. Parallel electric fields). The electrodes 5a and 5b are made of a conductive material, and can be made of a metal material such as indium tin oxide (ITO) or aluminum. When the light modulation device of Embodiment 1 is applied to a display device in a transmissive display mode, the electrodes 5a and 5b are preferably formed of a transparent conductive material such as ITO. On the other hand, when the light modulation device of Embodiment 1 is applied to a display device in the reflective display mode, the electrodes 5a and 5b may not be formed of a transparent conductive material.
垂直配向膜7aは、少なくとも表示領域の全体を覆うように配置されている。すなわち、光変調層3中の液晶分子9の初期配向は、第一の基板2aに対して垂直な方向に設定されている。垂直配向膜7aとしては、その表面に対して、液晶分子9を実質的に垂直に配向させるものであれば特に限定されず、例えば、公知の垂直配向性を示す、ポリイミド又はポリアミック酸による膜を用いることができる。垂直配向膜7aには、ラビング処理が施されていてもよく、光配向性の垂直配向膜であれば、偏光(例えば、偏光紫外線)を照射する光配向処理が施されていてもよい。 The vertical alignment film 7a is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 9 in the light modulation layer 3 is set in a direction perpendicular to the first substrate 2a. The vertical alignment film 7a is not particularly limited as long as the liquid crystal molecules 9 are aligned substantially vertically with respect to the surface thereof. For example, a film made of polyimide or polyamic acid showing a known vertical alignment property is used. Can be used. The vertical alignment film 7a may be subjected to a rubbing process, and may be subjected to a photo-alignment process for irradiating polarized light (for example, polarized ultraviolet rays) as long as it is a photo-alignable vertical alignment film.
第二の基板2bは、観察面側から背面側に向かって順に、支持基板4b、対向電極6、絶縁膜8、及び、垂直配向膜7bを有している。 The second substrate 2b includes a support substrate 4b, a counter electrode 6, an insulating film 8, and a vertical alignment film 7b in order from the observation surface side to the back surface side.
支持基板4bとしては、第一の基板2aの支持基板4aと同様のものを用いることができる。 As the support substrate 4b, the same substrate as the support substrate 4a of the first substrate 2a can be used.
対向電極6は、一対の電極5a、5bと対向して、表示領域の全体を覆うように平面状に配置されている。図1の(b)に示すように、交流電源(AC)で電極5a、5bと対向電極6との間に電圧を印加することによって、光変調層3に対して縦電界(第一の基板2a、及び、第二の基板2bに対して垂直な電界)を形成することができる。対向電極6は、導電材料で形成されており、例えば、ITO、アルミニウム等の金属材料で形成することができる。実施形態1の光変調装置が透過表示モードの表示装置に適用される場合、対向電極6は、ITO等の透明導電材料で形成されることが好ましい。同様に、実施形態1の光変調装置が反射表示モードの表示装置に適用される場合も、対向電極6は、ITO等の透明導電材料で形成されることが好ましい。 The counter electrode 6 is disposed in a plane so as to face the pair of electrodes 5a and 5b and cover the entire display area. As shown in FIG. 1B, a vertical electric field (first substrate) is applied to the light modulation layer 3 by applying a voltage between the electrodes 5a, 5b and the counter electrode 6 with an alternating current power supply (AC). 2a and the electric field perpendicular to the second substrate 2b). The counter electrode 6 is made of a conductive material, and can be made of a metal material such as ITO or aluminum. When the light modulation device of Embodiment 1 is applied to a display device in a transmissive display mode, the counter electrode 6 is preferably formed of a transparent conductive material such as ITO. Similarly, when the light modulation device of Embodiment 1 is applied to a display device in the reflective display mode, the counter electrode 6 is preferably formed of a transparent conductive material such as ITO.
絶縁膜8は、対向電極6とともに配置されることによって、光変調層3中に横電界を効果的に形成することができる。 By disposing the insulating film 8 together with the counter electrode 6, a lateral electric field can be effectively formed in the light modulation layer 3.
垂直配向膜7bは、第一の基板2aの垂直配向膜7aと同様にして配置される。 The vertical alignment film 7b is disposed in the same manner as the vertical alignment film 7a of the first substrate 2a.
第一の基板2a、及び、第二の基板2bの少なくとも一方は、アクティブマトリックス基板であってもよい。アクティブマトリックス基板は、マトリックス状に配置された複数の画素に配置されたスイッチング素子と、各種配線とを有するものである。スイッチング素子としては、例えば、薄膜トランジスタ(TFT:Thin Film Transistor)素子が用いられる。各種配線としては、例えば、TFTに走査信号を供給するゲートバスライン、TFTに表示信号を供給するソースバスライン、共通配線等が挙げられる。第一の基板2aがアクティブマトリックス基板である場合、一対の電極5a、5bは画素毎に配置され、そのうちの一方は、スイッチング素子を介してソースバスラインに電気的に接続され、他方は共通配線に電気的に接続される。第一の基板2a、及び、第二の基板2bの一方がアクティブマトリックス基板である場合、他方の基板がカラーフィルタ基板であってもよい。これにより、カラー表示を行うことができる。 At least one of the first substrate 2a and the second substrate 2b may be an active matrix substrate. The active matrix substrate has switching elements arranged in a plurality of pixels arranged in a matrix and various wirings. As the switching element, for example, a thin film transistor (TFT) element is used. Examples of the various wirings include a gate bus line that supplies a scanning signal to the TFT, a source bus line that supplies a display signal to the TFT, and a common wiring. When the first substrate 2a is an active matrix substrate, the pair of electrodes 5a and 5b are arranged for each pixel, one of which is electrically connected to the source bus line via the switching element, and the other is a common wiring. Is electrically connected. When one of the first substrate 2a and the second substrate 2b is an active matrix substrate, the other substrate may be a color filter substrate. Thereby, color display can be performed.
光変調層3は、液晶中に形状異方性部材10が分散されたものである。形状異方性部材10の分散媒として液晶を用いることによって、液晶分子9の配向状態の変化を利用して形状異方性部材10の配向を制御することができる。液晶分子9、及び、形状異方性部材10は、上記のような縦電界及び横電界に応じて、光変調層3中で向きを変える。このため、光変調層3は、入射光の透過率を制御することができる。 The light modulation layer 3 is obtained by dispersing the shape anisotropic member 10 in liquid crystal. By using liquid crystal as the dispersion medium of the shape anisotropic member 10, the orientation of the shape anisotropic member 10 can be controlled by utilizing the change in the alignment state of the liquid crystal molecules 9. The liquid crystal molecules 9 and the shape anisotropic member 10 change directions in the light modulation layer 3 in accordance with the vertical electric field and the horizontal electric field as described above. For this reason, the light modulation layer 3 can control the transmittance of incident light.
液晶分子9としては、正の誘電率異方性(Δε>0)を有するポジ型(p型)であっても、負の誘電率異方性(Δε<0)を有するネガ型(n型)であってもよい。電界強度に対して形状異方性部材10の動作性能を向上させる観点からは、液晶分子9はp型であることが好ましい。この場合、液晶分子9の誘電率異方性は、Δε>10であることが好ましく、Δε>20であることがより好ましい。 The liquid crystal molecule 9 may be a positive type (p type) having a positive dielectric anisotropy (Δε> 0), but a negative type (n type) having a negative dielectric anisotropy (Δε <0). ). From the viewpoint of improving the operation performance of the shape anisotropic member 10 with respect to the electric field strength, the liquid crystal molecules 9 are preferably p-type. In this case, the dielectric anisotropy of the liquid crystal molecules 9 is preferably Δε> 10, and more preferably Δε> 20.
形状異方性部材10は、その形状に異方性があればよく、第一の基板2a(第二の基板2b)の表面の法線方向から見たとき、第一の基板2a(第二の基板2b)への投影面積が、電圧印加に応じて連続的に変化する形状であればよい。また、形状異方性部材10の長軸が第一の基板2a(第二の基板2b)に対して平行に配向したときの投影面積は、垂直に配向したときの投影面積の2倍以上であることが好ましい。このような形状としては、例えば、薄片状(フレーク状)が好ましく、円盤状が特に好ましい。その他の例としては、円柱状、楕円球状等が挙げられる。形状異方性部材10の厚みは特に限定されないが、例えば、フレーク状である場合、その厚みは1μm以下であることが好ましく、0.1μm以下であることがより好ましい。形状異方性部材10の厚みが小さいほど、垂直に配向したときの第一の基板2a(第二の基板2b)への投影面積を小さくできるため、高い透過率や散乱の少ない黒表示を得ることができる。更に、形状異方性部材10は、光反射性の表面を有するものであることが好ましい。 The shape anisotropic member 10 only needs to have anisotropy in its shape, and when viewed from the normal direction of the surface of the first substrate 2a (second substrate 2b), the first substrate 2a (second The projected area on the substrate 2b) may be any shape that continuously changes in response to voltage application. Further, the projected area when the major axis of the shape anisotropic member 10 is oriented parallel to the first substrate 2a (second substrate 2b) is more than twice the projected area when oriented vertically. Preferably there is. As such a shape, for example, a flake shape (flakes) is preferable, and a disk shape is particularly preferable. Other examples include a cylindrical shape and an elliptical sphere. The thickness of the shape anisotropic member 10 is not particularly limited. For example, in the case of a flake shape, the thickness is preferably 1 μm or less, and more preferably 0.1 μm or less. The smaller the thickness of the shape anisotropic member 10, the smaller the projected area onto the first substrate 2a (second substrate 2b) when oriented vertically, so that a black display with high transmittance and less scattering is obtained. be able to. Furthermore, the shape anisotropic member 10 preferably has a light reflective surface.
実施形態1の光変調装置において、形状異方性部材10は、その表面近傍に対して液晶分子9が垂直に配向するものである。また、形状異方性部材10は、電圧無印加時に、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向している。すなわち、電圧無印加時において、形状異方性部材10の表面近傍に対する液晶分子9の配向方向と、形状異方性部材10の表面近傍以外の領域での液晶分子9の配向方向とは直交している。これにより、形状異方性部材10の分散性を更に向上させることができる。形状異方性部材10の表面近傍とは、形状異方性部材10の表面から1μm以内の範囲を示す。第一の基板2a、及び、第二の基板2bの主面とは、互いの対向する側の表面を示す。 In the light modulation device according to the first embodiment, the shape anisotropic member 10 has the liquid crystal molecules 9 aligned perpendicular to the vicinity of the surface thereof. The shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b when no voltage is applied. That is, when no voltage is applied, the alignment direction of the liquid crystal molecules 9 with respect to the vicinity of the surface of the shape anisotropic member 10 is orthogonal to the alignment direction of the liquid crystal molecules 9 in a region other than the vicinity of the surface of the shape anisotropic member 10. ing. Thereby, the dispersibility of the shape anisotropic member 10 can further be improved. The vicinity of the surface of the shape anisotropic member 10 indicates a range within 1 μm from the surface of the shape anisotropic member 10. The main surfaces of the first substrate 2a and the second substrate 2b indicate surfaces on the opposite sides.
表面近傍に対して液晶分子9が垂直に配向する形状異方性部材10としては、例えば、図3に示すような外表面に重合体層を有するものが好ましい。図3は、形状異方性部材の好適な構成を示す断面模式図である。図3に示すように、形状異方性部材10は、外表面に重合体層12を有するもの、すなわち、コア部11の外側に重合体層12が配置された構成であることが好ましい。このような重合体層12を形成する方法としては、例えば、上記特許文献3~5に開示された、プラスチックスペーサーに表面修飾を行う技術を利用することができる。形状異方性部材10のコア部11の材料としては、例えば、金属、半導体、誘電体、及び、それらの複合材料を用いることができる。 As the shape anisotropic member 10 in which the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface, for example, a member having a polymer layer on the outer surface as shown in FIG. 3 is preferable. FIG. 3 is a schematic cross-sectional view showing a preferred configuration of the shape anisotropic member. As shown in FIG. 3, it is preferable that the shape anisotropic member 10 has a polymer layer 12 on the outer surface, that is, a configuration in which the polymer layer 12 is disposed outside the core portion 11. As a method for forming such a polymer layer 12, for example, a technique for surface modification of a plastic spacer disclosed in Patent Documents 3 to 5 can be used. As a material of the core part 11 of the shape anisotropic member 10, for example, a metal, a semiconductor, a dielectric, and a composite material thereof can be used.
コア部11の材料として金属が用いられる場合、アルミニウムフレークが好適である。また、コア部11は、誘電体多層膜やコレステリック樹脂によって形成されたものであってもよく、着色されたものであってもよい。コア部11は、その材料(例えば、アルミニウム)が剥き出しの状態であっても、アクリル樹脂等の絶縁膜で被覆された状態であってもよい。 When a metal is used as the material of the core part 11, aluminum flakes are suitable. The core portion 11 may be formed of a dielectric multilayer film or cholesteric resin, or may be colored. The core part 11 may be in a state where the material (for example, aluminum) is exposed or covered with an insulating film such as an acrylic resin.
重合体層12としては、図3の(a)に示すように、コア部11を被覆するコーティング層13の単層から構成されるものであってもよいが、図3の(b)に示すように、コア部11を被覆するコーティング層13(第一の重合体層)と、コーティング層13を表面修飾する表面修飾層14(第二の重合体層)とで構成された2層構造を有するものであることがより好ましい。このような2層構造によれば、コーティング層13を形成する重合体同士はコア部11を取り囲んで重合しているため、コーティング層13がコア部11から離脱せず、更に、表面修飾層14を形成する重合体がコーティング層13を形成する重合体と重合する構造とすることも可能であるため、表面修飾層14がコーティング層13から離脱しない。重合体層12がこのような2層構造を有する場合、コーティング層13として、表面に表面修飾層14と結合しやすい反応基、例えば、シラノール基等を多量に有する重合体を選択し、表面修飾層14としてもシラノール基を有する重合体を選択し、これらのシラノール基同士を反応させて縮重合による共有結合を形成させることで、表面修飾層14がコーティング層13から離脱せず、形状異方性部材10の分散性を好適に向上させることができる。また、コア部11の材料が金属(例えば、アルミニウム)である場合、コーティング層13は、コア部11を介した導通を防止する、又は、誘電率を制御する目的で配置することができる。一方、表面修飾層14は、形状異方性部材10の分散性を向上させる目的で配置することができる。よって、コーティング層13、及び、表面修飾層14の材料としては、その目的に応じた材料を選択することができる。ただし、重合体層12の材料として、配向膜(例えば、垂直配向膜)が用いられる場合は、化学結合により形成されたものではないため、電圧印加/無印加のスイッチング動作時に離脱しやすく、好ましくない。 As shown in FIG. 3A, the polymer layer 12 may be composed of a single layer of a coating layer 13 that covers the core portion 11, but is shown in FIG. 3B. As described above, a two-layer structure composed of a coating layer 13 (first polymer layer) covering the core portion 11 and a surface modification layer 14 (second polymer layer) modifying the surface of the coating layer 13 is formed. It is more preferable to have it. According to such a two-layer structure, the polymers forming the coating layer 13 are polymerized by surrounding the core portion 11, so that the coating layer 13 does not leave the core portion 11, and the surface modification layer 14 It is also possible to have a structure in which the polymer that forms the polymer is polymerized with the polymer that forms the coating layer 13, so that the surface modification layer 14 does not leave the coating layer 13. When the polymer layer 12 has such a two-layer structure, a polymer having a large amount of reactive groups that easily bind to the surface modification layer 14 on the surface, such as silanol groups, is selected as the coating layer 13 to modify the surface. As the layer 14, a polymer having silanol groups is selected, and these silanol groups are reacted with each other to form a covalent bond by condensation polymerization, so that the surface modification layer 14 does not leave the coating layer 13 and is anisotropic in shape. The dispersibility of the adhesive member 10 can be preferably improved. Moreover, when the material of the core part 11 is a metal (for example, aluminum), the coating layer 13 can be arrange | positioned in order to prevent the conduction | electrical_connection through the core part 11, or to control a dielectric constant. On the other hand, the surface modification layer 14 can be disposed for the purpose of improving the dispersibility of the shape anisotropic member 10. Therefore, as the material of the coating layer 13 and the surface modification layer 14, materials can be selected according to the purpose. However, when an alignment film (for example, a vertical alignment film) is used as the material of the polymer layer 12, it is not formed by a chemical bond, so that it is easily detached during a voltage application / non-application switching operation. Absent.
形状異方性部材10の比重は、11g/cm以下であることが好ましく、3g/cm以下であることがより好ましく、液晶の比重(例えば、1g/cm以下)と同等であることが更に好ましい。形状異方性部材10の比重が液晶の比重よりも非常に大きい場合は、形状異方性部材10が光変調層3中で沈降してしまう懸念がある。 The specific gravity of the shape anisotropy member 10, it preferably at 11g / cm 3 or less, more preferably 3 g / cm 3 or less, which is equivalent to the liquid crystal specific gravity (e.g., 1 g / cm 3 or less) Is more preferable. When the specific gravity of the shape anisotropic member 10 is much larger than the specific gravity of the liquid crystal, there is a concern that the shape anisotropic member 10 will settle in the light modulation layer 3.
次に、実施形態1の光変調装置における光透過状態及び光反射状態について説明する。 Next, a light transmission state and a light reflection state in the light modulation device of the first embodiment will be described.
図1の(a)は、電極5a、5b、及び、対向電極6に電圧を印加しない状態を示したものである。なお、図1の(a)は、p型の液晶分子9を用いた場合について示されている。図1の(a)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して垂直に配向し、形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。液晶分子9が形状異方性部材10の表面近傍以外の領域で第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向するとは、形状異方性部材10の表面近傍以外の領域で、液晶分子9が第一の基板2a、及び、第二の基板2bの主面に対して実質的に垂直に配向すればよく、第一の基板2a、及び、第二の基板2bの主面に対する液晶分子9のチルト角が75°以上、90°以下であることを示す。形状異方性部材10は、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。このため、入射光は、光変調層3を直接透過するか、形状異方性部材10で反射した後に、入射側とは反対側に透過する。例えば、第一の基板2a側から光が入射する場合について、光の経路を図1の(a)中の矢印で示した。 FIG. 1A shows a state in which no voltage is applied to the electrodes 5a and 5b and the counter electrode 6. FIG. FIG. 1A shows the case where p-type liquid crystal molecules 9 are used. As shown in FIG. 1A, the liquid crystal molecules 9 are aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10, and the first liquid crystal molecules 9 are formed in regions other than the vicinity of the surface of the shape anisotropic member 10. The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface. The liquid crystal molecules 9 are aligned perpendicularly to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10. The liquid crystal molecules 9 may be aligned substantially perpendicularly to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity. The first substrate 2a and the second substrate 2b It indicates that the tilt angle of the liquid crystal molecules 9 with respect to the main surface of the substrate 2b is not less than 75 ° and not more than 90 °. The shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b. For this reason, incident light passes through the light modulation layer 3 directly or after being reflected by the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, when light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
図1の(b)は、電極5a、5bと対向電極6との間に電圧を印加した状態(縦電界オン)を示したものである。なお、図1の(b)は、p型の液晶分子9を用いた場合について示されている。図1の(b)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して垂直に配向し、形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。形状異方性部材10は、誘電泳動力、クーロン力、又は、電気エネルギー的な観点から説明される力、及び、液晶との界面エネルギーを極小にする力によって、その長軸が電気力線に対して平行になるように回転する。例えば、形状異方性部材10として、金属の薄片のような可視光反射性を有する材料を用いれば、形状異方性部材10の反射面が、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。このため、入射光は、光変調層3を直接透過するか、形状異方性部材10の反射面で反射した後に、入射側とは反対側に透過する。例えば、第一の基板2a側から光が入射する場合について、光の経路を図1の(b)中の矢印で示した。 FIG. 1B shows a state in which a voltage is applied between the electrodes 5a and 5b and the counter electrode 6 (longitudinal electric field on). FIG. 1B shows the case where p-type liquid crystal molecules 9 are used. As shown in FIG. 1B, the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, and the first liquid crystal molecules 9 are formed in regions other than the vicinity of the surface of the shape anisotropic member 10. The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface. The shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it. For example, if a material having visible light reflectivity such as a thin metal piece is used as the shape anisotropic member 10, the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented perpendicular to the major surface of 2b. For this reason, incident light is transmitted directly to the light modulation layer 3 or reflected by the reflecting surface of the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
以上のようにして、光透過状態を実現することができる。このような光透過状態において、例えば、光変調装置1aの背面側にバックライト等の光源を配置すれば、透過表示モードの表示装置を実現することができる。 As described above, a light transmission state can be realized. In such a light transmissive state, for example, if a light source such as a backlight is disposed on the back side of the light modulation device 1a, a display device in a transmissive display mode can be realized.
