WO2016063880A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016063880A1
WO2016063880A1 PCT/JP2015/079596 JP2015079596W WO2016063880A1 WO 2016063880 A1 WO2016063880 A1 WO 2016063880A1 JP 2015079596 W JP2015079596 W JP 2015079596W WO 2016063880 A1 WO2016063880 A1 WO 2016063880A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electric field
display device
substrate
potential
Prior art date
Application number
PCT/JP2015/079596
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 森脇
佐藤 英次
加藤 浩巳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016063880A1 publication Critical patent/WO2016063880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a display device.
  • a display device that performs display by controlling the transmittance (or reflectance) of incident light is required to have a high contrast ratio and a high light utilization efficiency.
  • a liquid crystal display device is well known as a display device that controls the light transmittance by applying a voltage.
  • the liquid crystal display device includes a pair of substrates and a liquid crystal layer provided between the substrates.
  • the orientation of the liquid crystal molecules in the liquid crystal layer changes according to the magnitude of the voltage applied to the liquid crystal layer, thereby changing the transmittance of light incident on the liquid crystal display device.
  • Liquid crystal display devices are widely used at present because a very high contrast ratio can be obtained.
  • the present applicant has proposed a display device including a light modulation layer including a shape anisotropic member in Patent Documents 1 and 2.
  • the shape anisotropic member dispersed in the medium is rotated (that is, the orientation direction is changed) by applying an electric field to the light modulation layer, whereby the light of the light modulation layer is changed. Change the transmittance (or light reflectance).
  • the applicant of the present application has proposed a display device that can apply not only a vertical electric field but also a horizontal electric field to a display medium layer (optical layer) containing shape anisotropic particles in Patent Document 3.
  • display is performed by switching between a state in which a vertical electric field is generated in the display medium layer and a state in which a horizontal electric field is generated in the display medium layer. Therefore, the display device of Patent Document 3 has a faster response speed than the display devices of Patent Documents 1 and 2.
  • the applicant of the present application has made various studies in order to further improve the light utilization efficiency of a display device having a display medium layer containing shape anisotropic particles, such as the display device of Patent Document 3. Hereinafter, the knowledge obtained by the examination will be described.
  • a VA mode As a display mode of a liquid crystal display device, a VA (Vertical Alignment) mode and an FFS (Fringe Field Switching) mode are known.
  • VA mode display is performed by applying a vertical electric field to the vertically aligned liquid crystal layer.
  • FFS mode display is performed by applying a fringe electric field to the horizontally aligned liquid crystal layer.
  • FIG. 29 shows a general structure of an FFS mode liquid crystal display device.
  • a liquid crystal display device 800 illustrated in FIG. 29 includes a TFT substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween.
  • the TFT substrate 810 is provided on the transparent substrate 810a, the common electrode (lower layer electrode) 812 provided on the transparent substrate 810a, the insulating layer 813 provided to cover the common electrode 812, and the insulating layer 813.
  • the pixel electrode 811 has a comb shape.
  • the pixel electrode 811 has a plurality of comb teeth 811a extending in a predetermined direction and slits 811b formed between adjacent comb teeth 811a.
  • the counter substrate 820 includes a transparent substrate 820a and a color filter layer (not shown) provided on the transparent substrate 820a.
  • the liquid crystal layer 830 is a horizontal alignment type liquid crystal layer.
  • a horizontal alignment film (not shown) is provided on the surface of the TFT substrate 810 and the counter substrate 820 on the liquid crystal layer 830 side, and the liquid crystal molecules contained in the liquid crystal layer 830 are horizontally aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 810 and the counter substrate 820).
  • a fringe electric field (represented by an electric force line Ef) is generated in the liquid crystal layer 830.
  • potentials of 14 V and 7 V, for example, are applied to the pixel electrode 811 and the common electrode 812, respectively, a fringe electric field corresponding to 7 V is applied to the liquid crystal layer 830.
  • the alignment direction of the liquid crystal molecules is changed by the fringe electric field applied to the liquid crystal layer 830, and thus display is performed.
  • the FFS mode described above can achieve a wide viewing angle characteristic.
  • the VA mode can also realize a wide viewing angle characteristic.
  • Patent Document 4 discloses an electrode structure capable of achieving high-speed response and high transmittance of a VA mode liquid crystal display device.
  • 30A and 30B show the structure of the liquid crystal display device disclosed in Patent Document 4.
  • FIG. A liquid crystal display device 900 shown in FIGS. 30A and 30B includes a TFT substrate 910 and a counter substrate 920, and a liquid crystal layer 930 provided therebetween.
  • the TFT substrate 910 includes a glass substrate 910a, a lower layer electrode 913 provided on the glass substrate 910a, an insulating layer 914 provided so as to cover the lower layer electrode 913, and a pair of upper layer electrodes provided on the insulating layer 914. (First upper layer electrode and second upper layer electrode) 911 and 912. Each of the first upper layer electrode 911 and the second upper layer electrode 912 has a comb shape.
  • the counter substrate 920 includes a glass substrate 920a and a counter electrode 921 provided on the glass substrate 920a.
  • the liquid crystal layer 930 is a vertical alignment type liquid crystal layer.
  • a vertical alignment film (not shown) is provided on the surface of the TFT substrate 910 and the counter substrate 920 on the liquid crystal layer 930 side, and the liquid crystal molecules contained in the liquid crystal layer 930 are vertically aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 910 and the counter substrate 920).
  • the first upper layer electrode 911 and the second upper layer electrode 912 are arranged.
  • a lateral electric field (represented by electric lines of force Eh) due to the potential difference is generated in the liquid crystal layer 930.
  • a fringe electric field (represented by electric lines of force Ef) due to a potential difference between the first upper layer electrode 911 and the lower layer electrode 913 and a potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is also generated in the liquid crystal layer 930. Is done.
  • Patent Document 4 describes an example in which potentials of 7 V, 14 V, 10.5 V, and 7 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively.
  • Patent Document 4 describes an example in which potentials of 14 V, 14 V, 14 V, and 0 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively. In this example, a vertical electric field corresponding to 14 V is applied to the liquid crystal layer 930.
  • the inventor of the present application examined the use of the electrode structure proposed for the liquid crystal display device as a method for further improving the light utilization efficiency of the display device including the display medium layer containing the shape anisotropic particles. As a result, it has been found that the following problems occur when the electrode structure as described above is simply adopted.
  • the potential of the lower layer electrode 913 is limited, and a sufficiently strong fringe electric field cannot be generated.
  • the potential of the lower layer electrode 913 needs to be set to an intermediate potential between the potential of the first upper layer electrode 911 and the potential of the second upper layer electrode 912.
  • the potential of the lower electrode 913 needs to be set to 10.5V. Therefore, since the generated fringe electric field is equivalent to 3.5 V, compared to the case where the FFS mode electrode structure is adopted (a fringe electric field equivalent to 7 V is generated as shown in FIG. 29). The alignment regulating force due to the fringe electric field is weakened.
  • the potential of the lower layer electrode 913 is made the same as the potential of the first upper layer electrode 911 (for example, the first 1 upper layer electrode 911, second upper layer electrode 912, lower layer electrode 913 and counter electrode 921 are applied with potentials of 7V, 14V, 7V and 7V, respectively), and as shown in FIG. 31, second upper layer electrode 912 and lower layer electrode
  • a strong fringe electric field (equivalent to 7 V) is generated due to a potential difference from 913, no fringe electric field is generated in the vicinity of the first upper layer electrode 911, and a weak electric field region WR having a relatively weak electric field strength is formed. Due to the presence of the weak electric field region WR, the light use efficiency (mode efficiency) is lowered.
  • the FFS mode electrode structure when the FFS mode electrode structure is adopted, the plurality of comb-tooth portions 811a of the pixel electrode 811 are at the same potential, so that no horizontal electric field is generated between the adjacent comb-tooth portions 811a. Therefore, as shown in FIG. 32, a weak electric field region WR is generated near the center of the slit 811b, and the light utilization efficiency is lowered.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to use light efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field. It is in suppressing the fall of the.
  • a display device is a display device having pixels, and is provided between a first substrate and a second substrate provided to face each other, and the first substrate and the second substrate.
  • a display medium layer having an optical characteristic that changes according to the applied electric field, and when the electric field is applied to the display medium layer, the pixel has a first electric field strength.
  • a second region having a second electric field strength whose electric field is weaker than the first electric field strength have an electric field distribution arranged along an in-plane direction of the display medium layer, The arrangement of the first region and the second region in the electric field distribution is switched one or more times within a period in which the same display is performed.
  • the period at which the arrangement of the first area and the second area is switched is an integral multiple of a time corresponding to one frame.
  • the first substrate includes a first electrode and a second electrode that are provided in the pixel and can be applied with different potentials, and each of the first electrode and the second electrode includes a comb tooth. Has a shape.
  • a lateral electric field is generated in the display medium layer by the first electrode and the second electrode.
  • the potential of the first electrode and the potential of the second electrode are switched.
  • the first substrate further includes a third electrode provided below the first electrode and the second electrode via an insulating layer.
  • a fringe electric field is generated in the display medium layer by the first electrode or the second electrode and the third electrode.
  • the pixel has a predetermined potential difference between the first electrode and the third electrode, and the second electrode and the third electrode have substantially the same potential. And a second state in which a predetermined potential difference is given between the second electrode and the third electrode, and the first electrode and the third electrode have substantially the same potential. The first state and the second state are switched when the arrangement of the first region and the second region is switched.
  • the second substrate has a fourth electrode facing the first electrode, the second electrode, and the third electrode.
  • a vertical electric field is generated in the display medium layer by the first electrode, the second electrode, the third electrode, and the fourth electrode.
  • the first substrate further includes a first thin film transistor electrically connected to the first electrode and a second thin film transistor electrically connected to the second electrode.
  • the response time of the display medium layer is longer than a cycle in which the arrangement of the first region and the second region is switched.
  • the display medium layer includes a medium and shape anisotropic particles dispersed in the medium and having shape anisotropy.
  • the medium includes a liquid crystal material.
  • At least one of the first substrate and the second substrate has a vertical alignment film that is provided on the display medium layer side and vertically aligns liquid crystal molecules contained in the liquid crystal material.
  • the embodiment of the present invention it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field.
  • FIG. 3 is a cross-sectional view schematically showing a display device 100 according to an embodiment of the present invention, showing a cross section taken along line 1A-1A ′ in FIG. 2.
  • 3 is a plan view schematically showing the display device 100.
  • FIG. (A) is a figure which shows typically the display apparatus 100 when the electric field is not applied to the display medium layer 30, (b) is a horizontal electric field and a fringe electric field being applied to the display medium layer 30. It is a figure which shows the display apparatus 100 of time.
  • 3 is a diagram schematically showing the display device 100 when a vertical electric field is applied to the display medium layer 30.
  • (A) is a figure which shows the mode of the display medium layer 30 immediately after changing the electric field applied to the display medium layer 30 from a horizontal electric field and a fringe electric field to a vertical electric field
  • (b) is enough after that It is a figure which shows the mode of the display medium layer 30 after time passes.
  • (A) And (b) is a figure which shows the state in which the horizontal electric field and a fringe electric field are applied to the display medium layer 30, (a) is in the case where the same display is performed over several frames Corresponding to a certain frame, (b) corresponds to another certain frame. It is a figure which shows the state in which the application of a horizontal electric field and a fringe electric field is performed in the liquid crystal display device 900 of patent document 4.
  • FIG 11 is a diagram illustrating a state in which a fringe electric field is applied in the FFS mode liquid crystal display device 800.
  • (A) And (b) is a figure which shows the other electrode structure of the display apparatus 100.
  • FIG. (A) And (b) is a figure which shows the further another electrode structure of the display apparatus 100.
  • FIG. It is a top view which shows the example of the specific wiring structure in the back substrate 10 in the case of performing active matrix drive. It is a top view which shows the electrode structure in a test cell.
  • the potential V 1 of the first electrode 11 in the embodiment, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13, (b) the voltage between the first electrode 11 and the third electrode 13 in the embodiment
  • V 2 -V 3 6 is a timing chart showing a voltage
  • (A) And (b) is a figure which shows the state of a pixel when the electric potential shown to Fig.13 (a) is given to the 1st electrode 11, the 2nd electrode 12, the 3rd electrode 13, and the 4th electrode 21. FIG. It is.
  • (A), (b), and (c) are the optical microscope images of the display medium layer 30 in an Example, (a) shows the state (initial state) in which the electric field is not applied to the display medium layer 30. , (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically.
  • FIG. 18 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 17 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21.
  • (A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 1
  • (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30.
  • (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time.
  • (D) is a figure which shows the state of (a) typically,
  • (e) is a figure which shows the state of (b) and (c) typically.
  • the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • FIG. 21 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 20 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21.
  • A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 2
  • (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30.
  • B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time.
  • D is a figure which shows the state of (a) typically,
  • e) is a figure which shows the state of (b) and (c) typically.
  • FIG. 24 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 23 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21.
  • (A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 3,
  • (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30.
  • (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time.
  • FIG. 27 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 26 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21.
  • (A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 4, (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30.
  • FIG. 6 is a cross-sectional view schematically showing an FFS mode liquid crystal display device 800.
  • A) And (b) is sectional drawing which shows the liquid crystal display device 900 of patent document 4 typically. It is a figure which shows typically a mode that the weak electric field area
  • FIG. 11 is a diagram schematically showing how a weak electric field region WR is generated in an FFS mode liquid crystal display device 800.
  • FIG. 1 shows a display device 100 according to this embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the display device 100
  • FIG. 2 is a plan view schematically showing the display device 100.
  • FIG. 1 shows a cross section taken along line 1A-1A 'in FIG.
  • the display device 100 is a reflective display device that can perform display in a reflection mode using light incident from the outside (ambient light).
  • the display device 100 includes pixels.
  • the display device 100 includes a plurality of pixels arranged in a matrix.
  • the display device 100 includes a first substrate 10 and a second substrate 20 provided so as to face each other, and a display medium layer (between the first substrate 10 and the second substrate 20).
  • Optical layer 30 the first substrate 10 and the second substrate 20
  • the first substrate 10 positioned relatively on the back side may be referred to as a “back side substrate” and may be referred to relatively on the front side (that is, on the viewer side).
  • the second substrate 20 positioned at () may be referred to as a “front substrate”.
  • the first substrate (back substrate) 10 has a first electrode 11 and a second electrode 12 that can be given different potentials.
  • the first electrode 11 and the second electrode 12 are provided in each of the plurality of pixels.
  • Each of the 1st electrode 11 and the 2nd electrode 12 has a comb-tooth shape, as shown in FIG.
  • the first electrode 11 has a trunk portion 11b and a plurality of branch portions 11a extending from the trunk portion 11b.
  • the second electrode 12 includes a trunk portion 12b and a plurality of branch portions 12a extending from the trunk portion 12b.
  • the first electrode 11 and the second electrode 12 are arranged so that the plurality of branch portions 11a and 12a mesh with each other via a predetermined gap (hereinafter also referred to as “interelectrode distance”) g. Yes.
  • the width w 1 of the branch part 11 a of the first electrode 11 and the width w 2 of the branch part 12 a of the second electrode 12 are not particularly limited.
  • the inter-electrode distance g, the width w 1 of the branch portion 11a of the first electrode 11, and the width w 2 of the branch portion 12a of the second electrode 12 are each about several ⁇ m to several tens of ⁇ m, for example.
  • the width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 may be the same or different.
  • the first substrate 10 further includes a third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween.
  • the first electrode 11, the second electrode 12, and the third electrode 13 may be referred to as “first upper layer electrode”, “second upper layer electrode”, and “lower layer electrode”, respectively.
  • the third electrode 13 is a so-called solid electrode in which no slit or notch is formed.
  • the first substrate 10 is typically an active matrix substrate, and includes a plurality of thin film transistors (TFTs) provided in each pixel and various wirings (a gate wiring, a source wiring, etc. electrically connected to the TFT). (Both not shown here).
  • TFTs thin film transistors
  • the first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the corresponding TFTs, respectively, and supplied with a voltage corresponding to the source signal through the TFTs.
  • the first substrate 10 further includes a light absorption layer 16 that absorbs light.
  • a light absorption layer 16 that absorbs light.
  • a material of the light absorption layer 16 for example, a pigment used for a black matrix material included in a color filter of a liquid crystal display device or the like can be used.
  • a low-reflection chromium film having a two-layer structure (having a structure in which a chromium layer and a chromium oxide layer are stacked) can be used as the light absorption layer 16.
  • the components of the first substrate 10 are supported by an insulating substrate (for example, a glass substrate) 10a.
  • an insulating substrate for example, a glass substrate
  • the light absorption layer 16 is provided on the back side of the substrate 10a.
  • the light absorption layer 16 may be provided on the display medium layer 30 side of the substrate 10a.
  • the second substrate (front substrate) 20 has a fourth electrode (counter electrode) 21 facing the first electrode 11, the second electrode 12 and the third electrode 13.
  • the fourth electrode 21 may be a so-called solid electrode in which no slit or notch is formed.
  • the second substrate 20 further includes a dielectric layer (overcoat layer) 22 provided on the fourth electrode 21.
  • the fourth electrode 21 does not need to be electrically independent for each pixel, and may be a continuous single conductive film (that is, a common electrode) common to all pixels.
  • the fourth electrode 21 is a solid electrode common to all the pixels, patterning by a photolithography technique is not necessary, so that the manufacturing cost can be reduced.
  • the second substrate 20 includes a color filter (not shown).
  • the components of the second substrate 20 (such as the fourth electrode 21 described above) are supported by an insulating substrate (for example, a glass substrate) 20a.
  • an insulating substrate for example, a glass substrate
  • Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the method for depositing the conductive film to be these electrodes and various known methods such as a sputtering method, a vacuum evaporation method, and a plasma CVD method can be used.
  • the method for patterning the conductive film in order to form the first electrode 11 and the second electrode 12 having a comb-teeth shape and a known patterning method such as photolithography can be used.
  • the thicknesses of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 are, for example, 100 nm.
  • the optical properties of the display medium layer 30 change according to the applied electric field.
  • the display medium layer 30 includes a liquid medium 31 and particles 32 that are dispersed in the medium 31 and have shape anisotropy (hereinafter referred to as “shape anisotropic particles”).
  • shape anisotropic particles The first substrate 10 and the second substrate 20 described above are bonded together via a seal portion (not shown here) formed so as to surround the display region, and the medium 31 and the shape anisotropic particles 32 are: It is enclosed in a region (that is, a display region) surrounded by the seal portion.
  • the thickness of the display medium layer 30 is, for example, 5 ⁇ m to 30 ⁇ m.
  • the shape anisotropic particle 32 has light reflectivity.
  • the shape anisotropic particle 32 has, for example, a flake shape (flaky shape).
  • the orientation direction of the shape anisotropic particles 32 changes according to the electric field (voltage) applied to the display medium layer 30. Since the shape anisotropic particles 32 have shape anisotropy, when the orientation direction of the shape anisotropic particles 32 changes, the substrate surface of the shape anisotropic particles 32 (the substrate surface of the first substrate 10). The projected area on the screen also changes, and accordingly, the optical characteristics (in this case, reflectance) of the display medium layer 30 change. In the display device 100 of the present embodiment, display is performed using this fact. The reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field will be described in detail later.
  • the medium 31 is a liquid crystal material and includes liquid crystal molecules.
  • the liquid crystal material has positive dielectric anisotropy. That is, the medium 31 is a so-called positive liquid crystal material, and the dielectric constant ⁇ // in the major axis direction of the liquid crystal molecules is larger than the dielectric constant ⁇ ⁇ in the minor axis direction.
  • Each of the first substrate 10 and the second substrate 20 has vertical alignment films 15 and 25 provided on the display medium layer 30 side.
  • the vertical alignment films 15 and 25 have an alignment regulating force for vertically aligning liquid crystal molecules contained in the medium (liquid crystal material) 31 (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20).
  • the vertical alignment films 15 and 25, as will be described in detail later, are alignment restrictions that cause the shape anisotropic particles 32 to be vertically aligned (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Also has power.
  • the vertical alignment film is not necessarily provided on both the first substrate 10 and the second substrate 20, and the vertical alignment film may be provided on only one (for example, only the first substrate 10).
  • a lateral electric field is generated in the display medium layer 30 by the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12. Further, a fringe electric field is generated in the display medium layer 30 by the first electrode 11 or the second electrode 12 and the third electrode (lower layer electrode) 13.
  • an electric field generated by a potential difference between two electrodes provided on the same substrate on the same level is called a “lateral electric field”, and is generated by a potential difference between two electrodes provided on different levels on the same substrate.
  • the electric field is called a “fringe electric field”.
  • a vertical electric field is generated in the display medium layer 30 by the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode (counter electrode) 21. .
  • FIG. 3A is a diagram schematically showing the display device 100 when no electric field is applied to the display medium layer 30, and FIG. 3B shows a horizontal electric field and a fringe electric field in the display medium layer 30. It is a figure which shows typically the display apparatus 100 when being applied.
  • the shape anisotropic particles 32 are arranged in the first direction (longitudinal direction) by the alignment regulating force of the vertical alignment films 15 and 25.
  • the one substrate 10 is oriented so as to be substantially perpendicular to the substrate surface (that is, in a vertically oriented state).
  • the alignment of the liquid crystal molecules substantially perpendicular to the substrate surface by the alignment regulating force of the vertical alignment films 15 and 25 serves to support the shape anisotropic particles 32 taking a vertical alignment state. In this state, most of the incident ambient light L is transmitted through the display medium layer 30. That is, the display medium layer 30 is in a transparent state.
  • the shape anisotropic particles 32 are oriented substantially perpendicular to the substrate surface” means that the shape anisotropic particles 32 are oriented strictly perpendicular to the substrate surface. Refers to a state of being oriented at an angle exhibiting substantially the same optical characteristics as the state of being, specifically, the shape anisotropic particles 32 are oriented at an angle of 75 ° or more with respect to the substrate surface. Refers to the state.
  • the shape anisotropic particles 32 when a lateral electric field (represented by an electric force line Eh) and a fringe electric field (represented by an electric force line Ef) are applied to the display medium layer 30, the shape anisotropic particles 32. Is oriented so that its longitudinal direction is substantially parallel to the substrate surface of the first substrate 10 (that is, it takes a horizontal orientation state). The liquid crystal molecules are also aligned substantially parallel to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is reflected by the shape anisotropic particles 32 in the display medium layer 30. That is, the display medium layer 30 is in a reflective state, and white display can be performed in this state. Further, halftone display can be performed by applying a voltage lower than that during white display.
  • FIG. 3B shows an example in which the same potential is applied to the second electrode 12 and the third electrode 13.
  • the potential setting for performing white display or halftone display is not limited to the example shown in FIG.
  • the second substrate 20 includes the fourth electrode 21 that faces the first electrode 11, the second electrode 12, and the third electrode 13, so that a vertical electric field is generated in the display medium layer 30. You can also
  • the shape anisotropic particles 32 (the longitudinal direction thereof) is the substrate surface of the first substrate 10. Is aligned so as to be substantially perpendicular to (i.e., assume a vertical alignment state).
  • the liquid crystal molecules are also aligned substantially perpendicular to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is transmitted through the display medium layer 30. That is, the display medium layer 30 is in a transparent state. Since the ambient light transmitted through the display medium layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state.
  • FIGS. 5A and 5B show the display medium layer immediately after the electric field applied to the display medium layer 30 is changed from the horizontal electric field and the fringe electric field to the vertical electric field, and after a sufficient time has elapsed thereafter. It is a figure which shows the mode 30 (electric charge distribution and an electric force line).
  • the shape anisotropic particles 32 and the dielectric constant of the medium 31 are different, if the direction of the electric field applied to the display medium layer 30 is changed, as shown in FIG. A large distortion occurs. Therefore, as shown in FIG. 5B, the shape anisotropic particles 32 rotate so that the energy is minimized.
  • the dielectrophoretic force F dep acting on particles dispersed in a medium is expressed as follows, where the dielectric constant of the particles is ⁇ p , the dielectric constant of the medium is ⁇ m , the radius of the particles is a, and the strength of the electric field is E. It is represented by Formula (1). Re in the expression (1) is an operator that extracts a real part.
