WO2015087621A1 - タッチセンサ制御装置 - Google Patents

タッチセンサ制御装置 Download PDF

Info

Publication number
WO2015087621A1
WO2015087621A1 PCT/JP2014/077933 JP2014077933W WO2015087621A1 WO 2015087621 A1 WO2015087621 A1 WO 2015087621A1 JP 2014077933 W JP2014077933 W JP 2014077933W WO 2015087621 A1 WO2015087621 A1 WO 2015087621A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
calibration
data
touch sensor
unit
Prior art date
Application number
PCT/JP2014/077933
Other languages
English (en)
French (fr)
Inventor
澤幡 純一
石川 卓
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/035,286 priority Critical patent/US9710108B2/en
Priority to JP2015552358A priority patent/JP6013623B2/ja
Publication of WO2015087621A1 publication Critical patent/WO2015087621A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a touch sensor control device, a touch panel system including the same, and the like.
  • touch panel systems that accept user instructions by detecting the position of an indicator that touches or approaches the detection surface of the touch panel (for example, the user's finger or stylus pen, the same applies hereinafter) Increasingly, it is mounted on electronic information equipment.
  • projection capacitive touch panels capable of multi-touch are increasingly mounted on electronic information devices.
  • an indicator that is in contact with or close to the detection surface is detected based on a processing result of a signal generated by the touch panel.
  • the signal generated by the touch panel is affected by various influences such as non-uniformity in the structure of the touch panel, dirt attached to the detection surface, or aging deterioration. Therefore, when the indicator is detected by directly using the processing result of the signal generated by the touch panel, the detection sensitivity of the indicator in the detection surface becomes non-uniform.
  • the indicator when the detection sensitivity of the indicator in the detection surface becomes non-uniform, for example, the indicator is likely to be detected at a certain position in the detection surface, but it is difficult to detect the indicator at other positions. obtain.
  • non-instruction state a state where there is no indicator in contact with or close to the detection surface
  • the distribution of the capacitance value of the touch panel changes due to a temperature change or a change with time, it is preferable that calibration is performed periodically at the time of power-on in addition to during the manufacture.
  • Patent Document 1 describes that when the human sensor detects the presence of an approaching object during automatic calibration, the automatic calibration of the touch panel is stopped. This prevents incorrect calibration from being performed.
  • JP 2012-118850 A (published on June 21, 2012)
  • Patent Document 1 if a person approaches the touch panel for a long time, calibration cannot be performed during that period. Therefore, there is a possibility that the period during which calibration is not performed continues for a long time. Thereby, erroneous detection of the touch position may occur.
  • a touch sensor control device that performs appropriate calibration can be realized.
  • a touch sensor control device is a touch sensor control device that controls a touch sensor, the touch position specifying unit for specifying a touch position on a detection surface of the touch sensor, and the touch position according to the touch position.
  • a mask setting unit that sets a mask region, and a calibration unit that calibrates the detection sensitivity of a touch for a region excluding the mask region on the detection surface.
  • the touch sensor control method includes a touch position specifying step of specifying a touch position on a detection surface of the touch sensor, a mask setting step of setting a mask region in accordance with the touch position, and the detection And a calibration step for calibrating the touch detection sensitivity with respect to an area excluding the mask area on the surface.
  • appropriate calibration can be performed at a desired timing.
  • FIG. 3 is an enlarged plan view showing a touch sensor region corresponding to the mask region of FIG. 2. It is a figure which shows the flow of the calibration operation
  • FIG. 1 is a block diagram illustrating a schematic configuration of an electronic information device 1 according to the present embodiment.
  • the electronic information device 1 includes a touch panel 2, a touch sensor control unit 3 (touch sensor control device), and a host control unit 4.
  • the touch panel 2 and the touch sensor control unit 3 constitute a touch panel system.
  • Specific examples of the electronic information device 1 having a touch panel include a mobile phone, a smartphone, a notebook PC (personal computer), a tablet terminal, an e-book reader, or a PDA (Personal Digital Assistant), a large touch display, an automatic teller machine ( cash machine).
  • the touch panel 2 includes a touch sensor 5 and a display unit 6.
  • the touch panel 2 is a capacitive touch panel, but the system is not limited to this.
  • the touch sensor 5 is a position input device arranged so as to overlap the display unit 6.
  • the touch sensor 5 includes a plurality of detection signal lines SL extending along the horizontal direction and a plurality of drive signal lines DL extending along the vertical direction.
  • a capacitance is formed at the intersection of the detection signal line SL and the drive signal line DL that overlap each other. Note that the detection signal line SL and the drive signal line DL may not be along the horizontal direction and the vertical direction, respectively.
  • the display unit 6 is a display device such as a liquid crystal display device or an organic EL display, but is not limited thereto.
  • the host control unit 4 mainly controls the electronic information device 1 that is a host.
  • the host control unit 4 receives information on the touch position detected by the touch sensor control unit 3 and performs processing based on the touch position.
  • the host control unit 4 supplies display data to be displayed on the display unit 6 and performs display control of the display unit 6.
  • the touch sensor control unit 3 drives the touch sensor 5 and detects the touch position of the indicator with respect to the touch sensor 5.
  • the touch sensor control unit 3 includes a drive unit 11, a signal acquisition unit 12 (signal acquisition unit), a signal value adjustment unit 13 (signal value adjustment unit), a touch position detection unit 14 (touch position specifying unit), and a mask generation unit 15 ( A mask setting unit), a calibration value generation unit 16 (calibration unit), and a storage unit 17.
  • the drive unit 11 supplies a drive signal to the plurality of drive signal lines DL of the touch sensor 5 at a predetermined timing for detecting an indicator (for example, a user's finger or stylus pen). In addition, the drive unit 11 supplies a drive signal to the plurality of drive signal lines DL of the touch sensor 5 at a predetermined timing when the detection sensitivity calibration operation is performed.
  • the signal acquisition unit 12 acquires (detects) sense signals output from the plurality of detection signal lines SL according to the drive signal.
  • the capacitance value of the capacitance formed at the intersection (detection point) between the detection signal line SL and the drive signal line DL changes. Therefore, the value of the sense signal obtained from the detection signal line SL changes according to the capacitance value of the capacitance at the detection point.
  • the signal acquisition unit 12 acquires sense signals corresponding to a plurality of detection points according to a combination of the plurality of drive signal lines DL and the plurality of detection signal lines SL.
  • the signal acquisition unit 12 generates two-dimensional sense data representing the value of the sense signal corresponding to the detection surface of the touch sensor 5.
  • the signal acquisition unit 12 outputs the sense data to the signal value adjustment unit 13.
  • the signal acquisition unit 12 outputs sense data to the calibration value generation unit 16 in addition to the signal value adjustment unit 13.
  • the output sense data may be a digital value converted corresponding to the value of the sense signal.
  • Each element of the two-dimensional sense data represents a sense signal value and corresponds to the capacitance value of the capacitance of the corresponding detection point. That is, each element of the two-dimensional sense data has a value corresponding to the presence or absence of an indicator that is in contact with or close to each detection point.
  • the signal value adjustment unit 13 adjusts the value of the sense data based on the stored detection sensitivity calibration data.
  • the calibration data has a reference value (for example, an average value) of sense signal values acquired in the non-instruction state for each detection point.
  • the calibration data is two-dimensional data including a reference value for each detection point.
  • the non-instruction state is a state where there is no indicator that is in contact with or close to the detection surface.
  • the signal value adjustment unit 13 generates an adjusted signal value by subtracting the reference value indicated by the calibration data from the sense signal value of the sense data for each detection point.
  • the adjusted signal value in the non-instruction state is within a certain range (here, ⁇ 10 to +10) at a plurality of detection points.
  • the adjusted signal value at the detection point where the indicator is not in contact with or in proximity is ⁇ 10 to +10
  • the adjusted signal value at the detection point where the indicator is in contact or in proximity is a value greater than +10. .
  • the signal value adjustment unit 13 outputs the two-dimensional adjusted sense data to the touch position detection unit 14.
  • the two-dimensional adjusted sense data has adjusted signal values corresponding to a plurality of detection points as elements.
  • the touch position detection unit 14 specifies the touch position where the indicator 7 is in contact with or close to the detection surface based on the adjusted sense data. For example, the touch position detection unit 14 may specify a position corresponding to a detection point where the adjusted signal value is a maximum (peak) and is equal to or greater than a predetermined threshold as the touch position. In addition, the touch position detection unit 14 may specify a position corresponding to a detection point where the adjusted signal value is equal to or greater than a predetermined threshold as the touch position. The touch position detection unit 14 may specify a plurality of positions as touch positions according to the peak of the adjusted signal value.
  • the touch position detection unit 14 outputs information indicating the specified touch position to the host control unit 4.
  • the touch position detection unit 14 outputs information indicating the specified touch position to the mask generation unit 15 in addition to the host control unit 4.
  • the touch position detection unit 14 outputs that there is no touch to the host control unit 4 or the mask generation unit 15.
  • the mask generation unit 15 sets a mask area according to the specified touch position.
  • the mask area includes a touch position and a peripheral area of the touch position.
  • the mask area is a predetermined range centered on the touch position.
  • the mask generation unit 15 sets a plurality of mask areas corresponding to the plurality of touch positions.
  • the mask generation unit 15 outputs information indicating the specified mask region to the calibration value generation unit 16.
  • the calibration value generation unit 16 generates new calibration data based on the unadjusted sense data received from the signal acquisition unit 12, the mask region, and the previous calibration data.
  • the calibration value generation unit 16 stores the generated calibration data in the storage unit 17 and outputs the generated calibration data to the signal value adjustment unit 13.