図1の(c)は、電極5aと電極5bとの間に電圧を印加した状態(横電界オン)を示したものである。なお、図1の(c)は、p型の液晶分子9を用いた場合について示されている。図1の(c)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して垂直に配向し、形状異方性部材10の表面近傍以外の領域の第一の基板2a付近で、第一の基板2aの主面に対して平行に配向する。液晶分子9が形状異方性部材10の表面近傍以外の領域の第一の基板2a付近で第一の基板2aの主面に対して平行に配向するとは、形状異方性部材10の表面近傍以外の領域の第一の基板2a付近で、液晶分子9が第一の基板2aの主面に対して実質的に平行に配向すればよく、第一の基板2aの主面に対する液晶分子9のチルト角が0°以上、25°以下であることを示す。この場合、液晶分子9は、第二の基板2b付近から、横電界強度の大きい第一の基板2a付近に向かって、第一の基板2aの主面に対して垂直な状態から、横電界強度の大きさに応じて平行な状態に倒れていくものであってもよい。形状異方性部材10は、誘電泳動力、クーロン力、又は、電気エネルギー的な観点から説明される力、及び、液晶との界面エネルギーを極小にする力によって、その長軸が電気力線に対して平行になるように回転する。例えば、形状異方性部材10として、金属の薄片のような可視光反射性を有する材料を用いれば、形状異方性部材10の反射面が、第一の基板2a、及び、第二の基板2bの主面に対して平行に配向する。このため、入射光は、形状異方性部材10の反射面で入射側へ反射される。例えば、第一の基板2a側から光が入射する場合について、光の経路を図1の(c)中の矢印で示した。以上のようにして、光反射状態を実現することができる。更に、形状異方性部材10が同一平面上に配向する場合、最も明るい(光の利用効率が最も高い)光反射状態が得られる。 FIG. 1C shows a state in which a voltage is applied between the electrodes 5a and 5b (lateral electric field on). FIG. 1C shows the case where p-type liquid crystal molecules 9 are used. As shown in FIG. 1C, the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10 and the first substrate in a region other than the vicinity of the surface of the shape anisotropic member 10. In the vicinity of 2a, it is oriented parallel to the main surface of the first substrate 2a. The liquid crystal molecules 9 are aligned in the vicinity of the first substrate 2a in the region other than the vicinity of the surface of the shape anisotropic member 10 in parallel with the main surface of the first substrate 2a. The liquid crystal molecules 9 may be aligned substantially parallel to the main surface of the first substrate 2a in the vicinity of the first substrate 2a in a region other than the region, and the liquid crystal molecules 9 of the first substrate 2a It indicates that the tilt angle is 0 ° or more and 25 ° or less. In this case, the liquid crystal molecules 9 move from the vicinity of the second substrate 2b toward the vicinity of the first substrate 2a where the lateral electric field strength is large, from the state perpendicular to the main surface of the first substrate 2a. It may fall down in a parallel state according to the size of the. The shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it. For example, if a material having visible light reflectivity such as a thin metal piece is used as the shape anisotropic member 10, the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented parallel to the main surface of 2b. For this reason, incident light is reflected to the incident side by the reflecting surface of the shape anisotropic member 10. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG. As described above, a light reflection state can be realized. Further, when the shape anisotropic member 10 is oriented on the same plane, the brightest (highest light utilization efficiency) light reflection state is obtained.
実施形態1の光変調装置が表示装置に適用される場合は、このような光透過状態及び光反射状態において、例えば、第一の基板2aの背面側に着色層を配置すれば、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向するときは、着色層の色が表示される。これに対して、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して平行に配向するときは、形状異方性部材10での反射色が表示される。例えば、着色層の色を黒色とし、形状異方性部材10を金属の薄片とすると、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向するときは、黒表示が得られる。これに対して、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して平行に配向するときは、金属の薄片での反射光による表示が得られる。更に、金属の薄片の平均径を、例えば20μm以下としたり、形状異方性部材10の表面を光散乱性にしたり、形状異方性部材10の輪郭を凹凸の激しい形状にすることで、形状異方性部材10での反射光は散乱され、白表示を得ることができる。また、第一の基板2aの背面側に正反射又は散乱反射する反射層を配置し、形状異方性部材10を着色されたものとすると、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向するときは、反射層での反射光の表示が得られる。これに対して、形状異方性部材10の反射面が第一の基板2a、及び、第二の基板2bの主面に対して平行に配向するときは、着色された形状異方性部材10の色の表示が得られる。光変調装置1aを携帯電話等の非表示面に配置することで、携帯電話のボディの色と、着色された形状異方性部材10の色とを切り換えて表示することもできる。また、印加電圧の大きさによって、光透過状態と光反射状態との間の状態の形状異方性部材10の傾きを利用して中間調表示を行うことができる。 When the light modulation device of Embodiment 1 is applied to a display device, in such a light transmission state and light reflection state, for example, if a colored layer is disposed on the back side of the first substrate 2a, the shape is anisotropic. When the reflective surface of the conductive member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b, the color of the colored layer is displayed. On the other hand, when the reflective surface of the shape anisotropic member 10 is oriented parallel to the main surfaces of the first substrate 2a and the second substrate 2b, the reflection by the shape anisotropic member 10 is performed. The color is displayed. For example, if the color of the colored layer is black and the shape anisotropic member 10 is a thin metal piece, the reflective surface of the shape anisotropic member 10 is the main surface of the first substrate 2a and the second substrate 2b. On the other hand, when it is oriented vertically, a black display is obtained. On the other hand, when the reflective surface of the shape anisotropic member 10 is oriented in parallel to the main surfaces of the first substrate 2a and the second substrate 2b, display by reflected light from a thin metal piece Is obtained. Furthermore, the average diameter of the metal flakes is, for example, 20 μm or less, the surface of the shape anisotropic member 10 is made light-scattering, or the contour of the shape anisotropic member 10 is formed into a shape with severe irregularities. The reflected light from the anisotropic member 10 is scattered, and white display can be obtained. In addition, when a reflective layer for specular reflection or scattering reflection is disposed on the back side of the first substrate 2a and the shape anisotropic member 10 is colored, the reflection surface of the shape anisotropic member 10 is the first. When oriented perpendicular to the main surfaces of the substrate 2a and the second substrate 2b, display of reflected light on the reflective layer is obtained. On the other hand, when the reflecting surface of the shape anisotropic member 10 is oriented parallel to the main surfaces of the first substrate 2a and the second substrate 2b, the colored shape anisotropic member 10 is colored. Is displayed. By disposing the light modulation device 1a on a non-display surface of a mobile phone or the like, the color of the body of the mobile phone and the color of the colored shape anisotropic member 10 can be switched and displayed. Further, halftone display can be performed using the inclination of the shape anisotropic member 10 in a state between the light transmission state and the light reflection state depending on the magnitude of the applied voltage.
実施形態1の光変調装置において、光変調層3に含まれる液晶及び形状異方性部材10は、光変調装置1aの背面側及び観察面側に偏光板を取り付け、観察面側の偏光板(第二の偏光板)の透過軸を背面側の偏光板(第一の偏光板)の透過軸に対して回転させたとき、形状異方性部材10の表面近傍の光透過率が変化し、かつ、形状異方性部材10の表面近傍の光透過率と、形状異方性部材10の表面近傍以外の領域の光透過率とが異なる材料の組み合わせである。ここで、上記のような光透過率の観測は、図4に示すような状態で行われる。図4は、実施形態1の光変調装置に対して、光透過率の観測を行う状態を示す断面模式図である。図4に示すように、光透過率の観測は、偏光顕微鏡を用いて行われ、光変調装置1aの背面側に第一の偏光板15aを取り付け、光変調装置1aの観察面側に第二の偏光板15bを取り付け、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して回転させて行われる。具体的には、偏光顕微鏡のステージ上に光変調装置1aを載置し、偏光子(第一の偏光板15aに相当)の透過軸の方位、及び、検光子(第二の偏光板15bに相当)の透過軸の方位を、所定の関係(例えば、クロスニコル(直交状態))となるように設定し、透過観察にて、検光子の透過軸を偏光子の透過軸に対して回転させて、形状異方性部材10の表面近傍及びその周辺を観察する方法で行われる。この場合、形状異方性部材10の方向を、偏光子及び検光子の透過軸の方位と所定の関係となるように設定してもよい。偏光顕微鏡としては一般的な機器を用いることができる。偏光子及び検光子としては、例えば、直線偏光子を用いることができ、クロスニコルに配置したときに99%以上の吸光度を示すものを用いることが好ましい。光透過率が変化するとは、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して15°回転させたときに、光透過率の変化が目視で確認可能なレベルであることを示し、例えば、光透過率が20%以上変化することを示す。光透過率が上記のような状態となる液晶及び形状異方性部材10が含まれる光変調層3を用いることによって、形状異方性部材10の分散性が向上した光変調装置を実現することができる。この効果は、特に形状異方性部材10としてフレーク状の部材を用いた場合に顕著である。 In the light modulation device according to the first embodiment, the liquid crystal and the shape anisotropic member 10 included in the light modulation layer 3 are attached to the back side and the observation surface side of the light modulation device 1a. When the transmission axis of the second polarizing plate) is rotated with respect to the transmission axis of the back side polarizing plate (first polarizing plate), the light transmittance near the surface of the shape anisotropic member 10 changes, In addition, the light transmittance in the vicinity of the surface of the shape anisotropic member 10 and the light transmittance in a region other than the vicinity of the surface of the shape anisotropic member 10 are combinations of materials. Here, the observation of the light transmittance as described above is performed in a state as shown in FIG. FIG. 4 is a schematic cross-sectional view illustrating a state in which light transmittance is observed with respect to the light modulation device of the first embodiment. As shown in FIG. 4, the light transmittance is observed using a polarizing microscope, a first polarizing plate 15a is attached to the back side of the light modulation device 1a, and a second light is observed on the observation surface side of the light modulation device 1a. The polarizing plate 15b is attached, and the transmission axis of the second polarizing plate 15b is rotated with respect to the transmission axis of the first polarizing plate 15a. Specifically, the light modulation device 1a is placed on the stage of a polarizing microscope, the orientation of the transmission axis of the polarizer (corresponding to the first polarizing plate 15a), and the analyzer (on the second polarizing plate 15b). The transmission axis of the analyzer is set to have a predetermined relationship (for example, crossed Nicols (orthogonal state)), and the transmission axis of the analyzer is rotated with respect to the transmission axis of the polarizer in transmission observation. Thus, the method is performed by observing the vicinity of the surface of the shape anisotropic member 10 and the vicinity thereof. In this case, the direction of the shape anisotropic member 10 may be set to have a predetermined relationship with the direction of the transmission axis of the polarizer and the analyzer. A general instrument can be used as the polarizing microscope. As the polarizer and analyzer, for example, a linear polarizer can be used, and it is preferable to use a polarizer that exhibits an absorbance of 99% or more when placed in crossed Nicols. The light transmittance changes when the transmission axis of the second polarizing plate 15b is rotated by 15 ° with respect to the transmission axis of the first polarizing plate 15a. For example, the light transmittance changes by 20% or more. Realizing a light modulation device in which the dispersibility of the shape anisotropic member 10 is improved by using the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10. Can do. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
また、実施形態1の光変調装置において、液晶分子9が形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向し、第一の偏光板15aの透過軸、及び、第二の偏光板15bの透過軸をクロスニコルに取り付け、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して回転させたとき、時計回りを正、反時計回りを負とすると、形状異方性部材10が、正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する形状異方性部材(第一の形状異方性部材)と、正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する形状異方性部材(第二の形状異方性部材)とのうちの少なくとも一方を含み、正負の回転方向に対して、形状異方性部材10の表面近傍以外の領域の光透過率が変化しないことが好ましい。ここで、上記の光透過率の状態は、第二の偏光板15bの透過軸を回転する際に、少なくとも存在していればよい。光透過率が上記のような状態となる液晶及び形状異方性部材10が含まれる光変調層3を用いることによって、形状異方性部材10の分散性が更に向上した光変調装置を実現することができる。この効果は、特に形状異方性部材10としてフレーク状の部材を用いた場合に顕著である。 In the light modulation device of the first embodiment, the liquid crystal molecules 9 are perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10. The transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols, and the transmission axis of the second polarizing plate 15b is set to the transmission axis of the first polarizing plate 15a. When rotated counterclockwise, if the clockwise direction is positive and the counterclockwise direction is negative, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction, and in the negative rotation direction. On the other hand, the shape anisotropic member (first shape anisotropic member) in which the light transmittance near the surface decreases, and the light transmittance in the vicinity of the surface decreases with respect to the positive rotation direction, and in the negative rotation direction. On the other hand, there are few of the shape anisotropic members (second shape anisotropic members) whose light transmittance near the surface increases. And wherein one also for the positive and negative direction of rotation, it is preferable that the light transmittance of the region other than the vicinity of the surface of the shape anisotropy member 10 does not change. Here, it is sufficient that the above-described light transmittance state exists at least when the transmission axis of the second polarizing plate 15b is rotated. By using the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10, a light modulation device in which the dispersibility of the shape anisotropic member 10 is further improved is realized. be able to. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
以上に、実施形態1の光変調装置における光透過率の状態について説明したが、このような状態を実現する液晶分子9及び形状異方性部材10の配向状態の一例について、以下に説明する。図5は、実施形態1の光変調装置における、液晶分子及び形状異方性部材の配向状態の一例を説明する模式図である。図5は、図4に示した状態を観察面側から見た状態(平面図)に対応している。 The state of light transmittance in the light modulation device of Embodiment 1 has been described above. An example of the alignment state of the liquid crystal molecules 9 and the shape anisotropic member 10 that realize such a state will be described below. FIG. 5 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of the first embodiment. FIG. 5 corresponds to a state (plan view) when the state shown in FIG. 4 is viewed from the observation surface side.
第一の偏光板15aの透過軸、及び、第二の偏光板15bの透過軸がクロスニコルに取り付けられた場合について考える。図5中、点線の両矢印は第一の偏光板15aの透過軸の方位を示し、実線の両矢印は第二の偏光板15bの透過軸の方位を示し、互いの透過軸は直交している。以下では、第二の偏光板15bの透過軸の方位(0°)を基準に時計回りを正(+)と定義して、角度及び軸の方位を記載する。このように、第一の偏光板15aの透過軸(方位:90°)と第二の偏光板15bの透過軸(方位:0°)とを直交させた状態(クロスニコル状態)から、図5の(a)及び(b)に示すように、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して、-15°及び+15°回転させたとき、形状異方性部材10の表面近傍の光透過率が変化し、かつ、形状異方性部材10の表面近傍の光透過率とそれ以外の領域の光透過率とが異なる。更に、形状異方性部材10が、第二の偏光板15bの正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する形状異方性部材(図5の(b))と、第二の偏光板15bの正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する形状異方性部材(図5の(a))とを含み、第二の偏光板15bの正負の回転方向に対して、形状異方性部材10の表面近傍以外の領域の光透過率が変化しない。このため、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過した光は、図5の(a)及び(b)に示すような楕円偏光であると考えられる。 Consider a case where the transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols. In FIG. 5, the dotted double-pointed arrow indicates the direction of the transmission axis of the first polarizing plate 15a, the solid-line double-pointed arrow indicates the direction of the transmission axis of the second polarizing plate 15b, and the transmission axes are orthogonal to each other. Yes. In the following description, the clockwise direction is defined as positive (+) with reference to the azimuth (0 °) of the transmission axis of the second polarizing plate 15b, and the angle and the azimuth of the axis are described. Thus, from the state (crossed Nicol state) in which the transmission axis (azimuth: 90 °) of the first polarizing plate 15a and the transmission axis (azimuth: 0 °) of the second polarizing plate 15b are orthogonal to each other, FIG. When the transmission axis of the second polarizing plate 15b is rotated by −15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 15a as shown in (a) and (b) of FIG. The light transmittance near the surface of the conductive member 10 changes, and the light transmittance near the surface of the shape anisotropic member 10 is different from the light transmittance in other regions. Further, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction of the second polarizing plate 15b, and decreases the light transmittance near the surface with respect to the negative rotation direction. The light transmittance near the surface with respect to the positive rotation direction of the shape anisotropic member (FIG. 5B) and the second polarizing plate 15b decreases, and the light near the surface with respect to the negative rotation direction. Including a shape anisotropic member ((a) of FIG. 5) in which the transmittance increases, and in a region other than the vicinity of the surface of the shape anisotropic member 10 with respect to the positive and negative rotation directions of the second polarizing plate 15b. The light transmittance does not change. For this reason, the light transmitted through the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the shape anisotropic member 10 is considered to be elliptically polarized light as shown in FIGS.
まず、図5の(a)に示すような楕円偏光状態を実現する液晶分子9の配向状態について、図5の(c)も参照して説明する。図5の(c)に示すように、液晶分子9が形状異方性部材10の表面近傍に対して垂直に配向している場合、図5の(a)及び(c)を見比べると分かるように、第一の偏光板15aの透過軸に対して、液晶分子9の常光に対する屈折率noの方向が+45°、異常光に対する屈折率neの方向が-45°傾いている。光学位相差軸としては、液晶分子9のnoの方向は進相軸に相当し、液晶分子9のneの方向は遅相軸に相当する。第一の偏光板15aの透過軸と液晶分子9の配向状態が図5の(a)及び(c)に示すような関係である場合、第一の偏光板15aを透過した直線偏光は、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過すると、図5の(a)に示すような反時計回りの楕円偏光になる。 First, the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 5A will be described with reference to FIG. As shown in FIG. 5C, when the liquid crystal molecules 9 are aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 5A and 5C. In addition, the direction of the refractive index no with respect to ordinary light of the liquid crystal molecules 9 is tilted by + 45 ° and the direction of the refractive index ne with respect to extraordinary light is tilted by −45 ° with respect to the transmission axis of the first polarizing plate 15a. As the optical phase difference axis, the no direction of the liquid crystal molecules 9 corresponds to the fast axis, and the ne direction of the liquid crystal molecules 9 corresponds to the slow axis. When the transmission axis of the first polarizing plate 15a and the alignment state of the liquid crystal molecules 9 are in the relationship as shown in FIGS. 5A and 5C, the linearly polarized light transmitted through the first polarizing plate 15a is shaped. When the liquid crystal molecules 9 that are aligned with respect to the vicinity of the surface of the anisotropic member 10 are transmitted, the light becomes counterclockwise elliptically polarized light as shown in FIG.