  • the medium 31 is a liquid crystal material and has dielectric anisotropy.
  • the shape anisotropic particles 32 are allowed to develop a vertical alignment state by the alignment regulating force of the vertical alignment films 15 and 25 and the support of liquid crystal molecules.
  • the vertical alignment operation and the horizontal alignment operation of the shape anisotropic particles 32 can be suitably switched.
  • the orientation direction of the shape anisotropic particles 32 can be changed by applying a voltage to the display medium layer 30, and display is performed using this. be able to. Since the display device 100 does not require a polarizing plate, high light utilization efficiency can be realized.
  • the display device 100 it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region formed when a lateral electric field and a fringe electric field are applied.
  • this will be specifically described with reference to FIGS.
  • FIG. 6A and 6B are views showing a state in which a lateral electric field and a fringe electric field are applied to the display medium layer 30, and FIG. 6A shows the same display over a plurality of frames. 6B corresponds to a certain frame, and FIG. 6B corresponds to another certain frame.
  • each pixel when an electric field is applied to the display medium layer 30, each pixel includes a first region SR in which the electric field has a first electric field strength and an electric field, as shown in FIGS. 6 (a) and 6 (b). And a second region WR having a second electric field strength weaker than the first electric field strength has an electric field distribution arranged along the in-plane direction of the display medium layer 30.
  • the first region SR having a relatively strong electric field strength is referred to as a “strong electric field region”
  • the second region WR having a relatively weak electric field strength is referred to as a “weak electric field region”.
  • a fringe electric field (hereinafter referred to as “first fringe electric field” for convenience) generated by the potential difference between the first electrode 11 and the third electrode 13 is generated.
  • a fringe electric field (hereinafter referred to as “second fringe electric field” for convenience) is not generated due to a potential difference with the third electrode 13.
  • the region where the fringe electric field is not generated in the vicinity of the branch portion 12a of the second electrode 12 is the weak electric field region WR
  • the other region including the vicinity of the branch portion 11a of the first electrode 11 is the strong electric field region SR.
  • FIG. 6B shows an example in which the second fringe electric field is generated but the first fringe electric field is not generated.
  • the region where the fringe electric field is not generated near the branch portion 11a of the first electrode 11 is the weak electric field region WR
  • the other region including the vicinity of the branch portion 12a of the second electrode 12 is the strong electric field region SR.
  • a period during which the same display is performed in any pixel among the plurality of pixels that is, a certain pixel has the same gradation.
  • the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is switched one or more times. That is, the position of the weak electric field region WR is not fixed, and the region that has been the weak electric field region WR in one frame becomes the strong electric field region SR in another certain frame. Therefore, the orientation direction of the shape anisotropic particles 32 can be changed over almost the entire pixel, and a decrease in light use efficiency (mode efficiency) due to the weak electric field region WR can be suppressed.
  • the potential of the third electrode 13 must be set to an intermediate potential between the potential of the first electrode 11 and the potential of the second electrode 12.
  • the potential of the first electrode 11 is B [V]
  • the potential of the second electrode 12 is A [V]
  • the potential of the third electrode 13 is C [V]
  • the first electrode 11 and the second electrode 12 The horizontal electric field due to the potential difference is equivalent to
  • the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 is equivalent to
  • the potential of the first electrode 11 is A [V]
  • the potential of the second electrode 12 is B [V]
  • the potential of the third electrode 13 is C [V]
  • the first electrode 11, the second electrode 12 The horizontal electric field due to the potential difference is equivalent to
  • the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 is equivalent to
  • the potential of the third electrode 13 is not limited, a fringe electric field having the same strength as that when the FFS mode electrode structure is employed can be applied to the display medium layer 30. Further, as shown in FIGS. 6A and 6B, the arrangement of the strong electric field region SR and the weak electric field region WR can be changed by switching the potential of the first electrode 11 and the potential of the second electrode 12, for example. Can be replaced.
  • the FFS mode electrode structure As shown in FIG. 8, when the potential of the common electrode 812 is A [V] and the potential of the pixel electrode 811 is B [V], a potential difference between the pixel electrode 811 and the common electrode 812 is obtained.
  • the fringe electric field due to is equivalent to
  • the FFS mode electrode structure can generate a sufficiently strong fringe electric field, but a horizontal electric field is not generated between adjacent comb-tooth portions 811a, so that a weak electric field region WR is generated near the center of the slit 811b. .
  • a lateral electric field can be generated between the first electrode 11 and the second electrode 12, so that the branch portion 11 a of the first electrode 11 and the second electrode 12 electrode 12 A decrease in light utilization efficiency due to the formation of the weak electric field region WR near the middle of the branch portion 12a can be suppressed.
  • the period in which the arrangement of the strong electric field region SR and the weak electric field region WR is switched (hereinafter also simply referred to as “switching cycle”) is typically an integer multiple of the time corresponding to one frame. .
  • the replacement period is preferably short, and most preferably a time corresponding to one frame. Since the replacement cycle is short, the number of fluctuations in the electric field distribution per unit time can be increased, and the light utilization efficiency can be further improved.
  • the switching period may not be constant within the period during which the same display is performed, but the total time during which the positive voltage is applied to the display medium layer 30 and the negative voltage are applied. It is preferable that the total amount of time is substantially equal.
  • the arrangement of the strong electric field region SR and the weak electric field region WR can be replaced by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12.
  • the arrangement of the strong electric field region SR and the weak electric field region WR can be exchanged by the first substrate 10 having two comb electrodes (electrodes having a comb shape) that can be given different potentials. it can.
  • the first substrate 10 has the third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween, so that the display medium layer 30 has a fringe. An electric field can be generated.
  • the structure of the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13 is not limited to what was illustrated in FIG. 9A and 9B show other electrode configurations of the display device 100.
  • FIG. 9A and 9B show other electrode configurations of the display device 100.
  • a further insulating layer 17 is provided so as to cover the first electrode 11, and the second electrode 12 is provided on the further insulating layer 17. That is, the second electrode 12 is provided above the first electrode 11 via the further insulating layer 17.
  • a potential difference between the first electrode 11 and the second electrode 12 causes a lateral electric field. Instead, a fringe electric field (represented by electric field lines Ef ′) is generated.
  • the further insulating layer 17 is located between the first electrode 11 and the second electrode 12, the distance between the first electrode 11 and the second electrode 12. Even if the width is narrowed, there is an advantage that there is no short circuit.
  • FIGS. 10 (a) and 10 (b) show still another electrode configuration of the display device 100.
  • the third electrode 13 has a plurality of slits 13 s formed at positions overlapping the first electrode 11 and the second electrode 12.
  • the fringe electric field distribution is concentrated from the end of the first electrode 11 or the second electrode 12 to between the first electrode 11 and the second electrode 12 (adjacent to each other). (Between the branch portions 11a and 12a) can be made closer to the center.
  • the third electrode 13 is a solid electrode
  • the first electrode 11 and the second electrode 12, the third electrode 13, and the insulating layer 14 positioned between them. The advantage that an auxiliary capacity can be configured is obtained.
  • first TFT, second TFT, and third TFT are provided for each pixel.
  • the first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the first TFT t1, the second TFT t2, and the third TFT t3, respectively.
  • a gate line GL extending in the row direction and a first source line SL1, a second source line SL2, and a third source line SL3 extending in the column direction are provided.
  • the first TFT t1 is supplied with a gate signal and a first source signal from the gate line GL and the first source line SL1.
  • the second TFT t2 is supplied with a gate signal and a second source signal from the gate line GL and the second source line SL2.
  • the third TFT t3 is supplied with the gate signal and the third source signal from the gate line GL and the third source line SL3.
  • active matrix driving can be performed.
  • the wiring structure of the back substrate 10 is not limited to the example shown in FIG.
  • the response time of the display medium layer 30 is longer than the switching period means that at least the rising time of the rising time and the falling time is longer than the switching period. In the case of 60 Hz driving, the time corresponding to one frame is 16.6 msec.
  • the response time (rise time) was about 133 msec. It was. Therefore, it can be said that the embodiment of the present invention is suitably used for a display device including a display medium layer containing shape anisotropic particles.
  • the fourth electrode 21 is provided on the second substrate 20 side, but the fourth electrode 21 may be omitted. This is because when the display medium layer 30 is in a state where no electric field is applied, the shape anisotropic particles 32 are in a vertically aligned state. However, from the viewpoint of response speed, it is preferable to adopt a configuration in which the fourth electrode 21 is provided on the second substrate 20 side (that is, a configuration in which a vertical electric field can be applied to the display medium layer 30). That is, the display is switched by switching between a state in which a vertical electric field is generated in the display medium layer 30 and a state in which a horizontal electric field and a fringe electric field (or only a fringe electric field as shown in FIG.
  • a liquid crystal material is used as the medium 31, but the medium 31 may be other than the liquid crystal material (for example, propylene carbonate).
  • the medium 31 is preferably a material that is highly transparent to visible light.
  • the viscosity of the medium 31 is preferably 200 mPa ⁇ s or less from the viewpoint of response characteristics.
  • the orientation direction of the shape anisotropic particles 32 can be efficiently changed by utilizing the change of the director of the liquid crystal molecules.
  • the liquid crystal molecules that are aligned in a desired direction can be obtained by switching the arrangement of the strong electric field region SR and the weak electric field region WR within the period in which the same display is performed (that is, reducing the region that always becomes the weak electric field region WR). The number of can be increased. Therefore, when the medium 31 is a liquid crystal material, the effect of improving the light utilization efficiency is further increased.
  • the specific resistance of the liquid crystal material is generally several orders of magnitude higher than that of propylene carbonate or the like, if the medium 31 is a liquid crystal material, the off-leakage via the medium 31 occurs when the TFT after writing to the pixel is off. Is prevented from occurring. Therefore, a high voltage holding ratio can be obtained, and active matrix driving can be suitably performed. Further, since the leakage current is small, power consumption can be reduced.
  • Equation (2) The first term on the right side of Equation (2) should be called the pixel capacitance term, and the second term should be called the leakage current term. That is, the power consumption P can be considered separately for the pixel capacitance component and the leakage current component. When the specific resistance of the medium 31 is high, the leakage current I decreases, so that the power consumption P can be reduced as is apparent from the equation (2).
  • the behavior of the shape anisotropic particles 32 and the behavior of the liquid crystal molecules when an electric field is applied to the display medium layer 30 match.
  • the electric field applied to the display medium layer 30 is switched from a horizontal electric field and a fringe electric field to a vertical electric field
  • the shape anisotropic molecules 32 try to change from the horizontal alignment state to the vertical alignment state, and the liquid crystal molecules are also in the horizontal alignment state. Try to change from vertical alignment to vertical alignment. Therefore, since the number (existence probability) of the shape anisotropic particles 32 that are properly vertically aligned can be increased, a higher contrast ratio can be realized.
  • a liquid crystal material for a liquid crystal display device can be used widely and suitably.
  • a fluorine-based liquid crystal material in which fluorine is introduced into the side chain can be suitably used.
  • Fluorine-based liquid crystal materials are often used for passive matrix drive liquid crystal display devices, and have large dielectric anisotropy and high specific resistance.
  • a dielectric constant in the major axis direction epsilon // 24.7, the short axial permittivity epsilon ⁇ 4.3, the specific resistance ⁇ is a liquid crystal material 6 ⁇ 10 13 ⁇ ⁇ cm be able to.
  • the dielectric constant and specific resistance of the liquid crystal material are not limited to those exemplified here.
  • the specific resistance of the liquid crystal material is preferably 1 ⁇ 10 11 to 12 ⁇ ⁇ cm or more.
  • the dielectric anisotropy ⁇ of the liquid crystal material preferably exceeds 10 ( ⁇ > 10).
  • a liquid crystal material having negative dielectric anisotropy (that is, a negative liquid crystal material) may be used as the medium 31.
  • the shape anisotropic particles 32 are caused by the alignment regulating force of the vertical alignment films 15 and 25. Is prevented from sticking to the substrate surface in a horizontal state.
  • a vertical alignment film for a liquid crystal display device in a VA (Vertical Alignment) mode for example, a polyimide-based or polyamic acid-based vertical alignment film manufactured by JSR or Nissan Chemical
  • VA Vertical Alignment
  • each of the vertical alignment films 15 and 25 is, for example, 100 nm. Of course, it is not limited to this.
  • Each pixel of the display device 100 has a first potential in which a predetermined potential difference is given between the first electrode 11 and the third electrode 13, and the second electrode 12 and the third electrode 13 have substantially the same potential.
  • a predetermined potential difference is applied between the second electrode 12 and the third electrode 13 and the first electrode 11 and the third electrode 13 are substantially the same (the state of FIG. 6A).
  • the second state (the state of FIG. 6B) which is a potential can be switched and exhibited, and when the arrangement of the strong electric field region SR and the weak electric field region WR is switched, the first state and the first state are changed. It is preferable that the state 2 is switched.
  • the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 are alternately (complementarily). Since it is turned on and off (that is, when one fringe electric field is generated, the other fringe electric field is not generated), it is possible to drive efficiently. Moreover, the following effects can also be acquired by performing such a drive.
  • the applicant of the present application proposes a technique for realizing brighter display in a display device (optical device) including an optical layer containing shape anisotropic particles in International Publication No. 2015/098184.
  • a display device optical device
  • the entire disclosure of WO 2015/098184 is incorporated herein by reference.
  • the voltage applied to the optical layer is relatively It has been proposed to use an oscillating voltage that alternately has a first period having a large absolute value and a second period having a relatively small absolute value.
  • the medium can be perturbed, thereby increasing the proportion of shape-anisotropic particles that change the desired orientation.
  • the absolute value of the oscillating voltage in the second period is relative to the absolute value of the oscillating voltage in the first period, the stronger the medium can be shaken, and the oscillating voltage in the second period is approximately 0 V. If so, the medium can be moved most strongly.
  • the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 are complementarily turned on / off. Since the medium 31 can be vibrated strongly by turning it off, the same effect as the method proposed in International Publication No. 2015/098184 can be obtained.
  • the test cell adopts an electrode structure as shown in FIG. 12 instead of active matrix driving.
  • terminals 11t, 12t, and 13t are provided at the respective ends of the first electrode 11, the second electrode 12, and the third electrode 13.
  • a voltage having a desired waveform was input from the arbitrary waveform generator to the first electrode 11, the second electrode 12, and the third electrode 13 via the terminals 11t, 12t, and 13t.
  • the thickness (cell gap) of the display medium layer 30 is 15 ⁇ m.
  • the medium 31 is a positive liquid crystal material (manufactured by Merck & Co., Inc.) having a dielectric anisotropy ⁇ of 20.4.
  • the average particle diameter of the shape anisotropic particles 32 is 7 ⁇ m, and the content of the shape anisotropic particles 32 in the display medium layer 30 is 6% by weight.
  • the substrates 10a and 20a are glass substrates, respectively.
  • Each of the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12 has a comb-tooth shape.
  • the third electrode (lower layer electrode) 13 has a plurality of slits 13s.
  • the fourth electrode (counter electrode) 21 is a solid electrode.
  • Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of IZO and has a thickness of 100 nm.
  • the width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 are each 3 ⁇ m, and the inter-electrode distance g is 10 ⁇ m.
  • the insulating layer 14 is made of SiNx and has a thickness of 350 nm.
  • the vertical alignment films 15 and 25 are polyamic acid-based vertical alignment films (manufactured by Nissan Chemical Industries) having a surface energy of 35 mJ / m 2 .
  • the potential V 1 of the first electrode 11 in the present embodiment shows, the potential V 2 of the second electrode 12, a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13 It is.
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, 0V for each frame within one period, Varies with 10V, 0V, and -10V.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 are out of one frame phase.
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • FIG. 13B shows the voltage (potential difference)
  • 12 is a timing chart showing
  • FIGS. 15A, 15B, and 15C are optical microscope images of the display medium layer 30 in the example.
  • 15A shows a state (initial state) where no electric field is applied to the display medium layer 30, and
  • FIGS. 15B and 15C show a horizontal electric field and a fringe electric field (FIG. 13) on the display medium layer 30, respectively.
  • FIGS. 15A and 15B are images when focusing on the first substrate 10 side
  • FIG. 15C is an image when focusing on the second substrate 20 side.
  • FIG. 15 (d) is a diagram schematically showing the state of FIG. 15 (a)
  • FIG. 15 (e) is a diagram schematically showing the states of FIGS. 15 (b) and (c). is there.
  • FIG. 15A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 15D). Further, FIG. 15B shows that many shape anisotropic particles 32 are horizontally oriented after the lateral electric field and the fringe electric field are applied for a predetermined time (see also FIG. 15E). Further, from FIG. 15C, there are almost no shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are almost no shape anisotropic particles 32 in focus). It can be seen that the orientation direction of many shape anisotropic particles 32 changes. In the state shown in FIGS. 15B and 15C, the reflectance (Y value) of the SCE method was measured and found to be 41.5%.
  • the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is exchanged one or more times within the period in which the same display is performed, so that the light use efficiency can be increased and a brighter display can be achieved. Can be realized.
  • FIG. 16 shows the first to ninth frames (specifically, at time points 0, 17, 50, 67, 83, 100, and 133 msec) after applying the horizontal electric field and the fringe electric field to the display medium layer 30 in the embodiment.
  • An optical microscope image is shown.
  • FIG. 16 also schematically shows cross sections A and B (cross sections corresponding to lines 16A-16A ′ and 16B-16B ′ in the optical microscope image, respectively) at each time point.
  • the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12 also shows a timing chart of the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the shape anisotropic particles 32 are gradually horizontally oriented over about nine frames after application of the electric field.
  • the response time (rise time) was about 133 msec.
  • the potential V 1 of the first electrode 11 of Comparative Example 1 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of 2 frames, 5V every frame in one cycle, and -5V Change.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 are out of one frame phase.
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • Comparative Example 1 is the same drive as that of the liquid crystal display device 900 of Patent Document 4.
  • FIGS. 19A, 19B, and 19C are optical microscope images of the display medium layer 30 in Comparative Example 1.
  • FIG. FIG. 19A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 19B and 19C show a horizontal electric field and a fringe electric field (FIG. 17) on the display medium layer 30, respectively. Shows the state after application for a predetermined time.
  • FIGS. 19A and 19B are images when the first substrate 10 is focused
  • FIG. 19C is an image when the second substrate 20 is focused.
  • FIG. 19 (d) is a diagram schematically showing the state of FIG. 19 (a)
  • FIG. 19 (e) is a diagram schematically showing the states of FIGS. 19 (b) and (c). is there.
  • FIG. 19A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 19D). Further, from FIG. 19B, after the lateral electric field and the fringe electric field are applied for a predetermined time, although there are horizontally-oriented anisotropic particles 32, as compared with the embodiment (see FIG. 15B). And the number thereof is small (see also FIG. 19 (e)). Further, from FIG. 19C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand.
  • the potential V 1 of the first electrode 11 of Comparative Example 2 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of 2 frames, 10V for each frame within one period, and -10V Change.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 are out of one frame phase.
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • the potential V 3 of the third electrode 13 is always an intermediate potential between the potential V 2 of the potentials V 1 and the second electrode 12 of the first electrode 11. Therefore, it can be said that the comparative example 2 is also the same drive as the drive of the liquid crystal display device 900 of Patent Document 4.
  • Comparative Example 2 the lateral electric field and the fringe electric field are stronger than in Comparative Example 1.
  • the entire substrate surface could not be covered with the shape-anisotropic particles 32 whose orientation was changed, and the light utilization efficiency could not be sufficiently improved.
  • FIGS. 22A, 22B, and 22C are optical microscope images of the display medium layer 30 in Comparative Example 2.
  • FIG. 22A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 22B and 22C show a lateral electric field and a fringe electric field (FIG. 20) on the display medium layer 30. Shows the state after application for a predetermined time.
  • 22A and 22B are images when focusing on the first substrate 10 side
  • FIG. 22C is an image when focusing on the second substrate 20 side.
  • FIG. 22 (d) is a diagram schematically showing the state of FIG. 22 (a)
  • FIG. 22 (e) is a diagram schematically showing the states of FIGS. 22 (b) and (c). is there.
  • FIG. 22A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 22D). Further, from FIG. 22B, after the lateral electric field and the fringe electric field are applied for a predetermined time, although there are the shape anisotropic particles 32 that are horizontally oriented, as compared with the embodiment (see FIG. 15B). And the number is small (see also FIG. 22E). Furthermore, from FIG. 22C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand.
  • the potential V 1 of the first electrode 11 of Comparative Example 3 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the potential V 1 of the first electrode 11 is a rectangular wave with a period of 4 frames, and changes to 10 V, 0 V, ⁇ 10 V, and 0 V for each frame within one period.
  • the potential V 2 of the second electrode 12, the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • each pixel When the potential shown in FIG. 23 is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21, each pixel has a horizontal equivalent to 10 V on the display medium layer 30 as shown in FIG. 24. A state in which an electric field and a fringe electric field equivalent to 10 V are generated and a state in which no electric field is generated in the display medium layer 30 (not shown) are switched for each frame.
  • FIGS. 25A, 25B, and 25C are optical microscope images of the display medium layer 30 in Comparative Example 3.
  • FIG. 25A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 25B and 25C show a lateral electric field and a fringe electric field (FIG. 23) in the display medium layer 30. Shows the state after application for a predetermined time.
  • FIGS. 25A and 25B are images when focusing on the first substrate 10 side
  • FIG. 25C is an image when focusing on the second substrate 20 side.
  • FIG. 25 (d) is a diagram schematically showing the state of FIG. 25 (a)
  • FIG. 25 (e) is a diagram schematically showing the states of FIGS. 25 (b) and (c). is there.
  • FIG. 25 (a) shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 25 (d)).
  • FIG. 25B shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 25 (d)).
  • FIG. 25B shows that many shape anisotropic particles 32 are horizontally oriented, but compared with the example (see FIG. 15B). And the number is small (see also FIG. 25 (e)).
  • FIG. 25C there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand.
  • the reflectance (Y value) of the SCE method was measured in the state shown in FIGS. 25B and 25C, it was 28.9%, which was lower than the reflectance (41.5%) of the example. .
  • the potential V 1 of the first electrode 11 of Comparative Example 4 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, 10V for each frame within one period, 0V, - Varies with 10V and 0V.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, the phase is the same.
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • each pixel has a fringe equivalent to 10V on the display medium layer 30 as shown in FIG. A state in which an electric field is generated and a state in which no electric field is generated in the display medium layer 30 (not shown) are switched for each frame.
  • FIGS. 28A, 28B, and 28C are optical microscope images of the display medium layer 30 in Comparative Example 4.
  • FIG. FIG. 28A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 28B and 28C show a lateral electric field and a fringe electric field (FIG. 26) on the display medium layer 30, respectively. Shows the state after application for a predetermined time.
  • FIGS. 28A and 28B are images when focusing on the first substrate 10 side
  • FIG. 28C is an image when focusing on the second substrate 20 side.
  • FIG. 28 (d) is a diagram schematically showing the state of FIG. 28 (a)
  • FIG. 28 (e) is a diagram schematically showing the states of FIGS. 28 (b) and (c). is there.
  • FIG. 28 (a) shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 28 (d)). Further, from FIG. 28 (b), after the fringe electric field is applied for a predetermined time, there are the horizontally oriented shape anisotropic particles 32, but the number thereof compared to the example (see FIG. 15 (b)). (See also FIG. 28 (e)). Further, from FIG. 28C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand. When the SCE reflectivity (Y value) was measured in the state shown in FIGS. 28B and 28C, it was 31.0%, which was lower than the reflectivity (41.5%) of the example. .
  • the shape anisotropic particle 32 is not particularly limited in its specific shape and material as long as the projected area onto the substrate surface changes according to the applied voltage (direction of the applied electric field).
  • the shape anisotropic particles 32 may have a flake shape (flaky shape), a cylindrical shape, an oval shape, or the like. From the viewpoint of realizing a high contrast ratio, the shape anisotropic particle 32 preferably has a shape such that the ratio of the maximum projected area to the minimum projected area is 2: 1 or more.
