WO2015087733A1 - タール改質炉 - Google Patents

タール改質炉 Download PDF

Info

Publication number
WO2015087733A1
WO2015087733A1 PCT/JP2014/081762 JP2014081762W WO2015087733A1 WO 2015087733 A1 WO2015087733 A1 WO 2015087733A1 JP 2014081762 W JP2014081762 W JP 2014081762W WO 2015087733 A1 WO2015087733 A1 WO 2015087733A1
Authority
WO
WIPO (PCT)
Prior art keywords
syngas
reforming furnace
end side
primary
side heat
Prior art date
Application number
PCT/JP2014/081762
Other languages
English (en)
French (fr)
Inventor
陽介 坪井
慎太朗 伊藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2014362662A priority Critical patent/AU2014362662B2/en
Priority to EP14869814.5A priority patent/EP3081624A4/en
Priority to CN201480067844.6A priority patent/CN105814175B/zh
Publication of WO2015087733A1 publication Critical patent/WO2015087733A1/ja
Priority to US15/177,821 priority patent/US10640375B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00495Means for heating or cooling the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00756Compositions, e.g. coatings, crystals, formulations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment

Definitions

  • the present invention relates to a tar reforming furnace.
  • gasification gas which is a mixed gas of CO and H 2
  • solid fuel such as coal, woody biomass, waste plastic, or various hydrated wastes as fuel.
  • Patent Documents 1 and 2 show the general technical level of a tar reforming furnace that eliminates these problems.
  • the tar reforming furnace described in Patent Document 1 is not a tar reforming furnace using oxidation reforming, but decomposes and removes tar in a heat storage body having a heated honeycomb structure, but the heat storage body is driven to rotate. Since the rotating mechanism has a complicated structure, and the residence time of the syngas in the high temperature part is short, there is a high possibility that the tar reforming will not be sufficiently performed. In addition, there is a concern about syngas leakage in the rotating body, and it is considered that tar may remain in the reformed gas.
  • exhaust gas containing tar is precirculated from one alternating introduction duct to a high-temperature heat storage body, and further heated and burned in the furnace to remove the tar
  • the regenerative tar reforming furnace is configured by heating the other heat storage body with the exhaust gas after tar removal and discharging it from the other alternating discharge duct, and thereafter switching the flow of the exhaust gas alternately.
  • the exhaust gas containing unmodified tar may be discharged from one alternating introduction duct to one alternating discharge duct as it is at the switching timing.
  • the present invention has been made in view of the above-described conventional problems, can sufficiently perform tar reforming with a simple structure, and can prevent discharge of syngas containing unmodified tar at the time of switching.
  • a tar reforming furnace is to be provided.
  • the present invention includes a primary reforming furnace in which a syngas flow passage is formed; One end side heat storage body provided at one end side introduction / outlet port of the primary reforming furnace; The other end side heat storage body provided at the other end side introduction / outlet port of the primary reforming furnace, A syngas switching introduction system for switching and introducing syngas from one side of the one end side heat storage body and the other end side heat storage body into the flow path of the primary reforming furnace; Primary oxidant switching in which the oxidant is switched and supplied to the syngas introduced into the flow path of the primary reforming furnace from one of the one end side heat storage body and the other end side heat storage body in the syngas switching introduction system A supply system; A syngas switching derivation system that switches and derives the reformed syngas supplied with the oxidant in the primary oxidant switching supply system from either one of the one end side heat storage body and the other end side heat storage body; A secondary reforming furnace into which syngas derived from the primary reforming furnace is introduced in the syngas switching derivation system;
  • the syngas is introduced from the syngas switching introduction system in the axial direction of the primary reforming furnace, and the oxidant from the primary oxidant switching supply system is hypothesized around the axis of the primary reforming furnace. It is preferable to be configured to supply in the tangential direction of the circle.
  • syngas is introduced from the syngas switching lead-out system in the axial direction of the secondary reforming furnace, and oxidant is supplied from the secondary oxidant supply system to the axis of the secondary reforming furnace. It is preferable to supply in the tangential direction of the virtual circle as the center.
  • the syngas supplied from the syngas switching introduction system to one end side introduction / extraction port of the primary reforming furnace and passed through the one end side heat accumulator has a circular cross section of the primary reforming furnace.
  • the syngas supplied from the syngas switching introduction system to the other end side inlet / outlet port of the primary reforming furnace and passing through the other end side heat accumulator, the tangent of the flow passage on the other side having a circular cross section of the primary reforming furnace It is preferable that the oxidant is supplied from the primary oxidant switching supply system and introduced into the axial direction of the flow passage on the other side having the circular cross section of the primary reforming furnace.
  • the syngas is supplied from the syngas switching lead-out system in a tangential direction of the secondary reforming furnace having a circular cross section, and the oxidant is supplied from the secondary oxidant supply system to the circular cross section.
  • the secondary reforming furnace is preferably configured to be introduced in the axial direction.
  • the tar reforming furnace preferably includes a soot blower that removes foreign matters adhering to the one end side heat storage body and the other end side heat storage body.
  • the tar reforming furnace of the present invention the tar reforming can be sufficiently performed with a simple structure, and the excellent effect that the discharge of the syngas containing the unmodified tar at the time of switching can be prevented is achieved. obtain.
  • a system provided with the tar reforming furnace includes, for example, a gasification furnace 1 for gasifying solid fuel as shown in FIG. And a dust removing device 2 for removing dust from the syngas generated in the gasification furnace 1, and a tar reforming furnace 3 for decomposing and removing tar from the syngas removed by the dust removing device 2.
  • the syngas containing tar generated in the gasification furnace 1 is removed by the dust removing device 2 and introduced into the tar reforming furnace 3, and tar is decomposed and removed by the tar reforming furnace 3.
  • the gas that has been decomposed and removed is subjected to pre-treatment and purification that are not shown in the figure, and then used for power generation or as a synthesis gas product such as methane, dimethyl ether (DME), and methanol. ing.
  • a synthesis gas product such as methane, dimethyl ether (DME), and methanol.
  • the tar reforming furnace 3 includes a primary reforming furnace 4 having a U-shaped cross section in which syngas flow passages 4 a and 4 b and a communication passage 4 c are formed.
  • One end side heat storage body 6a is provided at one end side introduction / outlet port 5a, and the other end side heat storage body 6b is provided at the other end side introduction / outlet port 5b of the primary reforming furnace 4.
  • the primary reforming furnace 4 has one end side introduction / outlet port 5a and the other end side introduction / outlet port 5b that are connected to the primary reformer from either one of the one end side heat storage body 6a and the other end side heat storage body 6b.
  • a syngas switching introduction system 7 for switching and introducing syngas is connected to the flow passages 4a and 4b of the furnace 4.
  • the flow paths 4a and 4b of the primary reforming furnace 4 are connected to the primary reforming furnace 4 from either one of the one end side heat storage body 6a and the other end side heat storage body 6b in the syngas switching introduction system 7.
  • a primary oxidant switching supply system 8 for switching and supplying an oxidant (oxygen or air) to the syngas introduced into the flow passages 4a and 4b is connected.
  • the one end side inlet / outlet port 5a and the other end side inlet / outlet port 5b of the primary reforming furnace 4 are supplied with the reformed syngas supplied with the oxidizing agent by the primary oxidant switching supply system 8 at the one end.
  • a syngas switching derivation system 9 that is switched and led out from either one of the side heat storage body 6a and the other end side heat storage body 6b is connected.
  • a secondary oxidant supply system 11 for supplying an oxidant (oxygen or air) is connected only when the switching introduction system 7 and the syngas switching derivation system 9 are switched.
  • the syngas switching introduction system 7 branches from the gasification furnace 1 through a dust removal device 2 (see FIG. 4) to a syngas supply line 7L through which syngas is introduced, to one end side introduction / outlet port 5a of the primary reforming furnace 4.
  • a syngas introduction opening / closing valve 7a connected to the other end side introduction / extraction port 5b and alternately opened / closed by a switching control signal 7s from the controller 12 at a position downstream of the branch point of the syngas supply line 7L in the gas flow direction. 7b is provided.
  • the primary oxidant switching supply system 8 includes a primary oxidant supply line 8L through which an oxidant is guided at a position below the flow path 4a and the other end side heat storage body 6b at the lower position of the one end side heat storage body 6a of the primary reforming furnace 4.
  • the primary oxidant on / off valves 8a and 8b that are alternately opened / closed by the switching control signal 8s from the controller 12 are provided in the primary oxidant supply lines 8L. is doing.
  • the syngas switching derivation system 9 is connected to a syngas derivation line 9L connected to one end side introduction / outlet port 5a and the other end side introduction / outlet port 5b of the primary reforming furnace 4, respectively. Is provided with syngas outlet opening / closing valves 9a and 9b that are alternately opened and closed, and the syngas outlet line 9L is joined and connected to the secondary reforming furnace 10.
  • the secondary oxidant supply system 11 connects a secondary oxidant supply line 11L through which an oxidant is introduced to the upper part of the secondary reforming furnace 10, and connects the secondary oxidant supply line 11L from the controller 12 to the secondary oxidant supply line 11L.
  • a secondary oxidant on / off valve 11a that is opened and closed by a switching control signal 11s is provided.
  • a ventilator 13 for attracting syngas is provided on the downstream side of the secondary reforming furnace 10.
  • the flow passage 4a at a position below the one-end side heat storage body 6a of the primary reforming furnace 4 so that the inside of the primary reforming furnace 4 can be heated to a predetermined temperature (about 1100 ° C.) before introducing the syngas.
  • a preheating burner (not shown) using city gas or the like is provided in the flow passage 4b or the communication passage 4c at a position below the other end side heat storage body 6b.
  • the syngas is introduced from the syngas supply line 7L of the syngas switching introduction system 7 in the axial direction of the primary reforming furnace 4, and the primary oxidant supply line 8L of the primary oxidant switching supply system 8 as shown in FIG. Is preferably supplied in the tangential direction of an imaginary circle C1 centering on the axis of the primary reforming furnace 4, in order to promote the mixing of the oxidant with the syngas.
  • the primary oxidant supply lines 8L are connected in the circumferential direction of the primary reforming furnace 4, but the number of primary oxidant supply lines 8L is limited to this. is not.
  • the syngas is introduced from the syngas lead-out line 9L of the syngas switching lead-out system 9 in the axial direction of the secondary reforming furnace 10, and as shown in FIG. 3, the secondary oxidant supply of the secondary oxidant supply system 11 is supplied. It is preferable to supply the oxidizing agent from the line 11L in the tangential direction of the virtual circle C2 centering on the axis of the secondary reforming furnace 10 in order to promote the mixing of the oxidizing agent with the syngas. In the example of FIG. 3, four secondary oxidant supply lines 11L are connected in the circumferential direction of the secondary reforming furnace 10, but the number of secondary oxidant supply lines 11L is limited to this. Is not to be done.
  • the syngas containing tar generated in the gasifier 1 is dedusted by the dust removing device 2 and introduced into the tar reforming furnace 3.
  • the inside of the primary reforming furnace 4 is heated to a predetermined temperature (about 1100 ° C.) by a preheating burner (not shown) using city gas or the like. It is.
  • the syngas introduction opening / closing valve 7a in the middle of the syngas supply line 7L of the syngas switching introduction system 7 leading to the one end introduction / extraction port 5a of the primary reforming furnace 4 is opened by the switching control signal 7s from the controller 12.
  • the syngas introduction opening / closing valve 7b in the middle of the syngas supply line 7L of the syngas switching introduction system 7 leading to the other end side introduction / outlet port 5b of the primary reforming furnace 4 is closed.
  • the syngas derivation opening / closing valve 9a in the middle of the syngas derivation line 9L of the syngas switching derivation system 9 connected to the one end side introduction / derivation port 5a is closed by the switching control signal 9s from the controller 12 and the other end side is introduced.
  • the syngas outlet opening / closing valve 9b in the middle of the syngas outlet line 9L of the syngas switching outlet system 9 connected to the outlet 5b is opened.