  • the calibration value generation unit 16 also stores temporary calibration data generated in the process of generating calibration data in the storage unit 17.
  • the calibration value generation unit 16 reads out these data stored in the storage unit 17 as necessary. The method of generating the calibration data by the calibration value generation unit 16 will be described in detail later.
  • FIG. 2 is a diagram for explaining an outline of a method for generating calibration data according to the present embodiment.
  • 2A shows a state where the indicator 7 (user's finger) is in contact with the screen (detection surface) of the touch panel 2 of the electronic information device 1.
  • FIG. 2A shows a state where the indicator 7 (user's finger) is in contact with the screen (detection surface) of the touch panel 2 of the electronic information device 1.
  • FIG. 2 shows the two-dimensional sense data 21 obtained when the indicator 7 is in contact.
  • the point where the indicator 7 is in contact is the touch position 22.
  • the value of the sense data (unadjusted sense signal value) increases.
  • the sense data value increases to some extent even in the peripheral region of the touch position 22.
  • a predetermined area centered on the touch position 22 is defined as a mask area 23.
  • the mask area 23 includes an area where the value of the sense data is changed by the contact or proximity of the indicator 7.
  • FIG. 2 shows the masked two-dimensional sense data 21.
  • the data in the mask area 23 is removed (masked).
  • data corresponding to the mask region 23 is extracted from the calibration data 26 generated in the past (for example, the previous time).
  • Two-dimensional temporary calibration data 27 is generated by synthesizing the masked sense data 21 and the data extracted from the past calibration data 26 ((d) in FIG. 2).
  • the temporary calibration data 27 for the area excluding the mask area 23, the data of the sense data 21 generated in the current calibration is used.
  • the temporary calibration data 27 for the mask region 23 the data of the calibration data 26 generated in the past calibration is used. Even when a plurality of mask areas 23 are set, the same processing is performed for each mask area 23.
  • the latest sense signal is reflected in the area other than the mask area 23 of the temporary calibration data 27, that is, the latest capacitance value of the touch sensor 5 is reflected.
  • FIG. 3 is an enlarged plan view showing an area of the touch sensor 5 corresponding to the mask area 23 of FIG.
  • the drive signal line DL includes a plurality of square electrodes 24 that are continuous in the vertical direction.
  • the detection signal line SL includes a plurality of square electrodes 25 that are continuous in the horizontal direction.
  • the electrodes 24 and 25 may be formed of transparent electrodes, or may be formed of grid-like metal wiring.
  • the intersection (detection point) between the drive signal line DL and the detection signal line SL is indicated by a circle.
  • the darkness of the circle indicates the magnitude of the influence (change in sense signal value) due to the contact of the indicator 7.
  • a detection point closer to the touch position 22 has a larger change in the sense signal value.
  • a rectangular area of detection points within 3 pitches in the vertical and horizontal directions with the touch position 22 as the center is set as a mask area.
  • the pitch of the signal lines is 5 mm
  • a 3 cm ⁇ 3 cm square area on the detection surface is included in the mask area. If at least an area of 3 cm in length ⁇ 3 cm in width is used as a mask area, an area where the sense signal value changes when the indicator 7 is a finger can be masked.
  • the upper limit of the area of the mask region may be a predetermined ratio or less with respect to the area of the detection surface.
  • An area including a touch position where the change in the sense signal value is greater than or equal to a predetermined value may be used as a mask area.
  • the upper limit of the area of the mask region may be set to 1/5 of the area of the detection surface.
  • the ratio of the area of the mask area to the detection surface exceeds 1/5, the noise of the non-touch area (area where the indicator is not in contact) due to crosstalk becomes significant, so that the touch sensor is correctly calibrated. I can't do that. Therefore, when the ratio of the area (or mask area) where the change in the sense signal value exceeds a predetermined value exceeds the upper limit (1/5), the touch sensor control unit 3 can also stop the calibration operation.
  • FIG. 4 is a diagram illustrating a flow of the calibration operation according to the present embodiment.
  • the calibration operation is automatically started, for example, when the electronic information device 1 is started up or returned from the sleep state. Further, the calibration operation may be automatically started at regular intervals during the operation of the electronic information device 1.
  • the drive unit 11 supplies a drive signal to the plurality of drive signal lines DL of the touch sensor 5.
  • the signal acquisition unit 12 acquires sense signals output from the plurality of detection signal lines SL according to the drive signal (step S1).
  • the signal acquisition unit 12 generates sense data corresponding to the sense signal.
  • the signal value adjustment unit 13 adjusts the value of the sense data based on the stored calibration data (calibration data generated in the previous calibration).
  • the touch position detection unit 14 specifies the touch position based on the adjusted sense data.
  • the mask generation unit 15 When the touch is not detected (No in S2), the mask generation unit 15 does not set the mask area. In addition, the calibration value generation unit 16 stores the sense data generated (not adjusted) by the signal acquisition unit 12 in the storage unit 17 as M-th temporary calibration data (S3).
  • the mask generation unit 15 sets a mask area according to the specified touch position (S4).
  • the calibration value generation unit 16 removes the mask area data from the sense data generated by the signal acquisition unit 12 (S5).
  • the calibration value generation unit 16 acquires the calibration data generated last time from the storage unit 17, and extracts data corresponding to the mask area from the calibration data generated last time (S6).
  • the calibration value generation unit 16 may use calibration data before that instead of the previous time.
  • the calibration value generation unit 16 generates temporary calibration data by combining (summing) the masked sense data and the data extracted from the previously generated calibration data (S7). .
  • the calibration value generation unit 16 stores the generated temporary calibration data in the storage unit 17 as M-th (1 ⁇ M ⁇ N, where M and N are integers) temporary calibration data (S3).
  • the touch sensor control unit 3 repeats the processing from S1 to S7 N times (S8). That is, the sense data is generated N times at different timings, and N temporary calibration data corresponding to the N sense data are generated.
  • the calibration value generation unit 16 reads out the N pieces of temporary calibration data from the storage unit 17.
  • the calibration value generation unit 16 generates representative data of N pieces of temporary calibration data. Specifically, the calibration value generation unit 16 generates new calibration data by averaging N pieces of temporary calibration data for each element (detection point) (S9).
  • the calibration data is updated in this way, and the updated calibration data is used for adjustment of the sense data by the signal value adjustment unit 13.
  • the influence of noise can be reduced by using a calibration data obtained by averaging a plurality of temporary calibration data.
  • the touch position detection unit 14 specifies the touch position of the indicator 7 every time N sense signals are detected.
  • the mask areas for a plurality (N) of sense data can be different.
  • the generation of representative data is not limited to the average value, and can be performed by obtaining an arbitrary representative value (for example, an intermediate value) for each element.
  • FIG. 5 is a graph showing an example of sense data before adjustment in the non-instruction state.
  • the x-axis indicates the coordinate in the horizontal direction
  • the y-axis indicates the coordinate in the vertical direction
  • the z-axis indicates the value of the sense signal.
  • the value of the unadjusted sense data is generally not uniform. This non-uniformity is caused by, for example, the presence of a conductor such as a metal in the vicinity of the drive signal line DL or the detection signal line SL, the non-uniformity in the structure of the touch panel 2, the temperature distribution, or the like.
  • the capacitance value that is, the sense signal value
  • the touch position may be erroneously recognized.
  • FIG. 6 is a graph showing an example of sense data adjusted using calibration data.
  • the indicator 7 is in contact with the upper right of the detection surface.
  • FIG. 6A shows sense data adjusted using calibration data that has not been updated for a long time.
  • FIG. 6B shows sense data adjusted using appropriately updated calibration data.
  • each axis shows the same thing as FIG.
  • the value of the sense data whose line color is gray is in the range of ⁇ 10 to +10, and the value of the sense data whose line color is black is outside the above range.
  • the value of the sense data at the position where the indicator 7 is not in contact with or in proximity is uniform. is there.
  • the value of the sense data is between ⁇ 10 and 10. Therefore, the touch position can be accurately specified by comparing the adjusted sense data value with the threshold value.
  • the calibration data can be updated based on the latest sense signal for the region excluding the touch position where the indicator 7 is in contact with or in proximity. Further, with respect to the touch position, the influence of contact and proximity of the indicator 7 can be eliminated by using past (previous) calibration data. Therefore, even if the indicator 7 is in contact with or close to the touch panel 2, the touch sensor control unit 3 can appropriately perform calibration. Therefore, the touch sensor control unit 3 can appropriately perform calibration at a desired timing. As a result, as shown in (b) of FIG. 6, it is possible to obtain adjusted sense data with uniform values at a position where the indicator 7 is not in contact with or in close proximity using appropriate calibration data. Further, the touch sensor control unit 3 can execute calibration while receiving a position input by the indicator 7. Further, in the configuration described in Patent Document 1, a human sensor different from the touch sensor is required, but the touch sensor control unit 3 of the present embodiment does not require another sensor.
  • each time N sense signals are detected the touch position and the mask area are specified based on the Mth sense data, and the mask area is applied to the Mth sense data.
  • the mask area may not be specified in time. That is, when the mask area is specified based on the Mth sense data, the next (M + 1) th sense data may be generated. The old (Mth) sense data may be erased due to memory limitations.
  • the pointer is not moved, there is no problem even if the mask area is applied to the (M + 1) th sense data based on the Mth sense data.
  • the indicator is moving, the mask area may not be able to mask the touch position in the (M + 1) th sense data.
  • the touch sensor control unit predicts the movement of the indicator and sets the mask area. Since the configuration of the electronic information device 1 is the same as that of the first embodiment, detailed description thereof is omitted.
  • FIG. 7 is a diagram for explaining the outline of the calibration data generation method according to this embodiment.
  • FIG. 7A shows a state in which the indicator 7 (user's finger) is in contact with the screen (detection surface) of the touch panel 2 of the electronic information device 1.
  • the indicator 7 has moved in the direction of the arrow shown.