  • the shape anisotropic particles 32 may be a dielectric multilayer film or may be formed from a cholesteric resin material.
  • an insulating layer (dielectric layer) is preferably formed on the surface of the shape anisotropic particles 32.
  • the dielectric constant of a single metal is an imaginary number, by forming an insulating layer (for example, a resin layer or a metal oxide layer) on the surface, the shape anisotropic particles 32 formed of a metal material can be handled as a dielectric. it can.
  • shape anisotropic particles 32 for example, aluminum flakes whose surfaces are coated with a resin material (for example, acrylic resin) can be used.
  • the aluminum flake content of the display medium layer 30 is, for example, 3% by weight.
  • aluminum flakes having an SiO 2 layer formed on the surface, aluminum flakes having an aluminum oxide layer formed on the surface, or the like can also be used.
  • a metal material other than aluminum may be used as the metal material.
  • the shape anisotropic particles 32 may be colored.
  • the length of the shape anisotropic particles 32 is not particularly limited, but is preferably 4 ⁇ m or more and 10 ⁇ m or less. If the length of the shape anisotropic particles 32 exceeds 10 ⁇ m, the shape anisotropic particles 32 may be difficult to move. On the other hand, when the length of the shape anisotropic particles 32 is less than 4 ⁇ m, it may be difficult to produce the shape anisotropic particles 32 or the reflective performance of the shape anisotropic particles 32 may be insufficient. Further, in the reflective display device as in the present embodiment, when it is desired to cover the substrate surface with the shape anisotropic particles 32 in the horizontal alignment state in order to obtain a high reflectance, the length of the shape anisotropic particles 32 is increased.
  • the thickness of the shape anisotropic particle 32 is not particularly limited. However, since the transmittance of the display medium layer 30 in the transparent state can be increased as the thickness of the shape anisotropic particles 32 is smaller, the thickness of the shape anisotropic particles 32 is larger than the inter-electrode distance g. It is preferably small (for example, 4 ⁇ m or less), and more preferably light wavelength or less (for example, 0.5 ⁇ m or less).
  • the specific gravity of the shape anisotropic particles 32 is preferably 11g / cm 3 or less, more preferably 3 g / cm 3 or less, further preferably the specific gravity substantially equal to that of the medium 31. This is because if the specific gravity of the shape anisotropic particles 32 is significantly different from the specific gravity of the medium 31, there may be a problem that the shape anisotropic particles 32 settle or float. From the viewpoint of increasing the effect of moving the shape anisotropic particles 32 by the peristaltic motion of the medium 31, the shape anisotropic particles 32 are preferably light.
  • the configuration in which the first substrate 10 that is an active matrix substrate is arranged on the back side is illustrated, but the arrangement of the first substrate 10 is not limited to this.
  • the first substrate 10 may be disposed on the front side. Since the first substrate 10 that is an active matrix substrate includes components formed from a light-shielding material, if the configuration in which the first substrate 10 is disposed on the back side is adopted, the shape anisotropic particles 32 The reflection effect can be used to the maximum.
  • the reflective display device 100 has been described as an example.
  • the embodiment of the present invention is also suitably used for a transmissive display device.
  • a light absorption layer (the light absorption layer 16 illustrated in FIG. 1 and the like) is not provided on the back substrate.
  • an illumination element (backlight) that irradiates light to the display panel is provided.
  • the display device 100 in which the display medium layer 30 includes the shape anisotropic particles 32 has been exemplified.
  • the display medium layer whose optical characteristics change according to the applied electric field.
  • the display medium layer can be suitably used for a display device in which the response time of the display medium layer is longer than the switching period of the arrangement of the strong electric field region and the weak electric field region.
  • a substance for changing optical characteristics is mixed in a liquid or gas, and the movement of the substance is controlled by an electric field.
  • the electrophoretic display device to be controlled, the electronic powder fluid (toner) display device, and the electrowetting display device are also preferably used.
  • the liquid crystal orientation switching speed is sufficiently slower than the electric field distribution arrangement switching period. For example, it is suitably used.
  • the embodiment of the present invention it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field.
  • the embodiment of the present invention is preferably used for, for example, a display device including a display medium layer including shape anisotropic particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

A display device (100) is provided with a first substrate (10) and a second substrate (20) as well as a display medium layer (30) the optical characteristics of which changes in response to an applied electric field. When an electric field is applied to the display medium layer, pixels have an electric field distribution wherein a first region (SR) with the electric field having a first electric field intensity and a second region (WR) with the electric field having a second electric field intensity weaker than the first electric field intensity are arranged along the planar direction of the display medium layer. In any pixel, the first region and the second region arrangements in the electric field distribution are switched at least once within a period in which the same display is carried out.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 入射光の透過率(あるいは反射率)を制御して表示を行う表示装置には、高いコントラスト比と高い光利用効率とが求められる。 A display device that performs display by controlling the transmittance (or reflectance) of incident light is required to have a high contrast ratio and a high light utilization efficiency.
 電圧の印加により光の透過率を制御する表示装置として、液晶表示装置がよく知られている。液晶表示装置は、一対の基板と、これらの基板間に設けられた液晶層とを備える。液晶表示装置では、液晶層に印加される電圧の大きさに応じて、液晶層中の液晶分子の配向が変化し、そのことにより、液晶表示装置に入射した光の透過率が変化する。液晶表示装置は、非常に高いコントラスト比が得られるので、現在、広く用いられている。 A liquid crystal display device is well known as a display device that controls the light transmittance by applying a voltage. The liquid crystal display device includes a pair of substrates and a liquid crystal layer provided between the substrates. In the liquid crystal display device, the orientation of the liquid crystal molecules in the liquid crystal layer changes according to the magnitude of the voltage applied to the liquid crystal layer, thereby changing the transmittance of light incident on the liquid crystal display device. Liquid crystal display devices are widely used at present because a very high contrast ratio can be obtained.
 しかしながら、液晶表示装置の多くは、偏光板を用いる方式であるので、表示に用いられる光の半分以上が偏光板で吸収されてしまう。そのため、光利用効率が低い。そこで、近年、偏光板を必要としない表示装置の開発が進められている。 However, since many liquid crystal display devices use a polarizing plate, more than half of the light used for display is absorbed by the polarizing plate. Therefore, the light use efficiency is low. Therefore, in recent years, development of a display device that does not require a polarizing plate has been advanced.
 本願出願人は、特許文献1および2に、形状異方性部材を含む光変調層を備えた表示装置を提案している。特許文献1および2の表示装置では、媒体中に分散された形状異方性部材を、光変調層への電界の印加によって回転(つまり配向方向を変化)させ、そのことによって光変調層の光透過率(または光反射率)を変化させる。 The present applicant has proposed a display device including a light modulation layer including a shape anisotropic member in Patent Documents 1 and 2. In the display devices disclosed in Patent Documents 1 and 2, the shape anisotropic member dispersed in the medium is rotated (that is, the orientation direction is changed) by applying an electric field to the light modulation layer, whereby the light of the light modulation layer is changed. Change the transmittance (or light reflectance).
 上述した特許文献1および2の表示装置は、偏光板を必要としないので、液晶パネルに比べ、光利用効率を高くすることができる。 Since the display devices of Patent Documents 1 and 2 described above do not require a polarizing plate, the light use efficiency can be increased as compared with a liquid crystal panel.
 また、本願出願人は、特許文献3に、形状異方性粒子を含む表示媒体層(光学層)に対し、縦電界だけでなく横電界も印加し得る表示装置を提案している。特許文献3の表示装置では、表示媒体層に縦電界が生成された状態と、表示媒体層に横電界が生成された状態とを切り替えることによって表示が行われる。そのため、特許文献3の表示装置は、特許文献1および2の表示装置よりも応答速度が速い。 Further, the applicant of the present application has proposed a display device that can apply not only a vertical electric field but also a horizontal electric field to a display medium layer (optical layer) containing shape anisotropic particles in Patent Document 3. In the display device of Patent Literature 3, display is performed by switching between a state in which a vertical electric field is generated in the display medium layer and a state in which a horizontal electric field is generated in the display medium layer. Therefore, the display device of Patent Document 3 has a faster response speed than the display devices of Patent Documents 1 and 2.
国際公開第2013/129373号International Publication No. 2013/129373 国際公開第2013/172374号International Publication No. 2013/172374 国際公開第2014/061492号International Publication No. 2014/061492 国際公開第2013/065529号International Publication No. 2013/0665529
 本願出願人は、特許文献3の表示装置のような、形状異方性粒子を含む表示媒体層を備えた表示装置の光利用効率をいっそう向上させるべく、種々の検討を行った。以下、検討により得られた知見を説明する。 The applicant of the present application has made various studies in order to further improve the light utilization efficiency of a display device having a display medium layer containing shape anisotropic particles, such as the display device of Patent Document 3. Hereinafter, the knowledge obtained by the examination will be described.
 液晶表示装置の表示モードとして、VA(Vertical Alignment)モードやFFS(Fringe Field Switching)モードが知られている。VAモードでは、垂直配向型の液晶層に対して縦電界が印加されることによって表示が行われる。これに対し、FFSモードでは、水平配向型の液晶層に対してフリンジ電界が印加されることによって表示が行われる。 As a display mode of a liquid crystal display device, a VA (Vertical Alignment) mode and an FFS (Fringe Field Switching) mode are known. In the VA mode, display is performed by applying a vertical electric field to the vertically aligned liquid crystal layer. On the other hand, in the FFS mode, display is performed by applying a fringe electric field to the horizontally aligned liquid crystal layer.
 図29に、FFSモードの液晶表示装置の一般的な構造を示す。図29に示す液晶表示装置800は、TFT基板810および対向基板820と、これらの間に設けられた液晶層830とを備える。 FIG. 29 shows a general structure of an FFS mode liquid crystal display device. A liquid crystal display device 800 illustrated in FIG. 29 includes a TFT substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween.
 TFT基板810は、透明基板810aと、透明基板810a上に設けられた共通電極(下層電極)812と、共通電極812を覆うように設けられた絶縁層813と、絶縁層813上に設けられた画素電極(上層電極)811とを有する。 The TFT substrate 810 is provided on the transparent substrate 810a, the common electrode (lower layer electrode) 812 provided on the transparent substrate 810a, the insulating layer 813 provided to cover the common electrode 812, and the insulating layer 813. A pixel electrode (upper layer electrode) 811.
 画素電極811は、櫛歯形状を有する。画素電極811は、所定の方向に延びる複数の櫛歯部811aと、隣接する櫛歯部811a間に形成されたスリット811bとを有する。 The pixel electrode 811 has a comb shape. The pixel electrode 811 has a plurality of comb teeth 811a extending in a predetermined direction and slits 811b formed between adjacent comb teeth 811a.
 対向基板820は、透明基板820aと、透明基板820a上に設けられたカラーフィルタ層(不図示)とを有する。 The counter substrate 820 includes a transparent substrate 820a and a color filter layer (not shown) provided on the transparent substrate 820a.
 液晶層830は、水平配向型の液晶層である。TFT基板810および対向基板820の液晶層830側の表面には、水平配向膜(不図示)が設けられており、液晶層830に含まれる液晶分子は、電圧無印加状態において水平配向する(つまりTFT基板810および対向基板820の表面に略平行に配向する)。 The liquid crystal layer 830 is a horizontal alignment type liquid crystal layer. A horizontal alignment film (not shown) is provided on the surface of the TFT substrate 810 and the counter substrate 820 on the liquid crystal layer 830 side, and the liquid crystal molecules contained in the liquid crystal layer 830 are horizontally aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 810 and the counter substrate 820).
 FFSモードの液晶表示装置800では、画素電極811と共通電極812との間に所定の電位差が与えられると、液晶層830にフリンジ電界(電気力線Efで表わされる)が生成される。画素電極811および共通電極812に、例えばそれぞれ14Vおよび7Vの電位が与えられると、7V相当のフリンジ電界が液晶層830に印加されることになる。液晶層830に印加されたフリンジ電界によって、液晶分子の配向方向が変化し、そのことによって表示が行われる。 In the FFS mode liquid crystal display device 800, when a predetermined potential difference is applied between the pixel electrode 811 and the common electrode 812, a fringe electric field (represented by an electric force line Ef) is generated in the liquid crystal layer 830. When potentials of 14 V and 7 V, for example, are applied to the pixel electrode 811 and the common electrode 812, respectively, a fringe electric field corresponding to 7 V is applied to the liquid crystal layer 830. The alignment direction of the liquid crystal molecules is changed by the fringe electric field applied to the liquid crystal layer 830, and thus display is performed.
 上述したFFSモードは、広視野角特性を実現することができる。また、VAモードも、広視野角特性を実現することができる。 The FFS mode described above can achieve a wide viewing angle characteristic. The VA mode can also realize a wide viewing angle characteristic.
 特許文献4には、VAモードの液晶表示装置を高速応答化、高透過率化できる電極構造が開示されている。図30(a)および(b)に、特許文献4に開示されている液晶表示装置の構造を示す。図30(a)および(b)に示す液晶表示装置900は、TFT基板910および対向基板920と、これらの間に設けられた液晶層930とを備える。 Patent Document 4 discloses an electrode structure capable of achieving high-speed response and high transmittance of a VA mode liquid crystal display device. 30A and 30B show the structure of the liquid crystal display device disclosed in Patent Document 4. FIG. A liquid crystal display device 900 shown in FIGS. 30A and 30B includes a TFT substrate 910 and a counter substrate 920, and a liquid crystal layer 930 provided therebetween.
 TFT基板910は、ガラス基板910aと、ガラス基板910a上に設けられた下層電極913と、下層電極913を覆うように設けられた絶縁層914と、絶縁層914上に設けられた一対の上層電極(第1上層電極および第2上層電極)911および912とを有する。第1上層電極911および第2上層電極912のそれぞれは、櫛歯形状を有する。 The TFT substrate 910 includes a glass substrate 910a, a lower layer electrode 913 provided on the glass substrate 910a, an insulating layer 914 provided so as to cover the lower layer electrode 913, and a pair of upper layer electrodes provided on the insulating layer 914. (First upper layer electrode and second upper layer electrode) 911 and 912. Each of the first upper layer electrode 911 and the second upper layer electrode 912 has a comb shape.
 対向基板920は、ガラス基板920aと、ガラス基板920a上に設けられた対向電極921とを有する。 The counter substrate 920 includes a glass substrate 920a and a counter electrode 921 provided on the glass substrate 920a.
 液晶層930は、垂直配向型の液晶層である。TFT基板910および対向基板920の液晶層930側の表面には、垂直配向膜(不図示)が設けられており、液晶層930に含まれる液晶分子は、電圧無印加状態において垂直配向する(つまりTFT基板910および対向基板920の表面に略平行に配向する)。 The liquid crystal layer 930 is a vertical alignment type liquid crystal layer. A vertical alignment film (not shown) is provided on the surface of the TFT substrate 910 and the counter substrate 920 on the liquid crystal layer 930 side, and the liquid crystal molecules contained in the liquid crystal layer 930 are vertically aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 910 and the counter substrate 920).
 液晶表示装置900では、立ち上がり時(黒表示状態から白表示状態への配向状態の変化時)には、図30(a)に示すように、第1上層電極911および第2上層電極912間の電位差による横電界(電気力線Ehで表わされる)が液晶層930に生成される。また、このとき、第1上層電極911および下層電極913間の電位差と、第2上層電極912および下層電極913間の電位差とによるフリンジ電界(電気力線Efで表わされる)も液晶層930に生成される。特許文献4には、第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ7V、14V、10.5Vおよび7Vの電位が与えられる例が記載されている。この例では、7V(=14V-7V)相当の横電界と、3.5V(=14V-10.5V=10.5V-7V)相当のフリンジ電界とが液晶層930に印加されることになる。 In the liquid crystal display device 900, at the time of start-up (when the alignment state changes from the black display state to the white display state), as shown in FIG. 30A, the first upper layer electrode 911 and the second upper layer electrode 912 are arranged. A lateral electric field (represented by electric lines of force Eh) due to the potential difference is generated in the liquid crystal layer 930. At this time, a fringe electric field (represented by electric lines of force Ef) due to a potential difference between the first upper layer electrode 911 and the lower layer electrode 913 and a potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is also generated in the liquid crystal layer 930. Is done. Patent Document 4 describes an example in which potentials of 7 V, 14 V, 10.5 V, and 7 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively. In this example, a lateral electric field corresponding to 7V (= 14V-7V) and a fringe electric field corresponding to 3.5V (= 14V-10.5V = 10.5V-7V) are applied to the liquid crystal layer 930. .
 また、立ち下り時(白表示状態から黒表示状態への配向状態への変化時)には、図30(b)に示すように、第1上層電極911、第2上層電極912および下層電極913と、対向電極921との電位差による縦電界(電気力線Evで表わされる)が液晶層930に生成される。特許文献4には、第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ14V、14V、14Vおよび0Vの電位が与えられる例が記載されている。この例では、14V相当の縦電界が液晶層930に印加されることになる。 At the time of falling (when changing from the white display state to the black display state), as shown in FIG. 30B, the first upper layer electrode 911, the second upper layer electrode 912, and the lower layer electrode 913 Then, a vertical electric field (represented by lines of electric force Ev) due to a potential difference with the counter electrode 921 is generated in the liquid crystal layer 930. Patent Document 4 describes an example in which potentials of 14 V, 14 V, 14 V, and 0 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively. In this example, a vertical electric field corresponding to 14 V is applied to the liquid crystal layer 930.
 本願発明者は、形状異方性粒子を含む表示媒体層を備えた表示装置の光利用効率をいっそう向上させる手法として、液晶表示装置について提案されている電極構造を用いることを検討した。その結果、上述したような電極構造を単純に採用すると、以下のような問題が発生することを見出した。 The inventor of the present application examined the use of the electrode structure proposed for the liquid crystal display device as a method for further improving the light utilization efficiency of the display device including the display medium layer containing the shape anisotropic particles. As a result, it has been found that the following problems occur when the electrode structure as described above is simply adopted.
 まず、特許文献4の電極構造では、下層電極913の電位に制約があり、十分に強いフリンジ電界を生成させることができない。具体的には、配向の対称性を保つためには、下層電極913の電位は、第1上層電極911の電位と第2上層電極912の電位との中間の電位に設定する必要がある。特許文献4に記載されている例のように、第1上層電極911および第2上層電極912の電位をそれぞれ7Vおよび14Vとすると、下層電極913の電位を10.5Vに設定する必要がある。そのため、生成されるフリンジ電界は、3.5V相当のものとなるので、FFSモードの電極構造を採用した場合(図29に示しているように7V相当のフリンジ電界が生成される)に比べてフリンジ電界による配向規制力が弱くなってしまう。 First, in the electrode structure of Patent Document 4, the potential of the lower layer electrode 913 is limited, and a sufficiently strong fringe electric field cannot be generated. Specifically, in order to maintain the symmetry of orientation, the potential of the lower layer electrode 913 needs to be set to an intermediate potential between the potential of the first upper layer electrode 911 and the potential of the second upper layer electrode 912. As in the example described in Patent Document 4, if the potentials of the first upper electrode 911 and the second upper electrode 912 are 7V and 14V, respectively, the potential of the lower electrode 913 needs to be set to 10.5V. Therefore, since the generated fringe electric field is equivalent to 3.5 V, compared to the case where the FFS mode electrode structure is adopted (a fringe electric field equivalent to 7 V is generated as shown in FIG. 29). The alignment regulating force due to the fringe electric field is weakened.
 また、仮に、特許文献4の電極構造において、FFSモードの電極構造と同じ強さのフリンジ電界を生成するために、下層電極913の電位を第1上層電極911の電位と同じにする(例えば第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ7V、14V、7Vおよび7Vの電位を与える)と、図31に示すように、第2上層電極912と下層電極913との電位差による強いフリンジ電界(7V相当)が生成されるものの、第1上層電極911近傍はフリンジ電界が生成されず、相対的に電界強度が弱い弱電界領域WRとなる。この弱電界領域WRが存在することにより、光利用効率(モード効率)が低下する。 In addition, in the electrode structure of Patent Document 4, in order to generate a fringe electric field having the same strength as that of the FFS mode electrode structure, the potential of the lower layer electrode 913 is made the same as the potential of the first upper layer electrode 911 (for example, the first 1 upper layer electrode 911, second upper layer electrode 912, lower layer electrode 913 and counter electrode 921 are applied with potentials of 7V, 14V, 7V and 7V, respectively), and as shown in FIG. 31, second upper layer electrode 912 and lower layer electrode Although a strong fringe electric field (equivalent to 7 V) is generated due to a potential difference from 913, no fringe electric field is generated in the vicinity of the first upper layer electrode 911, and a weak electric field region WR having a relatively weak electric field strength is formed. Due to the presence of the weak electric field region WR, the light use efficiency (mode efficiency) is lowered.
 一方、FFSモードの電極構造を採用すると、画素電極811の複数の櫛歯部811aは同電位であるので、隣接する櫛歯部811a間に横電界は生成されない。そのため、図32に示すように、スリット811bの中央付近に弱電界領域WRが発生し、光利用効率が低下する。 On the other hand, when the FFS mode electrode structure is adopted, the plurality of comb-tooth portions 811a of the pixel electrode 811 are at the same potential, so that no horizontal electric field is generated between the adjacent comb-tooth portions 811a. Therefore, as shown in FIG. 32, a weak electric field region WR is generated near the center of the slit 811b, and the light utilization efficiency is lowered.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、印加された電界に応じて光学特性が変化する表示媒体層を備えた表示装置における、弱電界領域に起因する光利用効率の低下を抑制することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to use light efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field. It is in suppressing the fall of the.
 本発明の実施形態による表示装置は、画素を有する表示装置であって、互いに対向するように設けられた第1基板および第2基板と、前記第1基板および前記第2基板の間に設けられた表示媒体層であって、印加された電界に応じて光学特性が変化する表示媒体層と、を備え、前記表示媒体層に電界が印加されたとき、前記画素は、電界が第1電界強度を有する第1領域と、電界が第1電界強度よりも弱い第2電界強度を有する第2領域とが前記表示媒体層の面内方向に沿って配列された電界分布を有し、前記画素において、同一の表示が行われている期間内で前記電界分布における前記第1領域および前記第2領域の配列が1回以上入れ替わる。 A display device according to an embodiment of the present invention is a display device having pixels, and is provided between a first substrate and a second substrate provided to face each other, and the first substrate and the second substrate. A display medium layer having an optical characteristic that changes according to the applied electric field, and when the electric field is applied to the display medium layer, the pixel has a first electric field strength. And a second region having a second electric field strength whose electric field is weaker than the first electric field strength have an electric field distribution arranged along an in-plane direction of the display medium layer, The arrangement of the first region and the second region in the electric field distribution is switched one or more times within a period in which the same display is performed.
 ある実施形態において、前記第1領域および前記第2領域の配列が入れ替わる周期は、1フレームに相当する時間の整数倍である。 In one embodiment, the period at which the arrangement of the first area and the second area is switched is an integral multiple of a time corresponding to one frame.
 ある実施形態において、前記第1基板は、前記画素に設けられ、互いに異なる電位を与えられ得る第1電極および第2電極を有し、前記第1電極および前記第2電極のそれぞれは、櫛歯形状を有する。 In one embodiment, the first substrate includes a first electrode and a second electrode that are provided in the pixel and can be applied with different potentials, and each of the first electrode and the second electrode includes a comb tooth. Has a shape.
 ある実施形態において、前記第1電極と前記第2電極とによって前記表示媒体層に横電界が生成される。 In one embodiment, a lateral electric field is generated in the display medium layer by the first electrode and the second electrode.
 ある実施形態において、前記第1領域および前記第2領域の配列が入れ替わる際に、前記第1電極の電位と前記第2電極の電位とが入れ替わる。 In an embodiment, when the arrangement of the first region and the second region is switched, the potential of the first electrode and the potential of the second electrode are switched.
 ある実施形態において、前記第1基板は、絶縁層を介して前記第1電極および前記第2電極の下方に設けられた第3電極をさらに有する。 In one embodiment, the first substrate further includes a third electrode provided below the first electrode and the second electrode via an insulating layer.