  • the other side of the primary oxidant switching supply system 8 that is opened in the middle of the line 8L and connected to the flow passage 4b in the lower position of the other end side heat storage body 6b of the primary reforming furnace 4 is opened.
  • the primary oxidant opening / closing valve 8b provided in the middle of the primary oxidant supply line 8L is closed.
  • the syngas containing tar is preheated from the one end side introduction / outlet port 5a of the primary reforming furnace 4 through the one end side heat storage body 6a, and then is oxidatively reformed by blowing an oxidant. It flows through the path 4a, the communication path 4c, and the flow path 4b, passes through the other end side heat accumulator 6b, is guided to the secondary reforming furnace 10 from the other end side introduction / outlet port 5b, and passes through the secondary reforming furnace 10. Pumped downstream.
  • FIG. 1 After elapse of a predetermined time (several seconds to several tens of seconds) set in advance, in FIG. 1, a syngas switching introduction system 7 that leads to one end side introduction / outlet port 5a of the primary reforming furnace 4 by a switching control signal 7s from the controller 12 is shown.
  • the syngas introduction opening / closing valve 7b in the middle of the syngas supply line 7L of the syngas switching introduction system 7 is closed while the syngas introduction opening / closing valve 7a in the middle of the syngas supply line 7L is closed and leads to the other inlet / outlet port 5b of the primary reforming furnace 4. Opened.
  • the syngas outlet opening / closing valve 9a in the middle of the syngas outlet line 9L of the syngas switching outlet system 9 connected to the one end side inlet / outlet port 5a is opened by the switching control signal 9s from the controller 12, and the other end side inlet / outlet port 5b is opened.
  • the syngas derivation on-off valve 9b in the middle of the syngas derivation line 9L of the syngas switching derivation system 9 connected to is in a closed state.
  • the other side of the primary oxidant switching supply system 8 closed in the middle of the line 8L and connected to the flow passage 4b in the lower position of the other end side heat storage body 6b of the primary reforming furnace 4 is closed.
  • the primary oxidant on / off valve 8b provided in the middle of the primary oxidant supply line 8L is opened.
  • the syngas containing tar is preheated from the other end side introduction / outlet port 5b of the primary reforming furnace 4 through the other end side heat storage body 6b, and then is oxidized and reformed by blowing an oxidizing agent.
  • the flow passage 4b, the communication passage 4c, and the flow passage 4a pass through the one end side heat accumulator 6a, are led to the secondary reforming furnace 10 from the one end side introduction / outlet port 5a, and pass through the secondary reforming furnace 10. Pumped downstream.
  • the syngas switching introduction system 7, the syngas switching derivation system 9, and the primary oxidant switching supply system 8 are alternately switched at predetermined time intervals so that the syngas is preheated when passing through the one-end-side heat accumulator 6a.
  • the syngas is preheated when passing through the other end side heat accumulator 6b and passes through the one end side heat accumulator 6a.
  • the operation of heating the one end side heat storage element 6a is repeatedly performed, and the reforming of tar contained in the syngas is continuously performed.
  • the syngas containing unmodified tar at that timing is directly supplied from the one end side inlet / outlet port 5a to the one syngas outlet line 9L. It may be discharged, or may be discharged from the other end side introduction / outlet port 5b as it is to the other syngas outlet line 9L.
  • syngas containing unmodified tar at the switching timing is directly discharged from one end side introduction / outlet port 5a to one syngas lead line 9L.
  • the oxidant is only present when the syngas switching introduction system 7 and the syngas switching outlet system 9 are switched in the secondary reforming furnace 10. Since it is supplied, there is no fear that the unmodified tar is reformed and discharged downstream.
  • the syngas is introduced from the syngas supply line 7L of the syngas switching introduction system 7 in the axial direction of the primary reforming furnace 4, and the primary oxidant supply line 8 of the primary oxidant switching supply system 8 as shown in FIG. From 8L, the oxidant is supplied in the tangential direction of the virtual circle C1 with the axis of the primary reforming furnace 4 as the center. For this reason, with respect to the syngas introduced in the axial direction of the primary reforming furnace 4, the oxidant becomes a swirling flow to promote mixing, and tar contained in the syngas is more efficiently modified inside the primary reforming furnace 4. It becomes possible to quality.
  • the syngas is introduced from the syngas lead-out line 9L of the syngas switching lead-out system 9 in the axial direction of the secondary reforming furnace 10, and the secondary oxidant of the secondary oxidant supply system 11 as shown in FIG.
  • the oxidant is supplied from the supply line 11L in the tangential direction of the virtual circle C2 with the axis of the secondary reforming furnace 10 as the center. For this reason, even for the syngas introduced in the axial direction of the secondary reforming furnace 10, the oxidant becomes a swirling flow to promote mixing, and the syngas containing unreformed tar at the time of switching is subjected to the secondary reforming.
  • tar contained in the syngas can be more efficiently reformed inside the secondary reforming furnace 10.
  • tar reforming can be sufficiently performed with a simple structure, and discharge of syngas containing unmodified tar at the time of switching can be prevented.
  • the syngas is introduced from the syngas switching introduction system 7 in the axial direction of the primary reforming furnace 4, and the oxidant is supplied from the primary oxidant switching supply system 8 to the virtual circle C1 centering on the axis of the primary reforming furnace 4.
  • the oxidant is swirled into the syngas introduced in the axial direction of the primary reforming furnace 4 to promote mixing, and is contained in the syngas inside the primary reforming furnace 4. Tar can be more efficiently modified.
  • the syngas is introduced from the syngas switching and derivation system 9 in the axial direction of the secondary reforming furnace 10, and the oxidant from the secondary oxidant supply system 11 is hypothesized around the axis of the secondary reforming furnace 10. If it is configured to supply in the tangential direction of the circle C2, the oxidant is swirled into the syngas introduced in the axial direction of the secondary reforming furnace 10 to promote mixing, and unreformed at the time of switching.
  • the syngas containing tar is introduced into the secondary reforming furnace 10, the tar contained in the syngas can be reformed more efficiently inside the secondary reforming furnace 10.
  • FIGS. 5 to 9 show other embodiments of the tar reforming furnace of the present invention.
  • the same reference numerals as those in FIGS. Is the same as that shown in FIGS.
  • the syngas supplied from the syngas switching introduction system 7 to the one end introduction / extraction port 5a of the primary reforming furnace 4 and passed through the one end side heat accumulator 6a The primary reforming furnace 4 is supplied in the tangential direction of the flow passage 4a on one side having a circular cross section, and the oxidizing agent is supplied from the primary oxidant switching supply system 8 to the circular cross section of the primary reforming furnace 4. It is introduced in the axial direction of the flow passage 4a on the side.
  • the syngas supplied from the syngas switching introduction system 7 to the other end side introduction / outlet port 5b of the primary reforming furnace 4 and passed through the other end side heat storage body 6b is used as the circular cross section of the primary reforming furnace 4.
  • the oxidizing agent is introduced from the primary oxidant switching supply system 8 in the axial direction of the flow passage 4b on the other side having the circular cross section of the primary reforming furnace 4. I have to do it.
  • the one end side heat storage unit 14a filled with the one end side heat storage body 6a of the primary reforming furnace 4 is divided from the flow passage 4a of the primary reforming furnace 4, and the upper portion of the flow passage 4a is formed.
  • the upper end of the one end side heat storage unit 14a are connected by an inlet / outlet line 15a, and the inlet / outlet line 15a is arranged to extend in the tangential direction of the flow passage 4a on one side having a circular cross section.
  • the other end side heat storage unit 14b filled with the other end side heat storage body 6b of the primary reforming furnace 4 is divided from the flow passage 4b of the primary reforming furnace 4, and the upper portion of the flow passage 4b and the other
  • the upper part of the end-side heat storage unit 14b is connected by an introduction / extraction line 15b, and the introduction / extraction line 15b is arranged to extend in the tangential direction of the flow passage 4b on the other side having a circular cross section.
  • the syngas is supplied from the syngas lead-out line 9L of the syngas switching lead-out system 9 in the tangential direction of the secondary reforming furnace 10 having a circular cross section, and as shown in FIG.
  • the oxidant is introduced from the secondary oxidant supply line 11L of the agent supply system 11 in the axial direction of the secondary reforming furnace 10 having the circular cross section.
  • a plurality of primary oxidant supply nozzles 8N for introducing an oxidant into the flow passages 4a and 4b of the primary reforming furnace 4 are provided at the tip of the primary oxidant supply nozzle 8N.
  • a plurality of (for example, four) ejection holes 8h are formed, and the primary oxidant is blown into the flow passages 4a and 4b at a wide angle to further promote the mixing with the syngas.
  • the primary oxidant supply nozzle 8N may be provided with a plurality of nozzles each having one ejection hole 8h.
  • a plurality of ejection holes are formed at the tip of the secondary oxidant supply nozzle of the secondary oxidant supply system 11 in the same manner as described above, and the secondary oxidant is supplied as the secondary oxidant. Blowing into the reforming furnace 10 at a wide angle to further promote the mixing with the syngas, or arranging a plurality of nozzles with one ejection hole as the secondary oxidant supply nozzle.
  • the one end side heat storage unit 14a is provided with soot blowers 16a and 16a ′ for removing foreign substances such as soot adhering to the one end side heat storage body 6a, and the other end side heat storage unit 14b.
  • soot blowers 16b and 16b ′ are provided with soot blowers 16b and 16b ′ for removing foreign substances such as soot adhering to the other end side heat storage body 6b.
  • the soot blowers 16a and 16a ' are connected by branching an injection fluid line 17L to which an injection fluid such as an inert gas such as nitrogen or water vapor is introduced, and downstream of the branch point of the injection fluid line 17L in the injection fluid circulation direction.
  • jet fluid on / off valves 17a and 17a ′ which are alternately opened and closed by a switching control signal 17s from the controller 12, respectively.
  • the soot blowers 16b and 16b ′ are connected to a jetting fluid line 17L through which a jetting fluid such as an inert gas such as nitrogen or water vapor is led, and downstream from the branch point of the jetting fluid line 17L.
  • jet fluid on / off valves 17b and 17b ' which are alternately opened and closed by a switching control signal 17s from the controller 12, respectively.
  • a recovery valve 19a for opening and closing a pot 18a for recovering foreign matter such as soot dropped by the operation of the soot blowers 16a and 16 ' is provided.
  • a pot 18b for collecting foreign matter such as soot dropped by the operation of the soot blowers 16b and 16b ′ is connected to the bottom of the other end side heat storage unit 14b as needed, connected via the discharge pipe 20a. It is connected via a discharge pipe 20b provided with a recovery valve 19b to be opened and closed.
  • a connection end of the syngas supply line 7L to the one end side introduction / outlet port 5a of the one end side heat storage unit 14a is provided with a bend pipe 21a that opens downward inside the one end side introduction / outlet port 5a, and the one end side heat storage unit
  • a bend pipe 22a is provided at the connection end of the syngas lead-out line 9L with respect to the one-end side inlet / outlet port 5a of 14a.
  • the bend pipe 22a opens downward inside the one-end side inlet / outlet port 5a. It does not accumulate in the syngas lead-out line 9L.
  • a bend pipe 21b that opens downward inside the other end side introduction / outlet port 5b is provided.
  • the connecting end of the syngas lead-out line 9L with respect to the other-end-side inlet / outlet port 5b of the other-end-side heat storage unit 14b is provided with a bend pipe 22b that opens downward inside the other-end side inlet / outlet port 5b. This prevents foreign substances such as from accumulating in the syngas supply line 7L and the syngas lead-out line 9L.
  • the one end side heat storage body 6a is disposed inside the one end side heat storage unit 14a so as to be placed on the support member 23a, and the other end side heat storage unit 14b is placed on the support member 23b.
  • the other end side heat accumulator 6b is arranged in such a manner as to be placed.
  • the syngas containing tar generated in the gasifier 1 is dedusted by the dust removing device 2 and introduced into the tar reforming furnace 3.
  • the syngas introduction opening / closing valve 7a in the middle of the syngas supply line 7L of the syngas switching introduction system 7 leading to the one end side introduction / outlet port 5a of the one end side heat storage unit 14a is opened by the switching control signal 7s from the controller 12.
  • the syngas introduction opening / closing valve 7b in the middle of the syngas supply line 7L of the syngas switching introduction system 7 leading to the other end side introduction / outlet port 5b of the other end side heat storage unit 14b is closed.
  • the syngas derivation opening / closing valve 9a in the middle of the syngas derivation line 9L of the syngas switching derivation system 9 connected to the one end side introduction / derivation port 5a is closed by the switching control signal 9s from the controller 12 and the other end side is introduced.