次に、図5の(b)に示すような楕円偏光状態を実現する液晶分子9の配向状態について、図5の(d)も参照して説明する。図5の(d)に示すように、液晶分子9が形状異方性部材10の表面近傍に対して垂直に配向している場合、図5の(b)及び(d)を見比べると分かるように、第一の偏光板15aの透過軸に対して、液晶分子9の常光に対する屈折率noの方向が-45°、異常光に対する屈折率neの方向が+45°傾いている。第一の偏光板15aの透過軸と液晶分子9の配向状態が図5の(b)及び(d)に示すような関係である場合、第一の偏光板15aを透過した直線偏光は、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過すると、図5の(b)に示すような時計回りの楕円偏光になる。 Next, the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 5B will be described with reference to FIG. As shown in FIG. 5D, when the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 5B and 5D. In addition, the direction of the refractive index no with respect to the ordinary light of the liquid crystal molecules 9 is inclined by −45 ° and the direction of the refractive index ne with respect to the extraordinary light is inclined by + 45 ° with respect to the transmission axis of the first polarizing plate 15a. When the transmission axis of the first polarizing plate 15a and the alignment state of the liquid crystal molecules 9 are as shown in FIGS. 5B and 5D, the linearly polarized light transmitted through the first polarizing plate 15a has a shape. When the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the anisotropic member 10 are transmitted, clockwise elliptical polarization as shown in FIG. 5B is obtained.
以上より、実施形態1の光変調装置における形状異方性部材10の配向状態の一例としては、電圧無印加時に、形状異方性部材10が、第一の偏光板15aの透過軸と時計回りに45°で交差して、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する形状異方性部材(図5の(b))と、第一の偏光板15aの透過軸と反時計回りに45°で交差して、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する形状異方性部材(図5の(d))とを含むものである。 From the above, as an example of the orientation state of the shape anisotropic member 10 in the light modulation device of Embodiment 1, the shape anisotropic member 10 rotates clockwise with respect to the transmission axis of the first polarizing plate 15a when no voltage is applied. And a shape anisotropic member (FIG. 5B) oriented perpendicularly to the main surface of the first substrate 2a and the second substrate 2b, and the first polarized light A shape-anisotropic member that intersects the transmission axis of the plate 15a counterclockwise at 45 ° and is oriented perpendicularly to the principal surfaces of the first substrate 2a and the second substrate 2b (see FIG. d)).
実施形態1の光変調装置によれば、液晶分子9が形状異方性部材10の表面近傍に対して秩序だって(垂直に)配向し、かつ、形状異方性部材10の表面近傍に対する液晶分子9の配向状態と、形状異方性部材10の表面近傍以外の領域での液晶分子9の配向状態とが異なるため、形状異方性部材10の分散性を向上させることができる。また、形状異方性部材10の分散性が向上することで、電圧無印加時における形状異方性部材10の配向性を向上させることができる。実施形態1の光変調装置は、液晶分子9が形状異方性部材10の表面近傍に対して垂直に配向する場合であったが、形状異方性部材10の表面近傍に対する液晶分子9の配向状態は秩序だっていればよく、垂直である場合の他に、後述するような平行である場合が好ましい。形状異方性部材10の分散性を充分に向上させる観点からは、液晶分子9は、形状異方性部材10の表面近傍に対して垂直に配向することが好ましい。また、実施形態1の光変調装置が表示装置に適用される場合は、形状異方性部材の凝集に起因する、光透過率(透過表示モードの表示装置の場合)、光反射率(反射表示モードの表示装置の場合)、コントラスト、応答速度等の表示性能の低下を防止することができる。 According to the light modulation device of the first embodiment, the liquid crystal molecules 9 are ordered (perpendicularly) with respect to the vicinity of the surface of the shape anisotropic member 10 and the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member 10 are used. 9 is different from the alignment state of the liquid crystal molecules 9 in a region other than the vicinity of the surface of the shape anisotropic member 10, so that the dispersibility of the shape anisotropic member 10 can be improved. Moreover, the orientation of the shape anisotropic member 10 when no voltage is applied can be improved by improving the dispersibility of the shape anisotropic member 10. In the light modulation device of the first embodiment, the liquid crystal molecules 9 are aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10. The state only needs to be ordered, and in addition to the case where the state is vertical, the case where the state is parallel as described later is preferable. From the viewpoint of sufficiently improving the dispersibility of the shape anisotropic member 10, the liquid crystal molecules 9 are preferably aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10. When the light modulation device according to the first embodiment is applied to a display device, the light transmittance (in the case of a display device in a transmissive display mode) and the light reflectance (reflection display) caused by aggregation of shape anisotropic members. In the case of a mode display device), it is possible to prevent a decrease in display performance such as contrast and response speed.
なお、実施形態1の光変調装置は、電気的作用で形状異方性部材10の向きを変えることによって透過光量又は反射光量を制御するものである。したがって、偏光板を用いる方式の液晶パネルとは違い、実際の使用時には、第一の基板2aの背面側、及び、第二の基板2bの観察面側に偏光板を配置する必要がない。このため、実施形態1の光変調装置は、光の利用効率に優れている。 In addition, the light modulation device of Embodiment 1 controls the transmitted light amount or the reflected light amount by changing the direction of the shape anisotropic member 10 by an electrical action. Therefore, unlike a liquid crystal panel using a polarizing plate, it is not necessary to dispose polarizing plates on the back side of the first substrate 2a and the observation surface side of the second substrate 2b in actual use. For this reason, the light modulation device of the first embodiment is excellent in light utilization efficiency.
(2)光変調装置の製造プロセス
実施形態1の光変調装置の製造プロセスについて、以下に説明する。
(2) Manufacturing Process of Light Modulation Device A manufacturing process of the light modulation device of Embodiment 1 will be described below.
(a)混合物の作製(工程(1))
形状異方性部材10を液晶中に分散させた混合物を作製する。この際、形状異方性部材10を事前に洗浄してもよい。洗浄方法としては、例えば、イソプロピルアルコール(IPA)、アセトン等を添加した状態で超音波照射を行う方法が挙げられる。また、図3を参照して説明したように、事前に、形状異方性部材10の外表面を重合体層12で被覆してもよい。このような重合体層12を形成する方法としては、例えば、上記特許文献3~5に開示された、プラスチックスペーサーに表面修飾を行う技術を利用することができる。
(A) Preparation of mixture (step (1))
A mixture in which the shape anisotropic member 10 is dispersed in the liquid crystal is prepared. At this time, the shape anisotropic member 10 may be cleaned in advance. Examples of the cleaning method include a method of performing ultrasonic irradiation in a state where isopropyl alcohol (IPA), acetone or the like is added. Further, as described with reference to FIG. 3, the outer surface of the shape anisotropic member 10 may be covered with the polymer layer 12 in advance. As a method for forming such a polymer layer 12, for example, a technique for surface modification of a plastic spacer disclosed in Patent Documents 3 to 5 can be used.
(b)光変調層の形成(工程(2))
形状異方性部材10を液晶中に分散させた混合物を、第一の基板2aと第二の基板2bとの間に配置することで光変調層3を形成し、光変調装置1aが完成する。光変調層3の形成方法としては、第一の基板2a、及び、第二の基板2bの少なくとも一方に混合物を滴下した後、両基板を真空中又は大気中で貼り合わせる方法を用いてもよいし、第一の基板2a、及び、第二の基板2bを貼り合わせた後に混合物を両基板間に真空中で注入する方法、又は、毛細管現象を利用して注入する方法を用いてもよい。
(B) Formation of light modulation layer (step (2))
The light modulation layer 3 is formed by disposing the mixture in which the shape anisotropic member 10 is dispersed in the liquid crystal between the first substrate 2a and the second substrate 2b, thereby completing the light modulation device 1a. . As a method for forming the light modulation layer 3, a method of dropping the mixture onto at least one of the first substrate 2a and the second substrate 2b and then bonding the both substrates in a vacuum or in the atmosphere may be used. Then, after bonding the first substrate 2a and the second substrate 2b, a method of injecting the mixture between both the substrates in a vacuum or a method of injecting using the capillary phenomenon may be used.
以下に、実施形態1の光変調装置に関する実施例を示す。以下の各実施例では、形状異方性部材10として、フレーク状の部材を用いた。 Examples relating to the light modulation device according to the first embodiment will be described below. In each of the following examples, a flake-shaped member was used as the shape anisotropic member 10.
(実施例1)
実施例1は、形状異方性部材10として、外表面に重合体層12を有するものを用いた場合であり、重合体層12が、コーティング層13、及び、表面修飾層14で構成された2層構造を有する場合である。実施例1の光変調装置の製造プロセスは、以下のようにした。
(Example 1)
Example 1 is a case where the shape anisotropic member 10 having a polymer layer 12 on the outer surface was used, and the polymer layer 12 was composed of a coating layer 13 and a surface modification layer 14. This is a case of having a two-layer structure. The manufacturing process of the light modulation device of Example 1 was as follows.
(a)混合物の作製
形状異方性部材10、液晶、及び、光変調層3の厚みを制御するためのプラスチックビーズを混合し、超音波照射を60分行うことにより、混合物を作製した。形状異方性部材10としては、コア部11としてのアルミニウムフレーク、コーティング層13としてのシリカ系絶縁体A1、及び、表面修飾層14としての親水処理された重合体B1で構成されたものを用い、その平均粒径は7μmであった。形状異方性部材10は、事前に洗浄されたものを用いた。洗浄方法としては、まず、IPAを添加した状態で超音波照射を行った後に遠心分離を行う作業を3回繰り返し、次に、アセトンを添加した状態で超音波照射を行った後に遠心分離を行う作業を3回繰り返し、最後に、自然乾燥させる方法を用いた。形状異方性部材10の混合量は、液晶に対して10wt%となるようにした。液晶としては、メルク社製のフッ素系液晶(Δε=20.4)を用いた。プラスチックビーズとしては、積水化学工業社製のプラスチックビーズ(商品名:ミクロパール)を用い、その平均粒径は10μmであった。プラスチックビーズの混合量は、液晶に対して0.2wt%となるようにした。
(A) Preparation of the mixture The shape anisotropic member 10, liquid crystal, and plastic beads for controlling the thickness of the light modulation layer 3 were mixed, and ultrasonic irradiation was performed for 60 minutes to prepare a mixture. As the shape anisotropic member 10, a material composed of aluminum flakes as the core portion 11, silica-based insulator A 1 as the coating layer 13, and a hydrophilic polymer B 1 as the surface modification layer 14 is used. The average particle size was 7 μm. The shape anisotropic member 10 used was washed in advance. As a cleaning method, first, the operation of performing centrifugation after repeating the ultrasonic irradiation with IPA added is repeated three times, and then performing the centrifugal separation after performing the ultrasonic irradiation with adding acetone. The operation was repeated three times, and finally the method of natural drying was used. The mixing amount of the shape anisotropic member 10 was 10 wt% with respect to the liquid crystal. As the liquid crystal, a fluorine-based liquid crystal (Δε = 20.4) manufactured by Merck & Co. was used. As the plastic beads, plastic beads (trade name: Micropearl) manufactured by Sekisui Chemical Co., Ltd. were used, and the average particle size was 10 μm. The mixing amount of the plastic beads was 0.2 wt% with respect to the liquid crystal.
(b)光変調層の形成
混合物を、第一の基板2aに滴下した後、第一の基板2a、及び、第二の基板2bを大気中で貼り合わせることで光変調層3を形成した。光変調層3の厚みは10μmであった。第一の基板2aにおいて、一対の電極5a、5bとしては、材料はITOであり、電極幅は10μm、電極間隔(スペース)は10μm、厚みは100nmであった。第二の基板2bにおいて、対向電極6としては、材料はITOであり、厚みは100nmであった。絶縁膜8としては、材料は凸版印刷社製のカラーフィルタ用途として用いられるオーバーコート材料(誘電率εr=3.4)であり、厚みは3μmであった。垂直配向膜7a、7bとしては、日産化学社製の配向膜(商品名:SE-4811、表面自由エネルギー:35.0)を用い、その厚みは100nmであった。以上により、光変調装置1aが完成した。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。
(B) After the light modulation layer formation mixture was dropped onto the first substrate 2a, the light modulation layer 3 was formed by bonding the first substrate 2a and the second substrate 2b in the atmosphere. The thickness of the light modulation layer 3 was 10 μm. In the first substrate 2a, the material of the pair of electrodes 5a and 5b is ITO, the electrode width is 10 μm, the electrode interval (space) is 10 μm, and the thickness is 100 nm. In the second substrate 2b, the material for the counter electrode 6 was ITO, and the thickness was 100 nm. The material for the insulating film 8 was an overcoat material (dielectric constant εr = 3.4) used for color filter applications manufactured by Toppan Printing Co., Ltd., and the thickness was 3 μm. As the vertical alignment films 7a and 7b, an alignment film (trade name: SE-4811, surface free energy: 35.0) manufactured by Nissan Chemical Industries, Ltd. was used, and the thickness thereof was 100 nm. Thus, the light modulation device 1a is completed. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例2)
実施例2は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例2の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 2)
The second embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device of the second embodiment and its manufacturing process are the same as the optical modulation device of the first embodiment and its manufacturing process, and therefore, overlapping description is omitted.
形状異方性部材10としては、コア部11としてのアルミニウムフレーク、コーティング層13としてのアクリル系絶縁体A2、及び、表面修飾層14としてのアルキル基を有する疎水処理された重合体B2で構成されたものを用い、その平均粒径は7μmであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 The shape anisotropic member 10 is composed of aluminum flakes as the core 11, acrylic insulator A 2 as the coating layer 13, and a hydrophobically treated polymer B 2 having an alkyl group as the surface modification layer 14. The average particle size was 7 μm. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例3)
実施例3は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例3の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 3)
The third embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device of the third embodiment and its manufacturing process are the same as those of the optical modulation device of the first embodiment and its manufacturing process.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ラウリル硫酸ナトリウム0.1gを水1000mlに加え、これらを撹拌した状態で、テトラメチロールメタントリアクリレート2.5g、ジビニルベンゼン4.5g、及び、ベンゾイルパーオキサイド0.8gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、ポリビニリデンフロライド(PVDF)のフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆されたフレークを得た。コーティング層13は、エチレン性不飽和基を有する単量体(テトラメチロールメタントリアクリレート、及び、ジビニルベンゼン)の重合体であった。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and in a state where they were stirred, 2.5 g of tetramethylol methane triacrylate, 4.5 g of divinylbenzene, and 0.8 g of benzoyl peroxide. Then, the polymerization reaction was carried out at 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a polyvinylidene fluoride (PVDF) filter (pore size: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. A flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained. The coating layer 13 was a polymer of monomers (tetramethylolmethane triacrylate and divinylbenzene) having an ethylenically unsaturated group.
次に、コーティング層13が被覆されたフレーク3g、及び、ドデシルトリエトキシシラン3gをヘキサン100mlに加え、窒素気流下の50℃の環境下で1時間重合反応させた。重合反応後のものを、ヘキサン、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、及び、デカンテーションを順に行った後、140℃の環境下で1時間加熱反応させた。加熱反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を2回繰り返し、減圧乾燥することで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、有機シラン化合物(ドデシルトリエトキシシラン)から形成されるものであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 Next, 3 g of flakes coated with the coating layer 13 and 3 g of dodecyltriethoxysilane were added to 100 ml of hexane, and a polymerization reaction was performed in a 50 ° C. environment under a nitrogen stream for 1 hour. The polymerized reaction product was filtered using a PVDF filter (pore size: 1 μm) with hexane and acetone added. Subsequently, the flakes collected by filtration were collected with acetone, divided into small portions, subjected to centrifugation and decantation in this order, and then reacted by heating in an environment of 140 ° C. for 1 hour. The product after the heating reaction was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated twice, followed by drying under reduced pressure. The shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained. The surface modification layer 14 was formed from an organosilane compound (dodecyltriethoxysilane). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例4)
実施例4は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例4の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
Example 4
The fourth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. The optical modulation device and the manufacturing process thereof according to the fourth embodiment are the same as those of the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク12g、及び、ヒドロキシプロピルセルロース0.3gをエタノール300mlに加え、これらを撹拌した状態で、γ-メタクリロキシプロピルトリメトキシシラン12g、スチレン13.5g、及び、2,2’-アゾビスイソブチロニトリル0.2gを加えた後、窒素気流下の70℃の環境下で2時間重合反応させた。重合反応後のものを、エタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥を行った。減圧乾燥後のフレーク10g、及び、メタクリロイルイソシアネート1.5gをメチルエチルケトン100mlに加え、室温(25℃)の環境下で20分間反応させた。反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆されたフレークを得た。コーティング層13は、表面にカルボキシル基を有する重合体であった。 As the shape anisotropic member 10, one formed by the following method was used. First, 12 g of aluminum flakes and 0.3 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 12 g of γ-methacryloxypropyltrimethoxysilane, 13.5 g of styrene, and 2,2′-azo After adding 0.2 g of bisisobutyronitrile, the polymerization reaction was carried out for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 μm) with ethanol and acetone added. Subsequently, the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure. 10 g of flakes after drying under reduced pressure and 1.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.). The product after the reaction was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. A flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained. The coating layer 13 was a polymer having a carboxyl group on the surface.
次に、反応装置にメチルアルコール325g、エチレングリコール9.4g、ポリビニルピロリドン30g、セタノール4g、イソボルニルメタクリレート5g、グリシジルメタクリレート7.5g、及び、ラウリルメタクリレート7.5gを仕込み、更に、2,2’-アゾビス(2-メチルブチロニトリル)1.2gを加えて、窒素気流下の60℃の環境下で5時間析出重合させることにより、表面にエポキシ基及び長鎖アルキル基を有する重合体粒子を別に準備した。この重合体粒子は、洗浄後に解砕、乾燥され、その形状は真球状であり、その平均粒径は0.35μmであった。 Next, 325 g of methyl alcohol, 9.4 g of ethylene glycol, 30 g of polyvinyl pyrrolidone, 4 g of cetanol, 5 g of isobornyl methacrylate, 7.5 g of glycidyl methacrylate, and 7.5 g of lauryl methacrylate were charged into the reactor. Polymer particles having an epoxy group and a long-chain alkyl group on the surface by adding 1.2 g of '-azobis (2-methylbutyronitrile) and performing precipitation polymerization in an environment of 60 ° C. in a nitrogen stream for 5 hours. Prepared separately. The polymer particles were crushed and dried after washing, and had a true spherical shape. The average particle size was 0.35 μm.