 ある実施形態において、前記第1電極または前記第2電極と、前記第3電極とによって前記表示媒体層にフリンジ電界が生成される。 In one embodiment, a fringe electric field is generated in the display medium layer by the first electrode or the second electrode and the third electrode.
 ある実施形態において、前記画素は、前記第1電極と前記第3電極との間に所定の電位差が与えられ、かつ、前記第2電極と前記第3電極とが実質的に同じ電位である第1の状態と、前記第2電極と前記第3電極との間に所定の電位差が与えられ、かつ、前記第1電極と前記第3電極とが実質的に同じ電位である第2の状態とを切り替えて呈することができ、前記第1領域および前記第2領域の配列が入れ替わる際に、前記第1の状態と前記第2の状態とが切り替えられる。 In one embodiment, the pixel has a predetermined potential difference between the first electrode and the third electrode, and the second electrode and the third electrode have substantially the same potential. And a second state in which a predetermined potential difference is given between the second electrode and the third electrode, and the first electrode and the third electrode have substantially the same potential. The first state and the second state are switched when the arrangement of the first region and the second region is switched.
 ある実施形態において、前記第2基板は、前記第1電極、前記第2電極および前記第3電極に対向する第4電極を有する。 In one embodiment, the second substrate has a fourth electrode facing the first electrode, the second electrode, and the third electrode.
 ある実施形態において、前記第1電極、前記第2電極および前記第3電極と、前記第4電極とによって前記表示媒体層に縦電界が生成される。 In one embodiment, a vertical electric field is generated in the display medium layer by the first electrode, the second electrode, the third electrode, and the fourth electrode.
 ある実施形態において、前記第1基板は、前記第1電極に電気的に接続された第1薄膜トランジスタと、前記第2電極に電気的に接続された第2薄膜トランジスタと、をさらに有する。 In one embodiment, the first substrate further includes a first thin film transistor electrically connected to the first electrode and a second thin film transistor electrically connected to the second electrode.
 ある実施形態において、前記表示媒体層の応答時間は、前記第1領域および前記第2領域の配列が入れ替わる周期よりも長い。 In one embodiment, the response time of the display medium layer is longer than a cycle in which the arrangement of the first region and the second region is switched.
 ある実施形態において、前記表示媒体層は、媒体と、前記媒体中に分散され、形状異方性を有する形状異方性粒子とを含む。 In one embodiment, the display medium layer includes a medium and shape anisotropic particles dispersed in the medium and having shape anisotropy.
 ある実施形態において、前記媒体は、液晶材料を含む。 In one embodiment, the medium includes a liquid crystal material.
 ある実施形態において、前記第1基板および前記第2基板の少なくとも一方は、前記表示媒体層側に設けられ、前記液晶材料に含まれる液晶分子を垂直配向させる垂直配向膜を有する。 In one embodiment, at least one of the first substrate and the second substrate has a vertical alignment film that is provided on the display medium layer side and vertically aligns liquid crystal molecules contained in the liquid crystal material.
 本発明の実施形態によると、印加された電界に応じて光学特性が変化する表示媒体層を備えた表示装置における、弱電界領域に起因する光利用効率の低下を抑制することができる。 According to the embodiment of the present invention, it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field.
本発明の実施形態における表示装置100を模式的に示す断面図であり、図2中の1A-1A’線に沿った断面を示している。FIG. 3 is a cross-sectional view schematically showing a display device 100 according to an embodiment of the present invention, showing a cross section taken along line 1A-1A ′ in FIG. 2. 表示装置100を模式的に示す平面図である。3 is a plan view schematically showing the display device 100. FIG. (a)は、表示媒体層30に電界が印加されていないときの表示装置100を模式的に示す図であり、(b)は、表示媒体層30に横電界およびフリンジ電界が印加されているときの表示装置100を模式的に示す図である。(A) is a figure which shows typically the display apparatus 100 when the electric field is not applied to the display medium layer 30, (b) is a horizontal electric field and a fringe electric field being applied to the display medium layer 30. It is a figure which shows the display apparatus 100 of time. 表示媒体層30に縦電界が印加されているときの表示装置100を模式的に示す図である。3 is a diagram schematically showing the display device 100 when a vertical electric field is applied to the display medium layer 30. FIG. (a)は、表示媒体層30に印加されている電界を横電界およびフリンジ電界から縦電界に変化させた直後の表示媒体層30の様子を示す図であり、(b)は、その後十分な時間が経過した後の表示媒体層30の様子を示す図である。(A) is a figure which shows the mode of the display medium layer 30 immediately after changing the electric field applied to the display medium layer 30 from a horizontal electric field and a fringe electric field to a vertical electric field, (b) is enough after that It is a figure which shows the mode of the display medium layer 30 after time passes. (a)および(b)は、表示媒体層30に横電界およびフリンジ電界が印加されている状態を示す図であり、(a)は、複数のフレームにわたって同一の表示が行われている場合におけるあるフレームに対応し、(b)は、別のあるフレームに対応する。(A) And (b) is a figure which shows the state in which the horizontal electric field and a fringe electric field are applied to the display medium layer 30, (a) is in the case where the same display is performed over several frames Corresponding to a certain frame, (b) corresponds to another certain frame. 特許文献4の液晶表示装置900において横電界およびフリンジ電界の印加が行われている状態を示す図である。It is a figure which shows the state in which the application of a horizontal electric field and a fringe electric field is performed in the liquid crystal display device 900 of patent document 4. FIG. FFSモードの液晶表示装置800においてフリンジ電界の印加が行われている状態を示す図である。FIG. 11 is a diagram illustrating a state in which a fringe electric field is applied in the FFS mode liquid crystal display device 800. (a)および(b)は、表示装置100の他の電極構成を示す図である。(A) And (b) is a figure which shows the other electrode structure of the display apparatus 100. FIG. (a)および(b)は、表示装置100のさらに他の電極構成を示す図である。(A) And (b) is a figure which shows the further another electrode structure of the display apparatus 100. FIG. アクティブマトリクス駆動を行う場合の背面基板10における具体的な配線構造の例を示す平面図である。It is a top view which shows the example of the specific wiring structure in the back substrate 10 in the case of performing active matrix drive. テストセルにおける電極構造を示す平面図である。It is a top view which shows the electrode structure in a test cell. (a)は、実施例における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートであり、(b)は、実施例における第1電極11および第3電極13間の電圧|V1-V3|と、第2電極12および第3電極13間の電圧|V2-V3|と、第1電極11および第2電極12間の電圧|V1-V2|を示すタイミングチャートである。(A), the potential V 1 of the first electrode 11 in the embodiment, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13, (b) the voltage between the first electrode 11 and the third electrode 13 in the embodiment | and the voltage between the second electrode 12 and the third electrode 13 | | V 1 -V 3 and, | V 2 -V 3 6 is a timing chart showing a voltage | V 1 −V 2 | between the first electrode 11 and the second electrode 12. (a)および(b)は、図13(a)に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられたときの画素の状態を示す図である。(A) And (b) is a figure which shows the state of a pixel when the electric potential shown to Fig.13 (a) is given to the 1st electrode 11, the 2nd electrode 12, the 3rd electrode 13, and the 4th electrode 21. FIG. It is. (a)、(b)および(c)は、実施例における表示媒体層30の光学顕微鏡像であり、(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、(b)および(c)は、表示媒体層30に横電界およびフリンジ電界が所定時間印加された後の状態を示している。(d)は、(a)の状態を模式的に示す図であり、(e)は、(b)および(c)の状態を模式的に示す図である。(A), (b), and (c) are the optical microscope images of the display medium layer 30 in an Example, (a) shows the state (initial state) in which the electric field is not applied to the display medium layer 30. , (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically. 実施例における表示媒体層30に横電界およびフリンジ電界を印加した後の第1フレーム~第9フレーム(具体的には0、17、50、67、83、100、133msec時点)における光学顕微鏡像等を示す図である。Optical microscope images and the like in the first to ninth frames (specifically, at time points 0, 17, 50, 67, 83, 100, and 133 msec) after applying a lateral electric field and a fringe electric field to the display medium layer 30 in the embodiment. FIG. 比較例1における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。The potential V 1 of the first electrode 11 of Comparative Example 1, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. 図17に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられたときの画素の状態を示す図である。FIG. 18 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 17 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21. (a)、(b)および(c)は、比較例1における表示媒体層30の光学顕微鏡像であり、(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、(b)および(c)は、表示媒体層30に横電界およびフリンジ電界が所定時間印加された後の状態を示している。(d)は、(a)の状態を模式的に示す図であり、(e)は、(b)および(c)の状態を模式的に示す図である。(A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 1, (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30. (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically. 比較例2における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。The potential V 1 of the first electrode 11 of Comparative Example 2, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. 図20に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられたときの画素の状態を示す図である。FIG. 21 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 20 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21. (a)、(b)および(c)は、比較例2における表示媒体層30の光学顕微鏡像であり、(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、(b)および(c)は、表示媒体層30に横電界およびフリンジ電界が所定時間印加された後の状態を示している。(d)は、(a)の状態を模式的に示す図であり、(e)は、(b)および(c)の状態を模式的に示す図である。(A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 2, (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30. (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically. 比較例3における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。The potential V 1 of the first electrode 11 of Comparative Example 3, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. 図23に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられたときの画素の状態を示す図である。FIG. 24 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 23 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21. (a)、(b)および(c)は、比較例3における表示媒体層30の光学顕微鏡像であり、(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、(b)および(c)は、表示媒体層30に横電界およびフリンジ電界が所定時間印加された後の状態を示している。(d)は、(a)の状態を模式的に示す図であり、(e)は、(b)および(c)の状態を模式的に示す図である。(A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 3, (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30. (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically. 比較例4における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。The potential V 1 of the first electrode 11 of Comparative Example 4, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. 図26に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられたときの画素の状態を示す図である。FIG. 27 is a diagram illustrating a state of a pixel when the potential illustrated in FIG. 26 is applied to a first electrode 11, a second electrode 12, a third electrode 13, and a fourth electrode 21. (a)、(b)および(c)は、比較例4における表示媒体層30の光学顕微鏡像であり、(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、(b)および(c)は、表示媒体層30に横電界およびフリンジ電界が所定時間印加された後の状態を示している。(d)は、(a)の状態を模式的に示す図であり、(e)は、(b)および(c)の状態を模式的に示す図である。(A), (b), and (c) are the optical microscope images of the display medium layer 30 in the comparative example 4, (a) is the state (initial state) in which the electric field is not applied to the display medium layer 30. (B) and (c) show a state after a lateral electric field and a fringe electric field are applied to the display medium layer 30 for a predetermined time. (D) is a figure which shows the state of (a) typically, (e) is a figure which shows the state of (b) and (c) typically. FFSモードの液晶表示装置800を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an FFS mode liquid crystal display device 800. (a)および(b)は、特許文献4の液晶表示装置900を模式的に示す断面図である。(A) And (b) is sectional drawing which shows the liquid crystal display device 900 of patent document 4 typically. 特許文献4の液晶表示装置900において弱電界領域WRが発生する様子を模式的に示す図である。It is a figure which shows typically a mode that the weak electric field area | region WR generate | occur | produces in the liquid crystal display device 900 of patent document 4. FIG. FFSモードの液晶表示装置800において弱電界領域WRが発生する様子を模式的に示す図である。FIG. 11 is a diagram schematically showing how a weak electric field region WR is generated in an FFS mode liquid crystal display device 800.
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1に、本実施形態における表示装置100を示す。図1は、表示装置100を模式的に示す断面図であり、図2は、表示装置100を模式的に示す平面図である。図1は、図2中の1A-1A’線に沿った断面を示している。 FIG. 1 shows a display device 100 according to this embodiment. FIG. 1 is a cross-sectional view schematically showing the display device 100, and FIG. 2 is a plan view schematically showing the display device 100. FIG. 1 shows a cross section taken along line 1A-1A 'in FIG.
 表示装置100は、外部から入射する光(周囲光)を用いて反射モードで表示を行うことができる反射型表示装置である。表示装置100は、画素を有する。ここでは、表示装置100は、マトリクス状に配列された複数の画素を有する。 The display device 100 is a reflective display device that can perform display in a reflection mode using light incident from the outside (ambient light). The display device 100 includes pixels. Here, the display device 100 includes a plurality of pixels arranged in a matrix.
 図1に示すように、表示装置100は、互いに対向するように設けられた第1基板10および第2基板20と、第1基板10および第2基板20の間に設けられた表示媒体層(光学層)30とを備える。以下では、第1基板10および第2基板20のうちの、相対的に背面側に位置する第1基板10を「背面側基板」と呼ぶことがあり、相対的に前面側(つまり観察者側)に位置する第2基板20を「前面側基板」と呼ぶことがある。 As shown in FIG. 1, the display device 100 includes a first substrate 10 and a second substrate 20 provided so as to face each other, and a display medium layer (between the first substrate 10 and the second substrate 20). Optical layer) 30. Hereinafter, of the first substrate 10 and the second substrate 20, the first substrate 10 positioned relatively on the back side may be referred to as a “back side substrate” and may be referred to relatively on the front side (that is, on the viewer side). The second substrate 20 positioned at () may be referred to as a “front substrate”.
 第1基板(背面側基板)10は、互いに異なる電位を与えられ得る第1電極11および第2電極12を有する。第1電極11および第2電極12は、複数の画素のそれぞれに設けられている。第1電極11および第2電極12のそれぞれは、図2に示すように、櫛歯形状を有する。 The first substrate (back substrate) 10 has a first electrode 11 and a second electrode 12 that can be given different potentials. The first electrode 11 and the second electrode 12 are provided in each of the plurality of pixels. Each of the 1st electrode 11 and the 2nd electrode 12 has a comb-tooth shape, as shown in FIG.
 第1電極11は、幹部11bと、幹部11bから延びる複数の枝部11aとを有する。第2電極12は、同様に、幹部12bと、幹部12bから延びる複数の枝部12aとを有する。第1電極11と第2電極12とは、それぞれの複数の枝部11a、12aが所定の間隙(以下では「電極間距離」と呼ぶこともある)gを介して噛合するように配置されている。 The first electrode 11 has a trunk portion 11b and a plurality of branch portions 11a extending from the trunk portion 11b. Similarly, the second electrode 12 includes a trunk portion 12b and a plurality of branch portions 12a extending from the trunk portion 12b. The first electrode 11 and the second electrode 12 are arranged so that the plurality of branch portions 11a and 12a mesh with each other via a predetermined gap (hereinafter also referred to as “interelectrode distance”) g. Yes.
 電極間距離gに特に制限はない。また、第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2にも特に制限はない。電極間距離g、第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2は、それぞれ例えば数μm~十数μm程度である。第1電極11の枝部11aの幅w1と、第2電極12の枝部12aの幅w2とは、同じであってもよいし、異なっていてもよい。 There is no restriction | limiting in particular in the distance g between electrodes. Further, the width w 1 of the branch part 11 a of the first electrode 11 and the width w 2 of the branch part 12 a of the second electrode 12 are not particularly limited. The inter-electrode distance g, the width w 1 of the branch portion 11a of the first electrode 11, and the width w 2 of the branch portion 12a of the second electrode 12 are each about several μm to several tens of μm, for example. The width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 may be the same or different.
 また、第1基板10は、絶縁層14を介して第1電極11および第2電極12の下方に設けられた第3電極13をさらに有する。以下では、第1電極11、第2電極12および第3電極13を、それぞれ「第1上層電極」、「第2上層電極」および「下層電極」と呼ぶこともある。図1および図2に示している例では、第3電極13は、スリットや切欠き部が形成されていない、いわゆるべた電極である。 The first substrate 10 further includes a third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween. Hereinafter, the first electrode 11, the second electrode 12, and the third electrode 13 may be referred to as “first upper layer electrode”, “second upper layer electrode”, and “lower layer electrode”, respectively. In the example shown in FIGS. 1 and 2, the third electrode 13 is a so-called solid electrode in which no slit or notch is formed.
 第1基板10は、典型的には、アクティブマトリクス基板であり、各画素に設けられた複数の薄膜トランジスタ(TFT)と、各種の配線(TFTに電気的に接続されたゲート配線、ソース配線など)とを有する(いずれもここでは不図示)。第1電極11、第2電極12および第3電極13は、それぞれ対応するTFTに電気的に接続されており、TFTを介してソース信号に対応した電圧を供給される。 The first substrate 10 is typically an active matrix substrate, and includes a plurality of thin film transistors (TFTs) provided in each pixel and various wirings (a gate wiring, a source wiring, etc. electrically connected to the TFT). (Both not shown here). The first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the corresponding TFTs, respectively, and supplied with a voltage corresponding to the source signal through the TFTs.
 第1基板10は、さらに、光を吸収する光吸収層16を有する。光吸収層16の材料に特に制限はない。光吸収層16の材料としては、例えば、液晶表示装置等のカラーフィルタに含まれるブラックマトリクスの材料などに用いられる顔料を用いることができる。あるいは、光吸収層16として、二層構造の低反射クロム膜(クロム層と酸化クロム層とが積層された構造を有する)を用いることもできる。 The first substrate 10 further includes a light absorption layer 16 that absorbs light. There is no restriction | limiting in particular in the material of the light absorption layer 16. FIG. As a material of the light absorption layer 16, for example, a pigment used for a black matrix material included in a color filter of a liquid crystal display device or the like can be used. Alternatively, a low-reflection chromium film having a two-layer structure (having a structure in which a chromium layer and a chromium oxide layer are stacked) can be used as the light absorption layer 16.
 第1基板10の構成要素(上述した第1電極11など)は、絶縁性を有する基板(例えばガラス基板)10aによって支持されている。なお、図1では、光吸収層16は基板10aの背面側に設けられているが、光吸収層16が基板10aの表示媒体層30側に設けられていてもよい。 The components of the first substrate 10 (such as the first electrode 11 described above) are supported by an insulating substrate (for example, a glass substrate) 10a. In FIG. 1, the light absorption layer 16 is provided on the back side of the substrate 10a. However, the light absorption layer 16 may be provided on the display medium layer 30 side of the substrate 10a.
 第2基板(前面側基板)20は、第1電極11、第2電極12および第3電極13に対向する第4電極(対向電極)21を有する。第4電極21は、スリットや切欠き部が形成されていない、いわゆるべた電極であってよい。図1に示している例では、第2基板20は、第4電極21上に設けられた誘電体層(オーバーコート層)22をさらに有する。第4電極21は、画素ごとに電気的に独立している必要はなく、すべての画素に共通の連続した単一の導電膜(つまり共通電極)であってよい。第4電極21が、すべての画素に共通のべた電極であると、フォトリソグラフィ技術によるパターニングが不要となるので、製造コストを低減することができる。また、カラー表示を行う場合には、第2基板20は、カラーフィルタ(不図示)を有する。 The second substrate (front substrate) 20 has a fourth electrode (counter electrode) 21 facing the first electrode 11, the second electrode 12 and the third electrode 13. The fourth electrode 21 may be a so-called solid electrode in which no slit or notch is formed. In the example illustrated in FIG. 1, the second substrate 20 further includes a dielectric layer (overcoat layer) 22 provided on the fourth electrode 21. The fourth electrode 21 does not need to be electrically independent for each pixel, and may be a continuous single conductive film (that is, a common electrode) common to all pixels. When the fourth electrode 21 is a solid electrode common to all the pixels, patterning by a photolithography technique is not necessary, so that the manufacturing cost can be reduced. When performing color display, the second substrate 20 includes a color filter (not shown).
 第2基板20の構成要素(上述した第4電極21など)は、絶縁性を有する基板(例えばガラス基板)20aによって支持されている。 The components of the second substrate 20 (such as the fourth electrode 21 described above) are supported by an insulating substrate (for example, a glass substrate) 20a.
 第1電極11、第2電極12、第3電極13および第4電極21のそれぞれは、ITO(インジウム錫酸化物)やIZO(インジウム亜鉛酸化物)などの透明導電材料から形成されている。これらの電極となる導電膜を堆積する方法に特に制限はなく、スパッタリング法、真空蒸着法、プラズマCVD法等、公知の種々の方法を用いることができる。また、櫛歯形状を有する第1電極11および第2電極12を形成するために導電膜をパターニングする方法にも特に制限はなく、フォトリソグラフィ等の公知のパターニング方法を用いることができる。第1電極11、第2電極12、第3電極13および第4電極21の厚さは、例えば、100nmである。 Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide). There is no particular limitation on the method for depositing the conductive film to be these electrodes, and various known methods such as a sputtering method, a vacuum evaporation method, and a plasma CVD method can be used. Further, there is no particular limitation on the method for patterning the conductive film in order to form the first electrode 11 and the second electrode 12 having a comb-teeth shape, and a known patterning method such as photolithography can be used. The thicknesses of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 are, for example, 100 nm.
 表示媒体層30は、印加された電界に応じてその光学特性が変化する。表示媒体層30は、液状の媒体31と、媒体31中に分散され、形状異方性を有する粒子(以下では「形状異方性粒子」と呼ぶ)32とを含む。上述した第1基板10および第2基板20は、表示領域を包囲するように形成されたシール部(ここでは不図示)を介して貼り合わされており、媒体31および形状異方性粒子32は、シール部に包囲された領域(つまり表示領域)内に封入されている。表示媒体層30の厚さ(セルギャップ)に特に制限はない。表示媒体層30の厚さは、例えば、5μm~30μmである。 The optical properties of the display medium layer 30 change according to the applied electric field. The display medium layer 30 includes a liquid medium 31 and particles 32 that are dispersed in the medium 31 and have shape anisotropy (hereinafter referred to as “shape anisotropic particles”). The first substrate 10 and the second substrate 20 described above are bonded together via a seal portion (not shown here) formed so as to surround the display region, and the medium 31 and the shape anisotropic particles 32 are: It is enclosed in a region (that is, a display region) surrounded by the seal portion. There is no particular limitation on the thickness (cell gap) of the display medium layer 30. The thickness of the display medium layer 30 is, for example, 5 μm to 30 μm.
 形状異方性粒子32は、光反射性を有する。形状異方性粒子32は、例えばフレーク状(薄片状)である。 The shape anisotropic particle 32 has light reflectivity. The shape anisotropic particle 32 has, for example, a flake shape (flaky shape).
 形状異方性粒子32は、表示媒体層30に印加された電界(電圧)に応じて配向方向が変化する。形状異方性粒子32は、形状異方性を有しているので、形状異方性粒子32の配向方向が変化すると、形状異方性粒子32の基板面(第1基板10の基板面)への投影面積も変化し、それに伴って、表示媒体層30の光学特性(ここでは反射率)が変化する。本実施形態の表示装置100では、そのことを利用して表示が行われる。形状異方性粒子32の配向方向が印加電界に応じて変化する理由については、後に詳述する。 The orientation direction of the shape anisotropic particles 32 changes according to the electric field (voltage) applied to the display medium layer 30. Since the shape anisotropic particles 32 have shape anisotropy, when the orientation direction of the shape anisotropic particles 32 changes, the substrate surface of the shape anisotropic particles 32 (the substrate surface of the first substrate 10). The projected area on the screen also changes, and accordingly, the optical characteristics (in this case, reflectance) of the display medium layer 30 change. In the display device 100 of the present embodiment, display is performed using this fact. The reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field will be described in detail later.
 本実施形態の表示装置100では、媒体31は、液晶材料であり、液晶分子を含んでいる。ここでは、液晶材料は、正の誘電異方性を有する。つまり、媒体31は、いわゆるポジ型の液晶材料であり、液晶分子の長軸方向の誘電率ε//は、短軸方向の誘電率εよりも大きい。 In the display device 100 of this embodiment, the medium 31 is a liquid crystal material and includes liquid crystal molecules. Here, the liquid crystal material has positive dielectric anisotropy. That is, the medium 31 is a so-called positive liquid crystal material, and the dielectric constant ε // in the major axis direction of the liquid crystal molecules is larger than the dielectric constant ε の in the minor axis direction.