  • the detection of the sense signal is performed at regular intervals (for example, every 1/120 second or every 1/200 second). For example, the detection of the sense signal is performed at times t0, t1, and t2.
  • FIG. 7 shows the two-dimensional sense data 21a at time t1.
  • the touch position at time t1 is the touch position 22.
  • the mask generation unit 15 obtains a motion vector 31 representing the movement of the touch position based on the touch positions at time t0 and time t1.
  • the mask generation unit 15 can predict the touch position 32 at time t2 after time t1 from the touch position 22 at time t1 and the motion vector 31.
  • the touch position 32 represents an arrival position where the indicator is predicted to arrive at time t2.
  • the mask area 23 is set so as to include the touch position 32 and its peripheral area at the predicted time t2.
  • the mask area 23 is a rectangular area including the touch position 22 and its peripheral area at time t1, and the touch position 32 and its peripheral area at time t2.
  • the peripheral area is surrounded by a dotted line.
  • the mask area 23 generated based on the sense data at time t1 includes an area where the indicator 7 is predicted to be in contact with or close to at time t2.
  • the mask area 23 includes from the touch position 22 at time t 1 to the touch position 32 at time t 2 predicted by the motion vector 31. Therefore, even when the movement of the indicator 7 changes (when it stops) after time t1, the mask region 23 can include the position of the indicator 7 at time t2.
  • FIG. 7 shows the masked two-dimensional sense data 21b at time t2.
  • the data in the mask area 23 is removed (masked).
  • data corresponding to the mask area 23 is extracted from the calibration data 26 generated in the past (previous).
  • the two-dimensional temporary calibration data 27 is generated by synthesizing the masked sense data 21b and the data extracted from the past calibration data 26 ((d) in FIG. 7).
  • the data of the sense data 21b generated in the current calibration is used for the area excluding the mask area 23.
  • the data of the calibration data 26 generated in the past calibration is used. Even when a plurality of mask areas 23 are set, the same processing is performed for each mask area 23.
  • FIG. 8 is a diagram illustrating a flow of the calibration operation according to the present embodiment. Note that time t1 is later than time t0, and time t2 is later than time t1. Since the processing of S2, S7 to S9 is the same as that of the first embodiment, the description thereof will be omitted as appropriate.
  • the drive unit 11 supplies drive signals to the plurality of drive signal lines DL of the touch sensor 5 at regular intervals for detection of the touch position.
  • the signal acquisition unit 12 acquires sense signals output from the plurality of detection signal lines SL in accordance with the drive signals at each time (step S1).
  • the signal acquisition unit 12 generates sense data corresponding to the sense signal.
  • the signal value adjusting unit 13 adjusts the value of the sense data based on the stored previous calibration data.
  • the touch position detection unit 14 specifies the touch position based on the adjusted sense data.
  • the mask generation unit 15 When the touch is not detected (No in S2), the mask generation unit 15 does not set the mask area. In addition, the calibration value generation unit 16 stores the sense data generated (not adjusted) by the signal acquisition unit 12 in the storage unit 17 as M-th temporary calibration data (S3).
  • the mask generation unit 15 predicts the touch movement (S11). Specifically, the mask generation unit 15 specifies a motion vector representing the movement of the touch position (or indicator) based on the touch position at time t0 and the touch position at time t1. Note that the mask generation unit 15 stores a past touch position (time t0) for generating a motion vector. Further, the mask generation unit 15 sets a mask region so as to include the predicted touch position at time t2 according to the touch position at time t1 and the motion vector (S12).
  • the calibration value generating unit 16 removes the mask area data set based on the touch position at time t1 from the sense data at time t2 (S13).
  • the calibration value generation unit 16 acquires the calibration data generated last time from the storage unit 17, and extracts data corresponding to the mask area from the calibration data generated last time (S14).
  • the calibration value generation unit 16 generates temporary calibration data by synthesizing the masked sense data and the data extracted from the previously generated calibration data (S7).
  • the calibration value generation unit 16 stores the generated temporary calibration data in the storage unit 17 as M-th (1 ⁇ M ⁇ N, where M and N are integers) temporary calibration data (S3).
  • the touch sensor control unit 3 predicts the touch position of the latest sense data by predicting the movement of the touch position.
  • the touch sensor control unit 3 sets the mask area so as to include the predicted touch position.
  • the touch sensor control unit 3 applies the mask area determined based on the past sense data to the latest sense data.
  • the position of the mask area changes every time the sense data is acquired.
  • the mask area in the first temporary calibration data (the area to which the past calibration data is applied) is not the mask area in the second temporary calibration data but the area to which the latest sense data is applied. Correspond. Therefore, by averaging a plurality of temporary calibration data, the latest sense data can be reflected in the calibration data over the entire detection surface.
  • the mask generation unit 15 may predict the movement of the touch position not only from the sense data at two times but also from the sense data at three or more times.
  • the mask area includes a predicted future touch position (time t2).
  • the mask area preferably includes the predicted touch position and its peripheral area.
  • the mask area does not necessarily include the current touch position (time t1) and the surrounding area.
  • the mask area does not have to be a rectangle, and may be an arbitrary shape including the predicted touch position, such as an ellipse or an arbitrary polygon.
  • a region centering on the predicted future touch position (32 in FIG. 7) and including at least the current touch position (22 in FIG. 7) is masked. It may be set as an area. That is, even if the mask area 23 is further expanded in the upper right direction (the direction of the motion vector) in FIG. 7B so that the predicted future touch position (32 in FIG. 7) becomes the center of the mask area. Good.
  • the control block of the touch sensor control unit 3 (in particular, the signal acquisition unit 12, the signal value adjustment unit 13, the touch position detection unit 14, the mask generation unit 15, and the calibration value generation unit 16) is an integrated circuit (IC chip) or the like. It may be realized by a logic circuit (hardware) formed in the above, or may be realized by software using a CPU (Central Processing Unit).
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the touch sensor control unit 3 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU). ) Or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) that expands the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a touch sensor control device (touch sensor control unit 3) according to aspect 1 of the present invention is a touch sensor control device that controls a touch sensor, and specifies a touch position on a detection surface of the touch sensor.
  • Touch position detection unit 14 mask setting unit (mask generation unit 15) for setting a mask area according to the touch position, and calibration of touch detection sensitivity for the area excluding the mask area on the detection surface
  • a calibration unit (calibration value generation unit 16) that performs calibration.
  • the mask area is set according to the touch position, and the touch detection sensitivity is calibrated for the area excluding the mask area. For this reason, the touch sensor control device can eliminate the influence of the contact and proximity of the indicator and perform appropriate calibration at a desired timing.
  • the touch sensor control device includes a signal acquisition unit (signal acquisition unit 12) that acquires a sense signal from the touch sensor in the aspect 1, and the calibration unit performs calibration of detection sensitivity.
  • the acquired sense signal may be used for an area excluding the mask area, and past calibration data may be used for the mask area.
  • the touch sensor control device can update the calibration data using the acquired sense signal for the region excluding the mask region.
  • the touch sensor control device uses the past calibration data for the mask area to eliminate the influence of the contact and proximity of the indicator and make the generated calibration data appropriate. be able to.
  • the value of the sense signal corresponds to the capacitance value at each position on the detection surface.
  • the mask area includes a rectangular area centered on the touch position, and the rectangular area is 3 cm ⁇ 3 cm on the detection surface.
  • the structure corresponding to a square may be sufficient.
  • the mask area includes a square area of at least 3 cm ⁇ 3 cm centered on the touch position. Therefore, the touch sensor control device can eliminate the influence of contact and proximity by a user's finger or stylus pen or the like in calibration.
  • the mask setting unit predicts an arrival position at which the touch position reaches a certain time, and sets the mask region including the arrival position.
  • the calibration unit may be configured to generate detection sensitivity calibration data by using the sense signal at the time for the region excluding the mask region.
  • the calibration data is set so that the adjusted sense data has a value corresponding to the presence or absence of an indicator that is in contact with or close to the detection surface.
  • a signal value adjusting unit (signal value adjusting unit 13) that generates the adjusted sense data by adjusting the value of the sense signal by using the sense position, and the touch position specifying unit is configured to detect the adjusted sense data from the adjusted sense data. Further, the touch position may be specified.
  • the mask region may include the touch position.
  • the calibration data corresponds to the value of the sense signal when there is no indicator that is in contact with or close to the detection surface. It may be a configuration.
  • the touch panel system according to aspect 8 of the present invention may include the touch sensor control device according to aspects 1 to 7 described above and a touch panel including the touch sensor.
  • An electronic information device includes a touch sensor control device according to the above aspects 1 to 7, a touch panel including the touch sensor, and a host control unit that controls the electronic information device based on the touch position. May be provided.
  • the touch sensor control method includes a touch position specifying step for specifying a touch position on a detection surface of the touch sensor, a mask setting step for setting a mask area according to the touch position, and the detection A calibration step for calibrating the touch detection sensitivity with respect to the area excluding the mask area on the surface.
  • the touch sensor control device may be realized by a computer.
  • the touch sensor control device is operated by the computer by causing the computer to operate as each unit included in the touch sensor control device.
  • a control program for the touch sensor control device to be realized and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
  • the present invention can be used for a touch sensor control device, a touch panel system, and an electronic information device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 適切なキャリブレーションを行うタッチセンサ制御装置を実現する。本発明の一態様のタッチセンサ制御部(3)は、タッチセンサ(5)の制御を行うものであって、タッチセンサの検出面におけるタッチ位置を特定するタッチ位置検出部(14)と、タッチ位置に応じてマスク領域を設定するマスク生成部(15)と、マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーション値生成部(16)とを備える。