  • the syngas outlet opening / closing valve 9b in the middle of the syngas outlet line 9L of the syngas switching outlet system 9 connected to the outlet 5b is opened.
  • a switching control signal 8s from the controller 12 is provided in the middle of one primary oxidant supply line 8L of the primary oxidant switching supply system 8 connected in the axial direction of the flow passage 4a of the primary reforming furnace 4.
  • the primary oxidant opening / closing valve 8a is opened and provided in the middle of the other primary oxidant supply line 8L of the primary oxidant switching supply system 8 connected in the axial direction of the flow passage 4b of the primary reforming furnace 4.
  • the primary oxidant on / off valve 8b is closed.
  • the syngas containing the tar passes through the one end side heat storage body 6a from the one end side introduction / outlet port 5a of the primary reforming furnace 4 and is preheated. Then, as shown in FIG. While being supplied in the tangential direction of the flow passage 4a on one side having a cross section, the oxidant is formed into the circular cross section of the primary reforming furnace 4 from the primary oxidant supply line 8L of the primary oxidant switching supply system 8. It is introduced in the axial direction of the flow passage 4a on the side of the side.
  • the syngas is swirled in the flow passage 4a on one side having a circular cross section of the primary reforming furnace 4, and the oxidizing gas is introduced into the swirl flow in the axial direction to promote mixing.
  • tar contained in the syngas can be more efficiently reformed inside the primary reforming furnace 4.
  • a plurality of (for example, four) ejection holes 8h are formed at the tip of the primary oxidant supply nozzle 8N of the primary oxidant switching supply system 8 as shown in FIGS. 8a and 8b. Therefore, the primary oxidant is blown into the flow passage 4a at a wide angle, and the mixing with the syngas is further promoted.
  • FIG. 8a and 8b a plurality of (for example, four) ejection holes 8h are formed at the tip of the primary oxidant supply nozzle 8N of the primary oxidant switching supply system 8 as shown in FIGS. 8a and 8b. Therefore, the primary oxidant is blown into the flow passage 4a at a wide angle, and the mixing with the
  • a syngas switching introduction system 7 which leads to one end side introduction / outlet port 5a of the primary reforming furnace 4 by a switching control signal 7s from the controller 12 in FIG.
  • the syngas introduction opening / closing valve 7b in the middle of the syngas supply line 7L of the syngas switching introduction system 7 is closed while the syngas introduction opening / closing valve 7a in the middle of the syngas supply line 7L is closed and leads to the other inlet / outlet port 5b of the primary reforming furnace 4. Opened.
  • the syngas outlet opening / closing valve 9a in the middle of the syngas outlet line 9L of the syngas switching outlet system 9 connected to the one end side inlet / outlet port 5a is opened by the switching control signal 9s from the controller 12, and the other end side inlet / outlet port 5b is opened.
  • the syngas derivation on-off valve 9b in the middle of the syngas derivation line 9L of the syngas switching derivation system 9 connected to is in a closed state.
  • a switching control signal 8s from the controller 12 is provided in the middle of one primary oxidant supply line 8L of the primary oxidant switching supply system 8 connected in the axial direction of the flow passage 4a of the primary reforming furnace 4.
  • the primary oxidant opening / closing valve 8a is closed and provided in the middle of the other primary oxidant supply line 8L of the primary oxidant switching supply system 8 connected in the axial direction of the flow passage 4b of the primary reforming furnace 4.
  • the primary oxidant on / off valve 8b is opened.
  • the syngas containing the tar passes through the other end side heat storage body 6b from the other end side introduction / outlet port 5b of the primary reforming furnace 4 and is preheated, and then, as shown in FIG. Is supplied in the tangential direction of the flow passage 4b on the other side having a circular cross section, and the oxidant is supplied from the primary oxidant supply line 8L of the primary oxidant switching supply system 8 to the circular cross section of the primary reforming furnace 4.
  • the flow passage 4b on the other side is introduced in the axial direction.
  • the syngas is swirled in the flow passage 4b on the other side having a circular cross section of the primary reforming furnace 4, and the oxidizing gas is introduced in the axial direction into the swirled syngas to promote mixing.
  • tar contained in the syngas can be more efficiently reformed inside the primary reforming furnace 4.
  • a plurality of (for example, four) ejection holes 8h are formed at the tip of the primary oxidant supply nozzle 8N of the primary oxidant switching supply system 8 as shown in FIGS. 8a and 8b. Therefore, the primary oxidant is blown into the flow passage 4b at a wide angle, and the mixing with the syngas is further promoted.
  • FIG. 8a and 8b a plurality of (for example, four) ejection holes 8h are formed at the tip of the primary oxidant supply nozzle 8N of the primary oxidant switching supply system 8 as shown in FIGS. 8a and 8b. Therefore, the primary oxidant is blown into the flow passage 4b at a wide angle, and
  • the syngas switching introduction system 7, the syngas switching derivation system 9, and the primary oxidant switching supply system 8 are alternately switched at predetermined time intervals so that the syngas is preheated when passing through the one-end-side heat accumulator 6a.
  • the syngas is preheated when passing through the other end side heat accumulator 6b and passes through the one end side heat accumulator 6a.
  • the operation of heating the one end side heat storage element 6a is repeatedly performed, and the reforming of tar contained in the syngas is continuously performed.
  • the syngas containing unmodified tar at that timing is directly supplied from the one end side inlet / outlet port 5a to the one syngas outlet line 9L. It may be discharged, or may be discharged from the other end side introduction / outlet port 5b as it is to the other syngas outlet line 9L.
  • the syngas is supplied from the syngas lead-out line 9L of the syngas switching lead-out system 9 in the tangential direction of the secondary reforming furnace 10 having a circular cross section as shown in FIG. 7, and as shown in FIG.
  • An oxidant is introduced from the secondary oxidant supply line 11L of the secondary oxidant supply system 11 in the axial direction of the secondary reforming furnace 10 having the circular cross section. Therefore, the syngas becomes a swirl flow in the secondary reforming furnace 10 having a circular cross section, and the oxidizing gas is introduced into the axial direction with respect to the syngas that has become the swirling flow to promote mixing, and the secondary reforming furnace
  • the tar contained in the syngas can be reformed more efficiently even in the interior of 10.
  • syngas containing unmodified tar at the switching timing is directly discharged from one end side introduction / outlet port 5a to one syngas lead line 9L.
  • the oxidant is only present when the syngas switching introduction system 7 and the syngas switching outlet system 9 are switched in the secondary reforming furnace 10. Since it is supplied, there is no fear that the unmodified tar is reformed and discharged downstream.
  • the syngas passes through the one-end-side heat storage element 6a from the one-end-side inlet / outlet port 5a and flows from the inlet / outlet line 15a through the one-side flow passage 4a.
  • injection is performed by the switching control signal 17s from the controller 12 in accordance with the flow direction of the syngas.
  • the fluid on / off valves 17a and 17b ′ are opened, and the jet fluid on / off valves 17a ′ and 17b are closed.
  • the jet fluid is sprayed from the soot blowers 16a and 16b ′ to the one end side heat storage body 6a and the other end side heat storage body 6b, and foreign matters such as soot adhered to the one end side heat storage body 6a and the other end side heat storage body 6b. Is removed.
  • the syngas passes through the other end side heat storage body 6b from the other end side introduction / outlet port 5b, flows from the introduction line 15b through the other side flow passage 4b, and from the flow passage 4b to the communication passage 4c,
  • a switching control signal 17s from the controller 12 is set in accordance with the flow direction of the syngas.
  • the jetting fluid on / off valves 17b and 17a ′ are opened, and the jetting fluid on / off valves 17b ′ and 17a are closed.
  • the jet fluid is sprayed from the soot blowers 16b and 16a 'to the other end side heat storage body 6b and the one end side heat storage body 6a, and foreign matters such as soot adhered to the other end side heat storage body 6b and one end side heat storage body 6a. Is removed. Thereby, clogging of the one end side heat storage body 6a and the other end side heat storage body 6b is prevented, and an increase in the pressure loss of the syngas passing through the one end side heat storage body 6a and the other end side heat storage body 6b is suppressed.
  • the connecting end of the syngas supply line 7L to the one end side introduction / outlet port 5a of the one end side heat storage unit 14a is provided with a bend pipe 21a that opens downward inside the one end side introduction / outlet port 5a.
  • the connecting end of the syngas lead-out line 9L with respect to the one end side introduction / outlet port 5a of the side heat storage unit 14a is provided with a bend pipe 22a that opens downward inside the one end side introduction / outlet port 5a.
  • the connecting end of the syngas supply line 7L with respect to the other end side introduction / outlet port 5b of the other end side heat storage unit 14b is provided with a bend pipe 21b that opens downward inside the other end side introduction / outlet port 5b.
  • a bend pipe 22b that opens downward inside the other end side introduction / outlet port 5b is provided. Therefore, there is no concern that foreign matter such as soot will accumulate in the syngas supply line 7L and the syngas outlet line 9L.
  • the syngas that has become high temperature due to mixing with the oxidant in the flow passage 4a flows through the communication passage 4c, the flow passage 4b, and the inlet / outlet line 15b and passes through the other end side heat accumulator 6b. After the heat is taken away by the side heat accumulator 6b, it flows into the other-end inlet / outlet port 5b, so that the support member 23b is prevented from being exposed to high-temperature syngas, and deterioration of the support member 23b is suppressed.
  • the syngas that has become high temperature due to mixing with the oxidant in the flow passage 4b flows through the communication passage 4c, the flow passage 4a, and the introduction / extraction line 15a, and passes through the one end side heat storage body 6a. After the body 6a is deprived of heat, it flows into the inlet / outlet port 5a on one end side, so that the support member 23a is avoided from being exposed to high-temperature syngas, and deterioration of the support member 23a is suppressed.
  • tar reforming can be sufficiently performed with a simple structure, and discharge of syngas containing unmodified tar at the time of switching can be prevented.
  • the syngas supplied from the syngas switching introduction system 7 to the one end side introduction / outlet port 5a of the primary reforming furnace 4 and passed through the one end side heat accumulator 6a is converted into the primary reforming furnace 4.
  • the flow passage 4a on one side having a circular cross section of the primary reforming furnace 4 is supplied in the tangential direction of the flow passage 4a on one side, and the oxidant is supplied from the primary oxidant switching supply system 8 to the circular cross section of the primary reforming furnace 4.
  • the syngas supplied from the syngas switching introduction system 7 to the other end side introduction / outlet port 5b of the primary reforming furnace 4 and passed through the other end side heat accumulator 6b is converted into the primary reforming furnace 4.
  • the configuration to be introduced in the axial direction of In preferred. That is, the syngas is swirled in the flow passage 4a on one side and the flow passage 4b on the other side, which have a circular cross section of the primary reforming furnace 4, and the oxidizer Is introduced in the axial direction to promote mixing, and tar contained in the syngas can be reformed more efficiently inside the primary reforming furnace 4.
  • the syngas is supplied from the syngas switching and derivation system 9 in the tangential direction of the secondary reforming furnace 10 having a circular cross section, and the oxidant is secondary reformed from the secondary oxidant supply system 11 having the circular cross section. It is preferable to introduce the furnace 10 in the axial direction in the following points. That is, the syngas becomes a swirl flow in the secondary reforming furnace 10 having a circular cross section, and the oxidizing gas is introduced into the axial direction in the syngas that has become the swirling flow to promote mixing. The tar contained in the syngas can be reformed more efficiently even inside.
  • the soot blowers 16a and 16a ′ and the soot blowers 16b and 16b ′ for removing the foreign matters attached to the one end side heat storage body 6a and the other end side heat storage body 6b are provided, the one end side heat storage body 6a and the other end side heat storage body.
  • the clogging of the body 6b can be prevented, and an increase in the pressure loss of the syngas passing through the one end side heat storage body 6a and the other end side heat storage body 6b can be suppressed.
  • the tar reforming furnace of the present invention is not limited to the above-described embodiment, and the soot blower shown in another embodiment may be provided in the primary reforming furnace of the embodiment shown in FIG. Of course, various modifications can be made without departing from the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 一次改質炉4の一端側蓄熱体6aと他端側蓄熱体6bのいずれか一方の側からシンガス切換導入系統7により流通路4a,4bにシンガスを切り換えて導入すると共に、シンガスに酸化剤を一次酸化剤切換供給系統8により切り換えて供給し、一次改質炉4からシンガス切換導出系統9により導出されるシンガスを二次改質炉10へ導き、二次改質炉10に、導入されるシンガスに対しシンガス切換導入系統7及びシンガス切換導出系統9の切換時にのみ酸化剤を供給する二次酸化剤供給系統11を接続する。