 第1基板10および第2基板20のそれぞれは、表示媒体層30側に設けられた垂直配向膜15および25を有する。垂直配向膜15および25は、媒体(液晶材料)31に含まれる液晶分子を垂直配向(第1基板10または第2基板20の基板面に対して略垂直に配向)させる配向規制力を有する。また、垂直配向膜15および25は、後に詳述するように、形状異方性粒子32を垂直配向(第1基板10または第2基板20の基板面に対して略垂直に配向)させる配向規制力も有する。なお、必ずしも第1基板10および第2基板20の両方に垂直配向膜が設けられている必要はなく、一方のみ(例えば第1基板10のみ)に垂直配向膜が設けられていてもよい。 Each of the first substrate 10 and the second substrate 20 has vertical alignment films 15 and 25 provided on the display medium layer 30 side. The vertical alignment films 15 and 25 have an alignment regulating force for vertically aligning liquid crystal molecules contained in the medium (liquid crystal material) 31 (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Further, the vertical alignment films 15 and 25, as will be described in detail later, are alignment restrictions that cause the shape anisotropic particles 32 to be vertically aligned (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Also has power. Note that the vertical alignment film is not necessarily provided on both the first substrate 10 and the second substrate 20, and the vertical alignment film may be provided on only one (for example, only the first substrate 10).
 本発明の実施形態による表示装置100では、第1電極(第1上層電極)11と第2電極(第2上層電極)12とによって表示媒体層30に横電界が生成される。また、第1電極11または第2電極12と、第3電極(下層電極)13とによって表示媒体層30にフリンジ電界が生成される。本願明細書では、同一基板の同一レベルに設けられた2つの電極の電位差によって生成される電界を「横電界」と呼び、同一基板の異なるレベルに設けられた2つの電極の電位差によって生成される電界を「フリンジ電界」と呼ぶ。本発明の実施形態による表示装置100では、さらに、第1電極11、第2電極12および第3電極13と、第4電極(対向電極)21とによって表示媒体層30に縦電界が生成される。 In the display device 100 according to the embodiment of the present invention, a lateral electric field is generated in the display medium layer 30 by the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12. Further, a fringe electric field is generated in the display medium layer 30 by the first electrode 11 or the second electrode 12 and the third electrode (lower layer electrode) 13. In this specification, an electric field generated by a potential difference between two electrodes provided on the same substrate on the same level is called a “lateral electric field”, and is generated by a potential difference between two electrodes provided on different levels on the same substrate. The electric field is called a “fringe electric field”. In the display device 100 according to the embodiment of the present invention, a vertical electric field is generated in the display medium layer 30 by the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode (counter electrode) 21. .
 以下、図3(a)および(b)を参照しながら、形状異方性粒子32の配向方向が印加電界(印加電圧)に応じて変化する理由をより具体的に説明する。図3(a)は、表示媒体層30に電界が印加されていないときの表示装置100を模式的に示す図であり、図3(b)は、表示媒体層30に横電界およびフリンジ電界が印加されているときの表示装置100を模式的に示す図である。 Hereinafter, the reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field (applied voltage) will be described in more detail with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a diagram schematically showing the display device 100 when no electric field is applied to the display medium layer 30, and FIG. 3B shows a horizontal electric field and a fringe electric field in the display medium layer 30. It is a figure which shows typically the display apparatus 100 when being applied.
 表示媒体層30に電界が印加されていない場合、図3(a)に示すように、形状異方性粒子32は、垂直配向膜15および25の配向規制力によって、(その長手方向が)第1基板10の基板面に対して略垂直になるように配向している(つまり垂直配向状態をとる)。また、垂直配向膜15および25の配向規制力によって液晶分子が基板面に略垂直に配向することが、形状異方性粒子32が垂直配向状態をとることをサポートするように働く。この状態において、入射した周囲光Lの多くは表示媒体層30を透過する。つまり、表示媒体層30は透明状態となる。表示媒体層30を透過した周囲光は、光吸収層16で吸収されるので、この状態において、黒表示を行うことができる。なお、本願明細書において、「形状異方性粒子32が基板面に対して略垂直に配向している」とは、形状異方性粒子32が、基板面に対して厳密に垂直に配向している状態と実質的に同程度の光学特性を示すような角度で配向している状態を指し、具体的には、形状異方性粒子32が基板面に対して75°以上の角度で配向した状態を指す。 When no electric field is applied to the display medium layer 30, as shown in FIG. 3A, the shape anisotropic particles 32 are arranged in the first direction (longitudinal direction) by the alignment regulating force of the vertical alignment films 15 and 25. The one substrate 10 is oriented so as to be substantially perpendicular to the substrate surface (that is, in a vertically oriented state). In addition, the alignment of the liquid crystal molecules substantially perpendicular to the substrate surface by the alignment regulating force of the vertical alignment films 15 and 25 serves to support the shape anisotropic particles 32 taking a vertical alignment state. In this state, most of the incident ambient light L is transmitted through the display medium layer 30. That is, the display medium layer 30 is in a transparent state. Since the ambient light transmitted through the display medium layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state. In the present specification, “the shape anisotropic particles 32 are oriented substantially perpendicular to the substrate surface” means that the shape anisotropic particles 32 are oriented strictly perpendicular to the substrate surface. Refers to a state of being oriented at an angle exhibiting substantially the same optical characteristics as the state of being, specifically, the shape anisotropic particles 32 are oriented at an angle of 75 ° or more with respect to the substrate surface. Refers to the state.
 図3(b)に示すように、表示媒体層30に横電界(電気力線Ehで表わされる)およびフリンジ電界(電気力線Efで表わされる)が印加されると、形状異方性粒子32は、(その長手方向が)第1基板10の基板面に略平行になるように配向する(つまり水平配向状態をとる)。また、液晶分子も、第1基板10の基板面に略平行に配向する。この状態において、入射した周囲光Lの多くは表示媒体層30中の形状異方性粒子32で反射される。つまり、表示媒体層30は反射状態となり、この状態において、白表示を行うことができる。また、白表示時よりも低い電圧を印加することにより、中間調表示を行うこともできる。 As shown in FIG. 3B, when a lateral electric field (represented by an electric force line Eh) and a fringe electric field (represented by an electric force line Ef) are applied to the display medium layer 30, the shape anisotropic particles 32. Is oriented so that its longitudinal direction is substantially parallel to the substrate surface of the first substrate 10 (that is, it takes a horizontal orientation state). The liquid crystal molecules are also aligned substantially parallel to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is reflected by the shape anisotropic particles 32 in the display medium layer 30. That is, the display medium layer 30 is in a reflective state, and white display can be performed in this state. Further, halftone display can be performed by applying a voltage lower than that during white display.
 なお、図3(b)に示す例では、第1電極11と第3電極13との電位差によるフリンジ電界が生成されているものの、第2電極12と第3電極13との電位差によるフリンジ電界は生成されていない。つまり、図3(b)には、第2電極12と第3電極13とに同じ電位が与えられている例が示されている。しかしながら、後述するように、白表示や中間調表示を行うための電位設定は、図3(b)に示した例に限定されない。 In the example shown in FIG. 3B, a fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 is generated, but the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 is Not generated. That is, FIG. 3B shows an example in which the same potential is applied to the second electrode 12 and the third electrode 13. However, as will be described later, the potential setting for performing white display or halftone display is not limited to the example shown in FIG.
 また、表示装置100では、第2基板20が、第1電極11、第2電極12および第3電極13に対向する第4電極21を有しているので、表示媒体層30に縦電界を生成することもできる。 Further, in the display device 100, the second substrate 20 includes the fourth electrode 21 that faces the first electrode 11, the second electrode 12, and the third electrode 13, so that a vertical electric field is generated in the display medium layer 30. You can also
 図4に示すように、表示媒体層30に縦電界(電気力線Evで表わされる)が印加されると、形状異方性粒子32は、(その長手方向が)第1基板10の基板面に略垂直になるように配向する(つまり垂直配向状態をとる)。また、液晶分子も、第1基板10の基板面に略垂直に配向する。この状態において、入射した周囲光Lの多くは表示媒体層30を透過する。つまり、表示媒体層30は透明状態となる。表示媒体層30を透過した周囲光は、光吸収層16で吸収されるので、この状態において、黒表示を行うことができる。 As shown in FIG. 4, when a vertical electric field (represented by an electric force line Ev) is applied to the display medium layer 30, the shape anisotropic particles 32 (the longitudinal direction thereof) is the substrate surface of the first substrate 10. Is aligned so as to be substantially perpendicular to (i.e., assume a vertical alignment state). The liquid crystal molecules are also aligned substantially perpendicular to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is transmitted through the display medium layer 30. That is, the display medium layer 30 is in a transparent state. Since the ambient light transmitted through the display medium layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state.
 上述したような形状異方性粒子32の配向変化は、電界とそれによって誘起された電気双極子モーメントとの相互作用による誘電泳動力に起因している。以下、図5(a)および(b)を参照しながら、より具体的に説明を行う。図5(a)および(b)は、表示媒体層30に印加されている電界を横電界およびフリンジ電界から縦電界に変化させた直後、およびその後十分な時間が経過した後の、表示媒体層30の様子(電荷の分布および電気力線)を示す図である。 The orientation change of the shape anisotropic particles 32 as described above is caused by the dielectrophoretic force due to the interaction between the electric field and the electric dipole moment induced thereby. Hereinafter, a more specific description will be given with reference to FIGS. 5 (a) and 5 (b). FIGS. 5A and 5B show the display medium layer immediately after the electric field applied to the display medium layer 30 is changed from the horizontal electric field and the fringe electric field to the vertical electric field, and after a sufficient time has elapsed thereafter. It is a figure which shows the mode 30 (electric charge distribution and an electric force line).
 形状異方性粒子32の誘電率と、媒体31の誘電率とが異なっている場合、表示媒体層30への印加電界の方向が変化すると、図5(a)に示すように、電気力線に大きな歪みが生じる。そのため、形状異方性粒子32は、図5(b)に示すように、エネルギーが最小となるように回転する。 When the dielectric constant of the shape anisotropic particles 32 and the dielectric constant of the medium 31 are different, if the direction of the electric field applied to the display medium layer 30 is changed, as shown in FIG. A large distortion occurs. Therefore, as shown in FIG. 5B, the shape anisotropic particles 32 rotate so that the energy is minimized.
 一般に、媒体中に分散された粒子に働く誘電泳動力Fdepは、粒子の誘電率をεp、媒体の誘電率をεm、粒子の半径をa、電界の強さをEとすると、下記式(1)で表される。式(1)中のReは、実部を取り出す演算子である。なお、本実施形態では、媒体31は、液晶材料であり、誘電異方性を有している。つまり、液晶分子の長軸方向の誘電率ε//と短軸方向の誘電率εとが異なっており、εm=ε//-ε=Δεに相当すると考えられる。 In general, the dielectrophoretic force F dep acting on particles dispersed in a medium is expressed as follows, where the dielectric constant of the particles is ε p , the dielectric constant of the medium is ε m , the radius of the particles is a, and the strength of the electric field is E. It is represented by Formula (1). Re in the expression (1) is an operator that extracts a real part. In the present embodiment, the medium 31 is a liquid crystal material and has dielectric anisotropy. That is, the dielectric constant epsilon the long axis direction of the dielectric constant epsilon // and the minor axis direction of liquid crystal molecules is different, is considered to correspond to ε m = ε // -ε ⊥ = Δε.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、既に説明したことからもわかるように、上記の誘電泳動力以外に垂直配向膜15および25の配向規制力と液晶分子のサポートとにより形状異方性粒子32に垂直配向状態を発現させることにより、形状異方性粒子32の垂直配向動作および水平配向動作の切り替えを好適に行うことができる。 Further, as can be seen from the above description, in addition to the above-described dielectrophoretic force, the shape anisotropic particles 32 are allowed to develop a vertical alignment state by the alignment regulating force of the vertical alignment films 15 and 25 and the support of liquid crystal molecules. Thus, the vertical alignment operation and the horizontal alignment operation of the shape anisotropic particles 32 can be suitably switched.
 上述したように、本実施形態における表示装置100では、表示媒体層30への電圧の印加により、形状異方性粒子32の配向方向を変化させることができ、そのことを利用して表示を行うことができる。表示装置100は、偏光板を必要としないので、高い光利用効率を実現することができる。 As described above, in the display device 100 according to the present embodiment, the orientation direction of the shape anisotropic particles 32 can be changed by applying a voltage to the display medium layer 30, and display is performed using this. be able to. Since the display device 100 does not require a polarizing plate, high light utilization efficiency can be realized.
 また、本実施形態における表示装置100では、横電界およびフリンジ電界印加時に形成される弱電界領域に起因する光利用効率の低下を抑制することができる。以下、図6~図8を参照しながら、このことを具体的に説明する。 Further, in the display device 100 according to the present embodiment, it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region formed when a lateral electric field and a fringe electric field are applied. Hereinafter, this will be specifically described with reference to FIGS.
 図6(a)および(b)は、表示媒体層30に横電界およびフリンジ電界が印加されている状態を示す図であり、図6(a)は、複数のフレームにわたって同一の表示が行われている場合におけるあるフレームに対応し、図6(b)は、別のあるフレームに対応する。 6A and 6B are views showing a state in which a lateral electric field and a fringe electric field are applied to the display medium layer 30, and FIG. 6A shows the same display over a plurality of frames. 6B corresponds to a certain frame, and FIG. 6B corresponds to another certain frame.
 表示装置100では、表示媒体層30に電界が印加されたとき、各画素は、図6(a)および(b)に示すように、電界が第1電界強度を有する第1領域SRと、電界が第1電界強度よりも弱い第2電界強度を有する第2領域WRとが表示媒体層30の面内方向に沿って配列された電界分布を有する。以下では、相対的に電界強度が強い第1領域SRを「強電界領域」と呼び、相対的に電界強度が弱い第2領域WRを「弱電界領域」と呼ぶ。 In the display device 100, when an electric field is applied to the display medium layer 30, each pixel includes a first region SR in which the electric field has a first electric field strength and an electric field, as shown in FIGS. 6 (a) and 6 (b). And a second region WR having a second electric field strength weaker than the first electric field strength has an electric field distribution arranged along the in-plane direction of the display medium layer 30. Hereinafter, the first region SR having a relatively strong electric field strength is referred to as a “strong electric field region”, and the second region WR having a relatively weak electric field strength is referred to as a “weak electric field region”.
 図6(a)には、第1電極11と第3電極13との電位差によるフリンジ電界(以下では便宜的に「第1フリンジ電界」と呼ぶ)が生成されているものの、第2電極12と第3電極13との電位差によるフリンジ電界(以下では便宜的に「第2フリンジ電界」と呼ぶ)が生成されていない例を示している。この例では、第2電極12の枝部12a近傍の、フリンジ電界が生成されていない領域が弱電界領域WRとなり、第1電極11の枝部11a近傍を含む他の領域が強電界領域SRとなる。 In FIG. 6A, a fringe electric field (hereinafter referred to as “first fringe electric field” for convenience) generated by the potential difference between the first electrode 11 and the third electrode 13 is generated. In the example, a fringe electric field (hereinafter referred to as “second fringe electric field” for convenience) is not generated due to a potential difference with the third electrode 13. In this example, the region where the fringe electric field is not generated in the vicinity of the branch portion 12a of the second electrode 12 is the weak electric field region WR, and the other region including the vicinity of the branch portion 11a of the first electrode 11 is the strong electric field region SR. Become.
 また、図6(b)には、第2フリンジ電界が生成されているものの、第1フリンジ電界が生成されていない例を示している。この例では、第1電極11の枝部11a近傍の、フリンジ電界が生成されていない領域が弱電界領域WRとなり、第2電極12の枝部12a近傍を含む他の領域が強電界領域SRとなる。 FIG. 6B shows an example in which the second fringe electric field is generated but the first fringe electric field is not generated. In this example, the region where the fringe electric field is not generated near the branch portion 11a of the first electrode 11 is the weak electric field region WR, and the other region including the vicinity of the branch portion 12a of the second electrode 12 is the strong electric field region SR. Become.
 表示装置100では、図6(a)および(b)に示しているように、複数の画素のうちの任意の画素において、同一の表示が行われている期間(つまりある画素が同一の階調レベルの表示を行う期間)内で電界分布における強電界領域SRおよび弱電界領域WRの配列が1回以上入れ替わる。つまり、弱電界領域WRの位置が固定的ではなく、あるフレームにおいて弱電界領域WRとなっていた領域が、別のあるフレームでは強電界領域SRとなる。そのため、画素のほぼ全体にわたって形状異方性粒子32の配向方向を変化させることができ、弱電界領域WRに起因する光利用効率(モード効率)の低下を抑制することができる。 In the display device 100, as shown in FIGS. 6A and 6B, a period during which the same display is performed in any pixel among the plurality of pixels (that is, a certain pixel has the same gradation). Within the period of level display), the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is switched one or more times. That is, the position of the weak electric field region WR is not fixed, and the region that has been the weak electric field region WR in one frame becomes the strong electric field region SR in another certain frame. Therefore, the orientation direction of the shape anisotropic particles 32 can be changed over almost the entire pixel, and a decrease in light use efficiency (mode efficiency) due to the weak electric field region WR can be suppressed.
 なお、図6(a)および(b)には、第1フリンジ電界および第2フリンジ電界の一方のみが生成されるように第1電極11、第2電極12および第3電極13の電位が設定された例を示しているが、第1電極11、第2電極12および第3電極13の電位設定は、この例に限定されない。第1フリンジ電界および第2フリンジ電界の強さが互いに異なっている限り、第1フリンジ電界および第2フリンジ電界の両方が同時に生成されてもよい。その場合、第1フリンジ電界および第2フリンジ電界のうちの相対的に電界強度が強い方のフリンジ電界が生成されている領域が強電界領域SRとなり、相対的に電界強度が弱い方のフリンジ電界が生成されている領域が弱電界領域WRとなる。 6A and 6B, the potentials of the first electrode 11, the second electrode 12, and the third electrode 13 are set so that only one of the first fringe electric field and the second fringe electric field is generated. However, the potential setting of the first electrode 11, the second electrode 12, and the third electrode 13 is not limited to this example. As long as the strengths of the first fringe field and the second fringe field are different from each other, both the first fringe field and the second fringe field may be generated simultaneously. In that case, the region in which the fringe electric field having the relatively strong electric field strength of the first fringe electric field and the second fringe electric field is generated becomes the strong electric field region SR, and the fringe electric field having the relatively weak electric field strength. The region in which is generated becomes the weak electric field region WR.
 また、表示装置100では、第3電極13の電位を、第1電極11の電位と第2電極12の電位との中間の電位に設定しなければならないという制約はない。第1電極11および第2電極12の一方の電位と、第3電極13の電位とを同じにすることにより、第1電極11および第2電極12の他方と第3電極13との電位差によるフリンジ電界をもっとも強くすることができる。例えば、第1電極11の電位をB[V]、第2電極12の電位をA[V]、第3電極13の電位をC[V]とすると、第1電極11と第2電極12との電位差による横電界は、|A-B|[V]相当となり、第1電極11と第3電極13との電位差によるフリンジ電界は、|B-C|V相当となる(図6(a)参照)。ここで、第3電極13の電位C[V]を、第2電極12の電位A[V]と同じにすると(C=A)、第1電極11と第3電極13との電位差によるフリンジ電界は、|B-C|=|B-A|=|A-B|[V]相当となる。また、第1電極11の電位をA[V]、第2電極12の電位をB[V]、第3電極13の電位をC[V]とすると、第1電極11と第2電極12との電位差による横電界は、|A-B|[V]相当となり、第2電極12と第3電極13との電位差によるフリンジ電界は、|B-C|V相当となる(図6(b)参照)。ここで、第3電極13の電位C[V]を、第1電極11の電位A[V]と同じにすると(C=A)、第2電極12と第3電極13との電位差によるフリンジ電界は、|B-C|=|B-A|=|A-B|[V]相当となる。このように、表示装置100では、第3電極13の電位に制約がないので、FFSモードの電極構造を採用した場合と同じ強さのフリンジ電界を表示媒体層30に印加し得る。また、図6(a)および(b)に示しているように、例えば第1電極11の電位と第2電極12の電位とを入れ替えることにより、強電界領域SRおよび弱電界領域WRの配列を入れ替えることができる。 Further, in the display device 100, there is no restriction that the potential of the third electrode 13 must be set to an intermediate potential between the potential of the first electrode 11 and the potential of the second electrode 12. By making the potential of one of the first electrode 11 and the second electrode 12 the same as the potential of the third electrode 13, the fringe due to the potential difference between the other of the first electrode 11 and the second electrode 12 and the third electrode 13. The electric field can be strongest. For example, when the potential of the first electrode 11 is B [V], the potential of the second electrode 12 is A [V], and the potential of the third electrode 13 is C [V], the first electrode 11 and the second electrode 12 The horizontal electric field due to the potential difference is equivalent to | AB | [V], and the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 is equivalent to | BC | V (FIG. 6A). reference). Here, if the potential C [V] of the third electrode 13 is made the same as the potential A [V] of the second electrode 12 (C = A), a fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13. Is equivalent to | BC | = | BA | = | AB | [V]. Further, when the potential of the first electrode 11 is A [V], the potential of the second electrode 12 is B [V], and the potential of the third electrode 13 is C [V], the first electrode 11, the second electrode 12, The horizontal electric field due to the potential difference is equivalent to | AB | [V], and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 is equivalent to | BC | V (FIG. 6B). reference). Here, if the potential C [V] of the third electrode 13 is made the same as the potential A [V] of the first electrode 11 (C = A), a fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13. Is equivalent to | BC | = | BA | = | AB | [V]. As described above, in the display device 100, since the potential of the third electrode 13 is not limited, a fringe electric field having the same strength as that when the FFS mode electrode structure is employed can be applied to the display medium layer 30. Further, as shown in FIGS. 6A and 6B, the arrangement of the strong electric field region SR and the weak electric field region WR can be changed by switching the potential of the first electrode 11 and the potential of the second electrode 12, for example. Can be replaced.
 これに対し、特許文献4の電極構造では、図7に示すように、第1上層電極911の電位をA[V]、第2上層電極912の電位をB[V]とすると、下層電極913の電位をMin(A,B)+|(A-B)|/2[V]とする必要がある。そのため、第1上層電極911と第2上層電極912との電位差による横電界が|A-B|[V]相当であるのに対し、第1上層電極911と下層電極913との電位差によるフリンジ電界、および、第2上層電極912と下層電極913との電位差によるフリンジ電界は、それぞれ|A-B|/2[V]相当となる。そのため、フリンジ電界がFFSモードの電極構造を採用した場合よりも弱くなってしまう。 On the other hand, in the electrode structure of Patent Document 4, when the potential of the first upper electrode 911 is A [V] and the potential of the second upper electrode 912 is B [V], as shown in FIG. Is required to be Min (A, B) + | (AB) | / 2 [V]. Therefore, the lateral electric field due to the potential difference between the first upper electrode 911 and the second upper electrode 912 is equivalent to | AB | [V], whereas the fringe electric field due to the potential difference between the first upper electrode 911 and the lower electrode 913 is used. The fringe electric field due to the potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is equivalent to | AB | / 2 [V]. For this reason, the fringe electric field becomes weaker than when the FFS mode electrode structure is adopted.
 また、FFSモードの電極構造では、図8に示すように、共通電極812の電位をA[V]、画素電極811の電位をB[V]とすると、画素電極811と共通電極812との電位差によるフリンジ電界は|A-B|[V]相当となる。FFSモードの電極構造では、十分な強さのフリンジ電界を生成させ得るものの、隣接する櫛歯部811a間に横電界が生成されないので、スリット811bの中央付近に弱電界領域WRが発生してしまう。これに対し、本発明の実施形態による表示装置100では、第1電極11および第2電極12間に横電界を生成させ得るので、第1電極11の枝部11aおよび第2電極12電極12の枝部12aとの中間付近に弱電界領域WRが形成されることによる光利用効率の低下を抑制することができる。 In the FFS mode electrode structure, as shown in FIG. 8, when the potential of the common electrode 812 is A [V] and the potential of the pixel electrode 811 is B [V], a potential difference between the pixel electrode 811 and the common electrode 812 is obtained. The fringe electric field due to is equivalent to | AB | [V]. The FFS mode electrode structure can generate a sufficiently strong fringe electric field, but a horizontal electric field is not generated between adjacent comb-tooth portions 811a, so that a weak electric field region WR is generated near the center of the slit 811b. . On the other hand, in the display device 100 according to the embodiment of the present invention, a lateral electric field can be generated between the first electrode 11 and the second electrode 12, so that the branch portion 11 a of the first electrode 11 and the second electrode 12 electrode 12 A decrease in light utilization efficiency due to the formation of the weak electric field region WR near the middle of the branch portion 12a can be suppressed.