Description

タッチセンサ制御装置
 本発明は、タッチセンサ制御装置、およびそれを備えるタッチパネルシステム等に関する。
 近年、タッチパネルの検出面に接触または近接する指示体(例えば、ユーザの指やスタイラスペン等、以下同じ)の位置を検出することによって、ユーザの指示を受け付けるタッチパネルシステムが、携帯電話およびパソコンなどの電子情報機器に搭載されることが多くなってきている。特に、マルチタッチが可能な投影型の静電容量方式のタッチパネルが、電子情報機器に搭載されることが多くなってきている。
 このようなタッチパネルシステムでは、タッチパネルが生成する信号の処理結果に基づいて、検出面に接触または近接する指示体の検出が行われる。ただし、タッチパネルが生成する信号は、タッチパネルの構造上の不均一性の他、検出面に付着した汚れ、または経年劣化等の様々な影響を受ける。そのため、タッチパネルが生成する信号の処理結果を直接的に利用して指示体の検出を行った場合、検出面内における指示体の検出感度が不均一になってしまう。
 このように、検出面内における指示体の検出感度が不均一になると、例えば、検出面内のある位置では指示体が検出され易いが、他の位置では指示体が検出され難いという事態が生じ得る。
 そこで、検出面に接触または近接する指示体が存在しない状態(以下、「無指示状態」という)でタッチパネルが生成した信号の処理結果に基づいて、キャリブレーション(校正)を実行することが考えられる。キャリブレーションを実行すると、その後に得られるタッチパネルが生成した信号の処理結果において、上記の様々な影響に起因する検出感度のばらつきが抑制される。そのため、検出面内における指示体の検出感度をより均一にすることが可能になる。
 タッチパネルの静電容量値の分布は、温度変化または経時変化等により変化するため、キャリブレーションは、製造時の他、電源投入時等に定期的に行われることが好ましい。
 しかしながら、キャリブレーションを実行するタイミングにおいて、必ずしも無指示状態であるとは限らない。例えば、検出面内のある位置に指示体が接触または近接していた状態で、キャリブレーションを実行してしまうと、その後に生成される処理結果において、当該ある位置については検出面に接触または近接する指示体の影響が抑制されてしまう。そのため、当該ある位置については、指示体の検出感度が著しく低下し、場合によっては指示体を検出することが不可能となる。
 特許文献1には、自動キャリブレーション中に人感センサが接近物の存在を感知した場合、タッチパネルの自動キャリブレーションを中止することが記載されている。これにより、正しくないキャリブレーションが行われることを防いでいる。
日本国公開特許公報「特開2012-118850号公報(2012年6月21日公開)」
 適切なキャリブレーションを行うためには、無指示状態においてキャリブレーションを行うことが望ましい。
 しかしながら、特許文献1の構成では、長期間タッチパネルに人が接近していると、その期間の間キャリブレーションを行うことができない。そのため、キャリブレーションが行われていない期間が長く続く可能性がある。これにより、タッチ位置の誤検出が発生しうる。
 本発明の一態様によれば、適切なキャリブレーションを行うタッチセンサ制御装置を実現することができる。
 本発明の一態様に係るタッチセンサ制御装置は、タッチセンサの制御を行うタッチセンサ制御装置であって、上記タッチセンサの検出面におけるタッチ位置を特定するタッチ位置特定部と、上記タッチ位置に応じてマスク領域を設定するマスク設定部と、上記検出面における上記マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーション部とを備えることを特徴とする。
 本発明の一態様に係るタッチセンサの制御方法は、上記タッチセンサの検出面におけるタッチ位置を特定するタッチ位置特定ステップと、上記タッチ位置に応じてマスク領域を設定するマスク設定ステップと、上記検出面における上記マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーションステップとを含むことを特徴とする。
 本発明の一態様によれば、所望のタイミングで適切なキャリブレーションを行うことができる。
本発明の一実施形態に係る電子情報機器の概略構成を示すブロック図である。 本発明の一実施形態におけるキャリブレーションデータの生成方法の概要を説明する図である。 図2のマスク領域に対応するタッチセンサの領域を拡大して示す平面図である。 本発明の一実施形態に係るキャリブレーション動作のフローを示す図である。 無指示状態における調整前のセンスデータの一例を示すグラフである。 キャリブレーションデータを用いて調整されたセンスデータの一例を示すグラフである。 本発明の他の実施形態におけるキャリブレーションデータの生成方法の概要を説明する図である。 本発明の他の実施形態に係るキャリブレーション動作のフローを示す図である。
 以下、本発明の実施形態について、詳細に説明する。以下の特定の項目(実施形態)における構成について、それが他の項目で説明されている構成と同じである場合は、説明を省略する場合がある。また、説明の便宜上、各項目に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。
 〔実施形態1〕
 (電子情報機器の構成)
 図1は、本実施形態に係る電子情報機器1の概略構成を示すブロック図である。電子情報機器1は、タッチパネル2、タッチセンサ制御部3(タッチセンサ制御装置)、およびホスト制御部4を備える。タッチパネル2およびタッチセンサ制御部3は、タッチパネルシステムを構成する。タッチパネルを備える電子情報機器1の具体例として、携帯電話機、スマートフォン、ノート型PC(personal computer)、タブレット端末、電子書籍リーダー、またはPDA(Personal Digital Assistant)、大型タッチディスプレイ、現金自動預け払い機(cash machine)等を挙げることができる。
 (タッチパネルの構成)
 タッチパネル2は、タッチセンサ5および表示部6を備える。本実施形態では、タッチパネル2は、静電容量方式のタッチパネルであるが、方式はこれに限定されない。
 タッチセンサ5は、表示部6に重なって配置される位置入力装置である。タッチセンサ5は、水平方向に沿って延びる複数の検出信号線SLと、垂直方向に沿って延びる複数の駆動信号線DLとを備える。互いに重なる検出信号線SLと駆動信号線DLとの交点には、静電容量が形成される。なお、検出信号線SLおよび駆動信号線DLは、それぞれ水平方向、垂直方向に沿っていなくてもよい。
 表示部6は、液晶表示装置または有機ELディスプレイ等の表示装置であるが、これらに限定されない。
 (ホスト制御部の構成)
 ホスト制御部4は、ホストである電子情報機器1の制御を主として行う。ホスト制御部4は、タッチセンサ制御部3が検出したタッチ位置の情報を受け取り、タッチ位置に基づいた処理を行う。また、ホスト制御部4は、表示部6に表示させる表示データを供給し、表示部6の表示制御を行う。
 (タッチセンサ制御部の構成)
 タッチセンサ制御部3は、タッチセンサ5を駆動し、タッチセンサ5に対する指示体のタッチ位置を検出する。タッチセンサ制御部3は、駆動部11、信号取得部12(信号取得部)、信号値調整部13(信号値調整部)、タッチ位置検出部14(タッチ位置特定部)、マスク生成部15(マスク設定部)、キャリブレーション値生成部16(キャリブレーション部)、および記憶部17を備える。
 駆動部11は、指示体(例えば、ユーザの指やスタイラスペン等)の検出を行う所定のタイミングで、タッチセンサ5の複数の駆動信号線DLに駆動信号を供給する。また、駆動部11は、検出感度のキャリブレーション動作を行う所定のタイミングで、タッチセンサ5の複数の駆動信号線DLに駆動信号を供給する。
 信号取得部12は、駆動信号に応じて複数の検出信号線SLから出力されるセンス信号を取得(検出)する。指示体がタッチセンサ5の検出面(表面)に接触または近接すると、検出信号線SLと駆動信号線DLとの交点(検出点)に形成される静電容量の容量値が変化する。そのため、検出信号線SLから得られるセンス信号の値は、検出点の静電容量の容量値に応じて変化する。信号取得部12は、複数の駆動信号線DLと複数の検出信号線SLの組み合わせに応じて、複数の検出点に対応するセンス信号を取得する。信号取得部12は、タッチセンサ5の検出面に対応する、センス信号の値を表す2次元のセンスデータを生成する。
 信号取得部12は、センスデータを信号値調整部13に出力する。キャリブレーション動作中においては、信号取得部12は、信号値調整部13に加えて、キャリブレーション値生成部16にもセンスデータを出力する。出力されるセンスデータは、センス信号の値に対応して変換されたデジタル値であってもよい。2次元のセンスデータの各要素は、センス信号値を表し、かつ、対応する検出点の静電容量の容量値に対応している。すなわち、2次元のセンスデータの各要素は、各検出点に接触または近接する指示体の有無に対応した値を有する。