Description

タール改質炉
 本発明は、タール改質炉に関するものである。
 従来、燃料として、石炭、木質系バイオマス、廃プラスチック、或いは各種の含水廃棄物等の固体燃料を用い、ガス化ガス(COとHの混合ガスであるシンガス)を生成する燃料ガス化設備の開発が進められている。
 一般に、ガス化炉において低温(600~900℃)で前記固体燃料のガス化を行った場合、生成されるシンガス中にはタールが含まれており、該タールを含むシンガスは温度を下げていくとタールが凝縮する。このため、シンガスを化学合成原料や発電用燃料等に利用する際には、下流側の精製プロセスや化学合成プロセス、発電プロセスにおいて、タールによる配管閉塞や機器類のトラブル、タール付着による合成触媒の被毒等といった問題が引き起こされる。
 前記シンガス中に含まれるタール分を除去する技術としては、従来、酸化改質炉による高温でのタール改質がある。これは、ガス化炉において生成したシンガスを酸化改質炉へ導入し、該酸化改質炉において、前記シンガスに酸素や空気を付加して燃焼させることで温度を1000~1400℃程度に上げると同時にタール分を酸化改質・水蒸気改質させるという技術である。
 しかし、従来の一般的な酸化改質を用いたタール改質炉では、酸素購入費用、或いは純酸素の製造設備費用及び運転費用が嵩み、ガス化システム全体のコストアップ要因となっていた。
 こうした不具合を解消するタール改質炉の一般的技術水準を示すものとしては、例えば、特許文献1、2がある。
特許第3984535号公報 特開平11-51358号公報
 特許文献1に記載のタール改質炉は、酸化改質を用いたタール改質炉ではなく、昇温されるハニカム構造の蓄熱体においてタールを分解・除去しているが、蓄熱体を回転駆動する回転機構を有するため、構造が複雑になると共に、シンガスの高温部での滞留時間が短いため、充分にタール改質が行われない可能性が高くなっていた。又、回転体部におけるシンガスのリーク(漏れ)が懸念され、改質後のガス中にタール分が残る可能性があると考えられる。
 又、特許文献2に記載のタール改質炉では、一方の交番導入ダクトからタールを含む排ガスを高温の蓄熱体に流通させて予熱し、炉内で更に加熱燃焼させてタールを除去し、該タール除去後の排ガスにより他方の蓄熱体を加熱して他方の交番排出ダクトから排出し、以降、排ガスの流通を交互に切り換えることで再生式のタール改質炉を構成している。しかし、切り換えのタイミングで未改質のタールを含む排ガスが一方の交番導入ダクトからそのまま一方の交番排出ダクトへ排出されてしまう虞があった。
 本発明は、上記従来の問題点に鑑みてなしたもので、簡単な構造でタール改質を充分に行うことができ、且つ切換時における未改質のタールを含むシンガスの排出を防止し得るタール改質炉を提供しようとするものである。
 本発明は、内部にシンガスの流通路が形成される一次改質炉と、
  該一次改質炉の一端側導入・導出口に設けられる一端側蓄熱体と、
  前記一次改質炉の他端側導入・導出口に設けられる他端側蓄熱体と、
  前記一端側蓄熱体と他端側蓄熱体のいずれか一方の側から前記一次改質炉の流通路にシンガスを切り換えて導入するシンガス切換導入系統と、
  該シンガス切換導入系統にて前記一端側蓄熱体と他端側蓄熱体のいずれか一方の側から前記一次改質炉の流通路に導入されたシンガスに酸化剤を切り換えて供給する一次酸化剤切換供給系統と、
  該一次酸化剤切換供給系統にて酸化剤が供給された改質後のシンガスを前記一端側蓄熱体と他端側蓄熱体のいずれか他方の側から切り換えて導出するシンガス切換導出系統と、
  該シンガス切換導出系統にて一次改質炉から導出されるシンガスが導入される二次改質炉と、
  該二次改質炉に導入されるシンガスに対し前記シンガス切換導入系統及びシンガス切換導出系統の切換時にのみ酸化剤を供給する二次酸化剤供給系統と
  を備えたことを特徴とするタール改質炉にかかるものである。
 前記タール改質炉においては、前記シンガス切換導入系統からシンガスを一次改質炉の軸線方向へ導入すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の軸線を中心とする仮想円の接線方向へ供給するよう構成することが好ましい。
 又、前記タール改質炉においては、前記シンガス切換導出系統からシンガスを二次改質炉の軸線方向へ導入すると共に、前記二次酸化剤供給系統から酸化剤を二次改質炉の軸線を中心とする仮想円の接線方向へ供給するよう構成することが好ましい。
 一方、前記タール改質炉においては、前記シンガス切換導入系統から一次改質炉の一端側導入・導出口に供給されて一端側蓄熱体を通過したシンガスを、一次改質炉の円形断面とした一方の側の流通路の接線方向へ供給すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の前記円形断面とした一方の側の流通路の軸線方向へ導入し、
  前記シンガス切換導入系統から一次改質炉の他端側導入・導出口に供給されて他端側蓄熱体を通過したシンガスを、一次改質炉の円形断面とした他方の側の流通路の接線方向へ供給すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の前記円形断面とした他方の側の流通路の軸線方向へ導入するよう構成することが好ましい。
 又、前記タール改質炉においては、前記シンガス切換導出系統からシンガスを円形断面とした二次改質炉の接線方向へ供給すると共に、前記二次酸化剤供給系統から酸化剤を前記円形断面とした二次改質炉の軸線方向へ導入するよう構成することが好ましい。
 更に、前記タール改質炉においては、前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えることが好ましい。
 本発明のタール改質炉によれば、簡単な構造でタール改質を充分に行うことができ、且つ切換時における未改質のタールを含むシンガスの排出を防止し得るという優れた効果を奏し得る。
本発明のタール改質炉の実施例を示す概念図である。 本発明のタール改質炉の実施例における一次酸化剤切換供給系統を示す平面図である。 本発明のタール改質炉の実施例における二次酸化剤供給系統を示す平面図である。 本発明のタール改質炉が設けられるシステム全体の一例を示す概略図である。 本発明のタール改質炉の他の実施例を示す概念図である。 本発明のタール改質炉の他の実施例における一次改質炉の流通路に対するシンガスの供給方向を示す平面図である。 本発明のタール改質炉の他の実施例における二次改質炉に対するシンガスの供給方向を示す平面図である。 本発明のタール改質炉の他の実施例における一次酸化剤供給ノズルの先端部の断面図である。 本発明のタール改質炉の他の実施例における一次酸化剤供給ノズルの先端部の正面図である。 本発明のタール改質炉の他の実施例における一次酸化剤供給ノズルの噴射孔の数の違いによるタール濃度及び改質率の違いを示す図である。
 以下、本発明の実施の形態を添付図面を参照して説明する。
 図1~図4は本発明のタール改質炉の実施例であって、該タール改質炉が設けられるシステムは、例えば、図4に示す如く、固体燃料のガス化を行うガス化炉1と、該ガス化炉1で生成されたシンガスの除塵を行う除塵装置2と、該除塵装置2で除塵が行われたシンガスからタールを分解・除去するタール改質炉3とを備えている。このシステムでは、前記ガス化炉1において生成されたタールを含むシンガスを除塵装置2で除塵してタール改質炉3へ導入し、該タール改質炉3でタールを分解・除去し、該タールが分解・除去されたガスを図示していない前処理や精製処理を行った後、発電に利用したり、或いはメタン、ジメチルエーテル(DME)、メタノール等の合成ガス製品として利用したりするようになっている。
 前記タール改質炉3は、図1に示す如く、内部にシンガスの流通路4a,4b及び連通路4cが形成される断面U字形の一次改質炉4を配置し、該一次改質炉4の一端側導入・導出口5aに一端側蓄熱体6aを設け、前記一次改質炉4の他端側導入・導出口5bに他端側蓄熱体6bを設けてある。
 前記一次改質炉4の一端側導入・導出口5aと他端側導入・導出口5bには、前記一端側蓄熱体6aと他端側蓄熱体6bのいずれか一方の側から前記一次改質炉4の流通路4a,4bにシンガスを切り換えて導入するシンガス切換導入系統7を接続してある。
 前記一次改質炉4の流通路4a,4bには、前記シンガス切換導入系統7にて前記一端側蓄熱体6aと他端側蓄熱体6bのいずれか一方の側から前記一次改質炉4の流通路4a,4bに導入されたシンガスに酸化剤(酸素又は空気)を切り換えて供給する一次酸化剤切換供給系統8を接続してある。
 前記一次改質炉4の一端側導入・導出口5aと他端側導入・導出口5bには、前記一次酸化剤切換供給系統8にて酸化剤が供給された改質後のシンガスを前記一端側蓄熱体6aと他端側蓄熱体6bのいずれか他方の側から切り換えて導出するシンガス切換導出系統9を接続してある。
 前記シンガス切換導出系統9にて一次改質炉4から導出されるシンガスが導入される二次改質炉10を配置し、該二次改質炉10には、導入されるシンガスに対し前記シンガス切換導入系統7及びシンガス切換導出系統9の切換時にのみ酸化剤(酸素又は空気)を供給する二次酸化剤供給系統11を接続してある。
 前記シンガス切換導入系統7は、前記ガス化炉1から除塵装置2(図4参照)を経てシンガスが導かれるシンガス供給ライン7Lを分岐させて一次改質炉4の一端側導入・導出口5aと他端側導入・導出口5bに接続し、該シンガス供給ライン7Lの分岐点よりガス流通方向下流位置にそれぞれ、制御器12からの切換制御信号7sにより交互に開閉されるシンガス導入開閉弁7a,7bを設けてなる構成を有している。
 前記一次酸化剤切換供給系統8は、酸化剤が導かれる一次酸化剤供給ライン8Lを一次改質炉4の一端側蓄熱体6aの下方位置における流通路4aと他端側蓄熱体6bの下方位置における流通路4bとに接続し、該各一次酸化剤供給ライン8Lにそれぞれ、制御器12からの切換制御信号8sにより交互に開閉される一次酸化剤開閉弁8a,8bを設けてなる構成を有している。
 前記シンガス切換導出系統9は、前記一次改質炉4の一端側導入・導出口5aと他端側導入・導出口5bに接続したシンガス導出ライン9Lにそれぞれ、制御器12からの切換制御信号9sにより交互に開閉されるシンガス導出開閉弁9a,9bを設け、該シンガス導出ライン9Lを合流させて前記二次改質炉10に接続してなる構成を有している。