 アクティブマトリクス駆動を行う場合、強電界領域SRおよび弱電界領域WRの配列が入れ替わる周期(以下では単に「入れ替わり周期」とも呼ぶ)は、典型的には、1フレームに相当する時間の整数倍である。光利用効率の向上の観点からは、入れ替わり周期は短いことが好ましく、1フレームに相当する時間であることがもっとも好ましい。入れ替わり周期が短いことにより、単位時間当たりの電界分布の変動回数を多くすることができ、光利用効率をいっそう向上させることができる。また、同一の表示が行われている期間内で入れ替わり周期は一定でなくてもよいが、表示媒体層30に正極性の電圧が印加されている時間の合計と、負極性の電圧が印加されている時間の合計とがほぼ等しくなることが好ましい。 When performing active matrix driving, the period in which the arrangement of the strong electric field region SR and the weak electric field region WR is switched (hereinafter also simply referred to as “switching cycle”) is typically an integer multiple of the time corresponding to one frame. . From the viewpoint of improving the light utilization efficiency, the replacement period is preferably short, and most preferably a time corresponding to one frame. Since the replacement cycle is short, the number of fluctuations in the electric field distribution per unit time can be increased, and the light utilization efficiency can be further improved. Further, the switching period may not be constant within the period during which the same display is performed, but the total time during which the positive voltage is applied to the display medium layer 30 and the negative voltage are applied. It is preferable that the total amount of time is substantially equal.
 既に説明したように、強電界領域SRおよび弱電界領域WRの配列の入れ替えは、例えば第1電極11の電位と第2電極12の電位とを入れ替えることにより、行うことができる。つまり、第1基板10が、互いに異なる電位を与えられ得る2つの櫛歯電極(櫛歯形状を有する電極)を有することにより、強電界領域SRおよび弱電界領域WRの配列の入れ替えを行うことができる。 As already described, the arrangement of the strong electric field region SR and the weak electric field region WR can be replaced by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12. In other words, the arrangement of the strong electric field region SR and the weak electric field region WR can be exchanged by the first substrate 10 having two comb electrodes (electrodes having a comb shape) that can be given different potentials. it can.
 また、既に説明したように、第1基板10が、絶縁層14を介して第1電極11および第2電極12の下方に設けられた第3電極13を有することにより、表示媒体層30にフリンジ電界を生成することができる。 Further, as described above, the first substrate 10 has the third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween, so that the display medium layer 30 has a fringe. An electric field can be generated.
 なお、第1電極11、第2電極12および第3電極13の構成は、図1などに例示したものに限定されない。図9(a)および(b)に、表示装置100の他の電極構成を示す。 In addition, the structure of the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13 is not limited to what was illustrated in FIG. 9A and 9B show other electrode configurations of the display device 100. FIG.
 図9(a)および(b)に示す例では、第1電極11を覆うようにさらなる絶縁層17が設けられており、第2電極12は、このさらなる絶縁層17上に設けられている。つまり、第2電極12は、さらなる絶縁層17を介して第1電極11の上方に設けられている。図9(a)および(b)に示す構成では、第1電極11と第2電極12とが異なるレベルに設けられているので、第1電極11と第2電極12との電位差により横電界ではなくフリンジ電界(電気力線Ef’で表わされる)が生成される。図9(a)および(b)に示す構成では、第1電極11と第2電極12との間にさらなる絶縁層17が位置しているので、第1電極11と第2電極12との間隔を狭めても短絡することがないという利点が得られる。 In the example shown in FIGS. 9A and 9B, a further insulating layer 17 is provided so as to cover the first electrode 11, and the second electrode 12 is provided on the further insulating layer 17. That is, the second electrode 12 is provided above the first electrode 11 via the further insulating layer 17. In the configuration shown in FIGS. 9A and 9B, since the first electrode 11 and the second electrode 12 are provided at different levels, a potential difference between the first electrode 11 and the second electrode 12 causes a lateral electric field. Instead, a fringe electric field (represented by electric field lines Ef ′) is generated. In the configuration shown in FIGS. 9A and 9B, since the further insulating layer 17 is located between the first electrode 11 and the second electrode 12, the distance between the first electrode 11 and the second electrode 12. Even if the width is narrowed, there is an advantage that there is no short circuit.
 図10(a)および(b)に、表示装置100のさらに他の電極構成を示す。図10(a)および(b)に示す例では、第3電極13は、第1電極11および第2電極12に重なる位置に形成された複数のスリット13sを有する。図10(a)および(b)に示す構成では、フリンジ電界の分布を、第1電極11または第2電極12の端部に集中したものから、第1電極11および第2電極12間(隣接する枝部11aおよび12a間)の中央寄りのものにすることができるという利点が得られる。一方、図1などに示したように、第3電極13がべた電極である構成では、第1電極11および第2電極12と、第3電極13と、これらの間に位置する絶縁層14とによって補助容量を構成できるという利点が得られる。 10 (a) and 10 (b) show still another electrode configuration of the display device 100. FIG. In the example shown in FIGS. 10A and 10B, the third electrode 13 has a plurality of slits 13 s formed at positions overlapping the first electrode 11 and the second electrode 12. In the configuration shown in FIGS. 10A and 10B, the fringe electric field distribution is concentrated from the end of the first electrode 11 or the second electrode 12 to between the first electrode 11 and the second electrode 12 (adjacent to each other). (Between the branch portions 11a and 12a) can be made closer to the center. On the other hand, as shown in FIG. 1 and the like, in the configuration in which the third electrode 13 is a solid electrode, the first electrode 11 and the second electrode 12, the third electrode 13, and the insulating layer 14 positioned between them. The advantage that an auxiliary capacity can be configured is obtained.
 ここで、図11を参照しながら、アクティブマトリクス駆動を行う場合の背面基板10における具体的な配線構造の例を説明する。 Here, an example of a specific wiring structure in the rear substrate 10 when active matrix driving is performed will be described with reference to FIG.
 図11に示す例では、各画素に3つのTFT(第1TFT、第2TFTおよび第3TFT)t1、t2およびt3が設けられている。第1電極11、第2電極12および第3電極13は、それぞれ第1TFTt1、第2TFTt2および第3TFTt3に電気的に接続されている。また、図11に示す例では、行方向に延びるゲート配線GLと、列方向に延びる第1ソース配線SL1、第2ソース配線SL2および第3ソース配線SL3とが設けられている。第1TFTt1は、ゲート配線GLおよび第1ソース配線SL1からゲート信号および第1ソース信号を供給される。第2TFTt2は、ゲート配線GLおよび第2ソース配線SL2からゲート信号および第2ソース信号を供給される。第3TFTt3は、ゲート配線GLおよび第3ソース配線SL3からゲート信号および第3ソース信号を供給される。図11に示す配線構造により、アクティブマトリクス駆動を行うことができる。勿論、背面基板10の配線構造は、図11に示す例に限定されない。 In the example shown in FIG. 11, three TFTs (first TFT, second TFT, and third TFT) t1, t2, and t3 are provided for each pixel. The first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the first TFT t1, the second TFT t2, and the third TFT t3, respectively. In the example shown in FIG. 11, a gate line GL extending in the row direction and a first source line SL1, a second source line SL2, and a third source line SL3 extending in the column direction are provided. The first TFT t1 is supplied with a gate signal and a first source signal from the gate line GL and the first source line SL1. The second TFT t2 is supplied with a gate signal and a second source signal from the gate line GL and the second source line SL2. The third TFT t3 is supplied with the gate signal and the third source signal from the gate line GL and the third source line SL3. With the wiring structure shown in FIG. 11, active matrix driving can be performed. Of course, the wiring structure of the back substrate 10 is not limited to the example shown in FIG.
 同一の表示が行われている期間内において強電界領域SRおよび弱電界領域WRが入れ替わることによる、光利用効率の向上効果は、表示媒体層30の応答時間が入れ替わり周期よりも長い構成においてより顕著に得られる。ここで、「表示媒体層30の応答時間が入れ替わり周期よりも長い」とは、立ち上がり時間および立ち下がり時間のうちの少なくとも立ち上がり時間が、入れ替わり周期よりも長いことを意味している。60Hz駆動の場合、1フレームに相当する時間は16.6msecである。本実施形態で例示しているような形状異方性粒子32を含む表示媒体層30を備えた表示装置100を後述するような仕様で試作したところ、応答時間(立ち上がり時間)は133msec程度であった。そのため、本発明の実施形態は、形状異方性粒子を含む表示媒体層を備えた表示装置に好適に用いられるといえる。 The effect of improving the light utilization efficiency due to the exchange of the strong electric field region SR and the weak electric field region WR within the period during which the same display is performed is more remarkable in the configuration in which the response time of the display medium layer 30 is switched and longer than the period. Is obtained. Here, “the response time of the display medium layer 30 is longer than the switching period” means that at least the rising time of the rising time and the falling time is longer than the switching period. In the case of 60 Hz driving, the time corresponding to one frame is 16.6 msec. When the display device 100 including the display medium layer 30 including the shape anisotropic particles 32 as exemplified in the present embodiment was prototyped with the specifications described later, the response time (rise time) was about 133 msec. It was. Therefore, it can be said that the embodiment of the present invention is suitably used for a display device including a display medium layer containing shape anisotropic particles.
 なお、本実施形態では、第2基板20側に第4電極21が設けられているが、第4電極21は省略されてもよい。表示媒体層30を電界無印加状態にすることにより、形状異方性粒子32は垂直配向状態をとるからである。ただし、応答速度の観点からは、第2基板20側に第4電極21が設けられた構成(つまり表示媒体層30に縦電界が印加され得る構成)を採用することが好ましい。つまり、表示媒体層30に縦電界が生成された状態と、表示媒体層30に横電界およびフリンジ電界(あるいは図9に示すようにフリンジ電界のみ)が生成された状態とを切り替えることによって表示が行われることが好ましい。前者の状態から後者の状態への変化、および、後者の状態から前者の状態への変化は、いずれも印加電界の方向を変化させることにより行われるので、十分な応答速度を実現することができる。 In the present embodiment, the fourth electrode 21 is provided on the second substrate 20 side, but the fourth electrode 21 may be omitted. This is because when the display medium layer 30 is in a state where no electric field is applied, the shape anisotropic particles 32 are in a vertically aligned state. However, from the viewpoint of response speed, it is preferable to adopt a configuration in which the fourth electrode 21 is provided on the second substrate 20 side (that is, a configuration in which a vertical electric field can be applied to the display medium layer 30). That is, the display is switched by switching between a state in which a vertical electric field is generated in the display medium layer 30 and a state in which a horizontal electric field and a fringe electric field (or only a fringe electric field as shown in FIG. 9) are generated in the display medium layer 30. Preferably, it is done. Since the change from the former state to the latter state and the change from the latter state to the former state are both performed by changing the direction of the applied electric field, a sufficient response speed can be realized. .
 なお、本実施形態では、媒体31として液晶材料が用いられているが、媒体31は液晶材料以外(例えば炭酸プロピレン)であってもよい。媒体31は、可視光に対して透明性が高い材料であることが好ましい。また、媒体31の粘度は、応答特性の観点からは200mPa・s以下であることが好ましい。 In this embodiment, a liquid crystal material is used as the medium 31, but the medium 31 may be other than the liquid crystal material (for example, propylene carbonate). The medium 31 is preferably a material that is highly transparent to visible light. The viscosity of the medium 31 is preferably 200 mPa · s or less from the viewpoint of response characteristics.
 本実施形態のように、媒体31が液晶材料であると、液晶分子のダイレクタの変化も利用することにより、形状異方性粒子32の配向方向を効率的に変化させることができる。また、同じ表示が行われている期間内で強電界領域SRおよび弱電界領域WRの配列を入れ替える(つまり常に弱電界領域WRとなる領域を減少させる)ことにより、所望の方向に配向する液晶分子の数を増やすことができる。そのため、媒体31が液晶材料である場合、光利用効率の向上効果がいっそう高くなる。 As in this embodiment, when the medium 31 is a liquid crystal material, the orientation direction of the shape anisotropic particles 32 can be efficiently changed by utilizing the change of the director of the liquid crystal molecules. In addition, the liquid crystal molecules that are aligned in a desired direction can be obtained by switching the arrangement of the strong electric field region SR and the weak electric field region WR within the period in which the same display is performed (that is, reducing the region that always becomes the weak electric field region WR). The number of can be increased. Therefore, when the medium 31 is a liquid crystal material, the effect of improving the light utilization efficiency is further increased.
 また、液晶材料は、一般に、炭酸プロピレン等よりも比抵抗が数桁高いので、媒体31が液晶材料であると、画素への書き込み後のTFTがオフである状態において、媒体31を介したオフリークの発生が防止される。そのため、高い電圧保持率が得られ、アクティブマトリクス駆動を好適に行うことができる。また、リーク電流が少ないので、消費電力を低減することができる。表示装置100の消費電力Pは、パネル容量をC、表示媒体層30への印加電圧をV、駆動周波数をf、リーク電流をIとすると、下記式(2)で表される。
 P=C・V・f+I・V     ・・・(2)
In addition, since the specific resistance of the liquid crystal material is generally several orders of magnitude higher than that of propylene carbonate or the like, if the medium 31 is a liquid crystal material, the off-leakage via the medium 31 occurs when the TFT after writing to the pixel is off. Is prevented from occurring. Therefore, a high voltage holding ratio can be obtained, and active matrix driving can be suitably performed. Further, since the leakage current is small, power consumption can be reduced. The power consumption P of the display device 100 is expressed by the following formula (2), where C is the panel capacitance, V is the voltage applied to the display medium layer 30, f is the drive frequency, and I is the leakage current.
P = C · V · f + I · V (2)
 式(2)の右辺における第1項は、画素容量項と呼ぶべきものであり、第2項は、リーク電流項と呼ぶべきものである。つまり、消費電力Pは、画素容量成分と、リーク電流成分とに分けて考えることができる。媒体31の比抵抗が高いと、リーク電流Iが減少するので、式(2)からも明らかなように、消費電力Pを低減することができる。 The first term on the right side of Equation (2) should be called the pixel capacitance term, and the second term should be called the leakage current term. That is, the power consumption P can be considered separately for the pixel capacitance component and the leakage current component. When the specific resistance of the medium 31 is high, the leakage current I decreases, so that the power consumption P can be reduced as is apparent from the equation (2).
 また、本実施形態のように、液晶材料がポジ型であると、表示媒体層30に電界が印加されたときの形状異方性粒子32の挙動と液晶分子の挙動とが一致する。例えば、表示媒体層30に印加されている電界を横電界およびフリンジ電界から縦電界に切り替えると、形状異方性分子32は水平配向状態から垂直配向状態に変化しようとし、液晶分子も水平配向状態から垂直配向状態に変化しようとする。そのため、きちんと垂直配向する形状異方性粒子32の数(存在確率)を増やすことができるので、いっそう高いコントラスト比を実現することができる。 If the liquid crystal material is positive as in the present embodiment, the behavior of the shape anisotropic particles 32 and the behavior of the liquid crystal molecules when an electric field is applied to the display medium layer 30 match. For example, when the electric field applied to the display medium layer 30 is switched from a horizontal electric field and a fringe electric field to a vertical electric field, the shape anisotropic molecules 32 try to change from the horizontal alignment state to the vertical alignment state, and the liquid crystal molecules are also in the horizontal alignment state. Try to change from vertical alignment to vertical alignment. Therefore, since the number (existence probability) of the shape anisotropic particles 32 that are properly vertically aligned can be increased, a higher contrast ratio can be realized.
 ポジ型液晶材料としては、液晶表示装置用の液晶材料を広く好適に用いることができる。例えば、側鎖にフッ素が導入されたフッ素系の液晶材料を好適に用いることができる。フッ素系の液晶材料は、パッシブマトリクス駆動の液晶表示装置によく用いられ、大きな誘電異方性および高い比抵抗を有する。具体的には、例えば、長軸方向の誘電率ε//が24.7、短軸方向の誘電率εが4.3、比抵抗ρが6×1013Ω・cmの液晶材料を用いることができる。勿論、液晶材料の誘電率や比抵抗は、ここで例示したものに限定されない。媒体31を介したオフリークの発生を十分に抑制する観点からは、液晶材料の比抵抗は、1×101112Ω・cm以上であることが好ましい。また、液晶材料の誘電異方性Δεは、10を超える(Δε>10)ことが好ましい。 As the positive liquid crystal material, a liquid crystal material for a liquid crystal display device can be used widely and suitably. For example, a fluorine-based liquid crystal material in which fluorine is introduced into the side chain can be suitably used. Fluorine-based liquid crystal materials are often used for passive matrix drive liquid crystal display devices, and have large dielectric anisotropy and high specific resistance. Specifically, for example, a dielectric constant in the major axis direction epsilon // 24.7, the short axial permittivity epsilon 4.3, the specific resistance ρ is a liquid crystal material 6 × 10 13 Ω · cm be able to. Of course, the dielectric constant and specific resistance of the liquid crystal material are not limited to those exemplified here. From the viewpoint of sufficiently suppressing the occurrence of off-leakage through the medium 31, the specific resistance of the liquid crystal material is preferably 1 × 10 11 to 12 Ω · cm or more. The dielectric anisotropy Δε of the liquid crystal material preferably exceeds 10 (Δε> 10).
 なお、媒体31として、負の誘電異方性を有する液晶材料(つまりネガ型の液晶材料)を用いてもよい。 Note that a liquid crystal material having negative dielectric anisotropy (that is, a negative liquid crystal material) may be used as the medium 31.
 また、本実施形態のように、第1基板10および第2基板20が垂直配向膜15および25を有していると、垂直配向膜15および25の配向規制力により、形状異方性粒子32が水平状態のまま基板表面に貼り付いてしまうことが防止される。垂直配向膜15および25としては、VA(Vertical Alignment)モードの液晶表示装置用の垂直配向膜(例えばJSR社製や日産化学社製の、ポリイミド系やポリアミック酸系垂直配向膜)を好適に用いることができる。高誘電率のポジ型液晶材料を垂直配向させるためには、アルキル基やフッ素含有基のような疎水構造が比較的多く側鎖に導入された垂直配向膜を用いることが好ましい。垂直配向膜15および25のそれぞれの厚さは、例えば100nmである。勿論、これに限定されるものではない。 Further, when the first substrate 10 and the second substrate 20 have the vertical alignment films 15 and 25 as in the present embodiment, the shape anisotropic particles 32 are caused by the alignment regulating force of the vertical alignment films 15 and 25. Is prevented from sticking to the substrate surface in a horizontal state. As the vertical alignment films 15 and 25, a vertical alignment film for a liquid crystal display device in a VA (Vertical Alignment) mode (for example, a polyimide-based or polyamic acid-based vertical alignment film manufactured by JSR or Nissan Chemical) is preferably used. be able to. In order to vertically align a high dielectric constant positive liquid crystal material, it is preferable to use a vertical alignment film in which a relatively large number of hydrophobic structures such as alkyl groups and fluorine-containing groups are introduced into the side chain. The thickness of each of the vertical alignment films 15 and 25 is, for example, 100 nm. Of course, it is not limited to this.
 ここで、本発明の実施形態による表示装置100の好ましい駆動方法を説明する。 Here, a preferred driving method of the display device 100 according to the embodiment of the present invention will be described.
 表示装置100の各画素は、第1電極11と第3電極13との間に所定の電位差が与えられ、かつ、第2電極12と第3電極13とが実質的に同じ電位である第1の状態(図6(a)の状態)と、第2電極12と第3電極13との間に所定の電位差が与えられ、かつ、第1電極11と第3電極13とが実質的に同じ電位である第2の状態(図6(b)の状態)とを切り替えて呈し得ることが好ましく、強電界領域SRおよび弱電界領域WRの配列が入れ替わる際に、これらの第1の状態と第2の状態とが切り替えられることが好ましい。このような駆動を行うことにより、第1電極11と第3電極13との電位差によるフリンジ電界と、第2電極12と第3電極13との電位差によるフリンジ電界とが交互に(相補的に)オン・オフする(つまり一方のフリンジ電界が生成されているときは他方のフリンジ電界は生成されていない)ので、効率よく駆動を行うことができる。また、このような駆動を行うことにより、以下の効果を得ることもできる。 Each pixel of the display device 100 has a first potential in which a predetermined potential difference is given between the first electrode 11 and the third electrode 13, and the second electrode 12 and the third electrode 13 have substantially the same potential. A predetermined potential difference is applied between the second electrode 12 and the third electrode 13 and the first electrode 11 and the third electrode 13 are substantially the same (the state of FIG. 6A). It is preferable that the second state (the state of FIG. 6B) which is a potential can be switched and exhibited, and when the arrangement of the strong electric field region SR and the weak electric field region WR is switched, the first state and the first state are changed. It is preferable that the state 2 is switched. By performing such driving, the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 are alternately (complementarily). Since it is turned on and off (that is, when one fringe electric field is generated, the other fringe electric field is not generated), it is possible to drive efficiently. Moreover, the following effects can also be acquired by performing such a drive.
 本願出願人は、国際公開第2015/098184号に、形状異方性粒子を含む光学層を備えた表示装置(光学装置)において、より明るい表示を実現する手法を提案している。上記国際公開第2015/098184号の全ての開示内容を、本明細書に参考のために援用する。 The applicant of the present application proposes a technique for realizing brighter display in a display device (optical device) including an optical layer containing shape anisotropic particles in International Publication No. 2015/098184. The entire disclosure of WO 2015/098184 is incorporated herein by reference.
 国際公開第2015/098184号には、電圧の印加に応じて配向方向が変化する形状異方性粒子の割合(存在確率)を高くするために、光学層に印加される電圧を、相対的に絶対値が大きい第1の期間と、相対的に絶対値が小さい第2の期間とを交互に有する振動電圧とすることが提案されている。光学層に印加される電圧を振動電圧とすることにより、媒体を搖動することができ、そのことによって所望の配向変化をする形状異方性粒子の割合を高くすることができる。また、第2の期間における振動電圧の絶対値が、第1の期間における振動電圧の絶対値に対して小さいほど、媒体をより強く搖動することができ、第2の期間における振動電圧が略0Vであると、媒体をもっとも強く搖動することができる。 In International Publication No. 2015/098184, in order to increase the ratio (existence probability) of shape anisotropic particles whose orientation direction changes according to the application of voltage, the voltage applied to the optical layer is relatively It has been proposed to use an oscillating voltage that alternately has a first period having a large absolute value and a second period having a relatively small absolute value. By making the voltage applied to the optical layer an oscillating voltage, the medium can be perturbed, thereby increasing the proportion of shape-anisotropic particles that change the desired orientation. Further, the smaller the absolute value of the oscillating voltage in the second period is relative to the absolute value of the oscillating voltage in the first period, the stronger the medium can be shaken, and the oscillating voltage in the second period is approximately 0 V. If so, the medium can be moved most strongly.
 本発明の実施形態による表示装置100において、第1電極11と第3電極13との電位差によるフリンジ電界と、第2電極12と第3電極13との電位差によるフリンジ電界とを相補的にオン・オフさせることにより、媒体31を強く搖動することができるので、国際公開第2015/098184号に提案されている手法と同様の効果を得ることができる。 In the display device 100 according to the embodiment of the present invention, the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 are complementarily turned on / off. Since the medium 31 can be vibrated strongly by turning it off, the same effect as the method proposed in International Publication No. 2015/098184 can be obtained.
 (実施例)
 続いて、本発明の実施形態による表示装置100を試作し(つまりテストセルを作製し)、効果を検証した結果(実施例)を説明する。
(Example)
Next, a description will be given of results (examples) of trial production of the display device 100 according to the embodiment of the present invention (that is, production of a test cell) and verification of the effect.