 信号値調整部13は、記憶している検出感度のキャリブレーションデータに基づいて、センスデータの値を調整する。キャリブレーションデータは、各検出点について、無指示状態において取得されるセンス信号値の基準値(例えば平均値)を有する。キャリブレーションデータは、各検出点の基準値を含む2次元データである。無指示状態とは、検出面に接触または近接する指示体が存在しない状態である。例えば、信号値調整部13は、各検出点について、センスデータのセンス信号値から、キャリブレーションデータが示す基準値を減じることにより、調整された信号値を生成する。キャリブレーションデータが適正である場合、無指示状態における調整された信号値は、複数の検出点において一定範囲内(ここでは-10から+10)となる。例えば、指示体が接触および近接していない検出点における調整された信号値は-10~+10となり、指示体が接触または近接している検出点における調整された信号値は+10より大きな値となる。これにより、複数の検出点における検出感度を均一にすることができる。信号値調整部13は、2次元の調整されたセンスデータをタッチ位置検出部14に出力する。2次元の調整されたセンスデータは、要素として、複数の検出点に対応する調整された信号値を有する。
 タッチ位置検出部14は、調整されたセンスデータに基づいて、検出面において指示体7が接触または近接しているタッチ位置を特定する。例えば、タッチ位置検出部14は、調整された信号値が極大(ピーク)かつ所定の閾値以上になる検出点に対応する位置を、タッチ位置として特定してもよい。また、タッチ位置検出部14は、調整された信号値が所定の閾値以上になる検出点に対応する位置を、タッチ位置として特定してもよい。タッチ位置検出部14は、調整された信号値のピークに応じて、複数の位置をタッチ位置として特定してもよい。
 通常のタッチ位置の検出動作中においては、タッチ位置検出部14は、特定されたタッチ位置を示す情報をホスト制御部4に出力する。一方、キャリブレーション動作中においては、タッチ位置検出部14は、特定されたタッチ位置を示す情報をホスト制御部4に加えてマスク生成部15にも出力する。タッチ位置検出部14は、指示体7の接触および近接を検出できない場合、タッチがないことをホスト制御部4またはマスク生成部15に出力する。
 マスク生成部15は、特定されたタッチ位置に応じて、マスク領域を設定する。ここでは、マスク領域は、タッチ位置とタッチ位置の周辺領域を含む。例えば、マスク領域は、タッチ位置を中心とする所定の範囲である。複数のタッチ位置が特定された場合、マスク生成部15は、複数のタッチ位置に対応する複数のマスク領域を設定する。マスク生成部15は、特定したマスク領域を示す情報をキャリブレーション値生成部16に出力する。
 キャリブレーション値生成部16は、信号取得部12から受け取った調整されていないセンスデータ、マスク領域、および以前のキャリブレーションデータに基づいて、新たなキャリブレーションデータを生成する。キャリブレーション値生成部16は、生成したキャリブレーションデータを記憶部17に記憶させ、また、生成したキャリブレーションデータを信号値調整部13に出力する。キャリブレーション値生成部16は、キャリブレーションデータを生成する過程において生成する仮キャリブレーションデータも、記憶部17に記憶させる。キャリブレーション値生成部16は、記憶部17に記憶させたこれらのデータを必要に応じて読み出す。キャリブレーション値生成部16は、キャリブレーションデータを生成する方法については、後に詳述する。
 (キャリブレーション動作の概要)
 図2は、本実施形態におけるキャリブレーションデータの生成方法の概要を説明する図である。図2の(a)は、電子情報機器1のタッチパネル2の画面(検出面)に指示体7(ユーザの指)が接触している状態を示す。
 図2の(b)は、指示体7が接触している状態で得られる2次元のセンスデータ21を示す。指示体7が接触している点が、タッチ位置22である。タッチ位置22では、センスデータの値(調整されていないセンス信号値)は大きくなる。また、タッチ位置22の周辺領域でも、センスデータの値はある程度大きくなる。タッチ位置22を中心とする所定の領域をマスク領域23とする。マスク領域23は、指示体7の接触または近接によってセンスデータの値が変化している領域を含む。
 図2の(c)は、マスクされた2次元のセンスデータ21を示す。2次元のセンスデータ21のうち、マスク領域23のデータは除去(マスク)される。一方、過去(例えば前回)に生成されたキャリブレーションデータ26から、マスク領域23に対応するデータが抽出される。
 マスクされたセンスデータ21と、過去のキャリブレーションデータ26から抽出されたデータとが合成されることにより、2次元の仮キャリブレーションデータ27が生成される(図2の(d))。仮キャリブレーションデータ27のうち、マスク領域23を除く領域については、今回のキャリブレーションにおいて生成されたセンスデータ21のデータが使用される。仮キャリブレーションデータ27のうち、マスク領域23については、過去のキャリブレーションにおいて生成されたキャリブレーションデータ26のデータが用いられる。なお、マスク領域23が複数設定された場合も、各マスク領域23について同様の処理を行う。
 このようにして得られた仮キャリブレーションデータ27からは、マスク領域23における指示体7の接触または近接による影響が排除されている。また、仮キャリブレーションデータ27のマスク領域23以外の領域については、最新のセンス信号が反映されている、すなわち、タッチセンサ5の最新の静電容量値が反映されている。
 図3は、図2のマスク領域23に対応するタッチセンサ5の領域を拡大して示す平面図である。駆動信号線DLは、垂直方向に連なった複数の正方形の電極24を備える。検出信号線SLは、水平方向に連なった複数の正方形の電極25を備える。電極24・25は、透明電極で形成されてもよく、格子状の金属配線で形成されてもよい。図3において、駆動信号線DLと検出信号線SLとの交点(検出点)を丸印で示す。なお、丸印の濃さは指示体7の接触による影響(センス信号値の変化)の大きさを示す。タッチ位置22に近い検出点ほど、センス信号値の変化が大きい。
 タッチ位置22を中心として、例えば、垂直方向および水平方向において3ピッチ以内の検出点の矩形領域を、マスク領域とする。信号線のピッチが5mmの場合、検出面における3cm×3cmの正方形の領域がマスク領域に含まれる。少なくとも縦3cm×横3cmの領域をマスク領域とすれば、指示体7が指である場合にセンス信号値が変化する領域をマスクすることができる。
 なお、マスク領域の面積の上限は、検出面の面積に対する所定の割合以下であるとすることもできる。タッチ位置を含む、センス信号値の変化が所定以上の領域をマスク領域としてもよい。このとき、例えば、マスク領域の面積の上限を検出面の面積の1/5としてもよい。検出面に対するマスク領域の面積の割合が1/5を越えるような場合、クロストークによる非タッチ領域(指示体が接触していない領域)のノイズが顕著になることにより、タッチセンサを正しく校正することができなくなる。そのため、センス信号値の変化が所定以上の領域(またはマスク領域)の割合が上限(1/5)を越える場合、タッチセンサ制御部3は、キャリブレーション動作を中止することもできる。
 (キャリブレーション動作のフロー)
 図4は、本実施形態に係るキャリブレーション動作のフローを示す図である。キャリブレーション動作は、例えば電子情報機器1の起動時およびスリープ状態からの復帰時等に自動的に開始される。また、電子情報機器1の動作中の一定期間毎に自動的にキャリブレーション動作が開始されてもよい。
 所定のタイミングでキャリブレーション動作が開始されると、駆動部11は、タッチセンサ5の複数の駆動信号線DLに駆動信号を供給する。信号取得部12は、駆動信号に応じて複数の検出信号線SLから出力されるセンス信号を取得する(ステップS1)。信号取得部12は、センス信号に応じたセンスデータを生成する。
 信号値調整部13は、記憶しているキャリブレーションデータ(前回のキャリブレーションにおいて生成されたキャリブレーションデータ)に基づいて、センスデータの値を調整する。タッチ位置検出部14は、調整されたセンスデータに基づいて、タッチ位置を特定する。
 タッチが検出されていない場合(S2でNo)、マスク生成部15は、マスク領域を設定しない。また、キャリブレーション値生成部16は、信号取得部12が生成した(調整されていない)センスデータをM回目の仮キャリブレーションデータとして記憶部17に記憶させる(S3)。
 タッチが検出された場合(S2でYes)、マスク生成部15は、特定されたタッチ位置に応じて、マスク領域を設定する(S4)。キャリブレーション値生成部16は、信号取得部12が生成したセンスデータからマスク領域のデータを除去する(S5)。また、キャリブレーション値生成部16は、記憶部17から前回に生成されたキャリブレーションデータを取得し、前回に生成されたキャリブレーションデータからマスク領域に対応するデータを抽出する(S6)。ここで、キャリブレーション値生成部16は、前回ではなく、それより前のキャリブレーションデータを使用してもよい。キャリブレーション値生成部16は、マスクされたセンスデータと、前回に生成されたキャリブレーションデータから抽出されたデータとを合成する(和をとる)ことにより、仮キャリブレーションデータを生成する(S7)。キャリブレーション値生成部16は、生成した仮キャリブレーションデータをM回目(1≦M≦N、MおよびNは整数)の仮キャリブレーションデータとして記憶部17に記憶させる(S3)。
 タッチセンサ制御部3は、S1からS7の処理をN回繰り返す(S8)。すなわち、異なるタイミングでN回センスデータを生成し、N個のセンスデータに対応するN個の仮キャリブレーションデータを生成する。