次に、コーティング層13が被覆されたフレーク8g、及び、上記で得られた重合体粒子24gを、奈良機械製作所社製のハイブリダイゼーションシステムのOMダイザーを用いて3分間処理し、オーダードミクスチャーを形成した。その後、オーダードミクスチャーを、ハイブリダイゼーションシステムのハイブリダイザーを用いて、回転数15000rpmで5分間成膜処理を行うことで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、長鎖アルキル基を有する重合体であり、コーティング層13と共有結合を形成するものであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 Next, 8 g of flakes coated with the coating layer 13 and 24 g of the polymer particles obtained above were treated for 3 minutes using an OM dizer of a hybridization system manufactured by Nara Machinery Co., Ltd. Formed. After that, the ordered anisotropy is subjected to film formation at a rotational speed of 15000 rpm for 5 minutes using a hybridizer of a hybridization system, so that the surface modification layer 14 for modifying the surface of the coating layer 13 is formed. Member 10 was obtained. The surface modification layer 14 is a polymer having a long-chain alkyl group, and forms a covalent bond with the coating layer 13. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例5)
実施例5は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例5の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 5)
The fifth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. The optical modulation device and its manufacturing process of the fifth embodiment are the same as those of the optical modulation device and its manufacturing process of the first embodiment except for this point.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ヒドロキシプロピルセルロース0.1gをエタノール300mlに加え、これらを撹拌した状態で、γ-メタクリロキシプロピルトリメトキシシラン4g、スチレン4.5g、及び、2,2’-アゾビスイソブチロニトリル0.1gを加えた後、窒素気流下の70℃の環境下で2時間重合反応させた。重合反応後のものを、エタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥を行った。減圧乾燥後のフレークは、表面に-SiOH基を有するものであった。続いて、減圧乾燥後のフレーク3g、及び、メタクリロイルイソシアネート0.5gをメチルエチルケトン100mlに加え、室温(25℃)の環境下で20分間反応させた。反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆されたフレークを得た。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 4 g of γ-methacryloxypropyltrimethoxysilane, 4.5 g of styrene, and 2,2′-azo After adding 0.1 g of bisisobutyronitrile, a polymerization reaction was performed for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 μm) with ethanol and acetone added. Subsequently, the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure. The flakes after drying under reduced pressure had —SiOH groups on the surface. Subsequently, 3 g of flakes after drying under reduced pressure and 0.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.). The product after the reaction was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. A flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained.
次に、コーティング層13が被覆されたフレーク1g、ベンゾイルパーオキサイド0.01g、メタクリル酸1g、及び、メチルメタクリレート1gをメチルエチルケトン30mlに加え、窒素気流下の90℃の環境下で1時間重合反応させた。重合反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥を行った。続いて、減圧乾燥後のフレーク2.5gに対して、キシレン100g、オクチルメタクリレート3g、及び、ラウリルポリオキシエチレンメタクリレート2.5gを一括に仕込み、重合開始剤開裂温度(25℃)まで昇温した後、窒素気流下で1時間グラフト重合反応を行うことで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、コーティング層13とグラフト重合しており、長鎖アルキル基を有するグラフト重合体鎖を有するものであった。 Next, 1 g of flakes coated with the coating layer 13, 0.01 g of benzoyl peroxide, 1 g of methacrylic acid, and 1 g of methyl methacrylate are added to 30 ml of methyl ethyl ketone, and a polymerization reaction is performed in an environment of 90 ° C. in a nitrogen stream for 1 hour. It was. The polymerized reaction product was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure. Subsequently, 100 g of xylene, 3 g of octyl methacrylate and 2.5 g of lauryl polyoxyethylene methacrylate were charged all at once with respect to 2.5 g of the flakes after drying under reduced pressure, and the temperature was raised to the polymerization initiator cleavage temperature (25 ° C.). Thereafter, a graft polymerization reaction was performed in a nitrogen stream for 1 hour, thereby obtaining the shape anisotropic member 10 on which the surface modification layer 14 for modifying the surface of the coating layer 13 was formed. The surface modification layer 14 was graft polymerized with the coating layer 13 and had a graft polymer chain having a long-chain alkyl group.
(実施例6)
実施例6は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例6の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 6)
The sixth embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device and the manufacturing process thereof according to the sixth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ヒドロキシプロピルセルロース0.1gをエタノール300mlに加え、これらを撹拌した状態で、γ-メタクリロキシプロピルトリメトキシシラン4g、スチレン4.5g、及び、2,2’-アゾビスイソブチロニトリル0.1gを加えた後、窒素気流下の70℃の環境下で2時間重合反応させた。重合反応後のものを、エタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥を行った。減圧乾燥後のフレークは、表面に-SiOH基を有するものであった。続いて、減圧乾燥後のフレーク3g、及び、メタクリロイルイソシアネート0.5gをメチルエチルケトン100mlに加え、室温(25℃)の環境下で20分間反応させた。反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆されたフレークを得た。コーティング層13は、表面にラジカル連鎖移動可能な重合性ビニル基を有する重合体であった。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of hydroxypropylcellulose were added to 300 ml of ethanol, and with stirring, 4 g of γ-methacryloxypropyltrimethoxysilane, 4.5 g of styrene, and 2,2′-azo After adding 0.1 g of bisisobutyronitrile, a polymerization reaction was performed for 2 hours in a 70 ° C. environment under a nitrogen stream. The product after the polymerization reaction was filtered using a PVDF filter (pore size: 1 μm) with ethanol and acetone added. Subsequently, the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure. The flakes after drying under reduced pressure had —SiOH groups on the surface. Subsequently, 3 g of flakes after drying under reduced pressure and 0.5 g of methacryloyl isocyanate were added to 100 ml of methyl ethyl ketone, and reacted for 20 minutes in an environment at room temperature (25 ° C.). The product after the reaction was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. A flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained. The coating layer 13 was a polymer having a polymerizable vinyl group capable of radical chain transfer on the surface.
次に、コーティング層13が被覆されたフレーク3g、t-ブチルパーオキシアリルカーボネートを70wt%添加したトルエン溶液3g、メチルメタクリレート3g、及び、ベンゾイルパーオキサイド0.01gをメチルエチルケトン300mlに加え、窒素気流下の90℃の環境下で1時間重合反応させた。重合反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥を行った。減圧乾燥後のフレークは、表面にパーオキサイド基を含むグラフト重合体鎖を有するものであった。続いて、減圧乾燥後のフレーク2.5gに対して、キシレン100g、オクチルメタクリレート3g、及び、ラウリルポリオキシエチレンメタクリレート2.5gを一括に仕込み、重合開始剤開裂温度(25℃)まで昇温した後、窒素気流下で1時間グラフト重合反応を行うことで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、コーティング層13とグラフト重合しており、長鎖アルキル基を有するグラフト重合体鎖を有するものであった。このような構成により、重合体層12の被覆率が高くなるため、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 Next, 3 g of flakes coated with the coating layer 13, 3 g of toluene solution added with 70 wt% of t-butylperoxyallyl carbonate, 3 g of methyl methacrylate and 0.01 g of benzoyl peroxide were added to 300 ml of methyl ethyl ketone, The polymerization reaction was carried out in an environment of 90 ° C. for 1 hour. The polymerized reaction product was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes were collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added thereto was repeated three times to perform drying under reduced pressure. The flakes after drying under reduced pressure had graft polymer chains containing peroxide groups on the surface. Subsequently, 100 g of xylene, 3 g of octyl methacrylate and 2.5 g of lauryl polyoxyethylene methacrylate were charged all at once with respect to 2.5 g of the flakes after drying under reduced pressure, and the temperature was raised to the polymerization initiator cleavage temperature (25 ° C.). Thereafter, a graft polymerization reaction was performed in a nitrogen stream for 1 hour, thereby obtaining the shape anisotropic member 10 on which the surface modification layer 14 for modifying the surface of the coating layer 13 was formed. The surface modification layer 14 was graft polymerized with the coating layer 13 and had a graft polymer chain having a long-chain alkyl group. With such a configuration, since the coverage of the polymer layer 12 is increased, the liquid crystal molecules 9 can be aligned perpendicular to the vicinity of the surface of the shape anisotropic member 10, and the aggregation of the shape anisotropic member 10 can be performed. Can be prevented and its dispersibility can be improved.
(実施例7)
実施例7は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例7の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 7)
The seventh embodiment is a case where the configuration of the shape anisotropic member 10 is changed with respect to the first embodiment. Except for this point, the optical modulation device and the manufacturing process thereof according to the seventh embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ラウリル硫酸ナトリウム0.1gを水1000mlに加え、これらを撹拌した状態で、ジビニルベンゼン4.5g、及び、ベンゾイルパーオキサイド0.8gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆されたフレークを得た。コーティング層13は、プラスチック材料(ジビニルベンゼン)の重合体であった。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and after stirring them, 4.5 g of divinylbenzene and 0.8 g of benzoyl peroxide were added. The polymerization reaction was allowed to proceed for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugal separation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. A flake in which the coating layer 13 was coated on the part 11 (aluminum flake) was obtained. The coating layer 13 was a polymer of a plastic material (divinylbenzene).
次に、コーティング層13が被覆されたフレーク3gを、n-ヘキサン30mlに四塩化珪素0.3gを溶解した溶液中に添加し、室温(25℃)の環境下で15分間撹拌した。撹拌後のものを、ガラスフィルターを用いて濾過した後、風乾させた。風乾後のもの、及び、トリイソプロピルアルミニウムアルコキシド3gをトルエン100mlに加え、室温(25℃)の環境下で5分間超音波照射を行った。超音波照射後のものを、メタノール50mlと水50mlとの混合液に加えて加水分解を行った。加水分解後のものを、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、親水性を有するアルミニウムアルコキシド重縮合物であった。また、表面修飾層14は、コーティング層13とアルミノシリケート結合を形成するものであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。ここで、表面修飾層14としては、コーティング層13とアルミノシリケート結合ではなく、アルミノチタネート結合、又は、アルミノジルコネート結合を形成する、アルミニウムアルコキシド重縮合物を用いてもよい。 Next, 3 g of flakes coated with the coating layer 13 was added to a solution of 0.3 g of silicon tetrachloride dissolved in 30 ml of n-hexane and stirred for 15 minutes in an environment at room temperature (25 ° C.). The product after stirring was filtered using a glass filter and then air-dried. After air drying, 3 g of triisopropylaluminum alkoxide was added to 100 ml of toluene, and ultrasonic irradiation was performed for 5 minutes in an environment at room temperature (25 ° C.). The product after ultrasonic irradiation was added to a mixed solution of 50 ml of methanol and 50 ml of water for hydrolysis. The hydrolyzed product was filtered using a PVDF filter (pore size: 1 μm) with methanol and acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and centrifugation, decantation, and ultrasonic irradiation with acetone added are sequentially repeated three times, followed by drying under reduced pressure. The shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained. The surface modification layer 14 was an aluminum alkoxide polycondensate having hydrophilicity. The surface modification layer 14 forms an aluminosilicate bond with the coating layer 13. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can. Here, as the surface modification layer 14, an aluminum alkoxide polycondensate that forms an alumino titanate bond or an alumino zirconate bond instead of the aluminosilicate bond with the coating layer 13 may be used.
(実施例8)
実施例8は、実施例1に対して、形状異方性部材10の構成を変更した場合である。実施例8の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 8)
Example 8 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 1. The optical modulation device and the manufacturing process thereof according to the eighth embodiment are the same as those of the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、コア部11(アルミニウムフレーク)にシリカから形成されたコーティング層13が被覆されたフレークを準備した。次に、コーティング層13が被覆されたフレーク3g、及び、オクタデシルトリエトキシシラン3gをヘキサン100mlに加え、窒素気流下の50℃の環境下で1時間重合反応させた。重合反応後のものを、ヘキサン、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、及び、デカンテーションを順に行った後、140℃の環境下で1時間加熱反応させた。加熱反応後のものを、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を2回繰り返し、減圧乾燥することで、コーティング層13を表面修飾する表面修飾層14が形成された形状異方性部材10を得た。表面修飾層14は、アルキル系シランカップリング剤(有機シラン化合物から形成されるもの)であった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。このように、コーティング層13として多量のシラノール基を有する重合体(シリカ)を選択し、表面修飾層14としてシラノール基を有する重合体(アルキル系シランカップリング剤)を選択し、これらのシラノール基同士を、水素結合を介して脱水縮合反応させることで、アルキル鎖を多量に有する強固な共有結合を形成することができる。その結果、表面修飾層14がコーティング層13から離脱せず、形状異方性部材10の分散性を好適に向上させることができる。 As the shape anisotropic member 10, one formed by the following method was used. First, a flake in which the core 11 (aluminum flake) was coated with a coating layer 13 made of silica was prepared. Next, 3 g of flakes coated with the coating layer 13 and 3 g of octadecyltriethoxysilane were added to 100 ml of hexane, and a polymerization reaction was performed in a 50 ° C. environment in a nitrogen stream for 1 hour. The polymerized reaction product was filtered using a PVDF filter (pore size: 1 μm) with hexane and acetone added. Subsequently, the flakes collected by filtration were collected with acetone, divided into small portions, subjected to centrifugation and decantation in this order, and then reacted by heating in an environment of 140 ° C. for 1 hour. The product after the heating reaction was filtered using a PVDF filter (pore size: 1 μm) with acetone added. Subsequently, the collected flakes are collected with acetone, divided into small portions, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated twice, followed by drying under reduced pressure. The shape anisotropic member 10 in which the surface modification layer 14 for modifying the surface of the layer 13 was formed was obtained. The surface modification layer 14 was an alkyl silane coupling agent (formed from an organic silane compound). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can. Thus, a polymer having a large amount of silanol groups (silica) is selected as the coating layer 13, and a polymer having a silanol group (alkyl silane coupling agent) is selected as the surface modification layer 14, and these silanol groups are selected. A strong covalent bond having a large amount of an alkyl chain can be formed by dehydrating and condensing each other through a hydrogen bond. As a result, the surface modification layer 14 does not leave the coating layer 13, and the dispersibility of the shape anisotropic member 10 can be preferably improved.
(実施例9)
実施例9は、形状異方性部材10として、外表面に重合体層12を有するものを用いた場合であり、重合体層12が、コーティング層13の単層から構成される場合である。実施例9の光変調装置及びその製造プロセスは、この点以外、実施例1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
Example 9
Example 9 is a case where the shape anisotropic member 10 having the polymer layer 12 on the outer surface is used, and the polymer layer 12 is composed of a single layer of the coating layer 13. Since the optical modulation device and the manufacturing process thereof according to the ninth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment except for this point, the description of overlapping points is omitted.
形状異方性部材10としては、コア部11としてのアルミニウムフレーク、及び、コーティング層13としてのアクリル系絶縁体A2で構成されたものを用い、その平均粒径は7μmであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 As the shape anisotropic member 10, an aluminum flake as the core part 11 and an acrylic insulator A2 as the coating layer 13 were used, and the average particle diameter was 7 μm. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例10)
実施例10は、実施例9に対して、形状異方性部材10の構成を変更した場合である。実施例10の光変調装置及びその製造プロセスは、この点以外、実施例9の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 10)
Example 10 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. The optical modulation device and the manufacturing process thereof according to the tenth embodiment are the same as the optical modulation device and the manufacturing process thereof according to the ninth embodiment except for this point.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ポリエチレングリコール(重量平均分子量:100万)4gを水500mlに加え、これらを撹拌した状態で、グリシジルメタクリレート2.5g、ジビニルベンゼン4.5g、及び、ベンゾイルパーオキサイド0.1gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆された形状異方性部材10を得た。コーティング層13は、エチレングリコール重合体(ポリエチレングリコール)であった。このような構成により、液晶分子9に対する配向規制力が弱まるため、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 4 g of polyethylene glycol (weight average molecular weight: 1,000,000) were added to 500 ml of water, and in a state where they were stirred, 2.5 g of glycidyl methacrylate, 4.5 g of divinylbenzene, and benzoyl peroxide 0 were added. After adding 1 g, the polymerization reaction was carried out in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, subdivided, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. The shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained. The coating layer 13 was an ethylene glycol polymer (polyethylene glycol). With such a configuration, since the alignment regulating force on the liquid crystal molecules 9 is weakened, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, and aggregation of the shape anisotropic member 10 can be prevented. And the dispersibility can be improved.
(実施例11)
実施例11は、実施例9に対して、形状異方性部材10の構成を変更した場合である。実施例11の光変調装置及びその製造プロセスは、この点以外、実施例9の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 11)
Example 11 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. The optical modulation device and the manufacturing process thereof according to the eleventh embodiment are the same as the optical modulation device and the manufacturing process thereof according to the ninth embodiment except for this point.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ラウリル硫酸ナトリウム0.1gを水1000mlに加え、これらを撹拌した状態で、ノニルフェノールエチレンオキシド4g、ジビニルベンゼン4.5g、及び、ベンゾイルパーオキサイド0.8gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆された形状異方性部材10を得た。コーティング層13は、ノニルフェノールエチレンオキシド付加物を含むものであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 As the shape anisotropic member 10, one formed by the following method was used. First, after adding 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate to 1000 ml of water and stirring them, 4 g of nonylphenol ethylene oxide, 4.5 g of divinylbenzene, and 0.8 g of benzoyl peroxide were added. The polymerization reaction was performed in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, subdivided, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. The shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained. The coating layer 13 contained nonylphenol ethylene oxide adduct. With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
(実施例12)
実施例12は、実施例9に対して、形状異方性部材10の構成を変更した場合である。実施例12の光変調装置及びその製造プロセスは、この点以外、実施例9の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
Example 12
Example 12 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. Except for this point, the optical modulation device of the twelfth embodiment and the manufacturing process thereof are the same as the optical modulation device of the ninth embodiment and the manufacturing process thereof.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ラウリル硫酸ナトリウム0.1gを水1000mlに加え、これらを撹拌した状態で、2,2,2-トリフルオロエチルメタクリレート4.5g、ジビニルベンゼン6g、エチレングリコールジメタクリレート2.3g、及び、ベンゾイルパーオキサイド0.8gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆された形状異方性部材10を得た。コーティング層13は、エチレン性不飽和基を2つ以上有する架橋性単量体(ジビニルベンゼン)と、フッ素系単量体(2,2,2-トリフルオロエチルメタクリレート)と、エチレングリコールを有する単量体(エチレングリコールジメタクリレート)との共重合体から形成されるものであった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。ここで、上記のようなコーティング層13において、フッ素系単量体の代わりにグリシジル基を有する単量体を用いてもよく、フッ素系単量体とグリシジル基を有する単量体とをともに用いてもよい。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and with stirring, 4.5 g of 2,2,2-trifluoroethyl methacrylate, 6 g of divinylbenzene, ethylene glycol dimethacrylate 2 .3 g and 0.8 g of benzoyl peroxide were added, and the polymerization reaction was carried out in an environment of 90 ° C. for 2 hours. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, subdivided, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. The shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained. The coating layer 13 is a single monomer having a crosslinkable monomer (divinylbenzene) having two or more ethylenically unsaturated groups, a fluorine monomer (2,2,2-trifluoroethyl methacrylate), and ethylene glycol. It was formed from a copolymer with a monomer (ethylene glycol dimethacrylate). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can. Here, in the coating layer 13 as described above, a monomer having a glycidyl group may be used instead of the fluorine-based monomer, and both the fluorine-based monomer and the monomer having a glycidyl group are used. May be.
(実施例13)
実施例13は、実施例9に対して、形状異方性部材10の構成を変更した場合である。実施例13の光変調装置及びその製造プロセスは、この点以外、実施例9の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
(Example 13)
Example 13 is a case where the configuration of the shape anisotropic member 10 is changed with respect to Example 9. Except for this point, the light modulation device of the thirteenth embodiment and the manufacturing process thereof are the same as those of the light modulation device of the ninth embodiment and the manufacturing process thereof.