 テストセルは、アクティブマトリクス駆動ではなく、図12に示すような電極構造を採用した。図12に示す電極構造では、第1電極11、第2電極12および第3電極13のそれぞれの端部に端子11t、12tおよび13tが設けられている。第1電極11、第2電極12および第3電極13に、端子11t、12tおよび13tを介して任意波形発生器から所望の波形の電圧を入力した。 The test cell adopts an electrode structure as shown in FIG. 12 instead of active matrix driving. In the electrode structure shown in FIG. 12, terminals 11t, 12t, and 13t are provided at the respective ends of the first electrode 11, the second electrode 12, and the third electrode 13. A voltage having a desired waveform was input from the arbitrary waveform generator to the first electrode 11, the second electrode 12, and the third electrode 13 via the terminals 11t, 12t, and 13t.
 テストセルでは、表示媒体層30の厚さ(セルギャップ)は、15μmである。媒体31は、誘電異方性Δεが20.4のポジ型液晶材料(メルク株式会社製)である。形状異方性粒子32の平均粒径は7μmであり、表示媒体層30における形状異方性粒子32の含有量は6重量%である。基板10aおよび20aは、それぞれガラス基板である。第1電極(第1上層電極)11および第2電極(第2上層電極)12のそれぞれは、櫛歯形状を有する。第3電極(下層電極)13は、複数のスリット13sを有する。第4電極(対向電極)21は、べた電極である。第1電極11、第2電極12、第3電極13および第4電極21のそれぞれは、IZOから形成されており、100nmの厚さを有する。第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2は、それぞれ3μmであり、電極間距離gは10μmである。絶縁層14は、SiNxから形成されており、350nmの厚さを有する。オーバーコート層22は、比誘電率εr=3.4のフォトレジスト(凸版印刷社製)から形成されており、3μmの厚さを有する。垂直配向膜15および25は、表面エネルギーが35mJ/m2のポリアミック酸系垂直配向膜(日産化学社製)である。 In the test cell, the thickness (cell gap) of the display medium layer 30 is 15 μm. The medium 31 is a positive liquid crystal material (manufactured by Merck & Co., Inc.) having a dielectric anisotropy Δε of 20.4. The average particle diameter of the shape anisotropic particles 32 is 7 μm, and the content of the shape anisotropic particles 32 in the display medium layer 30 is 6% by weight. The substrates 10a and 20a are glass substrates, respectively. Each of the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12 has a comb-tooth shape. The third electrode (lower layer electrode) 13 has a plurality of slits 13s. The fourth electrode (counter electrode) 21 is a solid electrode. Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of IZO and has a thickness of 100 nm. The width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 are each 3 μm, and the inter-electrode distance g is 10 μm. The insulating layer 14 is made of SiNx and has a thickness of 350 nm. The overcoat layer 22 is formed of a photoresist (manufactured by Toppan Printing Co., Ltd.) having a relative dielectric constant εr = 3.4, and has a thickness of 3 μm. The vertical alignment films 15 and 25 are polyamic acid-based vertical alignment films (manufactured by Nissan Chemical Industries) having a surface energy of 35 mJ / m 2 .
 図13(a)は、本実施例における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図13(a)に示すように、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに0V、10V、0V、-10Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。 13 (a) shows, the potential V 1 of the first electrode 11 in the present embodiment, the potential V 2 of the second electrode 12, a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13 It is. As shown in FIG. 13 (a), the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, 0V for each frame within one period, Varies with 10V, 0V, and -10V. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, are out of one frame phase. The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
 図13(b)は、本実施例における第1電極11および第3電極13間の電圧(電位差)|V1-V3|と、第2電極12および第3電極13間の電圧(電位差)|V2-V3|と、第1電極11および第2電極12間の電圧(電位差)|V1-V2|を示すタイミングチャートである。図13(b)に示すように、第1電極11および第3電極13間の電圧|V1-V3|と第2電極12および第3電極13間の電圧|V2-V3|の一方が10Vのとき、他方は0Vである。そのため、第1電極11および第3電極13間の電位差によるフリンジ電界(10V相当)が生成されているときは、第2電極12および第3電極13間の電位差によるフリンジ電界は生成されておらず、また、第2電極12および第3電極13間の電位差によるフリンジ電界(10V相当)が生成されているときは、第1電極11および第3電極13間の電位差によるフリンジ電界は生成されていない。また、図13(b)に示すように、第1電極11および第2電極12間の電圧|V1-V2|は、常に10Vである。そのため、第1電極11および第2電極12間の電位差による横電界(10V相当)は常に生成されている。 FIG. 13B shows the voltage (potential difference) | V 1 −V 3 | between the first electrode 11 and the third electrode 13 and the voltage (potential difference) between the second electrode 12 and the third electrode 13 in this embodiment. 12 is a timing chart showing | V 2 −V 3 | and a voltage (potential difference) | V 1 −V 2 | between the first electrode 11 and the second electrode 12. As shown in FIG. 13 (b), between the first electrode 11 and the third electrode 13 voltage | V 1 -V 3 | and between the second electrode 12 and the third electrode 13 voltage | V 2 -V 3 | of When one is 10V, the other is 0V. Therefore, when a fringe electric field (corresponding to 10 V) is generated due to the potential difference between the first electrode 11 and the third electrode 13, no fringe electric field is generated due to the potential difference between the second electrode 12 and the third electrode 13. In addition, when a fringe electric field (corresponding to 10 V) is generated due to a potential difference between the second electrode 12 and the third electrode 13, no fringe electric field is generated due to a potential difference between the first electrode 11 and the third electrode 13. . As shown in FIG. 13B, the voltage | V 1 −V 2 | between the first electrode 11 and the second electrode 12 is always 10V. Therefore, a lateral electric field (equivalent to 10 V) due to a potential difference between the first electrode 11 and the second electrode 12 is always generated.
 図13(a)に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられると(つまり図13(b)に示す電圧が、第1電極11および第3電極13間と、第2電極12および第3電極13間と、第1電極11および第2電極12間に印加されると)、各画素は、図14(a)の左側に示されている状態と右側に示されている状態とを1フレームごとに切り替えて呈する。そのため、複数のフレームで時間平均すると、図14(b)に仮想的に示しているように、第1電極11近傍および第2電極12近傍の両方にフリンジ電界の影響が及ぶこととなり、基板面のほぼ全体を配向変化した形状異方性粒子32で覆うことができる。 When the potential shown in FIG. 13A is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 (that is, the voltage shown in FIG. When applied between the third electrodes 13, between the second electrode 12 and the third electrode 13, and between the first electrode 11 and the second electrode 12, each pixel is shown on the left side of FIG. The state shown on the right side and the state shown on the right side are switched for each frame. Therefore, when time averaged over a plurality of frames, the fringe electric field affects both the vicinity of the first electrode 11 and the vicinity of the second electrode 12 as virtually shown in FIG. Can be covered with the shape anisotropic particles 32 whose orientation has been changed.
 図15(a)、(b)および(c)は、実施例における表示媒体層30の光学顕微鏡像である。図15(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、図15(b)および(c)は、表示媒体層30に横電界およびフリンジ電界(図13(a)に示した電位による)が所定時間印加された後の状態を示している。図15(a)および(b)は、第1基板10側にピントを合わせたときの像であり、図15(c)は、第2基板20側にピントを合わせたときの像である。また、図15(d)は、図15(a)の状態を模式的に示す図であり、図15(e)は、図15(b)および(c)の状態を模式的に示す図である。 15A, 15B, and 15C are optical microscope images of the display medium layer 30 in the example. 15A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 15B and 15C show a horizontal electric field and a fringe electric field (FIG. 13) on the display medium layer 30, respectively. (According to the potential shown in (a)) shows a state after application for a predetermined time. FIGS. 15A and 15B are images when focusing on the first substrate 10 side, and FIG. 15C is an image when focusing on the second substrate 20 side. FIG. 15 (d) is a diagram schematically showing the state of FIG. 15 (a), and FIG. 15 (e) is a diagram schematically showing the states of FIGS. 15 (b) and (c). is there.
 図15(a)から、初期状態では、多くの形状異方性粒子32が垂直配向していることがわかる(図15(d)も参照)。また、図15(b)から、横電界およびフリンジ電界が所定時間印加された後では、多くの形状異方性粒子32が水平配向していることがわかる(図15(e)も参照)。さらに、図15(c)から、対向基板20側に配向方向の変化していない形状異方性粒子32がほとんど存在しておらず(ピントが合っている形状異方性粒子32がほとんどない)、多くの形状異方性粒子32の配向方向が変化していることがわかる。図15(b)および(c)に示した状態においてSCE方式の反射率(Y値)を測定したところ、41.5%であった。 15A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 15D). Further, FIG. 15B shows that many shape anisotropic particles 32 are horizontally oriented after the lateral electric field and the fringe electric field are applied for a predetermined time (see also FIG. 15E). Further, from FIG. 15C, there are almost no shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are almost no shape anisotropic particles 32 in focus). It can be seen that the orientation direction of many shape anisotropic particles 32 changes. In the state shown in FIGS. 15B and 15C, the reflectance (Y value) of the SCE method was measured and found to be 41.5%.
 このように、同一の表示が行われている期間内で電界分布における強電界領域SRおよび弱電界領域WRの配列が1回以上入れ替わることにより、光利用効率を高くすることができ、より明るい表示を実現することができる。 As described above, the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is exchanged one or more times within the period in which the same display is performed, so that the light use efficiency can be increased and a brighter display can be achieved. Can be realized.
 図16に、実施例における表示媒体層30に横電界およびフリンジ電界を印加した後の第1フレーム~第9フレーム(具体的には0、17、50、67、83、100、133msec時点)における光学顕微鏡像を示す。また、図16には、各時点における断面AおよびB(それぞれ光学顕微鏡像における16A-16A’線および16B-16B’線に相当する断面)も模式的に示している。さらに、図16には、第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4のタイミングチャートも示している。 FIG. 16 shows the first to ninth frames (specifically, at time points 0, 17, 50, 67, 83, 100, and 133 msec) after applying the horizontal electric field and the fringe electric field to the display medium layer 30 in the embodiment. An optical microscope image is shown. FIG. 16 also schematically shows cross sections A and B (cross sections corresponding to lines 16A-16A ′ and 16B-16B ′ in the optical microscope image, respectively) at each time point. Further, in FIG. 16, the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12 also shows a timing chart of the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
 図16からわかるように、テストセルでは、形状異方性粒子32は、電界印加後、約9フレームかけて徐々に水平配向する。応答時間(立ち上がり時間)は、約133msecであった。 As can be seen from FIG. 16, in the test cell, the shape anisotropic particles 32 are gradually horizontally oriented over about nine frames after application of the electric field. The response time (rise time) was about 133 msec.
 (比較例の検証)
 続いて、上述したテストセルを用い、本発明の実施形態による表示装置100とは異なる駆動(同一の表示が行われている期間内で電界分布における強電界領域SRおよび弱電界領域WRの配列が入れ替わらない駆動)を行った例(比較例1~4)を検証した結果を説明する。
(Verification of comparative example)
Subsequently, using the above-described test cell, driving different from that of the display device 100 according to the embodiment of the present invention (the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution in the period during which the same display is performed is performed). The result of verifying an example (Comparative Examples 1 to 4) in which driving without replacement is performed will be described.
 (比較例1)
 図17は、比較例1における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図17に示すように、第1電極11の電位V1および第2電極12の電位V2は、2フレームを周期とする矩形波であり、1周期内で1フレームごとに5V、-5Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。つまり、第3電極13の電位V3は、常に第1電極11の電位V1と第2電極12の電位V2との中間の電位である。従って、比較例1は、特許文献4の液晶表示装置900の駆動と同様の駆動であるといえる。
(Comparative Example 1)
17, the potential V 1 of the first electrode 11 of Comparative Example 1, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. As shown in FIG. 17, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of 2 frames, 5V every frame in one cycle, and -5V Change. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, are out of one frame phase. The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential). That is, the potential V 3 of the third electrode 13 is always an intermediate potential between the potential V 2 of the potentials V 1 and the second electrode 12 of the first electrode 11. Therefore, it can be said that Comparative Example 1 is the same drive as that of the liquid crystal display device 900 of Patent Document 4.
 図17に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられると、表示媒体層30には、図18に示すように、10V相当の横電界と、5V相当のフリンジ電界とが生成される。 When the potential shown in FIG. 17 is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21, a lateral electric field corresponding to 10 V is applied to the display medium layer 30 as shown in FIG. And a fringe electric field equivalent to 5V is generated.
 このように、比較例1では、実施例に比べ、フリンジ電界が弱くなる。そのため、基板面全体を配向変化した形状異方性粒子32で覆うことができず、光利用効率が低下してしまう。 Thus, in Comparative Example 1, the fringe electric field is weaker than in the Example. For this reason, the entire substrate surface cannot be covered with the shape-anisotropic particles 32 whose orientation has been changed, and the light utilization efficiency is reduced.
 図19(a)、(b)および(c)は、比較例1における表示媒体層30の光学顕微鏡像である。図19(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、図19(b)および(c)は、表示媒体層30に横電界およびフリンジ電界(図17に示した電位による)が所定時間印加された後の状態を示している。図19(a)および(b)は、第1基板10側にピントを合わせたときの像であり、図19(c)は、第2基板20側にピントを合わせたときの像である。また、図19(d)は、図19(a)の状態を模式的に示す図であり、図19(e)は、図19(b)および(c)の状態を模式的に示す図である。 19A, 19B, and 19C are optical microscope images of the display medium layer 30 in Comparative Example 1. FIG. FIG. 19A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 19B and 19C show a horizontal electric field and a fringe electric field (FIG. 17) on the display medium layer 30, respectively. Shows the state after application for a predetermined time. FIGS. 19A and 19B are images when the first substrate 10 is focused, and FIG. 19C is an image when the second substrate 20 is focused. FIG. 19 (d) is a diagram schematically showing the state of FIG. 19 (a), and FIG. 19 (e) is a diagram schematically showing the states of FIGS. 19 (b) and (c). is there.
 図19(a)から、初期状態では、多くの形状異方性粒子32が垂直配向していることがわかる(図19(d)も参照)。また、図19(b)から、横電界およびフリンジ電界が所定時間印加された後では、水平配向している形状異方性粒子32があるものの、実施例(図15(b)参照)に比べるとその数が少ないことがわかる(図19(e)も参照)。さらに、図19(c)から、対向基板20側に配向方向の変化していない形状異方性粒子32が多数存在している(ピントが合っている形状異方性粒子32が多くある)ことがわかる。 FIG. 19A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 19D). Further, from FIG. 19B, after the lateral electric field and the fringe electric field are applied for a predetermined time, although there are horizontally-oriented anisotropic particles 32, as compared with the embodiment (see FIG. 15B). And the number thereof is small (see also FIG. 19 (e)). Further, from FIG. 19C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand.
 (比較例2)
 図20は、比較例2における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図20に示すように、第1電極11の電位V1および第2電極12の電位V2は、2フレームを周期とする矩形波であり、1周期内で1フレームごとに10V、-10Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。つまり、第3電極13の電位V3は、常に第1電極11の電位V1と第2電極12の電位V2との中間の電位である。従って、比較例2も、特許文献4の液晶表示装置900の駆動と同様の駆動であるといえる。
(Comparative Example 2)
20, the potential V 1 of the first electrode 11 of Comparative Example 2, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. As shown in FIG. 20, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of 2 frames, 10V for each frame within one period, and -10V Change. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, are out of one frame phase. The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential). That is, the potential V 3 of the third electrode 13 is always an intermediate potential between the potential V 2 of the potentials V 1 and the second electrode 12 of the first electrode 11. Therefore, it can be said that the comparative example 2 is also the same drive as the drive of the liquid crystal display device 900 of Patent Document 4.
 図20に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられると、表示媒体層30には、図21に示すように、20V相当の横電界と、10V相当のフリンジ電界とが生成される。 When the potential shown in FIG. 20 is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21, a lateral electric field equivalent to 20 V is applied to the display medium layer 30 as shown in FIG. 21. And a fringe electric field equivalent to 10V is generated.
 このように、比較例2では、比較例1に比べ、横電界およびフリンジ電界が強くなる。しかしながら、基板面全体を配向変化した形状異方性粒子32で覆うことはできず、光利用効率を十分に向上させることはできなかった。 Thus, in Comparative Example 2, the lateral electric field and the fringe electric field are stronger than in Comparative Example 1. However, the entire substrate surface could not be covered with the shape-anisotropic particles 32 whose orientation was changed, and the light utilization efficiency could not be sufficiently improved.
 図22(a)、(b)および(c)は、比較例2における表示媒体層30の光学顕微鏡像である。図22(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、図22(b)および(c)は、表示媒体層30に横電界およびフリンジ電界(図20に示した電位による)が所定時間印加された後の状態を示している。図22(a)および(b)は、第1基板10側にピントを合わせたときの像であり、図22(c)は、第2基板20側にピントを合わせたときの像である。また、図22(d)は、図22(a)の状態を模式的に示す図であり、図22(e)は、図22(b)および(c)の状態を模式的に示す図である。 22A, 22B, and 22C are optical microscope images of the display medium layer 30 in Comparative Example 2. FIG. 22A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 22B and 22C show a lateral electric field and a fringe electric field (FIG. 20) on the display medium layer 30. Shows the state after application for a predetermined time. 22A and 22B are images when focusing on the first substrate 10 side, and FIG. 22C is an image when focusing on the second substrate 20 side. FIG. 22 (d) is a diagram schematically showing the state of FIG. 22 (a), and FIG. 22 (e) is a diagram schematically showing the states of FIGS. 22 (b) and (c). is there.
 図22(a)から、初期状態では、多くの形状異方性粒子32が垂直配向していることがわかる(図22(d)も参照)。また、図22(b)から、横電界およびフリンジ電界が所定時間印加された後では、水平配向している形状異方性粒子32があるものの、実施例(図15(b)参照)に比べるとその数が少ないことがわかる(図22(e)も参照)。さらに、図22(c)から、対向基板20側に配向方向の変化していない形状異方性粒子32が多数存在している(ピントが合っている形状異方性粒子32が多くある)ことがわかる。 22A shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 22D). Further, from FIG. 22B, after the lateral electric field and the fringe electric field are applied for a predetermined time, although there are the shape anisotropic particles 32 that are horizontally oriented, as compared with the embodiment (see FIG. 15B). And the number is small (see also FIG. 22E). Furthermore, from FIG. 22C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand.
 (比較例3)
 図23は、比較例3における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図23に示すように、第1電極11の電位V1は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに10V、0V、-10V、0Vと変化する。また、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。
(Comparative Example 3)
23, the potential V 1 of the first electrode 11 of Comparative Example 3, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. As shown in FIG. 23, the potential V 1 of the first electrode 11 is a rectangular wave with a period of 4 frames, and changes to 10 V, 0 V, −10 V, and 0 V for each frame within one period. The potential V 2 of the second electrode 12, the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
 図23に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられると、各画素は、図24に示すように表示媒体層30に10V相当の横電界および10V相当のフリンジ電界が生成された状態と、表示媒体層30に電界が生成されていない状態(不図示)とを1フレームごとに切り替えて呈する。 When the potential shown in FIG. 23 is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21, each pixel has a horizontal equivalent to 10 V on the display medium layer 30 as shown in FIG. 24. A state in which an electric field and a fringe electric field equivalent to 10 V are generated and a state in which no electric field is generated in the display medium layer 30 (not shown) are switched for each frame.
 比較例3においても、同一の表示が行われている期間内で強電界領域SRおよび弱電界領域WRの配列が入れ替わることがないので、形状異方性粒子32は、電界強度の強い領域に集まって平行配向する。そのため、基板面全体を配向変化した形状異方性粒子32で覆うことはできない。 Also in Comparative Example 3, since the arrangement of the strong electric field region SR and the weak electric field region WR is not interchanged within the period during which the same display is performed, the shape anisotropic particles 32 gather in the region where the electric field strength is high. To parallel orientation. Therefore, the entire substrate surface cannot be covered with the shape anisotropic particles 32 whose orientation has been changed.
 図25(a)、(b)および(c)は、比較例3における表示媒体層30の光学顕微鏡像である。図25(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、図25(b)および(c)は、表示媒体層30に横電界およびフリンジ電界(図23に示した電位による)が所定時間印加された後の状態を示している。図25(a)および(b)は、第1基板10側にピントを合わせたときの像であり、図25(c)は、第2基板20側にピントを合わせたときの像である。また、図25(d)は、図25(a)の状態を模式的に示す図であり、図25(e)は、図25(b)および(c)の状態を模式的に示す図である。 25A, 25B, and 25C are optical microscope images of the display medium layer 30 in Comparative Example 3. FIG. 25A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 25B and 25C show a lateral electric field and a fringe electric field (FIG. 23) in the display medium layer 30. Shows the state after application for a predetermined time. FIGS. 25A and 25B are images when focusing on the first substrate 10 side, and FIG. 25C is an image when focusing on the second substrate 20 side. FIG. 25 (d) is a diagram schematically showing the state of FIG. 25 (a), and FIG. 25 (e) is a diagram schematically showing the states of FIGS. 25 (b) and (c). is there.
 図25(a)から、初期状態では、多くの形状異方性粒子32が垂直配向していることがわかる(図25(d)も参照)。また、図25(b)から、横電界およびフリンジ電界が所定時間印加された後では、水平配向している形状異方性粒子32があるものの、実施例(図15(b)参照)に比べるとその数が少ないことがわかる(図25(e)も参照)。さらに、図25(c)から、対向基板20側に配向方向の変化していない形状異方性粒子32が多数存在している(ピントが合っている形状異方性粒子32が多くある)ことがわかる。図25(b)および(c)に示した状態においてSCE方式の反射率(Y値)を測定したところ、28.9%であり、実施例の反射率(41.5%)よりも低かった。 FIG. 25 (a) shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 25 (d)). Further, from FIG. 25B, after the lateral electric field and the fringe electric field are applied for a predetermined time, there are the shape anisotropic particles 32 that are horizontally oriented, but compared with the example (see FIG. 15B). And the number is small (see also FIG. 25 (e)). Furthermore, from FIG. 25C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand. When the reflectance (Y value) of the SCE method was measured in the state shown in FIGS. 25B and 25C, it was 28.9%, which was lower than the reflectance (41.5%) of the example. .
 (比較例4)
 図26は、比較例4における第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図26に示すように、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに10V、0V、-10V、0Vと変化する。第1電極11の電位V1と第2電極12の電位V2とは、位相が同じである。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。
(Comparative Example 4)
26, the potential V 1 of the first electrode 11 of Comparative Example 4, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. As shown in FIG. 26, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, 10V for each frame within one period, 0V, - Varies with 10V and 0V. The potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, the phase is the same. The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
 図26に示した電位が第1電極11、第2電極12、第3電極13および第4電極21に与えられると、各画素は、図27に示すように表示媒体層30に10V相当のフリンジ電界が生成された状態と、表示媒体層30に電界が生成されていない状態(不図示)とを1フレームごとに切り替えて呈する。 When the potential shown in FIG. 26 is applied to the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21, each pixel has a fringe equivalent to 10V on the display medium layer 30 as shown in FIG. A state in which an electric field is generated and a state in which no electric field is generated in the display medium layer 30 (not shown) are switched for each frame.
 比較例4においても、同一の表示が行われている期間内で強電界領域SRおよび弱電界領域WRの配列が入れ替わることがないので、形状異方性粒子32は、電界強度の強い領域でのみ平行配向し、電界強度の弱い領域(第1電極11および第2電極12間の中央)では配向変化しない。そのため、基板面全体を配向変化した形状異方性粒子32で覆うことはできない。 Also in Comparative Example 4, since the arrangement of the strong electric field region SR and the weak electric field region WR is not interchanged within the period during which the same display is performed, the shape anisotropic particles 32 are only in the region where the electric field strength is strong. The alignment does not change in a region that is parallel and has a low electric field strength (the center between the first electrode 11 and the second electrode 12). Therefore, the entire substrate surface cannot be covered with the shape anisotropic particles 32 whose orientation has been changed.