 N個の仮キャリブレーションデータの生成処理が完了すると(S8でYes)、キャリブレーション値生成部16は、記憶部17からN個の仮キャリブレーションデータを読み出す。キャリブレーション値生成部16は、N個の仮キャリブレーションデータの代表データを生成する。具体的には、キャリブレーション値生成部16は、各要素(検出点)について、N個の仮キャリブレーションデータを平均することにより、新たなキャリブレーションデータを生成する(S9)。このようにしてキャリブレーションデータが更新され、更新されたキャリブレーションデータが、信号値調整部13によるセンスデータの調整に用いられる。
 複数の仮キャリブレーションデータを平均化したものをキャリブレーションデータとすることで、ノイズの影響を低減することができる。ただし、複数には限らず、1個の仮キャリブレーションデータをそのままキャリブレーションデータとして用いてもよい(N=1の場合)。
 なお、N回のセンス信号の検出毎に、タッチ位置検出部14は、指示体7のタッチ位置を特定する。指示体7が移動している場合、複数(N個)のセンスデータに対するマスク領域はそれぞれ異なり得る。
 また、代表データの生成は、平均値に限らず、各要素について任意の代表値(例えば中間値等)を求めることで行うこともできる。
 (効果)
 図5は、無指示状態における調整前のセンスデータの一例を示すグラフである。図5において、x軸は水平方向における座標を示し、y軸は垂直方向における座標を示し、z軸はセンス信号の値を示す。指示体7が接触および近接していない場合であっても、調整されていないセンスデータの値は、一般に均一ではない。この不均一性は、例えば、駆動信号線DLまたは検出信号線SLの付近に金属等の導電体が存在すること、タッチパネル2の構造上の不均一さ、または、温度分布等に起因する。図5の例では、左端の駆動信号線DLに沿った位置では、他の位置より静電容量値(すなわちセンス信号値)が大きくなっている。キャリブレーションデータを用いてセンスデータの調整を行わなければ、タッチ位置を誤認識してしまうおそれがある。
 図6は、キャリブレーションデータを用いて調整されたセンスデータの一例を示すグラフである。なお、図6に示す例では、検出面の右上の辺りに指示体7が接触している。図6の(a)は、長期間更新されていないキャリブレーションデータを用いて調整されたセンスデータを示す。図6の(b)は、適切に更新されたキャリブレーションデータを用いて調整されたセンスデータを示す。図6において、各軸は図5と同じものを示す。なお、図6において、線の色がグレーであるセンスデータの値は、-10から+10の範囲内であり、線の色が黒であるセンスデータの値は、上記範囲外である。
 図6の(b)に示すように、適切に更新されたキャリブレーションデータを用いて調整されたセンスデータでは、指示体7が接触および近接していない位置でのセンスデータの値は、均一である。例えば、指示体7が接触および近接していない位置では、センスデータの値は、-10から10の間に収まっている。そのため、調整されたセンスデータの値を閾値と比較することにより、タッチ位置を正確に特定することができる。
 しかしながら、長期間キャリブレーション(キャリブレーションデータの更新)が行われていない場合、図6の(a)に示すように、指示体7が接触および近接していない位置でも、調整されたセンスデータの値は均一ではない。無指示状態における調整されたセンスデータの値が低い位置では、タッチの感度が低くなる。逆に、無指示状態における調整されたセンスデータの値が高い位置では、タッチの感度が高くなる。検出点の静電容量値は、温度変化または経時変化等により変化する。それゆえ、長期間キャリブレーションが行われていないと、キャリブレーションデータが適正なものではなくなり、無指示状態における調整されたセンスデータの値が不均一になる。
 本実施形態によれば、指示体7が接触または近接しているタッチ位置を除いた領域について、最新のセンス信号に基づいてキャリブレーションデータを更新することができる。また、タッチ位置については、過去(前回)のキャリブレーションデータを用いることで、指示体7の接触および近接の影響を排除することができる。そのため、タッチパネル2に指示体7が接触または近接している場合であっても、タッチセンサ制御部3は、適切にキャリブレーションを行うことができる。それゆえ、タッチセンサ制御部3は、所望のタイミングで適切にキャリブレーションを行うことができる。その結果、図6の(b)のように、適切なキャリブレーションデータを用いて、指示体7が接触および近接していない位置での値が均一な調整されたセンスデータを得ることができる。また、タッチセンサ制御部3は、指示体7による位置入力を受け付けている間に、キャリブレーションを実行することができる。また、特許文献1に記載の構成では、タッチセンサとは別の人感センサが必要になるが、本実施形態のタッチセンサ制御部3は他のセンサを必要としない。
 〔実施形態2〕
 実施形態1では、N回のセンス信号の検出毎に、第M回目のセンスデータに基づいてタッチ位置およびマスク領域が特定され、第M回目のセンスデータに該マスク領域が適用される。しかしながら、タッチ位置の特定およびマスク領域の特定に時間がかかる場合、マスク領域の特定が間に合わない場合がある。すなわち、第M回目のセンスデータに基づいてマスク領域を特定したとき、次の第(M+1)回目のセンスデータの生成が行われている場合がある。そして古い(第M回目の)センスデータは、メモリの制限から消去される場合がある。指示体が移動していない場合、第M回目のセンスデータに基づいてマスク領域を第(M+1)回目のセンスデータに適用しても問題ない。しかしながら、指示体が移動している場合、該マスク領域は、第(M+1)回目のセンスデータにおけるタッチ位置をマスクできない可能性がある。
 そこで、本実施形態では、タッチセンサ制御部は、指示体の動きを予測してマスク領域を設定する。電子情報機器1の構成は実施形態1と同様であるので、詳細な説明を省略する。
 (キャリブレーション動作の概要)
 図7は、本実施形態におけるキャリブレーションデータの生成方法の概要を説明する図である。図7の(a)は、電子情報機器1のタッチパネル2の画面(検出面)に指示体7(ユーザの指)が接触している状態を示す。ここで、指示体7は、図示する矢印の方向に移動している。センス信号の検出は一定間隔(例えば1/120秒毎または1/200秒毎)で行われ、例えば時刻t0、t1、t2においてセンス信号の検出が行われる。
 図7の(b)は、時刻t1の2次元のセンスデータ21aを示す。時刻t1におけるタッチ位置は、タッチ位置22である。マスク生成部15は、時刻t0および時刻t1のタッチ位置に基づいて、タッチ位置の動きを表す動きベクトル31を求める。マスク生成部15は、時刻t1におけるタッチ位置22と、動きベクトル31とから、時刻t1より後の時刻t2におけるタッチ位置32を予測することができる。タッチ位置32は、時刻t2において指示体が到達すると予測される到達位置を表す。マスク領域23は、予測された時刻t2におけるタッチ位置32およびその周辺領域を含むように設定される。ここでは、マスク領域23は、時刻t1におけるタッチ位置22およびその周辺領域と、時刻t2におけるタッチ位置32およびその周辺領域とを含む矩形の領域である。図7の(b)では、周辺領域を点線で囲んで示す。時刻t1のセンスデータに基づいて生成されたマスク領域23は、時刻t2において指示体7が接触または近接していると予測される領域を含む。
 マスク領域23は、時刻t1のタッチ位置22から、動きベクトル31で予測される時刻t2のタッチ位置32までを含む。そのため、時刻t1の後に指示体7の動きが変化した場合(止まった場合)であっても、マスク領域23は、時刻t2における指示体7の位置を含むことができる。
 図7の(c)は、マスクされた時刻t2の2次元のセンスデータ21bを示す。2次元のセンスデータ21bのうち、マスク領域23のデータは除去(マスク)される。一方、過去(前回)に生成されたキャリブレーションデータ26から、マスク領域23に対応するデータが抽出される。
 マスクされたセンスデータ21bと、過去のキャリブレーションデータ26から抽出されたデータとが合成されることにより、2次元の仮キャリブレーションデータ27が生成される(図7の(d))。仮キャリブレーションデータ27のうち、マスク領域23を除く領域については、今回のキャリブレーションにおいて生成されたセンスデータ21bのデータが用いられる。仮キャリブレーションデータ27のうち、マスク領域23については、過去のキャリブレーションにおいて生成されたキャリブレーションデータ26のデータが用いられる。なお、マスク領域23が複数設定された場合も、各マスク領域23について同様の処理を行う。
 (キャリブレーション動作のフロー)
 図8は、本実施形態に係るキャリブレーション動作のフローを示す図である。なお、時刻t1は時刻t0より後であり、時刻t2は時刻t1より後であるとする。S2、S7~S9の処理は実施形態1と同様であるので、適宜説明を省略する。
 駆動部11は、タッチ位置の検出のために一定間隔で、タッチセンサ5の複数の駆動信号線DLに駆動信号を供給する。信号取得部12は、各時刻において、駆動信号に応じて複数の検出信号線SLから出力されるセンス信号を取得する(ステップS1)。信号取得部12は、センス信号に応じたセンスデータを生成する。
 信号値調整部13は、記憶している前回のキャリブレーションデータに基づいて、センスデータの値を調整する。タッチ位置検出部14は、調整されたセンスデータに基づいて、タッチ位置を特定する。
 タッチが検出されていない場合(S2でNo)、マスク生成部15は、マスク領域を設定しない。また、キャリブレーション値生成部16は、信号取得部12が生成した(調整されていない)センスデータをM回目の仮キャリブレーションデータとして記憶部17に記憶させる(S3)。