 前記二次酸化剤供給系統11は、酸化剤が導かれる二次酸化剤供給ライン11Lを二次改質炉10の上部に接続し、該二次酸化剤供給ライン11Lに、制御器12からの切換制御信号11sにより開閉される二次酸化剤開閉弁11aを設けてなる構成を有している。
 尚、前記二次改質炉10の下流側には、シンガスを誘引する通風機13を設けてある。又、シンガス導入前に一次改質炉4の内部を所定温度(およそ1100℃程度)まで昇温可能となるよう、前記一次改質炉4の一端側蓄熱体6aの下方位置における流通路4aと他端側蓄熱体6bの下方位置における流通路4b若しくは連通路4cには、都市ガス等を利用した予熱バーナ(図示せず)を設けてある。
 一方、前記シンガス切換導入系統7のシンガス供給ライン7Lからシンガスを一次改質炉4の軸線方向へ導入すると共に、図2に示す如く、前記一次酸化剤切換供給系統8の一次酸化剤供給ライン8Lから酸化剤を一次改質炉4の軸線を中心とする仮想円C1の接線方向へ供給するよう構成することが、シンガスに対する酸化剤の混合を促進する上で好ましい。尚、図2の例では、前記一次酸化剤供給ライン8Lを一次改質炉4の円周方向へ四本接続してあるが、該一次酸化剤供給ライン8Lの本数はこれに限定されるものではない。
 又、前記シンガス切換導出系統9のシンガス導出ライン9Lからシンガスを二次改質炉10の軸線方向へ導入すると共に、図3に示す如く、前記二次酸化剤供給系統11の二次酸化剤供給ライン11Lから酸化剤を二次改質炉10の軸線を中心とする仮想円C2の接線方向へ供給するよう構成することが、シンガスに対する酸化剤の混合を促進する上で好ましい。尚、図3の例では、前記二次酸化剤供給ライン11Lを二次改質炉10の円周方向へ四本接続してあるが、該二次酸化剤供給ライン11Lの本数はこれに限定されるものではない。
 次に、上記実施例の作用を説明する。
 図4に示す如く、前記ガス化炉1において生成されたタールを含むシンガスは除塵装置2で除塵されてタール改質炉3へ導入される。尚、タール改質炉3へのシンガス導入前には、都市ガス等を利用した予熱バーナ(図示せず)により、一次改質炉4の内部は所定温度(およそ1100℃程度)まで昇温させてある。
 図1においては、制御器12からの切換制御信号7sにより一次改質炉4の一端側導入・導出口5aへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7aが開かれ且つ一次改質炉4の他端側導入・導出口5bへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7bが閉じられている。この状態では、制御器12からの切換制御信号9sにより一端側導入・導出口5aに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9aは閉じられ且つ他端側導入・導出口5bに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9bは開かれている。このとき、制御器12からの切換制御信号8sにより、一次改質炉4の一端側蓄熱体6aの下方位置における流通路4aに接続された一次酸化剤切換供給系統8の一方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8aは開かれ且つ一次改質炉4の他端側蓄熱体6bの下方位置における流通路4bに接続された一次酸化剤切換供給系統8の他方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8bは閉じられている。
 この状態で、前記タールを含むシンガスは、一次改質炉4の一端側導入・導出口5aから一端側蓄熱体6aを通過し予熱された後、酸化剤が吹き付けられて酸化改質され、流通路4a、連通路4c、流通路4bを流れて他端側蓄熱体6bを通過し他端側導入・導出口5bから二次改質炉10へ導かれ、該二次改質炉10を経て下流側へ圧送される。
 予め設定された所定時間(数秒~数十秒)経過後、図1において、制御器12からの切換制御信号7sにより一次改質炉4の一端側導入・導出口5aへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7aが閉じられ且つ一次改質炉4の他端側導入・導出口5bへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7bが開かれた状態となる。制御器12からの切換制御信号9sにより一端側導入・導出口5aに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9aは開かれ且つ他端側導入・導出口5bに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9bは閉じられた状態となる。このとき、制御器12からの切換制御信号8sにより、一次改質炉4の一端側蓄熱体6aの下方位置における流通路4aに接続された一次酸化剤切換供給系統8の一方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8aは閉じられ且つ一次改質炉4の他端側蓄熱体6bの下方位置における流通路4bに接続された一次酸化剤切換供給系統8の他方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8bは開かれる。
 この状態では、前記タールを含むシンガスは、一次改質炉4の他端側導入・導出口5bから他端側蓄熱体6bを通過し予熱された後、酸化剤が吹き付けられて酸化改質され、流通路4b、連通路4c、流通路4aを流れて一端側蓄熱体6aを通過し一端側導入・導出口5aから二次改質炉10へ導かれ、該二次改質炉10を経て下流側へ圧送される。
 前述の如く、前記シンガス切換導入系統7とシンガス切換導出系統9と一次酸化剤切換供給系統8とを所定時間毎に交互に切り換えることにより、前記シンガスが一端側蓄熱体6aを通過する際に予熱されて他端側蓄熱体6bを通過する際に該他端側蓄熱体6bを加熱する作動と、前記シンガスが他端側蓄熱体6bを通過する際に予熱されて一端側蓄熱体6aを通過する際に該一端側蓄熱体6aを加熱する作動とが繰り返し行われ、シンガス中に含まれるタールの改質が連続的に行われる。
 ここで、前記シンガス切換導出系統9の各シンガス導出開閉弁9a,9bの切換時にはそのタイミングで未改質のタールを含むシンガスが、一端側導入・導出口5aからそのまま一方のシンガス導出ライン9Lへ排出されたり、或いは他端側導入・導出口5bからそのまま他方のシンガス導出ライン9Lへ排出されたりすることがある。
 しかし、前記シンガス切換導出系統9の各シンガス導出開閉弁9a,9bの切換時にはそのタイミングに合わせて、制御器12からの切換制御信号11sにより、二次改質炉10の上部に接続した二次酸化剤供給系統11の二次酸化剤供給ライン11L途中の二次酸化剤開閉弁11aが開かれ、酸化剤が二次改質炉10へ供給される。このため、二次改質炉10において未改質のタールは改質され、下流側へ排出されることが避けられる。
 この結果、特許文献1に記載のタール改質炉のように、蓄熱体を回転駆動する回転機構が必要ではなくなるため、構造が簡単になると共に、シンガスの高温部での滞留時間が長く取れるため、充分にタール改質を行うことが可能となる。
 又、特許文献2に記載のタール改質炉とは異なり、切り換えのタイミングで未改質のタールを含むシンガスが、一端側導入・導出口5aからそのまま一方のシンガス導出ライン9Lへ排出されたり、或いは他端側導入・導出口5bからそのまま他方のシンガス導出ライン9Lへ排出されたりしたとしても、二次改質炉10においてシンガス切換導入系統7及びシンガス切換導出系統9の切換時にのみ酸化剤が供給されるため、未改質のタールは改質され、下流側へ排出されてしまう心配もない。
 一方、前記シンガス切換導入系統7のシンガス供給ライン7Lからシンガスは一次改質炉4の軸線方向へ導入されると共に、図2に示す如く、前記一次酸化剤切換供給系統8の一次酸化剤供給ライン8Lから酸化剤は一次改質炉4の軸線を中心とする仮想円C1の接線方向へ供給される。このため、一次改質炉4の軸線方向へ導入されるシンガスに対し、酸化剤が旋回流となって混合が促進され、一次改質炉4の内部でシンガスに含まれるタールをより効率良く改質することが可能となる。
 又、前記シンガス切換導出系統9のシンガス導出ライン9Lからシンガスは二次改質炉10の軸線方向へ導入されると共に、図3に示す如く、前記二次酸化剤供給系統11の二次酸化剤供給ライン11Lから酸化剤は二次改質炉10の軸線を中心とする仮想円C2の接線方向へ供給される。このため、二次改質炉10の軸線方向へ導入されるシンガスに対しても、酸化剤が旋回流となって混合が促進され、切換時に未改質のタールを含むシンガスが二次改質炉10へ導入された場合、二次改質炉10の内部でシンガスに含まれるタールをより効率良く改質することが可能となる。
 こうして、簡単な構造でタール改質を充分に行うことができ、且つ切換時における未改質のタールを含むシンガスの排出を防止し得る。
 そして、前記シンガス切換導入系統7からシンガスを一次改質炉4の軸線方向へ導入すると共に、前記一次酸化剤切換供給系統8から酸化剤を一次改質炉4の軸線を中心とする仮想円C1の接線方向へ供給するよう構成すると、一次改質炉4の軸線方向へ導入されるシンガスに対し、酸化剤が旋回流となって混合が促進され、一次改質炉4の内部でシンガスに含まれるタールをより効率良く改質することができる。
 又、前記シンガス切換導出系統9からシンガスを二次改質炉10の軸線方向へ導入すると共に、前記二次酸化剤供給系統11から酸化剤を二次改質炉10の軸線を中心とする仮想円C2の接線方向へ供給するよう構成すると、二次改質炉10の軸線方向へ導入されるシンガスに対しても、酸化剤が旋回流となって混合が促進され、切換時に未改質のタールを含むシンガスが二次改質炉10へ導入された場合、二次改質炉10の内部でシンガスに含まれるタールをより効率良く改質することができる。
 図5~図9は本発明のタール改質炉の他の実施例であって、図中、図1~図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1~図4に示すものと同様である。