 図28(a)、(b)および(c)は、比較例4における表示媒体層30の光学顕微鏡像である。図28(a)は、表示媒体層30に電界が印加されていない状態(初期状態)を示し、図28(b)および(c)は、表示媒体層30に横電界およびフリンジ電界(図26に示した電位による)が所定時間印加された後の状態を示している。図28(a)および(b)は、第1基板10側にピントを合わせたときの像であり、図28(c)は、第2基板20側にピントを合わせたときの像である。また、図28(d)は、図28(a)の状態を模式的に示す図であり、図28(e)は、図28(b)および(c)の状態を模式的に示す図である。 28A, 28B, and 28C are optical microscope images of the display medium layer 30 in Comparative Example 4. FIG. FIG. 28A shows a state (initial state) where no electric field is applied to the display medium layer 30, and FIGS. 28B and 28C show a lateral electric field and a fringe electric field (FIG. 26) on the display medium layer 30, respectively. Shows the state after application for a predetermined time. FIGS. 28A and 28B are images when focusing on the first substrate 10 side, and FIG. 28C is an image when focusing on the second substrate 20 side. FIG. 28 (d) is a diagram schematically showing the state of FIG. 28 (a), and FIG. 28 (e) is a diagram schematically showing the states of FIGS. 28 (b) and (c). is there.
 図28(a)から、初期状態では、多くの形状異方性粒子32が垂直配向していることがわかる(図28(d)も参照)。また、図28(b)から、フリンジ電界が所定時間印加された後では、水平配向している形状異方性粒子32があるものの、実施例(図15(b)参照)に比べるとその数が少ないことがわかる(図28(e)も参照)。さらに、図28(c)から、対向基板20側に配向方向の変化していない形状異方性粒子32が多数存在している(ピントが合っている形状異方性粒子32が多くある)ことがわかる。図28(b)および(c)に示した状態においてSCE方式の反射率(Y値)を測定したところ、31.0%であり、実施例の反射率(41.5%)よりも低かった。 FIG. 28 (a) shows that many shape anisotropic particles 32 are vertically aligned in the initial state (see also FIG. 28 (d)). Further, from FIG. 28 (b), after the fringe electric field is applied for a predetermined time, there are the horizontally oriented shape anisotropic particles 32, but the number thereof compared to the example (see FIG. 15 (b)). (See also FIG. 28 (e)). Further, from FIG. 28C, there are a large number of shape anisotropic particles 32 whose orientation direction has not changed on the counter substrate 20 side (there are many shape anisotropic particles 32 in focus). I understand. When the SCE reflectivity (Y value) was measured in the state shown in FIGS. 28B and 28C, it was 31.0%, which was lower than the reflectivity (41.5%) of the example. .
 このように、同一の表示が行われている期間内で電界分布における強電界領域SRおよび弱電界領域WRの配列が入れ替わらない場合、光利用効率を高くすることができない。 As described above, if the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is not interchanged within the same display period, the light use efficiency cannot be increased.
 (形状異方性粒子について)
 形状異方性粒子32は、上述したように印加電圧(印加電界の方向)に応じて基板面への投影面積が変化する限り、その具体的な形状や材料には、特に制限はない。形状異方性粒子32は、フレーク状(薄片状)であってもよいし、円柱状や楕円球状などであってもよい。高いコントラスト比を実現する観点からは、形状異方性粒子32は、最大投影面積と最小投影面積との比が2:1以上となるような形状であることが好ましい。
(About shape anisotropic particles)
As described above, the shape anisotropic particle 32 is not particularly limited in its specific shape and material as long as the projected area onto the substrate surface changes according to the applied voltage (direction of the applied electric field). The shape anisotropic particles 32 may have a flake shape (flaky shape), a cylindrical shape, an oval shape, or the like. From the viewpoint of realizing a high contrast ratio, the shape anisotropic particle 32 preferably has a shape such that the ratio of the maximum projected area to the minimum projected area is 2: 1 or more.
 形状異方性粒子32の材料としては、金属材料、半導体材料、誘電体材料およびこれらの複合材料を用いることができる。また、形状異方性粒子32は、誘電体多層膜であってもよいし、コレステリック樹脂材料から形成されてもよい。なお、形状異方性粒子32の材料として金属材料を用いる場合、形状異方性粒子32の表面に絶縁層(誘電体層)が形成されていることが好ましい。金属単体の誘電率は虚数であるが、表面に絶縁層(例えば樹脂層や金属酸化物層)を形成することにより、金属材料から形成された形状異方性粒子32を誘電体として扱うことができる。また、表面に絶縁層が形成されていることにより、金属材料から形成された形状異方性粒子32同士の接触による導通や、物理的な相互作用による凝集等を防止する効果も得られる。このような形状異方性粒子32としては、例えば、表面を樹脂材料(例えばアクリル樹脂)で被覆されたアルミニウムフレークを用いることができる。表示媒体層30のアルミニウムフレーク含有量は、例えば3重量%である。あるいは、表面にSiO2層が形成されたアルミニウムフレークや、表面に酸化アルミニウム層が形成されたアルミニウムフレークなどを用いることもできる。勿論、金属材料としてアルミニウム以外の金属材料を用いてもよい。また、形状異方性粒子32は、着色されていてもよい。 As a material of the shape anisotropic particle 32, a metal material, a semiconductor material, a dielectric material, and a composite material thereof can be used. The shape anisotropic particles 32 may be a dielectric multilayer film or may be formed from a cholesteric resin material. When a metal material is used as the material for the shape anisotropic particles 32, an insulating layer (dielectric layer) is preferably formed on the surface of the shape anisotropic particles 32. Although the dielectric constant of a single metal is an imaginary number, by forming an insulating layer (for example, a resin layer or a metal oxide layer) on the surface, the shape anisotropic particles 32 formed of a metal material can be handled as a dielectric. it can. In addition, since the insulating layer is formed on the surface, an effect of preventing conduction due to contact between the shape anisotropic particles 32 formed of a metal material, aggregation due to physical interaction, and the like can be obtained. As such shape anisotropic particles 32, for example, aluminum flakes whose surfaces are coated with a resin material (for example, acrylic resin) can be used. The aluminum flake content of the display medium layer 30 is, for example, 3% by weight. Alternatively, aluminum flakes having an SiO 2 layer formed on the surface, aluminum flakes having an aluminum oxide layer formed on the surface, or the like can also be used. Of course, a metal material other than aluminum may be used as the metal material. Further, the shape anisotropic particles 32 may be colored.
 形状異方性粒子32の長さは、特に制限されないが、4μm以上10μm以下であることが好ましい。形状異方性粒子32の長さが10μmを超えると、形状異方性粒子32が移動しにくくなることがある。一方、形状異方性粒子32の長さが4μm未満になると、形状異方性粒子32の製造が困難になったり、形状異方性粒子32の反射性能が十分でなくなったりすることがある。また、本実施形態のような反射型表示装置で、高い反射率を得るために水平配向状態において形状異方性粒子32で基板面を覆い尽くしたい場合には、形状異方性粒子32の長さを、電極ピッチp(図2参照)以上とすることが好ましい。形状異方性粒子32の厚さも、特に制限されない。ただし、形状異方性粒子32の厚さが小さいほど、透明状態における表示媒体層30の透過率を高くすることができるので、形状異方性粒子32の厚さは、電極間距離gよりも小さい(例えば4μm以下)ことが好ましく、光の波長以下である(例えば0.5μm以下)ことがより好ましい。 The length of the shape anisotropic particles 32 is not particularly limited, but is preferably 4 μm or more and 10 μm or less. If the length of the shape anisotropic particles 32 exceeds 10 μm, the shape anisotropic particles 32 may be difficult to move. On the other hand, when the length of the shape anisotropic particles 32 is less than 4 μm, it may be difficult to produce the shape anisotropic particles 32 or the reflective performance of the shape anisotropic particles 32 may be insufficient. Further, in the reflective display device as in the present embodiment, when it is desired to cover the substrate surface with the shape anisotropic particles 32 in the horizontal alignment state in order to obtain a high reflectance, the length of the shape anisotropic particles 32 is increased. It is preferable that the pitch be equal to or greater than the electrode pitch p (see FIG. 2). The thickness of the shape anisotropic particle 32 is not particularly limited. However, since the transmittance of the display medium layer 30 in the transparent state can be increased as the thickness of the shape anisotropic particles 32 is smaller, the thickness of the shape anisotropic particles 32 is larger than the inter-electrode distance g. It is preferably small (for example, 4 μm or less), and more preferably light wavelength or less (for example, 0.5 μm or less).
 形状異方性粒子32の比重は、11g/cm3以下であることが好ましく、3g/cm3以下であることがより好ましく、媒体31と同程度の比重であることがさらに好ましい。これは、形状異方性粒子32の比重が媒体31の比重と大きく異なっていると、形状異方性粒子32が沈降または浮遊するという問題が生じ得るからである。また、媒体31の搖動によって形状異方性粒子32を移動させる効果を高くする観点からは、形状異方性粒子32は軽いことが好ましい。 The specific gravity of the shape anisotropic particles 32 is preferably 11g / cm 3 or less, more preferably 3 g / cm 3 or less, further preferably the specific gravity substantially equal to that of the medium 31. This is because if the specific gravity of the shape anisotropic particles 32 is significantly different from the specific gravity of the medium 31, there may be a problem that the shape anisotropic particles 32 settle or float. From the viewpoint of increasing the effect of moving the shape anisotropic particles 32 by the peristaltic motion of the medium 31, the shape anisotropic particles 32 are preferably light.
 (他の構成)
 なお、上記の説明では、アクティブマトリクス基板である第1基板10が背面側に配置されている構成を例示したが、第1基板10の配置は、これに限定されるものではない。第1基板10は、前面側に配置されていてもよい。アクティブマトリクス基板である第1基板10は、遮光性を有する材料から形成された構成要素を含むので、第1基板10が背面側に配置されている構成を採用すると、形状異方性粒子32の反射効果を最大限利用することができる。
(Other configurations)
In the above description, the configuration in which the first substrate 10 that is an active matrix substrate is arranged on the back side is illustrated, but the arrangement of the first substrate 10 is not limited to this. The first substrate 10 may be disposed on the front side. Since the first substrate 10 that is an active matrix substrate includes components formed from a light-shielding material, if the configuration in which the first substrate 10 is disposed on the back side is adopted, the shape anisotropic particles 32 The reflection effect can be used to the maximum.
 また、上記の説明では、反射型の表示装置100を例として説明を行ったが、本発明の実施形態は、透過型の表示装置にも好適に用いられる。透過型の表示装置では、背面側の基板には光吸収層(図1などに示されている光吸収層16)は設けられない。また、透過型の表示装置では、表示パネルに光を照射する照明素子(バックライト)が設けられる。 In the above description, the reflective display device 100 has been described as an example. However, the embodiment of the present invention is also suitably used for a transmissive display device. In the transmissive display device, a light absorption layer (the light absorption layer 16 illustrated in FIG. 1 and the like) is not provided on the back substrate. In a transmissive display device, an illumination element (backlight) that irradiates light to the display panel is provided.
 さらに、上記の説明では、表示媒体層30が形状異方性粒子32を含む表示装置100を例示したが、本発明の実施形態は、印加された電界に応じて光学特性が変化する表示媒体層を備えた他の表示装置にも用いることができ、特に、表示媒体層の応答時間が、強電界領域および弱電界領域の配列の入れ替わり周期よりも長い表示装置に好適に用いることができる。例えば、本発明の実施形態は、表示媒体層に形状異方性粒子を含む表示装置と同様に、液体や気体中に光学特性を変化させるための物質を混合し、その物質の移動を電界により制御する電気泳動表示装置、電子粉流体(トナー)表示装置およびエレクトロウエッティング表示装置にも好適に用いられる。あるいは、本発明の実施形態は、表示媒体層の媒体自体が光学特性を変化させ得る液晶表示装置などにおいても、液晶の配向スイッチング速度(応答速度)が電界分布の配列切り替え周期よりも十分遅い場合などに好適に用いられる。 Furthermore, in the above description, the display device 100 in which the display medium layer 30 includes the shape anisotropic particles 32 has been exemplified. However, in the embodiment of the present invention, the display medium layer whose optical characteristics change according to the applied electric field. In particular, the display medium layer can be suitably used for a display device in which the response time of the display medium layer is longer than the switching period of the arrangement of the strong electric field region and the weak electric field region. For example, in the embodiment of the present invention, similarly to a display device including shape anisotropic particles in a display medium layer, a substance for changing optical characteristics is mixed in a liquid or gas, and the movement of the substance is controlled by an electric field. The electrophoretic display device to be controlled, the electronic powder fluid (toner) display device, and the electrowetting display device are also preferably used. Alternatively, in the embodiment of the present invention, even in a liquid crystal display device or the like in which the medium itself of the display medium layer can change the optical characteristics, the liquid crystal orientation switching speed (response speed) is sufficiently slower than the electric field distribution arrangement switching period. For example, it is suitably used.
 本発明の実施形態によると、印加された電界に応じて光学特性が変化する表示媒体層を備えた表示装置における、弱電界領域に起因する光利用効率の低下を抑制することができる。本発明の実施形態は、例えば、形状異方性粒子を含む表示媒体層を備えた表示装置に好適に用いられる。 According to the embodiment of the present invention, it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region in a display device including a display medium layer whose optical characteristics change according to an applied electric field. The embodiment of the present invention is preferably used for, for example, a display device including a display medium layer including shape anisotropic particles.
 10  第1基板
 10a  基板
 11  第1電極(第1上層電極)
 11a  第1電極の枝部
 11b  第1電極の幹部
 12  第2電極(第2上層電極)
 12a  第2電極の枝部
 12b  第2電極の幹部
 13  第3電極(下層電極)
 13s  第3電極のスリット
 14  絶縁層
 15、25  垂直配向膜
 16  光吸収層
 17  さらなる絶縁層
 20  第2基板
 20a  基板
 21  第4電極(対向電極)
 22  誘電体層(オーバーコート層)
 30  表示媒体層(光学層)
 31  媒体(液晶材料)
 32  形状異方性粒子
 100  表示装置
 GL  ゲート配線
 SL1  第1ソース配線
 SL2  第2ソース配線
 SL3  第3ソース配線
 SR  強電界領域
 t1  第1薄膜トランジスタ
 t2  第2薄膜トランジスタ
 t3  第3薄膜トランジスタ
 WR  弱電界領域
DESCRIPTION OF SYMBOLS 10 1st board | substrate 10a board | substrate 11 1st electrode (1st upper layer electrode)
11a Branch portion of the first electrode 11b Trunk portion of the first electrode 12 Second electrode (second upper layer electrode)
12a Branch portion of second electrode 12b Trunk portion of second electrode 13 Third electrode (lower layer electrode)
13s Slit of third electrode 14 Insulating layer 15, 25 Vertical alignment film 16 Light absorbing layer 17 Further insulating layer 20 Second substrate 20a Substrate 21 Fourth electrode (counter electrode)
22 Dielectric layer (overcoat layer)
30 Display medium layer (optical layer)
31 Medium (Liquid Crystal Material)
32 shape anisotropic particle 100 display device GL gate wiring SL1 first source wiring SL2 second source wiring SL3 third source wiring SR strong electric field region t1 first thin film transistor t2 second thin film transistor t3 third thin film transistor WR weak electric field region

Claims (15)

  1.  画素を有する表示装置であって、
     互いに対向するように設けられた第1基板および第2基板と、
     前記第1基板および前記第2基板の間に設けられた表示媒体層であって、印加された電界に応じて光学特性が変化する表示媒体層と、を備え、
     前記表示媒体層に電界が印加されたとき、前記画素は、電界が第1電界強度を有する第1領域と、電界が第1電界強度よりも弱い第2電界強度を有する第2領域とが前記表示媒体層の面内方向に沿って配列された電界分布を有し、
     前記画素において、同一の表示が行われている期間内で前記電界分布における前記第1領域および前記第2領域の配列が1回以上入れ替わる表示装置。
    A display device having pixels,
    A first substrate and a second substrate provided to face each other;
    A display medium layer provided between the first substrate and the second substrate, the display medium layer having optical characteristics that change in accordance with an applied electric field,
    When an electric field is applied to the display medium layer, the pixel includes a first region in which the electric field has a first electric field strength and a second region in which the electric field has a second electric field strength that is weaker than the first electric field strength. An electric field distribution arranged along the in-plane direction of the display medium layer;
    The display device in which the arrangement of the first region and the second region in the electric field distribution is switched one or more times within a period in which the same display is performed in the pixel.
  2.  前記第1領域および前記第2領域の配列が入れ替わる周期は、1フレームに相当する時間の整数倍である請求項1に記載の表示装置。 The display device according to claim 1, wherein a period in which the arrangement of the first region and the second region is switched is an integral multiple of a time corresponding to one frame.
  3.  前記第1基板は、前記画素に設けられ、互いに異なる電位を与えられ得る第1電極および第2電極を有し、
     前記第1電極および前記第2電極のそれぞれは、櫛歯形状を有する請求項1または2に記載の表示装置。
    The first substrate includes a first electrode and a second electrode which are provided in the pixel and can be given different potentials;
    The display device according to claim 1, wherein each of the first electrode and the second electrode has a comb shape.
  4.  前記第1電極と前記第2電極とによって前記表示媒体層に横電界が生成される請求項3に記載の表示装置。 4. The display device according to claim 3, wherein a lateral electric field is generated in the display medium layer by the first electrode and the second electrode.
  5.  前記第1領域および前記第2領域の配列が入れ替わる際に、前記第1電極の電位と前記第2電極の電位とが入れ替わる請求項3または4に記載の表示装置。 The display device according to claim 3 or 4, wherein when the arrangement of the first region and the second region is switched, the potential of the first electrode and the potential of the second electrode are switched.
  6.  前記第1基板は、絶縁層を介して前記第1電極および前記第2電極の下方に設けられた第3電極をさらに有する請求項3から5のいずれかに記載の表示装置。 6. The display device according to claim 3, wherein the first substrate further includes a third electrode provided below the first electrode and the second electrode via an insulating layer.
  7.  前記第1電極または前記第2電極と、前記第3電極とによって前記表示媒体層にフリンジ電界が生成される請求項6に記載の表示装置。 The display device according to claim 6, wherein a fringe electric field is generated in the display medium layer by the first electrode or the second electrode and the third electrode.
  8.  前記画素は、前記第1電極と前記第3電極との間に所定の電位差が与えられ、かつ、前記第2電極と前記第3電極とが実質的に同じ電位である第1の状態と、前記第2電極と前記第3電極との間に所定の電位差が与えられ、かつ、前記第1電極と前記第3電極とが実質的に同じ電位である第2の状態とを切り替えて呈することができ、
     前記第1領域および前記第2領域の配列が入れ替わる際に、前記第1の状態と前記第2の状態とが切り替えられる請求項6または7に記載の表示装置。
    The pixel has a first state in which a predetermined potential difference is given between the first electrode and the third electrode, and the second electrode and the third electrode have substantially the same potential, A predetermined potential difference is given between the second electrode and the third electrode, and the first electrode and the third electrode are switched between a second state in which the potential is substantially the same. Can
    The display device according to claim 6 or 7, wherein the first state and the second state are switched when the arrangement of the first region and the second region is switched.
  9.  前記第2基板は、前記第1電極、前記第2電極および前記第3電極に対向する第4電極を有する請求項6から8のいずれかに記載の表示装置。 The display device according to claim 6, wherein the second substrate has a fourth electrode facing the first electrode, the second electrode, and the third electrode.
  10.  前記第1電極、前記第2電極および前記第3電極と、前記第4電極とによって前記表示媒体層に縦電界が生成される請求項8に記載の表示装置。 The display device according to claim 8, wherein a vertical electric field is generated in the display medium layer by the first electrode, the second electrode, the third electrode, and the fourth electrode.
  11.  前記第1基板は、前記第1電極に電気的に接続された第1薄膜トランジスタと、前記第2電極に電気的に接続された第2薄膜トランジスタと、をさらに有する請求項3から10のいずれかに記載の表示装置。 The first substrate further includes a first thin film transistor electrically connected to the first electrode and a second thin film transistor electrically connected to the second electrode. The display device described.
  12.  前記表示媒体層の応答時間は、前記第1領域および前記第2領域の配列が入れ替わる周期よりも長い請求項1から11のいずれかに記載の表示装置。 12. The display device according to claim 1, wherein a response time of the display medium layer is longer than a cycle in which the arrangement of the first region and the second region is switched.
  13.  前記表示媒体層は、媒体と、前記媒体中に分散され、形状異方性を有する形状異方性粒子とを含む請求項1から12のいずれかに記載の表示装置。 The display device according to claim 1, wherein the display medium layer includes a medium and shape anisotropic particles dispersed in the medium and having shape anisotropy.
  14.  前記媒体は、液晶材料を含む請求項13に記載の表示装置。 14. The display device according to claim 13, wherein the medium includes a liquid crystal material.
  15.  前記第1基板および前記第2基板の少なくとも一方は、前記表示媒体層側に設けられ、前記液晶材料に含まれる液晶分子を垂直配向させる垂直配向膜を有する請求項14に記載の表示装置。 15. The display device according to claim 14, wherein at least one of the first substrate and the second substrate has a vertical alignment film that is provided on the display medium layer side and vertically aligns liquid crystal molecules contained in the liquid crystal material.
PCT/JP2015/079596 2014-10-24 2015-10-20 Display device WO2016063880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014217605 2014-10-24
JP2014-217605 2014-10-24

Publications (1)

Publication Number Publication Date
WO2016063880A1 true WO2016063880A1 (en) 2016-04-28

Family

ID=55760912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079596 WO2016063880A1 (en) 2014-10-24 2015-10-20 Display device

Country Status (1)

Country Link
WO (1) WO2016063880A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141248A1 (en) * 2012-03-19 2013-09-26 シャープ株式会社 Light-modulating panel and light modulator
WO2014000288A1 (en) * 2012-06-29 2014-01-03 华为技术有限公司 Downlink data transmission scheduling method and device
WO2014007193A1 (en) * 2012-07-05 2014-01-09 シャープ株式会社 Liquid crystal display apparatus and method for driving liquid crystal display apparatus
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141248A1 (en) * 2012-03-19 2013-09-26 シャープ株式会社 Light-modulating panel and light modulator
WO2014000288A1 (en) * 2012-06-29 2014-01-03 华为技术有限公司 Downlink data transmission scheduling method and device
WO2014007193A1 (en) * 2012-07-05 2014-01-09 シャープ株式会社 Liquid crystal display apparatus and method for driving liquid crystal display apparatus
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same

Similar Documents

Publication Publication Date Title
TWI408466B (en) Liquid crystal apparatus
WO2014136586A1 (en) Liquid crystal display device
TWI390291B (en) Liquid crystal display device
US9417486B2 (en) Liquid crystal display device
WO2017026480A1 (en) Optical device
WO2013151164A1 (en) Stereoscopic display device
WO2013141248A1 (en) Light-modulating panel and light modulator
JP6858495B2 (en) Liquid crystal display device and manufacturing method of liquid crystal display device
JP2011095407A (en) Display device
KR20130108109A (en) Liquid crystal optical apparatus and image display device
US20160246085A1 (en) Liquid crystal panel and manufacturing method thereof
WO2014174896A1 (en) Optical apparatus and display apparatus provided with same
WO2014002788A1 (en) Display panel and display device
WO2016074253A1 (en) Liquid crystal display device and liquid crystal display panel thereof
JP2012113215A (en) Liquid crystal element
JP2012027150A (en) Method for manufacturing polymer dispersion type liquid crystal display element, and the display element
JP2006208995A (en) Liquid crystal display device and its manufacturing method
JP5906321B2 (en) Optical device and display device having the same
US10180613B2 (en) Optical device
US9256103B2 (en) Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
JP4995942B2 (en) Liquid crystal display
WO2016031638A1 (en) Liquid-crystal display
WO2016063880A1 (en) Display device
WO2015012092A1 (en) Liquid crystal display apparatus
WO2016080244A1 (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15852939

Country of ref document: EP

Kind code of ref document: A1