 時刻t0および時刻t1の両方について、調整されたセンスデータにおいてタッチが検出された場合(S2でYes)、マスク生成部15は、タッチの動きを予測する(S11)。具体的には、マスク生成部15は、時刻t0のタッチ位置および時刻t1のタッチ位置に基づいて、タッチ位置(または指示体)の動きを表す動きベクトルを特定する。なお、マスク生成部15は、動きベクトルの生成のために、過去(時刻t0)のタッチ位置を記憶している。また、マスク生成部15は、時刻t1のタッチ位置と、動きベクトルとに応じて、時刻t2の予測されるタッチ位置を含むようにマスク領域を設定する(S12)。
 S12の後、キャリブレーション値生成部16は、時刻t2のセンスデータから時刻t1のタッチ位置に基づいて設定されたマスク領域のデータを除去する(S13)。また、キャリブレーション値生成部16は、記憶部17から前回に生成されたキャリブレーションデータを取得し、前回に生成されたキャリブレーションデータから該マスク領域に対応するデータを抽出する(S14)。キャリブレーション値生成部16は、マスクされたセンスデータと、前回に生成されたキャリブレーションデータから抽出されたデータとを合成することにより、仮キャリブレーションデータを生成する(S7)。キャリブレーション値生成部16は、生成した仮キャリブレーションデータをM回目(1≦M≦N、MおよびNは整数)の仮キャリブレーションデータとして記憶部17に記憶させる(S3)。
 (効果)
 本実施形態によれば、タッチセンサ制御部3は、タッチ位置の動きを予測することで、最新のセンスデータについてのタッチ位置を予測する。タッチセンサ制御部3は、予測されたタッチ位置を含むようにマスク領域を設定する。タッチセンサ制御部3は、過去のセンスデータに基づいて決定したマスク領域を、最新のセンスデータに適用する。これにより、タッチ位置の特定およびマスク領域の特定に処理時間がかかる場合であっても、動く指示体による影響を排除して、適切にキャリブレーションを行うことができる。また、タッチ位置が移動する場合、センスデータの取得毎にマスク領域の位置が変化する。例えば、1回目の仮キャリブレーションデータにおけるマスク領域(過去のキャリブレーションデータが適用される領域)は、2回目の仮キャリブレーションデータでは、マスク領域ではなく、最新のセンスデータが適用される領域に対応する。そのため、複数の仮キャリブレーションデータを平均化することで、検出面の全体に渡って最新のセンスデータをキャリブレーションデータに反映することができる。
 なお、マスク生成部15は、タッチ位置の動きを、2つの時刻のセンスデータからに限らず、3つ以上の時刻のセンスデータから予測してもよい。
 マスク領域は、予測された未来(時刻t2)のタッチ位置を含む。マスク領域は、予測されたタッチ位置と、その周辺領域とを含むことが好ましい。マスク領域は、必ずしも現在(時刻t1)のタッチ位置と、その周辺領域とを含まなくてもよい。マスク領域は矩形でなくてもよく、例えば楕円形または任意の多角形等、予測されたタッチ位置を含む任意の形状とすることができる。
 また、指示体7の動きが増減することを考慮し、予測された未来のタッチ位置(図7の32)を中心とし、かつ少なくとも現在のタッチ位置(図7の22)を含む領域を、マスク領域として設定してもよい。すなわち、予測された未来のタッチ位置(図7の32)がマスク領域の中心になるように、図7の(b)においてマスク領域23がさらに右上方向(動きベクトルの方向)に拡張されてもよい。
 〔ソフトウェアによる実現例〕
 タッチセンサ制御部3の制御ブロック(特に、信号取得部12、信号値調整部13、タッチ位置検出部14、マスク生成部15、およびキャリブレーション値生成部16)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、タッチセンサ制御部3は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係るタッチセンサ制御装置(タッチセンサ制御部3)は、タッチセンサの制御を行うタッチセンサ制御装置であって、上記タッチセンサの検出面におけるタッチ位置を特定するタッチ位置特定部(タッチ位置検出部14)と、上記タッチ位置に応じてマスク領域を設定するマスク設定部(マスク生成部15)と、上記検出面における上記マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーション部(キャリブレーション値生成部16)とを備える。
 上記の構成によれば、タッチ位置に応じてマスク領域が設定され、マスク領域を除いた領域について、タッチの検出感度のキャリブレーションが行われる。そのため、タッチセンサ制御装置は、指示体の接触および近接の影響を排除して、所望のタイミングで適切なキャリブレーションを行うことができる。
 本発明の態様2に係るタッチセンサ制御装置は、上記態様1において、上記タッチセンサからセンス信号を取得する信号取得部(信号取得部12)を備え、上記キャリブレーション部は、検出感度のキャリブレーションデータの生成において、上記マスク領域を除いた領域については、取得された上記センス信号を使用し、上記マスク領域については、過去のキャリブレーションデータを使用する構成であってもよい。
 上記の構成によれば、タッチセンサ制御装置は、マスク領域を除いた領域については、取得された上記センス信号を使用してキャリブレーションデータを更新することができる。また、タッチセンサ制御装置は、上記マスク領域については、過去のキャリブレーションデータを使用することで、指示体の接触および近接の影響を排除して、生成されたキャリブレーションデータを適切なものにすることができる。なお、タッチセンサが静電容量方式の場合、センス信号の値は、検出面の各位置における静電容量値に対応する。
 本発明の態様3に係るタッチセンサ制御装置では、上記態様1または2において、上記マスク領域は、上記タッチ位置を中心とする矩形領域を含み、上記矩形領域は、上記検出面における3cm×3cmの正方形に対応する構成であってもよい。
 上記の構成によれば、マスク領域が、タッチ位置を中心とする少なくとも3cm×3cmの正方形の領域を含む。そのため、タッチセンサ制御装置は、キャリブレーションにおいて、ユーザの指またはスタイラスペン等による接触および近接の影響を排除することができる。
 本発明の態様4に係るタッチセンサ制御装置では、上記態様2において、上記マスク設定部は、上記タッチ位置がある時刻に到達する到達位置を予測し、上記到達位置を含む上記マスク領域を設定し、上記キャリブレーション部は、上記マスク領域を除いた領域については、該時刻の上記センス信号を使用することにより、検出感度のキャリブレーションデータを生成する構成であってもよい。
 上記の構成によれば、タッチ位置の特定およびマスク領域の設定に処理時間がかかる場合であっても、動く指示体による影響を排除して、適切にキャリブレーションを行うことができる。
 本発明の態様5に係るタッチセンサ制御装置は、上記態様2において、調整されたセンスデータが上記検出面に接触または近接する指示体の有無に対応した値を有するように、上記キャリブレーションデータを用いて上記センス信号の値を調整することにより、上記調整されたセンスデータを生成する信号値調整部(信号値調整部13)を備え、上記タッチ位置特定部は、上記調整されたセンスデータから、タッチ位置を特定する構成であってもよい。
 本発明の態様6に係るタッチセンサ制御装置では、上記態様1、2、4、5において、上記マスク領域は、上記タッチ位置を含む構成であってもよい。
 本発明の態様7に係るタッチセンサ制御装置では、上記態様2または5において、上記キャリブレーションデータは、上記検出面に接触または近接する指示体がない場合における上記センス信号の値に対応している構成であってもよい。
 本発明の態様8に係るタッチパネルシステムは、上記態様1から7のタッチセンサ制御装置と、上記タッチセンサを備えるタッチパネルとを備える構成であってもよい。
 本発明の態様9に係る電子情報機器は、上記態様1から7のタッチセンサ制御装置と、上記タッチセンサを備えるタッチパネルと、上記タッチ位置に基づいて上記電子情報機器の制御を行うホスト制御部とを備える構成であってもよい。
 本発明の態様10に係るタッチセンサの制御方法は、上記タッチセンサの検出面におけるタッチ位置を特定するタッチ位置特定ステップと、上記タッチ位置に応じてマスク領域を設定するマスク設定ステップと、上記検出面における上記マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーションステップとを含む。
 本発明の各態様に係るタッチセンサ制御装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記タッチセンサ制御装置が備える各部として動作させることにより上記タッチセンサ制御装置をコンピュータにて実現させるタッチセンサ制御装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、タッチセンサ制御装置、タッチパネルシステム、および電子情報機器に利用することができる。
1  電子情報機器
2  タッチパネル
3  タッチセンサ制御部
4  ホスト制御部
5  タッチセンサ
6  表示部
7  指示体
11  駆動部
12  信号取得部
13  信号値調整部
14  タッチ位置検出部(タッチ位置特定部)
15  マスク生成部(マスク設定部)
16  キャリブレーション値生成部(キャリブレーション部)
17  記憶部
22  タッチ位置
23  マスク領域
DL  駆動信号線
SL  検出信号線