 他の実施例では、図5及び図6に示す如く、前記シンガス切換導入系統7から一次改質炉4の一端側導入・導出口5aに供給されて一端側蓄熱体6aを通過したシンガスを、一次改質炉4の円形断面とした一方の側の流通路4aの接線方向へ供給すると共に、前記一次酸化剤切換供給系統8から酸化剤を一次改質炉4の前記円形断面とした一方の側の流通路4aの軸線方向へ導入するようにしてある。同様に、前記シンガス切換導入系統7から一次改質炉4の他端側導入・導出口5bに供給されて他端側蓄熱体6bを通過したシンガスを、一次改質炉4の円形断面とした他方の側の流通路4bの接線方向へ供給すると共に、前記一次酸化剤切換供給系統8から酸化剤を一次改質炉4の前記円形断面とした他方の側の流通路4bの軸線方向へ導入するようにしてある。
 上記の構成とするために、前記一次改質炉4の一端側蓄熱体6aが充填される一端側蓄熱ユニット14aを、一次改質炉4の流通路4aから分割形成し、該流通路4a上部と前記一端側蓄熱ユニット14a上部とを導入出ライン15aによって接続し、該導入出ライン15aは、円形断面とした一方の側の流通路4aの接線方向へ延びるよう配設してある。同様に、前記一次改質炉4の他端側蓄熱体6bが充填される他端側蓄熱ユニット14bを、一次改質炉4の流通路4bから分割形成し、該流通路4b上部と前記他端側蓄熱ユニット14b上部とを導入出ライン15bによって接続し、該導入出ライン15bは、円形断面とした他方の側の流通路4bの接線方向へ延びるよう配設してある。
 又、図7に示す如く、前記シンガス切換導出系統9のシンガス導出ライン9Lからシンガスを円形断面とした二次改質炉10の接線方向へ供給すると共に、図5に示す如く、前記二次酸化剤供給系統11の二次酸化剤供給ライン11Lから酸化剤を前記円形断面とした二次改質炉10の軸線方向へ導入するようにしてある。
 前記一次改質炉4の流通路4a,4bへ酸化剤を導入するための一次酸化剤切換供給系統8の一次酸化剤供給ノズル8Nの先端部には、図8a及び図8bに示す如く、複数個(例えば、四個)の噴出孔8hを穿設し、一次酸化剤を流通路4a,4bへ広角に吹き込んでシンガスとの混合をより促進するようにしてある。尚、前記一次酸化剤供給ノズル8Nは、一個の噴出孔8hが穿設されたノズルを複数本配設するようにしても良い。又、図示していないが、前記二次酸化剤供給系統11の二次酸化剤供給ノズルの先端部に、前述と同様に、複数個の噴出孔を穿設し、二次酸化剤を二次改質炉10へ広角に吹き込んでシンガスとの混合をより促進するようにしたり、或いは前記二次酸化剤供給ノズルとして、一個の噴出孔が穿設されたノズルを複数本配設したりするようにしても良い。
 更に、前記一端側蓄熱ユニット14aには、図5に示す如く、前記一端側蓄熱体6aに付着した煤等の異物を除去するスートブロワ16a,16a'を配設し、前記他端側蓄熱ユニット14bには、前記他端側蓄熱体6bに付着した煤等の異物を除去するスートブロワ16b,16b'を配設してある。前記スートブロワ16a,16a'には、窒素等の不活性ガス或いは水蒸気といった噴射流体が導かれる噴射流体ライン17Lを分岐させて接続し、該噴射流体ライン17Lの分岐点より噴射流体流通方向下流位置にそれぞれ、制御器12からの切換制御信号17sにより交互に開閉される噴射流体開閉弁17a,17a'を設けてある。前記スートブロワ16b,16b'には、窒素等の不活性ガス或いは水蒸気といった噴射流体が導かれる噴射流体ライン17Lを分岐させて接続し、該噴射流体ライン17Lの分岐点より噴射流体流通方向下流位置にそれぞれ、制御器12からの切換制御信号17sにより交互に開閉される噴射流体開閉弁17b,17b'を設けてある。
 前記一端側蓄熱ユニット14aの底部には、前記スートブロワ16a,16'の作動によって落とされた煤等の異物を回収するためのポット18aを、必要に応じて開閉される回収弁19aが設けられた排出管20aを介して接続し、前記他端側蓄熱ユニット14bの底部には、前記スートブロワ16b,16b'の作動によって落とされた煤等の異物を回収するためのポット18bを、必要に応じて開閉される回収弁19bが設けられた排出管20bを介して接続してある。又、前記一次改質炉4の連通路4cの底部には、前記スートブロワ16a,16a'や前記スートブロワ16b,16b'の作動により流通路4a,4bへ流れ込んだ煤等の異物を回収するためのポット18を、必要に応じて開閉される回収弁19が設けられた排出管20を介して接続してある。
 前記一端側蓄熱ユニット14aの一端側導入・導出口5aに対するシンガス供給ライン7Lの接続端には、一端側導入・導出口5a内部で下向きに開口するベンド管21aを設けると共に、前記一端側蓄熱ユニット14aの一端側導入・導出口5aに対するシンガス導出ライン9Lの接続端には、一端側導入・導出口5a内部で下向きに開口するベンド管22aを設け、前記煤等の異物がシンガス供給ライン7Lやシンガス導出ライン9Lに蓄積しないようにしてある。同様に、前記他端側蓄熱ユニット14bの他端側導入・導出口5bに対するシンガス供給ライン7Lの接続端には、他端側導入・導出口5b内部で下向きに開口するベンド管21bを設けると共に、前記他端側蓄熱ユニット14bの他端側導入・導出口5bに対するシンガス導出ライン9Lの接続端には、他端側導入・導出口5b内部で下向きに開口するベンド管22bを設け、前記煤等の異物がシンガス供給ライン7Lやシンガス導出ライン9Lに蓄積しないようにしてある。
 前記一端側蓄熱ユニット14aの内部には、支持部材23a上に載置する形で前記一端側蓄熱体6aを配設し、前記他端側蓄熱ユニット14bの内部には、支持部材23b上に載置する形で前記他端側蓄熱体6bを配設するようにしてある。
 次に、上記他の実施例の作用を説明する。
 図4に示す如く、前記ガス化炉1において生成されたタールを含むシンガスは除塵装置2で除塵されてタール改質炉3へ導入される。
 図5においては、制御器12からの切換制御信号7sにより一端側蓄熱ユニット14aの一端側導入・導出口5aへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7aが開かれ且つ他端側蓄熱ユニット14bの他端側導入・導出口5bへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7bが閉じられている。この状態では、制御器12からの切換制御信号9sにより一端側導入・導出口5aに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9aは閉じられ且つ他端側導入・導出口5bに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9bは開かれている。このとき、制御器12からの切換制御信号8sにより、一次改質炉4の流通路4aの軸線方向に接続された一次酸化剤切換供給系統8の一方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8aは開かれ且つ一次改質炉4の流通路4bの軸線方向に接続された一次酸化剤切換供給系統8の他方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8bは閉じられている。
 この状態で、前記タールを含むシンガスは、一次改質炉4の一端側導入・導出口5aから一端側蓄熱体6aを通過し予熱された後、図6に示す如く、導入出ライン15aから円形断面とした一方の側の流通路4aの接線方向へ供給されると共に、前記一次酸化剤切換供給系統8の一次酸化剤供給ライン8Lから酸化剤が一次改質炉4の前記円形断面とした一方の側の流通路4aの軸線方向へ導入される。このため、一次改質炉4の円形断面とした一方の側の流通路4a内でシンガスが旋回流となり、該旋回流となったシンガスに対し、酸化剤が軸線方向へ導入されて混合が促進され、一次改質炉4の内部でシンガスに含まれるタールをより効率良く改質することが可能となる。しかも、前記一次酸化剤切換供給系統8の一次酸化剤供給ノズル8Nの先端部には、図8a及び図8bに示す如く、複数個(例えば、四個)の噴出孔8hが穿設されているため、一次酸化剤は流通路4aへ広角に吹き込まれてシンガスとの混合がより促進される。因みに、図9に示す如く、一次酸化剤供給ノズル8Nの噴出孔8hの数を四個とした場合、一個の場合より重質タール濃度と軽質タール濃度がいずれも低くなると共に、改質率が向上することが実験によって確認されている。酸化剤が吹き付けられて酸化改質されたシンガスは、流通路4aから、連通路4c、流通路4b、導入出ライン15bを流れて他端側蓄熱体6bを通過し他端側導入・導出口5bから二次改質炉10へ導かれ、該二次改質炉10を経て下流側へ圧送される。
 予め設定された所定時間(数秒~数十秒)経過後、図5において、制御器12からの切換制御信号7sにより一次改質炉4の一端側導入・導出口5aへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7aが閉じられ且つ一次改質炉4の他端側導入・導出口5bへ通じるシンガス切換導入系統7のシンガス供給ライン7L途中のシンガス導入開閉弁7bが開かれた状態となる。制御器12からの切換制御信号9sにより一端側導入・導出口5aに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9aは開かれ且つ他端側導入・導出口5bに接続されるシンガス切換導出系統9のシンガス導出ライン9L途中のシンガス導出開閉弁9bは閉じられた状態となる。このとき、制御器12からの切換制御信号8sにより、一次改質炉4の流通路4aの軸線方向に接続された一次酸化剤切換供給系統8の一方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8aは閉じられ且つ一次改質炉4の流通路4bの軸線方向に接続された一次酸化剤切換供給系統8の他方の一次酸化剤供給ライン8L途中に設けられている一次酸化剤開閉弁8bは開かれる。