形状異方性部材10としては、以下のような方法で形成したものを用いた。まず、アルミニウムフレーク4g、及び、ラウリル硫酸ナトリウム0.1gを水1000mlに加え、これらを撹拌した状態で、グリシジルメタクリレート4g、ジビニルベンゼン6g、及び、ベンゾイルパーオキサイド0.8gを加えた後、90℃の環境下で2時間重合反応させた。重合反応後のものを、水、メタノール、及び、アセトンを添加した状態で、PVDFフィルター(孔径:1μm)を用いて濾過した。続いて、濾取したフレークをアセトンで集め、小分けにして、遠心分離、デカンテーション、及び、アセトンを添加した状態での超音波照射を順に行う作業を3回繰り返し、減圧乾燥することで、コア部11(アルミニウムフレーク)にコーティング層13が被覆された形状異方性部材10を得た。コーティング層13は、グリシジル基を有する単量体(グリシジルメタクリレート)の重合体であった。このような構成により、液晶分子9を形状異方性部材10の表面近傍に対して垂直に配向させることができ、形状異方性部材10の凝集を防止し、その分散性を向上させることができる。 As the shape anisotropic member 10, one formed by the following method was used. First, 4 g of aluminum flakes and 0.1 g of sodium lauryl sulfate were added to 1000 ml of water, and 4 g of glycidyl methacrylate, 6 g of divinylbenzene, and 0.8 g of benzoyl peroxide were added in a state where these were stirred. The polymerization reaction was carried out for 2 hours under the following conditions. The product after the polymerization reaction was filtered using a PVDF filter (pore diameter: 1 μm) with water, methanol and acetone added. Subsequently, the collected flakes are collected with acetone, subdivided, and the operation of sequentially performing centrifugation, decantation, and ultrasonic irradiation with acetone added is repeated three times, and dried under reduced pressure. The shape anisotropic member 10 in which the coating layer 13 was coated on the part 11 (aluminum flakes) was obtained. The coating layer 13 was a polymer of a monomer having a glycidyl group (glycidyl methacrylate). With this configuration, the liquid crystal molecules 9 can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member 10, preventing aggregation of the shape anisotropic member 10 and improving its dispersibility. it can.
[実施形態2]
実施形態2は、光変調層中の液晶分子が形状異方性部材の表面近傍に対して平行に配向する場合である。実施形態2の光変調装置及びその製造プロセスは、この点以外、実施形態1の光変調装置及びその製造プロセスと同様であるため、重複する点については説明を省略する。
[Embodiment 2]
Embodiment 2 is a case where the liquid crystal molecules in the light modulation layer are aligned parallel to the vicinity of the surface of the shape anisotropic member. Except for this point, the optical modulation device and the manufacturing process thereof according to the second embodiment are the same as the optical modulation device and the manufacturing process thereof according to the first embodiment.
(1)光変調装置の構造
実施形態2の光変調装置の構造について、以下に説明する。図6は、実施形態2の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。図6に示すように、光変調装置1bは、背面側から観察面側に向かって順に、第一の基板2a、光変調層3、及び、第二の基板2bを備えている。
(1) Structure of Light Modulation Device The structure of the light modulation device of Embodiment 2 will be described below. 6A and 6B are schematic cross-sectional views showing the light modulation device of the second embodiment, where FIG. 6A shows a state when no voltage is applied, FIG. 6B shows a state when a voltage is applied (longitudinal electric field ON), c) shows a state when a voltage is applied (lateral electric field is on). As shown in FIG. 6, the light modulation device 1b includes a first substrate 2a, a light modulation layer 3, and a second substrate 2b in order from the back surface side to the observation surface side.
実施形態2の光変調装置において、形状異方性部材10は、その表面近傍に対して液晶分子9が平行に配向する、すなわち、図6中では、紙面と垂直な面内に配向するものであり、紙面と垂直な面内で同じ方向に配向することが好ましい。表面近傍に対して液晶分子9が平行に配向する形状異方性部材10としては、例えば、図3に示すような外表面に重合体層を有するものが好ましい。 In the light modulation device of the second embodiment, the shape anisotropic member 10 has the liquid crystal molecules 9 aligned in parallel to the vicinity of the surface, that is, in the plane perpendicular to the paper surface in FIG. It is preferable that they are oriented in the same direction within a plane perpendicular to the paper surface. As the shape anisotropic member 10 in which the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface, for example, a member having a polymer layer on the outer surface as shown in FIG.
次に、実施形態2の光変調装置における光透過状態及び光反射状態について説明する。 Next, a light transmission state and a light reflection state in the light modulation device of the second embodiment will be described.
図6の(a)は、電極5a、5b、及び、対向電極6に電圧を印加しない状態を示したものである。なお、図6の(a)は、p型の液晶分子9を用いた場合について示されている。図6の(a)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して平行に配向し、形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。形状異方性部材10は、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。このため、入射光は、光変調層3を直接透過するか、形状異方性部材10で反射した後に、入射側とは反対側に透過する。例えば、第一の基板2a側から光が入射する場合について、光の経路を図6の(a)中の矢印で示した。 FIG. 6A shows a state in which no voltage is applied to the electrodes 5a and 5b and the counter electrode 6. FIG. FIG. 6A shows the case where p-type liquid crystal molecules 9 are used. As shown in FIG. 6A, the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and in the region other than the vicinity of the surface of the shape anisotropic member 10, the first The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface. The shape anisotropic member 10 is oriented perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b. For this reason, incident light passes through the light modulation layer 3 directly or after being reflected by the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
図6の(b)は、電極5a、5bと対向電極6との間に電圧を印加した状態(縦電界オン)を示したものである。なお、図6の(b)は、p型の液晶分子9を用いた場合について示されている。図6の(b)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して平行に配向し、形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。形状異方性部材10は、誘電泳動力、クーロン力、又は、電気エネルギー的な観点から説明される力、及び、液晶との界面エネルギーを極小にする力によって、その長軸が電気力線に対して平行になるように回転する。例えば、形状異方性部材10として、金属の薄片のような可視光反射性を有する材料を用いれば、形状異方性部材10の反射面が、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する。このため、入射光は、光変調層3を直接透過するか、形状異方性部材10の反射面で反射した後に、入射側とは反対側に透過する。例えば、第一の基板2a側から光が入射する場合について、光の経路を図6の(b)中の矢印で示した。 FIG. 6B shows a state in which a voltage is applied between the electrodes 5a and 5b and the counter electrode 6 (longitudinal electric field on). FIG. 6B shows a case where p-type liquid crystal molecules 9 are used. As shown in FIG. 6B, the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and in the region other than the vicinity of the surface of the shape anisotropic member 10, the first The substrate 2a and the second substrate 2b are oriented perpendicular to the main surface. The shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it. For example, if a material having visible light reflectivity such as a thin metal piece is used as the shape anisotropic member 10, the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented perpendicular to the major surface of 2b. For this reason, incident light is transmitted directly to the light modulation layer 3 or reflected by the reflecting surface of the shape anisotropic member 10 and then transmitted to the side opposite to the incident side. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG.
以上のようにして、光透過状態を実現することができる。このような光透過状態において、例えば、光変調装置1bの背面側にバックライト等の光源を配置すれば、透過表示モードの表示装置を実現することができる。 As described above, a light transmission state can be realized. In such a light transmissive state, for example, if a light source such as a backlight is disposed on the back side of the light modulation device 1b, a display device in a transmissive display mode can be realized.
図6の(c)は、電極5aと電極5bとの間に電圧を印加した状態(横電界オン)を示したものである。なお、図6の(c)は、p型の液晶分子9を用いた場合について示されている。図6の(c)に示すように、液晶分子9は、形状異方性部材10の表面近傍に対して平行に配向し、形状異方性部材10の表面近傍以外の領域の第一の基板2a付近で、第一の基板2aの主面に対して平行に配向する。形状異方性部材10は、誘電泳動力、クーロン力、又は、電気エネルギー的な観点から説明される力、及び、液晶との界面エネルギーを極小にする力によって、その長軸が電気力線に対して平行になるように回転する。例えば、形状異方性部材10として、金属の薄片のような可視光反射性を有する材料を用いれば、形状異方性部材10の反射面が、第一の基板2a、及び、第二の基板2bの主面に対して平行に配向する。このため、入射光は、形状異方性部材10の反射面で入射側へ反射される。例えば、第一の基板2a側から光が入射する場合について、光の経路を図6の(c)中の矢印で示した。以上のようにして、光反射状態を実現することができる。更に、形状異方性部材10が同一平面上に配向する場合、最も明るい(光の利用効率が最も高い)光反射状態が得られる。 FIG. 6C shows a state in which a voltage is applied between the electrodes 5a and 5b (lateral electric field on). FIG. 6C shows the case where p-type liquid crystal molecules 9 are used. As shown in FIG. 6C, the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, and the first substrate in a region other than the vicinity of the surface of the shape anisotropic member 10. In the vicinity of 2a, it is oriented parallel to the main surface of the first substrate 2a. The shape anisotropy member 10 has its major axis changed to an electric force line by the dielectrophoretic force, the Coulomb force, the force explained from the viewpoint of electric energy, and the force that minimizes the interface energy with the liquid crystal. It rotates so that it becomes parallel to it. For example, if a material having visible light reflectivity such as a thin metal piece is used as the shape anisotropic member 10, the reflective surfaces of the shape anisotropic member 10 are the first substrate 2 a and the second substrate. Oriented parallel to the main surface of 2b. For this reason, incident light is reflected to the incident side by the reflecting surface of the shape anisotropic member 10. For example, in the case where light is incident from the first substrate 2a side, the light path is indicated by an arrow in FIG. As described above, a light reflection state can be realized. Further, when the shape anisotropic member 10 is oriented on the same plane, the brightest (highest light utilization efficiency) light reflection state is obtained.
実施形態2の光変調装置において、光変調層3に含まれる液晶及び形状異方性部材10は、光変調装置1bの背面側及び観察面側に偏光板を取り付け、観察面側の偏光板(第二の偏光板)の透過軸を背面側の偏光板(第一の偏光板)の透過軸に対して回転させたとき、形状異方性部材10の表面近傍の光透過率が変化し、かつ、形状異方性部材10の表面近傍の光透過率と、形状異方性部材10の表面近傍以外の領域の光透過率とが異なる材料の組み合わせである。ここで、上記のような光透過率の観測は、光変調装置1aの代わりに光変調装置1bを用いること以外、図4に示すような状態と同様に行われる。光透過率が上記のような状態となる液晶及び形状異方性部材10が含まれる光変調層3を用いることによって、形状異方性部材10の分散性が向上した光変調装置を実現することができる。この効果は、特に形状異方性部材10としてフレーク状の部材を用いた場合に顕著である。 In the light modulation device of the second embodiment, the liquid crystal and the shape anisotropic member 10 included in the light modulation layer 3 are attached to the back side and the observation surface side of the light modulation device 1b, and the polarizing plate on the observation surface side ( When the transmission axis of the second polarizing plate) is rotated with respect to the transmission axis of the back side polarizing plate (first polarizing plate), the light transmittance near the surface of the shape anisotropic member 10 changes, In addition, the light transmittance in the vicinity of the surface of the shape anisotropic member 10 and the light transmittance in a region other than the vicinity of the surface of the shape anisotropic member 10 are combinations of materials. Here, the observation of the light transmittance as described above is performed in the same manner as shown in FIG. 4 except that the light modulation device 1b is used instead of the light modulation device 1a. Realizing a light modulation device in which the dispersibility of the shape anisotropic member 10 is improved by using the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10. Can do. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
また、実施形態2の光変調装置において、液晶分子9が形状異方性部材10の表面近傍以外の領域で、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向し、第一の偏光板15aの透過軸、及び、第二の偏光板15bの透過軸をクロスニコルに取り付け、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して回転させたとき、時計回りを正、反時計回りを負とすると、形状異方性部材10が、正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する形状異方性部材(第一の形状異方性部材)と、正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する形状異方性部材(第二の形状異方性部材)とのうちの少なくとも一方を含み、正負の回転方向に対して、形状異方性部材10の表面近傍以外の領域の光透過率が変化しないことが好ましい。光透過率が上記のような状態となる液晶及び形状異方性部材10が含まれる光変調層3を用いることによって、形状異方性部材10の分散性が更に向上した光変調装置を実現することができる。この効果は、特に形状異方性部材10としてフレーク状の部材を用いた場合に顕著である。 In the light modulation device of the second embodiment, the liquid crystal molecules 9 are perpendicular to the main surfaces of the first substrate 2a and the second substrate 2b in a region other than the vicinity of the surface of the shape anisotropic member 10. The transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols, and the transmission axis of the second polarizing plate 15b is set to the transmission axis of the first polarizing plate 15a. When rotated counterclockwise, if the clockwise direction is positive and the counterclockwise direction is negative, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction, and in the negative rotation direction. On the other hand, the shape anisotropic member (first shape anisotropic member) in which the light transmittance near the surface decreases, and the light transmittance in the vicinity of the surface decreases with respect to the positive rotation direction, and in the negative rotation direction. On the other hand, there are few of the shape anisotropic members (second shape anisotropic members) whose light transmittance near the surface increases. And wherein one also for the positive and negative direction of rotation, it is preferable that the light transmittance of the region other than the vicinity of the surface of the shape anisotropy member 10 does not change. By using the light modulation layer 3 including the liquid crystal in which the light transmittance is in the above state and the shape anisotropic member 10, a light modulation device in which the dispersibility of the shape anisotropic member 10 is further improved is realized. be able to. This effect is particularly remarkable when a flaky member is used as the shape anisotropic member 10.
以上に、実施形態2の光変調装置における光透過率の状態について説明したが、このような状態を実現する液晶分子9及び形状異方性部材10の配向状態の一例について、以下に説明する。図7は、実施形態2の光変調装置における、液晶分子及び形状異方性部材の配向状態の一例を説明する模式図である。 The state of light transmittance in the light modulation device of Embodiment 2 has been described above. An example of the alignment state of the liquid crystal molecules 9 and the shape anisotropic member 10 that realize such a state will be described below. FIG. 7 is a schematic diagram illustrating an example of alignment states of liquid crystal molecules and shape anisotropic members in the light modulation device of the second embodiment.
第一の偏光板15aの透過軸、及び、第二の偏光板15bの透過軸がクロスニコルに取り付けられた場合について考える。図7中、点線の両矢印は第一の偏光板15aの透過軸の方位を示し、実線の両矢印は第二の偏光板15bの透過軸の方位を示し、互いの透過軸は直交している。以下では、第二の偏光板15bの透過軸の方位(0°)を基準に時計回りを正(+)と定義して、角度及び軸の方位を記載する。このように、第一の偏光板15aの透過軸(方位:90°)と第二の偏光板15bの透過軸(方位:0°)とを直交させた状態(クロスニコル状態)から、図7の(a)及び(b)に示すように、第二の偏光板15bの透過軸を第一の偏光板15aの透過軸に対して、-15°及び+15°回転させたとき、形状異方性部材10の表面近傍の光透過率が変化し、かつ、形状異方性部材10の表面近傍の光透過率とそれ以外の領域の光透過率とが異なる。更に、形状異方性部材10が、第二の偏光板15bの正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する形状異方性部材(図7の(a))と、第二の偏光板15bの正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する形状異方性部材(図7の(b))とを含み、第二の偏光板15bの正負の回転方向に対して、形状異方性部材10の表面近傍以外の領域の光透過率が変化しない。このため、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過した光は、図7の(a)及び(b)に示すような楕円偏光であると考えられる。 Consider a case where the transmission axis of the first polarizing plate 15a and the transmission axis of the second polarizing plate 15b are attached to crossed Nicols. In FIG. 7, the dotted double arrows indicate the direction of the transmission axis of the first polarizing plate 15 a, the solid double arrows indicate the direction of the transmission axis of the second polarizing plate 15 b, and the transmission axes are orthogonal to each other. Yes. In the following description, the clockwise direction is defined as positive (+) with reference to the azimuth (0 °) of the transmission axis of the second polarizing plate 15b, and the angle and the azimuth of the axis are described. Thus, from the state (cross Nicol state) in which the transmission axis (azimuth: 90 °) of the first polarizing plate 15a and the transmission axis (azimuth: 0 °) of the second polarizing plate 15b are orthogonal to each other, FIG. When the transmission axis of the second polarizing plate 15b is rotated by −15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 15a as shown in (a) and (b) of FIG. The light transmittance near the surface of the conductive member 10 changes, and the light transmittance near the surface of the shape anisotropic member 10 is different from the light transmittance in other regions. Further, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction of the second polarizing plate 15b, and decreases the light transmittance near the surface with respect to the negative rotation direction. The light transmittance near the surface decreases with respect to the positive rotation direction of the shape anisotropic member (FIG. 7A) and the second polarizing plate 15b, and the light near the surface with respect to the negative rotation direction. Including a shape anisotropic member (FIG. 7B) in which the transmittance increases, and in a region other than the vicinity of the surface of the shape anisotropic member 10 with respect to the positive and negative rotation directions of the second polarizing plate 15b. The light transmittance does not change. For this reason, the light transmitted through the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the shape anisotropic member 10 is considered to be elliptically polarized light as shown in (a) and (b) of FIG.
まず、図7の(a)に示すような楕円偏光状態を実現する液晶分子9の配向状態について、図7の(c)も参照して説明する。図7の(c)に示すように、液晶分子9が形状異方性部材10の表面近傍に対して平行に配向している場合、図7の(a)及び(c)を見比べると分かるように、第一の偏光板15aの透過軸に対して、液晶分子9の常光に対する屈折率noの方向が-45°、異常光に対する屈折率neの方向が+45°傾いている。光学位相差軸としては、液晶分子9のnoの方向は進相軸に相当し、液晶分子9のneの方向は遅相軸に相当する。第一の偏光板15aの透過軸と液晶分子9の配向状態が図7の(a)及び(c)に示すような関係である場合、第一の偏光板15aを透過した直線偏光は、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過すると、図7の(a)に示すような反時計回りの楕円偏光になる。 First, the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 7A will be described with reference to FIG. As shown in FIG. 7C, when the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, it can be seen by comparing FIGS. 7A and 7C. In addition, the direction of the refractive index no with respect to the ordinary light of the liquid crystal molecules 9 is inclined by −45 ° and the direction of the refractive index ne with respect to the extraordinary light is inclined by + 45 ° with respect to the transmission axis of the first polarizing plate 15a. As the optical phase difference axis, the no direction of the liquid crystal molecules 9 corresponds to the fast axis, and the ne direction of the liquid crystal molecules 9 corresponds to the slow axis. When the transmission axis of the first polarizing plate 15a and the alignment state of the liquid crystal molecules 9 are in a relationship as shown in FIGS. 7A and 7C, the linearly polarized light transmitted through the first polarizing plate 15a is shaped. When the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the anisotropic member 10 are transmitted, the light becomes counterclockwise elliptically polarized light as shown in FIG.