Claims (5)

  1.  タッチセンサの制御を行うタッチセンサ制御装置であって、
     上記タッチセンサの検出面におけるタッチ位置を特定するタッチ位置特定部と、
     上記タッチ位置に応じてマスク領域を設定するマスク設定部と、
     上記検出面における上記マスク領域を除いた領域について、タッチの検出感度のキャリブレーションを行うキャリブレーション部とを備えることを特徴とするタッチセンサ制御装置。
  2.  上記タッチセンサからセンス信号を取得する信号取得部を備え、
     上記キャリブレーション部は、検出感度のキャリブレーションデータの生成において、上記マスク領域を除いた領域については、取得された上記センス信号を使用し、上記マスク領域については、過去のキャリブレーションデータを使用することを特徴とする請求項1に記載のタッチセンサ制御装置。
  3.  上記マスク領域は、上記タッチ位置を中心とする矩形領域を含み、
     上記矩形領域は、上記検出面における3cm×3cmの正方形に対応することを特徴とする請求項1または2に記載のタッチセンサ制御装置。
  4.  上記マスク設定部は、上記タッチ位置がある時刻に到達する到達位置を予測し、上記到達位置を含む上記マスク領域を設定し、
     上記キャリブレーション部は、上記マスク領域を除いた領域については、該時刻の上記センス信号を使用することにより、検出感度のキャリブレーションデータを生成することを特徴とする請求項2に記載のタッチセンサ制御装置。
  5.  調整されたセンスデータが上記検出面に接触または近接する指示体の有無に対応した値を有するように、上記キャリブレーションデータを用いて上記センス信号の値を調整することにより、上記調整されたセンスデータを生成する信号値調整部を備え、
     上記タッチ位置特定部は、上記調整されたセンスデータから、タッチ位置を特定することを特徴とする請求項2に記載のタッチセンサ制御装置。
PCT/JP2014/077933 2013-12-11 2014-10-21 タッチセンサ制御装置 WO2015087621A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/035,286 US9710108B2 (en) 2013-12-11 2014-10-21 Touch sensor control device having a calibration unit for calibrating detection sensitivity of a touch except for a mask region
JP2015552358A JP6013623B2 (ja) 2013-12-11 2014-10-21 タッチセンサ制御装置、タッチパネルシステム、電子情報機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-256373 2013-12-11
JP2013256373 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087621A1 true WO2015087621A1 (ja) 2015-06-18

Family

ID=53370939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077933 WO2015087621A1 (ja) 2013-12-11 2014-10-21 タッチセンサ制御装置

Country Status (3)

Country Link
US (1) US9710108B2 (ja)
JP (1) JP6013623B2 (ja)
WO (1) WO2015087621A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010455A (ja) * 2015-06-25 2017-01-12 シャープ株式会社 入力判定装置、制御プログラム、電子機器、及び入力判定装置の入力閾値校正方法
JP2017068584A (ja) * 2015-09-30 2017-04-06 トッパン・フォームズ株式会社 入力装置
JP2017097443A (ja) * 2015-11-18 2017-06-01 シャープ株式会社 入力判定装置、制御プログラム、電子機器、及び入力判定装置の入力閾値校正方法
JP2019075780A (ja) * 2017-10-12 2019-05-16 ローム株式会社 静電容量スイッチコントローラ、静電容量スイッチ、電子機器、異常検出方法
WO2019135280A1 (ja) * 2018-01-05 2019-07-11 三菱電機株式会社 タッチパネル装置及びタッチパネル装置のキャリブレーション方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9785292B2 (en) * 2014-03-07 2017-10-10 Atmel Corporation Variable-pitch tracking for touch sensors
JP2017126196A (ja) * 2016-01-14 2017-07-20 株式会社東海理化電機製作所 操作装置
US10928955B1 (en) * 2017-09-11 2021-02-23 Apple Inc. Suppression of structured image artifacts
DE102017008728A1 (de) * 2017-09-16 2019-03-21 Leopold Kostal Gmbh & Co. Kg Sensorsystem
US10747358B2 (en) * 2018-02-22 2020-08-18 Wacom Co., Ltd. Position detection circuit and position detection method
US11599223B1 (en) 2020-03-13 2023-03-07 Apple Inc. System and machine learning method for separating noise and signal in multitouch sensors
US11899881B2 (en) 2020-07-17 2024-02-13 Apple Inc. Machine learning method and system for suppressing display induced noise in touch sensors using information from display circuitry
US11954288B1 (en) 2020-08-26 2024-04-09 Apple Inc. System and machine learning method for separating noise and signal in multitouch sensors
US11481070B1 (en) 2020-09-25 2022-10-25 Apple Inc. System and method for touch sensor panel with display noise correction
JP2022155092A (ja) * 2021-03-30 2022-10-13 シャープ株式会社 表示装置
US20230418416A1 (en) * 2022-06-22 2023-12-28 Microsoft Technology Licensing, Llc Touchscreen sensor calibration using adaptive noise classification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257046A (ja) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp 近接検知装置
JP2012048340A (ja) * 2010-08-25 2012-03-08 Kyocera Corp 携帯端末
JP2013246557A (ja) * 2012-05-24 2013-12-09 Asahi Kasei Electronics Co Ltd タッチセンサの信号処理回路、およびタッチセンサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626658B2 (ja) * 2008-02-14 2011-02-09 ソニー株式会社 表示装置、撮像装置および位置検出装置
JP4796104B2 (ja) * 2008-08-29 2011-10-19 シャープ株式会社 撮像装置、画像解析装置、外光強度算出方法、画像解析方法、撮像プログラム、画像解析プログラムおよび記録媒体
JP5055231B2 (ja) 2008-09-08 2012-10-24 株式会社ジャパンディスプレイイースト タッチパネルのタッチ位置検出方法
JP5366045B2 (ja) * 2009-02-27 2013-12-11 株式会社ジャパンディスプレイ 画像入力装置および画像入出力装置並びに電子機器
JP2012118850A (ja) 2010-12-02 2012-06-21 Nec Casio Mobile Communications Ltd 端末装置、自動キャリブレーションの実行方法およびプログラム
KR20130086422A (ko) * 2012-01-25 2013-08-02 삼성전자주식회사 휴대단말기의 터치감도 조절장치 및 방법
US20140267132A1 (en) * 2013-03-13 2014-09-18 QUALCOMM MEMS Technologies. Inc. Comprehensive Framework for Adaptive Touch-Signal De-Noising/Filtering to Optimize Touch Performance
US10222866B2 (en) * 2014-03-24 2019-03-05 Beijing Lenovo Software Ltd. Information processing method and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257046A (ja) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp 近接検知装置
JP2012048340A (ja) * 2010-08-25 2012-03-08 Kyocera Corp 携帯端末
JP2013246557A (ja) * 2012-05-24 2013-12-09 Asahi Kasei Electronics Co Ltd タッチセンサの信号処理回路、およびタッチセンサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010455A (ja) * 2015-06-25 2017-01-12 シャープ株式会社 入力判定装置、制御プログラム、電子機器、及び入力判定装置の入力閾値校正方法
JP2017068584A (ja) * 2015-09-30 2017-04-06 トッパン・フォームズ株式会社 入力装置
JP2017097443A (ja) * 2015-11-18 2017-06-01 シャープ株式会社 入力判定装置、制御プログラム、電子機器、及び入力判定装置の入力閾値校正方法
JP2019075780A (ja) * 2017-10-12 2019-05-16 ローム株式会社 静電容量スイッチコントローラ、静電容量スイッチ、電子機器、異常検出方法
JP7290404B2 (ja) 2017-10-12 2023-06-13 ローム株式会社 静電容量スイッチコントローラ、静電容量スイッチ、電子機器
WO2019135280A1 (ja) * 2018-01-05 2019-07-11 三菱電機株式会社 タッチパネル装置及びタッチパネル装置のキャリブレーション方法

Also Published As

Publication number Publication date
JPWO2015087621A1 (ja) 2017-03-16
US20160291792A1 (en) 2016-10-06
US9710108B2 (en) 2017-07-18
JP6013623B2 (ja) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6013623B2 (ja) タッチセンサ制御装置、タッチパネルシステム、電子情報機器
US9665217B2 (en) Touch panel scan control
US9952720B2 (en) Capacitive touch screen interference detection and operation
CN108108048B (zh) 触摸感测系统及其控制方法
US9310457B2 (en) Baseline management for sensing device
US10282067B2 (en) Method and apparatus of controlling an interface based on touch operations
US10162464B2 (en) Suspension of touch sensor scan based on an expected interference
US20130265243A1 (en) Adaptive power adjustment for a touchscreen
US9564894B2 (en) Capacitive input device interference detection and operation
US20100265211A1 (en) Touch-type input device
US20140267137A1 (en) Proximity sensing using driven ground plane
CN105005422B (zh) 使用频率调制的干扰检测
US9377943B2 (en) Method and apparatus for outputting display data based on a touch operation on a touch panel
US9904314B2 (en) Device and method of controlling a display panel based on cover-related information
US10365748B2 (en) Smart touch location predictor based on direction vector
US8860758B2 (en) Display control apparatus and method for displaying overlapping windows
US20170003824A1 (en) Method of controlling touch panel
AU2017203910A1 (en) Glove touch detection
KR20140017255A (ko) C―type tsp을 이용한 전자펜 입력 인식 장치 및 방법
JP5960295B2 (ja) タッチパネル装置およびタッチパネル装置の制御方法
US8773396B1 (en) Detecting touchdowns and liftoffs of touch objects
US20150160776A1 (en) Input device, input disabling method, input disabling program, and computer readable recording medium
EP2987062B1 (en) Electronic device and method for preventing touch input error
US11983365B1 (en) Methods and systems for determining stylus orientation information
US20150074607A1 (en) Method and System for Prompting an Adjustable Direction of a Cursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869112

Country of ref document: EP

Kind code of ref document: A1