 この状態では、前記タールを含むシンガスは、一次改質炉4の他端側導入・導出口5bから他端側蓄熱体6bを通過し予熱された後、図6に示す如く、導入出ライン15bから円形断面とした他方の側の流通路4bの接線方向へ供給されると共に、前記一次酸化剤切換供給系統8の一次酸化剤供給ライン8Lから酸化剤が一次改質炉4の前記円形断面とした他方の側の流通路4bの軸線方向へ導入される。このため、一次改質炉4の円形断面とした他方の側の流通路4b内でシンガスが旋回流となり、該旋回流となったシンガスに対し、酸化剤が軸線方向へ導入されて混合が促進され、一次改質炉4の内部でシンガスに含まれるタールをより効率良く改質することが可能となる。しかも、前記一次酸化剤切換供給系統8の一次酸化剤供給ノズル8Nの先端部には、図8a及び図8bに示す如く、複数個(例えば、四個)の噴出孔8hが穿設されているため、一次酸化剤は流通路4bへ広角に吹き込まれてシンガスとの混合がより促進される。因みに、図9に示す如く、一次酸化剤供給ノズル8Nの噴出孔8hの数を四個とした場合、一個の場合より重質タール濃度と軽質タール濃度がいずれも低くなると共に、改質率が向上する。このことが実験によって確認されていることは前述した通りである。酸化剤が吹き付けられて酸化改質されたシンガスは、流通路4bから、連通路4c、流通路4a、導入出ライン15aを流れて一端側蓄熱体6aを通過し一端側導入・導出口5aから二次改質炉10へ導かれ、該二次改質炉10を経て下流側へ圧送される。
 前述の如く、前記シンガス切換導入系統7とシンガス切換導出系統9と一次酸化剤切換供給系統8とを所定時間毎に交互に切り換えることにより、前記シンガスが一端側蓄熱体6aを通過する際に予熱されて他端側蓄熱体6bを通過する際に該他端側蓄熱体6bを加熱する作動と、前記シンガスが他端側蓄熱体6bを通過する際に予熱されて一端側蓄熱体6aを通過する際に該一端側蓄熱体6aを加熱する作動とが繰り返し行われ、シンガス中に含まれるタールの改質が連続的に行われる。
 ここで、前記シンガス切換導出系統9の各シンガス導出開閉弁9a,9bの切換時にはそのタイミングで未改質のタールを含むシンガスが、一端側導入・導出口5aからそのまま一方のシンガス導出ライン9Lへ排出されたり、或いは他端側導入・導出口5bからそのまま他方のシンガス導出ライン9Lへ排出されたりすることがある。
 しかし、前記シンガス切換導出系統9の各シンガス導出開閉弁9a,9bの切換時にはそのタイミングに合わせて、制御器12からの切換制御信号11sにより、二次改質炉10の上部に接続した二次酸化剤供給系統11の二次酸化剤供給ライン11L途中の二次酸化剤開閉弁11aが開かれ、酸化剤が二次改質炉10へ供給される。このため、二次改質炉10において未改質のタールは改質され、下流側へ排出されることが避けられる。しかも、前記シンガスは、図7に示す如く、前記シンガス切換導出系統9のシンガス導出ライン9Lから円形断面とした二次改質炉10の接線方向へ供給されると共に、図5に示す如く、前記二次酸化剤供給系統11の二次酸化剤供給ライン11Lから酸化剤が前記円形断面とした二次改質炉10の軸線方向へ導入される。このため、円形断面とした二次改質炉10内でシンガスが旋回流となり、該旋回流となったシンガスに対し、酸化剤が軸線方向へ導入されて混合が促進され、二次改質炉10の内部でもシンガスに含まれるタールをより効率良く改質することが可能となる。
 この結果、図1~図4に示す実施例と同様、図5~図9に示す他の実施例においても、特許文献1に記載のタール改質炉のように、蓄熱体を回転駆動する回転機構が必要ではなくなるため、構造が簡単になると共に、シンガスの高温部での滞留時間が長く取れるため、充分にタール改質を行うことが可能となる。
 又、特許文献2に記載のタール改質炉とは異なり、切り換えのタイミングで未改質のタールを含むシンガスが、一端側導入・導出口5aからそのまま一方のシンガス導出ライン9Lへ排出されたり、或いは他端側導入・導出口5bからそのまま他方のシンガス導出ライン9Lへ排出されたりしたとしても、二次改質炉10においてシンガス切換導入系統7及びシンガス切換導出系統9の切換時にのみ酸化剤が供給されるため、未改質のタールは改質され、下流側へ排出されてしまう心配もない。
 更に、前記シンガスが一端側導入・導出口5aから一端側蓄熱体6aを通過し、導入出ライン15aから一方の側の流通路4aを流れ、該流通路4aから、連通路4c、流通路4b、導入出ライン15bを流れて他端側蓄熱体6bを通過し他端側導入・導出口5bへ導かれる際、前記シンガスの流通方向に合わせて、制御器12からの切換制御信号17sにより噴射流体開閉弁17a,17b'が開かれ、噴射流体開閉弁17a',17bが閉じられる。これにより、スートブロワ16a,16b'から噴射流体が一端側蓄熱体6aと他端側蓄熱体6bとに吹き付けられ、該一端側蓄熱体6aと他端側蓄熱体6bとに付着した煤等の異物が除去される。逆に、前記シンガスが他端側導入・導出口5bから他端側蓄熱体6bを通過し、導入出ライン15bから他方の側の流通路4bを流れ、該流通路4bから、連通路4c、流通路4a、導入出ライン15aを流れて一端側蓄熱体6aを通過し一端側導入・導出口5aへ導かれる際、前記シンガスの流通方向に合わせて、制御器12からの切換制御信号17sにより噴射流体開閉弁17b,17a'が開かれ、噴射流体開閉弁17b',17aが閉じられる。これにより、スートブロワ16b,16a'から噴射流体が他端側蓄熱体6bと一端側蓄熱体6aとに吹き付けられ、該他端側蓄熱体6bと一端側蓄熱体6aとに付着した煤等の異物が除去される。これにより、一端側蓄熱体6aと他端側蓄熱体6bの詰りが防止され、該一端側蓄熱体6aと他端側蓄熱体6bを通過するシンガスの圧力損失の上昇が抑制される。
 前記スートブロワ16a,16a'及びスートブロワ16b,16b'の作動によって落とされた煤等の異物は、回収弁19a,19bが必要に応じて開かれることにより、排出管20a,20bを介してポット18a,18bに回収される。又、流通路4a,4bへ流れ込んだ煤等の異物は、回収弁19が必要に応じて開かれることにより、排出管20を介してポット18に回収される。
 ここで、前記一端側蓄熱ユニット14aの一端側導入・導出口5aに対するシンガス供給ライン7Lの接続端には、一端側導入・導出口5a内部で下向きに開口するベンド管21aが設けられ、前記一端側蓄熱ユニット14aの一端側導入・導出口5aに対するシンガス導出ライン9Lの接続端には、一端側導入・導出口5a内部で下向きに開口するベンド管22aが設けられているため、前記煤等の異物がシンガス供給ライン7Lやシンガス導出ライン9Lに蓄積する心配はない。同様に、前記他端側蓄熱ユニット14bの他端側導入・導出口5bに対するシンガス供給ライン7Lの接続端には、他端側導入・導出口5b内部で下向きに開口するベンド管21bが設けられ、前記他端側蓄熱ユニット14bの他端側導入・導出口5bに対するシンガス導出ライン9Lの接続端には、他端側導入・導出口5b内部で下向きに開口するベンド管22bが設けられているため、前記煤等の異物がシンガス供給ライン7Lやシンガス導出ライン9Lに蓄積する心配はない。
 一方、前記流通路4a内での酸化剤との混合によって高温となったシンガスは、連通路4c、流通路4b、導入出ライン15bを流れて他端側蓄熱体6bを通過し、該他端側蓄熱体6bに熱を奪われた後、他端側導入・導出口5bに流入するため、支持部材23bが高温のシンガスに晒されることが避けられ、該支持部材23bの劣化が抑えられる。又、前記流通路4b内での酸化剤との混合によって高温となったシンガスは、連通路4c、流通路4a、導入出ライン15aを流れて一端側蓄熱体6aを通過し、該一端側蓄熱体6aに熱を奪われた後、一端側導入・導出口5aに流入するため、支持部材23aが高温のシンガスに晒されることが避けられ、該支持部材23aの劣化が抑えられる。
 こうして、図5~図9に示す他の実施例においても、簡単な構造でタール改質を充分に行うことができ、且つ切換時における未改質のタールを含むシンガスの排出を防止し得る。
 そして、他の実施例のように、前記シンガス切換導入系統7から一次改質炉4の一端側導入・導出口5aに供給されて一端側蓄熱体6aを通過したシンガスを、一次改質炉4の円形断面とした一方の側の流通路4aの接線方向へ供給すると共に、前記一次酸化剤切換供給系統8から酸化剤を一次改質炉4の前記円形断面とした一方の側の流通路4aの軸線方向へ導入し、前記シンガス切換導入系統7から一次改質炉4の他端側導入・導出口5bに供給されて該他端側蓄熱体6bを通過したシンガスを、一次改質炉4の円形断面とした他方の側の流通路4bの接線方向へ供給すると共に、前記一次酸化剤切換供給系統8から酸化剤を一次改質炉4の前記円形断面とした他方の側の流通路4bの軸線方向へ導入するよう構成することは、以下の点で好ましい。即ち、一次改質炉4の円形断面とした一方の側の流通路4a内、並びに他方の側の流通路4b内でそれぞれシンガスが旋回流となり、該旋回流となったシンガスに対し、酸化剤が軸線方向へ導入されて混合が促進され、一次改質炉4の内部でシンガスに含まれるタールをより効率良く改質することができる。
 又、前記シンガス切換導出系統9からシンガスを円形断面とした二次改質炉10の接線方向へ供給すると共に、前記二次酸化剤供給系統11から酸化剤を前記円形断面とした二次改質炉10の軸線方向へ導入するよう構成することは、以下の点で好ましい。即ち、円形断面とした二次改質炉10内でシンガスが旋回流となり、該旋回流となったシンガスに対し、酸化剤が軸線方向へ導入されて混合が促進され、二次改質炉10の内部でもシンガスに含まれるタールをより効率良く改質することができる。
 更に又、前記一端側蓄熱体6aと該他端側蓄熱体6bとに付着した異物を除去するスートブロワ16a,16a'とスートブロワ16b,16b'を備えると、一端側蓄熱体6aと他端側蓄熱体6bの詰りを防止でき、該一端側蓄熱体6aと他端側蓄熱体6bを通過するシンガスの圧力損失の上昇を抑制できる。
 尚、本発明のタール改質炉は、上述の実施例にのみ限定されるものではなく、他の実施例に示したスートブロワを図1に示す実施例の一次改質炉に設けても良いこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
  3   タール改質炉
  4   一次改質炉
  4a  流通路
  4b  流通路
  5a  一端側導入・導出口
  5b  他端側導入・導出口
  6a  一端側蓄熱体
  6b  他端側蓄熱体
  7   シンガス切換導入系統
  8   一次酸化剤切換供給系統
  9   シンガス切換導出系統
 10   二次改質炉
 11   二次酸化剤供給系統
 12   制御器
 16a    スートブロワ
 16a'  スートブロワ
 16b    スートブロワ
 16b'  スートブロワ
 C1   仮想円
 C2   仮想円