次に、図7の(b)に示すような楕円偏光状態を実現する液晶分子9の配向状態について、図7の(d)も参照して説明する。図7の(d)に示すように、液晶分子9が形状異方性部材10の表面近傍に対して平行に配向している場合、図7の(b)及び(d)を見比べると分かるように、第一の偏光板15aの透過軸に対して、液晶分子9の常光に対する屈折率noの方向が+45°、異常光に対する屈折率neの方向が-45°傾いている。第一の偏光板15aの透過軸と液晶分子9の配向状態が図7の(b)及び(d)に示すような関係である場合、第一の偏光板15aを透過した直線偏光は、形状異方性部材10の表面近傍に対して配向する液晶分子9を透過すると、図7の(b)に示すような時計回りの楕円偏光になる。 Next, the alignment state of the liquid crystal molecules 9 realizing the elliptical polarization state as shown in FIG. 7B will be described with reference to FIG. As shown in FIG. 7D, when the liquid crystal molecules 9 are aligned in parallel to the vicinity of the surface of the shape anisotropic member 10, it can be understood by comparing FIGS. 7B and 7D. In addition, the direction of the refractive index no with respect to ordinary light of the liquid crystal molecules 9 is tilted by + 45 ° and the direction of the refractive index ne with respect to extraordinary light is tilted by −45 ° with respect to the transmission axis of the first polarizing plate 15a. When the transmission axis of the first polarizing plate 15a and the alignment state of the liquid crystal molecules 9 are in a relationship as shown in FIGS. 7B and 7D, the linearly polarized light transmitted through the first polarizing plate 15a is shaped. When the liquid crystal molecules 9 oriented with respect to the vicinity of the surface of the anisotropic member 10 are transmitted, clockwise elliptically polarized light as shown in FIG. 7B is obtained.
以上より、実施形態2の光変調装置における形状異方性部材10の配向状態の一例としては、電圧無印加時に、形状異方性部材10が、第一の偏光板15aの透過軸と時計回りに45°で交差して、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する形状異方性部材(図7の(b))と、第一の偏光板15aの透過軸と反時計回りに45°で交差して、第一の基板2a、及び、第二の基板2bの主面に対して垂直に配向する形状異方性部材(図7の(d))とを含むものである。 From the above, as an example of the orientation state of the shape anisotropic member 10 in the light modulation device of Embodiment 2, the shape anisotropic member 10 rotates clockwise with respect to the transmission axis of the first polarizing plate 15a when no voltage is applied. And a shape anisotropic member (FIG. 7B) oriented perpendicularly to the main surface of the first substrate 2a and the second substrate 2b, and the first polarization A shape-anisotropic member that intersects the transmission axis of the plate 15a counterclockwise at 45 ° and is oriented perpendicularly to the principal surfaces of the first substrate 2a and the second substrate 2b (see FIG. 7 ( d)).
実施形態2の光変調装置によれば、液晶分子9が形状異方性部材10の表面近傍に対して秩序だって(平行に)配向し、かつ、形状異方性部材10の表面近傍に対する液晶分子9の配向状態(図6中では、紙面と垂直な面内に配向する)と、形状異方性部材10の表面近傍以外の領域での液晶分子9の配向状態とが異なるため、形状異方性部材10の分散性を向上させることができる。また、形状異方性部材10の分散性が向上することで、電圧無印加時における形状異方性部材10の配向性を向上させることができる。実施形態2の光変調装置が表示装置に適用される場合は、形状異方性部材の凝集に起因する、光透過率(透過表示モードの表示装置の場合)、光反射率(反射表示モードの表示装置の場合)、コントラスト、応答速度等の表示性能の低下を防止することができる。 According to the light modulation device of the second embodiment, the liquid crystal molecules 9 are ordered (parallel) with respect to the vicinity of the surface of the shape anisotropic member 10 and the liquid crystal molecules with respect to the vicinity of the surface of the shape anisotropic member 10. 9 is different from the orientation state of the liquid crystal molecules 9 in the region other than the vicinity of the surface of the shape anisotropic member 10 because the orientation state 9 is oriented in a plane perpendicular to the paper surface in FIG. The dispersibility of the adhesive member 10 can be improved. Moreover, the orientation of the shape anisotropic member 10 when no voltage is applied can be improved by improving the dispersibility of the shape anisotropic member 10. When the light modulation device according to the second embodiment is applied to a display device, the light transmittance (in the case of a display device in a transmissive display mode) and the light reflectance (in a reflection display mode) caused by aggregation of shape anisotropic members. In the case of a display device), it is possible to prevent deterioration in display performance such as contrast and response speed.
なお、実施形態2の光変調装置は、電気的作用で形状異方性部材10の向きを変えることによって透過光量又は反射光量を制御するものである。したがって、偏光板を用いる方式の液晶パネルとは違い、実際の使用時には、第一の基板2aの背面側、及び、第二の基板2bの観察面側に偏光板を配置する必要がない。このため、実施形態2の光変調装置は、光の利用効率に優れている。 Note that the light modulation device of the second embodiment controls the transmitted light amount or the reflected light amount by changing the direction of the shape anisotropic member 10 by an electric action. Therefore, unlike a liquid crystal panel using a polarizing plate, it is not necessary to dispose polarizing plates on the back side of the first substrate 2a and the observation surface side of the second substrate 2b in actual use. For this reason, the light modulation device of the second embodiment is excellent in light utilization efficiency.
(2)光変調装置の製造プロセス
実施形態2の光変調装置の製造プロセスは、液晶と形状異方性部材10との材料の組み合わせ以外、実施形態1の光変調装置の製造プロセスと同様である。
(2) Manufacturing Process of Light Modulation Device The manufacturing process of the light modulation device of the second embodiment is the same as the manufacturing process of the light modulation device of the first embodiment except for the combination of the material of the liquid crystal and the shape anisotropic member 10. .
[比較形態1]
比較形態1は、光変調層中の液晶分子が形状異方性部材の表面近傍に対して無秩序に配向する場合である。
[Comparison 1]
Comparative form 1 is a case where the liquid crystal molecules in the light modulation layer are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member.
比較形態1の光変調装置の構造について、以下に説明する。図8は、比較形態1の光変調装置を示す断面模式図であり、(a)は電圧無印加時の状態を示し、(b)は電圧印加時(縦電界オン)の状態を示し、(c)は電圧印加時(横電界オン)の状態を示す。図9は、比較形態1の光変調装置に配置された電極構造を示す平面模式図である。図8に示すように、光変調装置101は、背面側から観察面側に向かって順に、第一の基板102a、光変調層103、及び、第二の基板102bを備えている。第一の基板102a、及び、第二の基板102bは、表示領域を囲むように配置されたシール材(図示せず)を介して貼り合わされている。 The structure of the light modulation device according to comparative form 1 will be described below. FIGS. 8A and 8B are schematic cross-sectional views showing the light modulation device of Comparative Example 1. FIG. 8A shows a state when no voltage is applied, FIG. 8B shows a state when a voltage is applied (longitudinal electric field on) c) shows a state when a voltage is applied (lateral electric field is on). FIG. 9 is a schematic plan view showing an electrode structure arranged in the light modulation device of Comparative Embodiment 1. As shown in FIG. 8, the light modulation device 101 includes a first substrate 102a, a light modulation layer 103, and a second substrate 102b in order from the back surface side to the observation surface side. The first substrate 102a and the second substrate 102b are bonded to each other via a sealing material (not shown) arranged so as to surround the display area.
第一の基板102aは、背面側から観察面側に向かって順に、支持基板104a、一対の電極105a、105b、及び、垂直配向膜107aを有している。 The first substrate 102a includes a support substrate 104a, a pair of electrodes 105a and 105b, and a vertical alignment film 107a in order from the back surface side to the observation surface side.
一対の電極105a、105bは、IPS型の電極構造を有し、具体的には、互いの櫛歯が嵌合し合う一対の櫛歯電極である。図9に示すように、電極105a、105bは、幹部、及び、その幹部から延出した複数本の平行な枝部(櫛歯)を有するものであり、互いの枝部が一定の間隔(スペース)で交互に配置されている。図8の(c)に示すように、交流電源(AC)で電極105aと電極105bとの間に電圧を印加することによって、光変調層103に対して横電界(第一の基板102aに対して平行な電界)を形成することができる。 The pair of electrodes 105a and 105b has an IPS-type electrode structure, and specifically, is a pair of comb-teeth electrodes in which mutual comb teeth are fitted. As shown in FIG. 9, each of the electrodes 105a and 105b has a trunk portion and a plurality of parallel branch portions (comb teeth) extending from the trunk portion. ) Are alternately arranged. As shown in FIG. 8C, a voltage is applied between the electrode 105a and the electrode 105b with an AC power source (AC), whereby a lateral electric field (with respect to the first substrate 102a) is applied to the light modulation layer 103. Parallel electric fields).
垂直配向膜107aは、少なくとも表示領域の全体を覆うように配置されている。すなわち、光変調層103中の液晶分子109の初期配向は、第一の基板102aに対して垂直な方向に設定されている。 The vertical alignment film 107a is disposed so as to cover at least the entire display region. That is, the initial alignment of the liquid crystal molecules 109 in the light modulation layer 103 is set in a direction perpendicular to the first substrate 102a.
第二の基板102bは、観察面側から背面側に向かって順に、支持基板104b、対向電極106、絶縁膜108、及び、垂直配向膜107bを有している。 The second substrate 102b includes a support substrate 104b, a counter electrode 106, an insulating film 108, and a vertical alignment film 107b in order from the observation surface side to the back surface side.
対向電極106は、一対の電極105a、105bと対向して、表示領域の全体を覆うように平面状に配置されている。図8の(b)に示すように、交流電源(AC)で電極105a、105bと対向電極106との間に電圧を印加することによって、光変調層103に対して縦電界(第一の基板102a、及び、第二の基板102bに対して垂直な電界)を形成することができる。 The counter electrode 106 is arranged in a plane so as to face the pair of electrodes 105a and 105b and cover the entire display region. As shown in FIG. 8B, a vertical electric field (first substrate) is applied to the light modulation layer 103 by applying a voltage between the electrodes 105a and 105b and the counter electrode 106 with an AC power supply (AC). 102a and an electric field perpendicular to the second substrate 102b) can be formed.
垂直配向膜107bは、第一の基板102aの垂直配向膜107aと同様にして配置される。 The vertical alignment film 107b is disposed in the same manner as the vertical alignment film 107a of the first substrate 102a.
光変調層103は、液晶中に形状異方性部材110が分散されたものである。 The light modulation layer 103 is obtained by dispersing the shape anisotropic member 110 in the liquid crystal.
比較形態1の光変調装置において、形状異方性部材110は、その表面近傍に対して液晶分子109が無秩序に配向するものである。また、形状異方性部材110は、電圧無印加時に、第一の基板102a、及び、第二の基板102bの主面に対して垂直に配向している。形状異方性部材110の表面近傍とは、形状異方性部材110の表面から1μm以内の範囲を示す。第一の基板102a、及び、第二の基板102bの主面とは、互いの対向する側の表面を示す。 In the light modulation device of comparative form 1, the shape anisotropic member 110 has liquid crystal molecules 109 aligned randomly with respect to the vicinity of the surface thereof. Further, the shape anisotropic member 110 is oriented perpendicular to the main surfaces of the first substrate 102a and the second substrate 102b when no voltage is applied. The vicinity of the surface of the shape anisotropic member 110 indicates a range within 1 μm from the surface of the shape anisotropic member 110. The main surfaces of the first substrate 102a and the second substrate 102b indicate surfaces on the opposite sides of each other.
比較形態1の光変調装置においては、液晶分子109が形状異方性部材110の表面近傍に対して無秩序に配向するため、光変調装置101の背面側及び観察面側に偏光板を取り付け、観察面側の偏光板の透過軸を背面側の偏光板の透過軸に対して回転させたとき、形状異方性部材110の表面近傍の光透過率は変化しない。上記のような光透過率の観測は、図10に示すような状態で行われる。図10は、比較形態1の光変調装置に対して、光透過率の観測を行う状態を示す断面模式図である。図10に示すように、光透過率の観測は、偏光顕微鏡を用いて行われ、光変調装置101の背面側に第一の偏光板115aを取り付け、光変調装置101の観察面側に第二の偏光板115bを取り付け、第二の偏光板115bの透過軸を第一の偏光板115aの透過軸に対して回転させて行われる。具体的には、偏光顕微鏡のステージ上に光変調装置101を載置し、偏光子(第一の偏光板115aに相当)の透過軸の方位、及び、検光子(第二の偏光板115bに相当)の透過軸の方位を、所定の関係(例えば、クロスニコル(直交状態))となるように設定し、透過観察にて、検光子の透過軸を偏光子の透過軸に対して回転させて、形状異方性部材110の表面近傍及びその周辺を観察する方法で行われる。偏光顕微鏡としては一般的な機器を用いることができる。 In the light modulation device of comparative form 1, since the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110, polarizing plates are attached to the back side and the observation surface side of the light modulation device 101 for observation. When the transmission axis of the polarizing plate on the surface side is rotated with respect to the transmission axis of the polarizing plate on the back side, the light transmittance near the surface of the shape anisotropic member 110 does not change. The light transmittance as described above is observed in a state as shown in FIG. FIG. 10 is a schematic cross-sectional view illustrating a state in which light transmittance is observed with respect to the light modulation device according to the first comparative embodiment. As shown in FIG. 10, the light transmittance is observed using a polarizing microscope. A first polarizing plate 115 a is attached to the back side of the light modulation device 101, and a second light is observed on the observation surface side of the light modulation device 101. The polarizing plate 115b is attached, and the transmission axis of the second polarizing plate 115b is rotated with respect to the transmission axis of the first polarizing plate 115a. Specifically, the light modulation device 101 is placed on the stage of a polarizing microscope, the orientation of the transmission axis of the polarizer (corresponding to the first polarizing plate 115a), and the analyzer (on the second polarizing plate 115b). The transmission axis of the analyzer is set to have a predetermined relationship (for example, crossed Nicols (orthogonal state)), and the transmission axis of the analyzer is rotated with respect to the transmission axis of the polarizer in transmission observation. Thus, the method is performed by observing the vicinity of the surface of the shape anisotropic member 110 and the vicinity thereof. A general instrument can be used as the polarizing microscope.
以上に、比較形態1の光変調装置における光透過率の状態について説明したが、このような状態を実現する液晶分子109及び形状異方性部材110の配向状態について、以下に説明する。図11は、比較形態1の光変調装置における、液晶分子及び形状異方性部材の配向状態を説明する模式図である。図11は、図10に示した状態を観察面側から見た状態(平面図)に対応している。 As described above, the state of light transmittance in the light modulation device of the comparative form 1 has been described. The alignment state of the liquid crystal molecules 109 and the shape anisotropic member 110 that realize such a state will be described below. FIG. 11 is a schematic diagram for explaining the alignment state of the liquid crystal molecules and the shape anisotropic member in the light modulation device of Comparative Embodiment 1. FIG. 11 corresponds to a state (plan view) when the state shown in FIG. 10 is viewed from the observation surface side.
第一の偏光板115aの透過軸、及び、第二の偏光板115bの透過軸がクロスニコルに取り付けられた場合について考える。図11中、点線の両矢印は第一の偏光板115aの透過軸の方位を示し、実線の両矢印は第二の偏光板115bの透過軸の方位を示し、互いの透過軸は直交している。以下では、第二の偏光板115bの透過軸の方位(0°)を基準に時計回りを正(+)と定義して、角度及び軸の方位を記載する。このように、第一の偏光板115aの透過軸(方位:90°)と第二の偏光板115bの透過軸(方位:0°)とを直交させた状態(クロスニコル状態)から、図11に示すように、第二の偏光板115bの透過軸を第一の偏光板115aの透過軸に対して、-15°及び+15°回転させたとき、形状異方性部材110の表面近傍の光透過率は変化しない。このため、形状異方性部材110の表面近傍に対して配向する液晶分子109を透過した光は、図11に示すような無偏光(色々な偏光状態の集まり)であると考えられる。図11に示すような無偏光状態を実現する液晶分子109の配向状態としては、液晶分子109が形状異方性部材110の表面近傍に対して無秩序に配向する状態が考えられ、第二の偏光板115bの透過軸を回転させた位置によらず、光が同程度透過する状態であると考えられる。 Consider a case where the transmission axis of the first polarizing plate 115a and the transmission axis of the second polarizing plate 115b are attached to crossed Nicols. In FIG. 11, the dotted double arrows indicate the orientation of the transmission axis of the first polarizing plate 115 a, the solid double arrows indicate the orientation of the transmission axis of the second polarizing plate 115 b, and the transmission axes are orthogonal to each other. Yes. In the following, the angle and the axis direction are described by defining the clockwise direction as positive (+) with respect to the direction (0 °) of the transmission axis of the second polarizing plate 115b. Thus, from the state (cross Nicol state) in which the transmission axis (azimuth: 90 °) of the first polarizing plate 115a and the transmission axis (azimuth: 0 °) of the second polarizing plate 115b are orthogonal to each other, FIG. As shown in FIG. 4, when the transmission axis of the second polarizing plate 115b is rotated by −15 ° and + 15 ° with respect to the transmission axis of the first polarizing plate 115a, the light near the surface of the shape anisotropic member 110 The transmittance does not change. For this reason, the light transmitted through the liquid crystal molecules 109 oriented with respect to the vicinity of the surface of the shape anisotropic member 110 is considered to be non-polarized light (a collection of various polarization states) as shown in FIG. As the alignment state of the liquid crystal molecules 109 realizing the non-polarized state as shown in FIG. 11, a state where the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110 is considered. Regardless of the position where the transmission axis of the plate 115b is rotated, it is considered that light is transmitted to the same extent.
比較形態1の光変調装置によれば、液晶分子109が形状異方性部材110の表面近傍に対して無秩序に配向するため、形状異方性部材の分散性を向上させることができず、形状異方性部材110が凝集しやすい。また、形状異方性部材110が凝集しやすいため、電圧無印加時における形状異方性部材110の配向性が悪化してしまう。比較形態1の光変調装置が表示装置に適用される場合は、形状異方性部材の凝集に起因して、光透過率(透過表示モードの表示装置の場合)、光反射率(反射表示モードの表示装置の場合)、コントラスト、応答速度等の表示性能が低下してしまう。 According to the light modulation device of comparative form 1, since the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110, the dispersibility of the shape anisotropic member cannot be improved. The anisotropic member 110 tends to aggregate. Further, since the shape anisotropic member 110 is likely to aggregate, the orientation of the shape anisotropic member 110 when no voltage is applied deteriorates. When the light modulation device of comparative form 1 is applied to a display device, light transmittance (in the case of a display device in transmissive display mode), light reflectance (reflection display mode) due to aggregation of shape anisotropic members Display performance), display performance such as contrast and response speed deteriorates.
以下に、比較形態1の光変調装置に関する比較例を示す。以下の比較例では、形状異方性部材110として、フレーク状の部材を用いた。 Below, the comparative example regarding the optical modulation apparatus of the comparative form 1 is shown. In the following comparative examples, a flake-shaped member was used as the shape anisotropic member 110.
(比較例1)
比較例1は、形状異方性部材110として、外表面に重合体層を有するものを用いた場合であり、重合体層が、形状異方性部材110のコア部を被覆するコーティング層と、コーティング層を表面修飾する表面修飾層とで構成された2層構造を有する場合である。比較例1の光変調装置の製造プロセスは、以下のようにした。
(Comparative Example 1)
Comparative Example 1 is a case where the shape anisotropic member 110 has a polymer layer on the outer surface, and the polymer layer covers a core portion of the shape anisotropic member 110; and In this case, the coating layer has a two-layer structure composed of a surface modification layer for modifying the surface. The manufacturing process of the light modulation device of Comparative Example 1 was as follows.
(a)混合物の作製
形状異方性部材110、液晶、及び、光変調層103の厚みを制御するためのプラスチックビーズを混合し、超音波照射を60分行うことにより、混合物を作製した。形状異方性部材110としては、コア部としてのアルミニウムフレーク、コーティング層としてのシリカ系絶縁体A1、及び、表面修飾層としての疎水処理された重合体B3で構成されたものを用い、その平均粒径は7μmであった。形状異方性部材110は、事前に洗浄されたものを用いた。洗浄方法としては、まず、IPAを添加した状態で超音波照射を行った後に遠心分離を行う作業を3回繰り返し、次に、アセトンを添加した状態で超音波照射を行った後に遠心分離を行う作業を3回繰り返し、最後に、自然乾燥させる方法を用いた。形状異方性部材110の混合量は、液晶に対して10wt%となるようにした。液晶としては、メルク社製のフッ素系液晶(Δε=20.4)を用いた。プラスチックビーズとしては、積水化学工業社製のプラスチックビーズ(商品名:ミクロパール)を用い、その平均粒径は10μmであった。プラスチックビーズの混合量は、液晶に対して0.2wt%となるようにした。
(A) Preparation of the mixture The shape anisotropic member 110, the liquid crystal, and plastic beads for controlling the thickness of the light modulation layer 103 were mixed and subjected to ultrasonic irradiation for 60 minutes to prepare a mixture. As the shape anisotropic member 110, an aluminum flake as a core portion, a silica-based insulator A1 as a coating layer, and a hydrophobically treated polymer B3 as a surface modification layer are used, and the average thereof is used. The particle size was 7 μm. The shape anisotropic member 110 used was washed in advance. As a cleaning method, first, the operation of performing centrifugation after repeating the ultrasonic irradiation with IPA added is repeated three times, and then performing the centrifugal separation after performing the ultrasonic irradiation with adding acetone. The operation was repeated three times, and finally the method of natural drying was used. The mixing amount of the shape anisotropic member 110 was 10 wt% with respect to the liquid crystal. As the liquid crystal, a fluorine-based liquid crystal (Δε = 20.4) manufactured by Merck & Co. was used. As the plastic beads, plastic beads (trade name: Micropearl) manufactured by Sekisui Chemical Co., Ltd. were used, and the average particle size was 10 μm. The mixing amount of the plastic beads was 0.2 wt% with respect to the liquid crystal.
(b)光変調層の形成
混合物を、第一の基板102aに滴下した後、第一の基板102a、及び、第二の基板102bを大気中で貼り合わせることで光変調層103を形成した。光変調層103の厚みは10μmであった。第一の基板102aにおいて、一対の電極105a、105bとしては、材料はITOであり、電極幅は10μm、電極間隔(スペース)は10μm、厚みは100nmであった。第二の基板102bにおいて、対向電極106としては、材料はITOであり、厚みは100nmであった。絶縁膜108としては、材料は凸版印刷社製のカラーフィルタ用途として用いられるオーバーコート材料(誘電率εr=3.4)であり、厚みは3μmであった。垂直配向膜107a、107bとしては、日産化学社製の配向膜(商品名:SE-4811、表面自由エネルギー:35.0)を用い、その厚みは100nmであった。以上により、光変調装置101が完成した。このような構成では、液晶分子109が形状異方性部材110の表面近傍に対して無秩序に配向してしまい、形状異方性部材110の分散性を向上させることができない。
(B) Formation of Light Modulation Layer After the mixture was dropped onto the first substrate 102a, the light modulation layer 103 was formed by bonding the first substrate 102a and the second substrate 102b in the air. The thickness of the light modulation layer 103 was 10 μm. In the first substrate 102a, the pair of electrodes 105a and 105b was made of ITO, the electrode width was 10 μm, the electrode interval (space) was 10 μm, and the thickness was 100 nm. In the second substrate 102b, the counter electrode 106 is made of ITO and has a thickness of 100 nm. The material for the insulating film 108 is an overcoat material (dielectric constant εr = 3.4) used as a color filter manufactured by Toppan Printing Co., Ltd., and the thickness was 3 μm. As the vertical alignment films 107a and 107b, an alignment film (trade name: SE-4811, surface free energy: 35.0) manufactured by Nissan Chemical Industries, Ltd. was used, and the thickness thereof was 100 nm. Thus, the light modulation device 101 is completed. In such a configuration, the liquid crystal molecules 109 are randomly aligned with respect to the vicinity of the surface of the shape anisotropic member 110, and the dispersibility of the shape anisotropic member 110 cannot be improved.
[評価結果]
実施例1、2、9、及び、比較例1の光変調装置について、(A)光透過状態の観察、及び、(B)電圧印加/無印加のスイッチング動作評価を行った。
[Evaluation results]
For the light modulation devices of Examples 1, 2, 9 and Comparative Example 1, (A) observation of the light transmission state and (B) switching operation evaluation with or without voltage application were performed.
(A)光透過状態の観察
図12は、実施例1、2、9の光変調装置の光透過状態の観察結果を示す写真である。図13は、比較例1の光変調装置の光透過状態の観察結果を示す写真である。なお、図12、及び、図13は、電圧無印加時の状態を示している。光透過状態の観察方法としては、図4、及び、図10を参照して説明したように、第一の偏光板15a(115a)の透過軸(方位:90°)と第二の偏光板15b(115b)の透過軸(方位:0°)とを直交させた状態(クロスニコル状態)から、第二の偏光板15b(115b)の透過軸を第一の偏光板15a(115a)の透過軸に対して、-15°から+15°まで回転させて、第二の偏光板15b(115b)の光変調装置とは反対側から観察する方法を採用した。図12、及び、図13中の「-15°」、「0°」、及び、「+15°」は、第二の偏光板15b(115b)の透過軸の回転角を示す。図12中の「明」は、クロスニコル状態(0°)に対して光透過率が増加した状態を示し、「暗」は、クロスニコル状態(0°)に対して光透過率が減少した状態を示す。
(A) Observation of light transmission state FIG. 12 is a photograph showing the observation results of the light transmission state of the light modulation devices of Examples 1, 2, and 9. FIG. 13 is a photograph showing an observation result of a light transmission state of the light modulation device of Comparative Example 1. 12 and 13 show the state when no voltage is applied. As an observation method of the light transmission state, as described with reference to FIGS. 4 and 10, the transmission axis (azimuth: 90 °) of the first polarizing plate 15a (115a) and the second polarizing plate 15b. From the state (cross Nicol state) in which the transmission axis (azimuth: 0 °) of (115b) is orthogonal, the transmission axis of the second polarizing plate 15b (115b) is the transmission axis of the first polarizing plate 15a (115a). On the other hand, a method of rotating from −15 ° to + 15 ° and observing from the side opposite to the light modulation device of the second polarizing plate 15b (115b) was adopted. “−15 °”, “0 °”, and “+ 15 °” in FIGS. 12 and 13 indicate the rotation angle of the transmission axis of the second polarizing plate 15b (115b). “Bright” in FIG. 12 indicates a state in which the light transmittance is increased with respect to the crossed Nicol state (0 °), and “Dark” indicates that the light transmittance is decreased with respect to the crossed Nicol state (0 °). Indicates the state.
図12に示すように、実施例1、2、9の光変調装置においては、第二の偏光板15bの透過軸の回転に伴って、形状異方性部材10の表面近傍の光抜け量、すなわち、光透過率が変化し、かつ、形状異方性部材10の表面近傍の光透過率とそれ以外の領域の光透過率とが異なっていた。更に、形状異方性部材10が、第二の偏光板15bの正の回転方向(0°から+15°へ)に対して表面近傍の光透過率が増加し、負の回転方向(0°から-15°へ)に対して表面近傍の光透過率が減少する形状異方性部材10a(実施例1)、10c(実施例2)、10e(実施例9)と、第二の偏光板15bの正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する形状異方性部材10b(実施例1)、10d(実施例2)、10f(実施例9)とを含み、第二の偏光板15bの正負の回転方向に対して、形状異方性部材10の表面近傍以外の領域の光透過率が変化しなかった。一方、図13に示すように、比較例1の光変調装置においては、第二の偏光板115bの透過軸の回転に伴って、形状異方性部材110の表面近傍の光抜け量、すなわち、光透過率が変化しなかった。 As shown in FIG. 12, in the light modulation devices of Examples 1, 2, and 9, with the rotation of the transmission axis of the second polarizing plate 15b, the amount of light leakage near the surface of the shape anisotropic member 10, That is, the light transmittance was changed, and the light transmittance near the surface of the shape anisotropic member 10 was different from the light transmittance in other regions. Furthermore, the shape anisotropic member 10 increases the light transmittance near the surface with respect to the positive rotation direction (from 0 ° to + 15 °) of the second polarizing plate 15b, and the negative rotation direction (from 0 °). Shape anisotropic members 10a (Example 1), 10c (Example 2), 10e (Example 9) in which the light transmittance in the vicinity of the surface decreases with respect to −15 °) and the second polarizing plate 15b Shape anisotropic members 10b (Example 1), 10d (Example) in which the light transmittance near the surface decreases with respect to the positive rotation direction of the light and the light transmittance near the surface increases with respect to the negative rotation direction. 2) 10f (Example 9), and the light transmittance of the region other than the vicinity of the surface of the shape anisotropic member 10 did not change with respect to the positive and negative rotation directions of the second polarizing plate 15b. On the other hand, as shown in FIG. 13, in the light modulation device of Comparative Example 1, with the rotation of the transmission axis of the second polarizing plate 115b, the amount of light leakage near the surface of the shape anisotropic member 110, that is, The light transmittance did not change.
(B)電圧印加/無印加のスイッチング動作評価
図14は、実施例1、2、9の光変調装置に対するスイッチング動作評価結果を示す写真である。図15は、比較例1の光変調装置に対するスイッチング動作評価結果を示す写真である。スイッチング動作の評価方法としては、図1の(a)及び(c)、並びに、図8の(a)及び(c)を参照して説明したような、電圧無印加時(横電界オフ)から電圧印加時(横電界オン)へスイッチング動作させた状態における、形状異方性部材10(110)の配向状態を観察する方法を採用した。印加電圧は、Vppが10V、周期が33.4msecの交流電圧とし、電極5b(105b)に印加した。
(B) Evaluation of switching operation with and without voltage application FIG. 14 is a photograph showing the results of switching operation evaluation for the light modulation devices of Examples 1, 2, and 9. FIG. 15 is a photograph showing switching operation evaluation results for the optical modulation device of Comparative Example 1. As an evaluation method of the switching operation, from the time of no voltage application (lateral electric field off) as described with reference to FIGS. 1A and 1C and FIG. 8A and FIG. A method of observing the orientation state of the shape anisotropic member 10 (110) in a state where the switching operation was performed during voltage application (transverse electric field on) was adopted. The applied voltage was an AC voltage having a Vpp of 10 V and a period of 33.4 msec, and was applied to the electrode 5b (105b).
図14、及び、図15に示すように、同じ量の形状異方性部材が液晶中に分散されているにも関わらず、実施例1、2、9の光変調装置においては、比較例1の光変調装置と比較して、形状異方性部材10の分散性が良好であった。そのため、実施例1、2、9の光変調装置においては、電圧印加によって形状異方性部材10が一様にスイッチング動作し、良好な光透過状態及び光反射状態を実現することができた。形状異方性部材10の分散性は、実施例9、実施例1、及び、実施例2の順に良くなり、実施例2の光変調装置において特に優れていた。一方、図15に示すように、比較例1の光変調装置においては、形状異方性部材110の分散性が悪く、凝集している部分(図15中の点線で囲まれた部分)があった。そのため、比較例1の光変調装置においては、電圧印加によって形状異方性部材110が一様にスイッチング動作せず、その動作性能が悪かった。 As shown in FIGS. 14 and 15, the light modulating devices of Examples 1, 2, and 9 are comparative examples 1 in spite of the same amount of shape anisotropic member being dispersed in the liquid crystal. Compared with the light modulation device, the dispersibility of the shape anisotropic member 10 was good. Therefore, in the light modulation devices of Examples 1, 2, and 9, the shape anisotropic member 10 was uniformly switched by voltage application, and a good light transmission state and light reflection state could be realized. The dispersibility of the shape anisotropic member 10 was improved in the order of Example 9, Example 1, and Example 2, and was particularly excellent in the light modulation device of Example 2. On the other hand, as shown in FIG. 15, in the light modulation device of Comparative Example 1, the dispersibility of the shape anisotropic member 110 is poor and there are aggregated portions (portions surrounded by dotted lines in FIG. 15). It was. Therefore, in the light modulation device of Comparative Example 1, the shape anisotropic member 110 does not perform a uniform switching operation due to voltage application, and the operation performance is poor.
[付記]
以下に、本発明の光変調装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
[Appendix]
Examples of preferred embodiments of the light modulation device of the present invention are given below. Each example may be appropriately combined without departing from the scope of the present invention.
上記液晶中の液晶分子は、上記表面近傍以外の領域で、上記第一の基板及び上記第二の基板の主面に対して垂直に配向し、上記第一の偏光板の透過軸、及び、上記第二の偏光板の透過軸をクロスニコルに取り付け、上記第二の偏光板の透過軸を上記第一の偏光板の透過軸に対して回転させたとき、時計回りを正、反時計回りを負とすると、上記形状異方性部材は、正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する第一の形状異方性部材と、正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する第二の形状異方性部材とのうちの少なくとも一方を含み、正負の回転方向に対して、上記表面近傍以外の領域の光透過率は変化しないものであってもよい。これにより、上記形状異方性部材の分散性が更に向上した光変調装置を実現することができる。ここで、上記形状異方性部材は、上記第一の形状異方性部材及び上記第二の形状異方性部材の少なくとも一方を含んでいることが好ましいが、上記形状異方性部材の分散性を更に向上させる観点からは、上記第一の形状異方性部材及び上記第二の形状異方性部材の両方を含んでいることがより好ましい。 The liquid crystal molecules in the liquid crystal are aligned perpendicular to the main surfaces of the first substrate and the second substrate in a region other than the vicinity of the surface, and the transmission axis of the first polarizing plate, and When the transmission axis of the second polarizing plate is attached to crossed Nicols and the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the first polarizing plate, the clockwise direction is positive or counterclockwise. Is negative, the shape anisotropic member has a first shape in which the light transmittance near the surface increases in the positive rotation direction and the light transmittance near the surface decreases in the negative rotation direction. Among the anisotropic member and the second shape anisotropic member in which the light transmittance near the surface decreases with respect to the positive rotation direction and the light transmittance near the surface increases with respect to the negative rotation direction. The light transmittance of the region other than the vicinity of the surface does not change with respect to the positive and negative rotation directions. It may be. Thereby, the light modulation device in which the dispersibility of the shape anisotropic member is further improved can be realized. Here, the shape anisotropic member preferably includes at least one of the first shape anisotropic member and the second shape anisotropic member. From the viewpoint of further improving the properties, it is more preferable that both the first shape anisotropic member and the second shape anisotropic member are included.
上記形状異方性部材は、上記第一の基板及び上記第二の基板の主面に対して垂直に配向し、上記液晶分子は、上記形状異方性部材の表面近傍に対して垂直に配向するものであってもよい。これにより、上記形状異方性部材の分散性を更に向上させることができる。 The shape anisotropic member is aligned perpendicular to the main surfaces of the first substrate and the second substrate, and the liquid crystal molecules are aligned perpendicular to the surface vicinity of the shape anisotropic member. You may do. Thereby, the dispersibility of the shape anisotropic member can be further improved.
上記形状異方性部材は、外表面に重合体層を有するものであってもよい。これにより、上記形状異方性部材の表面近傍に対して上記液晶分子を好適に秩序だって配向させることができる。 The shape anisotropic member may have a polymer layer on the outer surface. Thereby, the liquid crystal molecules can be suitably ordered in the vicinity of the surface of the shape anisotropic member.
上記重合体層は、第一の重合体層と、上記第一の重合体層を表面修飾する第二の重合体層とを有するものであってもよい。これにより、上記第一の重合体層が上記形状異方性部材から離脱せず、更に、上記第二の重合体層を形成する重合体が上記第一の重合体層を形成する重合体と重合することによって、上記第二の重合体層が上記第一の重合体層から離脱しないため、上記形状異方性部材を効果的に利用することができる。 The polymer layer may include a first polymer layer and a second polymer layer that surface-modifies the first polymer layer. As a result, the first polymer layer does not leave the shape anisotropic member, and the polymer forming the second polymer layer is a polymer that forms the first polymer layer. Since the second polymer layer is not detached from the first polymer layer by polymerization, the shape anisotropic member can be effectively used.
上記形状異方性部材は、金属の薄片であってもよい。これにより、上記形状異方性部材で光を反射する効果を利用して、光反射状態を好適に実現することができる。 The shape anisotropic member may be a metal flake. Thereby, the light reflection state can be suitably realized by utilizing the effect of reflecting light by the shape anisotropic member.
上記第一の重合体層は、エチレン性不飽和基を有する単量体を重合させて形成されたものであり、かつ、2個以上のエチレン性不飽和基を有する単量体を構成成分として少なくとも5重量%含み、上記第二の重合体層は、一般式R1SiX(R1は、炭素数1~21のアルキル基を表す。Xは、ハロゲン原子又は炭素数1~4のアルコキシ基を表す。)で表される有機シラン化合物から形成されたものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer is formed by polymerizing a monomer having an ethylenically unsaturated group, and has a monomer having two or more ethylenically unsaturated groups as a constituent component. The second polymer layer containing at least 5% by weight is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms. X represents a halogen atom or an alkoxy group having 1 to 4 carbon atoms. It may be formed from an organosilane compound represented by. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記第一の重合体層は、エチレン性不飽和基を有する単量体を重合させて形成されたものであり、かつ、2個以上のエチレン性不飽和基を有する単量体を構成成分として少なくとも5重量%含み、上記第二の重合体層は、一般式R1SiX(R1は、炭素数1~21の直鎖アルキル基を表す。Xは、塩素原子、臭気素原子、メトキシ基、又は、エトキシ基を表す。)で表される有機シラン化合物から形成されたものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer is formed by polymerizing a monomer having an ethylenically unsaturated group, and has a monomer having two or more ethylenically unsaturated groups as a constituent component. comprises at least 5 wt%, the second polymer layer has the general formula R1SiX 3 (R1 is .X which represents a linear alkyl group having 1 to 21 carbon atoms, a chlorine atom, odor atom, a methoxy group, or , Which represents an ethoxy group). Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記2個以上のエチレン性不飽和基を有する単量体は、Y-メチロールアルキルZ(メタ)アクリレート(Y及びZは、Y≧Z≧2を満たす整数を表す。)、ポリオキシアルキレングリコールジ(メタ)アクリレート、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、及び、ジアリルアクリルアミドからなる群より選択される少なくとも1つの単量体であってもよい。これにより、上記第一の重合体層をより効果的に活用することができる。 The monomer having two or more ethylenically unsaturated groups is Y-methylolalkyl Z (meth) acrylate (Y and Z are integers satisfying Y ≧ Z ≧ 2), polyoxyalkylene glycol diester. It may be at least one monomer selected from the group consisting of (meth) acrylate, triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, and diallylacrylamide. Thereby, said 1st polymer layer can be utilized more effectively.
上記第一の重合体層は、第一の官能基を有し、上記第二の重合体層は、長鎖アルキル基と、上記第一の官能基と反応可能な第二の官能基とを有するものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer has a first functional group, and the second polymer layer has a long-chain alkyl group and a second functional group capable of reacting with the first functional group. You may have. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記第一の官能基及び上記第二の官能基は、共有結合を形成するものであってもよい。これにより、上記第一の重合体層及び上記第二の重合体層をより効果的に活用することができる。 The first functional group and the second functional group may form a covalent bond. Thereby, said 1st polymer layer and said 2nd polymer layer can be utilized more effectively.