Claims (10)

  1.  内部にシンガスの流通路が形成される一次改質炉と、
      該一次改質炉の一端側導入・導出口に設けられる一端側蓄熱体と、
      前記一次改質炉の他端側導入・導出口に設けられる他端側蓄熱体と、
      前記一端側蓄熱体と他端側蓄熱体のいずれか一方の側から前記一次改質炉の流通路にシンガスを切り換えて導入するシンガス切換導入系統と、
      該シンガス切換導入系統にて前記一端側蓄熱体と他端側蓄熱体のいずれか一方の側から前記一次改質炉の流通路に導入されたシンガスに酸化剤を切り換えて供給する一次酸化剤切換供給系統と、
      該一次酸化剤切換供給系統にて酸化剤が供給された改質後のシンガスを前記一端側蓄熱体と他端側蓄熱体のいずれか他方の側から切り換えて導出するシンガス切換導出系統と、
      該シンガス切換導出系統にて一次改質炉から導出されるシンガスが導入される二次改質炉と、
      該二次改質炉に導入されるシンガスに対し前記シンガス切換導入系統及びシンガス切換導出系統の切換時にのみ酸化剤を供給する二次酸化剤供給系統と
      を備えたことを特徴とするタール改質炉。
  2.  前記シンガス切換導入系統からシンガスを一次改質炉の軸線方向へ導入すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の軸線を中心とする仮想円の接線方向へ供給するよう構成した請求項1記載のタール改質炉。
  3.  前記シンガス切換導出系統からシンガスを二次改質炉の軸線方向へ導入すると共に、前記二次酸化剤供給系統から酸化剤を二次改質炉の軸線を中心とする仮想円の接線方向へ供給するよう構成した請求項1又は2記載のタール改質炉。
  4.  前記シンガス切換導入系統から一次改質炉の一端側導入・導出口に供給されて一端側蓄熱体を通過したシンガスを、一次改質炉の円形断面とした一方の側の流通路の接線方向へ供給すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の前記円形断面とした一方の側の流通路の軸線方向へ導入し、
      前記シンガス切換導入系統から一次改質炉の他端側導入・導出口に供給されて他端側蓄熱体を通過したシンガスを、一次改質炉の円形断面とした他方の側の流通路の接線方向へ供給すると共に、前記一次酸化剤切換供給系統から酸化剤を一次改質炉の前記円形断面とした他方の側の流通路の軸線方向へ導入するよう構成した請求項1記載のタール改質炉。
  5.  前記シンガス切換導出系統からシンガスを円形断面とした二次改質炉の接線方向へ供給すると共に、前記二次酸化剤供給系統から酸化剤を前記円形断面とした二次改質炉の軸線方向へ導入するよう構成した請求項1又は4記載のタール改質炉。
  6.  前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えた請求項1記載のタール改質炉。
  7.  前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えた請求項2記載のタール改質炉。
  8.  前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えた請求項3記載のタール改質炉。
  9.  前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えた請求項4記載のタール改質炉。
  10.  前記一端側蓄熱体と他端側蓄熱体とに付着した異物を除去するスートブロワを備えた請求項5記載のタール改質炉。
PCT/JP2014/081762 2013-12-13 2014-12-01 タール改質炉 WO2015087733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2014362662A AU2014362662B2 (en) 2013-12-13 2014-12-01 Tar reforming furnace
EP14869814.5A EP3081624A4 (en) 2013-12-13 2014-12-01 Tar reforming furnace
CN201480067844.6A CN105814175B (zh) 2013-12-13 2014-12-01 焦油改性炉
US15/177,821 US10640375B2 (en) 2013-12-13 2016-06-09 Tar reforming furnace

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-257657 2013-12-13
JP2013257657 2013-12-13
JP2014-128780 2014-06-24
JP2014128780A JP6369161B2 (ja) 2013-12-13 2014-06-24 タール改質炉

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/177,821 Continuation US10640375B2 (en) 2013-12-13 2016-06-09 Tar reforming furnace

Publications (1)

Publication Number Publication Date
WO2015087733A1 true WO2015087733A1 (ja) 2015-06-18

Family

ID=53371042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081762 WO2015087733A1 (ja) 2013-12-13 2014-12-01 タール改質炉

Country Status (6)

Country Link
US (1) US10640375B2 (ja)
EP (1) EP3081624A4 (ja)
JP (1) JP6369161B2 (ja)
CN (1) CN105814175B (ja)
AU (1) AU2014362662B2 (ja)
WO (1) WO2015087733A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151358A (ja) 1997-07-31 1999-02-26 Trinity Ind Corp 蓄熱型排ガス処理装置
JPH11223482A (ja) * 1998-02-05 1999-08-17 Nippon Furnace Kogyo Kaisha Ltd 熱交換システム及び熱交換方法
JP2005060533A (ja) * 2003-08-12 2005-03-10 Chugai Ro Co Ltd バイオマスガス化システムの燃料ガス改質装置
JP2007099927A (ja) * 2005-10-05 2007-04-19 Takuma Co Ltd タール分解システムとタール分解方法
JP3984535B2 (ja) 2002-11-19 2007-10-03 株式会社プランテック ガス化された固形燃料の改質装置及びその改質方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044859A (en) * 1960-06-16 1962-07-17 Phillips Petroleum Co Conversion of oil shale to carbon black
US4311456A (en) * 1980-07-18 1982-01-19 Bricmont & Associates, Inc. Blast furnace stove
US4658736A (en) * 1986-03-27 1987-04-21 Walter Herman K Incineration of combustible waste materials
US5402739A (en) * 1993-10-27 1995-04-04 Abboud; Harry I. Closed loop incineration process
CN1188872A (zh) * 1996-04-04 1998-07-29 丰田自动车株式会社 双端式辐射管燃烧器系统
TW359743B (en) * 1997-01-06 1999-06-01 Nippon Furnace Kogyo Kk Apparatus and method for heating a gaseous fluid flow, method for preheating a gaseous fluid flow
DE19754802B4 (de) * 1997-12-10 2008-04-03 Sasol-Lurgi Technology Company (Pty) Ltd Verfahren zum thermischen Behandeln eines aus der Vergasung kohlenstoffhaltiger Materialien kommenden Gasgemisches
JP4037599B2 (ja) 1999-09-20 2008-01-23 独立行政法人科学技術振興機構 固体又は液体燃料のガス化装置及びガス化方法
TWI241392B (en) * 1999-09-20 2005-10-11 Japan Science & Tech Agency Apparatus and method for gasifying solid or liquid fuel
DE10149060A1 (de) 2001-10-05 2003-04-30 Daimler Chrysler Ag Verfahren zur Reformierung flüssiger Kohlenwasserstoffgemische
CA2456335A1 (en) * 2002-04-12 2003-10-23 Ebara Corporation Slagging combustion furnace and gasification and slagging combustion system
JP2004099702A (ja) 2002-09-06 2004-04-02 Toshiba Corp 被処理物処理システム
US7294314B2 (en) * 2003-09-08 2007-11-13 Graham Robert G Heat exchangers with novel ball joints and assemblies and processes using such heat exchangers
JP2006131727A (ja) * 2004-11-05 2006-05-25 Eko Engineering Kk バイオマスを用いた自動車燃料の製造
CN100464121C (zh) * 2006-11-24 2009-02-25 华南理工大学 污泥高温空气焚烧方法与装置
CN101845328B (zh) * 2010-05-24 2013-08-28 中国科学院广州能源研究所 一种生物质复合气化装置
JP5196286B1 (ja) * 2011-08-29 2013-05-15 新東工業株式会社 蓄熱式排ガス浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151358A (ja) 1997-07-31 1999-02-26 Trinity Ind Corp 蓄熱型排ガス処理装置
JPH11223482A (ja) * 1998-02-05 1999-08-17 Nippon Furnace Kogyo Kaisha Ltd 熱交換システム及び熱交換方法
JP3984535B2 (ja) 2002-11-19 2007-10-03 株式会社プランテック ガス化された固形燃料の改質装置及びその改質方法
JP2005060533A (ja) * 2003-08-12 2005-03-10 Chugai Ro Co Ltd バイオマスガス化システムの燃料ガス改質装置
JP2007099927A (ja) * 2005-10-05 2007-04-19 Takuma Co Ltd タール分解システムとタール分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081624A4

Also Published As

Publication number Publication date
CN105814175B (zh) 2019-02-15
US10640375B2 (en) 2020-05-05
EP3081624A4 (en) 2017-09-06
EP3081624A1 (en) 2016-10-19
AU2014362662A1 (en) 2016-06-30
AU2014362662B2 (en) 2017-02-02
US20160289067A1 (en) 2016-10-06
CN105814175A (zh) 2016-07-27
JP6369161B2 (ja) 2018-08-08
JP2015131936A (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
DK2883940T3 (en) Process and apparatus for biomass gasification by recirculation of the carbon dioxide without oxygen
SK281101B6 (sk) Spôsob čiastočnej oxidácie uhľovodíkového paliva
US10287643B2 (en) Blast furnace and method for operating a blast furnace
CN102612549A (zh) 高能发电厂燃料以及co或co2封存方法
KR20020020931A (ko) 가연물의 가스화에 의한 수소제조방법과 장치 및연료전지발전방법과 연료전지발전시스템
EP1252092A1 (en) Integration of shift reactors and hydrotreaters
US10927008B2 (en) Method and device for upgrading of biogas and hydrogen production from anaerobic fermentation of biological material
EP2671023A1 (en) A process and a system for the gasification and/or combustion of biomass and/or coal with an at least partial carbon dioxide separation
US8227120B2 (en) Volatile organic compound abatement with fuel cell power plant
WO2015087733A1 (ja) タール改質炉
US20170320728A1 (en) A process for the elimination of volatile organic compounds and hazardous air pollutants in ammonia plants
WO2015160609A1 (en) Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (igcc)
ES2832742T3 (es) Proceso y sistema para la regeneración de un catalizador de reformador de alquitrán
KR101067419B1 (ko) 합성가스 전환장치 및 방법
CN110218583A (zh) 一种采用脱硫后变换工艺的整体煤气化燃料电池发电系统及方法
CN112680249B (zh) 有机固废加压气化系统和方法
JP2020055946A (ja) ガス化ガス製造装置、および、ガス化ガスの製造方法
CN106635165A (zh) 含碳原料气化制清洁合成气的方法和装置
JP2018095717A (ja) 二塔式ガス化設備の排水処理装置及び二塔式ガス化設備
CN209210727U (zh) 一种高温空气水蒸气气化系统
JP2020055947A (ja) ガス化ガス製造装置、および、ガス化ガスの製造方法
JP2019196452A (ja) 改質炉およびそれを用いたガス化システム
JP7086675B2 (ja) ガス化炉システム
WO2021010314A1 (ja) ガス化システム
CN107010596A (zh) 一种纯氢纯氧高温电池系统的氢气提纯模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201603726

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014869814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869814

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014362662

Country of ref document: AU

Date of ref document: 20141201

Kind code of ref document: A