上記長鎖アルキル基は、上記第一の重合体層の表面にグラフト重合されたグラフト重合体鎖に結合されていてもよい。上記長鎖アルキル基は、炭素数が6以上であってもよい。これにより、上記第一の重合体層及び上記第二の重合体層をより効果的に活用することができる。 The long chain alkyl group may be bonded to a graft polymer chain graft-polymerized on the surface of the first polymer layer. The long chain alkyl group may have 6 or more carbon atoms. Thereby, said 1st polymer layer and said 2nd polymer layer can be utilized more effectively.
上記第一の重合体層は、ラジカル連鎖移動可能な官能基、及び、ラジカル重合開始能を有する活性基のうちの少なくとも一方を有し、上記第二の重合体層は、長鎖アルキル基を有するグラフト重合体鎖を有するものであってもよい。これにより、上記重合体層の被覆率が高くなるため、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer has at least one of a functional group capable of radical chain transfer and an active group having radical polymerization initiating ability, and the second polymer layer has a long-chain alkyl group. It may have a graft polymer chain. As a result, since the coverage of the polymer layer is increased, the liquid crystal molecules can be aligned perpendicular to the vicinity of the surface of the shape anisotropic member, thereby preventing aggregation of the shape anisotropic member. , The dispersibility can be improved.
上記第二の重合体層は、上記第一の重合体層とアルミノシリケート結合、アルミノチタネート結合、又は、アルミノジルコネート結合を形成する、アルミニウムアルコキシド重縮合物であってもよい。上記第一の重合体層は、プラスチック材料から形成されたものであってもよい。これにより、上記第二の重合体層が親水性を有するため、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The second polymer layer may be an aluminum alkoxide polycondensate that forms an aluminosilicate bond, an aluminotitanate bond, or an aluminosirconate bond with the first polymer layer. The first polymer layer may be formed from a plastic material. Thereby, since the second polymer layer has hydrophilicity, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, and aggregation of the shape anisotropic member can be performed. And the dispersibility can be improved.
上記第一の重合体層は、シリカから形成されたものであり、上記第二の重合体層は、一般式R1SiX(R1は、炭素数1~21のアルキル基を表す。Xは、ハロゲン原子又は炭素数1~4のアルコキシ基を表す。)で表される有機シラン化合物から形成されたものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer is formed from silica, and the second polymer layer is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms. X is a halogen atom. It may be formed from an organic silane compound represented by the following: an atom or an alkoxy group having 1 to 4 carbon atoms. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記第一の重合体層は、シリカから形成されたものであり、上記第二の重合体層は、一般式R2SiX(R2は、1~5デバイのダイポールモーメントを有する基を表す。Xは、ハロゲン原子又は炭素数1~4のアルコキシ基を表す。)で表される有機シラン化合物から形成されたものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer is formed from silica, and the second polymer layer is represented by the general formula R2SiX 3 (R2 represents a group having a dipole moment of 1 to 5 Debye. X represents And a halogen atom or an alkoxy group having 1 to 4 carbon atoms). Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記第一の重合体層は、シリカから形成されたものであり、上記第二の重合体層は、一般式R1SiX(R1は、炭素数1~21のアルキル基を表す。Xは、ハロゲン原子又は炭素数1~4のアルコキシ基を表す。)で表される有機シラン化合物と、一般式R2SiX(R2は、1~5デバイのダイポールモーメントを有する基を表す。Xは、ハロゲン原子又は炭素数1~4のアルコキシ基を表す。)で表される有機シラン化合物との混合物から形成されたものであってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The first polymer layer is formed from silica, and the second polymer layer is represented by the general formula R1SiX 3 (R1 represents an alkyl group having 1 to 21 carbon atoms. X is a halogen atom. And an organic silane compound represented by the general formula R2SiX 3 (R2 represents a group having a dipole moment of 1 to 5 Debye. X is a halogen atom or It may be formed from a mixture with an organic silane compound represented by (C 1 -C 4 alkoxy group). Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記重合体層は、重量平均分子量が1万以上、100万以下のエチレングリコール重合体、及び、重量平均分子量が1万以上、100万以下のプロピレングリコール重合体のうちの少なくとも一方を含むものであってもよい。これにより、上記液晶分子に対する配向規制力が弱まるため、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The polymer layer includes at least one of an ethylene glycol polymer having a weight average molecular weight of 10,000 or more and 1,000,000 or less and a propylene glycol polymer having a weight average molecular weight of 10,000 or more and 1,000,000 or less. There may be. Thereby, since the alignment regulating force for the liquid crystal molecules is weakened, the liquid crystal molecules can be aligned perpendicular to the vicinity of the surface of the shape anisotropic member, preventing aggregation of the shape anisotropic member, The dispersibility can be improved.
上記重合体層は、ノニルフェノールエチレンオキシド付加物を含むものであってもよい。上記ノニルフェノールエチレンオキシド付加物の存在量は、上記形状異方性部材の表面全体に存在する場合を100重量%とすると、2重量%以上、80重量%以下であってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The polymer layer may contain a nonylphenol ethylene oxide adduct. The abundance of the nonylphenol ethylene oxide adduct may be 2% by weight or more and 80% by weight or less, assuming that the amount present on the entire surface of the shape anisotropic member is 100% by weight. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記重合体層は、エチレン性不飽和基を2つ以上有する架橋性単量体と、フッ素系単量体及びグリシジル基を有する単量体の少なくとも一方と、エチレングリコールを有する単量体との共重合体から形成されたものであってもよい。上記重合体層100重量%に対して、上記エチレン性不飽和基を2つ以上有する架橋性単量体は20~96重量%、上記フッ素系単量体及びグリシジル基を有する単量体の少なくとも一方は2~78重量%、上記エチレングリコールを有する単量体は2~78重量%であってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The polymer layer includes a crosslinkable monomer having two or more ethylenically unsaturated groups, at least one of a fluorine-based monomer and a monomer having a glycidyl group, and a monomer having ethylene glycol. It may be formed from a copolymer. The crosslinkable monomer having two or more ethylenically unsaturated groups is 20 to 96% by weight based on 100% by weight of the polymer layer, and at least one of the fluorine monomer and the monomer having a glycidyl group. One may be 2 to 78% by weight, and the monomer having ethylene glycol may be 2 to 78% by weight. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
上記重合体層は、グリシジル基を有するものであってもよい。上記グリシジル基を含む成分が占める表面積は、上記形状異方性部材の全表面積に対して、10%以上、80%以下であってもよい。これにより、上記液晶分子を上記形状異方性部材の表面近傍に対して垂直に配向させることができ、上記形状異方性部材の凝集を防止し、その分散性を向上させることができる。 The polymer layer may have a glycidyl group. The surface area occupied by the component containing the glycidyl group may be 10% or more and 80% or less with respect to the total surface area of the shape anisotropic member. Thereby, the liquid crystal molecules can be aligned perpendicularly to the vicinity of the surface of the shape anisotropic member, the aggregation of the shape anisotropic member can be prevented, and the dispersibility thereof can be improved.
以下に、本発明の光変調装置の製造方法の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Below, the example of the preferable aspect of the manufacturing method of the light modulation apparatus of this invention is given. Each example may be appropriately combined without departing from the scope of the present invention.
上記光変調装置の製造方法は、上記工程(1)の前に、上記形状異方性部材の外表面を重合体層で被覆する工程を含んでいてもよい。これにより、表面近傍に対して上記液晶分子を好適に秩序だって配向させる上記形状異方性部材を得ることができる。 The manufacturing method of the light modulation device may include a step of coating the outer surface of the shape anisotropic member with a polymer layer before the step (1). Thereby, the said shape anisotropic member which orientates the said liquid-crystal molecule | numerator suitably orderly with respect to the surface vicinity can be obtained.
以下に、本発明の表示装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Below, the example of the preferable aspect of the display apparatus of this invention is given. Each example may be appropriately combined without departing from the scope of the present invention.
上記表示装置は、上記光変調装置の背面側に光源を有し、上記形状異方性部材によって外光を反射して表示を行う反射表示モードと、上記光源から出射した光を透過させて表示を行う透過表示モードとが切り換え可能であるものであってもよい。これにより、半透過表示モード(反射表示モード及び透過表示モードの併用)の表示装置を実現することができる。 The display device has a light source on the back side of the light modulation device, a reflective display mode in which display is performed by reflecting external light by the shape anisotropic member, and light emitted from the light source is transmitted and displayed. The transmissive display mode for performing the switching may be switchable. Thereby, a display device in a transflective display mode (a combination of the reflective display mode and the transmissive display mode) can be realized.
1a、1b、101:光変調装置
2a、102a:第一の基板
2b、102b:第二の基板
3、103:光変調層
4a、4b、104a、104b:支持基板
5a、5b、105a、105b:電極
6、106:対向電極
7a、7b、107a、107b:垂直配向膜
8、108:絶縁膜
9、109:液晶分子
10、10a、10b、10c、10d、10e、10f、110:形状異方性部材
11:コア部
12:重合体層
13:コーティング層
14:表面修飾層
15a、115a:第一の偏光板
15b、115b:第二の偏光板
AC:交流電源
1a, 1b, 101: light modulation device 2a, 102a: first substrate 2b, 102b: second substrate 3, 103: light modulation layers 4a, 4b, 104a, 104b: support substrates 5a, 5b, 105a, 105b: Electrodes 6, 106: counter electrodes 7a, 7b, 107a, 107b: vertical alignment film 8, 108: insulating film 9, 109: liquid crystal molecules 10, 10a, 10b, 10c, 10d, 10e, 10f, 110: shape anisotropy Member 11: Core part 12: Polymer layer 13: Coating layer 14: Surface modification layer 15a, 115a: First polarizing plate 15b, 115b: Second polarizing plate AC: AC power source

Claims (10)

  1. 背面側から観察面側に向かって順に、
    第一の基板、
    光変調層、及び、
    第二の基板を備える光変調装置であって、
    前記光変調層は、液晶中に形状異方性部材が分散されたものであり、
    前記光変調装置の背面側に第一の偏光板を取り付け、前記光変調装置の観察面側に第二の偏光板を取り付け、前記第二の偏光板の透過軸を前記第一の偏光板の透過軸に対して回転させたとき、前記形状異方性部材の表面近傍の光透過率が変化し、かつ、前記表面近傍の光透過率と前記表面近傍以外の領域の光透過率とが異なることを特徴とする光変調装置。
    In order from the back side to the observation side,
    First substrate,
    A light modulation layer, and
    A light modulation device comprising a second substrate,
    The light modulation layer is obtained by dispersing a shape anisotropic member in liquid crystal,
    A first polarizing plate is attached to the back side of the light modulation device, a second polarizing plate is attached to the observation surface side of the light modulation device, and the transmission axis of the second polarizing plate is the same as that of the first polarizing plate. When rotated with respect to the transmission axis, the light transmittance in the vicinity of the surface of the shape anisotropic member changes, and the light transmittance in the vicinity of the surface and the light transmittance in a region other than the vicinity of the surface are different. An optical modulation device characterized by that.
  2. 前記液晶中の液晶分子は、前記表面近傍以外の領域で、前記第一の基板及び前記第二の基板の主面に対して垂直に配向し、
    前記第一の偏光板の透過軸、及び、前記第二の偏光板の透過軸をクロスニコルに取り付け、前記第二の偏光板の透過軸を前記第一の偏光板の透過軸に対して回転させたとき、時計回りを正、反時計回りを負とすると、前記形状異方性部材は、正の回転方向に対して表面近傍の光透過率が増加し、負の回転方向に対して表面近傍の光透過率が減少する第一の形状異方性部材と、正の回転方向に対して表面近傍の光透過率が減少し、負の回転方向に対して表面近傍の光透過率が増加する第二の形状異方性部材とのうちの少なくとも一方を含み、
    正負の回転方向に対して、前記表面近傍以外の領域の光透過率は変化しないことを特徴とする請求項1に記載の光変調装置。
    The liquid crystal molecules in the liquid crystal are aligned perpendicular to the principal surfaces of the first substrate and the second substrate in a region other than the vicinity of the surface,
    The transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate are attached to crossed Nicols, and the transmission axis of the second polarizing plate is rotated with respect to the transmission axis of the first polarizing plate. When the clockwise direction is positive and the counterclockwise direction is negative, the shape anisotropic member has an increased light transmittance near the surface with respect to the positive rotation direction and the surface with respect to the negative rotation direction. The first shape anisotropic member with reduced light transmittance in the vicinity and the light transmittance near the surface with respect to the positive rotation direction, and the light transmittance near the surface with respect to the negative rotation direction Including at least one of the second shape anisotropic member
    The light modulation device according to claim 1, wherein the light transmittance in a region other than the vicinity of the surface does not change with respect to positive and negative rotation directions.
  3. 前記形状異方性部材は、前記第一の基板及び前記第二の基板の主面に対して垂直に配向し、
    前記液晶分子は、前記形状異方性部材の表面近傍に対して垂直に配向することを特徴とする請求項2に記載の光変調装置。
    The shape anisotropic member is oriented perpendicular to the main surfaces of the first substrate and the second substrate,
    The light modulation device according to claim 2, wherein the liquid crystal molecules are aligned perpendicular to the vicinity of the surface of the shape anisotropic member.
  4. 前記形状異方性部材は、外表面に重合体層を有することを特徴とする請求項1~3のいずれかに記載の光変調装置。 The light modulation device according to any one of claims 1 to 3, wherein the shape anisotropic member has a polymer layer on an outer surface.
  5. 前記重合体層は、第一の重合体層と、前記第一の重合体層を表面修飾する第二の重合体層とを有することを特徴とする請求項4に記載の光変調装置。 5. The light modulation device according to claim 4, wherein the polymer layer includes a first polymer layer and a second polymer layer that modifies the surface of the first polymer layer.
  6. 前記形状異方性部材は、金属の薄片であることを特徴とする請求項1~5のいずれかに記載の光変調装置。 The light modulation device according to any one of claims 1 to 5, wherein the shape anisotropic member is a thin piece of metal.
  7. 請求項1~6のいずれかに記載の光変調装置の製造方法であって、
    前記形状異方性部材を前記液晶中に分散させた混合物を作製する工程(1)、及び、
    前記第一の基板と前記第二の基板との間に前記混合物を配置して、前記光変調層を形成する工程(2)
    を含むことを特徴とする光変調装置の製造方法。
    A method for manufacturing a light modulation device according to any one of claims 1 to 6,
    Producing a mixture in which the shape anisotropic member is dispersed in the liquid crystal (1); and
    Step (2) of disposing the mixture between the first substrate and the second substrate to form the light modulation layer
    The manufacturing method of the light modulation apparatus characterized by the above-mentioned.
  8. 前記光変調装置の製造方法は、前記工程(1)の前に、前記形状異方性部材の外表面を重合体層で被覆する工程を含むことを特徴とする請求項7に記載の光変調装置の製造方法。 The light modulation device according to claim 7, wherein the method for manufacturing the light modulation device includes a step of coating an outer surface of the shape anisotropic member with a polymer layer before the step (1). Device manufacturing method.
  9. 請求項1~6のいずれかに記載の光変調装置を備えることを特徴とする表示装置。 A display device comprising the light modulation device according to any one of claims 1 to 6.
  10. 前記表示装置は、前記光変調装置の背面側に光源を有し、前記形状異方性部材によって外光を反射して表示を行う反射表示モードと、前記光源から出射した光を透過させて表示を行う透過表示モードとが切り換え可能であることを特徴とする請求項9に記載の表示装置。 The display device includes a light source on the back side of the light modulation device, a reflective display mode in which display is performed by reflecting external light by the shape anisotropic member, and light emitted from the light source is transmitted and displayed. The display device according to claim 9, wherein the display device is switchable between a transmissive display mode and a transmissive display mode.
PCT/JP2015/082338 2014-11-25 2015-11-18 Optical modulation device, method for manufacturing optical modulation device, and display device WO2016084665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014237876 2014-11-25
JP2014-237876 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084665A1 true WO2016084665A1 (en) 2016-06-02

Family

ID=56074232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082338 WO2016084665A1 (en) 2014-11-25 2015-11-18 Optical modulation device, method for manufacturing optical modulation device, and display device

Country Status (1)

Country Link
WO (1) WO2016084665A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320505A (en) * 1995-03-22 1996-12-03 Toshiba Corp Liquid crystal display device
JPH10253993A (en) * 1997-03-14 1998-09-25 Toshiba Corp Liquid crystal display element
JP2008033000A (en) * 2006-07-28 2008-02-14 Hitachi Metals Ltd Image display method and image display medium
WO2013141051A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Display panel and display device
JP2013218122A (en) * 2012-04-09 2013-10-24 Seiko Epson Corp Electrophoretic particle, manufacturing method of electrophoretic particle, electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic apparatus and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320505A (en) * 1995-03-22 1996-12-03 Toshiba Corp Liquid crystal display device
JPH10253993A (en) * 1997-03-14 1998-09-25 Toshiba Corp Liquid crystal display element
JP2008033000A (en) * 2006-07-28 2008-02-14 Hitachi Metals Ltd Image display method and image display medium
WO2013141051A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Display panel and display device
JP2013218122A (en) * 2012-04-09 2013-10-24 Seiko Epson Corp Electrophoretic particle, manufacturing method of electrophoretic particle, electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic apparatus and electronic apparatus

Similar Documents

Publication Publication Date Title
JP3060656B2 (en) Liquid crystal display device
TWI333566B (en) Display element and display device
JP6870907B2 (en) Optical member, polarizing plate set and liquid crystal display device
JP2015200866A (en) Optical member, polarizing plate set and liquid crystal display apparatus
TWI375074B (en) Polymer dispersed liquid crystal display and method of fabricating the same
WO2016158814A1 (en) Optical modulation device and display device
WO2013189162A1 (en) Flexible transparent lcd device and preparation method thereof
JP2011119210A5 (en)
WO2013141051A1 (en) Display panel and display device
US9519176B2 (en) Display panel and display device
JP2009092815A (en) Liquid crystal display device
JP6927876B2 (en) Manufacturing method of polymer-containing scattering type liquid crystal element and polymer-containing scattering type liquid crystal element
WO2020052585A1 (en) A flexible bistable light modulating device
JP3072513B2 (en) Polymer dispersed liquid crystal display panel
KR20110038137A (en) Reflection type liquid crystal display device
WO2019146543A1 (en) Liquid crystal display device, and optical member and optical member set used in said liquid crystal display device
WO2016084665A1 (en) Optical modulation device, method for manufacturing optical modulation device, and display device
WO2013108899A1 (en) Display panel and display device
US10180613B2 (en) Optical device
JP2006195112A (en) Liquid crystal element, and dimmer element and liquid crystal display device using the same
JP2002214653A (en) Light controllable material, light controllable film and method of manufacturing light controllable film
CN112015018A (en) Light modulation device and preparation method thereof
JP3298522B2 (en) Liquid crystal display device
WO2016104229A1 (en) Light modulating device and display device
WO2014206049A1 (en) Polymer dispersed liquid crystal film, method of preparing same, and display apparatus comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15862292

Country of ref document: EP

Kind code of ref document: A1